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Abstract. We introduce a restricted model of a one-membrane symport/antiport
system, called bounded S/A system. We show the following:

1. A language L ⊆ a∗
1...a

∗
k is accepted by a bounded S/A system if and only if

it is accepted by a log n space-bounded Turing machine. This holds for both
deterministic and nondeterministic versions.

2. For every positive integer r, there is an s > r and a unary language L that
is accepted by a bounded S/A system with s objects that cannot be accepted
by any bounded S/A system with only r objects. This holds for both deter-
ministic and nondeterministic versions.

3. Deterministic and nondeterministic bounded S/A systems over a unary in-
put alphabet are equivalent if and only if deterministic and nondeterministic
linear-bounded automata (over an arbitrary input alphabet) are equivalent.

We also introduce a restricted model of a multi-membrane S/A system, called
special S/A system. The restriction guarantees that the number of objects in the
system at any time during the computation remains constant. We show that for
every nonnegative integer t, special S/A systems with environment alphabet E
of t symbols (note that other symbols are allowed in the system if they are not
transported into the environment) has an infinite hierarchy in terms of the num-
ber of membranes. Again, this holds for both deterministic and nondeterministic
versions. Finally, we introduce a model of a one-membrane bounded S/A sys-
tem, called bounded SA acceptor, that accepts string languages. We show that the
deterministic version is strictly weaker than the nondeterministic version.

Clearly, investigations into complexity issues (hierarchies, determinism versus
nondeterminism, etc.) in membrane computing are natural and interesting from the
points of view of foundations and applications, e.g., in modeling and simulating
of cells. Some of the results above have been shown for other types of restricted
P systems (that are not symport/antiport). However, these previous results do
not easily translate for the models of S/A systems we consider here. In fact, in a
recent article, “Further Twenty Six Open Problems in Membrane Computing”
(January 26, 2005; see P Systems Web Page at http://psystems.disco.unimib.it),
Gheorghe Paun poses the question of whether the earlier results, e.g., concerning
determinism versus nondeterminism can be proved for restricted S/A systems.
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1 Introduction

Membrane computing is a relatively new computing paradigm which abstracts the activ-
ities of biological cells to find a new model for computing. While humanity has learned
to compute mechanically within the relatively recent past, other living processes have
computed naturally for millions of years. One such natural computing process can be
found within biological cells. Cells consist of membranes which are used to contain,
transfer, and transform various enzymes and proteins in a naturally decentralized and
parallel manner. By modeling these natural processes of cells, we can create a new
model of computing which is decentralized, nondeterministic, and maximally parallel.

Using biological membranes as an inspiration for computing was first introduced by
Gheorghe Paun in a seminal paper [10] (see also [11, 12]). He studied the first mem-
brane computing model, called P system, which consists of a hierarchical set of mem-
branes where each membrane contains both a multiset of objects and a set of rules
which determine how these objects interact within the system. The rules are applied in
a nondeterministic and maximally parallel fashion. At each step of the computation, a
maximal multiset of rules is chosen nondeterministically (note that several instances of
a rule may be selected) and the rules applied simultaneously (i.e., in parallel). Maximal
here means that in each step, no additional rule instance not already in the multiset of
rules is applicable and could be added to the multiset of rules. The system is nondeter-
ministic because the maximal multiset may not be unique. The outermost membrane is
often referred to as the skin membrane and the area surrounding the system is referred
to as the environment. A membrane not containing any membrane is referred to as an
elementary membrane. As a branch of Natural Computing which explores new models,
ideas, and paradigms from the way nature computes, membrane computing has been
quite successful: many models have been introduced, most of them Turing complete.
(See http://psystems.disco.unimb/it for a large collection of papers in the area, and in
particular the monograph [12].) Due to the maximal parallelism inherent in the model,
P systems have a great potential for implementing massively concurrent systems in an
efficient way that would allow us to solve currently intractable problems (in much the
same way as the promise of quantum and DNA computing) once future biotechnology
gives way to a practical bio-realization. Given this potential, the Institute for Scien-
tific Information (ISI) has selected membrane computing as a fast “Emerging Research
Front” in Computer Science (http://esi-topics.com/erf/october2003.html).

One very popular model of a P system is called a symport/antiport system
(introduced in [9]). It is a simple system whose rules closely resemble the way mem-
branes transport objects between themselves in a purely communicating manner. Sym-
port/antiport systems (S/A systems) have rules of the form (u, out), (u, in), and (u, out;
v, in) where u, v ∈ Σ∗. Note that u, v are multisets that are represented as strings (the
order in which the symbols are written is not important, since we are only interested
in the multiplicities of each symbol). A rule of the form (u, out) in membrane i sends
the elements of u from membrane i out to the membrane (directly) containing i. A rule
of the form (u, in) in membrane i transports the elements of u into membrane i from
the membrane enclosing i. Hence this rule can only be used when the elements of u
exist in the outer membrane. A rule of the form (u, out; v, in) simultaneously sends u
out of the membrane i while transporting v into membrane i. Hence this rule cannot be
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applied unless membrane i contains the elements in u and the membrane surrounding i
contains the elements in v. Formally an S/A system is defined as

M = (V, H, μ, w1, · · · , w|H|, E, R1, · · · , R|H|, io)

where V is the set of objects (symbols) the system uses, H is the set of membrane labels,
μ is the membrane structure of the system, wi is the initial multiset of objects within
membrane i, and the rules are given in the set Ri. E is the set of objects which can be
found within the environment, and io is the designated elementary output membrane.
(When the system is used as a recognizer or acceptor, there is no need to specify io.) A
large number of papers have been written concerning symport/antiport systems. It has
been shown that “minimal” such systems (with respect to the number of membranes,
the number of objects, the maximum “size” of the rules) are universal.

Initially, membrane systems were designed to be nondeterministic systems. When
multiple, maximal sets of rules are applicable, nondeterminism decides which maxi-
mal set to apply. Recently, deterministic versions of some membrane models have been
studied to determine whether they are as computationally powerful as the nondetermin-
istic versions [5, 7]. Deterministic models guarantee that each step of the computation
consists of only one maximal multiset of applicable rules. In some cases, both the non-
deterministic and deterministic versions are equivalent in power to Turing Machines
(see, e.g., [5]). In some non-universal P systems, the deterministic versus the nondeter-
ministic question has been shown to be equivalent to the long-standing open problem of
whether deterministic and nondeterministic linear-bounded automata are equivalent [7];
for another very simple class of systems, deterministic is strictly weaker than nondeter-
ministic [7]. However, these two latter results do not easily translate for S/A systems.

In this paper, we look at restricted models of symport/antiport systems. Two models,
called bounded S/A system and special S/A system, are acceptors of multisets with the
restriction that the multiplicity of each object in the system does not change during the
computation. These models differ in whether they also bound the number of membranes
within the system or bound the number of distinct objects that can occur abundantly in
the environment. Another model, called bounded S/A acceptor, is an acceptor of string
languages. Again, this model has the property that at any time during the computation,
the number of objects in the system is equal to the number of input symbols that have
been read so far (in addition to a fixed number of objects given to the system at the
start of the computation). We study the computing power of these models. In partic-
ular, we investigate questions concerning hierarchies (with respect to the number of
distinct objects used in the system or number of membranes in the system) and whether
determinism is strictly weaker than nondeterminism.

2 One-Membrane Bounded S/A System

Let M be a one-membrane symport/antiport system over an alphabet V , and let Σ =
{a1, ..., ak} ⊆ V be the input alphabet. M is restricted in that all rules are of the form
(u, out; v, in), where u, v ∈ V ∗ with |u| = |v| ≥ 1. Thus, the number of objects in the
system at any time during the computation remains the same. Note that all the rules are
antiport rules.
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There is a fixed string (multiset) w in (V −Σ)∗ such that initially, the system is given
a string wan1

1 ...ank

k for some nonnegative integers n1, ..., nk (thus, the input multiset is
an1
1 ...ank

k ). If the system halts, then we say that the string an1
1 ...ank

k is accepted. The set
of all such strings is the language L(M) accepted by M . We call this system a bounded
S/A system. M is deterministic if the maximally parallel multiset of rules applicable at
each step in the computation is unique. We will show the following:

1. A language L ⊆ a∗
1...a

∗
k is accepted by a deterministic (nondeterministic) bounded

S/A system if and only if it is accepted by a deterministic (nondeterministic) log n
space-bounded Turing machine (with a two-way read-only input with left and right
end markers).

2. For every r, there is an s > r and a unary language L (i.e., L ⊆ o∗) accepted by
a bounded S/A system with an alphabet of s symbols that cannot be accepted by
any bounded S/A system with an alphabet of r symbols. This result holds for both
deterministic and nondeterministic versions.

3. Deterministic and nondeterministic bounded S/A systems over a unary input alpha-
bet are equivalent if and only if deterministic and nondeterministic linear-bounded
automata (over an arbitrary alphabet) are equivalent. This later problem is a long-
standing open problem in complexity theory [16].

The restriction |u| = |v| ≥ 1 in the rule (u, out; v, in) can be relaxed to |u| ≥ |v| ≥
1, but the latter is equivalent in that we can always introduce a dummy symbol d and
add d|u|−|v| to v to make the lengths the same and not use symbol d in any rule. We note
that a similar system, called bounded P system (BPS) with cooperative rules of the form
u → v where |u| ≥ |v| ≥ 1, was also recently studied in [3] for their model-checking
properties.

For ease in exposition, we first consider the case when the input alphabet is unary,
i.e., Σ = {o}. Thus, the bounded S/A system M has initial configuration won (for
some n). The idea is to relate the computation of M to a restricted type of multicounter
machine, called linear-bounded multicounter machine.

A deterministic multicounter machine Z is linear-bounded if, when given an input
n in one of its counters (called the input counter) and zeros in the other counters, it
computes in such a way that the sum of the values of the counters at any time during
the computation is at most n. One can easily normalize the computation so that every
increment is preceded by a decrement (i.e., if Z wants to increment a counter Cj , it first
decrements some counter Ci and then increments Cj) and every decrement is followed
by an increment. Thus we can assume that every instruction of Z , which is not ‘Halt’,
is of the form:

p : If Ci �= 0, decrement Ci by 1, increment Cj by 1, and goto k else goto state l.

where p, k, l are labels (states). We do not require that the contents of the counters are
zero when the machine halts.

If in the above instruction, there is a “choice” for states k and/or l, the machine is
nondeterministic. We will show that we can construct a deterministic (nondeterministic)
bounded S/A system M which uses a fixed multiset w such that, when M is started
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with multiset won, it simulates Z and has a halting computation if and only if Z halts
on input n. Moreover, the rules of M are of the form u → v, where |u| = |v| = 1 or 2.

It is convenient to use an intermediate P system, called SCPS, which is a restricted
version of the the CPS (communicating P system) introduced in [18]. A CPS has mul-
tiple membranes, with the outermost one called the skin membrane. The rules in the
membranes are of the form:

1. a → ax,
2. ab → axby ,
3. ab → axbyccome,

where a, b, c are objects, x, y (which indicate the directions of movements of a and b)
can be here, out, or inj . The designation here means that the object remains in the
membrane containing it, out means that the object is transported to the membrane di-
rectly enclosing the membrane that contains the object (or to the environment if the
object is in the skin membrane). The designation inj means that the object is moved
into the membrane, labeled j, that is directly enclosed by the membrane that contains
the object. A rule of the form (3) can only appear in the skin membrane. When such
a rule is applied, c is imported through the skin membrane from the environment (i.e.,
outer space) and will become an element in the skin membrane. In one step, all rules
are applied in a maximally parallel manner. For notational convenience, when the tar-
get designation is not specified, we assume that the symbol remains in the membrane
containing the rule.

Let V be the set of all objects (i.e., symbols) that can appear in the system, and o be
a distinguished object (called the input symbol). A CPS M has m membranes, with a
distinguished input membrane. We assume that only the symbol o can enter and exit the
skin membrane (thus, all other symbols remain in the system during the computation).
We say that M accepts on if M , when started with on in the input membrane initially
(with no o’s in the other membranes), eventually halts. Note that objects in V − {o}
have fixed numbers and their distributions in the different membranes are fixed initially.
Moreover, their multiplicities remain the same during the computation, although their
distributions among the membranes may change at each step. The language accepted
by M is L(M) = {on | on is accepted by M}.

It is known that a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
CPS if and only if it is accepted by a deterministic (nondeterministic) multicounter
machine. (Again, define the language accepted by a multicounter machine Z to be L =
{on | Z when given n has a halting computation }). The “if” part was shown in [18]. The
“only if” part is easily verified. Hence, every unary recursively enumerable language
can be accepted by a deterministic CPS (hence, also by a nondeterministic CPS).

An SCPS (‘S’ for simple) is a restricted CPS which has only rules of the form a →
ax or ab → axby . Moreover, if the skin membrane has these types of rules, then x, y �=
out (i.e., no objects are transported to the environment).

Lemma 1. If a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
linear-bounded multicounter machine Z , then it is accepted by a deterministic (nonde-
terministic) SCPS M .
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Proof. We only prove the case when Z is deterministic, the nondeterministic case being
similar. The construction of M is a simple modification of the construction in [18]. As-
sume Z has m counters C1, ..., Cm. M has the same membrane structure as in [18]. In
particular, the skin membrane contains membranes E1, ..., Em to simulate the counters,
where the multiplicity of the distinguished (input) symbol o in membrane Ei represents
the value of counter Ci. There are other membranes within the skin membrane that are
used to simulate the instructions of Z (see [18]). All the sets of rules R1, ..., are the
same as in [18], except the instruction

p : If Ci �= 0, decrement Ci by 1, increment Cj by 1, and goto l else goto k

of Z is simulated as in [18], but the symbol o is not thrown out (from the skin mem-
brane) into the environment but added to membrane Ej . It follows from the construction
in [18] that M will not have any instruction of the form ab → axbyccome and if instruc-
tions of the form a → ax or ab → axby appear in the skin membrane, then x, y �= out.
Hence, M is a deterministic SCPS. ��

Lemma 2. If a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
linear-bounded multicounter machine, then it is accepted by a deterministic (nondeter-
ministic) bounded S/A system.

Proof. We show how to convert the multi-membrane SCPS M of Lemma 1 to a (one-
membrane) bounded S/A system M ′. The construction is similar to the one given in
[3]. Suppose that M has membranes 1, ..., m. For each object a in V , M ′ will have
symbols a1, ..., am. In particular, for the distinguished input symbol o in V , M ′ will
have o1, ..., om. Hence the distinguished input symbol in M ′ is oi0 , where i0 is the
index of the input membrane in M . We can convert M to a bounded S/A system M ′ as
follows:

1. If a → ax is a rule in membrane i of M , then (ai, out; aj , in) is a rule in M ′, where
j is the index of the membrane into which a is transported to, as specified by x.

2. If ab → axay is a rule in membrane i of M , then (aibi, out; ajbk, in) is a rule
in M ′, where j and k are the indices of the membranes into which a and b are
transported to, as specified by x and y.

Thus, corresponding to the initial configuration won of M , where on is in the input
membrane i0 and w represents the configuration denoting all the other symbols (differ-
ent from o) in the other membranes, M ′ will have initial configuration w′on

i0
, where w′

are symbols in w renamed to identify their locations in M .
Clearly, M ′ accepts on

i0 if and only if M accepts on, and M ′ is a deterministic
(nondeterministic) bounded S/A system. ��

We will prove the converse of Lemma 2 indirectly. A k-head two-way finite automaton
(k-2FA) is a finite automaton with k two-way read-only heads operating on an input
(with left and right end markers) [8]. A multihead 2FA is a k-2FA for some k.

Lemma 3. If M is a deterministic (nondeterministic) bounded S/A system with an al-
phabet V of m symbols (note that V contains the distinguished input symbol o), then
M can be simulated by a deterministic (nondeterministic) m(m + 1)-2FA Z .



On Bounded Symport/Antiport P Systems 135

Proof. Suppose M is a deterministic bounded S/A system accepting a language
L(M) ⊆ o∗. Assume that its alphabet is V = {a1, ..., am}, where a1 = o (the in-
put symbol). We construct a deterministic multihead FA Z to accept L(G). The input to
Z (not including the left and right end markers) is on for some n. We will need the fol-
lowing heads to keep track of the multiplicities of the symbols in the membrane during
the computation (note that the bounded S/A system M is given won initially):

1. Ki for 1 ≤ i ≤ m. Head Ki will keep track of the current number of ai’s. Initially,
K1 will point to the right end marker (indicating that there are n o’s in the input)
while all other Ki will point to the appropriate position on the input corresponding
to the multiplicity of symbol ai in the fixed string w.

2. Ki,j for 1 ≤ i, j ≤ m. These heads keep track of how many ai’s are replaced by
aj’s during the next step of M .

One step of M is simulated by a (possibly unbounded) number of steps of Z . At the
beginning of the simulation of every step of M , Z resets all Ki,j’s to the left end marker.
To determine the next configuration of M , Z processes the rules as follows:

Let R1, R2, ..., Rs be the rules in the membrane. By using K1, ..., Km (note each
Ki represents the number of ai’s in the membrane), Z applies rule R1 sequentially a
maximal number of times storing the “results” (i.e., the number of ai’s that are con-
verted by the applications of rule R1) to aj in head Ki,j . Thus, each application of R1
may involve decrementing the Ki’s and incrementing some of the Ki,j’s. (By defini-
tion, the sequential application of R1 has reached its maximum at some point, if further
application of the rule is no longer applicable.)

The process just described is repeated for the other rules R2, ..., Rs. When all the
rules have been processed, Z updates each head Kj using the values stored in Ki,j ,
1 ≤ i ≤ m. This completes the simulation of the unique (because M is deterministic)
maximally parallel step of M .

It follows from the above description that a deterministic bounded S/A system can
be simulated by a deterministic m(m + 1)-2FA.

If M is nondeterministic, the construction of the nondeterministic multihead 2FA
M is simpler. M just sequentially guesses the rule to apply each time (i.e., any of
R1, R2, ..., Rs) until no more rule is applicable. Note that Z does not need the heads
Ki,j’s. ��
For the proof of the next theorem, we need a definition. Define a generalized linear-
bounded multicounter machine as follows. As before, at the start of the computation,
the input counter is set to a value n (for some n), and all other counters are set to
zero. Now we only require that there is a positive integer c such that at any time during
the computation, the value of any counter is at most cn. (Thus, we no longer require
that the sum of the values of the counters is at most n.) In [3], it was shown that a
generalized linear-bounded multicounter machine can be converted to a linear-bounded
multicounter machine. For completeness, we describe the construction.

Suppose that Z is a generalized linear-bounded multicounter machine with counters
C1, ..., Cm, where C1 is the input counter. Construct another machine Z ′ with counters
D, C1, ..., Cm, where D is now the input counter. Z ′ with input n in counter D, first
moves n from D to C1 (by decrementing D and incrementing C1.) Then Z ′ simulates
Z on counters C1, ..., Cm (counter D is no longer active).
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Let d be any positive integer. We modify Z ′ to another machine Z ′′ which uses, for
each counter Ci, a buffer of size d in its finite control to simulate Z ′, and Z ′′ increments
and decrements each counter modulo d. Z ′′ does not alter the action of Z ′ on counter D.

By choosing a large enough D, it follows that the computation of Z ′′ is such that
when given input n in counter D and zeros in counters C1, ..., Cm, the sum of the
values of counters D, C1, ..., Cm at any time is at most n. It follows that, given a gen-
eralized linear-bounded multicounter, we can construct an equivalent linear-bounded
multicounter machine.

The next theorem is similar to a result in [3] concerning BPS.

Theorem 1. Let L ⊆ o∗. Then the following statements are equivalent:

(1) L is accepted by a bounded S/A system.
(2) L is accepted by a linear-bounded multicounter machine,
(3) L is accepted by a log n space-bounded Turing machine.
(4) L is accepted by a multihead 2FA

These equivalences hold for both the deterministic and nondeterministic versions.

Proof. The equivalence of (3) and (4) is well known. By Lemmas 2 and 3, we need
only show the equivalence of (2) and (4). That a linear-bounded multicounter machine
can be simulated by a multihead 2FA is obvious. Thus (2) implies (4). We now show the
converse. Let M be a two-way multihead FA M with m heads H1, ..., Hm. From the
discussion above, it is sufficient to construct a generalized multicounter machine Z
equivalent to M . Z has 2m+1 counters, D, C1, ..., Cm, E1, ..., Em. Z with input n in
counter D, and zero in the other counters first decrements D and stores n in counters
C1, .., Cm. Then Z simulates the actions of head Hi of M using the counters Ci

and Ei. ��

Lemmas 2 and 3 and Theorem 1 can be generalized to non-unary inputs, i.e., inputs of
the form an1

1 ...ank

k , where a1, ..., ak are distinct symbols. The constructions are straight-
forward generalizations of the ideas above. Thus, we have:

Corollary 1. Let L ⊆ a∗
1...a

∗
k. Then the following statements are equivalent:

(1) L is accepted by a bounded S/A system.
(2) L is accepted by a linear-bounded multicounter machine,
(3) L is accepted by a log n space-bounded Turing machine.
(4) L is accepted by a multihead 2FA.

These equivalences hold for both the deterministic and nondeterministic versions.

We now proceed to show that the number of symbols in the alphabet V of a bounded
S/A system induces an infinite hierarchy. This is an interesting contrast to a result in
[14] that an unbounded S/A system with three objects is universal. The proof follows
the ideas in [6], which showed an infinite hierarchy for a variant of SPCS, called RCPS.

We will need the following result from [8]:

Theorem 2. For every k, there is a unary language L that can be accepted by a (k+1)-
2FA but not by any k-2FA. The result holds for both deterministic and nondeterministic
versions.
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Theorem 3. For every r, there exist an s > r and a unary language L (i.e., L ⊆
o∗) accepted by a bounded S/A system with an alphabet of s symbols that cannot be
accepted by any bounded S/A system with an alphabet of r symbols. This result holds
for both deterministic and nondeterministic versions.

Proof. Suppose there is an r such that any unary language language accepted by any
bounded S/A system with an arbitrary alphabet can be accepted by a bounded S/A
system with an alphabet of r symbols. Let k = r(r + 1). From Theorem 2, there is
a unary language L that can be accepted by a (k + 1)-2FA but not by any k-2FA.
By Theorem 1, this language can be accepted by a bounded S/A system. Then, by
hypothesis, L can also be accepted by a bounded S/A system with an alphabet of r
symbols. Then, from Lemma 3, we can construct from this bounded S/A system an
r(r + 1)-2FA accepting L. Hence, L can be accepted by a k-2FA, a contradiction. ��

For our next result, we need the following theorem from [17].

Theorem 4. Nondeterministic and deterministic multihead 2FAs over a unary input
alphabet are equivalent if and only if nondeterministic and deterministic linear bounded
automata (over an arbitrary input alphabet) are equivalent.

From Theorems 1 and 4, we have:

Theorem 5. Nondeterministic and deterministic bounded S/A systems over a unary in-
put alphabet are equivalent if and only if nondeterministic and deterministic linear
bounded automata (over an arbitrary input alphabet) are equivalent.

3 Multi-membrane Special S/A Systems

Let M be a multi-membrane S/A system, which is restricted in that only rules of the
form (u, out; v, in), where |u| = |v| ≥ 1, can appear in the skin membrane. There
are no restrictions on the weights of the rules in the other membranes. Clearly, the
number of objects in the system at any time during the computation remains the same.
We denote by Et the alphabet of t symbols (for some t) in the environment. There may
be other symbols in the membranes that remain in the system during the computation
and are not transported to/from the environment, and they are not part of Et. Note that
E0 means that the environment alphabet is empty (i.e., there are no symbols in the
environment at any time). As before, we consider the case where the input alphabet is
unary (i.e. Σ = {o}). M ’s initial configuration contains on in the input membrane (for
some n) and a fixed distribution of some non-o symbols in the membranes. The string
on is accepted if the system eventually halts. We call the system just described a special
S/A system.

Theorem 6. Let L ⊆ o∗. Then the following statements are equivalent:

(1) L is accepted by a multi-membrane special S/A system with no symbols in the
environment, i.e., has environment alphabet E0 (= empty set).

(2) L is accepted by a bounded S/A system.
(3) L is accepted by a linear-bounded multicounter machine.
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(4) L is accepted by a log n space-bounded Turing machine.
(5) L is accepted by a multihead 2FA.

These equivalences hold for both the deterministic and nondeterministic versions.

Proof. As in Lemma 3, it is easy to show that a deterministic (nondeterministic) m-
membrane special S/A system with no symbols in the environment can be simulated by
a deterministic (nondeterministic) two-way FA with 2m heads.

By Theorem 1, to complete the proof, we need only show that a linear-space bounded
multicounter machine can be simulated by a multi-membrane special S/A with no sym-
bols in the environment. For notational convenience, we will assume the multicounter
machine is controlled by a program with instructions of the type li : (ADD(r), lj),
li : (SUB(r), lj , lk), and li : (HALT ) where li is the label for the current instruction
being executed and r is the counter which is either being incremented or decremented.
If the current instruction is an add instruction, the next instruction to execute will be
lj . If the current instruction is a subtract instruction the next instruction depends on the
value of r. If r �= 0, the next instruction is denoted by lj otherwise the next instruction
is denoted by lk.

The special S/A system simulating a linear-space bounded multicounter machine
will use one membrane to simulate each counter of the multicounter machine. These
membranes will be placed within a ’program’ membrane where the current instruction
is brought in, implemented, and then expelled. This entire system is enclosed within
a dummy membrane (the skin membrane) containing no rules and a single copy of
each instruction object along with a a few auxiliary objects. So the overall system uses
m + 2 membranes. Obviously, if the skin membrane of the special S/A system contains
no rules, no object can ever be brought into the system or expelled from the system.
Hence, since the system initially contains |won| symbols, the system will continue to
contain |won| symbols after each step of the computation.

To show how any linear-space bounded multicounter machine can be simulated, we
give a formal transformation to a special S/A system. Our transformation is similar to
the transformation in [14] except that our transformation yields a deterministic (nonde-
terministic) special S/A system if the original linear-space bounded multicounter ma-
chine is deterministic (nondeterministic). (The transformation in [14] only produces a
nondeterministic S/A system.) The transformation is done as follows. Consider a mul-
ticounter machine Z with m counters. Construct a symport / antiport system M which
simulates Z as follows:

M = (V, H, μ, w1, w2, · · · , wm+2, E0, R1, R2, · · · , Rm+2, io)

where H = {1, 2, · · · , m + 2}; μ = [1[2[3]3[4]4 · · · [m+2]m+2]2]1; w1 = one copy of
each element in V except o and l01 (we assume Z’s program begins with the instruction
l0); w2 = l01; w3 = on; wi = λ, for all i = 4, · · · , m + 2; E0 = ∅ (the environment,
Et, is empty because t = 0); No need to specify i0, since our system is an acceptor.

The elements of V are as follows:

1. o — The symbol o is used as the counting object for the system. The multiplicity
of o’s in each counter membrane signifies the count of that counter.
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2. d1, d2, d3, d4, d5, d6 — These objects are used to delay various objects from being
used for a number of steps. The objects d1 and d2 are used to delay an action for 1
step. The remaining objects are used to delay an action for 3 steps.

3. c1, c2, c3 — These objects are called check objects and are used to guarantee a
subtract instruction expels at most one o object from the appropriate counter mem-
brane.

4. li1, li2 for each instruction li : (ADD(r), lj).
The object li1 signifies that the next instruction we will execute is li. The object li2
is used in executing instruction li.

5. li1, li2, li3, li4 for each instruction li : (SUB(r), lj , lk).
The object li1 signifies that the next instruction we will execute is li. The objects
li2, li3, and li4 are used in executing instruction li and are used to signify which
branch of li will determine the next instruction.

6. li1 for each instruction li : (HALT ).

The sets of rules for the Ri’s are created as follows:

1. The set R1 = ∅.
2. The set R2 contains the following delay rules: (d1, out; d2, in); (d3, out; d4, in);

(d4, out; d5, in);
(d5, out; d6, in).

3. For each instruction li : (ADD(r), lj) in Z:
The set R2 contains the following rules: (li1, out; li2d1o, in); (li2d2, out; lj1, in).
The set Rr+2 contains the following rules: (li2o, in); (li2, out).

4. For each instruction li : (SUB(r), lj , lk) in Z:
The set R2 contains the following rules: (li1, out; li2c1d3, in); (li2o, out; c2li3, in);
(c1c2d6li3, out; lj1, in); (li2d6, out; c3li4, in); (c1c3li4, out; lk1, in).
The set Rr+2 contains the following rules: (li2c1, in); (li2o, out); (c1, out; c2, in);
(c2, out);
(li2, out; d6, in); (d6, out); (c1, out; c3, in); (c3, out).

5. For each instruction li : (HALT ) no rules are added.

Informally, these special S/A system rules work using the following ideas. Initially
the system is started with the first instruction label object l01 in the program membrane
and the input on within membrane 3 (corresponding to counter 1). To execute an add
instruction, the initial instruction object is replaced with the objects needed to execute
the instruction - li2, d1, and o. If the instruction is a subtract instruction the instruction
li1 is replaced with li2 along with a delay object d3 and a check object c1. Once the
appropriate objects are in the program membrane, a o object is appropriately moved
into or out of the counter membrane corresponding to the current instruction. In the
case where the current instruction tries to decrement a zero counter, the check objects
cooperate with the delay objects to detect the situation and bring the appropriate objects
into and out of the active membranes. Finally, the instruction executing objects are
expelled from the program membrane and the correct next instruction object is brought
into the program membrane.

Note that when a counter is decremented, an o object is removed from the correspond-
ing membrane and moved into the skin membrane. When a counter is incremented, an o
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object is brought into the corresponding membrane from the skin membrane. Since the
multicounter machine being simulated is, by definition, guaranteed to always decrement
before incrementing, we are guaranteed to have thrown an o object into membrane 1 be-
fore we ever try bringing an o object from membrane 1 to membrane 2. This guarantees
that the special S/A system will operate through the multicounter machine’s program
instructions correctly. ��

Corollary 2. Let t be any positive integer. Then multi-membrane special S/A systems
with an environment alphabet of t symbols are equivalent to multi-membrane special
S/A systems with no symbols in the environment. This holds for deterministic and non-
deterministic versions.

Proof. This follows from the above theorem and the observation that a system with an
environment of t symbols can be simulated by a two-way FA with 2m(t+1) heads. ��

The proof of the next result is similar to that of Theorem 3.

Theorem 7. For every r, there exist an s > r and a unary language L (i.e., subset
of o∗) accepted by an s-membrane special S/A system that cannot be accepted by any
r-membrane special S/A system. This result holds for both deterministic and nondeter-
ministic versions.

4 One-Membrane Bounded S/A Systems Accepting String
Languages

Let M be a (one-membrane) S/A system with alphabet V and input alphabet Σ ⊆ V .
We assume that Σ contains a distinguished symbol $, called the (right) end marker. The
rules are restricted to be of the form:

1. (u, out; v, in),
2. (u, out; vc, in)

where both u and v are in V +, |u| = |v| ≥ 1, and c is in Σ. Note that because of the
requirement that |u| = |v|, the only way that the number of symbols in the membrane
can grow is when a rule of type 2 is used. The second type of of rule is called a read-
rule. We call M a bounded S/A acceptor. There is an abundance of symbols from V in
the environment. The symbol c in a rule of type 2 can only come from the input string
z = a1...an (where ai is in Σ − {$} for 1 ≤ i < n, and an = $), which is provided
online externally; none of the symbols in v in the rules come from z.

There is a fixed string w in (V − Σ)∗, which is the initial configuration of M . Max-
imal parallelism in the application of the rules is assumed as usual. Hence, in general,
the size of the multiset of rules applicable at each step is unbounded. In particular, the
number of instances of read-rules (i.e., rules of the form (u, out; vc, in)) applicable in
a step is unbounded. However, if a step calls for reading k input symbols (for some
k), these symbols must be consistent with the next k symbols of the input string z that
have not yet been processed. Note that rules of type 1 do not consume any input symbol
from z.
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The input string z = a1...an (with an = $) is accepted if, after reading all the input
symbols, M eventually halts. The language accepted is L(M) = {a1...an−1 | a1...an

is accepted by M} (we do not include the end marker).
We have two versions of the system described above: deterministic and nondeter-

ministic bounded S/A acceptors. Again, in the deterministic case, the maximally paral-
lel multiset of rules applicable at each step of the computation is unique. We will show
that the deterministic version is strictly weaker than the nondeterministic version. The
proof uses some recent results in [7] concerning a simple model of a CPS, called SCPA.

An SCPA M has multiple membranes, with the skin membrane labeled 1. The sym-
bols in the initial configuration (distributed in the membranes) are not from Σ (the input
alphabet). The rules (similar to those of a CPS) are of the form:

1. a → ax

2. ab → axby

3. ab → axbyccome

The input to M is a string z = a1...an (with an = $, the end marker), which is provided
externally online. The restrictions on the operation of M are the following:

1. There are no rules in membrane 1 with aout or bout on the right-hand side of the
rule (i.e., no symbol can be expelled from membrane 1 into the environment).

2. A rule of type 3 (called a read-rule) can only appear in membrane 1. This brings in
c if the next symbol in the input string z = a1...an that has not yet been processed
(read) is c ; otherwise, the rule is not applicable.

3. Again, in general, the size of the maximally parallel multiset of rules applicable at
each step is unbounded. In particular, the number of instances of read-rules (i.e.,
rules of the form ab → axbxccome) applicable in a step is unbounded. However,
if a step calls for reading k input symbols (for some k), these symbols must be
consistent with the next k symbols of the input string z that have not yet been
processed (by the semantics of the read-rule described in the previous item).

The system starts with an initial configuration which consists of some symbols from
V − Σ distributed in the membranes. The input string z = a1...an is accepted if, after
reading all the input symbols, the SCPA eventually halts. The language accepted by M
is L(M) = {a1...an−1 | a1...an is accepted by M} (we do not include the end marker).

A restricted 1-way linear-space DCM (NCM) M is a deterministic (nondetermin-
istic) finite automaton with a one-way read-only input tape with right delimiter (end
marker) $ and a number of counters. As usual, each counter can be tested for zero and
can be incremented/decremented by 1 or unchanged. The counters are restricted in that
there is a positive integer c such that at any time during the computation, the amount
of space used in any counter (i.e., the count) is at most ck, where k is the number of
symbols of the input that have been read so far. Note that the machine need not read
an input symbol at every step. An input w = a1...an (where an is the end marker, $,
which only occurs at the end) is accepted if, when M is started in its initial state with
all counters zero, it eventually enters an accepting state while on $.

We note that although the machines are restricted, they can accept fairly complex
languages. For example, {anbncn | n ≥ 1} and {a2n | n ≥ 0} can both be accepted by
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restricted 1-way linear-space DCMs. (We usually do not include the end marker, which
is part of the input, when we talk about strings/languages accepted.) It can be shown
that a restricted 1-way linear-space DCM (NCM) is equivalent to a restricted 1-way
log n-space deterministic (nondeterministic) Turing machine that was studied in [2].

We will need the following result that was recently shown in [7]:

Theorem 8. A language L is accepted by a restricted 1-way linear-space DCM (NCM)
if and only if it is accepted by a deterministic SCPA (nondeterministic SCPA).

Theorem 9. Deterministic (nondeterministic) bounded S/A acceptors are equivalent to
deterministic (nondeterministic) SCPAs.

Proof. First we show that a deterministic (nondeterministic) SCPA M can be simulated
by a deterministic (nondeterministic) bounded S/A acceptor M ′, which has only one
membrane. Suppose M has membranes 1, ..., m, with index 1 representing the skin
membrane. For every symbol a in the system and membrane i, create a new symbol
ai. We construct M ′ by converting the rules to one-membrane rules as described in the
proof of Lemma 2, except that now we have to handle rules of the form ab → axbyccome

in membrane 1. We transform such a rule to (a1b1, out; ajbkc1, in), where j and k are
the indices of the membranes into which a and b are transported to, as specified by x
and y. After we have constructed M ′, modify it slightly by deleting the subscripts of
all symbols with subscript 1 (in the rules and initial configuration). Thus unsubscripted
symbols are associated with symbols in membrane 1 of the SCPA M .

For the converse, we need only show (by Theorem 8) that a deterministic (nondeter-
ministic) bounded S/A acceptor M can be simulated by a restricted 1-way linear-space
DCM (NCM) Z . The construction of Z is like in Lemma 3, except that now, Z uses
counters (instead of heads), and in the maximally parallel step, the read-rules are the
first ones to be processed. Define an atomic read-rule process as follows: Z systemati-
cally cycles through the read-rules and finds (if it exists) the first one that is applicable
(note that for a read-rule (u, out; vc, in) to be applicable, the next input symbol that has
yet to be processed must be c). Z applies a sequence of these read-rules until no more
read-rule is applicable. Then all the other rules are processed. We omit the details. If M
is a nondeterministic SCPA, the construction of a nondeterministic Z is similar, in fact,
easier. ��

From Theorem 8 and the fact that deterministic SCPAs are strictly weaker than nonde-
terministic SCPAs [7], we have:

Theorem 10. Deterministic bounded S/A acceptors are strictly weaker than nondeter-
ministic bounded S/A acceptors.

Let L = {x#p | x is a binary number with leading bit 1 and p �= 2val(x)}, where
val(x) is the value of x. It was shown in [7] that L can be accepted by a nondeterministic
SCPA but not by any deterministic SCPA. Hence, L is an example of a language that
can be accepted by a nondeterministic bounded S/A acceptor that cannot be accepted
by any deterministic bounded S/A acceptor.

The following follows from Theorem 9 and the fact that similar results hold for
SCPAs [7].
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Theorem 11. Let NBSA (DBSA) be the class of languages accepted by nondeterminis-
tic (deterministic) bounded S/A acceptors. Then:

1. NBSA is closed under union and intersection but not under complementation.
2. DBSA is closed under union, intersection, and complementation.
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