

Lecture Notes in Computer Science 3892
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alessandra Carbone Niles A. Pierce (Eds.)

DNA Computing

11th International Workshop on DNA Computing, DNA11
London, ON, Canada, June 6-9, 2005
Revised Selected Papers

13

Volume Editors

Alessandra Carbone
Université Pierre et Marie Curie
Department of Computer Science
INSERM U511, 91 Boulevard de L’Hôpital, 75013 Paris, France
E-mail: Alessandra.Carbone@lip6.fr

Niles A. Pierce
California Institute of Technology
Applied and Computational Mathematics, Bioengineering
MC 114-96, Pasadena, CA 91125, USA
E-mail: niles@caltech.edu

Library of Congress Control Number: 2006925104

CR Subject Classification (1998): F.1, F.2.2, I.2.9, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-34161-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34161-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11753681 06/3142 5 4 3 2 1 0

Preface

Biomolecular computing has emerged as an interdisciplinary field that draws on
chemistry, computer science, mathematics, molecular biology, and physics. The
International Meeting on DNA Computing (formerly DNA Based Computers) is
a forum where scientists with different backgrounds, yet sharing common inter-
ests in biomolecular computing and DNA nanotechnology, meet and present their
latest results. Continuing this tradition, the 11th International Meeting on DNA
Computing was held June 6–9, 2005 at the University of Western Ontario in Lon-
don, Ontario, Canada. For the first time, the meeting was organized under the
auspices of the newly founded International Society for Nanoscale Science, Com-
putation and Engineering (ISNSCE). The DNA11 Program Committee received
79 submissions, of which 23 were presented orally and 47 were presented as posters.
The meeting was attended by 131 registered participants from 15 countries.

The meeting began with tutorials on computer science for life science re-
searchers by Mark Daley (University of Western Ontario) and on molecular
biology for computer scientists by Junghuei Chen (University of Delaware). Ned
Seeman (New York University) concluded the first day with a survey on DNA
nanotechnology. The remaining three days included contributed oral and poster
presentations as well as invited lectures by James Gimzewski (University of Cal-
ifornia, Los Angeles) on nanomechanical probes of biosystems, Pehr Harbury
(Stanford University) on DNA display, Eshel Ben-Jacob (Tel Aviv University)
on bacterial intelligence, Erik Klavins (University of Washington) on robotic self-
organization, and Dipankar Sen (Simon Fraser University) on DNA biosensors.

This volume contains 34 papers selected from the contributed oral and poster
presentations. The wide-ranging topics include in vitro and in vivo biomolecular
computation, algorithmic self-assembly, DNA device design, DNA coding theory,
and membrane computing. The style of the contributions varies from theoretical
molecular algorithms and complexity results, to experimental demonstrations of
DNA computing and nanotechnology, to computational tools for simulation and
design.

We wish to express our gratitude to the Program Committee members and
external reviewers for evaluating the manuscripts. We also appreciate the efforts
of the International Steering Committee chaired by Grzegorz Rozenberg in pro-
viding intellectual continuity for the meeting series. Profound thanks are due
to Lila Kari, Mark Daley and all the members of the Organizing Committee
for their substantial efforts in preparing for and running the meeting. We are
grateful to all of the organizations that provided financial support for the meet-
ing. Finally, we wish to thank all the members of the research community who
contributed to the vitality of DNA11.

December 2005 Alessandra Carbone
Niles A. Pierce

Organization

Program Committee

Alessandra Carbone (Co-chair) Université Pierre et Marie Curie, France
Niles A. Pierce (Co-chair) California Institute of Technology, USA
Yaakov Benenson Weizmann Institute, Israel
Junghuei Chen Delaware Biotechnology Institute, USA
Robert Corn University of California, Irvine, USA
Ashish Goel Stanford University, USA
Lila Kari University of Western Ontario, Canada
Chengde Mao Purdue University, USA
Giancarlo Mauri University of Milan, Bicocca, Italy
Gheorghe Păun Romanian Academy, Bucharest & Sevilla

University, Spain
John Rose University of Tokyo, Japan
Paul Rothemund California Institute of Technology, USA
William Shih Harvard University, USA
Milan Stojanovic Columbia University, USA
Masayuki Yamamura Tokyo Institute of Technology, Japan
Hao Yan Arizona State University, USA
Takashi Yokomori Waseda University, Japan
Byoung-Tak Zhang Seoul National University, South Korea

Steering Committee

Grzegorz Rozenberg University of Leiden, Netherlands (Chair)
Leonard Adleman University of Southern California, USA

(Honorary Member)
Anne Condon University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Lila Kari University of Western Ontario (UWO), Canada
Laura Landweber Princeton University, USA
Richard Lipton Georgia Institute of Technology, USA
Giancarlo Mauri University of Milan, Bicocca, Italy
John Reif Duke University, USA
Harvey Rubin University of Pennsylvania, USA
Nadrian Seeman New York University, USA
Erik Winfree Caltech, USA

VIII Organization

Organizing Committee
at the University of Western Ontario

Lila Kari (Chair) Argyrios Margaritis
Mark Daley (Vice-chair) Kathleen Hill
Michael Bauer Susanne Kohalmi
Meg Borthwick Elena Losseva
Fernando Sancho Caparrini Kalpana Mahalingam
Gang Du Shiva Singh
Greg Gloor

Sponsors

The Fields Institute of Research in Mathematical Sciences
MITACS (The Mathematics of Information Technology and Complex Systems
Institute)
Biomar Inc.
University of Western Ontario
Faculty of Science at the University of Western Ontario

Table of Contents

Self-correcting Self-assembly: Growth Models and the Hammersley
Process

Yuliy Baryshnikov, Ed Coffman, Nadrian Seeman,
Teddy Yimwadsana . 1

Recognizing DNA Splicing
Matteo Cavaliere, Nataša Jonoska, Peter Leupold 12

On Computational Properties of Template-Guided DNA Recombination
Mark Daley, Ian McQuillan . 27

Towards Practical Biomolecular Computers Using Microfluidic
Deoxyribozyme Logic Gate Networks

Joseph Farfel, Darko Stefanovic . 38

DNA Recombination by XPCR
Giuditta Franco, Vincenzo Manca, Cinzia Giagulli,
Carlo Laudanna . 55

An Algorithm for SAT Without an Extraction Phase
Pierluigi Frisco, Christiaan Henkel, Szabolcs Tengely 67

Sensitivity and Capacity of Microarray Encodings
Max H. Garzon, Vinhthuy Phan, Kiran C. Bobba,
Raghuver Kontham . 81

Simple Operations for Gene Assembly
Tero Harju, Ion Petre, Vladimir Rogojin, Grzegorz Rozenberg 96

Counting Time in Computing with Cells
Oscar H. Ibarra, Andrei Păun . 112

On Bounded Symport/Antiport P Systems
Oscar H. Ibarra, Sara Woodworth . 129

Expectation and Variance of Self-assembled Graph Structures
Nataša Jonoska, Gregory L. McColm, Ana Staninska 144

Hairpin Structures in DNA Words
Lila Kari, Stavros Konstantinidis, Elena Losseva, Petr Sośık,
Gabriel Thierrin . 158

X Table of Contents

Efficient Algorithm for Testing Structure Freeness of Finite Set of
Biomolecular Sequences

Atsushi Kijima, Satoshi Kobayashi . 171

Communicating Distributed H Systems: Optimal Results with Efficient
Ways of Communication

Shankara Narayanan Krishna . 181

Intensive In Vitro Experiments of Implementing and Executing Finite
Automata in Test Tube

Junna Kuramochi, Yasubumi Sakakibara . 193

Development of an In Vivo Computer Based on Escherichia coli
Hirotaka Nakagawa, Kensaku Sakamoto, Yasubumi Sakakibara 203

Control of DNA Molecules on a Microscopic Bead Using Optical
Techniques for Photonic DNA Memory

Yusuke Ogura, Taro Beppu, Masahiro Takinoue, Akira Suyama,
Jun Tanida . 213

Linearizer and Doubler: Two Mappings to Unify Molecular Computing
Models Based on DNA Complementarity

Kaoru Onodera, Takashi Yokomori . 224

Analysis and Simulation of Dynamics in Probabilistic P Systems
Dario Pescini, Daniela Besozzi, Claudio Zandron,
Giancarlo Mauri . 236

Experimental Validation of DNA Sequences for DNA Computing: Use
of a SYBR Green I Assay

Wendy K. Pogozelski, Matthew P. Bernard, Salvatore F. Priore,
Anthony J. Macula . 248

Complexity of Graph Self-assembly in Accretive Systems and
Self-destructible Systems

John H. Reif, Sudheer Sahu, Peng Yin . 257

Designing Nucleotide Sequences for Computation: A Survey of
Constraints

Jennifer Sager, Darko Stefanovic . 275

A Self-assembly Model of Time-Dependent Glue Strength
Sudheer Sahu, Peng Yin, John H. Reif . 290

Complexity of Compact Proofreading for Self-assembled Patterns
David Soloveichik, Erik Winfree . 305

Table of Contents XI

A Microfluidic Device for DNA Tile Self-assembly
Koutaro Somei, Shohei Kaneda, Teruo Fujii, Satoshi Murata 325

Photo- and Thermoregulation of DNA Nanomachines
Keiichiro Takahashi, Satsuki Yaegashi, Hiroyuki Asanuma,
Masami Hagiya . 336

Chain Reaction Systems Based on Loop Dissociation of DNA
Keiichiro Takahashi, Satsuki Yaegashi, Atsushi Kameda,
Masami Hagiya . 347

A Local Search Based Barrier Height Estimation Algorithm for DNA
Molecular Transitions

Tsutomu Takeda, Hirotaka Ono, Kunihiko Sadakane,
Masafumi Yamashita . 359

Specificity of Hybridization Between DNA Sequences Based on Free
Energy

Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto,
Azuma Ohuchi . 371

A Poor Man’s Microfluidic DNA Computer
Danny van Noort . 380

Two Proteins for the Price of One: The Design of Maximally
Compressed Coding Sequences

Bei Wang, Dimitris Papamichail, Steffen Mueller, Steven Skiena 387

Design of Autonomous DNA Cellular Automata
Peng Yin, Sudheer Sahu, Andrew J. Turberfield, John H. Reif 399

Use of DNA Nanodevices in Modulating the Mechanical Properties of
Polyacrylamide Gels

Bernard Yurke, David C. Lin, Noshir A. Langrana 417

Molecular Learning of wDNF Formulae
Byoung-Tak Zhang, Ha-Young Jang . 427

Author Index . 439

Self-correcting Self-assembly: Growth Models
and the Hammersley Process

Yuliy Baryshnikov1, Ed Coffman2, Nadrian Seeman3, and Teddy Yimwadsana2

1 Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
ymb@research.bell-labs.com

2 Department of Electrical Engineering, Columbia University, NY 10027
{egc, teddy}@ee.columbia.edu

3 Chemistry Dept., New York University, New York 10003
ned.seeman@nyu.edu

Abstract. This paper extends the stochastic analysis of self assembly in
DNA-based computation. The new analysis models an error-correcting
technique called pulsing which is analogous to checkpointing in com-
puter operation. The model is couched in terms of the well-known tiling
models of DNA-based computation and focuses on the calculation of
computation times, in particular the times to self assemble rectangular
structures. Explicit asymptotic results are found for small error rates q,
and exploit the connection between these times and the classical Ham-
mersley process. Specifically, it is found that the expected number of
pulsing stages needed to complete the self assembly of an N × N square
lattice is asymptotically 2N

√
q as N → ∞ within a suitable scaling.

Simulation studies are presented which yield performance under more
general assumptions.

1 Introduction

In many respects, the current state of DNA-based computing resembles the state
of standard, electronic computing a half century ago: a fascinating prospect is
slow to develop owing to inflexible interfaces and unacceptably low reliability of
the computational processes. We concentrate in this paper on the latter aspect,
specifically addressing the interplay between the reliability and speed of DNA
computing.

While DNA-based computational devices are known to be extremely energy
efficient, their reliability is seen as a major obstacle to becoming a viable com-
puting environment. As DNA based computing becomes more fully developed,
the speed of self assembly will become a crucial factor; but as of now, little is
known concerning the fundamental question of computation times. We empha-
size the intrinsic connection between the two problems of reliability and speed,
because of the unavoidable trade-off that exists between them. A clear under-
standing of the limitations of self-assembly reliability and speed, specifically that
of DNA-based computing, and the interplay between these properties, will be
paramount in determining the full potential of the paradigm. Our past work,

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 1–11, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 Y. Baryshnikov et al.

briefly reviewed later, analyzed for a given function the time required to deter-
mine its value on given inputs, and therefore established theoretical limits on the
performance of DNA-based computers. In the simplest instance, the analysis of
computation times has surprising connections with interacting particle systems
and variational problems, as shown in [1], and as further developed here. The
critical new dimension of this paper is that of error correction; the new contri-
butions lie in (a) a novel approach to dramatic improvements in the reliability
of computations and (b) in the analysis of the inevitable performance losses of
reliable computations.

The early theoretical work on DNA-based computation focused chiefly on
various measures of complexity, in particular, program-size and time complex-
ity [2,3,4]. However, Adleman et al [2,5] also investigated interesting combinato-
rial questions such as the minimum number of tile types needed for universality,
and stochastic optimization questions such as the choice of concentrations that
leads to minimum expected assembly times. Apart from these works, the math-
ematical foundations of computational speed in a stochastic context appear to
be restricted to the work of Adleman et al [6] and Baryshnikov et al [1,7,8,9].
The former work studies random self assembly in one dimension. In a problem
called n−linear polymerization, elementary particles or monomers combine to
form progressively larger polymers. The research of Baryshnikov et al [8] on
linear self assembly has resulted in exact results for dimer self assembly, which
reduces to an interesting maximal matching problem.

Any implementation of DNA computing is constrained fundamentally by the
fact that all basic interactions have known and fixed energy thresholds, and
these thresholds are much lower than those in electronic devices. This means
that any realistic computational device based on organic structures like DNA
is forced to operate at signal-to-noise ratios several orders of magnitude lower
than those in electronic computing. Therefore, error correction at the compu-
tation stage becomes a necessity. Not surprisingly, recent research on error cor-
rection has concentrated on approaches that are analogous, at some level, to
the repetition coding of information theory, or the concurrent execution of the
same computational algorithm with subsequent comparison of results. Note also
that biological computations achieve redundancy at little or no extra cost, as
by the inherent virtues of the process, many copies of it are run independently.
The work within this circle of ideas will be reviewed shortly. However, in our
view, the notion of pulsing should be introduced into this paradigm, a concept
analogous to checkpointing in computer operation1. In our context, described in
more detail below, the temperature (or some other parameter) of a self assembly
process is pulsed periodically, a method in wide use to grow crystals; the pulse
effectively rescues the most recent fault-free state (the current state if there have
been no errors since the previous pulse). Clearly, the cost of washing out defec-
tive subassemblies must be balanced by a higher speed of these checkpointed
computations.

1 Checkpointing techniques have been in use since the early days of computing; see,
e.g., [10].

Self-correcting Self-assembly: Growth Models and the Hammersley Process 3

0

0

1

10

0

0 0

0

0

1

1 1

1

1

1

input output

1

0

1

0 1

1

input

input

output

Fig. 1. The set of four tiles on the left implements the operation ⊕. A tile glues to other
tiles only if their corner labels match. On the right, operation 0 ⊕ 1 = 1 is performed.
The input tiles are preassembled and the correct output tile simply attaches itself to
the pattern, effectively obtaining the value of the output bit.

Formally, the now standard tiling system introduced and validated as a univer-
sal computational framework in [11,12] will be our abstract model, and follows
the adaptation to elementary logic units of DNA computing described by Win-
free and Rothemund [13,3]. The tile is modeled as shown in Figure 1 as a marked
or labeled square. Briefly, in the simplest version, the label values are 0 or 1,
and they break down into two input labels on one edge and two output labels
on the opposite edge. As illustrated in Figure 1, a computational step consists
of one tile bonding to others according to given rules that match input labels of
one tile to the output labels of one or two adjacent tiles. Successive bonding of
tiles in a self assembly process performs a computation.

Currently, in a typical implementation of this scheme, the tiles are DNA-based
molecular structures moving randomly, in solution, and capable of functioning
independently and in parallel in a self assembly process. This process results
in a crystal-like construct modeled as a two dimensional array whose allowable
structural variations correspond to the possible results of a given computation.
We emphasize the contrast with classical computing paradigms: the random
phenomena of self assembly create a randomness in the time required to perform
a given computation.

2 Growth Models

The tiling self assemblies of the last section are growth processes. Through the
abstraction described next, the times to grow constructs or patterns can be
related to classical theories of particle processes; growth in the latter processes
is again subject to rules analogous to those governing the self assembly process
of the previous section. An initial set of tiles (the input) is placed along the
coordinate axes, and growth proceeds outward in the positive quadrant; the
placement of a new tile is allowed only if there are already tiles to the left and
below the new tile’s position which match labels as before. The left-and-below
constraint is equivalent to requiring a newly added tile to bond at both of its
input labels. The completion of the computation occurs at the attachment of the
upper-right corner tile which can happen only after all other tiles are in place.

4 Y. Baryshnikov et al.

The fundamental quantity of interest is the computation time, or equivalently,
the time until the final square (represented by the upper right corner square in
position (M, N)) is in place. Let Ti,j be the time it takes for a tile to land
at position (i, j) once the conditions are favorable; that is, once both positions
(i, j − 1) and (i − 1, j) are tiled. In a reference theory for self assembly, it is
natural to take the Ti,j ’s as independent exponential random variables with unit
means. Let Ci,j be the time until the square (i, j) becomes occupied, so that the
random completion time of interest is given by CM,N .

On discovering the isomorphic relationship between the self assembly process
and the totally asymmetric simple exclusion process (TASEP), Baryshnikov et
al [1] exploited the results on TASEP behavior in the hydrodynamic limit to
show that, as N, M grow to infinity such that M/N tends to a positive constant,
one has [14, p. 412]

CM,N/(
√

M +
√

N)2 ∼ 1, (1)

a formula quantifying the degree of parallelism in the computation. One can
generalize this formula to schemes where the tiles can depart as well (like the
schemes described in [15]) with the rates of departures ρ < 1, and also to more
general shapes D than mere squares. In this model, growth is clearly not mono-
tonic, but still can be mapped to a generalization of TASEP for which similar
results are known. Baryshnikov et al [1] proved the following:

Theorem 1. The time EλD,ρ required to complete computation on a DNA com-
puter of shape λD with tiles arriving at rate 1 and departing at rate ρ is given
by

lim
λ→∞

λ−1EλD =
1

1− ρ
sup

γ

∫ (√
dξ

dz
+

√
dη

dz

)2

dz. (2)

3 Error Correction

Since the early days of computing, various methods have been used to deal with
error prone computers, parity checking being a standard one. Checkpointing
was a popular method implemented in operating systems, and it is still being
used today in high-performance systems. This method creates milestones, or
checkpoints, at different locations in the process. All the required information is
stored at a checkpoint so that the process can restart from that location without
having to perform the work done before that checkpoint. Typically a control
mechanism periodically creates checkpoints. When the controlled process fails,
it is rolled back to the most recent checkpoint and resumes from that location.

Current developments in tile self-assembly resemble developments in the early
computing era, after a Hegelian development cycle. We expect the checkpointing
method, being a simple but elegant error-correction technique to become a viable
tool in the area, at least until a dramatic change in the underlying chemical
technology takes place. The narrow question we address below is how to apply
it to DNA tile self-assembly. We briefly review the literature before turning to
our new approach.

Self-correcting Self-assembly: Growth Models and the Hammersley Process 5

Alternative approaches. The two most frequent errors in DNA self-assembly are
growth errors and nucleation errors. Growth errors occur when a wrong type of
tile, an error tile, attaches to the lattice; a sublattice that forms with the error tile
at its origin will then be corrupt. A nucleation error occurs when only one side
of a tile attaches to the lattice, and hence at a wrong position. Thermodynamic
controls that slow down growth can be introduced to help ensure the relatively
early separation of error tiles.

A tile can also be designed to have its own error-correction capability, or
a new type of tile that assists the self-assembly process in lowering error rate
can be introduced. Several methods for this have been proposed. For example,
Winfree and Bekbolatov’s Proofreading Tile Set [15] shows that the error rate
can be reduced significantly by creating an original Wang Tile using four or nine
smaller tiles (2 × 2 or 3 × 3) in order to ensure that the small incorrect tiles
will fall off before they are assembled to form an incorrect Wang tile. Chen and
Goel’s Snake Tile Set [16] improves the Proofreading Tile Set by ensuring that
the smaller tiles can be assembled only in certain directions.

Reif et al [17] use pads to perform error checking when a new tile is attached
to the lattice. Each pad acts as a kind of adhesive, connecting two Wang tiles
together, whereas in the original approach the Wang tiles attach to each other.
This method allows for redundancy: a single pad mismatch between a tile and
its immediate neighbor forces at least one further pad mismatch between a pair
of adjacent tiles. This padding method can be extended further to increase the
level of redundancy.

Chen et al’s Invadable Tile Set [18] applies the invading capability of the
DNA strand to emulate the invasion of a tile. In this model, the tiles are de-
signed so that the correct tile can invade any incorrect tile during the lattice
growth process. Fujibayashi and Murata’s Layered Tile Model [19] significantly
reduces the error rate by using two layers of tiles: the Wang tile layer and the
protective tile layer. The protective layer does not allow tiles to attach to the lat-
tice incorrectly. When the attachment is correct, the protective tile releases the
rule tile, to which the next tile attaches itself. As one must expect, all methods
have one or more shortcomings or costs associated with them, such as prolonged
self-assembly times, enlarged lattices, potential instabilities, and failure to deal
effectively with both error types.

Modeling checkpointing in DNA self-assembly. We now return to periodic tem-
perature pulsing, whereby pulses remove the defective parts of a crystal; in par-
ticular, the hydrogen bonds between improperly attached DNA tiles are broken
so that defective substructures can separate from the lattice, thus restarting
growth at an earlier fault-free structure. Parameters other than temperature
can also be considered in the pulsing approach. Pulsing applied to the DNA tile
self-assembly model removes the incorrectly attached tiles from the assembly at
a higher rate than the correct ones. More targeted pulsing systems can employ
enzymatic or conformational ways to shift the binding energy.

In our model of self-assembly with checkpointing, we consider a lattice of
size N × N . (While our results are valid for general shapes, the square lattice

6 Y. Baryshnikov et al.

40

60

80

100

120

140

40 60 80 100 120 140

y-
ax

is
 o

f t
he

 la
tti

ce

x-axis of the lattice

Profile of the lattice before and after a pulse

after pulsing
before pulsing

(a) TA

N

N

(b) Lp

Fig. 2. (a) - the profile of DNA tile self-assembly process before and after a pulse. (b)
the relationship between the number of layers and the longest increasing subsequence
for a Poisson Point Process on the plane. Crystal size: 500 × 500.

helps focus discussion.) We study the standard growth process described earlier,
with the modification that there are two competing populations of tiles to be
attached, correct tiles and erroneous tiles. With an appropriate rescaling, the
waiting time until a tile attaches at a vacant position is taken to be exponential
with mean 1 (all attachment times are independent). Attached tiles are erroneous
with probability q.

We call an error tile that attaches to a valid structure a seed error tile. Any
tile attached to the northeast of the seed error tile is automatically an error tile
as it participates in an incorrect computation. (See Figure 2(a)). In our initial
analysis we assume that a pulse succeeds in washing out all defective regions of
the structure. (See Figure 2(a).)

A growth stage consists of a growth period of duration P between consec-
utive pulses. At the end of one such stage, the locations of the seed error
tiles define the boundary of the lattice for the next growth period, on which
more tiles will be attached. A growth layer is the region of tiles that attach to
the lattice during one growth step. The number of stages required to complete
the N × N lattice is the number of pulses or layers required to complete the
lattice.

The profiles at the beginning of each growth stage (which we will call the
rectified profiles, as they are the result of the removal of all erroneous tiles,
including the seed tiles) form a Markov process which is clearly significantly more
complicated than the growth process without pulsing. Moreover, it is easily seen
that these processes cannot be mapped onto 1-dimensional particle processes
with local interaction. Hence to evaluate performance, we are forced to resort to
asymptotic analysis and simulation studies.

There are several remarks we can make before starting our analysis. Denote
the pulsing times by t1 < t2 < . . ., and the corresponding rectified profiles, that
is the profiles after pulses, by Si. Clearly, these profiles, from one to the next,

Self-correcting Self-assembly: Growth Models and the Hammersley Process 7

are nondecreasing. In fact, one can describe the evolutions of these profiles using
the growth models as in Section 2: the only modification is that if the tile (k, l)
is an error seed, then the completion time for this tile becomes

Ck,l = min{ti > max(Ck−1,l, Ck,l−1)}.

Using this nondecreasing property, and the standard (in the analysis of algo-
rithms) “principle of deferred decisions”, it is not difficult to verify that the
collection of the seed error tiles over all growth process, form an independent
q-Bernoulli sample from the N ×N lattice points.

Small q asymptotics. When q is small, the sample from the planar domain N×N ,
each dimension rescaled by

√
q (so that the expected number of seed error tiles

in any part of the domain of unit area is 1), approaches, in distribution, the
Poisson sample.

The number of pulses required to complete a crystal can be approximated
using Hammersley’s Process. In our version of this process, we have an underlying
Poisson process in two dimensions with samples Ω taken from the square S =
[0, a]× [0, a], with a =

√
qN .

For each z = (x, y) ∈ S let n(z) be the length of the longest monotone
subsequence in Ω between (0, 0) and z, that is the maximal length � of a chain
of points (x1, y1) < (x2, y2) < . . . < (x�, y�) < (x, y), where (u, v) < (u′, v′)
iff u < u′ and v < v′. See Figure 2(b): The right-hand picture shows layers of
points in Ω which can be reached via monotone paths in Ω of length 0 (these
are the points adjoining a coordinate axis), 1 (next layer) and so on. A longest
path connecting the origin and the point (a, a) is shown as well.

The problem of finding this length is closely related to the famous problem
of finding the longest increasing subsequence in a random permutation (Ulam’s
problem). It turns out that the expected value E� ∼ 2a, as a→∞, see, e.g., [20].

This implies immediately information about the asymptotic scaling of the
number Lp of pulses necessary to achieve a correct assembly when the interpulse
time P is large compared to q−1/2. In the limit of small q and large N , this yields
a very precise description of this number. Indeed, we have

Theorem 2. The following assertions hold:

1. For any given sample of seed error tiles, Lp is at least the length of the
longest increasing subsequence in the sample.

2. If qP 2 → ∞, then for samples of seed error tiles, Lp is asymptotically the
length of a longest increasing subsequence.

3. If N, qP 2 →∞, and q → 0, then Lp grows as

Lp ∼ 2N
√

q.

Sketch of the proof. The first assertion follows immediately from the fact
that along any increasing sequence of seed error tiles, the higher error tile is
corrected by a pulse coming later than the pulse correcting the previous error
tile. Further, the second assertion follows from the fact that if the time P is

8 Y. Baryshnikov et al.

large enough, the rectified profiles Si coincide with the layers of points reached
by the increasing subsequences in Ω having constant length (this can be proved
by induction). The last assertion is simply the limit corresponding to the Poisson
approximation introduced earlier.

Remarks.

1. Using this result, we can adjust the value of P so as to obtain an estimate
of the minimal time required to complete the lattice for any given N , q, and
average time ps taken by a pulse to remove error tiles. More details can be
found in [21].

2. The Layered Tile Set [19] can be seen as a variant of our method where
P is 1 time unit. When the value of P is very small, the total number of
pulses becomes very large because the process pulses once per time unit. As
a result, when the value of P is small, the completion time for the formation
of the crystal is inversely large. Furthermore, in the case of a high ps, a very
low value of P will not be suitable for the process because of the length of
time required during the checkpointing process. Therefore, if P is adjusted
appropriately, our checkpointing method will be better than the Layered
Tile Set technique.

3. The total growth time in the model is the sum of the interpulse time (plus
a constant pulse setup time) times the number of pulses. In the regime
described in part 3 of of Theorem 2, this gives the growth rate

√
qPN ,

which can be arbitrarily close to the obvious lower bound Ω(N).

Simulation analysis. The total crystal completion time, C, consists of the to-
tal time required by tile attachment, CA, pulsing setup time and the pulsing
overhead, Cp. Our simulations determine the effect of P and q on CA and Cp.
The simulation of a 500 × 500 lattice yielded CA and Cp for various P and q.
The total pulsing overhead time, Cp, is given by Cp = psLp (recall that ps is the
average time taken by a pulse to remove all erroneous tiles).

Our self assembly simulations created more than a million tiles. Developing
the simulator was a challenge in itself, given current limits on computer memory.
We designed our simulator so that it contains only the information of the crystal,
which for our purposes will suffice without having to assign memory space for
each tile. Implementation details can be found in [21].

Figure 3 shows the effects of P and q on the performance of self-assembly with
pulsing. Since the total time C required to complete the crystal is Cp + CA, we
see that C in general has an optimal point for given ps.

For example, Figure 4(a) shows the total-time surface plot as a function of
(P, q). For simplicity, we assume that the time required for each pulse, ps, is
linearly proportional to the growth time, ps = 0.2P + 2, to show how ps can
affect the total time, C. For a given value of q, there is an optimal P that
minimizes the total time to complete the self-assembly. Figure 4(b) shows the
total time for different values of P with the error probability q = 0.05. The
figure shows that one obtains the highest over-all lattice growth rate when P is
approximately 9 time units.

Self-correcting Self-assembly: Growth Models and the Hammersley Process 9

Pure time (without pulsing overhead) to create 500 by 500 crystal

 1.2e+04
 1e+04
 8e+03
 6e+03
 4e+03
 2e+03

5
10

15
20

25
30

p 0

0.02

0.04

0.06

0.08

0.1

q

2000

4000

6000

8000

10000

12000

total time

(a) CA

Total number of pulses

 2e+03
 1.5e+03
 1e+03

 500

5
10

15
20

25
30

p 0

0.02

0.04

0.06

0.08

0.1

q

500

1000

1500

2000

total number of pulses

(b) Lp

Fig. 3. The performance of pulsing for various P and q. Crystal size: 500 × 500.

Total Time for ps = 0.2P + 2

 1.5e+04
 1e+04
 5e+03

5
10

15
20

25
30

P 0

0.02

0.04

0.06

0.08

0.1

q

2000
4000
6000
8000

10000
12000
14000
16000

total time (T)

(a) Total completion time

2500

3000

3500

4000

4500

5000

5500

6000

6500

0 5 10 15 20 25 30

to
ta

l t
im

e
(T

)

P

Total time (T) for q=0.05 ps = 0.2p+2

(b) Total time when q = 0.05

Fig. 4. (a) total-time pulsing performance, various (P,q). (b) cross section of (a),
q=0.05.

4 Future Directions

We have introduced and analyzed the performance of an error-correcting self as-
sembly pulsing (checkpointing) technique. This comprises the modeling and anal-
ysis component of an over-all project that will include the essential experimental
component. To fully verify the validity of the method, we propose an experimen-
tal setup that produces a simple periodic system capable of errors, as a testbed for
examining our proposed error-correcting techniques. It is possible to ’tag’ particu-
lar elements in 2D crystals; the addition of a DNA hairpin that sticks up from the
plane of the array is the simplest tag. Thus, rather than using a single motif to act
as a ’tile’ in forming the crystal, we can use two or more different tiles, say, an A-tile
and a B-tile. An example of this approach is shown for DX molecules in Figure 5.

The experiments we propose here are based on this notion of two differently
marked tiles. The idea is to make a 2-D array with two tiles whose sticky ends
are distinct, as they are in the DX example above. It is unlikely that individual

10 Y. Baryshnikov et al.

Fig. 5. A Schematic DX Array with 2 Components, A and B*; B* contains a hairpin
(the black circle) that protrudes from the plane. Sticky ends are shown geometrically.
Note that the A and B* components tile the plane. Their dimensions in this projection
are 4 × 16 nm, so a 32 nm stripe is seen on the AFM image to the right.

4 nm x 16 nm DX tiles can be recognized, but many motifs with large dimensions
in both directions exist (see e.g., [22]). The uniqueness of the sticky ends is central
to the robust formation of the pattern shown above. Were the sticky ends of the
two molecules identical, a random array of protruding features would result,
rather than the well-formed stripes shown. It is clear that there must exist some
middle ground between unique sticky ends and identical sticky ends. Each tile
contains four sticky ends, each of six or so nucleotides. We propose to explore
steps on the way from uniqueness to identity (starting from unique) so that we
can get a set of tiles that produce an array with a well-defined error rate, low
but detectable.

Once we have such a system, it will then be possible to do prototype rescue
operations. The basis of these operations will be thermodynamic pulsing, but
the study of techniques based on recognition of structural differences in the 2D
array, or some combination of the two basic approaches, will be pursued as well.

References

1. Baryshnikov, Y., Coffman, E., Momčilović, P.: DNA-based computation times. In:
Proc. of the Tenth International Meeting on DNA Computing, Milan, Italy (2004)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size
for self-assembled squares. In: Proc. ACM Symp. Th. Comput. (2001) 740–748

3. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proc. ACM Symp. Th. Comput. (2001) 459–468

4. Winfree, E.: Complexity of restricted and unrestricted models of molecular com-
putation. In Lipton, R., Baum, E., eds.: DNA Based Computing. Am. Math. Soc.,
Providence, RI (1996) 187–198

5. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espanés, P.M.,
Rothemund, P.: Combinatorial optimization problems in self-assembly. In: Proc.
ACM Symp. Th. Comput., Montreal, Canada (2002) 23–32

6. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Wasserman, H.: Linear self-
assemblies: Equilibria, entropy, and convergence rates. In Elaydi, Ladas, Aulbach,
eds.: New progress in difference equations, Taylor and Francis, London (2004)

Self-correcting Self-assembly: Growth Models and the Hammersley Process 11

7. Baryshnikov, Y., Coffman, E., Momčilović, P.: Incremental self-assembly in the
fluid limit. In: Proc. 38th Ann. Conf. Inf. Sys. Sci., Princeton, NJ (2004)

8. Baryshnikov, Y., Coffman, E., Winkler, P.: Linear self-assembly and random
disjoint edge selection. Technical Report 03-1000, Electrical Engineering Dept.,
Columbia University (2004)

9. Baryshnikov, Y., Coffman, E., Momčilović, P.: Phase transitions and control in
self assembly. In: Proc. Foundations of Nanoscience: Self-Assembled Architectures
and Devices, Snowbird, UT (2004)

10. E. G. Coffman, J., Flatto, L., Wright, P.E.: A stochastic checkpoint optimization
problem. SIAM J. Comput. 22 (1993) 650–659

11. Wang, H.: Dominoes and AEA case of the decision problem. In: Proc. of the Sym-
posium in the Mathematical Theory of Automata, Polytechnic Press, Brooklyn,
NY (1963)

12. Berger, R.: The undecidability of the domino problem. In: Memoirs of the American
Mathematical Society. Volume 66. (1966)

13. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena, CA (1998)

14. Liggett, T.M.: Interacting Particle Systems. Springer-Verlag, New York (1985)
15. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic

self-assembly. In: Proceedings of the Ninth International Meeting on DNA Based
Computers, Lecture Notes in Computer Science. Volume 2943. (2004) 126–144

16. Chen, H.L., Goel, A.: Error free self-assembly with error prone tiles. In: Proceedings
of the Tenth International Meeting on DNA Based Computers, Milan, Italy (2004)

17. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational dna tiling as-
semblies. In: Proceedings, Tenth International Meeting on DNA Based Computers,
Lecture Notes in Computer Science, Springer-Verlag, New York (2004) 293–307

18. Chen, H.L., Cheng, Q., Goel, A., Huang, M.D., de Espanes, P.M.: Invadable self-
assembly: Combining robustness with efficiency. In: ACM-SIAM Symposium on
Discrete Algorithms. (2004)

19. Fujibayashi, K., Murata, S.: A method of error suppression for self-assembling
DNA tiles. In: Proceedings of the Tenth International Meeting on DNA Based
Computers: Lecture Notes in Computer Science, Springer Verlag, New York (2004)
284–293

20. Aldous, D., Diaconis, P.: Hammersley’s interacting particle process and longest
increasing subsequences. Probab. Th. Rel. Fields 103 (1995) 199–213

21. Baryshnikov, Y., Coffman, E., Yimwadsana, T.: Analysis of self-correcting self-
assembly growth models. Technical Report 03-1001, Electrical Engineering Dept.,
Columbia University (2005)

22. Mao, C., Sun, W., Seeman, N.: Designed two-dimensional DNA Holliday Junction
Arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121 (1999)
5437–5443

Recognizing DNA Splicing

Matteo Cavaliere1, Nataša Jonoska2, and Peter Leupold3

1 Department of Computer Science and Artificial Intelligence,
University of Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
martew@inwind.it

2 Department of Mathematics,
University of South Florida, Tampa, FL 33620, USA

jonoska@math.usf.edu
3 Research Group on Mathematical Linguistics,

Rovira i Virgili University,
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

klauspeter.leupold@estudiants.urv.es

Abstract. Motivated by recent techniques developed for observing evo-
lutionary dynamics of a single DNA molecule, we introduce a formal
model for accepting an observed behavior of a splicing system. The main
idea is to input a marked DNA strand into a test tube together with
certain restriction enzymes and, possibly, with other DNA strands. Un-
der the action of the enzymes, the marked DNA strand starts to evolve
by splicing with other DNA strands. The evolution of the marked DNA
strand is “observed” by an outside observer and the input DNA strand is
“accepted” if its (observed) evolution follows a certain expected pattern.
We prove that using finite splicing system (finite set of rules and finite
set of axioms), universal computation is attainable with simple observing
and accepting devices made of finite state automata.

1 Introduction: (Bio)Accepting Devices

Recently, several techniques for observing the dynamics of a single DNA molecule
and in general of a single biomolecule have been developed. Some of these come
from the study of protein dynamics and interactions in living cells. For instance,
a well established methodology is the FRAP, fluorescent recovery after photo-
bleaching, [13]; other known methodologies are FRET, [11], fluorescence res-
onance energy transfer and FCS, [19], fluorescent correlation spectroscopy. A
survey on the techniques to observe dynamics of biomolecules, with their advan-
tages and disadvantages, can be found in [14]. Usually these techniques can be
used to observe only three different colors in fluorescent microscope, but it is
possible to obtain more colors by multiplexing, as suggested by [12].

A totally new way to mark (and then, to observe) single DNA molecules
is represented by quantum dots; by using this technique it is possible to tag
individual DNA molecules; in other words they can be used like fluorescent
biological labels, as suggested by [3], [8]. A very recent review on the use of
quantum dots in vivo imaging can be found in [16].

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 12–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Recognizing DNA Splicing 13

In many techniques presented in [14], studying of the dynamics of DNA
strands is divided in two separate phases: the registration of the dynamics (on a
special support like channels of data) and then the investigation of the collected
data. Hence, the model that is introduced in this paper uses “observer” and
“decider” as two independent devices.

The theoretical model is used to construct accepting devices using DNA op-
erations. The evolution/observation strategy was initially introduced in a formal
computing model inspired by the functioning of living cells, known as membrane
systems [5].

Since then, the evolution/observation idea has been [2], [4], [6]. considered
in different formal models of biological systems. In all these developments, the
underlying idea is that a generative device is constructed by using two systems: a
mathematical model of a biological system that “lives” (evolves) and an observer
that watches the entire evolution of this system and translates it into a readable
output.

Thus the main idea of this approach is that the computation is made by
observing the entire life of a biological system. Differently from the previously
mentioned works, in [7] the evolution/observation strategy has been used to
construct an accepting device. There, it has been suggested that it is possible
to imagine any biological system as an accepting device. This is achieved by
taking a model of a biological system, introducing an input to such a system and
observing its evolution. If the evolution of the system is of an expected type, (for
example follows a regular predetermined pattern) the input is accepted by the
(bio)system, otherwise it can be considered rejected.

An external observer is fundamental in extracting a more abstract, formal
behavior from the evolution of the biological system. A decider is the machine
that checks whether the behavior of the biological system is of the expected type.

Splicing systems belong to a formal model of recombination of double stranded
DNA molecules (for simplicity we call them DNA strands) under the action
of a ligase and restriction enzymes (endonucleases), [10]. The main purpose of
this paper is to illustrate the accepting strategy of oberver/decider to splicing
systems. For the motivations and background on splicing systems we refer to the
original paper [10] or to the corresponding chapter in [18].

In [4] an observer was associated to splicing systems to construct a generative
device. Here we construct an accepting device by joining a decider to the observer
of the splicing system. We call such a system Splicing Recognizer (in short, SR).
A schematic view of the model is depicted in Figure 1.

The SR works in the following way. An input marked DNA strand (repre-
sented by a string w) is inserted in a test tube. Due to the presence of restric-
tion enzymes, the input strand changes, as it starts to recombine with other
DNA strands present in the test tube. A sequence of intermediate marked DNA
strands is generated. This constitutes the evolution of the input marked DNA
strand. Schematically this is presented with the sequence of w, w′, w′′, w′′′ in
Figure 1.

14 M. Cavaliere, N. Jonoska, and P. Leupold

The external observer associates to each intermediate marked strand a certain
label taken from a finite set of possible labels. It writes these labels onto an
output tape in their chronological order. In Figure 1 this corresponds to the
string a1a2a3a4. This string represents a code of the obtained evolution. When
the marked strand becomes of a certain predetermined “type” the observation
stops.

observer

1a 2a 3a 4a

4a3a2a1a

input marked
string

evolution
step

(splice)

observer observer observer

decider
YES

NO

w

w(accepted)

w(rejected)

w

compile

symbol
output

w’ w’’ w’’’

Fig. 1. The splicing/observer architecture

At this point the decider checks if the entire evolution of the input marked
DNA strand described by the string a1a2a3a4 has followed a certain pattern, i.e.
if it is in a certain language. If this is true, the input string w is accepted by the
SR; otherwise it is considered to be rejected.

This paper shows that using this strategy, it is possible to obtain very powerful
accepting systems even when very simple components are used.

For instance, we show that having just a finite state automaton as observer
of the evolution of a finite splicing system (with a finite set of splicing rules)
is already enough to simulate a Turing machine. This is a remarkable jump in
acceptance power since it is well known that a finite splicing system by itself can
generate only a subclass of the class of regular languages. The results are not
surprising, since by putting extra control with the decider, the computational
power of the whole system increases. Similar results, but in the generative sense,
were obtained without the decider in [4] but these required a special observation
of a right-most evolution, which is not the case with the results presented here.

Recognizing DNA Splicing 15

2 Splicing Recognizer: Definition

In what follows we use basic concepts from formal language theory. For more
details on this subject the reader should consult the standard books in the area,
for instance, [20], [21].

Briefly, we fix the notations used here. We denote a finite set (the alphabet)
by V , the set of words over V by V ∗. By REG, CF , CS, and RE we denote
the classes of languages generated by regular, context-free, context-sensitive, and
unrestricted grammars respectively.

2.1 Splicing with a Marked String

As underlying biological system we consider a splicing system (more precisely
an H scheme, following the terminology used in [18]). As discussed in the Intro-
duction, the splicing system used has the particular feature that, at any time,
exactly one string of the produced language is marked.

First we recall some basic notions concerning splicing systems. However, in
what follows, we suppose the reader is already familiar with this subject, as for
instance, presented in [18].

Consider an alphabet V (splicing alphabet) and two special symbols # and $
not in V . A splicing rule (over V) is a string of the form u1#u2$u3#u4, where
u1, u2, u3, u4 ∈ V ∗.

For a splicing rule r = u1#u2$u3#u4 and strings x, y, z1, z2 ∈ V ∗ we write
(x, y) =⇒r (z1, z2) iff x = x1u1u2x2, y = y1u3u4y2, z1 = x1u1u4y2, z2 =
y1u3u2x2. We refer to z1 (z2) as the first (second) string obtained by applying
the splicing rule r.

An H scheme is a pair σ = (V, R) where V is an alphabet, and R ⊆ V ∗#V ∗$V ∗

#V ∗ is a set of splicing rules. For a given H scheme σ = (V, R) and a lan-
guage L ⊆ V ∗ we define σ(L) = {z1, z2 ∈ V ∗ | (x, y) =⇒r (z1, z2), for some
x, y ∈ L, r ∈ R}.

When restriction enzymes (and a ligase) are present in a test tube, they do
not stop acting after one cut and paste operation, but they act iteratively.

Given a initial language L ⊆ V ∗ and an H scheme σ = (V, R) we define the
iterated splicing as: σ0(L) = L, σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0.

In this work, as previously discussed, we are interested in observing the evo-
lution of a specific marked string introduced, at the beginning, in the initial
language L and called input marked string.

Given an initial language L, an input marked string w ∈ L, a target marked
language Lt and an H scheme σ, the scheme defines a sequence of marked strings
that represents the evolution of the input marked string w, according to the
splicing rules defined in σ (for simplicity we suppose w /∈ Lt). The sequence of
marked strings, 〈w0 = w, w1, · · · , wk〉, for k ≥ 1 and wk ∈ Lt, is constructed
in the following iterative way (wi is the marked string associated to the set
σi(L), 0 ≤ i ≤ k).

Each new marked string is obtained by splicing the old marked string, until a
marked string wk from the target marked language Lt is reached or the marked
string cannot be spliced.

16 M. Cavaliere, N. Jonoska, and P. Leupold

The first string of the sequence is the input marked string, w0 = w.
If wi ∈ Lt, i ≥ 1, then the sequence ends (the marked string is among the

ones of the target marked language).
If there is no x ∈ σi(L), i ≥ 0, such that (wi, x) =⇒r (z1, z2) or (x, wi) =⇒r

(z1, z2) for some r ∈ R, then the sequence ends (the marked string cannot be
spliced).

If x, y ∈ σi(L), i ≥ 0, with wi = x (or wi = y) and there exists a rule r ∈ R
such that (x, y) =⇒r (z1, z2), then wi+1 = z1. In this case, if the marked string
can be subject to more than one splicing rule, producing different strings, the
choice of the next marked string is done in a non-deterministic way. Notice that
we always consider the first string produced as the new marked one.

Because the update of a marked string is made in a non-deterministic way,
given an input marked string w, an initial language L, a target marked language
Lt, and an H scheme σ, it is possible to get different sequences of intermediate
marked strings. The collection of all these sequences is denoted by σ(w, L, Lt).

For a splicing rule r = u1#u2$u3#u4 we denote by rad(r) the length of the
longest string u1, u2, u3, u4; we say that this is the radius of r. The radius of an
H scheme is the maximal radius of its rules.

In what follows, we denote by FINHk
the class of H schemes with radius at

most k and using finite set of splicing rules.

2.2 Observer

For the observer as described in the Introduction we need a device mapping
arbitrarily long strings, into just one singular symbol. As in earlier work [6] we
use a special variant of finite automata with some feature known from Moore
machines: the set of states is labelled with the symbols of an output alphabet
Σ. Any computation of the automaton produces as output the label of the state
it halts in (we are not interested in accepting / not accepting computations
and therefore also not interested in the presence of final states); because the
observation of a certain string should always lead to a fixed result, we consider
here only deterministic and complete automata.

Formalizing this, a monadic transducer is a tuple O = (Z, V, Σ, z0, δ, l) with
state set Z, input alphabet V , initial state z0 ∈ Z, and a complete deterministic
transition function δ as known from conventional finite automata; further there
is the output alphabet Σ and a labelling function l : Z �→ Σ. The output of the
monadic transducer is the label of the state it stops in. For a string w ∈ V ∗ and
a transducer O we then write O(w) for this output; for a sequence 〈w1, . . . , wn〉
of n ≥ 1 strings over V ∗ we write O(w1, . . . , wn) for the string O(w1) · · ·O(wn).

For simplicity, in what follows, we present only the mappings that the ob-
servers define, without giving detailed implementations for them.

2.3 Decider

As deciders we require devices accepting a certain language over the output
alphabet Σ of the corresponding observer as just introduced. For this we do not
need any new type of device but can rely on conventional finite automata with

Recognizing DNA Splicing 17

input alphabet Σ. The output of the decider D, for a word w ∈ Σ∗ in input, is
denoted by D(w). It consists of a simple yes or no.

2.4 Splicing Recognizer

Putting together the components just defined in the way informally described
in the Introduction, a splicing recognizer (in short SR) is a quintuple Ω =
(σ, O, D, L, Lt); σ = (V, R) is an H scheme, O is an observer (Z, V, Σ, z0, δ, l), D
is a decider with input alphabet Σ, L and Lt are finite languages, respectively,
the initial and the target marked language for σ.

The language accepted by SR Ω is the set of all words w ∈ V ∗ for which there
exists a sequence s ∈ σ(w, L, Lt) such that D(O(s)) = yes; formally

L(Ω) := {w ∈ V ∗ | ∃s ∈ σ(w, L, Lt)[D(O(s)) = yes]}.

3 A Short Example

It is well-known in the splicing literature that the family of languages generated
by splicing systems using only a finite set of splicing rules and a finite initial
language is strictly included in the family of regular languages [18]. In the fol-
lowing example we show that an SR composed by such an H scheme with a finite
set of rules, finite initial language, finite target marked language and finite state
automata as observer and decider, can recognize non regular languages. This
example is just a hint towards the fact that the combination splicing system-
observer-decider can be powerful even when the single components are simple.

In particular, we construct an SR recognizing the language {ola
nbnor | n ≥ 0}

that is known to be non-regular. The SR Ω = (σ, O, D, L, Lt) is defined as fol-
lows: the H scheme is σ = (V, R), with V = {ol, or, a, b, a′, b′, X1, Y1, X2, Y2}
and R = {r1 : #bor$X2#b′or, r2 : ola

′#Y2$ola#, r3 : #b′or$X1#or, r4 :
ol#Y1$ola

′#}. The initial language is L = {X2b
′or, ola

′Y2, X1or, Y1ol}. The tar-
get marked language is Lt = {olor}.

The observer Ohas input alphabetV and output alphabetΣ = {l0, l1, l2, l3,⊥}.
The mapping it implements is:

O(w) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l0 if w ∈ ol(a∗b∗)or,
l1 if w ∈ ol(a∗b∗b′)or,
l2 if w ∈ ol(a′a∗b∗b′)or,
l3 if w ∈ ol(a′a∗b∗)or ,
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives
a positive answer exactly if a word belongs to the regular language l0(l1l2l3l0)∗.

The observer checks that the splicing rules are applied in the order r1, r2,
r3, r4, and this corresponds to remove, in an alternating way, a b from the right
and an a from the left of the input marked string. In this way, at least one of
the evolutions of the input marked string is of the kind accepted by the decider

18 M. Cavaliere, N. Jonoska, and P. Leupold

if, and only if, the input marked string is in the language {ola
nbnor | n ≥ 0}.

Notice that, at each step, the marked string present is spliced only with one of
the strings present in the initial language.

To clarify the working of the SR Ω we show the acceptance of the input
marked string w0 = olaabbor. For simplicity, we only show the evolution of the
input marked string and the output of the observer, step by step.

– Step 0: input marked string w0 = olaabbor; O(w0) = l0;
– Step 1: apply rule r1; new marked string w1 = olaabb′or; O(w1) = l1;
– Step 2: apply rule r2; new marked string w2 = ola

′abb′or; O(w2) = l2;
– Step 3: apply rule r3; new marked string w3 = ola

′abor; O(w3) = l3;
– Step 4: apply rule r4; new marked string w4 = olabor; O(w4) = l0;
– Step 5: apply rule r1; new marked string w5 = olab′or; O(w5) = l1;
– Step 6: apply rule r2; new marked string w6 = ola

′b′or; O(w6) = l2;
– Step 7: apply rule r3; new marked string w7 = ola

′or; O(w7) = l3;
– Step 8: apply rule r4; new marked string (in the target marked language)

w8 = olor; O(w8) = l0.

Obviously the entire observed evolution l0l1l2l3l0l1l2l3l0 is of the kind ac-
cepted by the decider D, so the string w0 is accepted by the SR Ω.

4 Preliminary Results

An SR can accept even non context-free languages as stated in the following
theorem. The trick used here consists in the rotation of the input marked string,
during its evolution. The regular observer can control that this kind of rotation
is done in a correct way.

Theorem 1. There is a SR Ω such that L(Ω) is a non context-free, context-
sensitive language. Moreover, the splicing scheme of Ω can be taken to be of
radius ≤ 3.

Proof. We construct an SR Ω accepting the non context-free language {olwor |
w ∈ {a, b, c}+, #a(w) = #b(w) = #c(w)}.

The SR Ω = (σ, O, D, L, Lt) is defined as follows: the H scheme is σ = (V, R),
with V = {a, b, c, ol, or, X1, X2, X3, X4, X5, X6, Xa, X ′

a, Xb, X
′
b, Xc, X

′
c}. The set

of splicing rules of R is divided in two groups, according to their use.
The first group consists of the rules used to rotate the marked string.

r1 : {d#or$X1#Xaor | d ∈ {a, b, c}},
r2 : {#dXeor$X2#XdXeor, | e, d ∈ {a, b, c}, e �= d, }
r3 : {olX

′
e#X3$ol#d, | e, d ∈ {a, b, c}}

r4 : {#XdXeor$X4#Xeor, | e, d ∈ {a, b, c}, e �= d}
r5 : {ole#X5$olX

′
e# | e ∈ {a, b, c}}.

The second group of splicing rules is used to remove a symbol a, b, or c from
the marked string.

Recognizing DNA Splicing 19

r6 : #aXaor$X6#Xbor,
r7 : #bXbor$X6#Xcor,
r8 : #cXcor$X6#Xaor.

The initial language of the SR is L = {X1Xeor, olX
′
eX3, X4Xeor, oleX5 | e ∈

{a, b, c}} ∪ {X2XdXeor | d, e ∈ {a, b, c}, e �= d} ∪ {X6Xbor, X6Xcor, X6Xaor}.
Notice the language is finite. The target marked language is Lt = {olXaor}.

The observer O has input alphabet V and output alphabet Σ = {l0,⊥} ∪
{le,1, le,2, le,3, le,4 | e ∈ {a, b, c}}.

The mapping implemented by the observer is

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0 if w ∈ ol{a, b, c}+or,
le,1 if w ∈ ol{a, b, c}+Xeor, e ∈ {a, b, c}
le,2 if w ∈ ol{a, b, c}∗XdXeor, e, d ∈ {a, b, c}
le,3 if w ∈ olX

′
d{a, b, c}∗XdXeor, e, d ∈ {a, b, c}

le,4 if w ∈ olX
′
d{a, b, c}∗Xeor, e, d ∈ {a, b, c}

λ if w ∈ {olXaor}
⊥ else.

The decider D is a finite state automaton, with input alphabet Σ, that gives
a positive answer exactly if and only if, a word belongs to the regular language
l0(la,1(la,2la,3la,4la,1)∗lb,1(lb,2lb,3lb,4lb,1)∗lc,1(lc,2lc,3lc,4lc,1)∗)+.

At the beginning of the computation the input marked string is of the kind
ol{a, b, c}+or and it is mapped by the observer to l0. If the input marked string is
not of this type, then the observer outputs something different from l0, and the
entire evolution is not accepted by the decider D. In the first step, the splicing
rule d#or$X1#Xaor from r1 is used, and in this way a new marked string of
the type ol{a, b, c}+Xaor is obtained and mapped by the observer to la,1. The
introduced symbol Xa indicates that we want to search (and then to remove) a
symbol a from the obtained marked string. This searching is done by rotating
the marked string, until a symbol a becomes the symbol immediate to the left
of Xa. The rotation of the string is done by using the splicing rules given in the
first group.

A rotation of the string consists in moving the symbol immediately to the
left of Xa, to the right of ol; one rotation is done by applying, in a consecutive
way, a rule from r2, from r3, from r4 and finally from r5 (the precise rules
to apply depend on the symbol to move during the rotation). The sequence of
marked strings obtained during a rotation is mapped by the observer to the string
la,2la,3la,4la,1. The ∗ present in the regular expression describing the decider
language, indicates the possibility to have 0, or more consecutive rotations before
a symbol a comes to be the symbol immediately to the left of Xa.

The observer checks that each rotation is made in a correct way; that is, the
symbol removed from the left of Xa by using a rule from r4, is exactly the same
symbol introduced to the right of ol, by using the corresponding rule in r3. This
condition is checked in the fourth line of the observer mapping; if this regular
condition is not respected, then the observer outputs ⊥ and the entire evolution
of the input marked string is not accepted by the decider D.

20 M. Cavaliere, N. Jonoska, and P. Leupold

Once a symbol a becomes the symbol immediately to the left of Xa, and the
rotations can stop, then it is deleted by using the splicing rule r6. When rule r6
is applied, the new marked string obtained is of the kind ol{a, b, c}+Xbor that is
mapped by the observer to lb,1; the inserted symbol Xb, indicates that now we
search the symbol b.

In an analogous way, by using consecutive rotations, a symbol b is placed
immediately to the left of Xb and then is removed by using rule r7. In this case,
the sequence of marked strings obtained during each rotation is mapped by the
observer to lb,2lb,3lb,4lb,1. Once rule r7 is applied, the new marked string obtained
is of the kind ol{a, b, c}+Xcor and is mapped by the observer to lc,1.

Again analogously, the symbol c is searched for and then deleted by using rule
r8; in this case, the sequence of marked strings obtained during each rotation
is mapped by the observer to the string lc,2lc,3lc,4lc,1. At this point the entire
process can be iterated. By searching and removing a new symbol a, and then
again a b, and again a c, until the marked string olXaor, from the target language
is reached (the string obtained when all symbols a, b and c, have been deleted
from the input marked string). Notice that at each step the current marked
string is spliced with a string from the initial language.

This explanation shows that all strings from the language {ol{a, b, c}+or |
#a = #b = #c} can indeed be accepted by Ω. The fact that only such strings
can be accepted is guaranteed by the particular form of sequences accepted by
the decider in combination with the very specific form of the observed strings
leading to such a sequence. �

5 Universality

Following the idea used in the proof of Theorem 1, it is possible to prove that
SRs are universal. In informal words this means that it is possible to simulate an
accepting Turing machine by observing, with a very simple observer, the evolution
of a very simple splicing system.

The universality is not unexpected since, H systems with observer and de-
cider are similar to splicing systems with regular target languages, known to be
universal, [17].

Theorem 2. For each RE language L over the alphabet A there exists an SR Ω
using a splicing scheme σ ∈ FINH4 , such that Ω accepts the language {o′lwo′r |
w ∈ L}, with o′l, o

′
r /∈ A.

Proof. Any SR of the specified type can be simulated by a Turing machine. Thus
we only show that, for any Turing machine, there can be constructed an equiva-
lent SR system Ω composed of a splicing system using a finite set of rules, a finite
initial language and target marked language and by an observer and a decider
that are finite state machines. In this proof we use off-line Turing machines with
only a single combined input/working tape. The set δ of transitions is composed
of elements of the form Q×A→ Q×A×{+,−}, where Q is the set of states, A
the tape alphabet, and + or − denotes a move to the right or left, respectively.

Recognizing DNA Splicing 21

An input word is accepted, if and only if, the Turing machine stops in a state
that belongs to F ⊂ Q of final states. Without loss of generality, we suppose
that the machine M accepts the input, if and only if it reaches a configuration
where the tape is entirely empty, and M is in a state that belongs to F . The
initial state of M is q0 ∈ Q. The special letter � ∈ A denotes an empty tape cell.

We construct an SR Ω simulating M . Before giving the formal details, we
outline the basic idea of the proof. The input string to the Turing machine is
inserted as input marked string to the SR Ω, delimited by two external markers
o′l, o

′
r. This does not restrict the generality of the theorem, because these two

symbols could be added to any input string in two initalizing steps by the SR.
However, we want to spare ourselves the technical details of this.

Initially, an arbitrary number of empty tape cells � is added to the left and
to the right of the input marked string. When this phase is terminated, some
new markers ol and or are added to the left and right of the produced marked
string; starting from this step, the transitions of the Turing machine M are sim-
ulated on the current marked string; the marked string contains, at any time,
the content of the tape of M , the current state and the position of the head
of M over the tape. To read the entire tape of M the marked string is rotated
using a procedure very similar to the one described in the proof of Theorem 1;
like there, the observer can check that the rotations are done in a correct way.
The computation of Ω stops when the target marked string is reached, that is
when a marked string representing an empty tape is reached.

Formally, the SR Ω = (σ, O, D, L, Lt) is constructed in the following way.
The H scheme σ = (V, R) has alphabet V = {or, ol, o

′
r, o

′
l, X1, X2, · · · , X12}∪

A′ ∪ {Xe, X
′
e | e ∈ A′} where A′ = A ∪ (A×Q).

The splicing rules present in R are divided in groups, according to their use.

Initialization
r1 : {o′l(a, q0)#X1$o′la#, a ∈ (A− {�})};
r2 : {#o′r$X2#�o′r};
r3 : {o′l�#X3$o′l#};
r4 : {#o′r$X4#or};
r5 : {ol#X5$o′l#};

Rotations
r6 : {a#eor$X6#Xeor, e ∈ A′, a ∈ A};
r7 : {olX

′
e#X7$ol#f, e, f ∈ A′};

r8 : {a#Xeor$X8#or , e ∈ A′, a ∈ A};
r9 : {ole#X9$olX

′
e#f, e, f ∈ A′};

Transitions
r10 : {#(a, q1)bor$X10#c(b, q2)or,
q1, q2 ∈ Q, a, b, c ∈ A, (q1, a)→ (q2, c, +) ∈ δ };
r11 : {#b(a, q1)dor$X11#(b, q2)cdor,
q1, q2 ∈ Q, a, b, c, d ∈ A, (q1, a)→ (q2, c,−) ∈ δ};

22 M. Cavaliere, N. Jonoska, and P. Leupold

Halting phase
r12 : {ol#$X12#or}.

The initial language L is the finite language containing the strings used
by the mentioned splicing rules; in particular, L = {o′l(a, q0)X1 | a ∈ (A −
{�})}∪{X2o

′
r, o

′
l�X3, X4or, olX5, X8or, X12or}∪{X6Xeor, olX

′
eX7, oleX9 | e ∈

A′} ∪ {X10c(b, q2)or | q2 ∈ Q, c, b ∈ A} ∪ {X11(b, q2)cdor | b, c, d ∈ A, q2 ∈ Q}.
The target marked language is Lt = {olor}. The observer has input alphabet

V and output alphabet Σ = {l0, l1, · · · , l8, lf ,⊥}.
The mapping implemented by the observer is

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0 if w ∈ o′l(A− {�})+o′r,
l1 if w ∈ o′l(a, q0)(A− {�})∗o′r, a ∈ (A− {�}),
l2 if w ∈ o′l(A

′ − {�})+(�)+o′r,
l3 if w ∈ o′l(�)+(A′ − {�})+(�)+o′r,
l4 if w ∈ {o′lw′or | w′ ∈ (�)∗(A′ − {�})+(�)∗, length(w′) ≥ 3},
l5 if w ∈ (ol(A′)+or − {w | w ∈ E}),
l6 if w ∈ ol(A′)∗Xeor, e ∈ A′,
l7 if w ∈ olX

′
e(A

′)∗Xeor, e ∈ A′,
l8 if w ∈ olX

′
e(A′)∗or, e ∈ A′,

lf if w ∈ E,
⊥ else.

where E = ol(�)∗(�, q)(�)+or ∪ ol(�)+(�, q)(�)∗or ∪ ol(�)+(�, q)(�)+or,
q ∈ Q.

The decider is a finite state automaton, with input alphabet Σ that accepts
the regular language E1 ∪ E2, where E1 = l0l1(l2)+(l3)∗l4(l5 ∪ l5l5)(l6l7l8(l5 ∪
l5l5))∗lf and E2 = l0l1l4(l5 ∪ l5l5)(l6l7l8(l5 ∪ l5l5))∗lf .

The main point of the proof is to show that, given an input marked string w,
at least one of its (observed) evolutions is of the type accepted by the decider if,
and only if, the string w is accepted by the Turing machine M .

We now describe the (observed) evolution of a correct input marked string;
from this, we believe it will be clear that non correct strings will not have an evo-
lution of the kind accepted by the decider, and, therefore will not be accepted by
the SR Ω. The reader can compare the observed evolution of the input marked
string with the language accepted by the decider.

Actually we introduce in the system Ω not the string w but a string of the
type o′lwo′r where o′l, o

′
r are left and right delimiters. In general the input marked

string will be of the type o′l(A − {�})+o′r and is mapped by the observer to l0.
The pairs in Q×A are used to indicate in the string the state and the position
of the head of M . Initially the head is positioned on the leftmost symbol of the
input marked string, starting in state q0 (by using a rule in r1); the obtained
marked string is of the kind o′l(a, q0)(A−{�})∗o′r, a ∈ (A− {�}) mapped to l1
by the observer.

Then empty cells � are added to the right and to the left of the marked string
using rules in r2 and in r3, respectively. The marked string obtained at the end

Recognizing DNA Splicing 23

of this phase will be of the kind o′l(�)+(A′ −{�})+(�)+o′r mapped to l3 by the
observer. This phase is optional, and therefore the language of the decider is
described by the union of E1 where the adding of spaces is used and E2, where
no spaces are added, i.e., l2 and l3 are missing.

Then, by using rules in r4 and in r5 the delimiters o′l and o′r are changed into
ol and or, respectively. When a rule in r4 is applied, the marked string obtained
is of the kind o′lw

′or, w
′ ∈ (�)∗(A′ − {�})+(�)∗ mapped to l4 if the size of the

string w′ (possibly, including empty cells) is at least of 3 symbols; this condition
is useful during the following phases of rotations and does not imply a loss of
generality.

When a rule in r5 is applied, also o′l is removed and the marked string ob-
tained is mapped to l5 by the observer. This means that the symbol indicating
the head of M , (a, q1), is exactly one symbol away from or, then a splicing rule
in r10 or in r11 is applied. The one symbol left between the symbol representing
the head and the delimiter or is useful in case of the simulation of a right-moving
transition. The rule sets r10 and r11correspond to transitions moving right and
left, respectively.

Once a transition is simulated, the obtained marked string is again of the
type mapped to l5 by the observer (this is why it is possible to have in the
language of the decider the substring l5l5). At any rate it is not possible to
have immediately another transition after a transition, because the symbol cor-
responding to the head of M is moved. At least one rotation must be first
executed.

In case the symbol representing the head of M is not exactly one symbol
away from or, then the marked string is rotated until this condition is not true
any more. The rotation of one symbol in the string (i.e., moving the symbol
present to the left of or, to the immediate right of ol) is done by applying, in
this order, splicing rules from r6, r7, r8 and from r9. The marked strings ob-
tained during this phase are mapped by the observer to l6, l7, l8 and finally
l5. At the end of a rotation a transition can be simulated; more consecutive
rotations can be done until the necessary condition to simulate a transition is
reached. This explains why (l6l7l8(l5 ∪ l5l5))∗ forms part of the decider lan-
guage.

When, after a transition, the marked string obtained represents the empty
tape of M , then the computation of the SR stops. The marked strings repre-
senting an empty tape are the ones in the language E and they are mapped
by the observer to lf . After the observer has output lf , the splicing rule in r12
can be applied and the unique string in the target marked language olor can
be reached. If the rule in r12 is applied before the observer outputs lf , then the
entire evolution is not accepted by the decider. Notice that during the entire
computation the marked string can be spliced only with a string from the initial
language.

From the above explanation, it follows that an input marked string written
in the form o′lwo′r is accepted by Ω, if and only if, w is accepted by the Turing
machine M . �

24 M. Cavaliere, N. Jonoska, and P. Leupold

6 Concluding Remarks

We have presented another approach to compute by using DNA molecules (and
in general, biological systems), using the idea of evolution and observation.

The paper shows that observing an evolution of only one marked DNA strand
by means of a simple observer and decider can be a powerful tool which the-
oretically is sufficient to simulate a Turing machine. The components involved
are rather simple (finite splicing and finite state automata), that the computa-
tional power seems to stem mainly from the ability to observe, in real-time, the
changes (the dynamics) of a particular (marked) DNA strand, under the action
of restriction enzymes.

The proposed approach suggests several problems, if this were to be imple-
mented in practice.

For instance, the process of observation as defined here is non-deterministic;
meaning, the marked DNA strand inputed is accepted if, at least one of its
observed evolution follows an expected pattern, while there might be several
possible evolutions of this DNA strand since there might be several different
ways to splice the strand. From a practical point of view this would require
several copies of the same input DNA strand, each copy marked with a different
“color”. The observer should follow, separately, the evolution of each one of
these strands. This theoretically requires an unbounded number of copies of
DNA strands, each one marked with a different color. In practice, however, using
many marked copies may increase the chance to obtain the needed evolutions.

A possible way to implement this might be the use of the multiplexing tech-
nique introduced in [12] used to mark several molecules, each one with a different
“color”. Another way may be marking the strands with quantum dots, [3]. How-
ever, none of these techniques have been used for observing splicing and the
problems that may arise during the implementation may be numerous.

Further theoretical investigations may provide better solutions if it can be
shown that by increasing the complexity of the observer and the decider a
(“more”) deterministic way of generating the splicing evolutions can be em-
ployed. We recall that in the model presented here the observers and deciders
are with very low computational power, i.e. finite state automata.

Another problem that needs to be taken care of if implementing an SR is the
real-time observation: in the model presented here it is supposed that the ob-
server is able to catch, in the molecular soup, every single change of the marked
DNA strand. In practice, it is very questionable whether every step of the evo-
lution can be observed. It should be assumed that only some particular types
of changes, within a certain time-interval can be observed (see [14]). Therefore
another variant of SR needs to be, at least theoretically, investigated in which an
observer with “realistic” limitations on the ability of observation is considered.
For instance the observer might be able to watch only a window or a scattered
subword of the entire evolution.

On the other hand, universal computational power has been obtained here by
using an H scheme of radius 4. We conjecture that it is possible to decrease the

Recognizing DNA Splicing 25

radius, hence the question arises of what is the minimum radius that provides
universal computation.

It remains also to investigate SRs using simpler and more restricted variants
of H schemes, like the ones with simple splicing, [15] and semi-simple splicing
rules, [9]. Notice that from a pure theoretical point of view, observer and decider
could be joined in an unique finite state automaton, which may provide a better
framework for theoretical investigation. In this paper we prefer to leave the two
“devices” of observer and decider separated since this situation can be envisioned
to be closer to reality.

Moreover, we can interpret a given H scheme with an observer as a device
computing a function, by considering as input the input marked string, and as
output its (observed) evolution. What kind of functions can be computed in this
way?

These are only a few of the possible directions of investigation that the pre-
sented approach suggests. We believe that some of these directions will provide
useful results for using recombinant DNA for computing.

Acknowledgments

The authors want to thank Peter R. Cook for providing extremely useful ref-
erences. M. Cavaliere and P. Leupold are supported by the FPU grant of the
Spanish Ministry of Science and Education. N. Jonoska has been supported in
part by NSF Grants CCF #0432009 and EIA#0086015.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science 226, 1994, pp. 1021–1024.

2. A. Alhazov, M. Cavaliere, Computing by Observing Bio-Systems: the Case of
Sticker Systems, Proceedings of DNA 10 - Tenth International Meeting on DNA
Computing, Lecture Notes in Computer Science 3384 (C. Ferretti, G. Mauri, C.
Zandron eds.), Springer, 2005, pp. 1–13.

3. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alavisatos, Semiconductor
Nanocrystals as Fluorescent Biological Labels, Science, 281, 1998, pp. 2013-2016.

4. M. Cavaliere, N. Jonoska, (Computing by) Observing Splicing Systems.
Manuscript 2004.

5. M. Cavaliere, P. Leupold, Evolution and Observation – A New Way to Look at
Membrane Systems, Membrane Computing, Lecture Notes in Computer Science
2933 (C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg, A. Salomaa eds.),
Springer, 2004, pp. 70–88.

6. M. Cavaliere, P. Leupold, Evolution and Observation — A Non-Standard Way
to Generate Formal Languages, Theoretical Computer Science 321, 2004, pp.
233-248.

7. M. Cavaliere, P. Leupold, Evolution and Observation — A Non-Standard Way to
Accept Formal Languages. Proceedings of MCU 2004, Machines, Computations
and Universality, Lecture Notes in Computer Science 3354 (M. Margenstern ed.),
Springer, 2005, pp. 152–162.

26 M. Cavaliere, N. Jonoska, and P. Leupold

8. W.C.W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic
Detection, Science 281, 1998, pp. 2016-2018.

9. E. Goode, D. Pixton, Semi-Simple Splicing Systems, Where Mathematics, Com-
puter Science, Linguistics and Biology Meet, (C. Martin-Vı́de, V. Mitrana eds.),
Kluwer Academic Publisher, 2001, pp. 343 – 352.

10. T. Head, Formal Language Theory and DNA: An Analysis of the Generative
Capacity of Specific Recombinant Behaviors, Bulletin of Mathematical Biology
49, 1987, pp. 737-759.

11. T.M. Jovin, D.J. Arndt-Jovin, in Cell Structure and Function by Microspectroflu-
orimetry, (E. Kohen, J.S. Ploem, J.G. Hirschberg, eds.), Academic, Orlando,
Florida, pp. 99–117.

12. J.M. Levsky, S.M. Shenoy, R.C. Pezo, R.H. Singer, Single-Cell Gene Expression
Profiling, Science 297, 2002, pp. 836–40.

13. J. Lippincott-Schwartz et al., in Green Fluorescent Proteins, (K. Sullivan, S. Kay,
eds.), Academic, San Diego, 1999, pp. 261-291.

14. J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Studying Protein Dynamics in
Living Cells, Nature Rev. Mol. Cell. Biol., 2, 2001, pp. 444–456.

15. A. Mateescu, Gh. Păun, G. Rozenberg, A. Salomaa, Simple Splicing Systems,
Discrete Applied Mathematics, 84, 1998, pp. 145–163.

16. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sun-
daresan, A.M. Wu, S.S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo
Imaging and Diagnostic, Science, 307, 2005, www.sciencemag.org.

17. Gh. Păun, Splicing systems with targets are computationally universal, Informa-
tion Processing Letters, 59 (1996), pp. 129-133.

18. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

19. R. Rigler, E.S. Elson, Fluorescent Correlation Spectroscopy, Springer, New-York,
2001.

20. G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

21. A. Salomaa, Formal Languages, Academic Press, New York, 1973.

On Computational Properties of
Template-Guided DNA Recombination�

Mark Daley1,2 and Ian McQuillan2

1 Department of Computer Science and Department of Biology,
University of Western Ontario,

London, Ontario, N6A 5B7, Canada
daley@csd.uwo.ca

2 Department of Computer Science,
University of Saskatchewan,

Saskatoon, Saskatchewan, S7N 5A9, Canada
imcquill@csd.uwo.ca

Abstract. The stichotrichous ciliates have attracted the attention of
both biologists and computer scientists due to the unique genetic mech-
anism of gene descrambling. It has been suggested that it would perhaps
be possible to co-opt this genetic process and use it to perform arbitrary
computations in vivo. Motivated by this idea, we study here some basic
properties and the computational power of a formalization inspired by
the template-guided recombination model of gene descrambling proposed
by Ehrenfeucht, Prescott and Rozenberg. We demonstrate that the com-
putational power of a system based on template-guided recombination
is quite limited. We then extend template-guided recombination systems
with the addition of “deletion contexts” and show that such systems have
strictly greater computational power than splicing systems [1, 2].

1 Introduction

The stichotrichous ciliates are a family of single-celled organisms that have come
to be studied by both biologists and computer scientists due to the curious
mechanism of gene scrambling. Every stichotrichous ciliate has both a functional
macronucleus, which performs the “day-to-day” genetic chores of the cell, and
an inert micronucleus. Although stichotrichs reproduce asexually, they do also
conjugate to exchange genetic material. This hopefully increases the genetic
diversity and strength of both organisms involved in conjugation.

The micronucleus contains germline DNA which becomes important during
the process of conjugation between two cells. Specifically, when two ciliate cells
conjugate, they destroy their macronuclei and exchange haploid micronuclear
genomes. Each cell then builds a new functional macronucleus from the genetic
material stored in the micronucleus.
� This research was funded in part by institutional grants of the University of

Saskatchewan and the University of Western Ontario, the SHARCNET Research
Chairs programme, the Natural Sciences and Engineering Research Council of
Canada and the National Science Foundation of the United States.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 27–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

28 M. Daley and I. McQuillan

The interest in this process from a computational point of view comes from
the fact that the genes in the micronucleus are stored in a scrambled order.
Specifically, the micronuclear gene consists of fragments of the macronuclear
gene in some permuted order. That is, if we denote a functional macronuclear
gene with the string “1-2-3-4-5”, then the equivalent gene in the micronucleus
may appear as “2-ε1-4- ε2-1-ε3-3-ε4-5”, where the ε’s represent so-called inter-
nally eliminated sequences (or IES’s) which are removed from the macronuclear
version of the gene. Each sequence, 1 through 5, is referred to as a macronuclear
destined sequence (or MDS).

The cell must thus have some mechanism to de-scramble these fragments in
order to create a functional gene which is capable of generating a protein. For
more information on the biological process of gene de-scrambling, we refer to [3].

Several models for how this de-scrambling process takes place have been pro-
posed in the literature. There are two primary theoretical models which have
been investigated: the Kari-Landweber model [4, 5] which consists of a binary
inter- and intra-molecular recombination operation and the Ehrenfeucht, Harju,
Petre, Prescott and Rozenberg model [6, 7, 8] which consists of three unary op-
erations inspired by intramolecular DNA recombination.

Recently, a new model has been proposed by Prescott, Ehrenfeucht and
Rozenberg [9] based on the recombination of DNA strands guided by templates.

The basic action of the model is to take two DNA segments and splice them
together via a template intermediary, if the form of the segments matches the
form of the template. Consider DNA segments of the form uαβd and eβγv where
u, v, α, β, d, e, γ are subsequences of a DNA strand. If we wish to splice these two
strands together, we require a template of the form ᾱβ̄1β̄2γ̄ where ᾱ denotes
a DNA sequence which is complementary to α and β = β1β2. Specifically, the
ᾱβ̄1 in the template will bind to the αβ1 in the first strand and β̄2γ̄ will bind
to the β2γ in the second strand. The molecules then recombine according to the
biochemistry of DNA and we are left with d and e being cleaved and removed,
a new copy of the template ᾱβ̄γ̄ and the product of our recombination: uαβγv.
For more details on this operation, we refer to [9].

It has been suggested that the in vivo computational process of gene descram-
bling may be able to be controlled in such a way that it would be possible to
perform an arbitrary computation with a ciliate. Taking this as our motivation,
in this paper we present a generalized version of the template-guided recombina-
tion operation and study the basic properties and computational power of both
non-iterated and iterated versions. We conclude that, even in the iterated case,
the computational power is quite limited and propose a straightforward exten-
sion to a model which is strictly more computationally powerful than splicing
systems.

The paper is organized as follows; Section 2 of the paper will present formal
language theoretic prerequisites and notation. In section 3 we consider the basic
closure properties and the computational power of the template-guided recom-
bination operation. We then contrast this by recalling results on an iterated
version of this operation. The limited computational power of both the iterated

On Computational Properties of Template-Guided DNA Recombination 29

and non-iterated versions leads us to study a context-aware extension of the op-
eration, which proves strictly more powerful than splicing systems, in Section 4.
We present our conclusions in section 5.

2 Preliminaries

We refer to [10] for language theory preliminaries. Let Σ be a finite alphabet. We
denote, by Σ∗ and Σ+, the sets of all words and non-empty words, respectively,
over Σ and the empty word by λ. A language L is any subset of Σ∗. Let x ∈ Σ∗.
We let |x| denote the length of x. For n ∈ N0, let Σ≤n = {w ∈ Σ∗ | |w| ≤ n},
Σ≥n = {w ∈ Σ∗ | |w| ≥ n} and Σn = {w ∈ Σ∗ | |w| = n}. A homomorphism
h : X∗ → Y ∗ is termed a coding if |h(a)| = 1 for each a ∈ X and h is termed
a weak coding if |h(a)| ≤ 1 for each a ∈ X . Let L, R ⊆ Σ∗. We denote by
R−1L = {z ∈ Σ∗ | yz ∈ L for some y ∈ R} and LR−1 = {z ∈ Σ∗ | zy ∈
L for some y ∈ R}.

We denote the family of finite languages by FIN, regular languages by REG,
linear languages by LIN, context-free languages by CF, context-sensitive lan-
guages by CS and recursively enumerable languages by RE.

A trio is a non-trivial language family closed under λ-free homomorphism,
inverse homomorphism and intersection with regular sets. It is known that every
trio is closed under λ-free a-transductions1 and inverse gsm mappings. An AFL
is a trio closed under arbitrary union, concatenation and +. A full trio2 is a trio
closed under arbitrary homomorphism. It is known that every full trio is closed
under arbitrary a-transductions and hence arbitrary gsm mappings. A full semi-
AFL is a full trio closed under union. A full AFL is a full trio closed under
arbitrary union, concatenation and Kleene ∗. It can be seen that REG,CF and
RE are full AFL’s, LIN is a full semi-AFL not closed under concatenation or
∗, and CS is an AFL not closed under arbitrary homomorphism. We refer to
[11, 12] for the theory of AFL’s.

3 Template-Guided Recombination

We will first formally define the template-guided recombination operation as it
appears in [13, 14].

Definition 1. A template-guided recombination system (or TGR system) is a
four tuple � = (T, Σ, n1, n2) where Σ is a finite alphabet, T ⊆ Σ∗ is the template
language, n1 ∈ N is the minimum MDS length and n2 ∈ N is the minimum
pointer length.

For a TGR system � = (T, Σ, n1, n2) and a language L ⊆ Σ∗, we define
�(L) = {w ∈ Σ∗ | (x, y) �t w for some x, y ∈ L, t ∈ T } where (x, y) �t w if
and only if x = uαβd, y = eβγv, t = αβγ, w = uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈
Σ≥n1 , β ∈ Σ≥n2 .
1 An a-transducer is also referred to as a rational transducer.
2 A full trio is also referred to as a cone.

30 M. Daley and I. McQuillan

Let L1,L2 be language families and n1, n2 ∈ N. We write �(L1,L2, n1, n2) =
{�(L) | L ∈ L1, � = (T, Σ, n1, n2) a TGR system, T ∈ L2} and �(L1,L2) =⋃

n1,n2∈N
�(L1,L2, n1, n2)

We remark here that while the operation of template-guided recombination bears
a superficial resemblance to the splicing operation introduced by Head [1] and
extended by Paun, et. al. [2], the operations are, in fact, distinct. While TGR
systems are in most cases less computationally powerful than comparable splicing
systems, they are often more succinct in terms of the descriptional complexity of
a system generating a particular language. Moreover, we will show in this paper
that a contextual extension of TGR systems is strictly more computationally
powerful than the inherently contextual splicing systems. Further details on the
relationship between splicing systems and TGR systems can be found in [13].

Remark 1. In [9], a constant C is defined such that |α|, |γ| > C in order to
ensure the formation of sufficiently strong chemical bonds. Likewise, [9] also
defines constants D and E such that D < |β| < E. The definition, as above,
and also the results in this paper, are general enough to cover any such D and
C. In addition, the constant E, as defined above, is shown to be irrelevant in
the next proposition. It was noted in [9] that the smallest pointer sequence
known was of length 3, although recently, a pointer sequence was discovered
experimentally which was only of length one [15]. Also, we believe that the
smallest MDS sequence discovered to date is nine nucleotides long [16]. In any
case, the notation above is general enough to work for any such constants. We
also note that the notation above will work when the two operands x and y
in Definition 1 are either the same or when they are not. It has been seen
experimentally that two MDS’s can be on two different loci but still recombine
successfully.

The following proposition, from [13] states that we can always assume that the
β subword of a template is of the minimum length, n2.

Proposition 1. Let � = (T, Σ, n1, n2) be a TGR system and let x, y ∈ Σ∗ and
t ∈ T . Then (x, y) �t w if and only if x = uαβd, y = eβγv, t = αβγ, w =
uαβγv, u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σn2 .

In the sequel, we shall thus assume, without loss of generality, that β is of
length n2.

We now consider new results regarding the power of template-guided recombi-
nation when restricted to a single application of the operation. This is important
to the basic theoretical understanding of how the operation functions relative
to traditional theoretical computer science. We omit proofs here due to space
considerations.

First, we show that, under some weak restrictions, closure under intersection
follows from closure under template-guided recombination.

Lemma 1. Let L1 be a language family closed under left and right concatenation
and quotient with a single symbol and under union with singleton languages and

On Computational Properties of Template-Guided DNA Recombination 31

let L2 be a language family closed under left and right concatenation with a single
symbol such that �(L1,L2, n1, n2) ⊆ L1 for some n1, n2 ∈ N. The intersection
of a language from L1 with a language from L2 belongs to L1.

Since Σ∗ is in every language family containing REG and Σ∗ ∩ T = T , we
obtain:

Corollary 1. Let L1 be a language family such that REG ⊆ L1, L1 is closed
under left and right concatenation and quotient with a symbol and union with
singleton languages and let L2 be a language family closed under left and right
concatenation with a symbol such that �(L1,L2, n1, n2) ⊆ L1 for some n1, n2 ∈
N. Then L2 ⊆ L1.

We now continue the characterization of template-guided recombination in terms
of AFL theory. We see that, under some restrictions, closure under concatenation
follows from closure under template-guided recombination.

Lemma 2. Let L1 be a language family closed under limited erasing homomor-
phism, union, left and right concatenation by a symbol and let L2 be a language
family containing the singleton languages such that �(L1,L2, n1, n2) ⊆ L1 for
some n1, n2 ∈ N. Then L1 is closed under concatenation.

We now show that we can simulate template-guided recombination with a few
standard operations.

Lemma 3. Let L1 be closed under marked concatenation3, intersection with
regular languages and inverse gsm mappings. Let L2 be closed under inverse
gsm mappings and intersection with regular languages. Let L ∈ L1, T ∈ L2 and
let � = (T, Σ, n1, n2) be a TGR system. Then there exists L′ ∈ L1, T

′ ∈ L2 and
a weak coding homomorphism h such that �(L) = h(L′ ∩ T ′).

Since every trio is closed under inverse gsm mappings, we get the following:

Corollary 2. Let L1 be a concatenation closed full trio and let L2 be either a trio
or L2 ⊆ REG. If L1 is closed under intersection with L2 then �(L1,L2) ⊆ L1.

We combine the lemmata above to obtain the following result:

Proposition 2. Let L1 be a full semi-AFL and L2 be a trio or L2 = FIN. Then
�(L1,L2) ⊆ L1 if and only if L1 is closed under concatenation and L1 is closed
under intersection with L2.

Since every full semi-AFL is closed under intersection with regular languages, it
now follows that for a full semi-AFL, closure under catenation is necessary and
sufficient to show closure under template-guided recombination with regular and
finite languages.

Corollary 3. For every full semi-AFL L, �(L,REG) ⊆ L and �(L,FIN) ⊆ L
if and only if it is closed under concatenation.
3 The marked concatenation of L1, L2 is L1aL2 where a is a new symbol.

32 M. Daley and I. McQuillan

Likewise, the next result concerning the closure of intersection-closed full semi-
AFLs now follows since every intersection-closed full semi-AFL is closed under
concatenation.

Corollary 4. For every intersection-closed full semi-AFL L, �(L,L) ⊆ L.

The above results are sufficient to characterize the closure properties of the
families of finite, regular, linear and context-free families. We now show that the
family of context-sensitive languages is not even closed under template-guided
recombination with singleton languages.

Proposition 3. �(CS,FIN, n1, n2) �⊆ CS for any n1, n2 ∈ N.

Now, we can completely fill in a table (see Table 1) with the families of languages
in the Chomsky hierarchy, the finite languages and the linear languages. A

√

represents closure of L1 under template-guided recombination with templates
from L2 and a blank represents non-closure. The results hold for any minimum
pointer and MDS length.

Table 1. �(L1, L2) ⊆ L1?

L1 | L2 FIN REG LIN CF CS RE
FIN

√ √ √ √ √ √
REG

√ √
LIN
CF

√ √
CS
RE

√ √ √ √ √ √

In a biological system it is natural to investigate iterated application of oper-
ations as bio-operations are the product of the stochastic biochemical reactions
of enzymes, catalysts and substrates in solution. We now recall results on an
iterated version of the template-guided recombination operation.

We begin with the definition iterated template-guided recombination from [14]:
Let � = (T, Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. Then we generalize

� to an iterated operation �∗(L) as follows:

�0(L) = L,

�n+1(L) = �n(L) ∪ �(�n(L)), n ≥ 0

�∗(L) =
∞⋃

n=0

�n(L).

Let L1,L2 be language families and n1, n2 ∈ N. We define �∗(L1,L2, n1, n2) =
{�∗(L) | L ∈ L1, � = (T, Σ, n1, n2) a TGR system, T ∈ L2} and let �∗(L1,L2) =⋃

n1,n2∈N
�∗(L1,L2, n1, n2).

We now give a short example of an iterated template-guided recombination
system.

On Computational Properties of Template-Guided DNA Recombination 33

Example 1. Let L = {an1an2} and let � = (T, Σ, n1, n2) be a TGR system
where Σ = {a}, T = {an1an2an1} and n1, n2 ∈ N. Then �∗(L) = {an1+n2} ∪
{a2n1+n2a∗}. For the case n1 = n2 = 1, �(L) = aa+.

It is also known from [13] that the closure of a language family under iterated
template-guided recombination contains the original language family.

Lemma 4. Let L1,L2 be language families and let n1, n2 ∈ N. Then L1 ⊆
�∗(L1,L2, n1, n2).

We have considered the basic properties of the iterated version of template-
guided recombination in [14] and we recall here the definition of a useful template
from that paper.

Intuitively, a template word is useful if it can be used as a template to produce
any word, not necessarily new. The full formal definition is found in [14]. This
notion turns out to be quite important as is shown by the following two results.

We see that every full AFL is closed under iterated template-guided recom-
bination with useful templates from the same full AFL.

Theorem 1. Let L be a full AFL, � = (T, Σ, n1, n2) a TGR system and let
L, T ∈ L, L ⊆ Σ∗ and assume that � is useful on L. Then �∗(L) ∈ L.

In addition, when the template sets are regular, the useful subset, Tu say, of the
template language T on any language L has a very simple structure relative to T .

Proposition 4. Let � = (T, Σ, n1, n2) be a TGR system, let L ⊆ Σ∗ and let Tu

be the useful subset of T on L. If T is a regular language, it follows that Tu is
also regular.

The language L in the proposition above does not have any restrictions placed
on it. It need not even be recursively enumerable. The proof does not, however,
provide an effective construction for Tu.

A consequence of Theorem 1, Proposition 4 and the fact that the family of
regular languages is the smallest full AFL allows us to show the following key
result.

Theorem 2. Let L be a full AFL and let n1, n2 ∈ N. Then

�∗(L,REG, n1, n2) = L.

This shows that the operation, as defined, provides very little computational
power, regardless of the minimum pointer and MDS length. Indeed, even when
we start with regular initial and template languages, we cannot generate any
non-regular languages. This is not surprising biologically, however, as one might
expect the cell to make use of the least complex computational process to ac-
complish a given task.

In the next section we show that adding even a small amount of context-
sensitiveness to template-guided recombination results in a large increase in
computational power.

34 M. Daley and I. McQuillan

4 Extension of TGR by Deletion Contexts

As defined above, the operation of template-guided recombination is able to
achieve very limited computational power. Even the iterated version is able only
to generate regular languages starting from a regular initial language and using
a regular set of templates. This is in contrast to the fact that extended splicing
systems are able to generate arbitrary recursively enumerable languages starting
from regular splicing rules and a finite set of axioms[17]. It is often the case
that small alterations to an operation can lead to a huge increase in generative
capacity. In this section, we add a feature to this operation in order to achieve
more power. It should be stated immediately that it is not clear how realistic this
extension is in a biological setting. While the extension presented is certainly not
biologically impossible, neither do we have experimental evidence to support it.
Despite this, it serves as an aide to the study of what properties should likely
be present in order to obtain more general computation.

We begin by defining a more general version of the template-guided recom-
bination operation. Indeed, the new notation allows for extra deletion contexts,
beyond the β pointer. The previously studied operation is a special case where all
deletion contexts are of length zero. We cannot assume, with this more general
notation that the symbol β is always of the minimum pointer length.

Definition 2. A contextual template-guided recombination system (or shortly,
a CTGR system) is a four tuple � = (T, Σ, n1, n2) where Σ is a finite alphabet,
is a symbol not in Σ, T ⊆ Σ∗#Σ∗#Σ∗ is the template language, n1 ∈ N is
the minimum MDS length and n2 ∈ N is the minimum pointer length.

For a CTGR system � = (T, Σ, n1, n2) and a language L ⊆ Σ∗, we define
�(L) = {w ∈ Σ∗ | (x, y) �c

t w for some x, y ∈ L, t ∈ T } where (x, y) �c
t w if

and only if x = uαβd1d, y = ee1βγv, t = e1#αβγ#d1, w = uαβγv, u, v, d, e ∈
Σ∗, α, γ ∈ Σ≥n1 , β ∈ Σ≥n2 .

For k ∈ N0 ∪ {∞}, we denote �(L1,L2[k], n1, n2) = {�(L) | L ∈ L1, � =
(T, Σ, n1, n2) a CTGR system, T ∈ L2, T ⊆ Σ≤k#Σ∗#Σ≤k} and �(L1,L2) =
{�(L1,L2[∞], n1, n2) | n1, n2 ∈ N}.
We then get template-guided recombination as a special case where the contexts
are of length zero. Next, we see that if we add in even one symbol of deletion
context, we increase the power significantly.

Lemma 5. Let Σ be an alphabet, Σ1 = Σ∪{a1, a2, a3, a4, a5}, (all new symbols
disjoint from Σ), L a language family closed under left and right concatenation
with symbols and L1∪aL2 ∈ L for L1, L2 ∈ L, a a new symbol. Then there exists
L ∈ L, T ∈ Σ1#Σ∗

1#Σ1, T ∈ REG0 and a CTGR system � = (T, Σ1, 1, 1) such
that L1 ∩ L2 = (a4a1a2)−1(�(L))(a3a1a5)−1 and �(L) ∈ �(L,REG0[1], 1, 1).

As corollary, we obtain that �(LIN,REG0[1], 1, 1) is equal to RE after applying
an intersection with a regular language and a homomorphism.

Corollary 5. Let Σ be an alphabet, L ∈ RE, L ⊆ Σ∗. Then there exists an alpha-
bet Σ1, a homomorphism h from Σ∗

1 to Σ∗, languages R, T ∈ REG0, a language
L′ ∈ LIN and a CTGR system � = (T, Σ1, 1, 1) such that h(�(L′) ∩R) = L.

On Computational Properties of Template-Guided DNA Recombination 35

Thus, even though �(L1,REG) ⊆ S(L1,REG)4 for every L1 (see [13]) and
S(L1,REG) ⊆ L1 for every concatenation closed full trio L1 (see [2]), we see
that when we add in even one symbol of deletion contexts, �(L1,REG) �⊆
S(L1,REG) in many cases, for example when L1 is the family of context-free
languages. Consequently, template-guided recombination with deletion contexts
can generate more powerful languages than splicing systems.

Lemma 6. Let L1,L2 be language families, both closed under inverse gsm map-
pings and intersection with regular languages, let L ∈ L1, T ∈ L2 and let
� = (T, Σ, n1, n2) be a CTGR system. Then there exists L1, L2 ∈ L1, T

′ ∈ L2
and a weak coding homomorphism h such that �(L) = h(L1 ∩ L2 ∩ T ′).

Corollary 6. Let L1 be an intersection-closed full trio closed under intersection
with L2, which is either closed under inverse gsm mappings and intersection with
regular languages or L2 ⊆ REG. Then �(L1,L2) ⊆ L1.

Proposition 5. Let L1 be a full semi-AFL and let REG0 ⊆ L2 be closed under
inverse gsm mappings and intersection with regular languages. Then �(L1,L2) ⊆
L1 if and only if L1 is closed under intersection with L1 and L2.

We would also like to study the iterated version of this more general operation.
Let � = (T, Σ, n1, n2) be a CTGR system and let L ⊆ Σ∗, T ⊆ Σ∗#Σ∗#Σ∗.
We generalize � to an iterated operation �∗(L) in the natural way:

�0(L) = L,

�n+1(L) = �n(L) ∪ �(�n(L)), n ≥ 0

�∗(L) =
∞⋃

n=0

�n(L).

In the following, we show that we are able to generate arbitrary recursively
enumerable languages using iterated contextual template-guided recombination
with regular templates and a finite initial language and applying an intersection
with a terminal alphabet and a coding. The following proof follows the well
known “simulate-rotate” proof technique from splicing systems [2]. We apply
the final coding homomorphism in the proof in order to stop the β symbol in the
definition from “compressing” small amounts of information in an undesirable
fashion. It is not clear if the coding is strictly necessary, however it is very
simple: mapping three separate symbols onto one for each symbol. We only
require deletion contexts of length two.

Proposition 6. Let L′ ⊆ Σ∗ be an arbitrary recursively enumerable language.
Then there exist alphabets Σ, W , a regular template language T , a CTGR system
� = (T, W, 1, 1), a finite language L ⊆W ∗, and a coding homomorphism h from
Σ

∗
to Σ∗ such that h(�∗(L) ∩Σ

∗
) = L′.

We have thus demonstrated that an arbitrary recursively enumerable language
can be generated by a CTGR system with a finite initial language and a
4 Where S(L1,REG) denotes non-iterated splicing systems with an initial language

in L1 and splicing rules in REG.

36 M. Daley and I. McQuillan

regular template language up to a coding homomorphism and intersection with
a terminal alphabet.

5 Conclusions

We have considered the basic properties and computational power of an opera-
tion inspired by the template-guided recombination model of gene descrambling
in stichotrichous ciliates. Specifically, we began by investigating the properties of
a non-iterated version of template-guided recombination systems, contributing to
their theoretical understanding. We characterized closure properties of families
of languages under template-guided recombination in terms of other basic opera-
tions and demonstrated that every intersection-closed full semi-AFL is closed un-
der template-guided recombination with templates from the same full semi-AFL.

We then recalled the properties of iterated template-guided recombination
systems. The principal result here shows the limited power of template-guided
recombination by demonstrating that every full AFL is closed under iterated
template-guided recombination with regular templates. This implies that the
computational power of any system based on this operation will be quite limited.
Indeed, if one enforces the “reasonable” restriction that template and initial lan-
guages must be regular, one does not gain any increase in computational power.
This motivates the question of what minimal extension would be required to in-
crease the generative capacity beyond the regular languages while still restricting
the initial and template languages to be, at most, regular.

We addressed this question by showing that the tight restriction on compu-
tational power can be lifted by adding a small degree of context-awareness to
a TGR system. We have demonstrated that we are able to generate arbitrary
recursively enumerable languages using contextual iterated template-guided re-
combination with regular templates, a finite initial language and applying an
intersection with a terminal alphabet and a coding.

It may be preferable, from the point of view of biocomputing, to show a
result which demonstrates the simple template-guided recombination systems to
be capable of universal computation; however, from the point of view of judging
the closeness of this formalization to the biological process which it models, the
opposite may be true. Given that a cell has access to only finite resources, and
has serious constraints on the length of time in which the descrambling process
must be completed, it seems reasonable that the process must be relatively
computationally simple.

We have also shown in this paper that by adding a small amount of context-
awareness to a TGR system, we are able to easily generate arbitrary recursively
enumerable languages. While this result may be more theoretically satisfying, we
caution that the “deletion contexts” required to derive such a result are not present
in the biological model given in [9], though they are not biologically impossible. Too
little is currently known about the molecular biology of ciliates to make definitive
statements; however,we feel that, in the context of formalizing a biological process,
a result indicating limited computational power is perhaps preferable.

On Computational Properties of Template-Guided DNA Recombination 37

The simplicity and elegance of template-guided recombination combined with
the ubiquity of template-mediated events in biological systems, shows that the
operation warrants further investigation both as a possible model of a biological
process and as a purely abstract operation.

Acknowledgments

We thank Grzegorz Rozenberg for helpful discussions.

References

1. Head, T.: Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology 49 (1987)

2. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing : new computing
paradigms. Springer-Verlag, Berlin (1998)

3. Prescott, D.: Genome gymnastics: Unique modes of DNA evolution and processing
in ciliates. Nature Reviews Genetics 1 (2000) 191–198

4. Kari, L., Landweber, L.: Computational power of gene rearrangement. In Winfree,
E., Gifford, D., eds.: DNA5, DIMACS series in Discrete Mathematics and The-
oretical Computer Science. Volume 54. American Mathematical Society (2000)
207–216

5. Landweber, L., Kari, L.: The evolution of cellular computing: Nature’s solution to a
computational problem. In Kari, L., Rubin, H., Wood, D., eds.: DNA4, BioSystems.
Volume 52. Elsevier (1999) 3–13

6. Ehrenfeucht, A., Prescott, D., Rozenberg, G.: Computational aspects of gene
(un)scrambling in ciliates. In Landweber, L., Winfree, E., eds.: Evolution as Com-
putation. Springer-Verlag, Berlin, Heidelberg (2001) 45–86

7. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation
in Living Cells, Gene Assembly in Ciliates. Springer-Verlag, Berlin (2004)

8. Ehrenfeucht, A., Prescott, D., Rozenberg, G.: Molecular operations for DNA
processing in hypotrichous ciliates. European Journal of Protistology 37 (2001)
241–260

9. Prescott, D., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for
IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology 222 (2003) 323–330

10. Salomaa, A.: Formal Languages. Academic Press, New York (1973)
11. Berstel, J.: Transductions and Context-Free Languages. B.B. Teubner, Stuttgart

(1979)
12. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.

North-Holland Publishing Company, Amsterdam (1975)
13. Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Com-

puter Science 330 (2005) 237–250
14. Daley, M., McQuillan, I.: Useful templates and template-guided DNA recombina-

tion. (to appear in Theory of Computing Systems)
15. Doak, T.: (Personal communication)
16. Landweber, L., Kuo, T., Curtis, E.: Evolution and assembly of an extremely scram-

bled gene. PNAS 97 (2000) 3298–3303
17. Păun, G.: Regular extended H systems are computationally universal. Journal of

Automata, Languages and Combinatorics 1 (1996) 27–36

Towards Practical Biomolecular Computers Using
Microfluidic Deoxyribozyme Logic Gate Networks

Joseph Farfel and Darko Stefanovic

Department of Computer Science,
University of New Mexico

{jfarfel, darko}@cs.unm.edu

Abstract. We propose a way of implementing a biomolecular computer in the
laboratory using deoxyribozyme logic gates inside a microfluidic reaction cham-
ber. We build upon our previous work, which simulated the operation of a flip-flop
and an oscillator based on deoxyribozymes in a continuous stirred-tank reactor
(CSTR). Unfortunately, using these logic gates in a laboratory-size CSTR is pro-
hibitively expensive, because the reagent quantities needed are too large. This
motivated our decision to design a microfluidic system. We would like to use a
rotary mixer, so we examine how it operates, show how we have simulated its
operation, and discuss how it affects the kinetics of the system. We then show
the result of simulating both a flip-flop and an oscillator inside our rotary mixing
chamber, and discuss the differences in results from the CSTR setting.

1 Introduction

Deoxyribozymes (nucleic acid enzymes) may be used as logic gates, which transform
input signals, denoted by a high concentration of substrate molecules, into output sig-
nals, which are represented by product created when the deoxyribozyme gate cleaves a
substrate molecule [1]. Using these gates, molecular devices have been created in the
laboratory that function as a half-adder [2] and a tic-tac-toe automaton [3]. Furthermore,
experiments have demonstrated the linking of the output of certain deoxyribozyme gates
to the input of others, which opens the prospect of creating complex logic [4].

These gates have so far only been used in the laboratory in very small quantities,
and, quite significantly, only in closed reactors. This is due to the expense that inhibits
purchasing large amounts of gate molecules and the substrates that act as their input.
Using these gates in closed reactor systems has the major drawback of limiting them to
performing one-shot computations. Previously, we have simulated multiple gate opera-
tion in an open, continuous-influx stirred tank reactor (CSTR), and have shown designs
for a flip-flop and an oscillator in this setting [5]. Unfortunately, no such open reactor
experiment has been performed, owing to the attendant costs.

We propose a microfluidic system whereby these open reactor experiments may ac-
tually be performed in the laboratory at a modest cost in materials and apparatus. We
analyze and simulate a molecular flip-flop and oscillator in a microfluidic setting. The
reaction kinetics of the flip-flop and oscillator in the CSTR have already been examined
in detail. Our simulation changes these kinetics by making the influx and homogeneity
of the system time-dependent, varying according to our simulation of a microfluidic
mixer, which doubles as the reaction chamber.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 38–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Practical Biomolecular Computers 39

The extremely small volume of a microfluidic reaction chamber (ours is 7.54 nL)
compared to a CSTR (50 mL or more) means that the same or even substantially greater
concentrations of oligonucleotide gates and substrates can be obtained within the cham-
ber even with a vastly smaller amount of gate and substrate molecules. This means that
the expense of an open-reactor experiment (mostly determined by the amount of sub-
stance used—including the substrates, the products, and the gates) can be reduced by
several orders of magnitude, and be made reasonable. The initial cost of building the
microfluidic system may be large, but the benefit of being able to run experiments with
a very small number of pricey deoxyribozyme molecules far outweighs this initial in-
vestment. In addition to reducing expense and thereby enabling real-life open-reactor
experiments, this approach has numerous other advantages unique to a microfluidic
system, including a vast decrease in the time needed to perform logic operations, the
possibility of keeping gates inside a chamber (allowing for pre-fabricated chambers,
each implementing a certain type of logic), and the ability to link reaction chambers to-
gether with externally-controlled valves. Linking chambers together could allow us to
create complex networks of reaction chambers, and channels between chambers could
even be designed to mimic capillaries connecting living cells in which computation may
be taking place in vivo at some point in the future. In fact, we consider this microflu-
idic setting to be the proving ground for deoxyribozyme logic gate circuits for medical
applications.

2 The Chemical Kinetics of Deoxyribozyme Gate Networks

The four chemical components present in our reactor are inputs, gates, substrates, and
products. All of these components are oligonucleotides. The gates are deoxyribozyme
molecules, and under certain input conditions they are active [1]. When a gate becomes
active, it cleaves substrate molecules to create product molecules. In more technical
terms, the enzymatic (active) gate is a phosphodiesterase: it catalyzes an oligonucleotide
cleavage reaction. Input molecules can either activate or deactivate a gate. The effect
that a particular type of input molecule has on a gate defines its function. For instance,
a simple inverter, or NOT gate, will be active, and cleave substrate to produce product,
until an input molecule binds to it, making it inactive. The concentration of product in
the system is the output signal of the gate, where a high concentration of product is read
as true and a low concentration is read as false (the same is true for high or low input
concentrations). Product molecules fluoresce, while substrate molecules do not, so the
concentration of product molecules in the system is determined by the level of emitted
fluorescence. For the NOT gate example, the concentration of product in the system
becomes high when there is no input and becomes low when input molecules are added,
as the input molecules deactivate all of the gate molecules and product is no longer
being cleaved from substrate. This example of the NOT gate’s operation depends on its
being in an open reactor, however—if it is in a closed reactor, the product concentration
can never go from high to low, but in an open reactor, product is always being removed
from the system as part of the system’s efflux.

In order to model the operation of these logic gates, we must be well informed
of their basic chemical kinetics. The kinetics of the YES gate have been thoroughly

40 J. Farfel and D. Stefanovic

examined [5], and we use those results here. In this examination, it is assumed that
the bonding between gate and input molecules is instantaneous and complete, since
it is known that the cleavage and separation of the substrate molecules into product
molecules is the slowest of the reactions, and thus is the rate-limiting process. The rate
at which product is produced by a gate is dP

dt = β SGA, where P is the product concen-
tration, β is the reaction rate constant, S is the substrate concentration, and GA is the
concentration of active gates. It has been empirically determined that the reaction rate
constant for the YES gate is approximately β = 5 · 10−7 nM−1s−1. This value will be
assumed as the reaction rate for all deoxyribozyme gates mentioned herein.

The chemical kinetics of an entire system of gates, substrates, inputs, and products
in an open, microfluidic reactor can be modeled with a set of coupled differential equa-
tions. An example is the case of the inverter, or NOT gate, where the set of equations is:

dG
dT

=
Gm(T)−E(T)G(T)

V
(1)

dI
dT

=
Im(T)−E(T)I(T)

V
(2)

dP
dT

= β H(T)S(T)max(0,G(T)− I(T))− E(T)P(T)
V

(3)

dS
dT

=
Sm(T)

V
−β H(T)S(T)max(0,G(T)− I(T))− E(T)S(T)

V
(4)

where Im, Gm, and Sm are the rates of molar influx of the respective chemical species,
V is the volume of the reactor, E(T) is the rate of volume efflux, β is the reaction
rate constant, and H(T) is a number representing the volume fraction of the reaction
chamber that is homogeneous at time T . The influx and efflux of the reactor are time-
dependent, because the reactor must close off its input and output periodically in order
to mix its contents (vide infra). The variable H(T) is needed because in a microfluidic
system we cannot assume that the contents of the reactor are always perfectly mixed.
New substrate that comes into the system during the period of influx must be mixed
before it may react with the gates in the system. This allows for separate influx streams
for new gates and for substrates and input molecules. It also allows for the possibility
that new gates never enter or leave the system at all; instead, they could be attached to
beads which cannot escape semi-permeable membranes at the entrances and exits to the
chamber. In either case, only that portion of the total substrate in the chamber that has
been mixed with the solution containing the gates may react. The specifics of how the
efflux and the homogeneity of the system are calculated are discussed in the next two
sections.

3 Microfluidics

In order to simulate an open microfluidic reaction system, we must first analyze the
properties of such a system. First, and most obviously, the size of a microfluidic reac-
tion chamber is dramatically small compared to the size of a more conventional open

Towards Practical Biomolecular Computers 41

reaction chamber, such as a CSTR. The volume of the smallest CSTR that can be readily
assembled is on the order of 50 mL (our previous work used 500 mL), while the volume
of a microfluidic reaction chamber is often on the order of 5 nL—a difference of seven
orders of magnitude. The reaction chamber we chose for our simulation has a volume
of 7.54 nL. This very small volume allows us to have very high concentrations of gate,
substrate, input, and product molecules, while keeping the actual number of molecules
in the system low.

Fluid flow in microfluidic channels and reaction chambers is different from the flow
in a large-scale system because of the very small volumes involved. Namely, the flow
is laminar, i.e., there is no turbulence (the Reynolds number of the flowing liquids is
typically well below 100). This presents a peculiar challenge: two fluids flowing side
by side in a microfluidic channel do not mix except by diffusion, which is a very slow
process, but the fluid already in an open reaction chamber must mix quickly with new
fluid flowing into the chamber, which contains new supplies of substrates, inputs, and
gates, to allow the reaction to continue. This necessitates the use of an active microflu-
idic mixer for our reaction chamber, to speed up the mixing of the fluids greatly over
normal mixing by diffusion.

We have chosen a microfluidic rotary pump to act as our open reaction chamber [6].
This device is an active mixer, mixing the solution within it by pumping it in a circular
loop. The design of the device is shown in Figure 1. It consists of a bottom layer with
fluid channels, and a top layer with pneumatic actuation channels. Both layers are fab-
ricated with multilayer soft lithography [7]. One input channel in the bottom layer is
used for substrate and input influx, while the other channel is used for gate influx—this

substrate & input influx

air channel (upper level)

fluid channel (lower level)

substrate, input, and product efflux

gate influx

Fig. 1. The rotary mixer. The air channels form microvalves wherever they intersect with the fluid
channels.

42 J. Farfel and D. Stefanovic

separation is to keep the substrate and gates from reacting before they have entered the
reaction chamber. The pneumatic actuation channels on the top layer form microvalves
wherever they intersect with the fluid channels on the bottom layer. A valve is closed
when an air channel is pressurized and open when it is not. The actual reaction chamber
is the central loop in the diagram. Actuating the valves around the perimeter of the loop
in a certain sequence peristaltically pumps the fluid inside either clockwise or counter-
clockwise. The frequency of actuation controls the speed at which the fluid rotates.

Continuous-flow mixing is possible with this reaction chamber [6], but it is not feasi-
ble for our purposes for two reasons. The first is that the mixer does not completely mix
objects with relatively low diffusion constants, such as very large molecules and 1 μm
beads, when the flow is continuous. An experiment was performed [6] in which there
was a continuous flow through the mixer of one solution containing dye and another
solution containing beads. The two solutions entered the mixer side by side in the en-
trance channel, flowing laminarly. In the fluid exiting the mixer, the dye was completely
mixed, but only one quarter of the beads had crossed over to the other side of the fluid
channel. Even if sufficient mixing of oligonucleotide molecules of the size we currently
use could be achieved by using a low flow rate or widening and lengthening the mixer
loop, this is not conducive to the possibility of attaching gates to beads, so that they
may be kept always in the chamber by using semi-permeable membranes. The second
problem is that the flow rate required for continuous-flow operation would have to be
unreasonably low, in order to allow the gates involved to produce product molecules
faster than they are removed from the system. Therefore, our model of the rotary mix-
ing chamber uses two discrete, alternating phases: an influx and efflux, or “charging”
phase, during which the valves at the chamber entrance and exit are open and the rotary
pump is not operating, and a mixing phase, during which the valves at the entrance and
exit of the chamber are closed and the pump is operating.

4 Mixing and Diffusion

Through a combination of factors, the rotary pumping in the mixing chamber greatly
increases mixing speed compared to spontaneous diffusion. The time it takes to mix
fluids is not negligible, however, and so we must examine how it works, and model
its operation in our micro-system simulation. The parabolic flow profile present in mi-
crofluidic channels (the fluid in the middle moves much faster than the fluid on the
very edge, which is stationary) causes interface elongation, which, combined with the
shallow channel depth, causes the mixing substances to fold around one another [6].
Where once the two fluids being mixed were completely separated, one in one half of
the chamber and the other in the other half, after sufficient mixing time the width of
the channel holds many alternating sections (“folds”) of the two fluids. The two fluids
still mix via diffusion, but folding them around each other greatly reduces the distance
across which molecules from one fluid must diffuse into the other.

We can think of a substance as being completely homogeneous in the chamber when
enough of that substance has diffused, from the fluid it was in originally, across a char-
acteristic distance l, which is the farthest the substance must penetrate into the second
fluid. Initially, we have l0 = r0, where r0 is half the width of the channel that forms the

Towards Practical Biomolecular Computers 43

mixing chamber. This is because we can assume that initially, when there is perhaps one
fold in the chamber, the two liquids are side by side, with one liquid filling up half of the
channel and the other filling up the other half. In order for a substance to be completely
mixed in this situation, it must diffuse from its liquid all the way across half the width of
the channel, until it reaches the far edge of the second solution at the chamber’s wall. As
the mixer continues running, however, the characteristic distance over which the fluids
must diffuse to mix is reduced proportionally to the number of rotations, because of the
liquids’ folding around each other. Specifically, we have l = l0/kt, where k is a constant
coefficient determined by the total length of the loop and the pumping speed [6].

Knowing how the maximum characteristic diffusion distance changes over time, it is
possible to model the mixing of the system using a diffusion equation. We use an equa-
tion which models diffusion of a substance in a fluid that is extended in all dimensions,
where the substance is initially confined in one dimension in the region −h < x < +h.
The regions from−h to −∞ and from +h to +∞ contain fluid with zero initial concen-
tration of the diffusing substance. The substance is free to diffuse in either direction—
solutions may be found for negative and positive values of x. The equation is:

C(x, t) =
1
2

C0

{
erf

x−h

2
√

Dt
+ erf

x + h

2
√

Dt

}
(5)

where C(x, t) is the concentration of the diffusing substance at location x and time t, C0

is the concentration initially within the region−h < x < +h, D is the diffusion constant
of the diffusing substance, and erf is the standard mathematical error function (erf z =

2√
π
∫ z

0 exp(−η2)dη) [8]. Because the liquids are folding around each other, both h,
which bounds the fluid the substance must diffuse out of, and the farthest distance x =
h+ l to which it must diffuse, are time-dependent. We already know that l = l0/kt, and,
since we shall assume that the two fluids have equal-size folds at any given time t, we
know that h = l.

The only problem with using these equations to model our rotary mixer is that we
do not know what the constant k is in the equation for the length of diffusion l. We do
know, however, from empirical evidence [6], that at a certain pumping speed it takes 30
seconds to completely mix a solution containing dye with a solution containing 1μm
beads. We can use this fact to estimate k by noting the value of k for which the concen-
tration of diffusing beads at the maximum mixing distance l is approximately equal to
the concentration of beads in the middle of the fluid containing them originally (at x = 0)
at time t = 30 s. Conservatively, we choose to focus on the beads for determining when
the fluids are completely mixed because they have a diffusion constant that is much
lower than the dye, and thus they diffuse much more slowly. The diffusion constant of
the beads is D = 2.5 ·10−9 cm2s−1. We find that the concentrations are 97.72% the same
when k = 2. We do not attempt to get the concentrations to be 100% equivalent, because
we realize that the diffusion equation becomes less accurate at the boundary condition
at the end of the mixing process, since it assumes that the fluid extends infinitely and
substance does not diffuse completely during the duration of the experiment. Also, it is
much safer for our purposes to underestimate k than overestimate it, as an underestimate
leads to slower mixing, which has the potential to disrupt the kinetics of our chemical

44 J. Farfel and D. Stefanovic

B

ll
0

x

l0

BA A

Fig. 2. Folds in a section of the mixer channel

system. We shall see, however, that it does not disrupt it enough to cause the logic that
the gates perform to break down.

Using our value of k = 2, and the equations for the characteristic length of diffusion
and the concentration of a diffusing substance at time t and position x, we can simulate
the mixing chamber. There are no beads involved in our experiments; rather, we are
only mixing fluids with gate, substrate, and input molecules. So, in accordance with the
length of our oligonucleotide strands, we use the diffusion constant for a DNA 50-mer,
which is 1.8 ·10−7 cm2s−1, in our mixing simulation. The mixing affects the differential
equations describing the kinetics of the chemical system within the chamber by way of
H(T), which is a function of time (see Section 2). This function returns the fraction
of the reaction chamber which is mixed. As noted earlier, during an experiment the
rotary mixer alternates spending time in a charging phase, where there is an influx of
new substrate, input, and gate molecules and an efflux of homogeneous solution, and
a mixing phase, where the influx and efflux valves are closed and the rotary pump is
turned on.

5 A Flip-Flop

Now that we can model the microfluidic mixing chamber, we must implement interest-
ing logic in it using networks of deoxyribozyme-based logic gates. Since we are using
an open system, we can create circuits which have persistent information that can be
accessed and changed over time. The simplest such digital circuit is the flip-flop. A flip-
flop is a bistable system which represents a single bit of memory. It can be commanded
to set or reset this bit, which causes it to enter its high or low stable state, respectively,
or to simply store, or hold, the bit in memory, in which case it stays in the state that it
was last set or reset to.

We simulated the operation of a biochemical flip-flop within our modeled microflu-
idic mixing chamber. The flip-flop was implemented as a network, shown in Figure 3,
of two deoxyribozyme-based NOT gates connected in a cycle of inhibition [5]. In this
system there is no influx of input molecules, only of substrate molecules. We use

Towards Practical Biomolecular Computers 45

G2

P1

G1
S2

S1

P2

Fig. 3. The flip-flop reaction network

the substrate molecules themselves to control the behavior of the flip-flop. A high
concentration of substrate S2 signifies a set command; a high concentration of substrate
S1 signifies a reset command; and a high concentration of both substrates is used as the
hold command. The first gate, G1, can only cleave substrate S1, and produces product
P1. The product P1, in turn, acts as the input molecule for the second NOT gate, G2,
inhibiting its operation. When there is little or no P1, the second gate G2 is active, and
it cleaves substrate S2 to produce product P2, which acts to inhibit the operation of the
first gate, G1. We measure output from the flip-flop in terms of the concentration of the
cleaved product P2, with high or low concentrations corresponding to a logical one or
zero, respectively. It is apparent that the commands of set, reset, and hold we mentioned
earlier will perform correctly with this inhibition cycle, with certain parameters. If only
substrate S1 is present in the system, only product P1 and no P2 will be produced—this
corresponds to the reset command. If only S2 is in the system, only product P2 will
be produced—this corresponds to the set command. However, if both S1 and S2 are in
the system, we will stay at whatever state we were at previously, because whichever
gate was originally producing more product than the other will inhibit the operation
of the other gate, and will itself become less inhibited as a result, and thus eventually
will become the only operating gate—this corresponds to the hold state. This operation
requires that the concentrations of the gates are equal, for symmetry, and also that the
efflux of the system is not greater than the rate at which the gates can produce product,
so product is not being removed faster than it is being created.

The details of this bistable flip-flop system in a CSTR were examined thoroughly
in previous work [5]. In the case of implementing this gate network in a microfluidic
rotary mixer, we first define Sm

1 (T) and Sm
2 (T) to be the variable molecular influx of

the substrates at time T , with which the flip-flop is controlled. The variable molecular
influx of gate molecules, which enter the reactor in a separate stream from the sub-
strate and input molecules, is given by Gm

1 (T) and Gm
2 (T). The rate of efflux is given

by E(T), and is time-dependent, because the system only has influx and efflux dur-
ing its charging phase, and not during its mixing phase. We define G1(T), G2(T),
P1(T), P2(T), S1(T), and S2(T) to be the concentrations within the reactor at time
T of gate 1, gate 2, product 1, product 2, substrate 1, and substrate 2, respectively.

46 J. Farfel and D. Stefanovic

We can now represent the dynamics of the flip-flop system with a set of six coupled
differential equations:

dG1

dT
=

Gm
1 (T)−E(T)G1(T)

V
(6)

dG2

dT
=

Gm
2 (T)−E(T)G2(T)

V
(7)

dP1

dT
= β1H(T)S1(T)max(0,G1(T)−P2(T))− E(T)P1(T)

V
(8)

dP2

dT
= β2H(T)S2(T)max(0,G2(T)−P1(T))− E(T)P2(T)

V
(9)

dS1

dT
=

Sm
1 (T)
V

−β1H(T)S1(T)max(0,G1(T)−P2(T))− E(T)S1(T)
V

(10)

dS2

dT
=

Sm
2 (T)
V

−β2H(T)S2(T)max(0,G2(T)−P1(T))− E(T)S2(T)
V

(11)

where β1 and β2 are the reaction rate constants, V is the volume of the reactor, and
H(T) is the fraction of the substrate molecules in the chamber which have been mixed
(these are the only ones available to react).

In order to achieve flip-flop behavior with this system, we must find appropriate
values for the system’s efflux, the mixing rate, and the time spent by the system in
its mixing phase and charging phase. We fix our mixer’s high efflux at 0.12 nL s−1.
During the charging phase, the mixer has this high efflux value, while during the mixing
phase, the efflux is 0. The influx of the mixer is the same as the efflux, to maintain
constant volume. We fix the mixing rate based on our empirically determined value for
the constant k, which directly controls the mixing speed by determining the number of
folds the mixer produces in a given amount of time. This value could be significantly
adjusted in reality, as k simply depends on the length of the mixing channel and the
speed of the pumping; our value of k = 2 reflects what we have determined to be one
realistic value. With the efflux and mixing rate fixed, the only variable affecting the
operation of the flip-flop is the time the mixing chamber spends in its charging and
mixing phases. We find empirically that it works very well to spend 15 seconds in the
charging phase and 15 seconds in the mixing phase.

With these parameters, Figure 4 shows the system of equations numerically inte-
grated over a period of 1.2 · 104 s. The concentration of each type of gate molecule
in the chamber was held steady at 130 nM, with the molecular influx of gates always
matching the efflux of gates. We move the system from set, to hold, to reset at 2.5 ·103 s
intervals. The rapid, shallow oscillations in product concentration are due to the alter-
nating, discrete sections of charging and mixing the system experiences.

Figure 5 shows the flip-flop switching between the set and reset commands at its
maximum rate of speed. This rate was determined in our simulation to be about 900
seconds given to each command. This is over 65 times faster than simulations showed
the flip-flop’s maximum switching rate to be in the CSTR. We should also note that the

Towards Practical Biomolecular Computers 47

Fig. 4. The flip-flop moved from set, to hold, to reset commands at 2500 s intervals

Fig. 5. The flip-flop operating at its maximum switching speed

concentration of substrate within the reaction chamber is a factor of 10 higher than in
the CSTR simulation. Because the volume of our mixing chamber is over 7 orders of
magnitude smaller than the volume of the CSTR, however, and our flow rate is 5 orders
of magnitude lower, the total number of moles of substrate used in the microfluidic
simulation is vastly lower than in the CSTR simulation. In fact, the molecular influx of

48 J. Farfel and D. Stefanovic

a high substrate signal is only about 7.29 fmol s−1. Thus, in the span of a 1.2× 104 s
experiment (a little over three hours), less than two tenths of a nanomole of substrate
is used.

6 An Oscillator

If we increase the number of enzymatic NOT gates in our microfluidic reaction cham-
ber to any odd number greater than one, we can create a biochemical oscillator. We
will focus on a network of three NOT gates for simplicity. The three gates are, as
before, connected in a cycle of inhibition. We require three different substrates, one
matching each gate. Each gate cleaves its substrate into a unique product which in-
hibits one other gate. Gate G1 cleaves substrate S1 to produce product P1, which acts
as input to gate G2, inhibiting it, while gate G2 cleaves S2 to produce P2, which in-
hibits gate G3, and finally gate G3 cleaves the substrate S3 to produce P3, which inhibits
gate G1. As before, there will be one input stream which is a mixed solution contain-
ing the three types of substrate molecules, and another stream containing fresh gate
molecules. The output of the system will be a solution containing only substrate and
product molecules.

We define G1(T), G2(T), G3(T), S1(T), S2(T), S3(T), P1(T), P2(T), and P3(T) to
be the concentrations within the reactor at time T of the gates, substrates, and products.
We define Gm

1 (T), Gm
2 (T), Gm

3 (T), Sm
1 (T), Sm

2 (T), and Sm
3 (T) to be the molecular influx

rate of each species which is replenished during the charging phase. We may describe
the system dynamics with the following nine coupled differential equations:

dG1

dT
=

Gm
1 (T)−E(T)G1(T)

V
(12)

dG2

dT
=

Gm
2 (T)−E(T)G2(T)

V
(13)

dG3

dT
=

Gm
3 (T)−E(T)G3(T)

V
(14)

dP1

dT
= β1H(T)S1(T)max(0,G1(T)−P3(T))− E(T)P1(T)

V
(15)

dP2

dT
= β2H(T)S2(T)max(0,G2(T)−P1(T))− E(T)P2(T)

V
(16)

dP3

dT
= β3H(T)S3(T)max(0,G3(T)−P2(T))− E(T)P3(T)

V
(17)

dS1

dT
=

Sm
1 (T)
V

−β1H(T)S1(T)max(0,G1(T)−P3(T))− E(T)S1(T)
V

(18)

dS2

dT
=

Sm
2 (T)
V

−β2H(T)S2(T)max(0,G2(T)−P1(T))− E(T)S2(T)
V

(19)

Towards Practical Biomolecular Computers 49

dS3

dT
=

Sm
3 (T)
V

−β3H(T)S3(T)max(0,G3(T)−P2(T))− E(T)S3(T)
V

(20)

where β1, β2, and β3 are the reaction rate constants, V is the volume of the reactor,
E(T) is the time-dependent volumetric efflux, and H(T) is the fraction of the reaction
chamber which is homogeneous at time T .

The conditions under which the oscillator will oscillate in a CSTR have been exam-
ined previously [5]. To simplify things, this examination assumed that the concentration
of substrate molecules in the chamber was constant, because, although these concen-
trations do oscillate, they are always much higher than the oscillating concentrations
of the products. Using this assumption, linear approximations can be made to explic-
itly solve the differential equations for the oscillating product concentrations. These
approximations give us a way to specify the center and period of the oscillations by
setting an appropriate influx of substrate molecules and an appropriate concentration
of gates. Our circumstances differ from the CSTR in that the efflux alternates between
off and on, and the system is almost never completely homogeneous. We recognize that
the system is never less than 76% homogeneous at any given time, however, and so it
is reasonable to assume constant, complete homogeneity, and constant efflux, in order
to use the approximation from our previous work as a starting point for specifying the
period and center of the oscillator.

Fig. 6. The oscillator system operating with a period of 480 s and a center of 1.5 μM

50 J. Farfel and D. Stefanovic

We set the efflux rate for the charging cycle equal to the rate we used for the flip-
flop, 0.12 nL s−1. We use the same period (15 seconds in the charging phase and 15
seconds in the mixing phase) which worked well for the flip-flop. Based on the efflux
rate, we use the linear approximations derived from the CSTR simulation research to
calculate an estimate for the gate concentration and substrate influx needed for oscil-
lations of period 250 seconds, centered at 1 μM. We find we should keep each of the
gate concentrations steady at 1500 nM, while the molecular influx for each substrate
should be set to 7.29× 10−6 nM s−1. Figure 6 shows the results of integration over
a 5000 second period with these initial values. We can see that the actual period is
480 seconds, and the actual center is close to 1.5 μM. The linear approximations were
off by about 20% in the CSTR simulation; in our simulation, the period estimation is
just over half the actual period, and the center estimation is off by about 50%. There
are two reasons for this. One is the fact that we assumed our efflux rate and reactor
homogeneity to be constant in order to use the same approximations that worked in
the CSTR setting. Another, more instrumental reason stems from the fact that reac-
tions happen much more quickly in our microfluidic system, since we have a much
higher concentration of reagents. This causes the nonlinear terms that are not taken
into account in the linear approximations to become much more prominent. More anal-
ysis is required to find a more accurate way to specify the period and center of our
oscillations.

7 Related Work

Microfluidics has previously been proposed as a laboratory implementation technique
for automating DNA-based combinatorial computation algorithms [9,10,11]. McCaskill
and van Noort have solved the maximum clique graph problem for a 6-node graph in the
lab using microfluidic networks and DNA [12,13,14]. Their approach uses DNA not as
an enzyme but as an easily selectable carrier of information (using Watson-Crick base
pair matching). The computational network which solves the maximum clique prob-
lem requires a large number of micro-channels, proportional to the number of gates
in the system, which grows as the number of graph nodes squared. Our approach, in
contrast, may allow one to implement complex logic, performed with multiple types
of gates, inputs, and products, in a single reaction chamber, in addition to allowing the
possibility of linking several chambers together. Recently, van Noort and McCaskill
have discussed systematic flow pattern solutions in support of microfluidic network de-
sign [15]; it remains to be seen if these techniques can be extended to handle designs
such as ours.

Other work shows that it is even possible to use microfluidics for computational
purposes as a purely mechanical substrate, i.e., without chemical reactions [16, 17, 18].
That fluidics can be used thus has been known for a long time [19], but microfluidics
for the first time offers the potential for building relatively complex devices [20,21,22].

Microfluidic mixing is a difficult problem. While we have opted for the rotary mix-
ing chamber design as one for which modeling the kinetics of mixing is within reach,
other designs have been proposed; droplet-based mixing [23, 24, 25] is especially at-
tractive [26]. Analysis of mixing remains a challenging problem [27, 28]. Related to

Towards Practical Biomolecular Computers 51

mixing, or achieving uniform concentration, is the problem of achieving particular spa-
tiotemporally nonuniform concentrations [29, 30, 31].

Numerous oscillatory chemical and biochemical processes have been reported in the
past decades, starting with the famous Belousov-Zhabotinsky reaction [32, 33, 34, 35],
via studies of hypothetical systems of coupled chemical reactions (some even intended
as computational devices) [36, 37, 38, 39, 40, 41, 42, 43, 44], to the recent remarkable
demonstration by Elowitz and Leibler of a gene transcription oscillatory network [45].

8 Conclusions

Networks of deoxyribozyme-based logic gates can function correctly in a microfluidic
environment. This is the first feasible setting in which open-reactor experiments using
these gates may be conducted in the laboratory. The immediate and obvious advan-
tage of this approach, compared to using a larger open reactor, is a massive savings of
cost and time. Our simulations of a flip-flop and an oscillator in such a setting show
that useful microfluidic experiments could be conducted in mere hours, rather than the
days or weeks it would take to see results in a large, continuous-flow stirred tank re-
actor. Perhaps most significantly, the extremely small volume of a microfluidic reactor
means that a three-hour experiment could cost less than $50 in reagents, even though
deoxyribozyme-based gates and the oligonucleotide substrates and inputs which they
react with can cost as much as $40 per nanomole. The materials cost for the flip-flop
experiment can thus be around $1,000; the cost of microfluidic chip fabrication is esti-
mated at $20,000 [S. Han, personal communication], assuming an existing facility.

Our microfluidic reaction chambers are also very conducive to being networked to-
gether, with control logic outside the system operating valves on the channels connect-
ing them. We will investigate the possibility of attaching gate molecules to beads, and
keeping them within a chamber by placing semi-permeable membranes at the chamber
entrances and exits. With such a system, we could keep discrete sections of logic sepa-
rate from each other when desired, and redirect outputs and inputs selectively. This may
be especially useful if certain types of gates whose logic we wish to connect actually
conflict undesirably with each other if they are placed in the same chamber (by partially
binding to each others’ input or substrate molecules, for example). We believe that using
microfluidic rotary mixing chambers to implement complex logic with deoxyribozyme-
based gates in actual laboratory experiments is the first step toward completely under-
standing their potential, and eventually even deploying them in situations as complex
as living cells.

Acknowledgments

We are grateful to Plamen Atanassov, Sang Han, Elebeoba May, Sergei Rudchenko, and
Milan Stojanovic for helpful advice, to Clint Morgan for his simulation code, and to the
anonymous reviewers for their detailed comments, and especially for alerting us to the
work of van Noort. This material is based upon work supported by the National Sci-
ence Foundation (grants CCR-0219587, CCR-0085792, EIA-0218262, EIA-0238027,

52 J. Farfel and D. Stefanovic

and EIA-0324845), Sandia National Laboratories, Microsoft Research, and Hewlett-
Packard (gift 88425.1). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the sponsors.

References

1. Stojanovic, M.N., Mitchell, T.E., Stefanovic, D.: Deoxyribozyme-based logic gates. Journal
of the American Chemical Society 124 (2002) 3555–3561

2. Stojanovic, M.N., Stefanovic, D.: Deoxyribozyme-based half adder. Journal of the American
Chemical Society 125 (2003) 6673–6676

3. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature
Biotechnology 21 (2003) 1069–1074

4. Stojanovic, M.N., Semova, S., Kolpashchikov, D., int Morgan, C., Stefanovic, D.:
Deoxyribozyme-based ligase logic gates and their initial circuits. Journal of the American
Chemical Society 127 (2005) 6914–6915

5. Morgan, C., Stefanovic, D., Moore, C., Stojanovic, M.N.: Building the components for a
biomolecular computer. In: DNA Computing: 10th International Meeting on DNA-Based
Computers. (2004)

6. Chou, H.P., Unger, M.A., Quake, S.R.: A microfabricated rotary pump. Biomedical Mi-
crodevices 3 (2001) 323–330

7. Unger, M.A., Chou, H.P., Thorsen, T., Scherer, A., Quake, S.R.: Monolithic microfabricated
valves and pumps by multilayer soft lithography. Science 298 (2000) 580–584

8. Crank, J.: The Mathematics of Diffusion. Second edn. Oxford University Press (1975)
9. Livstone, M.S., Landweber, L.F.: Mathematical considerations in the design of microreactor-

based DNA computers. In: DNA Computing: 9th International Meeting on DNA-Based
Computers. Volume 2943 of Lecture Notes in Computer Science., Madison, Wisconsin,
Springer-Verlag (2003) 180–189

10. Gehani, A., Reif, J.: Micro-flow bio-molecular computation. BioSystems 52 (1999)
11. Ledesma, L., Manrique, D., Rodrı́guez-Patón, A., Silva, A.: A tissue P system and a DNA

microfluidic device for solving the shortest common superstring problem. (2004)
12. van Noort, D., Gast, F.U., McCaskill, J.S.: DNA computing in microreactors. In: DNA

Computing: 7th International Meeting on DNA-Based Computers. (2001)
13. Wagler, P., van Noort, D., McCaskill, J.S.: Dna computing in microreactors. Proceedings of

SPIE 4590 (2001) 6–13
14. van Noort, D., Wagler, P., McCaskill, J.S.: Hybrid poly(dimethylsoloxane)-silicon microre-

actors used for molecular computing. Smart Materials and Structures 11 (2004) 756–760
15. van Noort, D., McCaskill, J.S.: Flows in micro fluidic networks: From theory to experiment.

Natural Computing 3 (2004) 395–410
16. Chiu, D.T., Pezzoli, E., Wu, H., Stroock, A.D., Whitesides, G.M.: Using three-dimensional

microfluidic networks for solving computationally hard problems. Proceedings of the Na-
tional Academy of Sciences of the USA 98 (2001) 2961–2966

17. Fuerstman, M.J., Deschatelets, P., Kane, R., Schwartz, A., Kenis, P.J.A., Deutsch, J.M.,
Whitesides, G.M.: Solving mazes using microfluidic networks. Langmuir 19 (2003)
4714–4722

18. Vestad, T., Marr, D.W.M., Munakata, T.: Flow resistance for microfluidic logic operations.
Applied Physics Letters 84 (2004) 5074–5075

19. Foster, K., Parker, G.A., eds.: Fluidics: components and circuits. Wiley-Interscience, London
and New York (1970)

Towards Practical Biomolecular Computers 53

20. Thorsen, T., Maerkl, S.J., Quake, S.R.: Microfluidic large-scale integration. Science 298
(2002) 580–584

21. Groisman, A., Enzelberger, M., Quake, S.R.: Microfluidic memory and control devices.
Science 300 (2003) 955–958

22. Hong, J.W., Quake, S.R.: Integrated nanoliter systems. Nature Biotechnology 21 (2003)
1179–1183

23. Paik, P., Pamula, V.K., Fair, R.B.: Rapid droplet mixers for digital microfluidic systems. Lab
on a Chip 3 (2003) 253–259

24. Tice, J.D., Song, H., Lyon, A.D., Ismagilov, R.F.: Formation of droplets and mixing in
multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir
19 (2003) 9127–9133

25. Song, H., Tice, J.D., Ismagilov, R.F.: A microfluidic system for controlling reaction networks
in time. Angewandte Chemie International Edition 42 (2003) 768–772

26. Gerdts, C.J., Sharoyan, D.E., Ismagilov, R.F.: A synthetic reaction network: Chemical ampli-
fication using nonequilibrium autocatalytic reactions coupled in time. Journal of the Ameri-
can Chemical Society 126 (2004) 6327–6331

27. Wiggins, S.: Integrated nanoliter systems. Nature Biotechnology 21 (2003) 1179–1183
28. Solomon, T.H., Mezić, I.: Uniform resonant chaotic mixing in fluid flows. Nature 425 (2003)

376–380
29. Jeon, N.L., Dertinger, S.K.W., Chiu, D.T., Choi, I.S., Stroock, A.D., Whitesides, G.M.: Gen-

eration of solution and surface gradients using microfluidic systems. Langmuir 16 (2000)
8311–8316

30. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of gradients having
complex shapes using microfluidic networks. Analytical Chemistry 73 (2001) 1240–1246

31. Jeon, N.L., Bakaran, H., Dertinger, S.K.W., Whitesides, G.M., Van De Water, L., Toner,
M.: Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a
microfabricated device. Nature Biotechnology 20 (2002) 826–830

32. Field, R.J., Körös, E., Noyes, R.: Oscillations in chemical systems. II. Thorough analysis of
temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American
Chemical Society 94 (1972) 8649–8664

33. Noyes, R., Field, R.J., Körös, E.: Oscillations in chemical systems. I. Detailed mechanism
in a system showing temporal oscillations. Journal of the American Chemical Society 94
(1972) 1394–1395

34. Tyson, J.J.: The Belousov-Zhabotinskii Reaction. Volume 10 of Lecture Notes in Biomathe-
matics. Springer-Verlag, Berlin (1976)

35. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford
University Press, New York (1998)

36. Hjelmfelt, A., Ross, J.: Chemical implementation and thermodynamics of collective neural
networks. Proceedings of the National Academy of Sciences of the USA 89 (1992) 388–391

37. Hjelmfelt, A., Ross, J.: Pattern recognition, chaos, and multiplicity in neural networks of
excitable systems. Proceedings of the National Academy of Sciences of the USA 91 (1994)
63–67

38. Hjelmfelt, A., Schneider, F.W., Ross, J.: Pattern recognition in coupled chemical kinetic
systems. Science 260 (1993) 335–337

39. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and
Turing machines. Proceedings of the National Academy of Sciences of the USA 88 (1991)
10983–10987

40. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of finite-state machines.
Proceedings of the National Academy of Sciences of the USA 89 (1992) 383–387

41. Laplante, J.P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition
by chemical kinetics. The Journal of Physical Chemistry 99 (1995) 10063–10065

54 J. Farfel and D. Stefanovic

42. Rössler, O.E.: A principle for chemical multivibration. Journal of Theoretical Biology 36
(1972) 413–417

43. Rössler, O.E., Seelig, F.F.: A Rashevsky-Turing system as a two-cellular flip-flop. Zeitschrift
für Naturforschung 27 b (1972) 1444–1448

44. Seelig, F.F., Rössler, O.E.: Model of a chemical reaction flip-flop with one unique switching
input. Zeitschrift für Naturforschung 27 b (1972) 1441–1444

45. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators.
Nature 403 (2000) 335–338

DNA Recombination by XPCR

Giuditta Franco1, Vincenzo Manca1, Cinzia Giagulli2, and Carlo Laudanna2

1 Department of Computer Science, University of Verona, Italy
franco@sci.univr.it, vincenzo.manca@univr.it

2 Section of General Pathology, Department of Pathology, University of Verona, Italy
cinzia.giagulli@univr.it, carlo.laudanna@univr.it

Abstract. The first step of the Adleman-Lipton extract model in DNA
computing is the combinatorial generation of libraries. In this paper a
new method is proposed for generating a initial pool, it is a quaternary
recombination of strings via application of null context splicing rules.
Its implementation, based on a kind of PCR called XPCR, results to be
convenient with respect to the standard methods, in terms of efficiency,
speed and feasibility. The generation algorithm we propose was tested
by a lab experiment here described, since the presence of few sequences
is enough for checking the completeness of the library. The simple tech-
nology of this approach is interesting in and of itself, and it can have
many useful applications in biological contexts.

Keywords: SAT, PCR, XPCR, generation of DNA initial pool.

1 Introduction

DNA Computing is an emerging area where information is stored in biopolymers,
and enzymes manipulate them in a massively parallel way according to strategies
that can produce computationally universal operations [7, 1, 9]. The research in
this field has already taken different pathways of theoretical and experimental
interest, also developing into new sub-disciplines of science and engineering, for
example nanotechnology and material design.

One of the ambition of DNA computation was solving NP complete prob-
lems, and since the exponential amount of DNA, typical of the Adleman-Lipton
generate-and-search model, became a limit to the scale up of the procedures for
problems of realistic size, then alternative approaches have been explored re-
cently. For example, one of them is focused on building directly the solutions of
the problem by means of 3D graph self-assembly [10], while another one evolves
approximate solutions of instances of the NP-complete problems by means of
the evolution of a population of finite state machines [13].

Nevertheless, the production of combinatorial libraries as the solution space
of instances of SAT problem [9, 3, 12] is a typical recombination which is funda-
mental, not only to DNA computation, but to various types of in vitro selection
experiments, for selecting new DNA or RNA enzymes (such as ribozymes), or
for performing crossover of homologous genes [14] and mutagenesis.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 55–66, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 G. Franco et al.

In [4] a special type of PCR called XPCR was introduced to implement a
procedure for extracting, from an heterogeneous pool, all the strands containing a
given substrand. The XPCR technique was tested in different situations and was
shown working as expected [4]. Here we focus on the combinatorial generation
of libraries, and propose an economic and efficient XPCR-based procedure for
generating DNA solution spaces; a lab experiment is reported that confirm the
correctness and the completeness of this method.

The classic two methods for initial pool generation were introduced in 1994.
The hybridization-ligation method was introduced by Adleman in [1] for solving a
Hamiltonian path problem; it links oligonucleotides hybridized by complementar-
ity and ligase reaction. The other method, called parallel overlap assembly (POA)
was introduced by Stemmer [14] to perform crossover between homologous se-
quences of genes. Its implementation was based on hybridization/polymerase
extension, and it was applied successfully by Kaplan et al. in DNA computing
for solving maximal clique problem [11]. The second method demands less time
and is a better choice in terms of generation speed and material consumption
than the first one [8].

More recently, mix-and-split method was introduced [6] to generate an initial
RNA pool for the knight problem, that is a combinatorial library of binary
numbers. It was used by Braich et al. in [2] to generate an initial pool for a
20-variable 3-SAT problem, the biggest instance solved in lab. It combines a
chemical synthesis and an enzymatic extension method, in fact, two half libraries
are combined by primer extension while each of them was synthesized chemically
on two columns by repetitive mixing and splitting steps. Therefore this method
takes the advantages of an extension method but performs a big part of the work
by chemical synthesis, which can become quite expensive.

Finally, a modified version of PNA-mediated Whiplash PCR (PWPCR) was
presented in [13], with an in vitro algorithm to evolve approximate solutions of
Hamiltonian Path problem. The PWPCR procedure is basically implemented
by the recursive polymerase extension of a mixture of DNA hairpins, and here
a similar approach is pursued with an easier and cheaper technology.

Let us consider a solution space of dimension n, that is, given by all possible
sequences of type α1α2 · · ·αn, where αi can be, for each i, one of two different
strings Xi or Yi.

Our method starts from four types of strands and, by using only polymerase
extension, generates the whole DNA solution space, where all types of possible
sequences of the pool are present. Therefore, with respect to the other methods it
is very easy and cheap: it does not use PNA molecules and no chemical synthesis
is required apart that one for the initial strands.

In next sections we give, with examples, the intuition behind our XPCR
generation algorithm, and recall the XPRC procedure (for more details see [4])
which XPCR generation is based on. Then, the algorithm is described, and its
implementation in laboratory is presented with an experiment which confirms
the validity of the generation procedure. In a further paper [5] the mathematical
correctness and completeness of the algorithm is proved in a formal setting. In

DNA Recombination by XPCR 57

particular, in the case of solution spaces of dimension n where each element of
the sequence can be of k different types, the following general proposition holds.

Proposition 1. Starting from four sequences and for any value of n, by XPCR
generation algorithm all 2n combinations are generated in 2(n− 2) steps.

Moreover in [5] we prove the existence of some special types of sequences, such
that if they are present in the pool, then the pool contains all the solutions of
the n-dimensional DNA solution space.

Our approach takes all the advantages and the efficiency of an enzymatic
elongation method. Moreover, with respect to the POA, in any step of recombi-
nation, the unwanted side products are eliminated by the electrophoresis during
the XPCR procedure, and the completeness of the library can be tested very
easily by checking the presence of two special strands. The existence of such
strands [5] is a consequence of the null context splicing theory [7], and it holds
because the procedure is completely based on splicing rules.

Finally, the recombination of strings modeled by a null context splicing rule
is performed in nature by few enzymes, thus it can be done for a very limited
number of restriction sites, while the XPCR scales up this kind of recombination
to any site.

2 Quaternary Recombination

The main intuition underlying the quaternary recombination was inspired by [2],
where the following sequences were studied to avoid mismatch phenomena. We
start from the sequences I1, I2, I3, I4, each constituted by n different strings
that can occur in two distinct forms.

For the sake of simplicity we describe this method for a solution space of di-
mension 6. From a mathematical point of view, the method could be generalized
to any dimension, and to cases where the variables can assume k values with
k > 2. Consider the sequences:

1. Positive: I1 = X1X2X3X4X5X6
2. Negative: I2 = Y1Y2Y3Y4Y5Y6
3. Positive-Negative: I3 = X1Y2X3Y4X5Y6
4. Negative-Positive: I4 = Y1X2Y3X4Y5X6

Starting from these four initial sequences, every solution α1α2α3α4α5α6 of
the solution space is generated by means of null context splicing rules [7], that
are of type

rγ : φ γ ψ, δ γ η −→ φ γ η, δ γ ψ

where φ, γ, ψ, δ, η are strings on the considered alphabet.
In fact, any string α1α2α3α4α5α6 can be seen as the concatenation of sub-

strings of I1, I2, I3, I4 that suitable splicing rules cut and recombine along com-
mon substrings. For example, the sequence X1X2Y3X4Y5Y6, can be obtained
starting from the initial ones in the following way:

58 G. Franco et al.

1. rX2 : I1, I4 −→ X1X2Y3X4Y5X6, Y1X2X3X4X5X6
2. rY5 : I2, X1X2Y3X4Y5X6 −→ Y1Y2Y3Y4Y5X6, X1X2Y3X4Y5Y6

The generation of any solution can be associated to a generation sequence
of rules, that is, a sequence on the alphabet R = {rX2 , rX3 , rX4 , rX5 , rY2 , rY3 ,
rY4 , rY5}. For example, the generation sequence of the string X1X2Y3X4Y5Y6
considered above is rX2rY5 . We observe that, in this context, the order of appli-
cation of the rules is not relevant. For example, the same string X1X2Y3X4Y5Y6
can be also obtained by permuting the application order of the rules (from the
same initial strings):

1. rY5 : I4, I2 −→ Y1X2Y3X4Y5Y6, Y1Y2Y3Y4Y5X6
2. rX2 : I1, Y1X2Y3X4Y5Y6 −→ X1X2Y3X4Y5Y6, Y1X2X3X4X5X6

The following Recombination Canonic Procedure gives a general insight of the
validity of the method outlined above.

– input: a sequence α1α2α3 . . . αn

– put i = 1 and H1 equal to the initial sequence (among the four ones) where
the subsequence α1α2 occurs

– for i = 1, . . . , n− 2, do
begin
• put Li equal to the initial sequence where αi+1αi+2 occurs
• if Hi = Li then put Hi+1 = Hi

• else put Hi+1 equal to the first product of the null context splicing rαi+1

applied to strings Hi, Li.
end

– output: the sequence of null context splicing rules that were applied during
for instruction.

The sequence of rules given in output by the previous algorithm is a genera-
tion sequence for the input string. In fact, if we apply these rules to the initial
pool, then we get a set of strings which surely contains the input string. In the
general case of n variables, a generation sequence is at most n−2 long, since there
can be only one occurrence of rules rαi for each i belonging to {2, 3, . . . , n− 1}.

To implement null context splicing rules rγ we use a kind of PCR called
XPCRγ , which was introduced as tool of extraction in [4], and which we recall
briefly in the next section.

2.1 XPCR Procedure

We suppose to have an heterogeneous pool of DNA double strands having the
same length and sharing a common prefix α and a common suffix β. Given a
specified string γ, by means of XPCRγ , we can recombine all the strings of the
pool that contain γ as substring.

The XPCRγ procedure is described by the following steps. We indicate by
PCR(ξ, η) a standard PCR performed by forward primer ξ and backward primer
η, where η is the reversed and complemented sequence of η.

DNA Recombination by XPCR 59

– input a pool P of strings having α as prefix and β as suffix
– split P into P1 and P2 (with the same approximate size)
– apply PCR(α, γ) to P1 and PCR(γ, β) to P2 (cutting step, see Figure 1)
– perform electrophoresis on P1 and on P2 to select γ-prefixed or γ-suffixed

strings, that corresponds to eliminate the sequences of the initial length.
– mix the two pools resulting from the previous step in a new pool P
– apply PCR(α, β) to P (recombination step, see Figure 2)
– output the pool resulting from the previous step.

PCR

α γ β α

α γ

_ _ _ _

_

α γ β

γ

γ

α γ β

_ _ _ _

_

α γ β

PCR

γ

β

γ β

β

Fig. 1. Cutting step of XPCRγ

In the recombination step, left parts α · · · γ and right parts γ · · ·β of the
sequences of the pool having γ as subsequence are recombined in all possible
ways, regardless to the specificity of the sequences between α and γ, or γ and β.
Therefore, not only the whole sequences containing γ are restored but also new
sequences are generated by recombination (see Figure 2).

Note that, if the hybridization between the two strands α · · · γ and γ · · ·β
happens in a different location (other than at point γ), the ‘wrong’ product has
not the length of the sequences in the initial pool, so it is eliminated by final
electrophoresis [4].

However, in the XPCRs performed by the XPCR Recombination Algorithm
described in the next section, the interactions of hybridization/polymerase exten-
sion between the strands α · · · γ and γ · · ·β can happen only along the codeword
γ, because by construction they do not have more complementary regions (in
fact, if γ represents the i− th variable, than the strand α · · · γ contains the code-
words of the first i variables, and γ · · ·β contains the complementary codewords
of the last n− i + 1 variables).

Procedure XPCRγ implements a version of null context splicing rule with
common substring γ, where strings are assumed to share a common prefix and a
common suffix (both φ and δ start with a certain prefix, and both ψ and η end
with a certain suffix) and strings obtained after their recombination are added
to the strings available before it

rγ : φ γ ψ, δ γ η −→ φ γ η, δ γ ψ, φ γ ψ, δ γ η.

60 G. Franco et al.

α γ γ βα

_
β

α

α γ γ β

α γ β

α γ

_ _ _ _

_

_ _ _ _

_ _ _

_ _

α γ γ β

β

α γ γ β

β

γ β

α γ

Melting + hybridization

Polymerase action

Fig. 2. Recombination step of XPCRγ

2.2 XPCR Recombination Algorithm

We start with a pool having only the four initial sequences I1, I2, I3, I4 that
are extended by a common prefix α and a common suffix β (for performing the
XPCR procedure).

– Let P1 and P2 be two copies of the pool

{α · · · I1 · · ·β, α · · · I2 · · ·β, α · · · I3 · · ·β, α · · · I4 · · ·β}
– for i = 2, 3, 4, 5 do

begin
• perform XPCRXi on P1 and XPCRYi on P2
• mix the two pools obtained in the previous step in a unique pool P
• split P randomly in two new pools P1 and P2 (with the same approxi-

mate size)
end

If all steps are performed correctly we obtain a pool where all 26 combinations
α1α2 · · ·α6 with αi ∈ {Xi, Yi} are present.

It can be proved that, for any dimension n of the solution space, two sequences
exist such that their simultaneous presence in the pool guarantees that all the
possible recombinations happened. The proof of this fact is based essentially on
the following lemma (see [5] for the formal details).

Let us call i-trio-factor any substring αi−1αiαi+1 where exactly two consecu-
tive variables are Xs or Ys, and consider the corresponding null context splicing
rule rαi , then it holds that

Lemma 1. For any i = 2, . . . , n− 1 the rule rαi has been applied in the pool iff
in the pool there is a string including a corresponding i-trio-factor.

DNA Recombination by XPCR 61

A set W of strings is a recombination witness if the strings of W include all
the possible i-trio-factors. In our case, we have chosen the following strings that,
according to the lemma, are clearly a set of recombination witnesses.

1. XXYY alternating: W1 = X1X2 Y3Y4 X5X6
2. YYXX alternating: W2 = Y1Y2 X3X4 Y5Y6

In order to verify that all the expected recombinations happened, in the ex-
periment described in the next section, it was enough to check that in the final
pool the sequences W1 and W2 were present.

3 Experiment

The following experiment showed that, given any SAT problem with 6 variables,
the solution pool with sequences encoding all 64 assignments can be generated by
starting from 4 specific sequences and by using only XPCR and electrophoresis.
The success of this experiment is meaningful because it can be scaled up easily to
any number n of variables: starting from 4 specific sequences, all 2n combinations
can be generated by XPCR and electrophoresis in a linear number of biosteps.

The experiment started on an initial pool containing the sequences 150bp
long1 (in the following all the sequences are written with respect to the usual
5′ − 3′ orientation):

S1 = α Wa X1 X2 X3 X4 X5 X6 Za β

S2 = α Wb Y1 Y2 Y3 Y4 Y5 Y6 Zb β

S3 = α Wa X1 Y2 X3 Y4 X5 Y6 Zb β

S4 = α Wb Y1 X2 Y3 X4 Y5 X6 Za β

where α and β, necessary to perform XPCR procedure, were 20b long2, for
i = 1, 2, . . . , 6, Xi and Yi, representing the boolean values of the variables of the
problem, were 15b long3, and the elongating sequences Wj and Zj for j = a, b
were 10b long4. The steps of the experiment follow.
1

S1 = GCAGTCGAAGCTGTTGATGC CAAGAGATGG TCGTCTGCTAGCATG TCACGC-
CACGGAACG GTGAGCGCGAGTGTG ATATGCAATGATCTG ATCCGTCCCGATAAG
CAAGTCAGATTGACC GCACGTAACT AGACGCTGCCGTAGTCGACG
S2 = GCAGTCGAAGCTGTTGATGC CAAGATATGG CCCGATTAGTACAGC TACT-
GATAAGTTCCG TCGCTCCGACACCTA TCAGCCGGCTTGCAC AACTGATACGACTCG
TATTGTCACGCATCG GTACGTAACT AGACGCTGCCGTAGTCGACG
S3 = GCAGTCGAAGCTGTTGATGC CAAGAGATGG TCGTCTGCTAGCATG TACT-
GATAAGTTCCG GTGAGCGCGAGTGTG TCAGCCGGCTTGCAC ATCCGTCCCGATAAG
TATTGTCACGCATCG GTACGTAACT AGACGCTGCCGTAGTCGACG
S4 = GCAGTCGAAGCTGTTGATGC CAAGATATGG CCCGATTAGTACAGC TCACGC-
CACGGAACG TCGCTCCGACACCTA ATATGCAATGATCTG AACTGATACGACTCG
CAAGTCAGATTGACC GCACGTAACT AGACGCTGCCGTAGTCGACG

2
α = GCAGTCGAAGCTGTTGATGC, β = AGACGCTGCCGTAGTCGACG

3
X1 = TCGTCTGCTAGCATG X2 = TCACGCCACGGAACG X3 = GTGAGCGCGAGTGTG
X4 = ATATGCAATGATCTG, X5 = ATCCGTCCCGATAAG, X6 = CAAGTCAGATTGACC.
Y1 = CCCGATTAGTACAGC, Y2 = TACTGATAAGTTCCG, Y3 = TCGCTCCGACACCTA, Y4
= TCAGCCGGCTTGCAC, Y5 = AACTGATACGACTCG, Y6 = TATTGTCACGCATCG

4
Wa = CAAGAGATGG, Wb = CAAGATATGG, Za = GCACGTAACT, Zb =GTACGTAACT

62 G. Franco et al.

1. The initial pool was split randomly in four test tubes (a) (b) (c) (d), and
the following PCRs were performed respectively
(a) PCR(α, X2)
(b) PCR(X2, β)
(c) PCR(α, Y2)
(d) PCR(Y2, β)
so obtaining amplification of four types of sequences α . . . X2, X2 . . . β,
α . . . Y2, and Y2 . . . β, that are 60, 105, 60, 105 long respectively (see lanes 2,
3, 4, 5 of Figure 3).

2. Two PCR(α, β) were performed in parallel, one after having put together
the product of (a) and (b), and the other one after having put together the
product of (c) and (d) (sequences 150 long were amplified, see lanes 6 and 7
of Figure 3), then the two pools were mixed.

3. For i = 3, 4, 5 the analogues of the previous steps (1) and (2) were performed
by replacing index 2 with i = 3, 4, 5, and by referring to Figure 4, Top left
for i = 3, Top right for i = 4, and Bottom for i = 5 respectively.

4. An electrophoresis was performed to select the sequences 150 long among
longer ones (generated by unspecific amplification).

Fig. 3. Electrophoresis results. Lane 1: molecular size marker ladder (25bp). Lane
2: amplification of α · · · X2 strands (60bp) and lane 3: amplification of X2 · · · β strands
(105bp), both PCRs performed at 52◦C. Lane 4: amplification of α · · · Y2 strands (60bp)
and lane 5: amplification of Y2 · · · β strands (105bp), both PCRs performed at 45◦C.
Lane 6: cross pairing amplification of α · · · X2 and X2 · · · β (150bp) and lane 7: cross
pairing amplification of α · · · Y2 and Y2 · · · β (150bp), both XPCRs performed at 63◦C.

Remark. By the electrophoresis results one can note that the sequences 150 long
present in the pool were amplified (in linear or exponential manner) during each
step. Although this phenomenon did not disturb the correctness of the computa-
tion, it caused noise and useless occupation of space in a test tube by increasing
the unspecific matter, as one can see clearly in the figure 4. An improved exper-
iment could be performed very easily by inserting intermediate electrophoresis
steps to clean the signal from the noise caused by these amplifications.

DNA Recombination by XPCR 63

Fig. 4. Electrophoresis results. Lane 1: molecular size marker ladder (25bp). Top
left. Lane 2: amplification of α · · · X3 strands (75bp), lane 3: amplification of X3 · · · β
strands (90bp), lane 4: amplification of α · · · Y3 strands (75bp), lane 5: amplification
of Y3 · · · β strands (90bp), all PCRs performed at 52◦C. Lane 6: cross pairing am-
plification of α · · · X3 and X3 · · · β (150bp) and lane 7: cross pairing amplification of
α · · · Y3 and Y3 · · · β (150bp), both XPCRs performed at 63◦C. Top right. Lane 2: am-
plification of α · · · X4 strands (90bp), lane 3: amplification of X4 · · · β strands (75bp),
lane 4: amplification of α · · · Y4 strands (90bp), lane 5: amplification of Y4 · · · β strands
(75bp), all PCRs performed at 42◦C. Lane 6: cross pairing amplification of α · · · X4 and
X4 · · · β (150bp) and lane 7: cross pairing amplification of α · · · Y4 and Y4 · · · β (150bp),
both XPCRs performed at 63◦C. Bottom. Lane 2: amplification of α · · · X5 strands
(105bp), lane 3: amplification of X5 · · · β strands (60bp), lane 4: amplification of α · · · Y5

strands (105bp), lane 5: amplification of Y5 · · · β strands (60bp), all PCRs performed
at 45◦C. Lane 6: cross pairing amplification of α · · · X5 and X5 · · · β (150bp) and lane
7: cross pairing amplification of α · · · Y5 and Y5 · · · β (150bp), both XPCRs performed
at 63◦C.

The success of the experiment was tested by the presence of the recombination
witnesses X1X2 Y3Y4 X5X6 and Y1Y2 X3X4 Y5Y6 in the final pool, guaranteed
by the amplification of the following PCRs5.

We indicated with Z1Z2Z3Z4Z5Z6 a generic recombination witness, and for
each of them the following procedure was executed in lab on a distinct copy of
the pool P resulting from the experiment. That is, firstly the pool was split in
two pools P1 and P2 with the same approximate size, and then on each of them
the presence of a recombination witness Z1Z2Z3Z4Z5Z6 was checked by means
the following steps:

1. perform PCR(Z1, Z6)
2. perform electrophoresis and select strands 90 long

5 The authors thank an anonymous referee for his/her interesting comments and for
suggesting us to find a better procedure checking the complete recombination of the
final pool.

64 G. Franco et al.

3. perform PCR(Z2, Z5)
4. perform electrophoresis and select strands 60 long
5. perform PCR(Z3, Z4)

output: YES if the last PCR amplifies (sequences 30 long), NO otherwise.

The procedure proved the presence of Z1Z2Z3Z4Z5Z6 in the pool P because
i) after the first two steps all and only the strands Z1 · · ·Z6 of P were present
in the resulting pool (lines 2 and 5 of Figure 5), ii) after the second PCR and
electrophoresis all and only the strands Z2 · · ·Z5 from strands Z1Z2 · · ·Z5Z6
of P were present in the resulting pool (lines 3 and 6 of Figure 5), iii) and
the last PCR amplified the portions Z3Z4 of such strands, that are found if
and only if the sequence Z1Z2X3Z4Z5Z6 was present in P (lines 4 and 7 of
Figure 5).

Fig. 5. Electrophoresis results. Lane 1: molecular size marker ladder (25bp). Lane
2: positive control by PCR (X1, X6) (90bp) performed at 44◦C. Lane 3: positive control
by PCR(X2, X5) (60bp) performed at 46◦C. Lane 4: positive control by PCR(Y3, Y4)
(30bp) performed at 42◦C. Lane 5: positive control by PCR(Y1, Y6) (90bp) performed
at 44◦C. Lane 6: positive control by PCR(Y2, Y5) (60pb) performed at 42◦C. Lane 7:
positive control by PCR(X3, X4) (30pb) performed at 42◦C.

Appendix (Experimental Protocols)

Reagents. 25 bp marker DNA ladder and agarose (Promega); PCR buffer,
MgCl2 and dNTP (Roche); Taq DNA Polymerase (produced in laboratory); all
the synthetic DNA oligonucleotides 150 bp long and all the primers were from
Primm s.r.l.(Milano, Italy).

Annealing of synthetic DNA oligonucleotides. Two complementary syn-
thetic 150 bp long DNA oligonucleotides (5′ − 3′ and 3′ − 5′) were incubated at
1:1 molar ratio at 90◦C for 4 min in presence of 2.5 mM of MgCl2 and then at
70◦C for 10 min. The annealed oligos were slowly cooled to 37◦C, then further
cooled to 4◦C until needed.

PCR amplification. PCR amplification was performed on a PE Applied
Biosystems GeneAmp PCR System 9700 (Perkin Elmer, Foster City, CA) in
a 50 μl final reaction volume containing 1.25U of Taq DNA Polymerase, 1.5
mM MgCl2, 200 μM each dNTP, PCR buffer, 80 ng DNA template, 0.5-1 μM of

DNA Recombination by XPCR 65

forward and reverse primers. The reaction mixture was preheated to 95◦C for
5 min. (initial denaturing), termocycled 30 times: 95◦C for 30 sec (denaturing),
different temperatures (see captures of the figures) for 30 sec. (annealing), 72◦C
for 15 sec. (elongation); final extension was performed at 72◦C for 5 min.

Preparation and running of gels. Gels were prepared in 7× 7 cm plastic gel
cassettes with appropriate combs for well formation. Approximately 20 ml of 4%
agarose solutions were poured into the cassettes and allowed to polymerize for
10 min. Agarose gels were put in the electrophoresis chamber and electrophoresis
was carried out at 10 volt/cm2, then the bands of the gels are detected by a gel
scanner. The DNA bands (final PCR products) of interest were excised from the
gel and the DNA was purified from the gel slices by Promega Kit (Wizard SV
Gel and PCR Clean-Up System).

References

1. Adleman, L. M.: Molecular Computation of solutions to combinatorial problems.
Science 266 (1994) 1021–1024

2. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K., Adleman, L. M.:
Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296 (2002)
499–502

3. Braich, R. S., Johnson, C., Rothemund, P. W. K., Hwang, D., Chelyapov, N.,
Adleman, L. M: Solution of a Satisfiability Problem on a Gel-Based DNA Com-
puters. A. Condon, G. Rozenberg eds, Proceedings of 6th International Workshop
On DNA Based Computers, Leiden Netherlands, (2000) 31–42

4. Franco, G., Giagulli, C., Laudanna, C., Manca, V.: DNA Extraction by XPCR.
C. Ferretti G. Mauri C. Zandron et al. eds, DNA 10, LNCS 3384, Springer-Verlag
Berlin Eidelberg, (2005) 106–114

5. G. Franco, Combinatorial Aspects of DNA Solution Spaces generated by XPCR
Recombination, in preparation.

6. Faulhammer, D., Cukras, A. R., Lipton, R. J., Landweber, L. F.: Molecular com-
putation: RNA solution to chess problems. Proc. Natl. Acad. Sci. USA 98 (2000)
1385–1389

7. Head, T.: Formal language theory and DNA: An analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology 49 (1987)
737–759

8. Lee, J. Y., Lim, H-W., Yoo, S-I., Zhang, B-T., Park, T. H.: Efficient Initial Pool
Generation for Weighted Graph Problems Using Parallel Overlap Assembly. G.
Mauri G. Rozenberg C. Zandron eds, Preliminary Proceedings of the 10th Inter-
national Meeting on DNA Based Computers, Milan, Italy, (2004) 357–364

9. Lipton, R. J.: DNA solutions of hard computational problems. Science 268 (1995)
542–544

10. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of
DNA graphs. Journal of Genetic Programming and Evolvable Machines 4 (2003)
123–137

11. Kaplan, P. D., Ouyang, Q. O., Thaler, D. S., Libchaber, A.: Parallel overlap as-
sembly for the construction of computational DNA libraries. J. Theor. Biol. 188
(1997) 333–341

66 G. Franco et al.

12. Manca, V., Zandron, C.: A Clause String DNA Algorithm for SAT. N. Jonoska
N.C. Seeman eds, Proceedings of the 7th International Workshop on DNA-Based
Computers: DNA 7, LNCS 2340, Springer, (2002) 172–181

13. Rose, J. A., Hagiya, M., Deaton, R. J., Suyama, A.: A DNA-based in vitro Genetic
program. Journal of Biological Physics 28 3 (2002) 493–498

14. Stemmer, W.: DNA shuffling by random fragmentation and reassembly: in vitro re-
combination for molecular evolution. Proc. Natl. Acad. Sci. USA 91 (1994) 10747–
10751

An Algorithm for SAT
Without an Extraction Phase

Pierluigi Frisco1, Christiaan Henkel2, and Szabolcs Tengely3

1 Dept. of Comp. Sci., School of Eng., C. S. and Math., University of Exeter,
Harrison Building, North Park Road, Exeter, EX4 4QF, UK

P.Frisco@exeter.ac.uk
2 Institute of Biology, Leiden University, Wassenaarseweg 64,

2333AL Leiden, The Netherlands
henkel@rulbim.leidenuniv.nl

3 Mathematical Institute, Leiden University, Niels Bohrweg 1,
2333CA Leiden, The Netherlands
tengely@math.leidenuniv.nl

Abstract. An algorithm that could be implemented at a molecular level
for solving the satisfiability of Boolean expressions is presented.

This algorithm, based on properties of specific sets of natural num-
bers, does not require an extraction phase for the read out of the solution.

1 Introduction

Adleman’s solution of an instance of the direct Hamiltonian path problem with
the implementation of an algorithm at a molecular level [1] has been of inspira-
tion for many to pursue other algorithms that can be implemented in the same
way to solve instances of hard computational problems.

A problem is said to be hard if it cannot be solved by a deterministic Tur-
ing machine with a polynomial time algorithm in function of its input [8, 14].
For many of this kind of problems the number of possible solutions increases
exponentially in function to the size of the input.

The algorithm described in [1] is related to the research of all Hamiltonian
paths in a graph. The algorithm proposed by Adleman can be simplified in
a two-phase process: first a library of DNA molecules encoding the input of
the problem is created and is put in a test tube such that the DNA molecules
can, under appropriate conditions, anneal and ligate, then the DNA molecules
encoding solutions to the problem are extracted from the test tube.

During annealing and ligation other, ‘new’, DNA molecules, different from
the ones present in the input library, can be created. Because of the massive
parallelism and the nondeterminism of the annealing process the creation of
the ‘new’ DNA molecules is quite fast and can lead to DNA molecules encoding
solutions for the considered instance of the problem. As the name suggests during
the extraction phase the solutions are extracted from the pool.

It should be clear that this kind of algorithms does not guarantee that a
solution will be created even if it could. This because the annealing between

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 67–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

68 P. Frisco, C. Henkel, and S. Tengely

complementary single stranded DNA molecules is a genuinely nondeterministic
operation. Anyhow even if present in the pool a solution could not be detected
during the extraction phase. More than error prone this last phase can be quite
laborious and expensive.

Algorithms based on this two-phase process are common in Molecular Com-
puting [2, 4, 6, 11, 12, 13, 16, 17, 20].

In Section 3 we describe how a specific creation of the input library of DNA
molecules can be used to implement an algorithm without an extraction phase
for satisfiability of Boolean expression (SAT), a hard computational problem,
stated as decision problem (a problem remains hard if it is stated as decision,
enumeration or research problem [14]). The presented algorithm is based on
specific sets of natural numbers defined in Section 2.

The first algorithm for DNA computing without an extraction phase has been
introduced in [10]. Here the authors define LOD (Length Only Discrimination),
that is the concept of not having an extraction phase, and give an experimental
result on a small instance of Hamiltonian path problem (HPP). In [19] another
algorithm for HPP based on LOD is presented. In Section 5.2 we indicate the
elements of novelty of our algorithms compared to the ones already present in
the literature.

We did not implement in a biological laboratory the algorithm presented in
Section 3, anyhow the biochemical specifications related to the creation of the
input library of DNA molecules and to the implementation of the presented
algorithms are sketched in Section 4.

2 Unique-Sum Sets

In this section we define unique-sum sets used in the algorithm presented by us
in Section 3. Moreover we give some examples, we indicate some properties and
results related to these sets, and we define a family of unique-sum sets.

Let N be the set of natural numbers.

Definition 1 (unique-sum set, ordered unique-sum set). Let G = {n1, ...,
np} be a set of different positive integers, and s =

∑p
i=1 ni the sum of the

elements of G. G is said to be a unique-sum set if the equation
∑p

i=1 cini =
s, ci ∈ N ∪ {0}, has only the solution ci = 1, i ∈ {1, . . . , n}.

A unique-sum set G = {n1, . . . , np} is an ordered unique-sum set if ni < ni+1
for 1 ≤ i ≤ p− 1.

In what follows we will only consider ordered unique-sum sets.
An example of a unique-sum set is G = {4, 6, 7}, 4+6+7 = 17 and 17 cannot

be written in a different way as a non-negative integer linear combination of the
elements in G. An example of a set that is not a unique-sum set is G′ = {3, 4, 5},
3 + 4 + 5 = 12 = 4 + 4 + 4 = 3 + 3 + 3 + 3.

The concept of unique-sum set resembles that of subset-sum-distinct set (see
e.g. [3]), but there one requires that for any two distinct finite subsets G1, G2 ⊆ G
the sum of all elements of G1 is distinct from the sum of all elements of G2.

An Algorithm for SAT Without an Extraction Phase 69

Lemma 1. Given a unique-sum set G = {n1, . . . , np}, any proper subset of G
is a unique-sum set.

Lemma 2. Let k be a positive integer, and kG = {k · n1, . . . , k · np}. If G is a
unique-sum set, then kG is also a unique-sum set.

Definition 2 (maximal unique-sum set). Given a unique-sum set G = {n1,
..., np}, it is maximal if there exists no positive integer np+1 /∈ G, such that
G ∪ {np+1} is a unique-sum set.

It is easy to check that G = {2, 3} is a maximal unique-sum set, but G = {4, 6}
is not, since {4, 6, 7} is a unique-sum set too.

Now we describe a method to verify if a set is a unique-sum set. It is based
on generating functions (see [15]). We consider the function

FG(x) =
p∏

i=1

(1− xni)−1.

Using the identity (1−x)−1 = 1+x+x2+x3+ . . . , x ∈ R, |x| < 1, we can rewrite
FG(x) as a power series, having rational integers as coefficients, in the following
form: FG(x) = P0 + P1x + P2x

2 + . . . + Pkxk + . . . , and, by construction, the
coefficient of xk is the number of solutions of the equation

p∑
i=1

cini = k, ci ∈ N ∪ {0}.

Therefore G is unique-sum set, if and only if Ps = 1, where s =
∑p

i=1 ni. We do
not have to use infinite expansions, since we are interested in the value of Ps.
The coefficient of xs in

p∏
i=1

(1 + xni + x2ni + . . . + x
[s

ni
]ni)

is exactly Ps, where [·] denotes the integer part of the rational number s
ni

. Let us
see two examples. Let G = {8, 12, 14, 15}, thus s = 49 and we have to compute
the coefficient of x49 in FG(x) = (1− x8)−1(1− x12)−1(1− x14)−1(1− x15)−1 =
f1(x)f2(x)f3(x)f4(x), where

f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48,

f2(x) = 1 + x12 + x24 + x36 + x48,

f3(x) = 1 + x14 + x28 + x42,

f4(x) = 1 + x15 + x30 + x45.

It turns out to be 1, thus G is a unique-sum set. Let G = {8, 12, 14, 15, 19}, thus
s = 68 and we have to compute the coefficient of x68 in FG(x) = (1− x8)−1(1−
x12)−1(1− x14)−1(1− x15)−1(1− x19)−1 = f1(x)f2(x)f3(x)f4(x)f5(x), where

70 P. Frisco, C. Henkel, and S. Tengely

f1(x) = 1 + x8 + x16 + x24 + x32 + x40 + x48 + x56 + x64,

f2(x) = 1 + x12 + x24 + x36 + x48 + x60,

f3(x) = 1 + x14 + x28 + x42 + x56,

f4(x) = 1 + x15 + x30 + x45 + x60,

f5(x) = 1 + x19 + x38 + x57.

It turns out to be 12, thus G is not a unique-sum set.
Now we will deal with the construction of unique-sum sets. Given a set of

different positive integers G = {n1, . . . , np}, such that gcd(n1, . . . , np) = 1, it is
known (see e.g. [5]) that for suitable large integer M, the equation

p∑
i=1

cini = M, ci ∈ N ∪ {0}, (1)

has at least one solution. Let us denote by ΦG the greatest positive integer for
which (1) is not solvable. Wilf [18] gave an algorithm to compute ΦG efficiently.
We can use this constant to find possible extensions of a given unique-sum set
(in the case when gcd(n1, . . . , np) = 1), or to prove that it is maximal. First
suppose that gcd(n1, . . . , np) = 1, then we can compute ΦG using the algorithm
described in [18]. By the definition of ΦG we know that if there exists an integer
np+1 such that G∪{np+1} is a unique-sum set, then np+1 ≤ ΦG. Thus we have to
check only finitely many sets using the method mentioned previously. We have
checked that the set G = {8, 12, 14, 15} is a unique-sum set. In this case ΦG = 33,
but there is no positive integer k ≤ 33 such that G ∪ {k} is a unique-sum set,
therefore G is maximal. If gcd(n1, . . . , np) = d > 1 and the new element np+1 is
such that gcd(n1, . . . , np, np+1) = d′ > 1, then we still can succeed, since 1

d′ G has
to be a unique-sum set. In the remaining case, when gcd(n1, . . . , np) = d > 1 and
gcd(n1, . . . , np, np+1) = 1, we show an example. Let G = {4, 6} and n3 is odd,
then s = n3 + 10 is also odd, thus if we have a solution of 4x1 + 6x2 + n3x3 = s,
then x3 > 0. We obtain that 4x1+6x2+n3(x3−1) = 10, that is x1 = x2 = x3 = 1
if n3 > 6. In this way we obtained infinitely many unique-sum sets in the form
{4, 6, 2k + 1}, k > 2.

Now we give a family of sets. Let Gk = ∪k
m=1{2k − 2k−m}, the sum of the

elements of Gk is sk = (k − 1)2k + 1. The first sets in this family are:

G1 = {1},
G2 = {2, 3},
G3 = {4, 6, 7},
G4 = {8, 12, 14, 15},
G5 = {16, 24, 28, 30, 31},
G6 = {32, 48, 56, 60, 62, 63},

Theorem 1. For all k ∈ N the set Gk is a unique-sum set.

The proofs of Lemma 1, Lemma 2 and Theorem 1, the proof that each element in
the family of sets previously given is the unique-sum set having the smallest sum

An Algorithm for SAT Without an Extraction Phase 71

in function of the number of elements and other properties and results related
to unique-sum sets can be found in [7].

3 An Algorithm for the Satisfiability of Boolean
Expressions

The satisfiability of Boolean expressions (SAT) problem can be formulated as:
given a Boolean expression φ with variables X = {x1, . . . , xn}, is there an as-
signment A : X → {T, F} such that A satisfies φ?

If the Boolean expression φ is given by a conjunction of clauses C1∧C2∧. . .∧Cp

(where ‘∧’ is the logical AND operator) each being a disjunction of at most k
literals (a literal is a variable xi or its negation ¬xi, for 1 ≤ i ≤ n), then the
problem is called k-SAT.

In [11] the author demonstrates that 3-SAT is well suited to take advantage of
the massive parallelism present in molecular computation. At the present time
SAT is probably the problem with the most number of algorithms implemented
[12, 20, 16, 4] or implementable [11, 9, 13] at a molecular level.

Let φ be an instance for k-SAT having n variables and p clauses, let L =
{l1, l2, . . . , lq} (q ≤ 2n), an ordered set of literals satisfying at least one clause
of φ such that if li,¬li ∈ L for 1 ≤ i ≤ q, then li = lj,¬li = lj+1 for a
1 ≤ j ≤ q − 1. Moreover let C = {C1, . . . , Cp} the set of clauses present in φ,
and let G = {n1, . . . , np+2} be a unique-sum set having sum sG.

The input library of molecules is composed by:

edges: Each pair (li, lj), i ≤ j, li �= ¬lj , 1 ≤ i, j ≤ q, of literals in L is encoded
by an ordered (from 5’ to 3’) single stranded DNA molecule composed by
the 8-mer sli (encoding li) followed by the 8-mer slj (encoding lj). It is
important to notice now that these pairs define a partial order in L. The
order is partial and not total as there is no pair for a literal and its negation
if both literals are present in L.

Moreover there are going to be two additional 8-mer single stranded DNA
molecules: sb and se.

For each literal l ∈ L there will be ordered (from 5’ to 3’) single stranded
DNA molecules composed by the 8-mer sb followed by the 8-mer sl and
single stranded DNA molecules composed by the 8-mer sl followed by the
8-mer se.

All the sl, l ∈ L, sb and se are different sequences of nucleotides.
vertices: We associate to each clause Cj ∈ C a unique number nk ∈ G. We

will consider Cj associated to nj+1 for 1 ≤ j ≤ p. For each literal l in L
there will be a set of ordered (from 5’ to 3’) partially double DNA molecules
composed by: a single stranded 8-mer s̄l complementary to sl; a double
stranded (nj+1−16)-mer for each clause Cj , 1 ≤ j ≤ p satisfied by l; a single
stranded 8-mer s̄l complementary to sl.

begin: Ordered (from 5’ to 3’) partially double DNA molecules composed by: a
single stranded 8-mer s̄b complementary to sb followed by a double stranded
(n1 − 8)-mer.

72 P. Frisco, C. Henkel, and S. Tengely

end: Ordered (from 5’ to 3’) partially double DNA molecules composed by:
a double stranded (np+2 − 8)-mer followed by a single stranded 8-mer s̄e

complementary to se.

The following example is meant to clarify the above. Let the Boolean expres-
sion φ = C1 ∧C2 ∧ C3 = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
be an instance of 3-SAT. An ordered set of literals of φ satisfying at least one
clause is L = {x1,¬x1, x2,¬x2, x3,¬x3} = {l1, l2, l3, l4, l5, l6}, while the set of
clauses of φ is C = {C1, C2, C3}.

The set of single stranded DNA molecules encoding edges is depicted in
Figure 1.

sl1 sl1

5’- -3’(l1, l1):
sl3 sl3

5’- -3’(l3, l3):
sl5 sl5

5’- -3’(l5, l5):
sl1 sl3

5’- -3’(l1, l3):

sl2 sl2

5’- -3’(l2, l2):
sl4 sl4

5’- -3’(l4, l4):
sl6 sl6

5’- -3’(l6, l6):

5’- -3’

sb sl2

5’- -3’

sb sl3

5’- -3’

sb sl1

5’- -3’

sb sl4

5’- -3’

sl3 se

5’- -3’

sl4 se

sl1 sl4

(l1, l4): 5’- -3’

sl1 sl5

(l1, l5): 5’- -3’ 5’- -3’

sb sl5sl1 sl6

(l1, l6): 5’- -3’

sl2 sl3

(l2, l3): 5’- -3’

sl2 sl4

(l2, l4): 5’- -3’ 5’- -3’

sb sl6

5’- -3’

sl1 se

5’- -3’

sl2 se

5’- -3’

sl2 sl6

(l2, l6):5’- -3’

sl2 sl5

(l2, l5):

5’- -3’(l3, l6):

sl3 sl6

5’- -3’(l3, l5):

sl3 sl5

5’- -3’

sl4 sl5

(l4, l5): 5’- -3’(l4, l6):

sl4 sl6

5’- -3’

sl5 se

5’- -3’

sl6 se

Fig. 1. Encoding of edges for the example of 3-SAT

Let us consider now the unique-sum set G = {16, 24, 28, 30, 31}, having sum
sG = 129. We associate 24 to C1, 28 to C2 and 30 to C3. The literals l1 and l3
both satisfy only C1; the literals l2 and l4 both satisfy C2 and C3; the literal
l5 satisfies C1 and C3; the literal l6 satisfies C2. Considering this we give now
the lengths of the double stranded DNA molecules present in the encodings of
vertices. As C1 is associated to 24, then the double stranded DNA molecule is
8-bp (result of 24-16); as C2 is associated to 28, then the double stranded DNA
molecule is 12-bp (result of 28-16); as C3 is associated to 30, then the double
stranded DNA molecule is 14-bp (result of 30-16). The double stranded DNA
molecule present in the encoding of begin is 8-bp (result of 16-8), while the one
present in the encoding of end is 23-bp (result of 31-8). These molecules are
depicted in Figure 2.

An Algorithm for SAT Without an Extraction Phase 73

5’-

s̄l2

3’-

-3’

-5’

s̄l212-mer 14-mer

3’-

s̄l4

-5’

s̄l4

-3’5’-

14-mer

3’-

s̄l2

-5’

s̄l2

-3’5’-

14-mer

3’-

s̄l5

-5’

s̄l5

-3’5’-

5’-

s̄l1

3’-

-3’

-5’

s̄l18-mer

5’-

s̄l3

3’-

-3’

-5’

s̄l38-mer

5’-

s̄l4

3’-

-3’

-5’

s̄l412-mer

5’-

s̄l5

3’-

-3’

-5’

s̄l58-mer

5’-

s̄l6

3’-

-3’

-5’

s̄l612-mer

5’-

3’-

-3’

-5’

23-mers̄e8-mer

-5’

s̄b

-3’5’-

3’-

Fig. 2. Encoding of vertices for the example of 3-SAT

The described encoding for this example can be visualised as the graph de-
picted in Figure 3, where Ci(lj) indicates that the clause Ci is satisfied by the
literal lj (for 1 ≤ i ≤ 3, 1 ≤ j ≤ 6). In this graph black dots indicate hubs: they
have been introduced to decrease the number of arrows present in the graph and
make it more readable, hubs have no relation with the encoding described by us.

C2(l4) C3(l5)C2(l2)

C1(l1)

C3(l2)

C1(l3)

C3(l4) C2(l6)

C1(l5)

endbegin

Fig. 3. Graph related to the example of 3-SAT

The annealing and ligation of the library of molecules is likely to form DNA
molecules sG-bp long only if there is an assignment A satisfying φ. Considering
the graph depicted in Figure 3 such molecules can be visualised as paths starting
at begin and ending at end and passing by nodes encoding clauses satisfied by
literals where the encoding of each clause is present only once. Examples of such
paths are: begin−C1(l1)−C2(l4)−C3(l5)−end, begin−C2(l4)−C3(l4)−C1(l5)−
end.

If a resulting molecule is sG-bp long, then it will start with a sequence encod-
ing begin and it will end with a sequence encoding the end, the intermediate
part will be composed by encodings of vertices (clauses satisfied by literals)
annealed and ligated to edges. This intermediate part cannot contain both the

74 P. Frisco, C. Henkel, and S. Tengely

encoding of a clause satisfied by a literal l and the encoding of a clause satisfied
by a literal ¬l, for l ∈ L. Moreover in the intermediate part the encoding of a
clause can be present only once.

Any assignment A satisfying φ can be encoded (by the annealing and ligation
of the molecules in the input library) in a double stranded DNA molecule sG-bp
long.

The presence of such a molecule can be detected by one run of gel elec-
trophoresis independent of the size of the instance of the problem.

For a Boolean formula φ, instance of k-SAT, with p clauses and n variables
(so at most 2n literals), in the worst case (all literals are present in a clause and
each literal satisfies each clause) the input library of molecules is composed by:

2n DNA molecules encoding edges of the form (li, li);
2n

∑n−1
i=1 (2n−2i) DNA molecules encoding edges of the form (li, lj), i > j, li �=

¬lj , 1 ≤ i, j ≤ 2n;
4n DNA molecules encoding edges of the form (b, l) and (l, e) for l ∈ L;
2np (each of the 2n literals can satisfy each of the p clauses) DNA molecules

encoding vertices;
1 DNA molecule encoding begin;
1 DNA molecule encoding end.

In the following section we describe how the initial library of DNA molecules
can be created.

4 Biochemical Specifications

As presented in the previous section unique-sum sets allow the creation of al-
gorithms where part of the instance of the problem is encoded in the length of
partially double DNA molecules. The actual sequence of the double part of these
molecules is then of only minor importance. This fact can be exploited in the
efficient production of these molecules.

Each element of the family of unique-sum sets presented in Section 2 can be
written as Gk = {2k−1, 2k−1+2k−2, 2k−1+2k−2+2k−3, . . . , 2k−1+2k−2+· · ·+20}.
If moreover we consider that 2h = 2h−1 + 2h−1, then it is possible to devise an
efficient algorithm for the creation of long double stranded DNA molecules by
controlled concatenation of two shorter ones. Only the short (≤ 8-bp) DNA
molecules need to be chemically synthesised.

The concatenation of two molecules requires tight control of the reaction as
a simple ligation of molecules in solution will also produce many longer multi-
mers. One way to perform controlled reactions is making the ends of the double
stranded DNA molecules unavailable for ligation.

The following steps will create a specific concatenation of two generic double
stranded DNA molecules A and B:

1. attach one end of A to a solid support. For example, use a 5’ biotin label
and streptavidin coated beads;

2. ensure the free 5’ end is phosphorylated;

An Algorithm for SAT Without an Extraction Phase 75

3. remove phosphates from B by alkaline phosphatase treatment;
4. mix and ligate;
5. remove all unbound molecules;
6. remove the molecules from the beads. This can be accomplished by simple

endonuclease digestion if a DNA linker is used between the biotin label and
molecule A;

7. if necessary, PCR (with or without biotynilated primers) can be used as an
amplification procedure.

This procedure ensures that only one copy of molecule B can be attached to
the immobilized A. However, some small chances of error still exist. For example,
two molecules A can be ligated, creating a tether between two beads. Another
possibility is incomplete ligation, i.e. some molecules A may not be ligated to B.
Such errors are inevitable, but the chances can be minimized by optimization of
laboratory protocols. If measurable quantities of erroneous molecules are formed,
the correct molecules can be purified by preparative gel electrophoresis.

Very small molecules (≤ 8-bp) can be added in an alternative way, using an
extra sequence which is recognized by a type IIs restriction endonuclease. The
sequence recognized by the restriction enzyme should be concatenated only at the
two ends of the double stranded DNA molecule. The rest of the DNA molecule
could be easily constructed so not to contain the restriction site. For example, one
base pair can be added by ligation to 5’ NNNNNNGACTC, and subsequent digestion
with MlyI (New England Biolabs). This enzyme recognises the sequence 5’ GAGTC
and produces a blunt cut five bp to the 3’ end. The result is 5’ N, or any one base
pair added. A similar technique can be used to produce different single stranded
extensions necessary for programmable ligation. The enzyme used should then
produce a staggered cut outside its recognition sequence. Using this method,
the only molecules that need to be synthesized chemically are the 2 original 8
nucleotide strands and in total 6 oligonucleotides for adding 1, 2, or 4-bp.

The following example should clarify the strategy outlined above. Let us imag-
ine that we want to create DNA molecules long as the elements in the unique-sum
set G6 = {32, 48, 56, 60, 62, 63}. Let us also consider that the two ends of each
molecule have to be single stranded (each 8 bases long) while the rest of the
molecule has to be double stranded. So, considering the elements in G6, the part
of the molecules that is double stranded has to be as long as the elements of the
set G′

6 = {16, 32, 40, 44, 46, 47}= {8 + 8, 16 + 16, 32 + 8, 40 + 4, 44 + 2, 46 + 1}.

1. synthesize a molecule 8-bp long (such a molecule is stable enough and long
enough to be ligated);

2. generate a molecule 16-bp long (element of G′
6) concatenating two molecules

8-bp long;
3. generate a molecule 32-bp long (element of G′

6) concatenating two molecules
16-bp long;

4. generate a molecule 40-bp long (element of G′
6) concatenating a molecule

32-bp long with one 8-bp long;
5. generate a molecule 44-bp long (element of G′

6) concatenating a molecule
40-bp long with one 4-bp long;

76 P. Frisco, C. Henkel, and S. Tengely

6. generate a molecule 46-bp long (element of G′
6) concatenating a molecule

44-bp long with one 2-bp long;
7. generate a molecule 47-bp long (element of G′

6) concatenating a molecule
46-bp long with one 1-bp long.

The single stranded molecules used in the algorithm presented in Section
3 need to be chemically synthesized and concatenated to the two sides of the
double stranded DNA molecules.

5 Discussions

5.1 Biological

Experimental implementation of the algorithm presented in Section 3 is subject
to some constraints. Thermodynamics dictates a certain minimum length for the
DNA molecules present in the input library. DNA molecules of only a few bp do
not anneal at room temperature: if, for example the unique-sum set G3 = {4, 6, 7}
is considered for the encoding, then all members of the set should be multiplied by
a constant to yield to DNA molecules long enough to be stable. The set obtained
by the multiplication is ensured to be a unique-sum set by Lemma 2.

Length separation by electrophoresis imposes an upper limit on the size of
the DNA molecules associated to the elements of a unique-sum set considered
for encoding an instance of a problem. DNA electrophoresis has a maximum
resolution of about 0.1%: discriminating between DNA fragments that have a
difference in length of 1-bp per 1000 is realistic using large polyacrylamide gels
or capillary electrophoresis. This limitation is due to current technology and not
on DNA itself. Let us consider the set G7, having sum sG7 = 769, indicated
in Section 2. The number 768 = 12·64 can be obtained as sum of elements
in G7. The difference between sG7 and 768 represents the 0.13% of sG7 . Similar
computation for G8 gives a value of 0.05% of its sum, already below the maximal
resolution of the just described DNA electrophoresis.

We can envisage three possibilities to overcome this limit in the implementa-
tion of algorithms based on unique-sum sets:

1. other families of unique-sum sets may be found having a bigger difference
between the sum of the set and the smaller or bigger number that can be
obtained summing elements in the set;

2. different algorithms based on unique-sum sets can be devised;
3. the technology of DNA analysis can be improved so to increase the resolution.

The algorithm devised for the decision problem presented in Section 3 can be
easily modified for research problems. If the presence of a solution is detected
by gel electrophoresis, the precise sequence of it (telling in the case of SAT the
sequence of clauses satisfied by a literal) can be found by DNA sequencing,
multiplex PCR or restriction analysis. The analysis techniques themselves also
entail some sequence design considerations.

An Algorithm for SAT Without an Extraction Phase 77

5.2 Algorithmic

The creation of algorithms in DNA computing without an extraction phase is
not new. Length-only discrimination (LOD) was introduced in [10] where the
authors present experimental confirmations of this technique.

In [10] the algorithm giving the length of the molecules encoding the vertices
is: “... if we need to find n different lengths, then starting with an arbitrary
number for the lengths of the first vertex, we can produce the sequence of length
with desired properties by making a gap between the lengths of the ith and the
(i + 1)th vertices be (n + i).”. So, if for instance we want to find the lengths of
the molecules for a graph with 9 vertices we have:

1: k, k ∈ N

2: (k) + 9 + 1 = k + 10
3: (k + 10) + 9 + 2 = k + 2 · 9 + 3 = k + 21
4: (k + 21) + 9 + 3 = k + 3 · 9 + 6 = k + 33
5: (k + 33) + 9 + 4 = k + 4 · 9 + 10 = k + 46
6: (k + 46) + 9 + 5 = k + 5 · 9 + 15 = k + 60
7: (k + 60) + 9 + 6 = k + 6 · 9 + 21 = k + 75
8: (k + 75) + 9 + 7 = k + 7 · 9 + 28 = k + 91
9: (k + 91) + 9 + 8 = k + 8 · 9 + 36 = k + 108

So we obtain the set K9 = {k, k + 10, k + 21, k + 33, k + 46, k + 60, k + 75, k +
91, k + 108} having sum sK9 = 9k + 444 (so we are considering the coefficients
f1 =< 1, 1, 1, 1, 1, 1, 1 >, notice that the sum of these coefficients is 9). But this
sum can also be written as k+3(k+10)+(k+33)+3(k+91)+(k+108)which means
that it can be obtained also by the coefficients f2 =< 1, 3, 0, 1, 0, 0, 0, 3, 1 >
(notice that also the sum of these coefficients is 9). So, if in this example we
consider that the initial vertex (having no incoming edges and only one out-
going edge) is associated to 1, that the final vertex (having only one incom-
ing edge and no outgoing edges) is associated to 9, and that the rest of the
graph is totally connected, then 1-2-8-2-8-4-2-8-9 would be interpreted as an
Hamiltonian path (while it is not). This implies that the just presented algo-
rithm to generate sets of numbers for algorithms based on LOD is not always
valid.

The fact that the two sets of coefficients have both sum 9 is essential as also
molecules encoding edges are present. In [10] edges are encoded such that the
relative molecules are: “...longer than any vertex encoding.”. This implies that
any two sets of coefficients (as the ones indicated in the above) having the same
sum would bring to accepted solutions (this would not be the case if the sets
of coefficients had different sums as the associated DNA molecules would have
different lengths). This affirmation is wrong if we consider f2.

The other sets of coefficients for K9 having the same properties of f2 are:
f3 =< 1, 2, 0, 0, 1, 2, 2, 0, 1 >, f4 =< 1, 0, 2, 2, 1, 0, 0, 2, 1 >, f5 =< 1, 0, 0, 0, 6, 1, 0,
0, 1 >. These sets of coefficients can be used to find other sets of coefficients for
Kn, n ≥ 10, that is for sets obtained by the algorithm described in [10].

78 P. Frisco, C. Henkel, and S. Tengely

Let us list the elements found by the algorithm described in [10] from the
second to the eighth for a set with n ≥ 9 elements:

2: k + n + 1
3: k + 2n + 3
4: k + 3n + 6
5: k + 4n + 10
6: k + 5n + 15
7: k + 6n + 21
8: k + 7n + 28

The sum of these elements is 7k + 28n + 84 but this sum can also be obtained
by 2(k + 2n + 3) + 2(k + 3n + 6) + k + 4n + 10 + 2(k + 7n + 28) (we just used
the set of coefficients f2 but we could have used also f3, f4 or f5).

This means that for n = 10 the set of coefficients < 1, 0, 2, 2, 1, 0, 0, 2, 1, 1 >
(having sum 10) gives the sum sK10 ; for n = 11 the set of coefficients <
1, 0, 2, 2, 1, 0, 0, 2, 1, 1, 1 > (having sum 11) gives the sum sK11 , etc..

The just given description does not render all the sets of coefficients for sets
with n ≥ 10 elements. For instance other sets of coefficients giving the sum sK10

are < 1, 3, 0, 1, 0, 0, 1, 1, 2, 1 >, < 1, 2, 0, 1, 0, 0, 4, 1, 0, 1 >, etc..
In [19] the authors describe algorithms based on LOD. Also in this paper sets

with a unique sum are considered. The elements of such sets G = {n1, . . . , np}
are defined as follows: {

n1 = 1
nk = knk−1 + 1−

∑k−1
i=1 ni

The numbers in these sets grow (from n1 to np) as p!. It is possible to see this if we
express nk as a function of nk−1. We have that nk−1 = (k−1)nk−2+1−

∑k−2
i=1 ni,

so nk = knk−1 +1−
∑k−1

i=1 ni = k(k− 1)nk−2 + k− k
∑k−2

i=1 ni +1−
∑k−1

i=1 ni. So
np = p(p− 1)(p− 2) . . . 1− x where x is a polynomial in ni (1 ≤ i ≤ p− 1). This
implies that the sum of a set with p elements grows as p!, while the sum of a set
with p elements in the family of sets given in Section 2 grows as an exponential
(power of 2).

As proved in [7] the family of unique-sum sets given in Section 2 is the one
giving unique-sum sets with the smallest sum in relation to the number of el-
ements in the set. So given a unique-sum set G′ with n elements its sum sG′

cannot be smaller than sG the sum of the smallest set with n elements in the
family presented in Section 2. A consequence of this is that the algorithm for
SAT we presented is not of practical use because of the exponential increase in
length of the DNA molecules needed to encode large instances of the considered
problem.

The presented research is a starting point in creating algorithms that can be
implemented at a molecular level based on properties of specific sets of num-
bers. Some natural continuations of this research are identified by the following
questions:

An Algorithm for SAT Without an Extraction Phase 79

Is it possible to relax the definition of unique-sum set (to, for instance, sets
whose sum can be obtained with only a constant number of non-negative
linear combinations of the elements in the set) and create algorithms im-
plementable at a molecular level that can take advantage of this relaxed
definition?

Are there other kind of sets that can be considered when we take in account
the specific problem we want to solve and the way the algorithm is devised?

Acknowledgements

We thank J. Khodor for the interesting discussions about sets with a unique sum.
The work of P. Frisco has been supported by the research grant NAL/01143/G
of The Nuffield Foundation.

References

1. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, November 11, 1994.

2. L. M. Adleman. On constructing a molecular computer. volume 27 of DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science, pages 1–22.
American Mathematical Society, 1995.

3. J. Bae. On generalized subset-sum-distinct sequences. Int. J. Pure Appl. Math.,
1(3):343–352, 2002.

4. R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, and L. Adle-
man. Solution to a 20-variable 3-SAT problem on a DNA computer. Science,
296(5567):499–502, 2002.

5. A. Brauer. On a problem of partitions. Amer. J. Math., 64:299–312, 1942.
6. D. Faulhammer, A. R. Cukras, , R. J. Lipton, and L. F. Landweber. Molecular

computation: RNA solutions to chess problems. In Proc. Nat. Acad. Sci. USA,
volume 97, pages 13690–13695, 2000.

7. P. Frisco and Sz. Tengely. On unique-sum sets. Manuscript in preparation, 2005.
8. M. R. Garey and D. S. Johnson. Computers and intractability. W. H. Freeman

and Co., San Francisco, 1979.
9. N. Jonoska, S. A. Karl, and M. Saito. Three dimensional DNA structures in

computing. BioSystems, 52:243–253, 1999.
10. Yevgenia Khodor, Julia Khodor, and T. F. Knight Jr. Experimental conformation

of the basic principles of length-only discrimination. Poster at 7th International
Workshop on DNA-Based Computers, DNA 2001, Tampa, U.S.A, 10-13 June 2001.

11. R. J. Lipton. Using DNA to solve NP-complete problems. Science, 268:542–545,
April 28, 1995.

12. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA
computing on surfaces. Nature, 403, 2000.

13. V. Manca and C. Zandron. A DNA algorithm for 3-SAT(11,20), volume 2340
of Lecture Notes in Computer Science. Springer Verlag, Berlin, Heidelberg, New
York, 2001.

14. C. H. Papadimitriou. Computational complexity. Addison-Wesley Pub. Co., 1994.
15. G. Pólya. On picture-writing. Amer. Math. Monthly, 63:689–697, 1956.

80 P. Frisco, C. Henkel, and S. Tengely

16. K. Sakamoto, H. Gounzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and
M. Hagiya. Molecular computation by DNA hairpin formation. Science, 288:
1223–1226, May 19, 2000.

17. K. A. Schmidt, C. V. Henkel, G. Rozenberg, and H. P. Spaink. DNA computing
using single-molecule hybridization detection. Nucleic acid research, 32:4962–4968,
2004.

18. H. S. Wilf. A circle-of-lights algorithm for the “money-changing problem”. Amer.
Math. Monthly, 85(7):562–565, 1978.

19. T. Yokomori, Y. Sakakibara, and S. Kobayashi. A magic pot : Self-assembly com-
putation revisited. In W. Brauer, H. Ehrig, J. Karhumki, and A. Salomaa, editors,
Formal and Natural Computing: Essays Dedicated to Grzegorz Rozenberg, volume
2300 of Lecture Notes in Computer Science, pages 418–429, 2002.

20. H. Yoshida and A. Suyama. Solution to 3-SAT by breadth first search. volume 54
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 9–22. American Mathematical Society, 1999.

Sensitivity and Capacity of Microarray
Encodings

Max H. Garzon, Vinhthuy Phan,
Kiran C. Bobba, and Raghuver Kontham

Computer Science, The University of Memphis,
Memphis, TN 38152-3240, USA

{mgarzon, vphan, kbobba, rkontham}@memphis.edu

Abstract. Encoding and processing information in DNA-, RNA- and
other biomolecule-based devices is an important topic in DNA-based
computing with potentially important applications to fields such as
bioinformatics, and, conceivably, microbiology and genetics. New
methods to encode large data sets compactly on DNA chips has been
recently proposed in (Garzon & Deaton, 2004) [18]. The method
consists of shredding the data into short oligonucleotides and pouring
it over a DNA chip with spots populated by copies of a basis set of
noncrosshybridizing strands. In this paper, we provide an analysis of the
sensitivity, robustness, and capacity of the encodings. First, we provide
preliminary experimental evidence of the degree of variability of the
representation and show that it can be made robust despite reaction
conditions and the uncertainty of the hybridization chemistry in vitro.
Based on these simulations, we provide an empirical estimate of the
capacity of the representation to store information. Second, we present
a new theoretical model to analyze and estimate the sensitivity and
capacity of a given DNA chip for information discrimination. Finally,
we briefly discuss some potential applications, such as genomic analysis,
classification problems, and data mining of massive amounts of data
in abiotic form without the onerous cost of massive synthesis of DNA
strands.

Keywords: Data representation, Gibbs energy, h-distance, fault-tolerant
computing, DNA chips, microarrays, genomic analysis, data mining, clas-
sification and discrimination.

1 Introduction

Biomolecular computing (BMC) was originally motivated by computational and
engineering purposes. This endeavour would not be possible without some type of
representation of data and information, directly or indirectly, onto biomolecules,
both as input and as output in a computation. Virtually every application of
DNA computing maps data to appropriate sequences to achieve intended reac-
tions, reaction products, and yields. DNA molecules usually process information
by intramolecular and (more often) intermolecular reactions, usually hybridiza-
tion in DNA-based computing. The problem of data and information encoding

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 81–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

82 M.H. Garzon et al.

on DNA bears an increasing interest for both biological and non-biological ap-
plications.

Most of prior work in this area has been restricted to the so-called word design
problem, or even the encoding problem (Garzon et al., 1997) [10]. In this paper,
however, we address a fairly distinct issue, herein called the representation prob-
lem. The problem is to find a systematic (i.e., application independent) procedure
to map both symbolic (abiotic) and nonsymbolic (e.g., biological) information
onto biomolecules for massively parallel processing in wet test tubes for real
world problems. Mapping of non-biological information for processing in vitro is
an enormous challenge. Even the easier direct readout problem, i.e., converting
genomic data into electronic form for conventional analysis, is an expensive and
time-consuming process in bioinformatics (Mount, 2001) [19]. Moreover, the re-
sults of these analyses are usually only available in manual form that cannot be
directly applied to feedback on the carriers of genomic information.

Three properties are deemed critical for eventual success of a mapping algo-
rithm/protocol. It must be (Blain and Garzon, 2004)[3]:

– Universal
Any kind of symbolic data/pattern can be mapped, in principle, to DNA.
Otherwise the mapping will restrict the kind of information mapped, and the
processing capabilities in DNA form may be too peculiar or too constrained
to be useful in arbitrary applications.

– Scalable
Mapping can only be justified in massive quantities that cannot be processed
by conventional means. Therefore it must be scalable to the tera-bytes and
higher orders it will eventually encounter. Currently, no cost-effective tech-
niques exist for transferring these volumes by manual addition and extraction
of patterns one by one. Ordinary symbolwise transductions require manu-
ally manufacturing the corresponding DNA strands, an impossible task with
current technology.

– Automatic and high-speed
Manual mapping (e.g., by synthesis of individual strands) is also very costly
timewise. An effective strategy must be automatable (from and back to the
user) and eventually orders of magnitude faster than processing of the data
in silico.

The purpose of this paper is to provide an analysis of a new approach recently
proposed to represent data (Garzon & Deaton, 2004)[18, 8] that is readily imple-
mentable in practice on the well developed technology of DNA chips (Steckel,
2003) [21]. The method has the potential to represent in appropriately chosen
DNA olignucleotides massive amounts of arbitrary data in the order of tera- and
peta-byte scales for efficient and biotechnologically feasible processing. Direct
encoding into DNA strands (Garzon et al., 2003d) [18], (Baum, 1995) [1] is not
a very efficient method for storage or processing of such massive amounts of data
not already given in DNA form because of the enormous implicit cost of DNA
synthesis to produce the encoding sequences, even if their composition were avail-
able. The more indirect, but more efficient, approach is reviewed in Section 2,

Sensitivity and Capacity of Microarray Encodings 83

assuming the existence of a large basis of noncrosshybridizing DNA molecules,
as provided by good codeword sets recently obtained through several sources
(Deaton et al., 2002a; Garzon et Al, 2003) [7, 2]. The method appears at first
sight to be plagued by the uncertainty and fuzzyness inherent in the reactions
among biomolecular ensembles. In Section 2.2, we establish that these concerns
are not justified by establishing, somewhat surprisingly, that it is possible to
factor out noise and map symbolic data in a very “linear” fashion with respect
to the properties of concatenation and set multiplicity on the symbolic side, and
hybridization and amplification on the biochemical side. We further provide a
preliminary experimental assessment of the sensitivity of the representation for
problems such as recognition, discrimination, and classification. In Section 3, we
also provide a theoretical analysis of the sensitivity and potential capacity of
the method. Finally, in Section 4 we briefly discuss some advantages and po-
tential applications, such as genomic analysis, classification problems, and data
mining of massive amounts of data in abiotic form, as well as some problematic
issues that require further study for wide implementation and application of the
method.

2 Encoding Data and Information in DNA Spaces

The obvious method to encode data on DNA, namely a one-one mapping of al-
phabet symbols (e.g., bits) or words (e.g., bytes or English words in a dictionary)
to DNA fragments could possibly be used to encode symbolic data (strings) in
DNA single strands. Longer texts can be mapped homomorphically by ligation
of these segments to represent larger concatenations of symbolic text. A funda-
mental problem with this approach is that abiotic data would appear to require
massive synthesis of DNA strands of the order of the amount of data to be en-
coded. Current lab methods may produce massive amounts of DNA copies of
the same species, but not of too many diverse species selected and assembled
in very specific structures such as English sentences in a corpus of data (e.g., a
textbook), or records in a large data warehouse. Even if the requisite number of
species were available, the mapping between the data and the DNA strands is
hard to establish and maintain, as the species get transformed by the reactions
they must get involved in and they must be translated back to humanly usable
expression.

An alternative more effective representation using recently available large sets
of noncrohybridizying oligonucleotides obtainable in vitro (Chen et. al., 2005;
Bi et. al, 2003) [4, 2] has been suggested in (Garzon and Deaton, 2004) [18]. We
repeat next the basic definitions to make this paper self-contained. This method
can be regarded as a new implementation of the idea in (Head et al., 1999; 2001)
[16, 15] of aqueous computing for writing on DNA molecules, although through a
simpler set of operations (only hybridization.) Since binary strings can be easily
mapped to a four letter alphabet, we will simply assume that the data are given
in DNA form over {a, c, g, t}. Representations using sets with crosshybridization

84 M.H. Garzon et al.

present are usually ambiguous and cannot be reliably used. More details on this
point can be can be found in (Garzon and Deaton, 2004) [17, 18].

2.1 Representation Using a Non-crosshybridizing Basis

Let B be a set of DNA molecules (the encoding basis, or “stations” in Head’s
terminology (Head et al., 1999) [15], here not necessarily bi-stable), which is
assumed to be finite and noncrosshybridizying according to some model of hy-
bridization, denoted |∗, ∗| (for example, the Gibbs energy, or the h-distance in
(Garzon et al, 1997) [10, 9]). We will also assume that we are provided some
parameter coding for the stringency of reaction conditions τ (for example, a
threshold on the Gibbs energy or the h-distance) under which hybridization will
take place. For simplicity, it is further assumed that the length of the strands
in B is a fixed integer n, and that B contains no hairpins. For example, if the
h-distance is the hybridization criterion and τ = 0, two strands x, y can only
hybridize if they are perfectly complementary (i.e., h(x, y) ≤ 0), so a maximal
such set B can be obtained by selecting one strand from every (non-palindromic)
pair of Watson-Crick complementary strands; but if, on the othr hand, τ = n,
the mildest hybridization condition, any two strands can hybridize, so a maxi-
mal set B consists of only one strand of length n, to which every other strand
may hybridize without further restrictions. Let m = |B| be the cardinality of B.
The basis strands will also be referred as probes. For easy visualization, we will
assume in the illustrating examples below that m is a perfect square m = 36
and that the base set of probess has been affixed onto a DNA chip.

Given a string x (ordinarily much longer than the probe length n and even
perhaps the number of probes m), x is said to be h-dependent on B is there is
some concatenation c of elements of B that will hybridize to x under stringency τ ,
i.e., such that |x, c| ≤ τ . Shredding x to the corresponding fragments according
to the components of c in B leads to the following slightly weaker but more
manageable definition. The signature of x with respect to B is a vector X of
dimension m that is obtained as follows. Shredding x to |x|/n fragments of size
n or less, Xi is the number f of fragments of x that are within threshold τ from
a strand i in B, i.e., such that |f, i| < τ . The value Xi will thus be referred to
as a pixel at probe spot i. The input strands x will also be referred as targets.

The only difference between a DNA-memory device and a DNA microarray is
that the spots on the microarray consist of carefully chosen non-crosshybridizing
DNA basis oligonucleotides rather than entire genes. Signatures can, however, be
just as easily easily implemented in practice using currently available microarray
technology.

For practical applications, a number of questions arise about this representa-
tion. First, the vector X may appear not to be well-defined, since it is clear that
its expression depends on the various ways to find matching segments c in the
input target x, the basis strands, and their concentrations. To start with, the
number r of strands per spot, here called the resolution, can be varied at will and
so change the intensity of each pixel and the resolution ability of the represen-
tation to distiguish various inputs. To avoid some of these techincal difficulties,

Sensitivity and Capacity of Microarray Encodings 85

we will assume a relatively low resolution (r = 6 in the experiments below and
r = 1 in the theoretical analysis of capacity.) On DNA chips, this resolution
can be as high as the concentration (number of strands) of the basis strands (in
solution), or as large as the number of strands per spot (on a chip.) More seri-
ously, however, is the inherent uncertainty in hybridization reactions that make
a signature dependent on the specific reaction conditions used in an experiment
to “compute” it. From previous results in (Garzon and Deaton, 2004) [18], it is
known that this problem disappears if a noncrosshybridizing set of high quality
is used for the basis set. Experimentally, the signal to noise-ratio (precisely de-
fined below) in the signature (given by the pixelwise ratio of signature signal to
standard deviation of the same variable over all runs of the experiment) appears
to be maximum. The hybridization likelihood between any pair of strands in a
noncrosshybridizing set is minimized or even eliminated (by setting an appro-
priate stringency condition τ), regardless of the strands involved, the essential
reason being that a given fragment will can then only hybridize to at most one
probe. By assuming that either the test tube is small or that the reaction time
is long enough that all possible hybridizations are exhausted within the experi-
ment’s time regardless of “kinetic bottlenecks”, the basic problem thus becomes
that of determining the set of possible signatures one may obtain by shredding
the input in different ways, or even by using on different basis set.

In order to shed light on these questions, we performed a series of experi-
ments with six target plasmids (described below) and three basis sets of differ-
ent noncrosshybridizing qualities. The first set, H40, was obtained by randomly
generating 40−mers and filtering out strands that whose h-distance is less than
a given threshold (τ = 19% of the shorter strands.) The second set, Ark, was
obtained bottom up, by concatenating pairs of 20−mers randomly chosen from
a set of 20−mers obtained by similar filtering and adding the resultant strand
to the current membes of the set if its h-distance is greater than or equal to τ .
The original set of 20−mers was obtained by using a more sophisticated genetic
algorithm search using a Gibbs energy model (Deaton et al., 2002) [6] as fitness
function. The third set, Hyb, was obtained by concatenating 40−mers from H40
and 20−mers from Ark and again adding the resultant strand to the set if its
h-distance is greater than or equal to threshold h-distance (τ = 29.) The non-
crosshybridizing quality of these sets is high, as measured by the pairwise Gibbs
energy of strands in the sets shown in Fig. 1.

Once the basis set and the reactions conditions have been optimized, the most
important question remains, i.e., how unique is the signature for a given target
x? To gain some insights into this question, six(6) large plasmids of lengths
varying between 2.9K and 3.2K bps were chosen for targets and shredded into
fragments of size 35 bps or less. Regarding the protocols as a stochastic process,
experiments were conducted in simulation to obtain their signatures on a basis
B as described above. Each experiment was run 10 times in a tested simulation
environment, Edna (Garzon and Blain, 2004) [17] and (Garzon and Rose, 2004)
[13]. As expected, we obtained a range of different signatures on different runs.
Therefore, to make this concept precise, it is necessary to re-define a signature

86 M.H. Garzon et al.

Fig. 1. Noncrosshybridization quality of a selection of three basis sets H40 (left col-
umn), Ark (middle column), and Hyb (right column) measured by the combinato-
rial h-distance (Garzon et al, 1997) [10] (the top row), and, the Gibbs energy model
of (Deaton et al., 2002) [6] (bottom row). Their quality is high since lighter colors
represent pairs far apart in hybridization distance or Gibbs energy (which is shown
normalized to a comparable scale), i.e. lower hybridization affinity.

as a sphere in a high-dimensional euclidean space of dimension m (the number of
spots on the microarray, i..e, number of noncrosshybridizng strands in the basis
set.) The center of this sphere (below called the ideal point signature) is the
componentwise average in mD-euclidean space of the outcomes of all possible
point signatures obtained in running an experiment to find the signature. The
radius of the sphere will be some measure of the variability of the all possible
point signatures obtained in a given set of conditions. Here we use the average
euclidean distance (i.e., the L2-average) of all possible point signatures to the
ideal signature.

With this definition of a signature as a sphere in mD-Euclidean space of
radius given by the average distance from the ideal point signature, the problem
of translating arbitrary data is resolved. We will refer to this sphere as the volume
signature to distinguish it from the point signatures in the original definition.
Examples can be seen in Fig. 5 (left). Fixing a basis set B, every target x
determines a unique (volume) signature.

2.2 Sensitivity and Robustness of the DNA-Chip Representation

The critical question now about the signature of a given target x is the amount
of information it contains, particularly to what extent it determines the target
x uniquely, or, at least, whether it can distinguish it from other input targets.
In this section we address these questions.

How much information about the target x does its volume signature provide?
A comparison can be made using the so-called chipwise SNR (Signal-to-Noise
Ratio) defined as follows. For each pixel Xi, SNRi defined as the ratio of the

Sensitivity and Capacity of Microarray Encodings 87

Fig. 2. Signal to Noise ratios (SNR) in six experiments with plasmids genomes over
three sets H40 (top left), Ark (top right), Hyb (bottom) of various noncrosshybridiza-
tion qualities

pixel’s average value divided by the standard deviation of the same random
variable Xi. The SNR of the target x (with respect to a given basis) is given
by ratio of the L2-average of the pixelwise signals divided by the L2-average of
pixelwise standard deviations. Fig. 2 shows the chipwise SNR comparison for all
plasmids used in the experiments. The SNRs for the chosen plasmids are shown
in Fig. 2. Some of them can be clearly distinguishable even if we just look at
their SNRs alone, although it is too raw an average to expect full distinction
among all plasmids. Nonetheless, the SNR gives a sense of the sensitivity of this
representation.

There are other factors determining the radius of a volume signature that
impact the variability of the representation. It is clear that slicing the input x into
different fragments might change its volume radically, and that, conversely, re-
assembling the fragments in a different order may yields the same representation
for a different input x′. How much does the representation depend on the lengths
of the shredding x into pieces? The results described next provide an intuition
on how Euclidean spheres radii change in representation signatures across a
range of plasmid sizes (2.9K to 3.2K). Again, all experiments for sensitivity
were performed ten times. Only results on the H40 probe set are shown below.

Fig. 3 shows the variations in the signature’s radius obtained by varying the
lengths of the the fragments shredding the target x. The radius increased for
smaller fragments (15-25bp) compared to the original fragment size (25-35bp.)
This increase is to be expected because more fragments are availability for hy-
bridization, which results in higher signal and proportionately higher variability.
The higher the standard deviation the bigger the radius of euclidean sphere.

88 M.H. Garzon et al.

Fig. 3. Volume signature variability for original fragments of 25 − 35bps (top left);
small fragments of 15 − 25bps (top right); and large fragments of 35 − 45bp (bottom).
Larger fragments yield a crisper signature (smaller radius) while shorter fragments
yield fuzzier signatures (larger radius).

The converse argument can be given to explain the decrease in radius with
large fragments (35-45bp).

Further experiments were performed to determine the sensitivity of the signa-
ture through contamination of targets in several ways. The contamination will
be referred to as “noise.” The noise introduced into original plasmids was of
three types. The results described next provide a quantitative idea of the change
expected in sensitivity of the signatures for plasmid 1. The target plasmid 1 was
varied by introducing three types of noise:

– Substitution: Plasmids fragments are replaced by other random fragments of
equal length;

– Addition: Random fragments were inserted in the plasmid;
– Reduction: Random fragments were removed from the plasmid.

Fig. 4 shows the variations in signatures of the resulting plasmid targets. The
signatures’ radii do not change much with substitution noise regardless of the
amount substituted. However, the radii increased with increase in noise in the
case of added noise and radii decreased with increased reduction noise. This
behavior is similar for small and large fragments. This is additional evidence of
sensitivity of the volume signature to changes in the length of and number of
target fragments.

In order to determine the robustness of the representation, i.e., how much
change must be made to a target for it to produce a different volume signature,
we used the so-called overlap of volume signatures. This measure attempts to

Sensitivity and Capacity of Microarray Encodings 89

Fig. 4. Volume signature variability for target basis H40 for noise that has been sub-
stituted (top left), added (top right) or reduced (bottom). Volume signatures are also
sensitive to changes in the length of and number of residues in the probe. However, the
radii vary in proportion to noise. This behavior is similar for small and large fragments.

Fig. 5. The ideal representation of plasmid 1 (left). The overlap between two represen-
tations (spheres) is the excess (or defect) of the distance between ideal representations
and the sum of the radii of the individual signatures. If the overlap is positive, the
volume signatures do not intersect (middle), while they will if the overlap is negative
(right).

capture the displacement in the ideal representation from its original parent
with various types of noise, as shown in Fig. 5. Overlap is the difference between
the distance between ideal representation and the sum of the average radii of
their volume signatures. Fig. 6 shows the euclidean distances traveled from the
ideal signature by variation of plasmid 1. Increasing substitution noise smoothly
shifts the ideal signature but maintains overlap up to 60%. Only at 70% does
the volume signature become nearly disjoint. With added noise, the threshold
for the same phenomenon is about 90% noise, and with reduced noise it is about
60% noise. An overlap distance of −1 can be considered enough for two spheres
to separate. So, it can be concluded that representations are sensitive to noise
from Fig. 6 as the distance to original ones increase with increase in noise.

90 M.H. Garzon et al.

Fig. 6. Volume signatures are robust. It requires 70% for substitution noise (top left)
and reduction noise (bottom) for a probe to become closer to others away from itself,
while it remains closest to the original even with 90% added (top right) straneous
fragments.

Fig. 7. Overlaps of volume signatures of noisy variations of plasmid 1 to its original
volume signature. Substitution noise of 70% (top left) is required for the volume sig-
nature to become nearly disjoint. With added noise (top right), the threshold for the
same phenomenon is about 90% noise. With reduced noise (bottom), the threshold it is
about 60% noise. An overlap distance of −1 can be considered enough for two spheres
to separate. Thus, representations are fairly insensitive to a small amounts of noise,
while remaining sensitive to larger changes.

Fig. 7 shows a further analysis of the same experiment by considering the
distances of the noisy plasmid 1 to the ideal signature of all six plasmids. The
most interesting threshold is the amount of noise required for varying plasmid 1
to become closer to another plasmid than to its original. That number is 70% for
substitution noise and reduction noise, but the noisy plasmids remain closest to

Sensitivity and Capacity of Microarray Encodings 91

the original even under 90% added straneous fragments. This is is a remarkable
robustness.

3 Theoretical Analysis of Sensitivity and Capacity of
DNA-Based Chips

We now provide an abstraction of the concept of a signature in order to provide
a theoretical model to estimate the capacity of DNA chips under optimal con-
ditions. First, due to the fact that, under realistic conditions, it is infeasible to
expose very long uncut copies of an input sequence to the chip, we assumed in
the definition of signature that the targets are shredded by restriction enzymes
into manageable fragments before they are exposed to the chip. To simplify the
analysis in the theoretical model, however, we will assume that no shredding of
targets will be carried out.

To justify this assumption, we observe that we can disregard all basis strands
that are Watson-Crick complementary to the cleaving restriction sites used for
shredding since hybridizations of targets to basis strands in the vicinity of the
restriction sites will not be happen. Therefore, we can eliminate shredding if
we guarantee that the basis set contains no restriction site used by shredding
enzymes and still get an identical signature for the same target. Second, we
will assume that basis strands float freely in solution instead of being affixed
to a chip, which is justified given the nonhybridization property of the basis
set. Third, we will also assume that a fixed concentration of basis strand and
targets is placed in the tube. Thus, target strands are exposed, in principle, to
hybridization of all basis strands at many places, and, consequently, many copies
of the same basis strand may hybridize to several parts of the input sequence.
Thus, even though target sequences can be arbitrarily long, there can only be
a bounded number of point signatures, and so different targets may yield the
same point signature. Under these assumptions, the volume signature produced
by an uncut input target is essentially the same as the one produced by the the
original definition above.

In this model, the chip capacity (i.e., the number of distinguishable target
signatures) becomes a function of σ, i.e., the total number of copies of all basis
strands that hybridize to a target.. Realistically, when σ varies slightly, so does
its capacity. Given a set B = {i1, i2, · · · , ik} of basis strands and a target sequence
X , its signature is xB = (x1, x2, · · · , xm), where xi is the number of times basis
oligo i hybridizes to (different parts) of X . Under these conditions, input targets
X and Y are indistinguishable if and only if xB = yB, i.e. xi = yi, for all
1 ≤ i ≤ m.

The basis B used to create a DNA chip relates to the capacity of the chip
in interesting ways. We observed that the arguments in (Phan & Garzon, 2004)
[20] show that the memory capacity of the noncrosshybridizing basis B is large
if (a) its oligo distribution as substrings of the input sequences is as far from
uniform as possible; and, (b) they cover the input targets as much as possible.
Specifically, we found that

92 M.H. Garzon et al.

Proposition 1. The probability of two different input sequences being indistin-
guishable from each other is

P (XB = YB|X �= Y) =

(
σ

x1,x2,···,xk

)
kσ

≤ 2σH(P)

kσ
=

1
2σ(log2 k−H(P)) (1)

where
∑k

i=1 xi =
∑k

i=1 yi = σ, and H(P) = −xi

σ

∑k
i=1

xi

σ , the Shannon entropy
of the distribution of B in X (and Y).

In other words, the capacity of the chip based on B is small if one of two
conditions are true:
(1) σ is small, or (2) the distribution of the bases as substrings of the inputs
sequences approaches random (i.e. H(P) approaches log2 k). When B covers the
input sequences completely, every substring of an input of the same length as
the |si|′s hybridizes to one of the bases, and consequently σ ≈ |X|

|i| , where |i|
is the length of basis oligo i. Conversely, when B covers the input sequences
sparsely, σ � |X|

|i| and the probability of two different input sequences being
indistinguishable increases.

Using these arguments, we can also provide a theoretical estimate of the
capacity of the DNA chip for volume signatures as defined above. The limit of
a DNA chip’s capacity is the number of distinguishable signatures that the chip
can possibly produce. Since the total number of occurrences of each basis strand
(xi’s) in X adds up to σ, we have the following conditions:

∀i, (xi ≥ 0), and x1 + x2 + · · ·+ xk = σ (2)

Using an elementary combinatorial argument, we can show that

Proposition 2. The optimal capacity a DNA chip is
(
σ+m−1

m−1

)
, if defined as the

maximum number of distinguishable point signatures.

As mentioned above, it is not the case that exposing an input target a number
of times will get an identical signature each time. In the current mode, where
the chip is not affixed but in solution, this sensitivity to distinguish input is
decreased. because the signatures of different but similar input sequences are
likely indistinguishable. The sensivity of the chip can be collectively captured
by two parameters r and rσ, regardless of the sources of noise. The capacity
of the chip is estimated indirectly via the size of a maximal set, called C, in
signature space. This set C can be thought of as a maximal collection of centers
of non-intersecting spheres with a fixed radius r. Hence, the sphere of radius
r specifically captures the uncertainty of telling signatures of similar sequences
apart; sequences whose signatures are within a radius r are not distinguishable.
The other parameter, rσ captures the fact that due to noise or other factors,
even when the bases cover well input sequences, the number of basis strands
hybridized to these inputs may not always be exactly σ. Hence, we assume that
the total number of basis strands hybridized to the input sequences vary from
σ − rσ to σ + rσ. On these considerations, we have established the following
estimate, where the set V consists of the signatures of all input targets that the
chip could distinguish under the sensitivity parameter r.

Sensitivity and Capacity of Microarray Encodings 93

Theorem 1. The maximal set C of signatures that are distinguishable on a
DNA-based (m, σ, r)-chip is of size |C| bounded by

|V |
v(2r + 1)

≤ |C| ≤ |V |
v(r)

(3)

A full proof is omitted. Briefly, these bounds are obtained by determining the
upper and lower bounds of a maximal code, in a similar fashion as the Hamming
and Gilbert-Varshamov bounds, respectively. Intuitively, the input sequences in
V include those whose signatures fall inside the hyperplane in equation 2 and
those input sequences whose signatures fall within a distance r of the hyperplane.

Lemma 1

|V | =
(

σ + m− 1
m− 1

)
+

rσ∑
i=1

2
(

σ + i + m− 1
m− 1

)
|V | is, however, not the same as |C|; i.e. it is not the capacity of the chip because
two signatures within a distance of r from each other are not disintiguishable.
To estimate |C|, we need to know, v(r), the number of signatures inside a sphere
of radius r.

Lemma 2

v(r) = 1 +
r∑

e=1

min{e,k}∑
i=1

2i

(
k

i

)(
e− i− 1

i− 1

)
Proof. A full proof is omitted for space reasons. Briefly, the sum accounts for all
points at distance exactly e from a center, for 0 ≤ e ≤ r. ��

4 Conclusions and Future Work

This paper gives experimental (in simulation) and theoretical analyzes of a re-
cenly proposed method (Garzon and Deaton, 2004) [18] to represent abiotic
information onto DNA molecules in order to make processing data at massive
scales efficient and scalable. The mapping is readily implementable with current
microarray technology (Stekel, 2003) [21], bypasses synthesis of all but a few
strands, and it’s promising for the tera- and peta-byte scopes volumes required
for a meaningful applications (more below.) Furthermore, we quantify the sen-
sitivity of the representations and show that it can be made robust despite the
uncertainty of the hybridization chemistry. Third, we show a theoretical analy-
sis of the capacity of this type of representation to code information, as well as
an information-theoretic estimate of the number of distinguishable targets that
can be representated on a given chip under reaction conditions characterized by
hybridization stringency parameters.

A direct application of this method in bioinformatics is a new approach to ge-
nomic analysis that increases the signal-to-noise ratio in microarrays commonly

94 M.H. Garzon et al.

used in bioinformatics. The method yields higher resolution and accuracy in
the analysis of genomica data, and only requires some processing in what can
be termed an “orthogonalization” procedure to the given set of targets/genes
before placing them on the microarrays. These advantages may be critical for
problems such as classification problems (disease/healthy data). More details
can be found in (Garzon et al., 2005) [12].

Further applications can be expected in the analysis and data mining of abi-
otic data, whose representation is automatically defined with respect to a given
basis set B. Given a noncrosshybridizing basis and adequate thresholds on the
stringency of reaction condition and acceptable levels of variability of the repre-
sentation (i.e., the capacity to distinguish inputs through their representations),
the signatures of arbitrary inputs are completely determined and require no pre-
computation or synthesis of any DNA strands, other than the basis strands. In
other words, this method provides a universal and scalable method to represent
data of any type. For example, because of the superposition (linearity) prop-
erty (module the variability implicit in the representation), a corpus of English
text can be automatically encoded just by finding representations for the words
in the basic vocabulary (words) in the corpus. Thereafter, the representation
of a previously unknown piece of text can be inferred by superposition of the
component words. There is evidence that these representations can be used for
semantic processing of text corpora in lieu of the original text [11]. Given the
newly available large basis sets [4, 5, 6] in the order of megasets, device with the
ability to process data for information extraction appear now within reach in a
relatively short time.

Acknowledgements

Much of the work presented here has been done in collaboration with a molecular
computing consortium that includes Russell Deaton, Jin Wu (U. of Arkansas),
Junghuei Chen, and David Wood (U. Delaware). Support from the National
Science Foundation grant QuBiC/EIA-0130385 is gratefully acknowledged.

References

1. E. Baum. Building an associative memory vastly larger than the brain. Science,
268:583–585, 1995.

2. H. Bi, J. Chen, R. Deaton, M. Garzon, H. Rubin, and D. Wood. A pcr-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. J. of Natural
Computing, 2003.

3. Derrel Blain and M. Garzon. Simulation tools for biomolecular computing. In:
(Garzon and Rose, 2004), 3:4:117–129, 2004.

4. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D.H. Wood, H. Bi, D. Carpenter, J.S.
Le, and Y.Z. Wang. Sequence complexity of large libraries of dna oligonucleotides.
In these proceedings, 2005.

5. J. Chen, R. Deaton, Max Garzon, D.H. Wood, H. Bi, D. Carpenter, and Y.Z.
Wang. Characterization of non-crosshybridizing dna oligonucleotides manufactured
in vitro. Proc. 8th Int Conf on DNA Computing DNA8.

Sensitivity and Capacity of Microarray Encodings 95

6. R. Deaton, J. Chen, H. Bi, and J. Rose. A software tool for generating non-
crosshybridizing libraries of dna oligonucleotides. pages 252–261, 2002. In: [14].

7. R.J. Deaton, J. Chen, H. Bi, M. Garzon, H.Rubin, and D.H. Wood. A pcr-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. In: (Hagiya
& Ohuchi, 2002), pages 105–114, 2002a.

8. M. Garzon, K. Bobba, and B. Hyde. Digital information encoding on dna. Springer-
Verlag Lecture Notes in Computer Science 2590(2003), pages 151–166, 2003b.

9. M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, and
E. Stevens Jr. On the encoding problem for dna computing. pages 230–237,
1997. Poster at The Third DIMACS Workshop on DNA-based Computing, U of
Pennsylvania. Preliminary Proceedings.

10. M. Garzon, P.I. Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, and
S.E. Stevens Jr. A new metric for dna computing. In: (Koza et al., 1997), pages
472–478, (1997a).

11. M. Garzon, A. Neel, and K. Bobba. Efficiency and reliability of semantic retrieval
in dna-based memories. pages 157–169, 2003.

12. M. Garzon, V. Phan, K. Bobba, and R. Kontham. Sensitivity analysis of microaary
data: A new approach. In Proc. IBE Conference, Athens GA., 2005. Biotechnology
Press.

13. M. Garzon and John Rose. Simulation tools for biomolecular computing. Special
Issue of the Journal of Natural Computing, 4:3, 2004.

14. M. Hagiya and A. Ohuchi. In Proc. 8th Int. Meeting on DNA-Based Computers.,
2002. Springer-Verlag Lecture Notes in Computer Science LNCS 2568. Springer-
Verlag.

15. T. Head, M. Yamamura, and S. Gal. Aqueous computing: Writing on molecules.
1999. Proceedings of the Congress on Evolutionary Computing (CEC’99).

16. T. Head, M. Yamamura, and S. Gal. Relativized code concepts and multi-tube dna
dictionaries. In Finite vs Infinite: COntrobutions to an eternal dilemma (Discrete
math and Theoretical Computer SCience), pages 175–186, 2001.

17. Garzon M, D. Blain, and A. Neel. Virtual test tubes for biomolecular computing.
In: (Garzon and Rose, 2004), 3:4:460–477, 2004.

18. Garzon M and R. Deaton. Codeword design and information encoding in dna
ensembles. J. of Natural Computing, 3:4:253–292, 2004.

19. D. Mount. Bioinformatics: sequence and genome analysis. Spring Harbor Lab
Press, MD, 2001.

20. V. Phan and M. Garzon. Information encoding using dna. Proc. 10th Int Conf on
DNA Computing DNA10, 2004.

21. D. Stekel. Microarray Bioinformatics. Cambridge University Press, 2003.

Simple Operations for Gene Assembly

Tero Harju1,4, Ion Petre2,3,4,
Vladimir Rogojin3,4, and Grzegorz Rozenberg5,6

1 Department of Mathematics, University of Turku,
Turku 20014, Finland

harju@utu.fi
2 Academy of Finland

3 Department of Computer Science, Åbo Akademi University,
Turku 20520, Finland

ipetre@abo.fi, vrogojin@abo.fi
4 Turku Centre for Computer Science,

Turku 20520, Finland
5 Leiden Institute for Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
6 Department of Computer Science, University of Colorado at Boulder,

Boulder, Co 80309-0347, USA
rozenber@liacs.nl

Abstract. The intramolecular model for gene assembly in ciliates con-
siders three operations, ld, hi, and dlad that can assemble any gene pat-
tern through folding and recombination: the molecule is folded so that
two occurrences of a pointer (short nucleotide sequence) get aligned and
then the sequence is rearranged through recombination of pointers. In
general, the sequence rearranged by one operation can be arbitrarily
long and consist of many coding and non-coding blocks. We consider in
this paper some simpler variants of the three operations, where only one
coding block is rearranged at a time. We characterize in this paper the
gene patterns that can be assembled through these variants. Our char-
acterization is in terms of signed permutations and dependency graphs.
Interestingly, we show that simple assemblies possess rather involved
properties: a gene pattern may have both successful and unsuccessful
assemblies and also more than one successful assembling strategy.

1 Introduction

The ciliates have a very unusual way of organizing their genomic sequences. In
the macronucleus, the somatic nucleus of the cell, each gene is a contiguous DNA
sequence. Genes are generally placed on their own very short DNA molecules.
In the micronucleus, the germline nucleus of the cell, the same gene is broken
into pieces called MDSs (macronuclear destined sequences) that are separated
by noncoding blocks called IESs (internally eliminated sequences). Moreover, the
order of MDSs is shuffled, with some of the MDSs being inverted. The structure
is particularly complex in a family of ciliates called Stichotrichs – we concen-
trate in this paper on this family. During the process of sexual reproduction,

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 96–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Simple Operations for Gene Assembly 97

ciliates destroy the old macronuclei and transform a micronucleus into a new
macronucleus. In this process, ciliates must assemble all genes by placing in the
orthodox order all MDSs. To this aim they are using pointers, short nucleotide
sequences that identify each MDS. Thus, each MDS M begins with a pointer
that is exactly repeated in the end of the MDS preceding M in the orthodox
order. The ciliates use the pointers to splice together all MDSs in the correct
order.

The intramolecular model for gene assembly, introduced in [9] and [27] consists
of three operations: ld, hi, and dlad. In each of these operations, the molecule folds
on itself so that two or more pointers get aligned and through recombination
two or more MDSs get combined into a bigger composite MDS. The process
continues until all MDSs have been assembled. For details related to ciliates and
gene assembly we refer to [15], [20], [21], [22], [23], [24], [25], [26] and for details
related to the intramolecular model and its mathematical formalizations we refer
to [3], [4], [7], [8], [11], [12], [13], [28], [29], as well as to the recent monograph [5].
For a different intermolecular model we refer to [17], [18], [19].

In general there are no restrictions on the number of nucleotides between
the two pointers that should be aligned in a certain fold. However, all available
experimental data is consistent with restricted versions of our operations, in
which between two aligned pointers there is never more than one MDS, see [5]
and [6]. We propose in this paper a mathematical model for simple variants of
ld, hi, and dlad. The model, in terms of signed permutations, is used to answer
the following question: which gene patterns can be assembled by the simple
operations? As it turns out, the question is difficult: the simple assembly is
a non-deterministic process, with more than one strategy possible for certain
patterns and in some cases, with both successful and unsuccessful assemblies.
We completely answer the question in terms of sorting signed permutations.
Here, a signed permutation represents the sequence of MDSs in a gene pattern,
including their orientation.

There is rich literature on sorting (signed and unsigned) permutations, both
in connection to their applications to computational biology in topics such as
genomic rearrangements or genomic distances, but also as a classical topic in
discrete mathematics, see, e.g., [1], [2], [10], [16].

2 Mathematical Preliminaries

For an alphabet Σ we denote by Σ∗ the set of all finite strings over Σ. For a
string u we denote dom(u) the set of letters occurring in u. We denote by Λ the
empty string. For strings u, v over Σ, we say that u is a substring of v, denoted
u ≤ v, if v = xuy, for some strings x, y. We say that u is a subsequence of
v, denoted u ≤s v, if u = a1a2 . . . am, ai ∈ Σ and v = v0a1v1a2 . . . amvm, for
some strings vi, 0 ≤ i ≤ m, over Σ. For some A ⊆ Σ we define the morphism
φA : Σ∗ → A∗ as follows: φA(ai) = ai, if ai ∈ A and φA(ai) = Λ if ai ∈ Σ \ A.
For any u ∈ Σ∗, we denote u|A = φA(u). We say that the relative positions of
letters from set A ⊆ Σ are the same in strings u, v ∈ Σ∗ if and only if u|A = v|A.

98 T. Harju et al.

Let Σn = {1, 2, . . . , n} and let Σn = {1, 2, . . . , n} be a signed copy of Σn. For
any i ∈ Σn we say that i is a unsigned letter, while i is a signed letter. Let ‖.‖ be
the morphism from (Σn ∪ Σn)∗ to Σ∗

n that unsigns the letters: for all a ∈ Σn,
‖a‖ = ‖a‖ = a. For a string u over Σn ∪Σn, u = a1a2 . . . am, ai ∈ Σn ∪Σn, for
all 1 ≤ i ≤ m, we denote its inversion by u = am . . . a2a1, where a = a, for all
a ∈ Σn.

Consider a bijective mapping (called permutation) π : Δ→ Δ over an alphabet
Δ = {a1, a2, . . . , al} with the order relation ai ≤ aj for all i ≤ j. We often
identify π with the string π(a1)π(a2) . . . π(al). The domain of π, denoted dom(π),
is Δ. We say that π is (cyclically) sorted if π = ak ak+1 . . . al a1 a2 . . . ak−1, for
some 1 ≤ k ≤ l.

A signed permutation over Δ is a string ψ over Δ∪Δ such that ‖ψ‖ is a permu-
tation over Δ. We say that ψ is (cyclically) sorted if ψ = ak ak+1 . . . al a1 a2 . . .
ak−1 or ψ = ak−1 . . . a2 a1 al . . . ak+1 ak, for some 1 ≤ k ≤ l. Equivalently, ψ is
sorted if either ψ, or ψ is a sorted unsigned permutation. In the former case we
say that ψ is sorted in the orthodox order, while in the latter case we say that ψ
is sorted in the inverted order.

3 The Intramolecular Model

Three molecular operations, ld, hi, dlad were conjectured in [9] and [27] for gene
assembly. We only show here the folding and the recombinations taking place
in each case, referring for more details to [5]. It is important to note that all
foldings are aligned by pointers, some relatively short nucleotide sequences at the
intersection of MDSs and IESs. The pointer at the end of an MDS M coincides (as
a nucleotide sequence) with the pointer in the beginning of the MDS following M
in the assembled gene.

3.1 Simple Operations

Note that all three operations ld, hi, dlad are intramolecular, that is, a single
molecule folds on itself to rearrange its coding blocks. Thus, since ld excises one
circular molecule, that circular molecule can only contain noncoding blocks (or,
in a special case, contain the entire gene, see [5] for details on boundary ld): we
say that ld must always be simple in a successful assembly. As such, the effect
of ld is that it combines two consecutive MDSs into a bigger composite MDS.
E.g., consider that MiMi+1 is part of the molecule, i.e., MDS Mi+1 succeeds Mi

being separated by one IES I. Thus, pointer i + 1 has two occurrences that
flank I. Then ld makes a fold as in Fig. 1 aligned by pointer i + 1, excises IES I
as a circular molecule and combines Mi and Mi+1 into a longer coding block.

In the case of hi and dlad, the rearranged sequences may be arbitrarily
large. E.g., the actin I gene in S.nova has the following sequence of MDSs:
M3M4M6M5M7M9M2M1M8, where MDS M2 is inverted. Here, pointer 3 has
two occurrences: one in the beginning of M3 and one, inverted, in the end of
M2. Thus, hi is applicable to this sequence with the hairpin aligned on pointer 3,
even though five MDSs separate the two occurrences of pointer 3. Similarly, dlad

Simple Operations for Gene Assembly 99

ld(i) ld(ii) ld(iii) hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Fig. 1. Illustration of the ld, hi, dlad molecular operation showing in each case: (i) the
folding, (ii) the recombination, and (iii) the result

is applicable to the MDS sequence M2M8M6M5M1M7M3M10M9M4, with the
double loops aligned on pointers 3 and 5. Here the first two occurrences of point-
ers 3, 5 are separated by two MDSs (M8 and M6) and their second occurrences
are separated by four MDSs (M3, M10, M9, M4).

As it turns out, all available experimental data is consistent with applications
of so-called “simple” hi and dlad: particular instances of hi and dlad where the
folds and thus, the rearranged sequences contain only one MDS. We define the
simple operations in the following.

An application of the hi-operation on pointer p is simple if the part of the
molecule that separates the two copies of p in an inverted repeat contains only
one MDS (and one IES). We have here two cases, depending on whether the first
occurrence of p is incoming or outgoing. The two possibilities are illustrated in
Fig. 2, where the MDSs are indicated by rectangles and their flanking pointers
are shown.

p q p r
δ1 δ2

q p r p
δ1 δ2

Fig. 2. The MDS/IES structures where the simple hi-rule is applicable. Between the
two MDSs there is only one IES.

p q r1 p q r2

δ1 δ2 δ3

r1 p q r2 p q
δ1 δ2 δ3

Fig. 3. The MDS/IES structures where the simple dlad-rule is applicable. Straight line
denotes one IES.

100 T. Harju et al.

An application of dlad on pointers p, q is simple if the sequence between the
first occurrences of p, q and the sequence between the second occurrences of p, q
consist of either one MDS or one IES. We have again two cases, depending on
whether the first occurrence of p is incoming or outgoing. The two possibilities
are illustrated in Fig. 3.

One immediate property of simple operations is that they are not universal,
i.e., there are sequences of MDSs that cannot be assembled by simple operations.
One such example is the sequence (2, b)(4, e)(3, 4)(2, 3). Indeed, neither ld, nor
simple hi, nor simple dlad is applicable to this sequence.

4 Gene Assembly as a Sorting of Signed Permutations

The gene structure of a ciliate can be represented as a signed permutation, de-
noting the sequence and orientation of each MDS, while omitting all IESs. E.g.,
the signed permutation associated to gene actin I in S.nova is 3 4 6 5 7 9 21 8. The
rearrangements made by ld, hi, dlad at the molecular level leading to bigger com-
posite MDSs have a correspondent on permutations in combining two already
sorted blocks into a longer sorted block. Assembling a gene is equivalent in terms
of permutations to sorting the permutation associated to the micronuclear gene
as detailed below.

When formalizing the gene assembly as a sorting of permutations we effec-
tively ignore the operation ld observing that once such an operation becomes
applicable to a gene pattern, it can be applied at any later step of the assembly,
see [3] and [7] for a formal proof. In particular, we can assume that all ld oper-
ations are applied in the last stage of the assembly, once all MDSs are sorted in
the correct order. In this way, the process of gene assembly can indeed be de-
scribed as a process of sorting the associated signed permutation, i.e., arranging
the MDSs in the proper order, be that orthodox or inverted.

The simple hi is formalized on permutations through operation sh. For each
p ≥ 1, shp is defined as follows:

shp(x (p + 1) p y) = x (p + 1) p y, shp(x p (p− 1) y) = x p (p− 1) y,
shp(x (p− 1) p y) = x (p− 1) p y, shp(x p (p + 1) y) = x p (p + 1) y,

where x, y are signed strings over Σn. We denote Sh = {shi | 1 ≤ i ≤ n}.
The simple dlad is formalized on permutations through operation sd. For

each p, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p y (p− 1) (p + 1) z) = x y (p− 1) p (p + 1) z,

sdp(x (p− 1) (p + 1) y p z) = x (p− 1) p (p + 1) y z,

where x, y, z are signed strings over Σn. We also define sdp as follows:

sdp(x (p + 1) (p− 1) y p z) = x (p + 1) p (p− 1) y z,

sdp(x p y (p + 1) (p− 1) z) = x y (p + 1) p (p− 1) z,

where x, y, z are signed strings over Σn. We denote Sd = {sdi, sdi | 1 ≤ i ≤ n}.

Simple Operations for Gene Assembly 101

We say that a signed permutation π over the set of integers Σn is sortable if
there are operations φ1, . . . , φk ∈ Sh∪Sd such that (φ1 ◦ . . . ◦ φk)(π) is a sorted
permutation. In this case Φ = φ1 ◦ . . .◦φk is a sorting strategy for π. Permutation
π is Sh-sortable if φ1, . . . , φk ∈ Sh and π is Sd-sortable if φ1, . . . , φk ∈ Sd. We say
that φi is part of Φ and also that φi is used in Φ before φj for all 1 ≤ j < i ≤ k.

Example 1. (i) Permutation π1 = 3 4 5 6 1 2 is sortable and a sorting strategy is
sh1(sh5(sh4(π1))) = 3 4 5 6 1 2. Permutation π′

1 = 3 4 5 6 12 is unsortable.
Indeed, no sh operations and no sd operation is applicable to π′

1.
(ii) Permutation π2 = 1 3 4 2 5 is sortable and has only one sorting strategy:

sh5(sd2(π2)) = 1 2 3 4 5.
(iii) There exist permutations with several successful strategies, even leading

to different sorted permutations. One such permutation is π3 = 3 5 1 2 4.
Indeed, sd3(π3) = 5 1 2 3 4. At the same time, sd4(π3) = 3 4 5 1 2.

(iv) The simple operations yield a nondeterministic process: there are per-
mutations having both successful and unsuccessful sorting strategies. One
such permutation is π4 = 1 3 5 7 9 2 4 6 8. Note that sd3(sd5(sd7(π4))) =
1 9 2 3 4 5 6 7 8 is a unsortable permutation. However, π4 can be sorted, e.g.,
by the following strategy: sd2(sd4(sd6(sd8(π4)))) = 1 2 3 4 5 6 7 8 9.

(v) Permutation π5 = 1 3 5 2 4 has both successful and unsuccessful sorting
strategies. Indeed, sd3(π5) = 1 5 2 3 4, a unsortable permutation. However,
sd2(sd4(π5)) = 1 2 3 4 5 is sorted.

(vi) Applying a cyclic shift to a permutation may render it unsortable. Indeed,
permutation 2 1 4 3 5 is sortable, while 5 2 1 4 3 is not.

(vii) Consider the signed permutation π7 = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16.
Operation sd may be applied to π7 on integers 3, 6, 9, 11, 13, and 15 . Doing
that however leads to a unsortable permutation:

sd3(sd6(sd9(sd11(sd13(sd15(π7)))))) = 1 5 6 7 2 3 4 8 9 10 11 12 13 14 15 16.

However, omitting sd3 from the above composition leads to a sorting strategy
for π7: let

π′
7 = sd6(sd9(sd11(sd13(sd15(π7))))) = 1 3 5 6 7 2 4 8 9 10 11 12 13 14 15 16.

Then sd2(sd4(π′
7)) is a sorted permutation.

Lemma 1. Let π be a signed permutation over Σn and i ∈ Σn ∪ Σn. Then we
have the following properties:

(i) If sdi is applicable to π, then sdi is applicable to π and sdi(π) = sdi(π).
(ii) If shi, where i is unsigned, is applicable to π, then shi−1 or shi+1 is applicable

to π and shi(π) = shi−1(π) or shi(π) = shi+1(π).

5 Sh-Sortable Permutations

We characterize in this section all signed permutations that can be sorted using
only the Sh operations. As it turns out, their form is easy to describe since the Sh
operations do not change the relative positions of the letters in the permutation.

102 T. Harju et al.

The following result characterizes all Sh-sortable signed permutations.

Theorem 1. A signed permutation π = p1 . . . pn, pi ∈ Σn ∪Σn, is sh-sortable
if and only if

(i) ‖π‖ = k (k + 1) . . . n 1 . . . (k − 1), for some 1 ≤ k ≤ n and there are i, j,
1 ≤ i ≤ k − 1, k ≤ j ≤ n such that pi and pj are unsigned letters, or

(ii) ‖π‖ = (k − 1) . . . 1 n . . . (k + 1) k, for some 1 ≤ k ≤ n and there are i, j,
1 ≤ i ≤ k − 1, k ≤ j ≤ n such that pi and pj are signed letters.

In Case (i), π sorts to k (k + 1) . . . n 1 . . . (k − 1), while in Case (ii), π sorts to
(k − 1) . . . 1n . . . (k + 1) k.

Example 2. (i) Permutation π1 = 56 78 1 23 4 is Sh sortable and an Sh-sorting
for π1 is sh4(sh3(sh1(sh8(sh5(sh6(π1)))))) = 5 6 7 8 1 2 3 4. Note that sh5 can
be applied only after sh6 and also, sh4 can be applied only after sh3.

(ii) Permutation π2 = 56 781 2 3 4 is unsortable, since we cannot unsign 1, 2, 3
and 4.

6 Sd-Sortable Permutations

We characterize in this section the Sd-sortable permutations. A crucial role in
our result is played by the dependency graph of a signed permutation.

6.1 The Dependency Graph

This is in general a directed graph with self-loops: there may be edges from a
node to itself. The dependency graph describes for a permutation π the order in
which Sd-operations can be applied to π.

For a permutation π over Σn we define its dependency graph as the directed
graph Gπ = (Σn, E), where (i, j) ∈ E, 1 ≤ i ≤ n, 2 ≤ j ≤ n− 1, if and only if
(j − 1)i(j + 1) ≤s π. Also, if (j + 1)(j − 1) ≤s π, then (j, j) ∈ E. Intuitively, the
edge (i, j) represents that the rule sdj may be applied in a sorting strategy for π
only after rule sdi has been applied. A loop (i, i) represents that sdi can never
be used in a sorting strategy for π. Note that Gπ may also have a loop on node
i if (i− 1)i(i + 1) ≤s π.

Example 3. (i) The graph associated to permutation π1 = 1 4 3 6 5 7 2 is shown
in Fig. 4(a). It can be seen, e.g., that sd3 can never be applied in a sorting
strategy for π and because of edge (3, 5), neither can sd5. Also, the graph
suggests that sd6 should be applied before sd4 and this one before sd2. Indeed,
sd2(sd4(sd6(π))) = 1 2 3 4 5 6 7.

(ii) The graph associated to permutation π2 = 1 4 3 2 5 is shown in Fig. 4(b).
Thus, the graph has a cycle with nodes 2 and 4. Indeed, to apply sd2 in a
strategy for π2, sd4 should be applied first and the other way around.

Simple Operations for Gene Assembly 103

6 5

7 4

1 32

a)

4

1 32

5

b)

Fig. 4. Dependency graphs (a) associated to π1 = 14 3 6 5 7 2 and (b) associated to
π2 = 14 3 2 5

Lemma 2. Let π be a unsigned permutation over Σn and Gπ = (Σn, E) its
dependency graph.

(i) There exists no sorting strategy Φ for π such that sdi and sdi+1 are both
used in Φ, for some 1 ≤ i ≤ n− 1.

(ii) If sdj is used in a sorting strategy for π and (i, j) ∈ E, for some i, j ∈ Σn,
then sdi is also used, before sdj, in the same sorting strategy.

(iii) If there is a path from i to j in Gπ, then in any strategy where sdj is used,
sdi is also used, before sdj.

(iv) If Gπ has a cycle containing i ∈ Σn, then sdi cannot be applied in any
sorting strategy of π.

(v) There is no strategy where sd1 and sdn can be applied.

6.2 The Characterization

We characterize in this subsection the Sd-sortable permutations. We first give
an example.

Example 4. Consider the dependency graph Gπ for π = 1 11 3 9 5 7 2 4 13 6 15 8 10
12 14 16, shown in Fig. 5. Based on Lemma 2 and Gπ we build a sorting strategy
Φ for π. We label all nodes i for which sdi is used in Φ by M and the other nodes
by U . Nodes labelled by M are shown with a white background in Fig. 5, while
nodes labelled by U are shown with black one.

By Lemma 2(iv)(v) operations sd1, sd8, sd10 and sd16 cannot be applied in
any strategy of π. Thus, 1, 8, 10, 16 ∈ U . Now, to apply operation sd2, since we
have edge (11, 2) in the dependency graph Gπ, it follows by Lemma 2(ii) that
sd11 must be applied in the same strategy as sd2. Thus, 2, 11 ∈M . According to
Lemma 2(i) we cannot apply sd2 and sd3 in the same strategy, thus we label 3
by U . To use sd4, since edge (9, 4) is present in the dependency graph, we need
to label both 4 and 9 by M . It follows then by Lemma 2(i) that 5 ∈ U . Then 6
can be labelled by M and then, necessarily, 7 ∈ U . Note now, that if 12 ∈ M ,
since (3, 12) is an edge in Gπ, then by Lemma 2(ii), 3 ∈ M , which contradicts
our labelling of 3. Thus, 12 ∈ U . Then 13 can be labelled by M and necessarily,
14 ∈ U . Also, 15 can now be labelled by M .

In this way we obtain M = {2, 4, 6, 9, 11, 13, 15} and U = {1, 3, 5, 7, 8, 10, 12,
14, 16}. Note that, since elements in U do not change their relative positions in
the strategy Φ we are building, π|U has to be sorted: π|U = 1 3 5 7 8 10 12 14 16.

104 T. Harju et al.

13

12

2

4
5

9

10

16
1

3

1114

6

7

15

8

Fig. 5. The dependency graph associated to π = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16

Our strategy Φ is now a composition of operations sdi, with i ∈ M . The
dependency graph shows the order in which these operations must be applied,
i.e., sd2 can be applied only after sd11 and sd4 can be applied only after sd9. In
this way, we can sort π by applying the following sorting strategy:

(sd2 ◦ sd4 ◦ sd7 ◦ sd15 ◦ sd13 ◦ sd11 ◦ sd9)(π) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16.

Clearly, our choice of M and U is not unique. For instance, we may have M =
{2, 4, 7, 9, 11, 13, 15} and U = {1, 3, 5, 6, 8, 10, 12, 14, 16} as shown in Fig. 6. The
strategy will be in this case sd2 ◦ sd4 ◦ sd6 ◦ sd15 ◦ sd13 ◦ sd11 ◦ sd9.

13

12

2

4
5

9

10

16
1

3

1114

6

7

15

8

Fig. 6. The dependency graph associated to π = 1 11 3 9 5 7 2 4 13 6 15 8 10 12 14 16

Simple Operations for Gene Assembly 105

The following result characterizes all Sd-sortable permutations.

Theorem 2. Let π be a unsigned permutation. Then π is Sd-sortable if and
only if there exists a partition {1, 2, . . . , n} = M ∪ U , such that the following
conditions are satisfied:

(i) π|U is sorted;
(ii) Nodes of M induce an acyclic dependency subgraph;
(iii) If k→ l is a dependency of π and l ∈M , then k ∈M ;
(iv) For any k ∈M , (k − 1)(k + 1) ≤s π;
(v) For any k ∈M , (k − 1), (k + 1) ∈ U .

Example 5. Consider permutation π = 1 3 8 10 5 7 2 9 11 4 6 12. Its dependency
graph is shown in Fig. 7. Based only on this graph and using Theorem 2 we
deduce a sorting strategy for π.

9

4

3

11

5

108

2

6
7

12

1

Fig. 7. The dependency graph associated to π = 13 8 10 5 7 2 9 11 4 6 12

It follows from Theorem 2(ii) that 7, 11 ∈ U . Then it follows from Theo-
rem 2(iii) that 3 ∈ U and from Theorem 2(v) that 1, 12 ∈ U . Since 1, 3 ∈ U , it
follows from Theorem 2(i) that 2 ∈ M . Also, since 3, 7, 11 ∈ U , it follows from
Theorem 2(i) that 4, 6, 8, 10 ∈ M and so, by Theorem 2(v), 5, 9 ∈ U . We have
now a complete labelling of Gπ :

M = {2, 4, 6, 8, 10}, U = {1, 3, 5, 7, 9, 11, 12}

Permutation π may be sorted now by a composition of operations sdi with
i ∈M .

The dependency graph imposes the following order of operations: sd4 after
sd8 and sd10, sd8 after sd2. The other operations can be applied in any order.
For instance, we can sort π in the following way:

(sd4 ◦ sd8 ◦ sd2 ◦ sd10 ◦ sd6)(π) = 1 2 3 4 5 6 7 8 9 10 11 12,

but also,

(sd6 ◦ sd4 ◦ sd8 ◦ sd2 ◦ sd10)(π) == 1 2 3 4 5 6 7 8 9 10 11 12.

106 T. Harju et al.

7 {Sd, Sh}-Sortable Permutations

We characterize in this section all signed permutations that can be sorted using
our operations. First we give some examples.

Example 6. (i) Signed permutations π1 = 2 1 4 35 and π2 = 1 5 24 3 6 are not
{Sd, Sh}-sortable. Indeed, just sh3 can be applied to π1, but it does not sort
it, and no operation can be applied to π2.

(ii) Signed permutations π3 = 9 2 1011 1 5 3 7 46 8 and π4 = 5 4 38 2 1 9 7 6 are
{Sd, Sh}-sortable:

(sh11 ◦ sh10 ◦ sd2 ◦ sd5 ◦ sh4 ◦ sd7)(π3) = 9 10 11 1 2 3 4 5 6 7 8

and
(sh4 ◦ sh2 ◦ sh3 ◦ sh3 ◦ sd8 ◦ sh6)(π4) = 5 4 3 2 1 9 8 7 6.

Theorem 3. No permutation π can be sorted both to an orthodox permutation
and to an inverted one.

The following result gives a duality property of sorting signed permutations.

Lemma 3. A signed permutation π is sortable to an orthodox permutation πo

if and only if its inversion π is sortable to the inverted permutation πo.

The following result is an immediate consequence of Theorem 3 and of Lemma 3.

Corollary 1. A permutation π is sortable if and only if either π or π is sortable
to an orthodox permutation.

Consider in the following only permutations π that are sortable to an orthodox
form. Let H be the set of all signed letters in π and let ΦH be a composition of
sh-operations applied on all integers in H . Let D ⊆ {1, 2, . . . , n} \H and ΦD a
composition of sd-operations applied on all integers in D. The dependency graph
Γπ,ΦH ,ΦD (or just ΓΦH ,ΦD when there is no risk of confusion) generated by ΦH ,
ΦD is the following:

– If j ∈ D (sdj is in ΦD) and (j−1)i(j+1) ≤s ‖π‖, then edge (‖i‖, j) ∈ ΓΦH ,ΦD .
Also, if (j − 1) ∈ H , then edge (j − 1, j) ∈ ΓΦH ,ΦD and if j + 1 ∈ H , then
edge (j + 1, j) ∈ ΓΦH ,ΦD .

– If i ∈ H (shi is in ΦH), then we have the following two cases:
– If shi is of the form (i− 1)i→ (i− 1)i, then (i− 1)i ≤s ‖π‖. For any j,

if (i− 1)ji ≤s ‖π‖, then (‖j‖, i) ∈ ΓΦH ,ΦD ;
– If shi is of the form i(i + 1)→ i(i + 1), then i(i + 1) ≤s ‖π‖. For any j,

if ij(i + 1) ≤s ‖π‖, then (‖j‖, i) ∈ ΓΦH ,ΦD .

Example 7. Consider π = 6 8 10 1 9 37 4 2 5. Clearly, H = {3, 5}. Assume we
apply Sd operations on 2, 7 and 9, thus D = {2, 7, 9}. Let us build the dependency
graph G = Γπ,ΦH ,ΦD , shown in Fig. 8.

We mark by dashed the nodes in H , by white the nodes in D and we mark by
black the rest of vertices. For each vertex i fromG we have the following edges (j, i):

Simple Operations for Gene Assembly 107

– Node 1: we do not have edges (j, 1), since 1 /∈ H and 1 /∈ D;
– Node 2: 2 ∈ D, 3 ∈ H , thus (3, 2) ∈ G. Since 1 9 3 ≤s π, we have also

(9, 2) ∈ G;
– Node 3: 3 ∈ H , 3 7 4 ≤s ‖π‖, thus (7, 3) ∈ G;
– Node 4: 4 /∈ H and 4 /∈ D, thus we have no edges (j, 4);
– Node 5: 5 ∈ H and 4 2 5 ≤s ‖π‖, thus (2, 5) ∈ G;
– Node 6: 6 /∈ H and 6 /∈ D, thus we have no edges (j, 6);
– Node 7: 7 ∈ D, 6 8 ≤ π, thus we have no edges (j, 7);
– Node 8: 8 /∈ H and 8 /∈ D, thus we have no edges (j, 8);
– Node 9: 9 ∈ D, 8 10 ≤ π, thus we have no edges (j, 9);
– Node 10: 10 /∈ H and 10 /∈ D, thus we have no edges (j, 10).

7

3

9 2

1

4

6

8

10

5

Fig. 8. The dependency graph associated to π = 68 10 1 9 3 7 4 2 5

Lemma 4. Let π be an Sh∪Sd-sortable permutation over Σn and Φ a sorting
strategy for π. Let ΓΦ be the dependency graph associated to π and Φ. Let φi = sdi

if i is unsigned in π and φi = shi if i is signed in π, for i ∈ Σn. Then we have
the following properties:

(i) If there is a path from i to j in ΓΦ and Φj is used in Φ, then φi is applied
before φj in strategy Φ.

(ii) The dependency graph ΓΦ is acyclic.

The following theorem gives the main result of this section.

Theorem 4. A permutation π is {Sh, Sd}-sortable to an orthodox form if and
only if there is a partition {1, 2, . . . , n} = D ∪ H ∪ U such that the following
conditions are satisfied:

(i) H is the set of all signed letters in π;
(ii) H sorts π |H∪U to an orthodox form with a strategy ΦH ;
(iii) D sorts ‖π‖ with a strategy ΦD;
(iv) The subgraph of ΓΦH ,ΦD induced by H ∪D is acyclic.

108 T. Harju et al.

5

16

2

4 3

Fig. 9. The dependency graph associated to π = 24 3 5 6 1

Example 8. Let π = 2 4 3 56 1. We build a sorting strategy for π based on The-
orem 4. Consider H = {2, 5}. Clearly, ‖π‖ = 2 4 3 5 6 1 is sorted by applying sd4.
Then let D = {4} and U = {1, 3, 6}. We verify now conditions of Theorem 4.
Consider π |H∪U= 235 6 1. Then sh2(sh5(π |H∪U)) = 2 3 5 6 1, a (circularly)
sorted string. The graph Γsh2 ◦ sh5,sd4 is shown in Fig. 9, where nodes in H are
marked by dashed, nodes in D are marked by white and nodes in U are marked
by black. Clearly, H ∪D induces an acyclic subgraph in Γsh2 ◦ sh5,sd4 . Thus, by
Theorem 4, π is sortable and a sorting strategy should be obtained by combining
sh2 ◦ sh5 and sd4 as indicated by the graph. Since (4, 2) is an edge in the graph,
it follows that sd4 must be applied before sh2. Also, since (5, 4) is an edge, it
follows that sh5 must be applied before sd4. Consequently, sh2 ◦ sd4 ◦ sh5 must
be a sorting strategy for π. Indeed, sh2(sd4(sh5(π))) = 2 3 4 5 6 1, a (circularly)
sorted permutation.

Example 9. Let π = 2 1 4 3 7 59 6 8 1011. We build a sorting strategy for π
based on Theorem 4. Clearly, H = {5, 10}. The unsigned permutation ‖π‖ =
2 1 4 3 7 5 9 6 8 10 11 can be sorted by sd2 ◦ sd4 ◦ sd9 ◦ sd7, thus D = {2, 4, 7, 9}.
Set U = {1, 3, 6, 8, 11}. The dependency graph G associated to π and H ∪ U is
shown in Fig. 10. Clearly, permutation π|H∪U = 1 3 56 8 1011 can be sorted to
cyclically sorted permutation 1 3 5 6 8 10 11 by applying sh5 and sh10. Also, H∪D

2

1

4

7

5

9

8

3

6

10

11

Fig. 10. The dependency graph associated to π = 21 4 3 7 5 9 6 8 10 11

Simple Operations for Gene Assembly 109

induces an acyclic subgraph in G. It follows then that π is sortable. Indeed, a
sorting strategy, as suggested by G, is sd2 ◦ sd4 ◦ sd7 ◦ sh5 ◦ sd9 ◦ sh10. Another
sorting strategy is sd2 ◦ sd4 ◦ sh5 ◦ sd9 ◦ sd7 ◦ sh10.

8 Discussion

We consider in this paper a mathematical model for the so called simple op-
erations for gene assembly in ciliates. The model we consider here is in terms
of signed permutations, but the model can also be expressed in terms of signed
double-occurrence strings, see [14].

Modelling in terms of signed permutations is possible by ignoring the molecu-
lar operation Ld that combines two consecutive gene blocks into a bigger block. In
this way, the process of combining the sequence of successive coding blocks into
one assembled gene becomes the process of sorting the initial sequence of blocks.

It is important to note now that in the molecular model we discus in this
paper, each operation affects one single gene block that gets incorporated into a
bigger block together with one (in case of Sh) or two (in case of Sd) other blocks.
In our mathematical model however, a gene block that was already assembled
from several initial blocks is represented as a sorted substring. For that reason,
although the molecular operations only displace one block, our model should
allow the moving of longer sorted substrings. A mathematical theory in this
sense looks challenging. We consider in this paper the simplified variant where
our formal operations can only move one block (one letter of the alphabet) at a
time. Note however that the general case may in fact be reduced to this simpler
variant in the following way: in each step of the sorting, we map our alphabet
into a smaller one by denoting each sorted substring by a single letter such that
the new string has no sorted substrings of length at least two (this mimics of
course the molecular operation Ld).

Deciding whether a given permutation is Sh∪Sd-sortable is of course trivial:
simply test all possible sorting strategies. The problem of doing this efficiently,
perhaps based on Theorems 2 and 4 remains open.

Acknowledgments. The authors were supported by the European Union
project MolCoNet, IST-2001-32008. T. Harju gratefully acknowledges support
by Academy of Finland, project 39802. I. Petre gratefully acknowledges sup-
port by Academy of Finland, projects 203667 and 108421, V. Rogojin gratefully
acknowledges support by Academy of Finland, project 203667. G. Rozenberg
gratefully acknowledges support by NSF grant 0121422.

References

1. Berman, P., and Hannenhalli, S., Fast sorting by reversals. Combinatorial Pattern
Matching, Lecture Notes in Comput. Sci. 1072 (1996) 168–185.

2. Caprara, A., Sorting by reversals is difficult. In S. Istrail, P. Pevzner and M. Wa-
terman (eds.) Proceedings of the 1st Annual International Conference on Compu-
tational Molecular Biology (1997) pp. 75–83.

110 T. Harju et al.

3. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Formal
systems for gene assembly in ciliates. Theoret. Comput. Sci. 292 (2003) 199–219.

4. Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg, G., Characterizing the mi-
cronuclear gene patterns in ciliates. Theory of Comput. Syst. 35 (2002) 501–519.

5. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G., Compu-
tation in Living Cells: Gene Assembly in Ciliates, Springer (2003).

6. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and simple
operations for gene assembly in ciliates. In: V. Mitrana and C. Martin-Vide (eds.)
Words, Sequences, Languages: Where Computer Science, Biology and Linguistics
Meet, Kluwer Academic, Dortrecht, (2001) pp. 329–342.

7. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., String and graph
reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12
(2001) 113–134.

8. Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Circularity and
other invariants of gene assembly in cliates. In: M. Ito, Gh. Păun and S. Yu (eds.)
Words, semigroups, and transductions, World Scientific, Singapore, (2001) pp.
81–97.

9. Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects of
gene (un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evolution
as Computation, Springer, Berlin, Heidelberg, New York (2001) pp. 216–256.

10. Hannenhalli, S., and Pevzner, P. A., Transforming cabbage into turnip (Polynomial
algorithm for sorting signed permutations by reversals). In: Proceedings of the 27th
Annual ACM Symposium on Theory of Computing (1995) pp. 178–189.

11. Harju, T., Petre, I., Li, C. and Rozenberg, G., Parallelism in gene assembly. In:
Proceedings of DNA-based computers 10, Springer, to appear, 2005.

12. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: molecular oper-
ations. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in Theoretical
Computer Science, (2004).

13. Harju, T., Petre, I., and Rozenberg, G., Gene assembly in ciliates: formal frame-
works. In: G.Paun, G. Rozenberg, A.Salomaa (Eds.) Current Trends in Theoretical
Computer Science, (2004).

14. Harju, T., Petre, I., and Rozenberg, G., Modelling simple operations for
gene assembly, submitted, (2005). Also as a TUCS technical report TR697,
http://www.tucs.fi.

15. Jahn, C. L., and Klobutcher, L. A., Genome remodeilng in ciliated protozoa. Ann.
Rev. Microbiol. 56 (2000), 489–520.

16. Kaplan, H., Shamir, R., and Tarjan, R. E., A faster and simpler algorithm for
sorting signed permutations by reversals. SIAM J. Comput. 29 (1999) 880–892.

17. Kari, L., and Landweber, L. F., Computational power of gene rearrangement. In:
E. Winfree and D. K. Gifford (eds.) Proceedings of DNA Bases Computers, V
American Mathematical Society (1999) pp. 207–216.

18. Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s
solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting
on DNA-Based Computers, Philadelphia, PA (1998) pp. 3–15.

19. Landweber, L. F., and Kari, L., Universal molecular computation in ciliates. In:
L. F. Landweber and E. Winfree (eds.) Evolution as Computation, Springer, Berlin
Heidelberg New York (2002).

20. Prescott, D. M., Cells: Principles of Molecular Structure and Function, Jones and
Barlett, Boston (1988).

21. Prescott, D. M., Cutting, splicing, reordering, and elimination of DNA sequences
in hypotrichous ciliates. BioEssays 14 (1992) 317–324.

Simple Operations for Gene Assembly 111

22. Prescott, D. M., The unusual organization and processing of genomic DNA in
hypotrichous ciliates. Trends in Genet. 8 (1992) 439–445.

23. Prescott, D. M., The DNA of ciliated protozoa. Microbiol. Rev. 58(2) (1994)
233–267.

24. Prescott, D. M., The evolutionary scrambling and developmental unscabling of
germlike genes in hypotrichous ciliates. Nucl. Acids Res. 27 (1999), 1243 – 1250.

25. Prescott, D. M., Genome gymnastics: unique modes of DNA evolution and pro-
cessing in ciliates. Nat. Rev. Genet. 1(3) (2000) 191–198.

26. Prescott, D. M., and DuBois, M., Internal eliminated segments (IESs) of Oxytrichi-
dae. J. Eukariot. Microbiol. 43 (1996) 432–441.

27. Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations
for DNA processing in hypotrichous ciliates. Europ. J. Protistology 37 (2001)
241–260.

28. Prescott, D. M., and Rozenberg, G., How ciliates manipulate their own DNA – A
splendid example of natural computing. Natural Computing 1 (2002) 165–183.

29. Prescott, D. M., and Rozenberg, G., Encrypted genes and their reassembly in
ciliates. In: M. Amos (ed.) Cellular Computing, Oxford University Press, Oxford
(2003).

Counting Time in Computing with Cells

Oscar H. Ibarra1 and Andrei Păun2

1 Department of Computer Science,
University of California - Santa Barbara, Santa Barbara, CA 93106

ibarra@cs.ucsb.edu
2 Department of Computer Science/IfM, Louisiana Tech University,

P.O. Box 10348, Ruston, LA 71272
apaun@latech.edu

Abstract. We consider models of P systems using time either as the
output of a computation or as a means of synchronizing the hugely com-
plex processes that take place in a cell. In the first part of the paper,
we introduce and study the properties of “timed symport/antiport sys-
tems”. In the second part we introduce several new features for P sys-
tems: the association/deassociation of molecules (modeling for example
the protein-protein interactions), ion channel rules and gene activation
rules. We show that such timed systems are universal. We also prove
several properties concerning these systems.

1 Introduction

We continue the work on symport/antiport P systems [7], [8], [15] using a new
paradigm: time as the output of a computation. In recent years, several ap-
proaches have been undertaken considering time as part of a biological system’s
way of “computing”. We can mention here the work of W. Maass: he considered
a new way to compute with spiking neurons [12]. His model was based on the
observation that if considering only the frequency of the neuron’s firing signal
as a computational framework for the brain, then the brain itself would be very
slow computing using only 2-3 spikes per neuron in 150 ms. It is clear that other
information is transmitted through these spikes of the neurons. Maass considered
a new idea (that seems to be supported experimentally): that also the temporal
pattern of the spikes emitted by a neuron is important for the actual message
sent. Another feature studied by Maass is that during the “computation”, the
actual state of a neuron depends on the previous states that the neuron has
passed through; maybe even from the birth of the organism. In the current pa-
per we will define significant “configurations” for the system, using similar ideas
as in [12] in the sense that for a cell it is important whether it passes through a
few “important” configurations.

We also note that in the last year two papers considered the properties of
systems in which the rules can take different amounts of time to be completed.
Following this idea, in [5] and [14], the authors study the case when the time
required for “executing” rules in a system may change sometimes even unpre-
dictably. In such a setting it is an interesting question whether the cell can behave

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 112–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Counting Time in Computing with Cells 113

in a similar fashion for different times associated with rules; then several such
systems with timed rules are studied. In other words, the authors considered the
“time-free” devices; such systems will perform the same steps irrespective of the
different time lengths associated with each rule in the system. We will follow a
similar idea of timing each rule in such a system and propose a new model of P
systems in Section 3, but we devise the new model to be closer to cell biology
and useful from a cell-simulation point of view: our definition will consider the
case when each rule has a specified duration for the reaction they model (which
can be determined experimentally).

In this paper, we consider another way of outputting the result of the com-
putation of a P system. The idea originates in [18] as Problem W; the novelty is
that instead of the “standard” way to output, like the multiplicities of objects
found at the end at the computation in a distinguished membrane as it was de-
fined in the model from [15], it seems more “natural” to consider certain events
(i.e., configurations) that may occur during a computation and to relate the
output of such a computation with the time interval between such distinguished
configurations. Our system will compute a set of numbers like in the case of
“normal” symport/antiport [15], but the benefit of the current setting is that
the computation and the observance of the output are now close to the biology
and to the tools used for cell biology. The model of the “timed” P system that
we investigate here is the symport/antiport P system. This has been a popular
model that has been accepted by the research community immediately after its
introduction. Symport/antiport systems are now a very successful model for P
systems due to their simplicity and the fact that they observe the basic phys-
ical law of matter conservation (the system computes by communication: the
objects are not created nor destroyed, but rather only moved in the system).
Here, we are studying another way of viewing the output of such a system; the
motivation comes from the fact that cells can become fluorescent if, for example,
some types of proteins with fluorescence properties are present in the cells. Such
a fluorescent “configuration” of a cell will be the configuration that starts the
clock used for the output. Even more interesting (making our definition a very
natural way of viewing the output of a system) is the fact that there are tools
currently used by researchers in cell biology that can detect the fluorescence of
each cell individually. The procedure is performed by a device which can check
one cell at a time for fluorescence and can automatically decide to put the cell in
either the test-tube containing the fluorescent cells or in the test-tube contain-
ing the non-fluorescent cells. The procedure does not destroy the cells, meaning
that the same process can be performed repeatedly for a given cell computation.
Such an automated technique for viewing the output of a computation using
cells is highly desirable since it holds the promise of fast readouts of the com-
putations (in contrast with manual “readouts” that could take several days, see
for example the well-known Adleman’s experiment, [1]).

The main idea of the new definition is that one has a colony of cells; each
cell in the colony having the same (nondeterministic) program that performs
a computation. There is a configuration of the system that gives the cell a

114 O.H. Ibarra and A. Păun

fluorescence, property that can be detected by devices such as fluorescence acti-
vated cell sorters, in short FACS. Such a device takes the input test-tube (that
contains our colony of cells) and splits it into cells that are not fluorescent yet
and cells that are fluorescent. The cells that become fluorescent at some time t
(i.e. are detected to be fluorescent for the first time) will have a timer associated
to their test-tube that starts “ticking”, and will be continuously checked whether
they are still in the fluorescent state or not. We will consider the moment that
a cell is no longer fluorescent as the moment when we receive the “stop clock”
signal, and the system outputs the value computed by the cell to be the time
interval when the cell was fluorescent and the instant when it is no longer fluores-
cent. In this way, by using a FACS one can obtain the output of the computation
of such a P system automatically (we consider that it is a easy task to design a
system which feeds back the fluorescent test-tube(s) into the FACS incrementing
a counter/timer at each feedback, and writing on some medium the content of
the counter if a cell was detected to be no longer fluorescent). In other words, we
will “output” the duration in the number of “clock cycles” during which the cell
was fluorescent. Such a system could output the computation of an entire colony
of cells, not only the computation of a single cell. This gives another order of
parallelism to our setting which is another strongly desirable feature.

2 Timed Symport/Antiport Systems

We will use a modified definition than the one in [15]; instead of specifying the
output region where the result of the computation will be “stored” in a halting
computation, we specify two relations Cstart and Cstop (which are computable
by multicounter machines) that need to be satisfied by the multisets of objects
in the membrane structure at two different times during the computation.

�

�

�

�

�

�

�

�

�

�

�

	�
�

�
	

�

�

�

�

�
�

�
�

�

�

�

�

�
�

���

�
�
��

�
�

���

membrane

��	

skin elementary membranemembrane

region

�
��������

�
�

���

1 2

3

4
5

6

7

8

9

Fig. 1. A membrane structure

Counting Time in Computing with Cells 115

An important observation is the fact that we will not require the cell to “stop
working” when reaching the result; i.e. we will not require the strong restriction
that the system reach a halting configuration for a computation to have a result.

Before progressing further we give some basic notions used in the remainder
of the paper; the language theory notions used but not described are standard,
and can be found in any of the many monographs available, for instance, in [19].

A membrane structure is pictorially represented by a Venn diagram (like the
one in Figure 1), and it will be represented here by a string of matching paren-
theses. For instance, the membrane structure from Figure 1 can be represented
by [1[2]2[3]3[4[5]5[6[8]8[9]9]6[7]7]4]1.

A multiset over a set X is a mapping M : X −→ N. Here we always use
multisets over finite sets X (that is, X will be an alphabet). A multiset with a
finite support can be represented by a string over X ; the number of occurrences
of a symbol a ∈ X in a string x ∈ X∗ represents the multiplicity of a in the
multiset represented by x. Clearly, all permutations of a string represent the
same multiset, and the empty multiset is represented by the empty string, λ.

We will use symport/antiport rules1; mathematically, we can capture the idea
of symport by considering rules of the form (ab, in) and (ab, out) associated with
a membrane, and stating that the objects a, b can enter, respectively, exit the
membrane together. For antiport we consider rules of the form (a, out; b, in),
stating that a exits and at the same time b enters the membrane.

Based on rules of this types, we modify the definition from [15] to introduce
the model of a timed symport/antiport system as a construct,

Π = (V, μ, w1, . . . , wm, E, R1, . . . , Rm, Cstart, Cstop), where :

– V = {a1, ..., ak} is an alphabet (its elements are called objects);
– μ is a membrane structure consisting of m membranes, with the membranes

(and hence the regions) bijectively labeled with 1, 2, . . . , m; m is called the
degree of Π ;

– wi, 1 ≤ i ≤ m, are strings over V representing multisets of objects associated
with the regions 1, 2, . . . , m of μ, present in the system at the beginning of
a computation;

– E ⊆ V is the set of objects that are continuously available in the environment
in arbitrarily many copies;

– R1, . . . , Rm are finite sets of symport and antiport rules over the alphabet
V associated with the membranes 1, 2, . . . , m of μ;

– At any time during the computation, a configuration of Π can be repre-
sented by a tuple α in Nmk, where the (i, j) component corresponds to the
multiplicity of symbol aj in membrane i.

– Cstart and Cstop are recursive subsets of Nmk (i.e., they are Turing machine
computable or, equivalently, computable by multicounter machines).

1 The definitions have their roots in the biological observation that many times two
chemicals pass at the same time through a membrane, with the help of each other,
either in the same direction, or in opposite directions; in the first case we say that we
have a symport, in the second case we have an antiport (we refer to [2] for details).

116 O.H. Ibarra and A. Păun

For a symport rule (x, in) or (x, out), we say that |x| is the weight of the rule.
The weight of an antiport rule (x, out; y, in) is max{|x|, |y|}. The rules from a set
Ri are used with respect to membrane i as explained above. In the case of (x, in),
the multiset of objects x enters the region defined by the membrane, from the
surrounding region, which is the environment when the rule is associated with the
skin membrane. In the case of (x, out), the objects specified by x are sent out of
membrane i, into the surrounding region; in the case of the skin membrane, this
is the environment. The use of a rule (x, out; y, in) means expelling the objects
specified by x from membrane i at the same time with bringing the objects
specified by y into membrane i. The objects from E (in the environment) are
supposed to appear in arbitrarily many copies since we only move objects from
a membrane to another membrane and do not create new objects in the system,
we need a supply of objects in order to compute with arbitrarily large multisets.
The rules are used in the non-deterministic maximally parallel manner specific
to P systems with symbol objects: in each step, a maximally parallel multiset of
rules is used.

In this way, we obtain transitions between the configurations of the system.
A configuration is described by the m-tuple of multisets of objects present in
the m regions of the system, as well as the multiset of objects from V − E
which were sent out of the system during the computation. It is important to
note that such objects appear only in a finite number of copies in the initial
configuration and can enter the system again (knowing the initial configuration
and the current configuration in the membrane system, one can know precisely
what “extra” objects are present in the environment). On the other hand, it
is not necessary to take care of the objects from E which leave the system
because they appear in arbitrarily many copies in the environment as defined
before (the environment is supposed to be inexhaustible, irrespective how many
copies of an object from E are introduced into the system, still arbitrarily many
remain in the environment). The initial configuration is α0 = (w1, . . . , wm). Note
that (w1, ..., wm) = (s11, s12, ..., s1k, ...sm1, sm2, ...smk), i.e., a tuple in Nmk. A
sequence of transitions is called a computation.

Let us now describe the way this systems “outputs” the result of its compu-
tation: when the system enters some configuration α satisfying Cstart, we start
a counter t that is incremented each time the simport/antiport rules are applied
in the nondeterministic parallel manner. At some point, when the system enters
some configuration β satisfying Cstop, we stop incrementing t, and the value of t
represents the output of the computation2. If the system never reaches a config-
uration in Cstart or in Cstop, then we consider the computation unsuccessful, no
output is associated with the computation of the system in that case. The set of all
such t’s (computed as described) is denoted by N(Π). The family of all sets N(Π)
computed by systems Π of degree at most m ≥ 1, using symport rules of weight at
most p and antiport rules of weight at most q, is denoted by NTPm(symp, antiq)
(we use here similar notations with the definitions from [15]).

2 By convention, in the case when a configuration α is reached that satisfies both Cstart

and Cstop, then we consider that the system has computed the value 0.

Counting Time in Computing with Cells 117

We emphasize the implicit fact in the definition of Π , that we assume that
Cstart and Cstop are recursive. Some interesting cases are when Cstart and Cstop:

– are exactly Nmk (i.e., they are trivial, as they consist of all the tuples);
– are computable by deterministic multicounter machines (i.e., recursive);
– are Presburger relations.

Details about P systems with symport/antiport rules can be found in [15];
a complete formalization of the syntax and the semantics of these systems
is provided in [17] where reachability of symport/antiport configurations was
discussed.

After defining the new way of considering the time of a computation performed
by such a system it is a natural question to ask whether the new definition is
powerful enough so that it can carry out universal computation. First we men-
tion a recent result for a very special case where Cstart consists only of the initial
configuration of the system, and Cstop consists of all halting configurations. For
this case, it was shown in [6] that the set of all times (i.e., intervals between the
initial configuration and halting configurations) is recursive making such systems
not universal. In light of this result, the proof of universality for our system be-
comes an interesting contrast. We note that the result in [6] is also in surprising
contrast to various results in the literature, where most of the P systems defined
so far have been proven to be powerful enough to be universal. We expected to
obtain a universality result using similar techniques used for proving the uni-
versality of “regular” symport/antiport P systems, and indeed, as the following
theorem shows, we are able to prove the universality of timed symport/antiport
systems with 3 membranes and symport/antiport rules of minimal weight, as
well as universality of one membrane and antiport of weight 2.

Theorem 1. Using minimal restrictions3 on the multiplicities of the objects for
the Cstart, Cstop rules we have NRE = NTPm(symr, antit), for (m, r, t) ∈
{(1, 0, 2), (3, 1, 1)}.

Proof. We use a modification of the construction described in [20] and used for
proving NRE′ = NOP3(sym1, anti1). It is worth noting that the result from
[20] is computing NRE′ = NRE −{0, 1, 2, 3, 4}, thus the best result for regular
symport/antiport is still considered to be the one from [9] where it was shown
that NRE = NOP4(sym1, anti1). With the help of the timed symport/antiport
we will prove that three membranes and minimal symport/antiport are universal
by computing exactly NRE.

We will give in the following our construction following the ideas from [20]
and [8]. We consider a counter automaton [13] a construct M = (Q, C, R, q0, f)

3 By minimal restrictions on multiplicities we mean the fact that for each object
and each membrane, the Cstart, Cstop rules will impose either a fixed multiplicity
(for example 5) or not impose any restrictions for the object. For example Cstart

containing s2,3 = 5 means that the third object has to appear in exactly 5 copies in
membrane 2. On the other hand, by s6,2 = i, i ≥ 0 we mean that the second object
can have any multiplicity in the membrane 6.

118 O.H. Ibarra and A. Păun

where C is the set of n + 1 counters denoted by c0, . . . , cn and c0 is the output
counter of the automaton. We will construct a timed symport/antiport system
Π that generates the set of numbers L(M) as follows:

Π = (V, [1[2[3]3]2]1, w1, w2, w3, E, R1, R2, R3, Cstart, Cstop), where:

V = {I1, I1, I2, I3, I4,∞1,∞2,∞3,∞4, P, t, t′, t′′, t, t
′
, t

′′} ∪ {ci, 0i |
0 ≤ i ≤ n} ∪ {qr, qr′ | (q → r, X) ∈ R for X ∈ {i+, i−, i = 0, λ}},

w1 = I1I1, I2I3∞1∞2∞2
4, w2 =∞1∞2∞2

3tP0001 . . . 0n, w3 = t′,

E = {qr, qr′ | (q → r, X) ∈ R for X ∈ {i+, i−, = 0, λ}} ∪ {I4, t
′
, t

′′}
∪ {ci | 0 ≤ i ≤ n},

Ri = Rini
i ∪Rsim

i ∪Rtimer
i , for 1 ≤ i ≤ 3 where Rτ

i ,

where τ ∈ {ini, sim, timer} are defined as in the following:
Rini

1 = {(qr′, in; I1, out) | (q → r, X) ∈ R, X ∈ {i+, i−, = 0, λ}} ∪ {(I1, in)}
∪ {(cj , in; I1, out) | 0 ≤ j ≤ n} ∪ {(I4, in; I1, out), (I1, in), (I3, out)},

Rini
2 = {((qr′, in; I2, out) | (q → r, X) ∈ R, for an operation X} ∪ {(I2, in),

(I3, in;∞2, out), (I4, in; I3, out), (I1, in; I4, out), (∞4, in;∞4, out),
(I1, in; I5, out), (∞4, in; I4, out), (∞1, in;∞1, out), (∞2, in;∞2, out)},

Rini
3 = {(qr′, in; I3, out) | (q → r, X) ∈ R, for some X} ∪ {(I3, in),

(∞3, in; I3, out), (I1, in; I5, out), (I2, in; I1, out), (∞3, in;∞3, out)},
Rsim

1 = {(q0q, in; I5, out), (rs, in; qr′, out) | q0, q, r, s ∈ Q and (q0 → q, X),
(q → r, Y), (r → s, Z) ∈ R for some counter operations X, Y, Z},

Rsim
2 = {(rs, in), (ci, in; rs′, out) | for (r → s, i+) ∈ R} ∪ {(rs, in; ci, out),

(rs′, out) | (r → s, i−) ∈ R} ∪ {(rs, in), (rs′, out) | (r → s, λ) ∈ R}
∪ {(rs, in; 0i, out), (0i, in; ci, out), (0i, in; rs′, out) | (r → s, i = 0) ∈ R},

Rsim
3 = {(rs, in; rs′, out) | (r → s, X) ∈ R, for a counter operation X},

Rtimer
1 = {(t, in; qf ′, out) | for f the final state}

∪ {(t′, in; t, out), (t′′, in; t′, out), (t′′, in; t′′, out)},
Rtimer

2 = {(t, in; t, out), (t′, in; t′, out), (t′′, in)},
Rtimer

3 = {(t, in; t′, out), (t′, in), (t′′, in), (P, in; t′, out), (c0, in; t′, out),

(c0, in, t
′′
, out)}.

We will give the rules in Cstart and Cstop in the following format: for each
membrane i we will give a rule rα

i , α ∈ {start, stop} associated with that
membrane as a sequence of letters each having their multiplicity expressed as
the exponent; they will give the exact multiplicities of the objects needed to
reach the respective configuration. If an object is not “mentioned” for such a
rule associated with a membrane, then we assume that there is no restriction
on the multiplicity of that object in that membrane to satisfy the rule Cα. If an
object has no exponent, then we assume it has to appear in the configuration

Counting Time in Computing with Cells 119

exactly one time (i.e. it is considered to have exponent 1). We are now ready to
give the start and stop rules for configurations:

Cstart : rstart
1 =∞1∞2

2∞2
4; rstart

2 =∞1∞2
3t

′′; rstart
3 = c0

0tP t
′
.

Cstop : rstop
1 = rstop

3 = λ; rstop
2 = c0

0.

We will explain briefly the work of the system: from the initial configuration Π
will go through three phases of the computation; in the first phase (Initialization)
the system will bring in from the environment an arbitrary number of objects
qr′4 and cj that will be used later in the simulation phase. Most of the rules are
defined for the initialization phase; such a big number of rules was needed to
ensure that only if the system is following a “correct” path in the computation
a result is produced. The next phase is the actual simulation of the counter
automaton (with the use of the objects brought in the system in the previous
phase); the two major phases mentioned before are similar to the proofs from
[3], [11], [4], [9], [20], the reader can see a detailed explanation of the usage of the
rules from Rini

i and Rsim
i in [20]. We now pass to describing the final stage of the

simulation, the actual output of the contents for the counter c0 using the time
between a configuration α satisfying the rule Cstart and another configuration β
satisfying the rules from Cstop.

It is easy to see (for more details we refer to [20]) that, only in the case of
a successful simulation, the repartition of the objects in the system will satisfy
the rule Cend sim : r1 = ∞1∞2

2∞2
4F, r2 = ∞1∞2

3tP, r3 = t′ where F ∈ {qf ′ |
q ∈ Q}, configuration that has also the property that in membrane 2 there are
i copies of the object c0 where i is the actual result of the computation.

It is clear that we need to go from Cstart to Cstop in exactly i steps. To do
this, we perform a few steps of “pre-work” by bringing in the second membrane
t
′ and then also t

′′, that will move the objects c0 into membrane 3 one copy for
each maximally parallel application of the rules.

Let us describe the “flow” of time in the system starting the end of the
simulation phase (the object qf ′ reaches membrane 1). In that moment qf ′

is replaced with t in the membrane 1 by the rule (t, in; qf ′, out) ∈ R1 and
then t enters membrane 2 and sends out in membrane 1 t: (t, in; t, out) ∈ R2.
At the next step two rules can be applied: (t′, in; t, out) in membrane 1 and
(t, in; t′, out) in membrane 3. Next t

′ moves into membrane 2 while t′ reaches
membrane 1: (t′, in; t′, out) ∈ R2 so that at the next step t

′ finally arrives in
membrane 3 by (t′, in) ∈ R3. During this last step t′ is replaced by the rule
t′′: (t′′, in; t′, out) ∈ R1 applicable in membrane 1. Since t

′ is used to move the
c0 objects from membrane 2 into membrane 3, it can start doing this by using
the rule (c0, in; t′, out) ∈ R3, but this would mean that the system would never
reach a configuration satisfying Cstart since at least one copy of c0 would be
present in membrane 3 and would never be removed. Instead, we can use the
rule (P, in; t′, out) ∈ R3 and bring in membrane 3 the symbol P 5 so that t

′′ can
4 We note that qr′ is a single object “keeping track” of two different states q, r ∈ Q.
5 The symbol P is used as a padding symbol.

120 O.H. Ibarra and A. Păun

finally come in membrane 2 and start the timer (the rule Cstart is satisfied by
the current configuration). One can note that both t

′ and t
′′ can move exactly

one copy of c0 from membrane 2 into membrane 3, and then re-enter membrane
3 so that they can perform this work once more at the next step. Since one copy
is moved for each step, the number of steps from Cstart and Cstop is exactly the
multiplicity of the symbol c0 in membrane 2. This in fact means that we proved
that NRE = NTP3(sym1, anti1). In the following we prove the second part of
the theorem, that one membrane and antiport of size two and no symport are
enough for universality:

To prove that NRE = NTP1(sym0, anti2), we follow the constructions from
[8] or [7] where a similar result for “regular” simport/antiport P systems was
obtained. The unique membrane will start with the start state as its only ob-
ject in the initial configuration, and the work of the counter automaton can be
simulated using the antiport rules in the following way:

For a rule (p → q, λ) ∈ R we will have in our timed P system the rule
(q, in; p, out); for an increment instruction on the counter ci: (p→ q, i+) we will
add the following antiport rule to R1: (qci, in; p, out). The decrement instruc-
tion can only be applied if the counter is non zero, (p → q, i−) is simulated by
(q, in; pci, out). Finally, (p → q, i = 0) is simulated by the rules (q′i, in; p, out);
(∞, in; ici, out), (q′′, in; q′, out), and (q, in; q′′i, out) in three steps: first we re-
place p by q′ and i, then i checks whether the register i is empty or not; if
nonempty, the special marker∞ is brought in and the computation cannot con-
tinue; but in the case when the register was empty the computation can continue
by expelling the two symbols q′′ and i together to bring in the next state q.

It is clear now that the register machine is simulated in this way only by using
antiport rules of weight 26. When the final state appears as the current state of
the simulation it is time to start “counting” the result; the rule Cstart can be
defined as rstart

1 = ∞0f . The rule (f, in; fc0, out) will expel one symbol c0 at
a time, thus if we define the rule Cstop ro be rstop

1 = fc0
0 we will have exactly

i steps between Cstart and Cstop, where i is the multiplicity of the symbol c0
(i.e. the contents of the output register) in the system. Following the previous
discussion the equality NRE = NTP1(sym0, anti2) was shown, which completes
the proof. ��
We will consider next other properties of the newly defined model of P systems
with time, such as the possibility of simulating timed systems by using normal
symport/antiport systems. We will also consider the case when the start/stop
configurations do not have any constrains on the object multiplicities, etc.

2.1 Other Results for Timed Simport/Antiport Systems

The following result shows that a timed system can be simulated by a “time-less”
system of the same type.
6 The result can be strengthened in the following way: the construction works even if

we only use antiport rules of dimensions (1, 2) or (2, 1) by adding to the only two
rules of dimension (1, 1) some padding symbols. For example the rule (q′′, in; q′, out)
can be padded with the extra symbol P in this way (q′′P, in; q′, out).

Counting Time in Computing with Cells 121

Theorem 2. For every timed symport/antiport system Π we can effectively con-
struct a (regular) symport/antiport system Π ′ which computes N(Π).

Proof. We start with a timed symport/antiport system Π and proceed to show
how to compute N(Π). Assume that Π has m membranes and an alphabet V
with k symbols. Let α0 be the initial configuration of Π . Let Mstart and Mstop

be deterministic multicounter machines which compute the relations Cstart and
Cstop, respectively.

Our procedure will be implemented on a nondeterministic multicounter (or
register) machine M . M will have a set C of mk counters. There is a special
counter, called T , which will be the timer. We also need counters to simulate
Mstart and Mstop. In addition, there are other counters, called D counters, whose
use will be explained later. Initially, all the counters are zero.

1. M starts by storing the initial configuration α0 in the set of counters C.
(Since the initial configuration is fixed, this can be incorporated in the finite-
state control of M).

2. M nondeterministically selects a maximally parallel multiset of rules applica-
ble to the configuration represented in C, collectively storing the “changes”
in the multiplicities of the symbols in the different membranes resulting from
the application of the rules in the auxiliary set of counters D. We will explain
the details of how this is done later.

3. Using D, M updates C, and resets the counters in D to zeros.
4. M nondeterministically guesses to either go back to step 2 or proceed to the

next step.
5. (When M enters this step, it is guessing that the configuration α represented

in the C counters is in Cstart). M simulates Mstart and checks that α is
indeed in Cstart. If so, M proceeds to the next step; otherwise, M halts in a
non-accepting state.

6. As in step 2, M nondeterministically selects a maximally parallel multiset of
rules applicable to the configuration represented in C, storing the changes in
the multiplicities of the symbols in the different membranes resulting from
the step in in the auxiliary set of counters D.

7. Using D, M updates C, resets the counters in D to zeros, and increments
the counter T by 1.

8. M nondeterministically guesses to either go back to step 6 or proceed to the
next step.

9. M simulates Mstop to check that the configuration β represented in the C
counters is in Cstop. If so, M halts in an accepting state; else it halts in a
non-accepting state. (Clearly, when M halts in an accepting state, the value
of counter T is the number of steps Π took to reach configuration β from α).

Since steps 6-9 are similar to steps 2-5, we just describe the details of how M
carries out step 2.

For every membrane i and the (unique) membrane j enclosing it, define two
sets of counters: The first set consists of counters d(i,j,a1), ..., d(i,j,ak), and they
will keep track of the multiplicities of the objects that are moved from membrane

122 O.H. Ibarra and A. Păun

i to membrane j as a result of the application of the rules in membrane i (as
described below). The other set of counters d(j,i,a1), ..., d(j,i,ak) will keep track
of the multiplicities of objects that are moved from membrane j to membrane
i. These sets of counters will be called D counters. At the start of step 2, the
D counters are reset to zero. Let Q be the set of all rules in the membrane
structure.

(a) M nondeterministically picks a rule r in Q. Note that r belongs to a unique
membrane, say i. First assume that i �= 1 (i.e., not the skin membrane).

(b) Clearly, r is of the form (u, out; v, in), where u or v, but not both, can be λ
(the null string).

(c) Let j be the membrane directly enclosing membrane i. M checks if r is
applicable by examining the contents of the counters in C corresponding to
the symbols in membrane i and the contents of the counters corresponding to
the symbols in membrane j, decrementing these counters appropriately, and
then updating the D counters for the pair (i, j) as a result of the application
of rule r. M then goes to step (a).
If r is not applicable, then M deletes r from Q. If Q is not empty, M goes
to the step (a); otherwise, M has applied a maximal set of rules, and the
counters in D can now be used to update the values of the counters in C.

For the case i = 1, the enclosing membrane is the environment, which has an
abundance of each symbol and, hence, M does not have to keep track of the
multiplicities of the symbols in the environment. Note also that multiplicity of
each symbol in V −E is bounded and its distribution in the membranes and the
environment (although is changing during the computation) can be recorded in
the finite-state control of M .

From the discussion above and the fact that a multicounter machine can
effectively be simulated by a symport/antiport system, the theorem follows. ��

For the trivial case when there are no constraints on the multiplicities of the
objects in the membranes, we have:

Theorem 3. For every timed symport/antiport system Π, with Cstart = Cstop

= Nmk, N(Π) is recursive.

Proof. The idea is the following. Given n, to determine if n is in N(Π), simulate
all computation paths of Π starting from its initial configuration (note that,
in general, there may be several paths because the system is nondeterministic).
Use a separate counter for each path to count the number of maximally parallel
steps in each path. If there is a path with n steps, then n is in N(Π). If each
path leads to a halting configuration before n steps, then n is not in N(Π). ��

Now, from Theorem 1, N(Π) is recursive for a timed symport/antiport sys-
tem even when Cstart and Cstop are very simple cases of Presburger relations.
However, from Theorem 3, if Cstart and Cstop are the trivial relations, N(Π)
is recursive. It follows that the only cases when N(Π) would be recursive is

Counting Time in Computing with Cells 123

when Π and Cstart and Cstop are restricted. An interesting case is when Π is
a timed symport/antiport system which operates in such a way that no symbol
is exported into the environment (thus there are no rules of the form (u, out)
and (u, out; v, in) in the skin membrane). Call this system a restricted sym-
port/antiport system. This type of (un-timed) system was studied in [17]. We
can show the following (due to the space restrictions we leave the proof to the
reader).

Theorem 4. Let Π be a restricted timed symport/antiport system and Cstart

and Cstop be Presburger relations. Then N(Π) can be accepted by a determin-
istic polynomial-time multicounter machine. (This means that the multicounter
machine, when given n, can decide whether or not n is in N(Π) in time poly-
nomial in n).

3 A P System Model of Timed Rules and Combinatorial
Gene Expression

The goal of this section is to define a P system model that is close to the biology of
the cell and, at the same time, keep some of the features of the P systems so that
it can be studied with the now widely used mathematical tools for P systems.
With a similar goal in mind we have recently defined a successful model in [15]
which has been adopted as one of the natural/biological models of P systems by
the research community; the model has become one of the major paradigms in
the field.

We now extend the model proposed in [15] with several new ideas: differ-
ent reactions can take different amounts of time; objects in the system can
bind/dissociate according to their physical properties (3D shape, polarities); the
cell contains its genetic material, enabling it to produce new objects according
to the blueprints provided in genes.

Another interesting modeling effort in the direction of defining more realistic,
i.e. more bio-compatible P systems was reported recently in the membrane com-
puting annual conference, where two papers [5], [14] were suggesting approaches
to make the P systems “time independent”. Both the authors take in consider-
ation rules in the P system that can take various amounts of time, in contrast
with the other definitions of P systems that are modeling the rules as taking
each 1 clock-cycle.

Our proposed model is different from the model in [5] or [14] by the fact
that we will have in the system the idea of binding two molecules together. We
are also interested in models that “behave” as close as possible to reality, in
contrast with the aforementioned papers that were focussing on finding systems
“time independent”; i.e. systems that have the same output even though the
time associated with a rule is changing.

Another novelty of our proposed model is the introduction of the genetic ma-
terial: one of the regions of the P system will be labeled nucleus, and will contain,
among other things, the genes of that cell. As far as we know, there are no other

124 O.H. Ibarra and A. Păun

P system models that are describing the interactions between various molecules
in the system and genes; especially gene activation process, gene activators, gene
repressors, etc.

The genes will be denoted by G1, G2, G3, . . . , Gn, and they will be ei-
ther activated or de-activated. Since it is still an ongoing debate in the biology
community about how exactly is the mRNA built from an activated gene, we
chose to model the process in the following way: genes are by default deacti-
vated, they become activated only when some specific activator molecules bind
to a gene. In that moment the gene is activated, and the mRNA is produced
and sent to cytoplasm to be translated into several copies of the protein. After
all this process takes place, we consider that the gene becomes deactivated and
some of its activator molecules (or all) have left the nucleus. If more activator
molecules are/were present in the nucleus, then at the next clock-cycle they can
start binding to the gene, and the gene is activated once more.

The model will contain the activator rules as well as repressor rules for each
gene plus, when activated, the gene will be able to produce new objects in the
system.

Definition 1. A genetic P system is a construct Π = (V, μ, G, wcyt, wER,
wnucleus, Rcyt, RER, Rnucleus), where

– V is the alphabet of Π representing the set of all possible molecules that can
appear in the system.

– μ gives the membrane structure of the system; the plasma membrane (labeled
cyt) contains two different sub-regions labeled with ER (for endoplasmic retic-
ulum) and nucleus. In standard membrane systems notation μ is written as
μ = [cyt[ER]ER [nucleus]nucleus]cyt.

– G is the set of genes for the cell.
– wcyt, wER, wnucleus are words over V that represent the initial multiplicities

of the objects in their corresponding regions in the system. Please note that
in the initial configuration we assume all the objects in the system to be “un-
bound” with any other object. We will call from now on as objects/molecules
elements from V and also complexes of bound together elements from V .
They will be written in the form 〈XY Z〉 when X, Y, Z ∈ V ; thus 〈XY Z〉
is a single object in the system.

– Rcyt, RER, Rnucleus are finite sets of rules associated with each of the three
regions defined by the P system. We will describe in the following the types
of rules that can be found in each of the three sets of rules.

The rules are of four different categories: general rules (g1, g2, g3), cytoplasm
rules (c1, c2), endoplasmic reticulum rules (e1, e2, e3, e4) and nucleus rules (n1,
n2, n3).

The general rules are specifying the types of rules that can appear in any
region of the cell; they model the binding/unbinding of molecules (g1, g2) and
the catalytic reactions from the cell (g3).

The cytoplasm rules can only be applied in cytoplasm; they are modeling the
creation of new proteins from mRNA by the ribosomes (c1) and the destruction
of proteins by the proteases (c2).

Counting Time in Computing with Cells 125

In the endoplasmic reticulum (ER) we have rules that model the movement of
objects between CYT and ER. We model the work of ion channels (e1), uniport
(e2), symport/antiport (e3/e4).

The last type of rules are the ones that can only appear in nucleus, they model
the work of activators/repressors binding to genes (n1, n2) and the transcription
of a gene followed by the expel of the mRNA into the cytoplasm (n3) so that
the protein-building mechanism (c1) can start.

The general rules in the cytoplasm, endoplasmic reticulum and nucleus will
have the forms:

g1. association (binding) rules: 〈X〉 + 〈Y 〉 →t 〈XY 〉 where X, Y ∈ V + and t
specifies the number of clock-cycles it takes for the binding to take place
for the specified molecules. It must be stressed the fact that the product
〈XY 〉 is the same with the product 〈Y X〉; we will write the products in the
lexicographic order.

g2. dissociation (unbinding) rules: 〈XY 〉 →t 〈X〉+ 〈Y 〉 where X, Y ∈ V + and t
specifies the number of clock-cycles required for the unbinding operation.

g3. catalysis rules: 〈X〉 + 〈Y 〉 →t 〈X〉 + 〈Z〉 where X, Y, Z ∈ V + and t speci-
fies the number of clock-cycles required for the enzyme 〈X〉 to perform the
catalysis.

We will apply the previous rules in a nondeterministically parallel manner with
the only remark that the binding rules have higher priority than other rules such
as the catalatic rules, ion channel rules, etc.; in this way the model accounts
(among other things) for the allosteric changes of enzymes.

The following types of rules will be associated only with the cytoplasm:

c1. creation of proteins by the ribosome: 〈An〉 →t 〈An−1〉+〈A〉l, where l ∈ {here,
in-ER, in-nucleus} for all 1 ≤ n, and A1 = A.

c2. destruction of objects: 〈PYu〉 →t 〈P 〉, where P, Yu ∈ V + and P is a protease
and Yu is a protein marked for destruction by ubiquitin.

The following types of rules will be associated only with the endoplasmic retic-
ulum:

e1. ion channels: 〈Ion〉 →t1 〈Ion〉, 〈Ion〉 →t2 〈Ion〉, 〈Ion〉 + 〈X〉 →t3 〈IonX〉,
〈IonX〉 →t4 〈Ion〉 + 〈X〉in/out where Ion, Ion, X ∈ V . The rules defined
for the ion channels take in consideration the fact that the channels have a
periodical transition between the on and off configurations.

e2. uniport: 〈Uni〉+〈X〉 →t 〈Uni〉+〈X〉out, or 〈Uni〉+〈X〉cyt →t 〈Uni〉+〈X〉in,
where Uni, X ∈ V and 〈X〉cyt means that the object X is in that moment
in the cytoplasm.

e3. symport: 〈Sim〉+〈XY 〉 →t 〈Sim〉+〈X〉out+〈Y 〉out, or 〈Sim〉+〈XY 〉cyt →t

〈Sim〉+ 〈X〉in + 〈Y 〉in, where Sim, X, Y ∈ V and 〈XY 〉cyt means that the
objects are in the cytoplasm.

e4. antiport: 〈Anti〉+〈X〉+〈Y 〉cyt →t 〈Anti〉+〈X〉out+〈Y 〉in where we have that
Anti, X, Y ∈ V and the subscript cyt specifies that the respective molecule
is in the cytoplasm.

126 O.H. Ibarra and A. Păun

The following types of rules will be associated only with the nucleus:

n1. activator/repressor binding to a gene: 〈A〉+ 〈Gi〉 →t 〈AGi〉 for A ∈ V + and
Gi ∈ G.

n2. more activators binding to the gene Gi: 〈A〉+ 〈BGi〉 →t 〈ABGi〉 for A, B ∈
V + and Gi ∈ G.

n3. gene activation and mRNA move to cytoplasm: 〈XGi〉 →t 〈Y Gi〉+ 〈Ak〉out,
where X, Y ∈ V ∗, A ∈ V , Y ⊆ X and k is the number of copies of the
protein A (codified in the mRNA) that will be produced by the ribosomes
in the cytoplasm.

One can note that the system is defined flexibly enough so that much more
biological processes can be expressed using the given rules. For example, the
phosphorylation reaction can be expressed with several objects in V using the
catalytic reaction of the type g3: 〈X〉+ 〈Y 〉 →t 〈X〉+ 〈Yp〉 and can be continued
for several steps: 〈X〉+ 〈Yp〉 →t′ 〈X〉+ 〈Ypp〉 by using other type g3 rules.

Remark. We assume that a complex of objects (several objects are bound to-
gether after a repeated use of rules of type g1) is working as a whole; thus if
we have the complex object 〈ABC〉, then a rule defined only for 〈AB〉 cannot
be applied to 〈ABC〉. This is due to the fact that the 3D shape of the complex
〈AB〉 can be changed dramatically by the binding with 〈C〉.

We note that the previous remark helps the rules n1, n2 simulate also the
work of the gene regulation repressors, since the gene cannot be activated if the
repressor is bound to it.

The rule allows for modeling the enzymatic regulation that takes place in cells:
if the enzyme 〈A〉 is catalyzing the reaction from 〈X〉 into 〈Y 〉 at some rate of
3 clock-cycles, we can write it as a rule of type g3: 〈A〉 + 〈X〉 →3 〈A〉 + 〈Y 〉.
Now, let us assume that the cell decides to down-regulate the enzyme to a ten
times slower speed by using the molecule 〈B〉. In this case we would model
the reactions using a binding rule 〈A〉 + 〈B〉 →2 〈AB〉, and a catalytic rule
〈AB〉+ 〈X〉 →30 〈AB〉+ 〈Y 〉.

We now briefly discuss the different types of output for the new model. The
first type of output of the system could be associated with the number of times
each rule of the type n3 is applied for each of the genes contained in a predefined
string w ∈ G∗ in a given amount of time. In other words, we are interested in
a specific number of genes, and we are looking at how many times these genes
have been activated. The system in this case can compute a vector of integer
values; the number of components and the order of the components being given
by the word w.

Another type of “termination” for the computation for such a system could
be viewed as a combination of activated genes at a given moment as well as
minimal multiplicities for several molecules in each component of the system.
Such a configuration could be viewed as a “final state” of the machinery. In that
moment one could use the first idea of the output of the system; i.e. counting
the number of activations for particular genes.

Counting Time in Computing with Cells 127

Yet another idea is to consider as we have done for timed symport/antiport
systems in Section 2 the time that passed between two distinguished configu-
rations as the the result of the computation. This method of considering the
computation of the system seems quite flexible and elegant. It does not require
a cell to “accumulate” a large quantity of a specific molecule that would encode
the output.

4 Final Remarks

In this paper, we considered (as in the previous papers that have been mentioned)
time as an “active” participant in a computation. We also reviewed two known
models – one using spiking neurons and the other, the time independent P
systems. We then defined and obtained several results concerning some new
models – the timed P system, P system with timed rules, and gene expression
models. For the newly introduced timed P systems we improved or matched
two of the best known results for “regular” symport/antiport P systems. We
are currently working on proving the remaining two results (NTP3(sim2, anti0)
and NTP2(sim3, anti0)). It is worth noting that the new feature of outputting
the result using time is more flexible than the previously considered methods,
thus the previous results could be even improved by using completely different
techniques that take advantage of the flexibility of the time as a framework of
outputting the result of a computation.

Acknowledgements

We would like to acknowledge the fruitful discussions with B. Tănasă (MIT)
and the insightful suggestions received from the anonymous referees. O. H. Ibarra
gratefully acknowledges the support in part by NSF Grants CCR-0208595, CCF-
0430945 and CCF-0524136; A. Păun gratefully acknowledges the support in
part by LA BoR RSC grant LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-
0414903 and CCF-0523572.

References

1. L.M. Adleman, Molecular Computation of Solutions to Combinatorial Problems,
Science 266 (1994), 1021–1024.

2. B. Alberts, Essential Cell Biology. An Introduction to the Molecular Biology of the
Cell, Garland Publ. Inc., New York, London, 1998.

3. F. Bernardini, M. Gheorghe, On the Power of Minimal Symport/Antiport, Work-
shop on Membrane Computing, A. Alhazov et al. (eds.), WMC-2003, Tarragona,
July 17-22, 2003, Technical Report N. 28/03, Research Group on Mathematical
Linguistics, Universitat Rovira i Virgili, Tarragona (2003), 72–83.

4. F. Bernardini, A. Păun, Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice, WMC03 revised papers in Lecture Notes in Computer Science 2933,
Springer (2004), 43–54.

128 O.H. Ibarra and A. Păun

5. M. Cavaliere, Towards Asynchronous P Systems, Pre-proceedings of the Fifth Work-
shop on Membrane Computing (WMC5), Milano (Italy), June 14-16, 2004, 161–173.

6. M. Cavaliere, R. Freund, Gh. Păun, Event–Related Outputs of Computations in
P Systems, personal communication, (manuscript).

7. R. Freund, A. Păun, Membrane Systems with Symport/Antiport: Universality Re-
sults, in Membrane Computing. Intern. Workshop WMC-CdeA2002, Revised Pa-
pers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in
Computer Science, 2597, Springer-Verlag, Berlin, 2003, 270–287.

8. P. Frisco, J.H. Hogeboom, Simulating Counter Automata by P Systems with Sym-
port/Antiport, in Membrane Computing. Intern. Workshop WMC-CdeA2002, re-
vised papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture
Notes in Computer Science, 2597, Springer-Verlag, Berlin, 2003, 288–301.

9. P. Friso, About P Systems with Symport/Antiport, Second Brainstorming Week
in Membrane Computing, Sevilla, February 2004, Technical Report 01/2004 of the
Research Group in Natural Computing, University of Sevilla, Spain, 2004, 224–236.

10. J. Hopcroft, J. Ulmann, Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, 1979.

11. L. Kari, C. Martin-Vide, A. Păun, On the Universality of P Systems with Minimal
Symport/Antiport Rules, Lecture Notes in Computer Science 2950, Berlin, (2004),
254–265.

12. W. Maas: Computing with Spikes. Spec. Iss. on Found. of Inf. Processing of
TELEMATIK, 8, 1 (2002), 32–36.

13. M.L. Minsky, Recursive Unsolvability of Post’s Problem of “Tag” and Other Topics
in Theory of Turing Machines, Annals of Mathematics, 74 (1961), 437–455.

14. D. Sburlan, Clock-free P Systems, Pre-proceedings of the Fifth Workshop on Mem-
brane Computing (WMC5), Milano (Italy), June 14-16, 2004, 372–383.

15. A. Păun, Gh. Păun, The Power of Communication: P Systems with Sym-
port/Antiport, New Generation Computing, 20, 3 (2002) 295–306.

16. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
17. Gh. Păun, M. Perez-Jimenez, F. Sancho-Caparrini, On the Reachability Problem

for P Systems with Symport/Antiport, Proc. Automata and Formal Languages
Conf., Debrecen, Hungary, 2002.

18. Gh. Păun, Further Twenty-six Open Problems in Membrane Computing, the Third
Brainstorming Meeting on Membrane Computing, Sevilla, Spain, February 2005.

19. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

20. G. Vazil, On the Size of P Systems with Minimal Symport/Antiport, Preproceed-
ings of International Workshop WMC04, Milan, June 2004, 422–431.

On Bounded Symport/Antiport P Systems�

Oscar H. Ibarra and Sara Woodworth

Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract. We introduce a restricted model of a one-membrane symport/antiport
system, called bounded S/A system. We show the following:

1. A language L ⊆ a∗
1...a

∗
k is accepted by a bounded S/A system if and only if

it is accepted by a log n space-bounded Turing machine. This holds for both
deterministic and nondeterministic versions.

2. For every positive integer r, there is an s > r and a unary language L that
is accepted by a bounded S/A system with s objects that cannot be accepted
by any bounded S/A system with only r objects. This holds for both deter-
ministic and nondeterministic versions.

3. Deterministic and nondeterministic bounded S/A systems over a unary in-
put alphabet are equivalent if and only if deterministic and nondeterministic
linear-bounded automata (over an arbitrary input alphabet) are equivalent.

We also introduce a restricted model of a multi-membrane S/A system, called
special S/A system. The restriction guarantees that the number of objects in the
system at any time during the computation remains constant. We show that for
every nonnegative integer t, special S/A systems with environment alphabet E
of t symbols (note that other symbols are allowed in the system if they are not
transported into the environment) has an infinite hierarchy in terms of the num-
ber of membranes. Again, this holds for both deterministic and nondeterministic
versions. Finally, we introduce a model of a one-membrane bounded S/A sys-
tem, called bounded SA acceptor, that accepts string languages. We show that the
deterministic version is strictly weaker than the nondeterministic version.

Clearly, investigations into complexity issues (hierarchies, determinism versus
nondeterminism, etc.) in membrane computing are natural and interesting from the
points of view of foundations and applications, e.g., in modeling and simulating
of cells. Some of the results above have been shown for other types of restricted
P systems (that are not symport/antiport). However, these previous results do
not easily translate for the models of S/A systems we consider here. In fact, in a
recent article, “Further Twenty Six Open Problems in Membrane Computing”
(January 26, 2005; see P Systems Web Page at http://psystems.disco.unimib.it),
Gheorghe Paun poses the question of whether the earlier results, e.g., concerning
determinism versus nondeterminism can be proved for restricted S/A systems.

Keywords: Symport/antiport system, communicating P system, Turing machine,
multihead two-way finite automaton, multicounter machine, hierarchy, determin-
istic, nondeterministic.

� This work was supported in part by NSF Grants CCR-0208595, CCF-0430945, and CCF-
0524136.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 129–143, 2006.
© Springer-Verlag Berlin Heidelberg 2006

130 O.H. Ibarra and S. Woodworth

1 Introduction

Membrane computing is a relatively new computing paradigm which abstracts the activ-
ities of biological cells to find a new model for computing. While humanity has learned
to compute mechanically within the relatively recent past, other living processes have
computed naturally for millions of years. One such natural computing process can be
found within biological cells. Cells consist of membranes which are used to contain,
transfer, and transform various enzymes and proteins in a naturally decentralized and
parallel manner. By modeling these natural processes of cells, we can create a new
model of computing which is decentralized, nondeterministic, and maximally parallel.

Using biological membranes as an inspiration for computing was first introduced by
Gheorghe Paun in a seminal paper [10] (see also [11, 12]). He studied the first mem-
brane computing model, called P system, which consists of a hierarchical set of mem-
branes where each membrane contains both a multiset of objects and a set of rules
which determine how these objects interact within the system. The rules are applied in
a nondeterministic and maximally parallel fashion. At each step of the computation, a
maximal multiset of rules is chosen nondeterministically (note that several instances of
a rule may be selected) and the rules applied simultaneously (i.e., in parallel). Maximal
here means that in each step, no additional rule instance not already in the multiset of
rules is applicable and could be added to the multiset of rules. The system is nondeter-
ministic because the maximal multiset may not be unique. The outermost membrane is
often referred to as the skin membrane and the area surrounding the system is referred
to as the environment. A membrane not containing any membrane is referred to as an
elementary membrane. As a branch of Natural Computing which explores new models,
ideas, and paradigms from the way nature computes, membrane computing has been
quite successful: many models have been introduced, most of them Turing complete.
(See http://psystems.disco.unimb/it for a large collection of papers in the area, and in
particular the monograph [12].) Due to the maximal parallelism inherent in the model,
P systems have a great potential for implementing massively concurrent systems in an
efficient way that would allow us to solve currently intractable problems (in much the
same way as the promise of quantum and DNA computing) once future biotechnology
gives way to a practical bio-realization. Given this potential, the Institute for Scien-
tific Information (ISI) has selected membrane computing as a fast “Emerging Research
Front” in Computer Science (http://esi-topics.com/erf/october2003.html).

One very popular model of a P system is called a symport/antiport system
(introduced in [9]). It is a simple system whose rules closely resemble the way mem-
branes transport objects between themselves in a purely communicating manner. Sym-
port/antiport systems (S/A systems) have rules of the form (u, out), (u, in), and (u, out;
v, in) where u, v ∈ Σ∗. Note that u, v are multisets that are represented as strings (the
order in which the symbols are written is not important, since we are only interested
in the multiplicities of each symbol). A rule of the form (u, out) in membrane i sends
the elements of u from membrane i out to the membrane (directly) containing i. A rule
of the form (u, in) in membrane i transports the elements of u into membrane i from
the membrane enclosing i. Hence this rule can only be used when the elements of u
exist in the outer membrane. A rule of the form (u, out; v, in) simultaneously sends u
out of the membrane i while transporting v into membrane i. Hence this rule cannot be

On Bounded Symport/Antiport P Systems 131

applied unless membrane i contains the elements in u and the membrane surrounding i
contains the elements in v. Formally an S/A system is defined as

M = (V, H, μ, w1, · · · , w|H|, E, R1, · · · , R|H|, io)

where V is the set of objects (symbols) the system uses, H is the set of membrane labels,
μ is the membrane structure of the system, wi is the initial multiset of objects within
membrane i, and the rules are given in the set Ri. E is the set of objects which can be
found within the environment, and io is the designated elementary output membrane.
(When the system is used as a recognizer or acceptor, there is no need to specify io.) A
large number of papers have been written concerning symport/antiport systems. It has
been shown that “minimal” such systems (with respect to the number of membranes,
the number of objects, the maximum “size” of the rules) are universal.

Initially, membrane systems were designed to be nondeterministic systems. When
multiple, maximal sets of rules are applicable, nondeterminism decides which maxi-
mal set to apply. Recently, deterministic versions of some membrane models have been
studied to determine whether they are as computationally powerful as the nondetermin-
istic versions [5, 7]. Deterministic models guarantee that each step of the computation
consists of only one maximal multiset of applicable rules. In some cases, both the non-
deterministic and deterministic versions are equivalent in power to Turing Machines
(see, e.g., [5]). In some non-universal P systems, the deterministic versus the nondeter-
ministic question has been shown to be equivalent to the long-standing open problem of
whether deterministic and nondeterministic linear-bounded automata are equivalent [7];
for another very simple class of systems, deterministic is strictly weaker than nondeter-
ministic [7]. However, these two latter results do not easily translate for S/A systems.

In this paper, we look at restricted models of symport/antiport systems. Two models,
called bounded S/A system and special S/A system, are acceptors of multisets with the
restriction that the multiplicity of each object in the system does not change during the
computation. These models differ in whether they also bound the number of membranes
within the system or bound the number of distinct objects that can occur abundantly in
the environment. Another model, called bounded S/A acceptor, is an acceptor of string
languages. Again, this model has the property that at any time during the computation,
the number of objects in the system is equal to the number of input symbols that have
been read so far (in addition to a fixed number of objects given to the system at the
start of the computation). We study the computing power of these models. In partic-
ular, we investigate questions concerning hierarchies (with respect to the number of
distinct objects used in the system or number of membranes in the system) and whether
determinism is strictly weaker than nondeterminism.

2 One-Membrane Bounded S/A System

Let M be a one-membrane symport/antiport system over an alphabet V , and let Σ =
{a1, ..., ak} ⊆ V be the input alphabet. M is restricted in that all rules are of the form
(u, out; v, in), where u, v ∈ V ∗ with |u| = |v| ≥ 1. Thus, the number of objects in the
system at any time during the computation remains the same. Note that all the rules are
antiport rules.

132 O.H. Ibarra and S. Woodworth

There is a fixed string (multiset) w in (V −Σ)∗ such that initially, the system is given
a string wan1

1 ...ank

k for some nonnegative integers n1, ..., nk (thus, the input multiset is
an1
1 ...ank

k). If the system halts, then we say that the string an1
1 ...ank

k is accepted. The set
of all such strings is the language L(M) accepted by M . We call this system a bounded
S/A system. M is deterministic if the maximally parallel multiset of rules applicable at
each step in the computation is unique. We will show the following:

1. A language L ⊆ a∗
1...a

∗
k is accepted by a deterministic (nondeterministic) bounded

S/A system if and only if it is accepted by a deterministic (nondeterministic) log n
space-bounded Turing machine (with a two-way read-only input with left and right
end markers).

2. For every r, there is an s > r and a unary language L (i.e., L ⊆ o∗) accepted by
a bounded S/A system with an alphabet of s symbols that cannot be accepted by
any bounded S/A system with an alphabet of r symbols. This result holds for both
deterministic and nondeterministic versions.

3. Deterministic and nondeterministic bounded S/A systems over a unary input alpha-
bet are equivalent if and only if deterministic and nondeterministic linear-bounded
automata (over an arbitrary alphabet) are equivalent. This later problem is a long-
standing open problem in complexity theory [16].

The restriction |u| = |v| ≥ 1 in the rule (u, out; v, in) can be relaxed to |u| ≥ |v| ≥
1, but the latter is equivalent in that we can always introduce a dummy symbol d and
add d|u|−|v| to v to make the lengths the same and not use symbol d in any rule. We note
that a similar system, called bounded P system (BPS) with cooperative rules of the form
u → v where |u| ≥ |v| ≥ 1, was also recently studied in [3] for their model-checking
properties.

For ease in exposition, we first consider the case when the input alphabet is unary,
i.e., Σ = {o}. Thus, the bounded S/A system M has initial configuration won (for
some n). The idea is to relate the computation of M to a restricted type of multicounter
machine, called linear-bounded multicounter machine.

A deterministic multicounter machine Z is linear-bounded if, when given an input
n in one of its counters (called the input counter) and zeros in the other counters, it
computes in such a way that the sum of the values of the counters at any time during
the computation is at most n. One can easily normalize the computation so that every
increment is preceded by a decrement (i.e., if Z wants to increment a counter Cj , it first
decrements some counter Ci and then increments Cj) and every decrement is followed
by an increment. Thus we can assume that every instruction of Z , which is not ‘Halt’,
is of the form:

p : If Ci �= 0, decrement Ci by 1, increment Cj by 1, and goto k else goto state l.

where p, k, l are labels (states). We do not require that the contents of the counters are
zero when the machine halts.

If in the above instruction, there is a “choice” for states k and/or l, the machine is
nondeterministic. We will show that we can construct a deterministic (nondeterministic)
bounded S/A system M which uses a fixed multiset w such that, when M is started

On Bounded Symport/Antiport P Systems 133

with multiset won, it simulates Z and has a halting computation if and only if Z halts
on input n. Moreover, the rules of M are of the form u→ v, where |u| = |v| = 1 or 2.

It is convenient to use an intermediate P system, called SCPS, which is a restricted
version of the the CPS (communicating P system) introduced in [18]. A CPS has mul-
tiple membranes, with the outermost one called the skin membrane. The rules in the
membranes are of the form:

1. a→ ax,
2. ab→ axby ,
3. ab→ axbyccome,

where a, b, c are objects, x, y (which indicate the directions of movements of a and b)
can be here, out, or inj . The designation here means that the object remains in the
membrane containing it, out means that the object is transported to the membrane di-
rectly enclosing the membrane that contains the object (or to the environment if the
object is in the skin membrane). The designation inj means that the object is moved
into the membrane, labeled j, that is directly enclosed by the membrane that contains
the object. A rule of the form (3) can only appear in the skin membrane. When such
a rule is applied, c is imported through the skin membrane from the environment (i.e.,
outer space) and will become an element in the skin membrane. In one step, all rules
are applied in a maximally parallel manner. For notational convenience, when the tar-
get designation is not specified, we assume that the symbol remains in the membrane
containing the rule.

Let V be the set of all objects (i.e., symbols) that can appear in the system, and o be
a distinguished object (called the input symbol). A CPS M has m membranes, with a
distinguished input membrane. We assume that only the symbol o can enter and exit the
skin membrane (thus, all other symbols remain in the system during the computation).
We say that M accepts on if M , when started with on in the input membrane initially
(with no o’s in the other membranes), eventually halts. Note that objects in V − {o}
have fixed numbers and their distributions in the different membranes are fixed initially.
Moreover, their multiplicities remain the same during the computation, although their
distributions among the membranes may change at each step. The language accepted
by M is L(M) = {on | on is accepted by M}.

It is known that a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
CPS if and only if it is accepted by a deterministic (nondeterministic) multicounter
machine. (Again, define the language accepted by a multicounter machine Z to be L =
{on |Z when given n has a halting computation }). The “if” part was shown in [18]. The
“only if” part is easily verified. Hence, every unary recursively enumerable language
can be accepted by a deterministic CPS (hence, also by a nondeterministic CPS).

An SCPS (‘S’ for simple) is a restricted CPS which has only rules of the form a →
ax or ab→ axby . Moreover, if the skin membrane has these types of rules, then x, y �=
out (i.e., no objects are transported to the environment).

Lemma 1. If a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
linear-bounded multicounter machine Z , then it is accepted by a deterministic (nonde-
terministic) SCPS M .

134 O.H. Ibarra and S. Woodworth

Proof. We only prove the case when Z is deterministic, the nondeterministic case being
similar. The construction of M is a simple modification of the construction in [18]. As-
sume Z has m counters C1, ..., Cm. M has the same membrane structure as in [18]. In
particular, the skin membrane contains membranes E1, ..., Em to simulate the counters,
where the multiplicity of the distinguished (input) symbol o in membrane Ei represents
the value of counter Ci. There are other membranes within the skin membrane that are
used to simulate the instructions of Z (see [18]). All the sets of rules R1, ..., are the
same as in [18], except the instruction

p : If Ci �= 0, decrement Ci by 1, increment Cj by 1, and goto l else goto k

of Z is simulated as in [18], but the symbol o is not thrown out (from the skin mem-
brane) into the environment but added to membrane Ej . It follows from the construction
in [18] that M will not have any instruction of the form ab→ axbyccome and if instruc-
tions of the form a→ ax or ab→ axby appear in the skin membrane, then x, y �= out.
Hence, M is a deterministic SCPS. ��

Lemma 2. If a language L ⊆ o∗ is accepted by a deterministic (nondeterministic)
linear-bounded multicounter machine, then it is accepted by a deterministic (nondeter-
ministic) bounded S/A system.

Proof. We show how to convert the multi-membrane SCPS M of Lemma 1 to a (one-
membrane) bounded S/A system M ′. The construction is similar to the one given in
[3]. Suppose that M has membranes 1, ..., m. For each object a in V , M ′ will have
symbols a1, ..., am. In particular, for the distinguished input symbol o in V , M ′ will
have o1, ..., om. Hence the distinguished input symbol in M ′ is oi0 , where i0 is the
index of the input membrane in M . We can convert M to a bounded S/A system M ′ as
follows:

1. If a→ ax is a rule in membrane i of M , then (ai, out; aj , in) is a rule in M ′, where
j is the index of the membrane into which a is transported to, as specified by x.

2. If ab → axay is a rule in membrane i of M , then (aibi, out; ajbk, in) is a rule
in M ′, where j and k are the indices of the membranes into which a and b are
transported to, as specified by x and y.

Thus, corresponding to the initial configuration won of M , where on is in the input
membrane i0 and w represents the configuration denoting all the other symbols (differ-
ent from o) in the other membranes, M ′ will have initial configuration w′on

i0
, where w′

are symbols in w renamed to identify their locations in M .
Clearly, M ′ accepts on

i0 if and only if M accepts on, and M ′ is a deterministic
(nondeterministic) bounded S/A system. ��

We will prove the converse of Lemma 2 indirectly. A k-head two-way finite automaton
(k-2FA) is a finite automaton with k two-way read-only heads operating on an input
(with left and right end markers) [8]. A multihead 2FA is a k-2FA for some k.

Lemma 3. If M is a deterministic (nondeterministic) bounded S/A system with an al-
phabet V of m symbols (note that V contains the distinguished input symbol o), then
M can be simulated by a deterministic (nondeterministic) m(m + 1)-2FA Z .

On Bounded Symport/Antiport P Systems 135

Proof. Suppose M is a deterministic bounded S/A system accepting a language
L(M) ⊆ o∗. Assume that its alphabet is V = {a1, ..., am}, where a1 = o (the in-
put symbol). We construct a deterministic multihead FA Z to accept L(G). The input to
Z (not including the left and right end markers) is on for some n. We will need the fol-
lowing heads to keep track of the multiplicities of the symbols in the membrane during
the computation (note that the bounded S/A system M is given won initially):

1. Ki for 1 ≤ i ≤ m. Head Ki will keep track of the current number of ai’s. Initially,
K1 will point to the right end marker (indicating that there are n o’s in the input)
while all other Ki will point to the appropriate position on the input corresponding
to the multiplicity of symbol ai in the fixed string w.

2. Ki,j for 1 ≤ i, j ≤ m. These heads keep track of how many ai’s are replaced by
aj’s during the next step of M .

One step of M is simulated by a (possibly unbounded) number of steps of Z . At the
beginning of the simulation of every step of M , Z resets all Ki,j’s to the left end marker.
To determine the next configuration of M , Z processes the rules as follows:

Let R1, R2, ..., Rs be the rules in the membrane. By using K1, ..., Km (note each
Ki represents the number of ai’s in the membrane), Z applies rule R1 sequentially a
maximal number of times storing the “results” (i.e., the number of ai’s that are con-
verted by the applications of rule R1) to aj in head Ki,j . Thus, each application of R1
may involve decrementing the Ki’s and incrementing some of the Ki,j’s. (By defini-
tion, the sequential application of R1 has reached its maximum at some point, if further
application of the rule is no longer applicable.)

The process just described is repeated for the other rules R2, ..., Rs. When all the
rules have been processed, Z updates each head Kj using the values stored in Ki,j ,
1 ≤ i ≤ m. This completes the simulation of the unique (because M is deterministic)
maximally parallel step of M .

It follows from the above description that a deterministic bounded S/A system can
be simulated by a deterministic m(m + 1)-2FA.

If M is nondeterministic, the construction of the nondeterministic multihead 2FA
M is simpler. M just sequentially guesses the rule to apply each time (i.e., any of
R1, R2, ..., Rs) until no more rule is applicable. Note that Z does not need the heads
Ki,j’s. ��
For the proof of the next theorem, we need a definition. Define a generalized linear-
bounded multicounter machine as follows. As before, at the start of the computation,
the input counter is set to a value n (for some n), and all other counters are set to
zero. Now we only require that there is a positive integer c such that at any time during
the computation, the value of any counter is at most cn. (Thus, we no longer require
that the sum of the values of the counters is at most n.) In [3], it was shown that a
generalized linear-bounded multicounter machine can be converted to a linear-bounded
multicounter machine. For completeness, we describe the construction.

Suppose that Z is a generalized linear-bounded multicounter machine with counters
C1, ..., Cm, where C1 is the input counter. Construct another machine Z ′ with counters
D, C1, ..., Cm, where D is now the input counter. Z ′ with input n in counter D, first
moves n from D to C1 (by decrementing D and incrementing C1.) Then Z ′ simulates
Z on counters C1, ..., Cm (counter D is no longer active).

136 O.H. Ibarra and S. Woodworth

Let d be any positive integer. We modify Z ′ to another machine Z ′′ which uses, for
each counter Ci, a buffer of size d in its finite control to simulate Z ′, and Z ′′ increments
and decrements each counter modulo d. Z ′′ does not alter the action of Z ′ on counter D.

By choosing a large enough D, it follows that the computation of Z ′′ is such that
when given input n in counter D and zeros in counters C1, ..., Cm, the sum of the
values of counters D, C1, ..., Cm at any time is at most n. It follows that, given a gen-
eralized linear-bounded multicounter, we can construct an equivalent linear-bounded
multicounter machine.

The next theorem is similar to a result in [3] concerning BPS.

Theorem 1. Let L ⊆ o∗. Then the following statements are equivalent:

(1) L is accepted by a bounded S/A system.
(2) L is accepted by a linear-bounded multicounter machine,
(3) L is accepted by a log n space-bounded Turing machine.
(4) L is accepted by a multihead 2FA

These equivalences hold for both the deterministic and nondeterministic versions.

Proof. The equivalence of (3) and (4) is well known. By Lemmas 2 and 3, we need
only show the equivalence of (2) and (4). That a linear-bounded multicounter machine
can be simulated by a multihead 2FA is obvious. Thus (2) implies (4). We now show the
converse. Let M be a two-way multihead FA M with m heads H1, ..., Hm. From the
discussion above, it is sufficient to construct a generalized multicounter machine Z
equivalent to M . Z has 2m+1 counters, D, C1, ..., Cm, E1, ..., Em. Z with input n in
counter D, and zero in the other counters first decrements D and stores n in counters
C1, .., Cm. Then Z simulates the actions of head Hi of M using the counters Ci

and Ei. ��

Lemmas 2 and 3 and Theorem 1 can be generalized to non-unary inputs, i.e., inputs of
the form an1

1 ...ank

k , where a1, ..., ak are distinct symbols. The constructions are straight-
forward generalizations of the ideas above. Thus, we have:

Corollary 1. Let L ⊆ a∗
1...a

∗
k. Then the following statements are equivalent:

(1) L is accepted by a bounded S/A system.
(2) L is accepted by a linear-bounded multicounter machine,
(3) L is accepted by a log n space-bounded Turing machine.
(4) L is accepted by a multihead 2FA.

These equivalences hold for both the deterministic and nondeterministic versions.

We now proceed to show that the number of symbols in the alphabet V of a bounded
S/A system induces an infinite hierarchy. This is an interesting contrast to a result in
[14] that an unbounded S/A system with three objects is universal. The proof follows
the ideas in [6], which showed an infinite hierarchy for a variant of SPCS, called RCPS.

We will need the following result from [8]:

Theorem 2. For every k, there is a unary language L that can be accepted by a (k+1)-
2FA but not by any k-2FA. The result holds for both deterministic and nondeterministic
versions.

On Bounded Symport/Antiport P Systems 137

Theorem 3. For every r, there exist an s > r and a unary language L (i.e., L ⊆
o∗) accepted by a bounded S/A system with an alphabet of s symbols that cannot be
accepted by any bounded S/A system with an alphabet of r symbols. This result holds
for both deterministic and nondeterministic versions.

Proof. Suppose there is an r such that any unary language language accepted by any
bounded S/A system with an arbitrary alphabet can be accepted by a bounded S/A
system with an alphabet of r symbols. Let k = r(r + 1). From Theorem 2, there is
a unary language L that can be accepted by a (k + 1)-2FA but not by any k-2FA.
By Theorem 1, this language can be accepted by a bounded S/A system. Then, by
hypothesis, L can also be accepted by a bounded S/A system with an alphabet of r
symbols. Then, from Lemma 3, we can construct from this bounded S/A system an
r(r + 1)-2FA accepting L. Hence, L can be accepted by a k-2FA, a contradiction. ��

For our next result, we need the following theorem from [17].

Theorem 4. Nondeterministic and deterministic multihead 2FAs over a unary input
alphabet are equivalent if and only if nondeterministic and deterministic linear bounded
automata (over an arbitrary input alphabet) are equivalent.

From Theorems 1 and 4, we have:

Theorem 5. Nondeterministic and deterministic bounded S/A systems over a unary in-
put alphabet are equivalent if and only if nondeterministic and deterministic linear
bounded automata (over an arbitrary input alphabet) are equivalent.

3 Multi-membrane Special S/A Systems

Let M be a multi-membrane S/A system, which is restricted in that only rules of the
form (u, out; v, in), where |u| = |v| ≥ 1, can appear in the skin membrane. There
are no restrictions on the weights of the rules in the other membranes. Clearly, the
number of objects in the system at any time during the computation remains the same.
We denote by Et the alphabet of t symbols (for some t) in the environment. There may
be other symbols in the membranes that remain in the system during the computation
and are not transported to/from the environment, and they are not part of Et. Note that
E0 means that the environment alphabet is empty (i.e., there are no symbols in the
environment at any time). As before, we consider the case where the input alphabet is
unary (i.e. Σ = {o}). M ’s initial configuration contains on in the input membrane (for
some n) and a fixed distribution of some non-o symbols in the membranes. The string
on is accepted if the system eventually halts. We call the system just described a special
S/A system.

Theorem 6. Let L ⊆ o∗. Then the following statements are equivalent:

(1) L is accepted by a multi-membrane special S/A system with no symbols in the
environment, i.e., has environment alphabet E0 (= empty set).

(2) L is accepted by a bounded S/A system.
(3) L is accepted by a linear-bounded multicounter machine.

138 O.H. Ibarra and S. Woodworth

(4) L is accepted by a log n space-bounded Turing machine.
(5) L is accepted by a multihead 2FA.

These equivalences hold for both the deterministic and nondeterministic versions.

Proof. As in Lemma 3, it is easy to show that a deterministic (nondeterministic) m-
membrane special S/A system with no symbols in the environment can be simulated by
a deterministic (nondeterministic) two-way FA with 2m heads.

By Theorem 1, to complete the proof, we need only show that a linear-space bounded
multicounter machine can be simulated by a multi-membrane special S/A with no sym-
bols in the environment. For notational convenience, we will assume the multicounter
machine is controlled by a program with instructions of the type li : (ADD(r), lj),
li : (SUB(r), lj , lk), and li : (HALT) where li is the label for the current instruction
being executed and r is the counter which is either being incremented or decremented.
If the current instruction is an add instruction, the next instruction to execute will be
lj . If the current instruction is a subtract instruction the next instruction depends on the
value of r. If r �= 0, the next instruction is denoted by lj otherwise the next instruction
is denoted by lk.

The special S/A system simulating a linear-space bounded multicounter machine
will use one membrane to simulate each counter of the multicounter machine. These
membranes will be placed within a ’program’ membrane where the current instruction
is brought in, implemented, and then expelled. This entire system is enclosed within
a dummy membrane (the skin membrane) containing no rules and a single copy of
each instruction object along with a a few auxiliary objects. So the overall system uses
m + 2 membranes. Obviously, if the skin membrane of the special S/A system contains
no rules, no object can ever be brought into the system or expelled from the system.
Hence, since the system initially contains |won| symbols, the system will continue to
contain |won| symbols after each step of the computation.

To show how any linear-space bounded multicounter machine can be simulated, we
give a formal transformation to a special S/A system. Our transformation is similar to
the transformation in [14] except that our transformation yields a deterministic (nonde-
terministic) special S/A system if the original linear-space bounded multicounter ma-
chine is deterministic (nondeterministic). (The transformation in [14] only produces a
nondeterministic S/A system.) The transformation is done as follows. Consider a mul-
ticounter machine Z with m counters. Construct a symport / antiport system M which
simulates Z as follows:

M = (V, H, μ, w1, w2, · · · , wm+2, E0, R1, R2, · · · , Rm+2, io)

where H = {1, 2, · · · , m + 2}; μ = [1[2[3]3[4]4 · · · [m+2]m+2]2]1; w1 = one copy of
each element in V except o and l01 (we assume Z’s program begins with the instruction
l0); w2 = l01; w3 = on; wi = λ, for all i = 4, · · · , m + 2; E0 = ∅ (the environment,
Et, is empty because t = 0); No need to specify i0, since our system is an acceptor.

The elements of V are as follows:

1. o — The symbol o is used as the counting object for the system. The multiplicity
of o’s in each counter membrane signifies the count of that counter.

On Bounded Symport/Antiport P Systems 139

2. d1, d2, d3, d4, d5, d6 — These objects are used to delay various objects from being
used for a number of steps. The objects d1 and d2 are used to delay an action for 1
step. The remaining objects are used to delay an action for 3 steps.

3. c1, c2, c3 — These objects are called check objects and are used to guarantee a
subtract instruction expels at most one o object from the appropriate counter mem-
brane.

4. li1, li2 for each instruction li : (ADD(r), lj).
The object li1 signifies that the next instruction we will execute is li. The object li2
is used in executing instruction li.

5. li1, li2, li3, li4 for each instruction li : (SUB(r), lj , lk).
The object li1 signifies that the next instruction we will execute is li. The objects
li2, li3, and li4 are used in executing instruction li and are used to signify which
branch of li will determine the next instruction.

6. li1 for each instruction li : (HALT).

The sets of rules for the Ri’s are created as follows:

1. The set R1 = ∅.
2. The set R2 contains the following delay rules: (d1, out; d2, in); (d3, out; d4, in);

(d4, out; d5, in);
(d5, out; d6, in).

3. For each instruction li : (ADD(r), lj) in Z:
The set R2 contains the following rules: (li1, out; li2d1o, in); (li2d2, out; lj1, in).
The set Rr+2 contains the following rules: (li2o, in); (li2, out).

4. For each instruction li : (SUB(r), lj , lk) in Z:
The set R2 contains the following rules: (li1, out; li2c1d3, in); (li2o, out; c2li3, in);
(c1c2d6li3, out; lj1, in); (li2d6, out; c3li4, in); (c1c3li4, out; lk1, in).
The set Rr+2 contains the following rules: (li2c1, in); (li2o, out); (c1, out; c2, in);
(c2, out);
(li2, out; d6, in); (d6, out); (c1, out; c3, in); (c3, out).

5. For each instruction li : (HALT) no rules are added.

Informally, these special S/A system rules work using the following ideas. Initially
the system is started with the first instruction label object l01 in the program membrane
and the input on within membrane 3 (corresponding to counter 1). To execute an add
instruction, the initial instruction object is replaced with the objects needed to execute
the instruction - li2, d1, and o. If the instruction is a subtract instruction the instruction
li1 is replaced with li2 along with a delay object d3 and a check object c1. Once the
appropriate objects are in the program membrane, a o object is appropriately moved
into or out of the counter membrane corresponding to the current instruction. In the
case where the current instruction tries to decrement a zero counter, the check objects
cooperate with the delay objects to detect the situation and bring the appropriate objects
into and out of the active membranes. Finally, the instruction executing objects are
expelled from the program membrane and the correct next instruction object is brought
into the program membrane.

Note that when a counter is decremented, an o object is removed from the correspond-
ing membrane and moved into the skin membrane. When a counter is incremented, an o

140 O.H. Ibarra and S. Woodworth

object is brought into the corresponding membrane from the skin membrane. Since the
multicounter machine being simulated is, by definition, guaranteed to always decrement
before incrementing, we are guaranteed to have thrown an o object into membrane 1 be-
fore we ever try bringing an o object from membrane 1 to membrane 2. This guarantees
that the special S/A system will operate through the multicounter machine’s program
instructions correctly. ��

Corollary 2. Let t be any positive integer. Then multi-membrane special S/A systems
with an environment alphabet of t symbols are equivalent to multi-membrane special
S/A systems with no symbols in the environment. This holds for deterministic and non-
deterministic versions.

Proof. This follows from the above theorem and the observation that a system with an
environment of t symbols can be simulated by a two-way FA with 2m(t+1) heads. ��

The proof of the next result is similar to that of Theorem 3.

Theorem 7. For every r, there exist an s > r and a unary language L (i.e., subset
of o∗) accepted by an s-membrane special S/A system that cannot be accepted by any
r-membrane special S/A system. This result holds for both deterministic and nondeter-
ministic versions.

4 One-Membrane Bounded S/A Systems Accepting String
Languages

Let M be a (one-membrane) S/A system with alphabet V and input alphabet Σ ⊆ V .
We assume that Σ contains a distinguished symbol $, called the (right) end marker. The
rules are restricted to be of the form:

1. (u, out; v, in),
2. (u, out; vc, in)

where both u and v are in V +, |u| = |v| ≥ 1, and c is in Σ. Note that because of the
requirement that |u| = |v|, the only way that the number of symbols in the membrane
can grow is when a rule of type 2 is used. The second type of of rule is called a read-
rule. We call M a bounded S/A acceptor. There is an abundance of symbols from V in
the environment. The symbol c in a rule of type 2 can only come from the input string
z = a1...an (where ai is in Σ − {$} for 1 ≤ i < n, and an = $), which is provided
online externally; none of the symbols in v in the rules come from z.

There is a fixed string w in (V −Σ)∗, which is the initial configuration of M . Max-
imal parallelism in the application of the rules is assumed as usual. Hence, in general,
the size of the multiset of rules applicable at each step is unbounded. In particular, the
number of instances of read-rules (i.e., rules of the form (u, out; vc, in)) applicable in
a step is unbounded. However, if a step calls for reading k input symbols (for some
k), these symbols must be consistent with the next k symbols of the input string z that
have not yet been processed. Note that rules of type 1 do not consume any input symbol
from z.

On Bounded Symport/Antiport P Systems 141

The input string z = a1...an (with an = $) is accepted if, after reading all the input
symbols, M eventually halts. The language accepted is L(M) = {a1...an−1 | a1...an

is accepted by M} (we do not include the end marker).
We have two versions of the system described above: deterministic and nondeter-

ministic bounded S/A acceptors. Again, in the deterministic case, the maximally paral-
lel multiset of rules applicable at each step of the computation is unique. We will show
that the deterministic version is strictly weaker than the nondeterministic version. The
proof uses some recent results in [7] concerning a simple model of a CPS, called SCPA.

An SCPA M has multiple membranes, with the skin membrane labeled 1. The sym-
bols in the initial configuration (distributed in the membranes) are not from Σ (the input
alphabet). The rules (similar to those of a CPS) are of the form:

1. a→ ax

2. ab→ axby

3. ab→ axbyccome

The input to M is a string z = a1...an (with an = $, the end marker), which is provided
externally online. The restrictions on the operation of M are the following:

1. There are no rules in membrane 1 with aout or bout on the right-hand side of the
rule (i.e., no symbol can be expelled from membrane 1 into the environment).

2. A rule of type 3 (called a read-rule) can only appear in membrane 1. This brings in
c if the next symbol in the input string z = a1...an that has not yet been processed
(read) is c ; otherwise, the rule is not applicable.

3. Again, in general, the size of the maximally parallel multiset of rules applicable at
each step is unbounded. In particular, the number of instances of read-rules (i.e.,
rules of the form ab → axbxccome) applicable in a step is unbounded. However,
if a step calls for reading k input symbols (for some k), these symbols must be
consistent with the next k symbols of the input string z that have not yet been
processed (by the semantics of the read-rule described in the previous item).

The system starts with an initial configuration which consists of some symbols from
V −Σ distributed in the membranes. The input string z = a1...an is accepted if, after
reading all the input symbols, the SCPA eventually halts. The language accepted by M
is L(M) = {a1...an−1 | a1...an is accepted by M} (we do not include the end marker).

A restricted 1-way linear-space DCM (NCM) M is a deterministic (nondetermin-
istic) finite automaton with a one-way read-only input tape with right delimiter (end
marker) $ and a number of counters. As usual, each counter can be tested for zero and
can be incremented/decremented by 1 or unchanged. The counters are restricted in that
there is a positive integer c such that at any time during the computation, the amount
of space used in any counter (i.e., the count) is at most ck, where k is the number of
symbols of the input that have been read so far. Note that the machine need not read
an input symbol at every step. An input w = a1...an (where an is the end marker, $,
which only occurs at the end) is accepted if, when M is started in its initial state with
all counters zero, it eventually enters an accepting state while on $.

We note that although the machines are restricted, they can accept fairly complex
languages. For example, {anbncn | n ≥ 1} and {a2n | n ≥ 0} can both be accepted by

142 O.H. Ibarra and S. Woodworth

restricted 1-way linear-space DCMs. (We usually do not include the end marker, which
is part of the input, when we talk about strings/languages accepted.) It can be shown
that a restricted 1-way linear-space DCM (NCM) is equivalent to a restricted 1-way
log n-space deterministic (nondeterministic) Turing machine that was studied in [2].

We will need the following result that was recently shown in [7]:

Theorem 8. A language L is accepted by a restricted 1-way linear-space DCM (NCM)
if and only if it is accepted by a deterministic SCPA (nondeterministic SCPA).

Theorem 9. Deterministic (nondeterministic) bounded S/A acceptors are equivalent to
deterministic (nondeterministic) SCPAs.

Proof. First we show that a deterministic (nondeterministic) SCPA M can be simulated
by a deterministic (nondeterministic) bounded S/A acceptor M ′, which has only one
membrane. Suppose M has membranes 1, ..., m, with index 1 representing the skin
membrane. For every symbol a in the system and membrane i, create a new symbol
ai. We construct M ′ by converting the rules to one-membrane rules as described in the
proof of Lemma 2, except that now we have to handle rules of the form ab→ axbyccome

in membrane 1. We transform such a rule to (a1b1, out; ajbkc1, in), where j and k are
the indices of the membranes into which a and b are transported to, as specified by x
and y. After we have constructed M ′, modify it slightly by deleting the subscripts of
all symbols with subscript 1 (in the rules and initial configuration). Thus unsubscripted
symbols are associated with symbols in membrane 1 of the SCPA M .

For the converse, we need only show (by Theorem 8) that a deterministic (nondeter-
ministic) bounded S/A acceptor M can be simulated by a restricted 1-way linear-space
DCM (NCM) Z . The construction of Z is like in Lemma 3, except that now, Z uses
counters (instead of heads), and in the maximally parallel step, the read-rules are the
first ones to be processed. Define an atomic read-rule process as follows: Z systemati-
cally cycles through the read-rules and finds (if it exists) the first one that is applicable
(note that for a read-rule (u, out; vc, in) to be applicable, the next input symbol that has
yet to be processed must be c). Z applies a sequence of these read-rules until no more
read-rule is applicable. Then all the other rules are processed. We omit the details. If M
is a nondeterministic SCPA, the construction of a nondeterministic Z is similar, in fact,
easier. ��

From Theorem 8 and the fact that deterministic SCPAs are strictly weaker than nonde-
terministic SCPAs [7], we have:

Theorem 10. Deterministic bounded S/A acceptors are strictly weaker than nondeter-
ministic bounded S/A acceptors.

Let L = {x#p | x is a binary number with leading bit 1 and p �= 2val(x)}, where
val(x) is the value of x. It was shown in [7] that L can be accepted by a nondeterministic
SCPA but not by any deterministic SCPA. Hence, L is an example of a language that
can be accepted by a nondeterministic bounded S/A acceptor that cannot be accepted
by any deterministic bounded S/A acceptor.

The following follows from Theorem 9 and the fact that similar results hold for
SCPAs [7].

On Bounded Symport/Antiport P Systems 143

Theorem 11. Let NBSA (DBSA) be the class of languages accepted by nondeterminis-
tic (deterministic) bounded S/A acceptors. Then:

1. NBSA is closed under union and intersection but not under complementation.
2. DBSA is closed under union, intersection, and complementation.

References

1. C. S. Calude and Gh. Paun. Computing with Cells and Atoms: After Five Years (new text
added to Russian edition of the book with the same title first published by Taylor and Francis
Publishers, London, 2001). To be published by Pushchino Publishing House, 2004.

2. E. Csuhaj-Varju, O. H. Ibarra, and G. Vaszil. On the computational complexity of P au-
tomata. In Proc. DNA 10 (C. Ferretti, G. Mauri, C. Zandron, eds.), Univ. Milano-Bicocca,
97–106,2004.

3. Z. Dang, O. H. Ibarra, C. Li, and G. Xie. On model-checking of P systems. Proc. 4th
International Conference on Unconventional Computation, to appear, 2005.

4. R. Freund, L. Kari, M. Oswald, and P. Sosik. Computationally universal P systems without
priorities: two catalysts are sufficient. Theoretical Computer Science, 330(2): 251–266, 2005.

5. R. Freund and Gh. Paun. On deterministic P systems. See P Systems Web Page at
http://psystems.disco.unimib.it, 2003.

6. O. H. Ibarra. The number of membranes matters. In Proc. 4th Workshop on Membrane Com-
puting, Lecture Notes in Computer Science 2933, Springer-Verlag, 218-231, 2004. Journal
version to appear in Theoretical Computer Science, 2005.

7. O. H. Ibarra. On determinism versus nondeterminism in P systems. Theoretical Computer
Science, to appear, 2005.

8. B. Monien, Two-way multihead automata over a one-letter alphabet, RAIRO Informatique
theorique, 14(1):67–82, 1980.

9. A. Paun and Gh. Paun. The power of communication: P systems with symport/antiport. New
Generation Computing 20(3): 295–306, 2002.

10. Gh. Paun. Computing with membranes. Turku University Computer Science Research Report
No. 208, 1998.

11. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

12. Gh. Paun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
13. Gh. Paun. Further twenty six open problems in membrane computing. See P Systems Web

Page at http://psystems.disco.unimib.it, 1-12, January 20, 2005.
14. Gh. Paun, J. Pazos, M. J. Perez-Jimenez, and A. Rodriguez-Paton. Symport/antiport P sys-

tems with three objects are universal. Fundamenta Informaticae, 64(1-4): 353–367, 2005.
15. Gh. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Computer Sci-

ence, 287(1):73–100, 2002.
16. W. Savitch. Relationships between nondeterministic and deterministic tape complexities. J.

Comput. Syst. Sci., 4(2): 177–192, 1970.
17. W. Savitch. A note on multihead automata and context-sensitive languages. Acta Informat-

ica, 2:249–252, 1973.
18. P. Sosik. P systems versus register machines: two universality proofs. In Pre-Proceedings of

Workshop on Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, pages
371–382, 2002.

Expectation and Variance of Self-assembled
Graph Structures

Nataša Jonoska, Gregory L. McColm, and Ana Staninska

Department of Mathematics,
University of South Florida

{jonoska, mccolm, staninsk}@math.usf.edu

Abstract. Understanding how nanostructures are self-assembled into
more complex forms is a crucial component of nanotechnology that shall
lead towards understanding other processes and structures in nature.
In this paper we use a model of self-assembly using flexible junction
molecules and describe how it can in some static conditions be used to
predict the outcome of a graph self-assembly. Using probabilistic meth-
ods, we show the expectation and the variance of the number of self-
assembled cycles, K3, and discuss generalization of these results for Cn.
We tie this analysis to previously observed experimental results.

1 Introduction

The study of molecular self-assembly is rapidly developing in one of the most
important aspects of nanotechnology. Self-assembly is a physico-chemical process
by which simpler structures reorganize and combine into more complicated forms
without any external intervention. Because of its nature, DNA molecule uses the
natural Watson-Crick mechanism to change, transform and self-assemble into
different structures. Although naturally occurring DNA molecule has a double
helix structure, it can be configured in many other forms, like: hairpin, branched
3 and 4 junction molecules, stick cube, truncated octahedron, etc. [3, 11, 18, 22].
These newly formed molecules have been proposed for computational purposes
[8] as well as for scaffolding for other structures [3, 18, 22].

Several models for DNA self-assembly have appeared, mostly using rigid
square tiles [1, 2, 10, 14, 15]. In this paper, we discuss another model, that uses
flexible tiles (each tile composed of a single junction molecule) of various sizes
initially proposed in [8]. Flexible junction molecules have been used to obtain
experimentally regular graph structure, such as the cube [3] and truncated octa-
hedron [18, 22] and non-regular graph structures [7, 8]. Junction molecules with
5 or 6 arms have been reported [20] and 4 armed junction molecules have been
used in a lattice [17]. Recently an octahedron has been configured whose edges
(junction arms) are made of DX and PX molecules [18].

This model is based on DNA branched junction molecules with flexible arms
extending to free sticky ends. By imposing restrictions on the number of types of
tiles, one can get DNA computability classes that correspond to extant complex-
ity classes. A “polynomial” restriction produces precisely the NPTIME queries;

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 144–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Expectation and Variance of Self-assembled Graph Structures 145

no restriction at all produces the classes of all computable queries [9, 10]. Using
this model, for a given problem, a solution is obtained if and only if a graph-like
complex of appropriate size can appear.

A graph-like complex is a closed DNA molecule that does not contain any
single stranded sticky ends. Whereas in [9] the main concern is about the kind of
complexes to be expected when an experiment is running, this paper is concerned
with the amount of each type of complete complexes and what portion of these
complexes correspond to the encoded structure. Answers to these questions shall
provide a better understanding of the self-assembly process as well as possibly
predict what we should expect to obtain within a pot with DNA molecules.

This paper seeks to raise these questions and uses probabilistic analysis to
provide answers in some special cases. In addition it relates the answers to pre-
viously observed experimental results. We begin with a pot containing uniformly
distributed DNA molecules compatible of forming a cyclic graph structure. Af-
ter the annealing process it is assumed that no free sticky ends remain. We
prove that under certain probability conditions almost all structures represent
the originally encoded graph i.e., the appearance of dimer (double cover) or
trimer (triple cover) molecules is with small probability. (It is assumed that the
reader is familiar with basic probability theory, but for those who are not [13]
gives a good introduction to the field).

Experimentally this has been observed by several assembly processes
[6, 7, 16, 12]. Our theoretical analysis is the first attempt to understand the
stochastic self-assembly of these junction molecules into complete structures.
We tie our results with the detailed experimental analysis of a similar set-up in
[4] and generating triangles in [12]. These observations provide a good estimate
of the probability values that we use in the proof of the main result.

The model used for theoretical analysis is static model and does not consider
any thermodynamic properties of the solution. It deals only with the input and
the output of an experiment. We hope to extend this static model to a dynamic
version.

The description of the model is presented in Section 2. It contains the main
definitions of complexes and structures that are built up by junction molecules.
The probabilistic model is presented in Section 3. The main assumption of the
model is that the probability r that the last of the possible connections within a
complex appears after the other connections have been established is very high.
Under these conditions we show that probability of appearance of dimers and
trimers in a pot designed to form monomer cycles approaches 0. In Section 4 we
provide comparison with two experimental results already observed. The first
experiment is from [4] and deals with linear duplex DNA that can close into a
cyclic molecule. From the molecular concentration used in the experiment we can
deduce the probability value for r. The second comparison is with the experiment
in [12] that deals with construction of triangles i.e. precisely with the special case
considered in the main result. Under the conditions of this experiment no dimers
or trimers were observed which coincides with our findings. We end the paper
with some concluding remarks.

146 N. Jonoska, G.L. McColm, and A. Staninska

2 Junction Graph Model

The main building blocks for the junction graph model, are stable branched junc-
tion DNA molecules, which are molecules that have flexible arms with sticky ends
(see Fig. 1 to the left). Each arm has two parts: a body and a sticky end extended
from the body. The body part is a double stranded DNA molecule, while the
sticky end part is a linear DNA strand that hasn’t connected to a Watson-Crick
complement. When two arms from two different junction molecules connect, they
glue their sticky ends together, forming a more complex structure. A 1-junction
molecule is a hairpin structure with only one sticky end, a 2-junction molecule is
a double helix with two sticky ends, one at each end. In order to permit a junc-
tion to connect to a nearby junction, regardless of spatial orientation, we will
follow [8, 9] and [12] by supposing that bulged T’s can be added in the junction
sequences to add flexibility of the branches.

j 1 j 2

J:
2

f f f
3 5

j j
21

f

5

2

J * J :
J :

1

f2
f

f
1

f
4

1 2

1

f
f

4

f

f
3

Fig. 1. Above: Watson-Crick bonding of two DNA junction molecules. Below: Junction
graph that represents bonding of the two DNA junction molecules depicted on the left.

For the simplicity we will suppress some of the technicalities and represent
complexes as labelled graphs.

Definition 1. A junction graph is a graph G = (V, E) with finite set of vertices
V and edges E. The set of vertices V is partitioned into two disjoined sets J
and F such that all vertices in F have degree 1, and no two vertices of F are
adjacent.

The elements of J are vertices that represent centers of junction molecules,
while the elements of F are vertices that represent the free sticky ends on the

Expectation and Variance of Self-assembled Graph Structures 147

junction’s arms. Each sticky end is represented with strings over the alphabet
 = {A, C, G, T}, and the set of all strings of the sticky ends of the given junction
graph G will be the set of all sticky end types, denoted by HG. The function
θ : HG → HG maps every string h ∈ HG to its Watson-Crick complement
θ(h). Then θ is a deranging involution, i.e., for any h ∈ HG, θ(h) �= h, while
θ(θ(h)) = h. We simplify the notation by writing ĥ for θ(h).

Definition 2. A complex C is a pair C = (G, h) = (J ∪ F, E, h), where G =
(J ∪ F, E) is a given junction graph and h : F → HG is a map that assigns a
free sticky end type to every free vertex. In particular a junction is a complex
with |J | = 1 .

Self-assembly between complexes is described through a gluing operation as fol-
lows. Let C1 = (G1, h1) = (J1 ∪F1, E1, h1) and C2 = (G2, h2) = (J2 ∪F2, E2, h2)
be two complexes and let F ′

1 be a maximal set of sticky end vertices from F1 that
are complementary to a set F ′

2 of sticky ends from F2. There will be a bijection
ϕ : F ′

1 → F ′
2, such that θ(h1(f)) = h2(ϕ(f)) for every f ∈ F ′

1 (F ′
1 indicates a max-

imal subset of sticky ends from C1 that are complementary to sticky ends from
C2). The complex obtained in the self-assembly process by gluing the complexes
C1 and C2 is the complex C = (G, h) = (J ∪ F, E, h), where

J =J1 ∪ J2

F =(F1\F ′
1) ∪ (F2\F ′

2)
E =(E1 ∪E2

∪ {{j1, j2} | ∃f ∈ F ′
1{j1, f} ∈ E1 and {j2, ϕ(f)} ∈ E2})

\{{j1, f}, {j2, ϕ(f)}|f ∈ F ′
1}

h(f) =
{

h1(f) f ∈ F1\F ′
1

h2(f) f ∈ F2\F ′
2.

The set of all possible complexes obtained by gluing C1 and C2 is denoted
by C1 � C2. Intuitively, when two complexes join together, all sticky ends that
can connect do connect (there might be a different choice for such connection
and the gluing process may not be deterministic, i.e., it does not represent an
operation). The vertices that were free before the gluing process begun and have
annealed with their complements during the gluing, disappear from the resulting
complex. Each connection (annealing) adds an edge in the new complex. Gluing
of a 4-armed junction and a 3-armed junction schematically is depicted in Fig. 1
to the right.

For a given complex C = (G, h), we define a junction type j to be a function
j : HG → N such that j(h) will denote the number of sticky ends of type h ∈ HG

on the junction vertex j ∈ J . Similarly we define a complex type to be a function
C : HG → N, where C(h) is the number of sticky ends of type h ∈ HG in
complex C. A complex C = (G, h) is called a complete complex if C(h) = 0 for
every h ∈ HG i.e., it is a complex without free sticky ends.

Since every junction is a complex, every junction type is also a complex type.
Both junction and complex types give information only about the free sticky

148 N. Jonoska, G.L. McColm, and A. Staninska

ends on the junctions/complexes, and not about the underlying graph struc-
ture. In order to preserve the information about the graph structure, we define
structure type relation between two complexes. Two complexes are of the same
structure type if there is a graph isomorphism from one to another that preserves
junction types, sticky end types and edges.

We are interested in a collection of junctions of specific types, and potential
complexes that arise by their bonding. A pot type is a finite set P of junction
types. If P is pot type, then a resolution of P, denoted C(P) is the set of all
possible complete structure types that can be obtained after gluing junctions of
types in P.

3 Probabilistic Analysis

Complete complexes are of special interest for the model, since many DNA nan-
otechnology designs depend on their formation. For example, in [9] it has been
shown that several NP complete problems can be solved if and only if complete
complexes of appropriate size are obtained in the pot. In an experiment one can
expect to obtain many kinds of complete complexes, and not all of them may
represent the designated structures. It can be observed experimentally that a
portion of the DNA material in the pot ends up in incomplete complexes. Also
the appearance of topoisomers of complete complexes and of a complete complex
for a problem that does not have a solution have been reported [16, 12].

At the end of the experiment to solve a given problem there may be some
complete complexes of the desired type, some other complete complexes and
some incomplete complexes. Since our major concern is the construction of com-
plete complexes of certain sizes, we want to explore the density of each complete
complex, for the purpose of evaluating the results of the experiment. We ap-
proach this problem by considering a special case, graph assembly of uniformly
distributed junctions (tiles).

For simplicity we avoid thermodynamic properties and consider only the self-
assembly process for which all Watson-Crick connections are equally likely and
no free sticky ends remain after the completion of the experiment. It means that
after self-assembly has occurred only complete complexes are present. We pro-
pose a static model (similar to models studied in discrete probability theory)
with uniformly distributed junctions, and Watson-Crick complementary pairs.
Each sticky end has equal probability to connect. We have proved that the prob-
ability spaces and distribution for the model exist, but we omit this proves in
the present discussion. This process is not entirely realistic. By observing some
experimental results we amended our model by assuming that in the process
of formation of a complete complex, probability r that the last of the possible
connections within a complex appears after the other connections have been
established is very high (almost certain). Throughout our discussion this prob-
ability is denoted with r.

We would like to mention that the evolution of the self-assembly process is not
examined, only distribution of obtained complete complexes at the end of the

Expectation and Variance of Self-assembled Graph Structures 149

process is considered. We are mainly interested in the input and the output of the
process. So we provide some insight to the question: If we have a certain amount
of junction molecules, what kind of complex types are there in the outcome?

We start with a special case of obtaining cyclic molecules with three 2-armed
junctions. This corresponds to building a triangle. For this purpose, we consider
three different types of 2-armed junctions (tiles) J3 = {j1, j2, j3} which contain
3 different types of complementary free sticky ends H3 = {h1,h2,h3, ĥ1, ĥ2, ĥ3}
These junctions are uniformly distributed in a pot P = {j1, j2, j3}, and are capa-
ble of admitting a complete K3 complex, meaning that we have equal amount of
junctions from each junction type. We conveniently represent this amount with
an integer m. The sticky end types are adequately arranged (see Fig. 2),

3

(a)

j

1
jj

2

1 2
h h

3 h

3

21

1 2 3

1
h

(b)

32

j j

j

jj

j

h h

j
31j

j
2

j
2

j j
13

CC 3 6

Fig. 2. (a) Three 2-armed junctions (tiles) form a triangle which represents a K3 com-
plex. (b) Three junction graphs used in a pot to assemble K3. (c) Complete complexes
for this pot will be cycles of length divisible by 3. Cycles K3 and C6 are depicted.

j1(h1) = j1(ĥ2) = 1,

j2(h2) = j2(ĥ3) = 1,

j3(h3) = j3(ĥ1) = 1.

With this kind of selection for the junction molecules, complete complexes
that are obtained would be cyclic and would involve 3k junctions, for some k
(1 ≤ k ≤ m). Junctions from P are always assembling according to a specific
pattern, j1j2j3 repeatedly or j1j3j2 repeatedly, depending on the orientation. We
say that a cycle is of length 3k, if it has k junctions from each type adequately
arranged, for example j1j2j3 repeatedly k times, such that the last j3 junction
is glued to the first j1 junction. We will use notation C3k for cycles of length 3k,
k ≥ 1 (Note: For cycle of length 3, we will use notation K3).

The probability of obtaining a certain cyclic complex depends on its size. We
employ probabilistic method, often used in random graph theory [5, 19] to obtain
the results. We start our analysis by computing the probability of appearance
of at least one K3 complex in the pot described above.

Theorem 3. Let P= {j1, j2, j3} be a pot type which contains uniformly dis-
tributed 2-armed junctions capable of admitting K3 complex. Let X denote the

150 N. Jonoska, G.L. McColm, and A. Staninska

number of complete K3 complexes in P and r the probability that three con-
nected junctions by two sticky ends will close in a complete K3 complex. Then
the expected number of K3 complete complexes in the pot is

E(X) = mr;

moreover
lim
r→1

P (X = m) = 1,

where m denotes the amount of junctions in P of each type.

Proof. (Sketch, see the appendix for details): Let S be a set of three different
junctions, one from each type in P, and let XS be the indicator random variable
for the event that junctions from S form a complete K3. Then X =

∑
S XS gives

the total number of complete K3’s in the pot. Since the described model is static,
equal probability is assigned on each sticky end. The unconditional probability of
any two sticky ends to connect is p = 1/m and E(XS) = P (XS = 1) = p2r. We
can form m3 such sets S form the pot P and by the linearity of the expectation
follows that

E(X) =
∑
S

E(XS) = m3p2r = mr

Looking over all pairs of sets, each with three different junction types from
P, through computation of the covariances we obtain

V ar(X) ∼ mr(1 − r).

When r → 1, Var(X) = E(X −EX)2 → 0, and since X is a nonegative random
variable it follows that almost surely X = E(X) = m. That means almost surely
only K3 complexes are obtained in P.

The case when p < 1
m would result with incomplete complexes, and in this paper

we do not consider this, but certainly we believe that such analysis may provide
valuable information for the understanding of the self-assembly process.

To recapitulate, given m, depending on the amount of solution, and r, de-
pending on the molecular dynamics, the expected number of junctions in K3
cycles is mr, with standard deviation

√
mr(1 − r), the later being unobservable

under contemporary laboratory conditions.
We can generalize the result (obtained for complete K3) for circular complexes

of any length. Consider a pot that contains n 2-branched different junction types
uniformly distributed, capable of forming a cycle of length n.

Theorem 4. Let P= {j1, . . . , jn} be a pot type which contains n uniformly dis-
tributed 2-armed junctions capable of admitting Cn complex. Let X denote the
number of complete Cn complexes in P and r the probability that a sequence of n
connected junctions will close in a cycle Cn. Then the expected number of cycles
of length n in the pot is given by

Expectation and Variance of Self-assembled Graph Structures 151

E(X) = mr,

where m denotes the amount of junctions in P of each type.

Remark. For the pot P= {j1, . . . , jn} described above the junction types are
chosen in such a way that the cycle Cn of length n is the smallest complete
complex that can be formed from the junctions in the pot.

4 Comparison with Results from Prior Experiments

4.1 Annealing of Linear and Circular Molecules

Experimental results concerning cyclization of DNA molecules have appeared in
literature and we choose to compare our results with the ones by A. Dugaiczyk,
H. W. Boyer and H. M. Goodman [4]. They analyzed the relation between the
length as well as concentration of DNA fragments from one side, and the dis-
tribution of different molecular structure types obtained by ligation of those
fragments from another side. The experiment measures for the rate of ligation
of EcoRI-cleaved simian virus (SV 40), ligating the obtained DNA fragments of
the virus. For different DNA concentration, the starting DNA fragments pro-
duced either linear multimers or circular structures made of those fragments.
The amount of linear or circular products were measured under controlled con-
ditions, varying on two parameters j and i. The parameter j corresponds to
the local concentration of one sticky end in the neighborhood or the volume of
the other sticky end of the same DNA molecule. The parameter i is the total
concentration of the sticky ends of a DNA molecule. The local concentration j
depends on the contour length of the molecule l, while the total concentration
i depends on the molar concentration M of the molecule. Thus j/i depends on
the contour length of the molecule l and on the molar concentration M .

It was shown experimentally that circular structures were favored when the
ratio j/i was greater than 1, while more linear structures were favored when
the ratio j/i was less then 1. When j = i, equal amounts of linear and circular
types would be expected, but in the experiments of A. Dugaiczyk, H. W. Boyer
and H. M. Goodman most of the obtained molecules were linear. The number
of circular complexes was shown to be proportional with the ratio j/i and with
significant increase of the ratio more of the obtained complexes were circular.

For example, consider their results for the φ80(8) DNA molecule, which has
molecular weight Mr = 0.46×106. (In comparing their results to our model, they
had one type of two-armed tile, whose sticky ends were complementary.) When
j/i = 12.4, after 4 hours of ligation, they obtained 64% circular monomers,
12% circular dimers, 8% linear dimers, 4% circular trimers, 4% linear trimers,
8% linear tetramers and no other structures. When j/i = 1.56 after 4 hours of
ligation, they obtained 35% circular monomers, 20% circular dimers, 5% linear
dimers, 5% circular trimers, 5% linear trimers, and 30% molecules were linear
tetramers, pentamers or hexamers and there were no other structures. Also, the
time of ligation often plays a significant role. The amount of circular structures

152 N. Jonoska, G.L. McColm, and A. Staninska

h

hj

Fig. 3. The junction structure used in the pot of the experiment described in [4]

appearing in the process increases with the time of the reaction. As an example,
for the same ratio as in the previous case, j/i = 1.56, after 15 minutes of ligation
no circular structures were obtained, only linear ones.

For theoretical analysis, we can consider φ80(8) DNA molecules as 2-branched
junction molecules with two sticky end types (Fig. 3). The probability that
one junction will form a circular monomer will be r. For our case that is the
probability that both sticky ends on a junction to connect

P (h and ĥ to connect) = r

Since we have m junctions, the expected number of circular monomers is
EX = mr. Apparently r is positively correlated to the ratio j/i. As we saw
in the example, when j/i = 12.4, then r = .64. If the molecule length is the
same, we can increase the number of circular monomers by decreasing the molar
concentration. So the probability of obtaining circular complexes would depend
mainly on the molar concentration.

Major difference between this model and the experimental results is the pres-
ence of linear fragments, which could be regarded as potentially large cycles.
Our model reflects the situation when the molar concentration is very low, that
means mainly small cycles are to be formed. We expect in reality for a not di-
luted solution to get lots of linear fragments, which will not close. This case is
not considered in our static model.

4.2 Annealing Triangles

In the experimental process described in [12], three 2-branched junctions capa-
ble of forming a triangle (K3) were designed (precisely the case considered in
Proposition 3). Although the original design of the molecules had a purpose to
be a substructure of a more complex motif, the experimental analysis of the
triangles was performed as well. The triangle structures used in the experiment
are presented in Fig. 2 (a). The central portion of the 2-armed junctions are
designed to have buldged T sequence that provided extra flexibility at the arms.
The main purpose of the experiment was to test the rigidity of the triangular
shape, which proved to be lacking.

However, in the process of building a more complex structure, the character-
ization of the triangular shape was performed. The molar concentration used in
the experiment was one picomole per strand in 10μL solution and in the liga-
tion process of the experiment no dimers, trimers or other higher cover structure

Expectation and Variance of Self-assembled Graph Structures 153

were obtained, at least not detectable by the non-denaturing gel. Moreover, no
linear and non-complete structures were obtained as well. This corresponds to
the conditional probability r, as in the second half of Proposition 3, being close
to 1. At the same time it shows that the analysis of considering only complete
complexes as a result of the annealing can provide a valid model to study.

It is interesting to note that the experiment showed that at least two different
topoisomers can be obtained in the process of “gluing”. Our model considers
complexes that represent isomorphic graphs as having the same complete struc-
ture type, hence distinct topoisomers cannot be detected by the model. This
shows real limitations of the model in studying the topological properties of the
products.

Notice that in the example where r < 1, we have a variety of complete cycles,
while in the example where r → 1, we only have minimal cycles.

5 Concluding Remarks

The paper provides a first step in detailed analysis of self-assembly of flexible
junction molecules. The case that is covered by Proposition 3 and Theorem 4
although basic, it still shows to be close to the results of experiments that are
already known in the literature. The assumption for the conditional probability
r can be extended to cases of regular and non-regular graphs. The computation
of the expectation and the variance can be done in a similar way. However, we
believe that more complicated structures have additional geometric and other
intrinsic constraints that would make such simplification of our assumptions
non realistic and superfluous. Good conditions for studying such complicated
structures remain to be discovered.

Acknowledgment

Authors thank N. Seeman for providing valuable information and references. The
work is supported in part by NSF Grants CCF #0432009 and EIA#0086015.

References

1. L.M. Adleman, Q. Cheng, A. Goel, M-D. Huang, D. Kempe, P. Moisset
de Espanes, P.W.K. Rothemund. Combinatorial optimization problems in self-
assembly, STOC’02 Proceedings, Montreal Quebec, Canada, 2002.

2. L.M. Adleamn, J. Kari, L. Kari, D. Reishus. On the decidability of self-assembly
of infinite ribons Proceedings of FOCS 2002, IEEE Symposium on Foundations of
Computer Science, Washington (2002) 530-537.

3. J.H. Chen, N.C. Seeman. Synthesis from DNA of a molecule with the connectivity
of a cube, Nature 350 (1991) 631-633.

4. A. Dugaiczyk, H.W. Boyer, H.M. Goodman. Ligation of EcoRI endonuclease-
generated DNA fragments into linear and circular structures. Journal of Molecular
Biology 96(1) (1975) 171-178.

154 N. Jonoska, G.L. McColm, and A. Staninska

5. S. Janson, T. Luczak, A. Rucinski. Random Graphs, New York : John Wiley, 2002.
6. N. Jonoska, S. Liao, N.C.Seeman, Transducers with Programmanle Input by

DNA Self-Assembli, in: Aspects of Molecular Computing (N. Jonoska, Gh. Paun,
G.Rozenberg eds.), Springer LNCS 2950 (2004) 219-240.

7. N. Jonoska, S. Karl, M. Saito. Three dimensional DNA structures in computing,
BioSystems 52 (1999) 143-153.

8. N. Jonoska, P. Sa-Ardyen, N.C. Seeman. Computation by self-assembly of DNA
graphs, Genetic Programming and Evolvable Machines 4 (2003) 123-137.

9. N. Jonoska, G.L. McColm. Self-assembly by DNA Junction Molecules: The Theo-
retical Model, Foundations of Nanoscience. J.Reif (edi) (2004).

10. M-Y. Kao, V. Ramachandran. DNA self-assembly for constructing 3D boxes. Al-
gorithms and Computations, ISAC 2001 Preceedings, Springer LNCS 2223 (2001)
429-440.

11. C. Mao, W. Sun, N.C. Seeman. Designed Two-Dimensional DNA Holliday Junction
Arrays Visualized by Atomic Force Microscopy, Journal of American Chemical
Society 121(23) (1999) 5437-5443.

12. J. Qi, X. Li, X. Yang, N.C. Seeman. Ligation of Triangles Built from bulged 3-
arm DNA Branched Junctions., Journal of American Chemical Society 120 (1996)
6121-6130.

13. S. M. Ross. A First Course in Probability, Prentice Hall, (2001).
14. P.W.K. Rothemund, P. Papadakis, E. Winfree. Algorithmic Self-Assembly of DNA

Sierpinski Triangles, Preproceedings of 9th DNA Based Computers, Madison Wis-
consin June 1-4 (2003).

15. P.W.K. Rothemund, E. Winfree. The Program-Size Complexity of Self-Assembled
Squares, Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May
21-23 (2001) 459-468.

16. P. Sa-Ardyen, N. Jonoska, N.C. Seeman. Self-Assembly of graphs represented by
DNA helix axis topology, Journal of American Chemical Society 126(21) (2004)
6648-6657.

17. Seeman, N.C., DNA junctions and lattices, Journal of theoretical biology 99 (1982)
237-247.

18. W.M. Shih, J.D. Quispe, G.F. Joyce., A 1.7-kilobase single stranded DNA folds
into a nanoscale octahedron, Nature 427 (2004) 618-621.

19. J.H. Spencer. Ten lectures on the probabilistic method, SIAM, Philadelphia, PA
(1987).

20. Y. Wang, J.E. Mueller, B. Kemper, N.C. Seeman. The assembly and characteriza-
tion of 5 arm and 6 arm DNA junctions, Biochemistry 30 (1991) 5667-5674.

21. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman. Design and self-assembly of two-
dimentsional DNA crystals, Nature 394 (1998) 539-544.

22. Y. Zhang, N.C. Seeman. The construction of a DNA truncated octahedron, Journal
of American Chemical Society 116(5) (1994) 1661-1669.

Appendix A

Proposition 1. Let P be a pot type which contains 3m uniformly distributed
2-branched junctions of three different types capable of admitting K3 complex.
Let X denote the number of complete K3 complexes in P and r the probability

Expectation and Variance of Self-assembled Graph Structures 155

that three connected junctions by two sticky ends will close in a complete K3.
Then the expected number of K3 complete complexes in the pot is

E(X) = mr,

moreover
lim
r→1

P (X = m) = 1

Proof. For the proof we use the following notation:

S: a set of 3 junctions from J3, one of each type,
AS : the event that the junctions from S form a complete K3,
XS : the associated indicator random variable for AS ,
Bi: the event that hi and ĥi will connect, for i = 1, 2, 3 and
ξi: the associated indicator random variable for Bi.

For the set of sticky end types H = {h1,h2,h3, ĥ1, ĥ2, ĥ3} in S, the probabil-
ity that the junctions from S will form a complete K3 is equal to the probability
that all junctions of S would connect. That is,

P (ξ1 = 1, ξ2 = 1, ξ3 = 1) = P (ξ1 = 1)P (ξ2 = 1|ξ1 = 1)P (ξ3 = 1|ξ1 = 1, ξ2 = 1)

= ppr = p2r.

(Notice we assume the conditional probability of the second connection is the
same as the probability of the first)

Since XS is the indicator random variable for the event AS , X =
∑

XS will
denote the number of complete K3’s in the pot, and

E(XS) = P (AS) = p2r.

We have m3 sets S and by the linearity of expectation the expected number of
complete K3’s in the pot is

E(X) = m3p2r.

Ignoring the thermodynamic properties of the solution, the probability of one
sticky end connecting with its complementary is p = 1

m , from which it follows
that E(X) = mr.

To calculate the variance for the number of complete K3’s in the pot

V ar(X) =
∑
S,T

Cov(XS , XT)

we need to calculate the covariances first:

Cov(XS , XT) = E(XSXT)− E(XS)E(XT).

In order to do that we need to look at two sets S and T , each one consisting of
the three different junctions from the pot, one from each type. Again, for the
analysis of the covariance we consider the case when p = 1

m .

156 N. Jonoska, G.L. McColm, and A. Staninska

– Case 1: S ∩ T = ∅
We have m3(m− 1)3 choices for this kind of sets, and in this case

E(XSXT) = P (XS = 1, XT = 1)
= P (XS = 1|XT = 1)P (XT = 1)

=
r

(m− 1)2
r

m2 =
r2

m2(m− 1)2
, and

E(XS)E(XT) =
r

m2

r

m2 =
r2

m4 , hence

Cov(XS , XT) =
r2

m2(m− 1)2
− r2

m4 ∼
2r2

m3(m− 1)2
, and hence

∑
S∩T=∅

Cov(XS , XT) = m3(m− 1)3
2r2

m3(m− 1)2

= 2(m− 1)r2 ∼ 2mr2.

– Case 2: |S ∩ T | = 1

We have m3
(3
1

)
(m− 1)2 = 3m3(m− 1)2 choices for those kind of set, and we

get:

E(XSXT) = P (XS = 1, XT = 1)
= P (XS = 1|XT = 1)P (XT = 1) = 0, as

P (XS = 1|XT = 1) = 0, and hence

E(XS)E(XT) =
r

m2

r

m2 =
r2

m4 , and hence∑
|S∩T |=1

Cov(XS , XT) = −3m3(m− 1)2
r2

m4 ∼ −3mr2.

– Case 3: |S ∩ T | = 2

We have m3
(3
2

)
(m− 1) = 3m3(m− 1) choices for those kind of sets, so

E(XSXT) = P (XS = 1, XT = 1)
= P (XS = 1|XT = 1)P (XT = 1) = 0, and

E(XS)E(XT) =
r

m2

r

m2 =
r2

m4 , and hence∑
|S∩T |=2

Cov(XS , XT) = −3m3(m− 1)
r2

m4

= −3
(m− 1)r2

m
∼ −3r2.

Expectation and Variance of Self-assembled Graph Structures 157

– Case 4: |S ∩ T | = 3, i.e. S = T

We have m3 choices for those kind of sets, so

E(XS , XT) = P (XS = 1, XT = 1)

= P (XS = 1|XT = 1)P (XT = 1) =
r

m2 , and

EXSEXT =
r

m2

r

m2 =
r2

m4 , and hence

Cov(XS , XT) =
r

m2 −
r2

m4 =
r

m2 (1− r

m2), so∑
|S∩T |=3

Cov(XS , XT) = m3 r(m2 − r)
m4

=
r(m2 − r)

m
∼ mr.

From the obtained information above,

V ar(X) =
∑
S,T

Cov(XS , XT) ∼ 2mr2 − 3mr2 − 3r2 + mr ∼ mr(1 − r).

(More precisely, V ar(X) =
r

m
(m2 −m2r + mr + r) ≥ 0 if m ≥ 0 and r ≤ 1.)

When r → 1, VarX = E(X−EX)2 → 0, and since X is a nonegative random
variable it follows that almost surely X = E(X) = m. That means almost surely
only K3 complexes are obtained in P.

Hairpin Structures in DNA Words

Lila Kari1, Stavros Konstantinidis2, Elena Losseva1,
Petr Sośık3,4,�, and Gabriel Thierrin5

1 Department of Computer Science,
The University of Western Ontario, London, ON, N6A 5B7 Canada

{lila, elena}@csd.uwo.ca
2 Dept. of Mathematics and Computing Science,

Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3 Canada
s.konstantinidis@stmarys.ca

3 Facultad de Informática, Universidad Politécnica de Madrid,
Campus de Montegancedo s/n, Boadilla del Monte 28660,

Madrid, Spain
4 Institute of Computer Science, Silesian University, Opava, Czech Republic

petr.sosik@fpf.slu.cz
5 Department of Mathematics,

The University of Western Ontario, London, ON, N6A 5B7 Canada
thierrin@uwo.ca

Abstract. We formalize the notion of a DNA hairpin secondary struc-
ture, examining its mathematical properties. Two related secondary
structures are also investigated, taking into the account imperfect bonds
(bulges, mismatches) and multiple hairpins. We characterize maximal
sets of hairpin-forming DNA sequences, as well as hairpin-free ones.
We study their algebraic properties and their computational complexity.
Related polynomial-time algorithms deciding hairpin-freedom of regular
sets are presented. Finally, effective methods for design of long hairpin-
free DNA words are given.

1 Introduction

A single strand of deoxyribonucleic acid (DNA) consists of a sugar-phosphate
backbone and a sequence of nucleotides attached to it. There are four types of
nucleotides denoted by A, C, T, and G. Two single strands can bind to each
other if they have opposite polarity (strand’s orientation in space) and are pair-
wise Watson-Crick complementary: A is complementary to T, and C to G. The
binding of two strands is also called annealing. The ability of DNA strands to
anneal to each other allows for creation of various secondary structures. A DNA
hairpin is a particular type of secondary structure investigated in this paper. An
example of a DNA hairpin structure is shown in Figure 1.

The reader is referred to [1, 16] for an overview of the DNA computing
paradigm. The study of DNA secondary structures such as hairpin loops is
motivated by finding reliable encodings for DNA computing techniques. These
� Corresponding author.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 158–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hairpin Structures in DNA Words 159

GC T AT C
GAT AGC A

C C
A
T

AC C T

G
C

A
TGAC

CTG

Fig. 1. An example of a DNA hairpin loop

techniques usually rely on a certain set of DNA bonds and secondary structures,
while other types of bonds and structures are undesirable. Various approaches
to the design of DNA encodings without undesirable bonds and secondary struc-
tures are summarized in [14] and [11]. For more details we refer the reader e.g.
to [5, 12, 13]. Here we apply the formal language approach which has been used
in [2, 7, 8, 10, 11] and others.

Hairpin-like secondary structures are of special importance for DNA comput-
ing. For instance, they play an important role in insertion/deletion operations
with DNA. Hairpins are the main tool used in the Whiplash PCR computing
techniques [18]. In [20] hairpins serve as a binary information medium for DNA
RAM. Last, but not least, hairpins are basic components of “smart drugs” [3].

The paper is organized as follows. Section 2 introduces basic definitions, Sec-
tion 3 presents results on hairpins, and in Section 4 we study two important vari-
ants of the hairpin definition. The first one takes into the account imperfect DNA
bonds (mismatches, bulges), the second one is related to hairpin-based nanoma-
chines. We study algebraic properties of (maximal) hairpin-free languages. The
hairpin-freedom problem and the problem of maximal hairpin-free sets are both
shown to be decidable in polynomial time for both regular and context-free
languages. The last section provides methods of constructing long hairpin-free
words.

2 Preliminary Definitions

We denote by X a finite alphabet and by X∗ its corresponding free monoid. The
cardinality of the alphabet X is denoted by |X |. The empty word is denoted by
1, and X+ = X∗ − {1}. A language is an arbitrary subset of X∗. For a word
w ∈ X∗ and k ≥ 0, we denote by wk the word obtained as catenation of k copies
of w. Similarly, Xk is the set of all words from X∗ of length k. By convention,
w0 = 1 and X0 = {1}. We also denote X≤k = X0 ∪X1 ∪ . . . ∪Xk. A uniform,
or block, code is a language all the words of which are of the same length k, for
some k ≥ 0, and is therefore contained in Xk.

A mapping ψ : X∗ → X∗ is called a morphism (anti-morphism) of X∗ if
ψ(uv) = ψ(u)ψ(v) (respectively ψ(uv) = ψ(v)ψ(u)) for all u, v ∈ X∗, and ψ(1) =
1. See Chapter 7 in [19] for a general overview of morphisms. An involution
θ : X −→ X is defined as a map such that θ2 is the identity function. An
involution θ can be extended to a morphism or an antimorphism over X∗. In
both cases θ2 is the identity over X∗ and θ−1 = θ. The simplest involution is

160 L. Kari et al.

the identity function ε. A mirror involutionμ is an antimorphic involution which
maps each letter of the alphabet to itself.

We shall refer to the DNA alphabet Δ = {A, C, T, G}, over which two in-
volutions of interest are defined. The DNA complementarity involution γ is a
morphism given by γ(A) = T , γ(T) = A, γ(C) = G, γ(G) = C. For example,
ACGCTG = μ(GTCGCA) = γ(TGCGAC).

The antimorphic involution τ = μγ (the composite function of μ and γ, which
is also equal to γμ), called the Watson-Crick involution, corresponds to the DNA
bond formation of two single strands. If for two strings u, v ∈ Δ∗ it is the case
that τ(u) = v, then the two DNA strands represented by u, v anneal as Watson-
Crick complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple A =
(S, X, s0, F, P), where S is the finite and nonempty set of states, s0 is the start
state, F is the set of final states, and P is the set of productions of the form
sx→ t, for s, t ∈ S, x ∈ X. If for every two productions sx1 → t1 and sx2 → t2
of an NFA we have that x1 �= x2 then the automaton is called a DFA (determin-
istic finite automaton). The language accepted by the automaton A is denoted
by L(A). The size |A| of the automaton A is the number |S|+ |P |.

Analogously we define a pushdown automaton (PDA) and a deterministic
pushdown automaton (DPDA). We refer the reader to [6, 19] for detailed defini-
tions and basics of formal language theory.

3 Hairpins

Definition 1. If θ is a morphic or antimorphic involution of X∗ and k > 0,
then a word u ∈ X∗ is said to be θ-k-hairpin-free or simply hp(θ,k)-free if u =
xvyθ(v)z for some x, v, y, z ∈ X∗ implies |v| < k.

Notice that words of length less than 2k are hp(θ,k)-free. If we interpret this
definition for the DNA alphabet Δ and the Watson-Crick involution τ , then
a hairpin structure with the length of bond at least k is a word that is not
hp(θ,k)-free.

Definition 2. Denote by hpf (θ, k) the set of all hp(θ,k)-free words in X∗. The
complement of hpf (θ, k) is hp(θ, k) = X∗ − hpf (θ, k).

Notice that hp(θ, k + 1) ⊆ hp(θ, k) for all k > 0.

Definition 3. A language L is called θ-k-hairpin-free or simply hp(θ, k)-free if
L ⊆ hpf (θ, k).

It follows by definition that a language L is hp(θ, k)-free iff X∗vX∗θ(v)X∗∩L =
∅ for all |v| ≥ k. An analogous definition was given in [7], where a θ-k-hairpin-
free language is called θ-subword-k-code. The authors focused on their coding
properties and relations to other types of codes. They consider also the restriction
on the length of the hairpin, namely that 1 ≤ |y| ≤ m for some m ≥ 1. The

Hairpin Structures in DNA Words 161

reader can verify that many of the results given in this paper remain valid if we
apply this additional condition.

Example. Recall that γ is the DNA complementary involution over Δ∗, then:

hpf (γ, 1) = {A, C}∗ ∪ {A, G}∗ ∪ {T, C}∗ ∪ {T, G}∗

We give the necessary and sufficient conditions for finiteness of the languages
hpf (θ, k), k ≥ 1. Proofs of the following results can be found in [9]. Recall that
hpf (μ, k) is the set of all words which do not contain any two non-overlapping
mirror parts of length at least k.

Proposition 4. Let X be a binary alphabet. For every word w ∈ X∗ in hpf (μ, 4)
we have that |w| ≤ 31. Moreover the following word of length 31 is in hpf (μ, 4) :

a7ba3bababab2ab2a2b7.

Proposition 5. Consider a binary alphabet X. Then hpf (μ, k) is finite if and
only if k ≤ 4.

Proposition 6. Let θ be a morphic or antimorphic involution. The language
hpf (θ, k) over a non-singleton alphabet X is finite if and only if one of the
following holds:

(a) θ = ε, the identity involution;
(b) θ = μ, the mirror involution, and either k = 1 or |X | = 2 and k ≤ 4.

3.1 Properties of hp(θ, 1)-Free Languages

Recall the definition of an embedding order: u ≤e v if and only if u = u1u2 · · ·un,
v = v1u1v2u2 · · · · · · vnunvn+1 for some integer n with ui, vj ∈ X∗.

A language L is called right ≤e-convex [21] if u ≤e w, u ∈ L implies w ∈ L.
The following result is well known: All languages (over a finite alphabet) that
are right ≤e-convex are regular.

Proposition 7. The language hp(θ, 1) is right ≤e-convex (and hence regular).

Proof. Observe that if u = u1u2 ∈ hp(θ, 1) and w ∈ X∗ then u1wu2 ∈ hp(θ, 1).
Hence, for u ∈ hp(θ, 1), u ≤e v implies v ∈ hp(θ, 1).

Let L ⊆ X∗ be a nonempty language and let S(L) = {w ∈ X∗|u ≤e w, u ∈ L}.
Recall further that a set H with ∅ �= H ⊆ X+ is called a hypercode over X∗ iff
x ≤e y and x, y ∈ H imply x = y. That is, a hypercode is an independent set
with respect to the embedding order.

Proposition 8. Let θ be a morphic or antimorphic involution. Then there exists
a unique hypercode H such that hp(θ, 1) = S(H).

Proof. Let H =
⋃

a∈X aθ(a), then S(H) =
⋃

a∈X X∗aX∗θ(a)X∗ = hp(θ, 1). The
uniqueness of H is immediate.

162 L. Kari et al.

3.2 Properties of hp(θ, k)-Free Languages

Proposition 7, true for the case k = 1, cannot in general be extended to the case
k > 1. Consider, for example, X = {a, b} and a morphism θ(a) = b, θ(b) = a. If
u = a2b2, then u = a2θ(a2) and hence u ∈ hp(θ, 2). But u ≤e w for w = abab2,
and w /∈ hp(θ, 2). Therefore, the language hp(θ, 2) is not ≤e-convex. However,
the following weaker result is proven in [9].

Proposition 9. The languages hp(θ, k) and hpf (θ, k), k ≥ 1, are regular.

Proposition 9 suggests an existence of fast algorithms solving some problems
important from the practical point of view. We investigate two such problems
now. Let θ be a fixed morphic or antimorphic involution and let k ≥ 1 be an
arbitrary but fixed integer.

Hairpin-Freedom Problem.

Input: A nondeterministic automaton M.
Output: Yes/No depending on whether L(M) is hp(θ, k)-free.

Maximal Hairpin-Freedom Problem.

Input: A deterministic automaton M1 accepting a hairpin-free language, and a
NFA M2.

Output: Yes/No depending on whether there is a word w ∈ L(M2)−L(M1) such
that L(M1) ∪ {w} is hp(θ, k)-free.

We assume that M and M1 are finite automata in the case of regular lan-
guages, and pushdown automata in the case of context-free languages.

Proposition 10. The hairpin-freedom problem for regular languages is decid-
able in linear time (w.r.t. |M |).

Proof. By definition, L(M) is hp(θ, k)-free iff L(M) ⊆ hpf (θ, k) iff L(M) ∩
hp(θ, k) = ∅. This problem is solvable in time O(|Mk|·|M |) for regular languages,
where Mk is a NFA accepting hp(θ, k). The automaton Mk is fixed for a chosen k.

Proposition 11. The maximal hairpin-freedom problem for regular languages
is decidable in time O(|M1| · |M2|).

Proof. We want to determine whether there exists a word w ∈ hpf (θ, k) such
that w /∈ L(M1), but w ∈ L(M2). It is decidable in time O(|M1| · |M2| · |M ′

k|)
whether (hpf (θ, k)∩L(M2))−L(M1) = ∅. The size of an NFA accepting hpf (θ, k)
is denoted by |M ′

k|. The automaton M ′
k is fixed for a chosen k.

As an immediate consequence, for a given block code K of length l it is decidable
in linear time with respect to |K| · l, whether there is a word w ∈ X l −K such
that K ∪ {w} is hp(θ, k)-free. This is of particular interest since the lab sets of
DNA molecules form often a block code.

Notice also that for a finite set S of DNA sequences (which is the case of
practical interest) the size of the automaton M (or M1) is in the worst case
proportional to the total length of all sequences in S.

Hairpin Structures in DNA Words 163

Proposition 12. The hairpin-freedom problem for context-free languages is de-
cidable in cubic time (w.r.t. |M |).

Proposition 13. The maximal hairpin-freedom problem for deterministic
context-free languages is decidable in time O((|M1| · |M2|)3).

Proof. We want to determine if ∃w ∈ hpf (θ, k) such that w /∈ L(M1), but w ∈
L(M2). Denote M1 = (Q1, X, Γ, q1, Z0, F1, P1), and let M ′

2 = (Q2, X, q2, F2, P2)
be a NFA accepting the language hpf (θ, k) ∩ L(M2). Consider the PDA M =
(Q, X, Γ, q0, Z0, F, P), where Q = Q1 × Q2, q0 = (q1, q2). For p ∈ Q1, q ∈ Q2,
and Z ∈ Γ we define:

(1) (p, q)aZ→
P

(p′, q′)α iif paZ→
P1

p′α and qa→
P2

q′,

(2) (p, q)1Z→
P

(p′, q)α iif p1Z→
P1

p′α

Let F = {(p, q)|p /∈ F1 and q ∈ F2}. Then L(M) = (hpf (θ, k)∩L(M2))−L(M1),
and the size of M is O(|M1| · |M2|). Let G be a CFG such that L(G) = L(M).
Note that the construction of G takes cubic time w.r.t. |M |, see Theorem 7.31
of [6]. Finally, it is possible to decide in linear time w.r.t. |G| (see Section 7.4.3
of [6]) whether L(G) = ∅ or not.

The time complexity of the above mentioned algorithms is furthermore pro-
portional to the (constant) size of a NFA accepting the language hp(θ, k) or
hpf (θ, k), respectively. Therefore we recall results from [9] characterizing the
minimal size of these automata.

Proposition 14. The number of states of a minimal NFA accepting the lan-
guage hp(θ, k), k ≥ 1, over an alphabet X with the cardinality �, is between �k

and 3�k. Its size is at most 3(�k + �k+1).

Proposition 15. Let there be distinct letters a, b ∈ X such that a = θ(b). Then
the size of a minimal NFA accepting hpf (θ, k), k ≥ 1, over an alphabet X with
the cardinality �, is at least 2(�−2)k/2.

Corollary 16. Consider the DNA alphabet Δ = {A, C, T, G} and the Watson-
Crick involution τ.

(i) The size of a minimal NFA accepting hp(τ, k) is at most 15 ·4k. The number
of its states is between 4k and 3 · 4k.

(ii) The number of states of either a minimal DFA or an NFA accepting
hpf (τ, k) is between 22k−1

and 23·22k

.

The above results show that the size of a minimal NFA for hp(τ, k) grows ex-
ponentially w.r.t. k. However, one should recall that k is the minimal length of
bond allowing for a stable hairpin. Therefore k is rather low in practical applica-
tions and the construction of the mentioned automaton remains computationally
tractable.

164 L. Kari et al.

4 Variants of Hairpins

4.1 Scattered Hairpins

It is a known fact that parts of two DNA molecules could form a stable bond even
if they are not exact mutual Watson-Crick complements. They may contain some
mismatches and even may have different lengths. Hybridizations of this type are
addressed e.g. in [2] and [11]. Motivated by this observation, we consider now a
generalization of hairpins.

Definition 17. Let θ be an involution of X∗ and let k be a positive integer. A
word u = wy ∈ X∗ is θ-k-scattered-hairpin-free or simply shp(θ, k)-free if for all
t ∈ X∗, t ≤e w, θ(t) ≤e y implies |t| < k.

GC T AT C
GAT AGC A

C C
A
T

AC C T

A

AA

CTG
C C

A
TGAC

CTG

Fig. 2. An example of a scattered hairpin – a word in shp(τ, 11)

Definition 18. We denote by shpf (θ, k) the set of all shp(θ, k)-free words in
X∗, and by shp(θ, k) its complement X∗ − shpf (θ, k).

Definition 19. A language L is called θ-k-scattered-hairpin-free or simply
shp(θ,k)-free if L ⊆ shpf (θ, k).

Lemma 20. shp(θ, k) = S

(⋃
w∈Xk

wθ(w)
)

.

Based on the above immediate result, analogous statements as in Section 3 hold
also for scattered hairpins. Proofs are straightforward and left to the reader.

Proposition 21. (i) The language shp(θ, k) is right ≤e -convex.
(ii) The languages shp(θ, k) and shpf (θ, k) are regular.
(iii) There exists a unique hypercode H such that shp(θ, k) = S(H).

Analogously as in Section 3 we can also define the scattered-hairpin-freedom
problem and maximal scattered-hairpin-freedom problem. Then we easily obtain
the following results whose proofs are analogous to those in Section 3.

Corollary 22. (i) The scattered-hairpin-freedom problem is decidable in linear
time for regular languages and in cubic time for context-free languages.

(ii) The maximal scattered-hairpin-freedom problem is decidable in time O(|M1|·
|M2|) for regular languages and in time O((|M1| · |M2|)3) for deterministic
context-free languages.

Hairpin Structures in DNA Words 165

Also the size of the minimal automaton accepting the language shp(θ, k) is sim-
ilar to the case of hp(θ, k) in Section 3.2.

For the proof of the next proposition we recall the following technical tools
from [4].

Definition 23. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called a
fooling set for a language L if for any i, j in {1, 2, . . . , n},
(1) xiyi ∈ L, and
(2) if i �= j then xiyj �∈ L or xjyi �∈ L.

Lemma 24. Let F be a fooling set of a cardinality n for a regular language L.
Then any NFA accepting L needs at least n states.

Proposition 25. The number of states of a minimal NFA accepting the lan-
guage shp(θ, k), k ≥ 1, over an alphabet X with the cardinality �, is between �k

and 3�k, its size is at most 7�k + 3�k+1.

Proof. Let Mk = (S, X, s1, F, P) be an NFA accepting shp(θ, k). The statement
is trivial for the cases � = 1 or k = 1. Assume for the rest of the proof that k ≥ 2
and � ≥ 2.

(i) The reader can easily verify that the set F = {(w, θ(w))|w ∈ Xk} is a fooling
set for hp(θ, k). Therefore |S| ≥ �k.

(ii) Let
S = {sw, pw |w ∈ X≤k−1} ∪ {qw |w ∈ Xk}.

Let further F = {p1}. The set of productions P is defined as follows:

sva→ sw iif va = w, for each v ∈ X≤k−2, a ∈ X ;
sva→ qw iif va = w, for each v ∈ Xk−1, a ∈ X ;
qwa→ pv iif θ(av) = w, for each v ∈ Xk−1, a ∈ X ;
pwa→ pv iif av = w, for each v ∈ X≤k−2, a ∈ X.
ra→ r for all r ∈ S, a ∈ X.

The reader can verify that L(Mk) = shp(θ, k), and that |S| ≤ 3�k, |P | ≤
4�k + 3�k+1, therefore |Mk| ≤ 7�k + 3�k+1.

Note: An example of a similar automaton accepting the language hp(θ, k) can
be found in [9].

4.2 Hairpin Frames

In this section we point out the following two facts. First, long DNA and RNA
molecules can form complicated secondary structures as that shown in Figure 3.
Second, simple hairpins can be useful in various DNA computing techniques and
nanotechnologies, as in [3, 18, 20] and others. Hence it may be desirable to design
DNA strands forming simple hairpins but avoiding more complex structures.
This motivates another extension of the results from Section 3.

166 L. Kari et al.

Definition 26. The pair (v, θ(v)) of a word u in the form u = xvyθ(v)z, for
x, v, y, z ∈ X∗, is called an hp-pair of u. The sequence of hp-pairs (v1, θ(v1)),
(v2, θ(v2)), · · · , (vj , θ(vj)) of the word u in the form:

u = x1v1y1θ(v1)z1x2v2y2θ(v2)z2 · · ·xjvjyjθ(vj)zj

is called an hp-frame of degree j of u or simply an hp(j)-frame of u.

An hp-pair is an hp-frame of degree 1. The definition of hairpin frames char-
acterizes secondary structures containing several complementary sequences such
as that in Fig. 3.

GC T AT C
GAT AG

C−G
C

T−A
C−G
C−G
A−T

GC AC C
GT GGC

A
C C

A
T

AC C T

AG
A

T G
CT

A−T
C−G

A
G

T

C
T

C

A

Fig. 3. An example of a hairpin frame – a word in hp(τ, fr , 3)

A word u is said to be an hp(fr,j)-word if it contains at least one hp-frame of
degree j. Observe that there may be more ways of finding hp-pairs in u, resulting
in hp-frames of various degrees. Obviously, any hp(fr,j)-word is also hp(fr,i) for
all 1 ≤ i ≤ j.

Definition 27. For an involution θ we denote by hp(θ, fr , j) the set of all
hp(fr,j)-words u ∈ X∗, and by hpf (θ, fr , j) its complement in X∗.

The results in Section 3, concerning the languages hp(θ, 1) and hpf (θ, 1), can
easily be extended for the case of hairpin frames. Proofs are left to the reader.

Lemma 28. hp(θ, fr , j) = hp(θ, 1)j =
(⋃

a∈X

X∗aX∗θ(a)X∗
)j

.

Proposition 29. (i) The language hp(θ, fr , j) is right ≤e -convex.
(ii) The languages hp(θ, fr , j) and hpf (θ, fr , j) are regular.
(iii) There exists a unique hypercode H such that hp(θ, fr , j) = S(H).

Corollary 30. (i) The hp(fr,j)-freedom problem is decidable in linear time for
regular languages and in cubic time for context-free languages.

Hairpin Structures in DNA Words 167

(ii) The maximal hp(fr,j)-freedom problem is decidable in time O(|M1|·|M2|) for
regular languages and in time O((|M1| · |M2|)3) for deterministic context-free
languages.

Proposition 31. The size of a minimal NFA accepting the language hp(θ, fr , j),
j ≥ 1, over an alphabet X with the cardinality �, is at most 4�j + 2j + 1.

Proof. The statement follows by the construction of an NFA M = (S, X, s1, F, P)
accepting the language hp(θ, fr , j). Let

S = {s0, s1, . . . , sj} ∪ {pk
i | 1 ≤ i ≤ j, 1 ≤ k ≤ �}.

Let further F = {sj}, and denote X = {a1, . . . , a�}. The set of productions P is
defined as follows:

si−1ak → pk
i , pk

i θ(ak)→ si for all 1 ≤ i ≤ j, 1 ≤ k ≤ �;
sa→ s for all s ∈ S, a ∈ X.

The reader can verify that L(Mk) = hp(θ, fr , j), and that |M | = 4�j + 2j + 1.

Unlike the cases of hairpins or scattered hairpins, the size of the minimal NFA
accepting hp(θ, fr , j) is O(j�). However, if we considered also a minimal length k
of the hairpin bonds, we would obtain the same exponential size of the automaton
as in Section 3.2, but multiplied by j.

5 Construction of Long Hairpin-Free Words

In this section we discuss the problem of constructing long hp(θ, k)-free words
for the cases where θ is the Watson-Crick involution and θ = ε. This question is
relevant to various encoding problems of DNA computing. For example, in [20]
the authors consider n-bit memory elements that are represented by DNA words
of the form

u1v1w1θ(v1) · · ·unvnwnθ(vn)un+1,

such that (i) all the u’s and v’s have length 20 and the w’s have length 7, and
(ii) the only bonds permitted in a word of this form are the bonds between vi

and θ(vi) for all i = 1, . . . , n. This encoding problem can be solved if we first
construct a long hp(θ, k)-free word w of length (20 + 20 + 7)n + 20 = 47n + 20.
Then w can be written in the form

u1v1w1 · · ·unvnwnun+1

and is such that no bonds can occur between any two subwords of length k of
w. Here k is the parameter that represents the smallest length of a block of
nucleotides that can form a stable bond with a corresponding block of comple-
mentary nucleotides – see also the relevant discussion in [11].

For the case where θ is the Watson-Crick involution we consider the method of
[11] for constructing (θ, H0,k)-bond-free languages L. Such a language L has the

168 L. Kari et al.

property that, for any two subwords u and v of L of length k, one has that u �=
θ(v). Note that each word of L is a hp(θ, k)-free word. Moreover, if L is infinite
then it contains arbitrarily long words, hence, also words of length 47n + 20,
for any n, as required in the encoding problem discussed in the beginning of
this section. We also note that if L is (θ, k)-bond-free then it is (θ, k′)-bond-free
for any k′ ≥ k. The method of [11] is based on the subword closure language
operation ⊗: Let S be a set of words of length k. Then S⊗ is the set of all words
w of length at least k such that any subword of w of length k belongs to S.
We note that given the set S one can construct a deterministic finite automaton
accepting S⊗ in linear time [11]. The method is as follows. Let S be any set
of words of length k such that S ∩ θ(S) = ∅. Then S⊗ is a (θ, H0,k)-bond-
free language. In our case, we wish to choose S such that S⊗ is infinite. For
example, let S2 be the set {AA, AC, CA, CC, AG, GA}. In [11] the authors show
an automaton accepting S⊗

2 . As S⊗
2 contains the set (ACCAGAC)+ it follows

that S⊗
2 is infinite as well.

For the case of θ = ε, we consider a totally different approach. Let H(K)
denote the minimum Hamming distance between any two different codewords of
a code K. A language K is said to be a solid code if (i) no word of K is a subword
of another word of K, and (ii) a proper and nonempty prefix of K cannot be a
suffix of K. See [17] or Chapter 8 in [19] for background information on codes.

Proposition 32. Let k ≥ 2 and let K be a uniform solid code of length k. If
H(K) > "k/2#, or H(K) = "k/2# and there are no different codewords with
a common prefix of length "k/2#, then the word w1...wn is hp(θ, k)-free for all
n ≤ card(K) and for all pairwise different codewords w1, ..., wn.

Proof. Assume there is v ∈ Xk such that w1...wn = xvyvz for some words x, y, z.
If |x| is a multiple of k then v = wj for some j ≥ 1. As the wi’s are different,
|y| cannot be a multiple of k. Hence, v = stpt+1, where t > j and st is a proper
and nonempty suffix of wt and pt+1 is a proper and nonempty prefix of wt+1; a
contradiction. Now suppose |x| is not a multiple of k. Then, v = sjpj+1 for some
nonempty suffix sj and prefix pj+1. Again, the second occurrence of v cannot be
in K. Hence, v = stpt+1 for some t ≥ j. Hence, sjpj+1 = stpt+1. If |sj | �= |st|,
say |sj| > |st|, then a prefix of pt+1 is also a suffix of sj ; which is impossible.
Hence, sj = st and pj+1 = pt+1.

Note that H(K) ≥ "k/2# and, therefore, "k/2# ≤ H(pj+1sj+1, pt+1st+1) =
H(sj+1, st+1) ≤ |sj+1| = k − |pj+1|. Hence, |pj+1| ≤ $k/2%. Similarly, |sj | ≤
$k/2%. Also, as k = |sj | + |pj+1|, one has that |sj |, |pj+1| ∈ {"k/2#, $k/2%}. If
H(K) = "k/2# then pj+1 = pt+1 implies that wj+1 and wt+1 have a common
prefix of length "k/2#; a contradiction. If H(K) > "k/2# then both pj+1 and sj

are shorter than $k/2% which contradicts with k = |sj |+ |pj+1|.

Suppose the alphabet size |X | is l > 2. We can choose any symbol a ∈ X and
consider the alphabet X1 = X − {a}. Then for any uniform code F ⊆ Xk−1

1 it
follows that the code Fa is a uniform solid code of length k : Fa ⊆ Xk. We are
interested in cases where the code F is a linear code of type [k − 1, m, d]. That
is, F is of length k − 1, cardinality (l − 1)m, and H(F) = d, and there is an m

Hairpin Structures in DNA Words 169

by k− 1−m matrix G over X1 such that F = {w ∗ [Im|G] : w ∈ Xm
1 }, where Im

is the identity m by m matrix and ∗ is the multiplication operation between a 1
by m vector and an m by m matrix. Thus, u ∈ F iff u = wx for some w ∈ Xm

1
and x ∈ Xk−1−m

1 and x = wG.

Proposition 33. Let F be a linear code over X1 of type [k − 1, m, "k/2#]. If
m ≤ "k/2# or k is even then the word w1..wn is hp(θ, k)-free for all n ≤ card(F)
and for all pairwise different codewords w1, ..., wn in Fa.

Proof. It is sufficient to show that H(Fa) = "k/2# and there are no different
words in Fa with a common prefix of length "k/2#. Obviously H(Fa) = H(F) =
"k/2#. As F is generated by a matrix [Im|G], where G is a matrix in X

m×(k−1−m)
1 ,

it follows that there can be no different words in F with a common prefix of
length m. If m ≤ "k/2# then there can be no different words in Fa with a
common prefix of length "k/2#. If k is even, consider the well known bound on
|F |: |F | ≤ |X1|k−1−�k/2�+1. Hence, |X1|m ≤ |X1|�k/2� which gives m ≤ "k/2#.
Hence, again, we are done.

By the above one can construct an hp(θ, k)-free word of length nk, for some
n ≤ card(F), for every choice of n different words in Fa. It is interesting that,
for k = 13 and |X | = 4, the famous Golay code G12 of type [12, 6, 6] satisfies the
premises of the above Proposition.

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K.,
NSERC Discovery Grants R2824A01 to L.K. and R220259 to S.K., and by the
Grant Agency of Czech Republic, Grant 201/06/0567 to P.S.

References

1. M. Amos, Theoretical and Experimental DNA Computations. Springer-Verlag,
Berlin, 2005.

2. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen,
S. Skiena, Algorithms for testing that sets of DNA words concatenate without sec-
ondary structure. In Proc. 8th Workshop on DNA-Based Computers, M. Hagiya,
A. Ohuchi, Eds., LNCS 2568 (2002), 182–195.

3. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, An autonomous molecular
computer for logical control of gene expression. Nature 429 (2004), 423–429.

4. J.C. Birget, Intersection and union of regular languages and state complexity. In-
formation Processing Letters 43 (1992), 185–190.

5. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D. Wood, H. Bi, D. Carpenter, Y.-Z.
Wang, Characterization of non-crosshybridizing DNA oligonucleotides manufac-
tured in vitro. In [15], 132–141.

6. J. Hopcroft, J. Ullman, R. Motwani, Introduction to Automata Theory, Languages,
and Computation, 2nd ed., Addison-Wesley, 2001.

170 L. Kari et al.

7. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words. Congressus
Numerantium 156 (2002), 99–110.

8. N. Jonoska, K. Mahalingam, Languages of DNA based code words. In DNA Com-
puting, 9th International Workshop on DNA Based Computers, J. Chen and J.H.
Reif, Eds., LNCS 2943 (2004), 61–73.

9. L. Kari, S. Konstantinidis, P. Sośık, G. Thierrin, On hairpin-free words and lan-
guages. In Developments in Language Theory, 9th Int. Conf., C. de Felice and A.
Restivo, Eds., LNCS 3572 (2005), 296–307.

10. L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, Sticky-free and overhang-free
DNA languages. Acta Informatica 40, 2003, 119–157.

11. L. Kari, S. Konstantinidis, P. Sośık, Bond-free languages: formalizations, maximal-
ity and construction methods. In [15], 16–25.

12. S. Kobayashi, Testing Structure Freeness of Regular Sets of Biomolecular Se-
quences. In [15], 395–404.

13. A. Marathe, A. Condon, R. Corn, On combinatorial DNA word design. DNA
based Computers V, DIMACS Series, E.Winfree, D.Gifford Eds., AMS Press, 2000,
75–89.

14. G. Mauri, C. Ferretti, Word Design for Molecular Computing: A Survey. In DNA
Computing, 9th International Workshop on DNA Based Computers, J. Chen and
J.H. Reif, Eds., LNCS 2943 (2004), 37–46.

15. G. Mauri, C. Ferretti, Eds., DNA 10, Tenth International Meeting on DNA Com-
puting. Preliminary proceedings, University of Milano-Bicocca, 2004.

16. G. Paun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms,
Springer Verlag, Berlin, 1998.

17. S. Roman, Coding and Information Theory, Springer-Verlag, New York, 1992.
18. J. A. Rose, R. J. Deaton, M. Hagiya, A. Suyama, PNA-mediated Whiplash PCR.

In DNA Computing, 7th International Workshop on DNA Based Computers, N.
Jonoska and N. C. Seeman, Eds., LNCS 2340 (2002), 104–116.

19. G. Rozenberg, A. Salomaa, Eds., Handbook of Formal Languages, Vol. 1, Springer
Verlag, Berlin, 1997.

20. N. Takahashi, A. Kameda, M. Yamamoto, A. Ohuchi, Aqueous computing with
DNA hairpin-based RAM. In [15], 50–59.

21. G. Thierrin, Convex languages. Proc. IRIA Symp. North Holland 1972, 481–492.

Efficient Algorithm for
Testing Structure Freeness of

Finite Set of Biomolecular Sequences

Atsushi Kijima and Satoshi Kobayashi

Graduate School of University of Electro-Communications,
1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan

kijiman@comp.cs.uec.ac.jp, satoshi@cs.uec.ac.jp

Abstract. In this paper we will focus on the structure freeness test
problem of finite sets of sequences. The result is an extension of An-
dronescu’s algorithm which can be applied to the sequence design of
various DNA computing experiments. We will first give a general algo-
rithm for this problem which runs in O(n5) time. Then, we will give
an evaluation method for sequence design system, which requires O(n5)
time for precomputation, and O(n4) time and O(n5) space for each eval-
uation of sequence sets. The authors believe that this result will give an
important progress of efficient sequence design systems.

1 Introduction

Since Adleman’s novel biological experiment for solving directed Hamiltonian
path problem by DNA molecules was reported([1]), DNA computing paradigm
has emerged and progressed while communicating with related fields, such as
DNA nanotechnology([19], [15], [7]), biotechnology([5]), etc. One of the most im-
portant problems in DNA computing experiments include the design of structure
free biomolecular sequences which can avoid unwanted secondary structure([6],
[8]). In order to develop a sequence design system, we need to devise an efficient
algorithm to test the structure freeness of a given set of biomolecular sequences.

Concerning sequence design for DNA computing, there have been many inter-
esting and important works which propose some variants of Hamming distance
over biomolecular sequences. And these metrics are used for the evaluation of the
sequences([3], [12], [10], etc.). Comparing those Hamming distance approaches,
Condon, et al. mathematically formulated a structure freeness test problem of
biomolecular sequences at the secondary structure level([8], [2]). This problem is
closely related to the prediction problem of RNA secondary structures([9], [11],
[16], [20]), and is important in that its efficient algorithms can be applied to the
evaluation of sequence sets in sequence design systems.

Andronescu, et al., proposed an O(m2n3) time algorithm for testing the struc-
ture freeness of a sequence set S1 · · ·Sk, where each Si is a finite set of sequences
of length li, n =

∑k
i=1 li, and m = max{|Si| | i = 1, ..., k}([2]). Kobayashi,

et al., gave an O(m6n6) time algorithm for testing the structure freeness of a
sequence set S+, where S is a finite set of sequences of length n and m = |S|

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 171–180, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 A. Kijima and S. Kobayashi

([14]). Furthermore, Kobayashi devised an O(n8) time algorithm for testing the
structure freeness of a regular set of sequences, where n is the number of vertices
of graphs for representing the set([13]). (Note that Condon proposed to use a
graph for representing a regular set of sequences.)

In spite of this progress in evaluation methods, we still need more efficient
algorithms in order to develop an efficient sequence design system. In this paper,
we will focus on the structure freeness test problem of finite sets of sequences.
The obtained result is an extension of Andronescu’s algorithm and can be applied
to the sequence design of various DNA computing experiments. We will first give
a general algorithm for this problem which runs in O(n5) time. Then, we will
give an evaluation method for sequence design system, which requires O(n5)
time for precomputation, and O(n4) time and O(n5) space for each evaluation
of sequence sets. The authors believe that this result will give an important
progress of efficient sequence design systems.

2 Preliminaries

Σ is an alphabet {A, C, G, T} or {A, C, G, U}. A symbol in Σ is called a base. A
string over Σ represents a DNA or RNA strand with 5′ → 3′ direction. Consider
a string α over Σ. By |α| we denote the length of α. For a finite set X , by |X |
we denote the number of elements of X . For an integer i such that 1 ≤ i ≤ |α|,
by α[i] we denote the ith base of α.

2.1 Secondary Structure

We will partly follow the terminologies and notations used in ([17]). We intro-
duce a relation θ ⊆ Σ × Σ defined by θ = {(A, T), . . ., (T, G)} for representing
Watson-Crick and non-Watson-Crick base pairs of a DNA strand. For the case
of an RNA strand, the symbol T is replaced by U. By (i, j) we denote a hy-
drogen bond between the ith base and the jth base of a string α. A hydrogen
bond is also called a base pair. A base pair (i, j) of a string α can be formed
only if (α[i], α[j]) ∈ θ holds. Without loss of generality, we may assume that
i < j for a base pair (i, j). A finite set of base pairs of string α is called a
secondary structure of α. A string α with its secondary structure T is called a
structured string and denoted by α(T). For representing the ith base in α(T),
we often use the integer i.

In this paper, we consider secondary structures T such that there exist no
base pairs (i, j), (k, l) ∈ T satisfying i < k < j < l. In the sequel, we assume
that every secondary structure is pseudo-knot free.

For a base pair (i, j) ∈ α(T) and a base r in α(T), we say that (i, j) surrounds
r if i < r < j holds. For a base pair (p, q) ∈ T , we say that (i, j) surrounds (p, q)
if i < p < q < j holds. A base pair (p, q) or an unpaired base r is said to be
accessible from (i, j), if it is surrounded by (i, j) and is not surrounded by any
base pair (k, l) such that (k, l) is surrounded by (i, j). If (p, q) is accessible from
(i, j), we write (p, q) < (i, j).

Efficient Algorithm for Testing Structure Freeness of Finite Set 173

For each base pair bp = (i, j) ∈ T , we define a cycle c(bp) as a substructure
consisting of the base pair (i, j) together with any base pairs (p1, q1), (p2, q2), . . . ,
(pk−1, qk−1) ∈ T accessible from (i, j) and any unpaired bases accessible from
(i, j). If a cycle c(bp) contains k base pairs including the base pair (i, j), it is
said to be k-cycle. In case k = 1, we often call it a hairpin. In case k = 2, it is
called internal loop. In case k > 2, it is called multiple loop. In these definitions,
the base pair (i, j) is called a closing base pair of the cycle. (See Fig. 1).

5’

3’

5’

3’

i

j

i

j

p

q

1-Cycle 2-Cycle

i

j

p
1

q
1

p
2

q
2

3-Cycle

(hairpin) (internal loop) (multiple loop)

5’

3’

Fig. 1. Secondary Structure

In case of (1, |α|) �∈ T , the substructure of α(T) consisting of the base pair
(i, j) such that (i, j) is not surrounded by any (p, q) ∈ T ((i, j) �= (p, q)) and
the unpaired bases such that they are not surrounded by (i, j) is called a free
end structure of α(T). We do not consider a free end structure because of space
constraint.

The loop length of a 1-cycle c with a base pair (i, j) is defined as j− i+1. For
a 2-cycle c with base pairs (i, j), (p, q) ((p, q) < (i, j)), we define loop length of c
as p− i + j − q + 2 and define loop length mismatch of c as |(p− i)− (j − q)|.

By ↑ α ↓ we denote a 1-cycle consisting of a string α with a base pair between
α[1] and α[|α|]. By ↑ α β ↓ we denote 2-cycle consisting of strings α and β with
two base pairs between α[1] and β[|β|] and between α[|α|] and β[1].

3 Free Energy of Secondary Structure

In this paper, we use following simplified functions to assign free energy values
to each substructures. We use these simplifications only for the clarity of the
algorithm. Experimental evidence is used to determine such free energy values.

1. The free energy E(c) of a 1-cycle c with a base pair (i, j) is dependent on
the base pair (i, j) and its loop length l:

E(c) = f1(α[i], α[j]) + g1(l) . (1)

2. The free energy E(c) of a 2-cycle c with two base pair (i, j), (p, q)((p, q) <
(i, j)) is dependent on the base pairs (i, j), (p, q), its loop length l and its
loop length mismatch d:

E(c) = f2(α[i], α[j], α[p], α[q]) + g2(l) + g3(d) . (2)

174 A. Kijima and S. Kobayashi

3. The free energy E(c) of a k-cycle c (k > 2) with a closing base pair (i, j)
and the base pairs (p1, q1), (p2, q2), . . . , (pk−1, qk−1) accessible from (i, j) is
dependent on the base pairs (i, j), (pl, ql) (l = 1, . . . , k − 1), the number nb

(= k) of base pairs in c and the number nu of unpaired bases in c:

E(c) = m1(α[i], α[j])+
k∑

l=1

(m1(α[ql], α[pl]))+Mb ∗nb +Mu ∗nu +CM . (3)

In these definitions, the functions f1, g1, f2, g2, g3, m1 and the constants Mb,
Mu,CM are experimentally obtained. We assume that Mb, Mu, CM are non-
negative. For each function gi (i = 1, 2, 3), we assume that gi is weakly mono-
tonically increasing1.

We assume that all the above functions are computable in constant time.
Let c1, . . . , ck be the cycles contained in α(T). Then, the free energy E(α(T))

of α(T) is given by following:

E(α(T)) =
k∑

i=1

E(ci) . (4)

4 Structure Freeness of Finite Regular Set

We will consider the problem of testing whether a given finite regular set of
strings is structure free or not. The problem is formally defined in the following
way:

Let R be a regular language over Σ. Then, we say that R is structure free
with threshold D if for any structured string α(T) such that α ∈ R and T is
pseudo-knot free, it holds that E(α(T)) ≥ D. We have interests in deciding for
given R, whether or not R is structure free with threshold D. In Sect. 6, we will
give a polynomial time algorithm for solving this problem in the case that R is
finite.

For specifying a regular language R, we use a labeled directed graph with
initial and final vertices. Let M = (V, E, σ, I, F), where V is a finite set of
vertices, E is a subset of V ×V , σ is a label function from V to Σ, and I, F ∈ V .
For p, q ∈ V and x ∈ Σ∗, we write p

x→ q if there is a path with labels x from
p to q in M . Note that x contains the labels σ(p) and σ(q). We write p → q if
p

x→ q for some x ∈ Σ∗. A string α is accepted by M if p
α→ q for some p ∈ I and

q ∈ F . This graph representation could be regarded as a Moore type machine
with no edge labels. Thus, a set of strings is regular iff it is accepted by a graph
M . A graph M is said to be trimmed if every vertex is reachable from an initial
vertex and has a path to a final vertex.

In this paper, we have interests in testing structure freeness of a finite regular
set. Note that a set of strings is finite iff it is accepted by a trimmed and acyclic
graph.
1 This assumption can be extended so that gi(l) is weakly monotonically increasing

within the range l > Li for some constant Li. Because of space constraint, we use
the simplified assumption.

Efficient Algorithm for Testing Structure Freeness of Finite Set 175

5 Minimum Free Energy of Substructure

Let R be a finite regular language over Σ and M = (V, E, σ, I, F) be a trimmed
and acyclic graph accepting R.

We can topologically sort vertices in V in O(|V | + |E|) time. By an integer
i, we denote the ith vertex in the topological order. Let α(T) be a structured
string such that α ∈ R and T is pseudo-knot free.

Definition 1. For i, j, p, q ∈ V , we define:

(1) minH(i, j) = min
{
E(↑ x ↓) | i

x→ j
}

,

(2) minI(i, j, p, q) = min
{
E(↑ x y ↓ | i

x→ p, q
y→ j, p→ q

}
.

For each i, j, p, q ∈ V such that there is no ↑ x ↓ or ↑ x y ↓ , the value of
minH(i, j) or minI(i, j, p, q) is defined as +∞.

For each pair of vertices i, j, we define Len(i)(j) as a set of the length |x| such
that i

x→ j. For a given graph M , we compute the array Len by the algorithm
shown in Fig. 2, where every vertices are sorted in the topological order.

Make-Len(M)
begin

for i, j ∈ V do Len(i)(j) := φ; end
for (i, j) ∈ E do Len(i)(j) := {2}; end
for d = 2 to |V | − 1 do

for i = 1 to |V | − d do
j := i + d;
Len(i)(j) := Len(i)(j) ∪

i<k<j
(k,j)∈E

{x + 1 | x ∈ Len(i)(k)};

end
end

end

Fig. 2. The algorithm Make-Len

Since a given graph M is acyclic, for any i, j ∈ V , |Len(i)(j)| ≤ |V | holds.
So, we can compute an array Len in O(|V |2|E|) time.

By Definition 1 and by using the array Len, we get the following Proposition 1.

Proposition 1. For i, j, p, q ∈ V , we define:

(1) minH(i, j) = min
{
f1
(
σ(i), σ(j)

)
+ g1(l) | l ∈ Len(i)(j)

}
(2) minI(i, j, p, q) = min { f2(σ(i), σ(j), σ(p), σ(q))+

g2(l1 + l2) + g3(|l1 − l2|) | l1 ∈ Len(i)(p), l2 ∈ Len(q)(j)} .

In case of Len(i, j) = φ for some i, j ∈ V , we define minH(i, j) = +∞. In
case of Len(i, j) = φ or Len(p, q) = φ for some i, j, p, q ∈ V , we also define
minI(i, j, p, q) = +∞.

Note that the number of elements of a set {(x+y, |x−y|) | x ∈ Len(i)(p), y ∈
Len(q)(j)} is O(|V |2) for i, j, p, q ∈ V .

176 A. Kijima and S. Kobayashi

5.1 Minimum Free Energy of Internal Loop

By Proposition 1, it takes O(|V |6) time to compute minI(i, j, p, q) for all i, j, p, q
∈ V . We can compute minI(i, j, p, q) more efficiently by computing an array
SX,Y , SX,Y defined as follows:

Definition 2. Let X and Y be finite sets of positive integers. We define SX,Y

as follows:

SX,Y =
{
(x, min{y ∈ Y | x ≤ y}) | x ∈ X

}
.

Note that we can compute SX,Y in O(|X | + |Y |) time by using the algorithm
shown in Fig. 3, and the number of elements of SX,Y is O(|X |+ |Y |).

In order to apply SX,Y to computing minimum free energy of strings, we
define SX,Y as follows:

SX,Y =
{
(x, y) | (x, y) ∈ SX,Y

}
∪
{
(x, y) | (y, x) ∈ SY,X

}
. (5)

Theorem 1. For i, j, p, q ∈ V , we can compute minI(i, j, p, q) in the following
way:
minI(i, j, p, q) = min { f2(σ(i), σ(j), σ(p), σ(q)) + g2(x + y) + g3(|x− y|) |

(x, y) ∈ SLen(i)(p),Len(q)(j), Len(p)(q) �= φ
}

.

Proof. Let X = Len(i)(q) and Y = Len(q)(j). It suffices to show that for any
(x, y) ∈ X × Y , there exists (x′, y′) ∈ SX,Y such that g2(x + y) + g3(|x − y|) ≥
g2(x′ + y′) + g3(|x′ − y′|).

Make-S(X, Y)
begin

SX,Y := φ
i := |X|;
j := |Y |;
y0 = −∞;
while i ≥ 1 and j ≥ 1 do

if xi ≤ yj then
while xi ≤ yj and yj−1 < xi and i ≥ 1 do

SX,Y := SX,Y ∪ (xi, yj);
i := i − 1;

end
j := j − 1;

else
i := i − 1;

end
end
return SX,Y ;

end

Fig. 3. The algorithm Make-S

Efficient Algorithm for Testing Structure Freeness of Finite Set 177

We consider two cases:

(1) In case of x ≤ y, let x′ = x and y′ = min{y′′ ∈ Y |x ≤ y′′}. Note that
(x′, y′) ∈ SX,Y . We have x = x′ ≤ y′ ≤ y. Then, we have x′ + y′ ≤ x + y
and 0 ≤ y′ − x′ ≤ y − x. Since functions g2 and g3 are weakly monotonically
increasing, we have g2(x′+y′) ≤ g2(x+y) and g3(y′−x′) ≤ g3(y−x). Therefore,
we can compute minimum free energy minI(i, j, p, q) by using SX,Y .
(2) In case of x > y, let x′ = min{x′′ ∈ X | y ≤ x′′} and y′ = y. Note that
(y′, x′) ∈ SY,X . In the same way above, we can also say that we can compute
minI(i, j, p, q) by using SY,X .

We can compute minI by using SX,Y or SY,X in both cases (1) and (2).
Therefore, we can compute minI by using SX,Y . ��

Theorem 2. For each i, j, p, q ∈ V , minI(i, j, p, q) can be computed in O(|V |)
time.

Proof. Since for any i, j ∈ |V |, the number of elements of Len(i)(j) is less than or
equal to |V |, the number of elements in SLen(i)(p),Len(q)(j) and SLen(q)(j),Len(i)(p)

are O(|V |). Therefore, the number of elements of SLen(i)(p),Len(q)(j) is O(|V |).
��

In real applications of RNA secondary structure prediction([11], [20]), the loop
length of internal loops is assumed to be bounded by some constant in order to
make the prediction algorithms more efficient. This assumption also enables us
to compute minI(i, j, p, q) in constant time for each i, j, p, q ∈ V .

6 Algorithm for Testing Structure Freeness

We will give the algorithm SFT-FS for testing the structure freeness of a given
finite set of strings represented by a graph M = (V, E, σ, I, F). Let an integer i
represent the ith element of V in topological order. The algorithm is shown in
Fig. 4, where a(i, j) = m1(σ(i), σ(j)) is the energy contribution of a base pair in
a multiple loop.

Our algorithm is based on the dynamic programming approach used in various
RNA secondary structure prediction algorithms([11], [20], [17], etc.). While a
base adjacent to another base can be determined uniquely for a strand, it does
not hold for a set of strands. We consider all possible bases adjacent to a base.
Correctness of the algorithm is informally understood as follows:

Let R be a finite set of strings and M be a graph accepting R. Let α ∈ R
be a structured strand α(T) with the minimum free energy E(α(T)) such that

i
α→ j for some i ∈ I, j ∈ F . For some p, q ∈ V such that p

β→ q, if β is a
substring of α, β has the minimum free energy E(β(T̂)) among all substrands

in R such that p
β→ q, where T̂ ⊆ T . Otherwise there exist p

β′
→ q such that

E(β′(T ′)) < E(β(T̂)) and T ′ ⊆ T . Then, we can replace β in α to β′ and
have E(α′(T ′′)) < E(α(T)), which contradicts the minimality of the free energy
E(α(T)). The algorithm computes such minimum free energy from smaller to

178 A. Kijima and S. Kobayashi

Init(M)
begin

Topological-Sort(M) ;
compute Len(i)(j) for all i, j ∈ V by calling Make-Len(M) ;
compute SLen(i)(p),Len(q)(j)

by calling Make-S(Len(i)(p), Len(q)(j)) for all i, j, p, q ∈ V ;
compute minH(i, j), minI(i, j, p, q) for all i, j, p, q ∈ V ;

end

SFT-FS(M)
begin

Init(M);
for d = 1 to |V | − 1 do

for i = 1 to |V | − d do
j = i + d;

(I) C[i, j] = min

minH(i, j) ,
min i<p<q<j minI(i, j, p, q) + C[p, q] ,
min i<i′<j′<j

(i,i′),(j′,j)∈E

FM [i′, j′] + a(i, j) .

(II) F [i, j] = min
C[i, j] ,
min i<k<k′<j

(k,k′)∈E

FM [i, k] + FM [k′, j] .

(III) FM [i, j] = min

Mb + C[i, j] ,
min i<i′<j

(i,i′)∈E

Mc + FM [i′, j] ,

min i<j′<j
(j′,j)∈E

Mc + FM [i, j′] ,

min i<k<k′<j
(k,k′)∈E

FM [i, k] + FM [k′, j] .

end
end
if there exist F [i, j] < threshold D for some i ∈ I, j ∈ F return ‘No’;
else return ‘Yes’;

end

Fig. 4. The algorithm SFT-FS

larger substructures with the recurrences (I)–(III) applied to topologically sorted
vertices.

We can run Init(M) in O(|V |5) time, SFT-FS(M) in O(|V |4) time, and it
costs O(|V |5) time in total. By using the constant upper bound assumption on
loop length in Sect. 5.1, we can run Init(M) in O(|V |4) time.

7 Application to Strand Design

Our algorithm requires more time in Init(M) than SFT-FS(M). Once the ini-
tialization Init(M) is done, we can evaluate strands more efficiently. Even
if we change a label function σ for a vertex, it is not necessary to compute
SLen(i)(p),Len(q)(j) again. Furthermore, we can compute minI(i, j, p, q) for all
possibilities of label function σ which has four possibilities σ(i) = A, σ(i) = C,

Efficient Algorithm for Testing Structure Freeness of Finite Set 179

σ(i) = G or σ(i) = T for a vertex i. Then, time to compute minI is O(|V |5).
These observations lead us to a method for strand design shown in Fig. 5. In
this search algorithm, we can evaluate a set of strings R.

Strand-Design(M)
begin

Init(M) with all possibilities of label function;

while SFT-FS(M) returns ’No’ do
change a label of a randomly selected vertex;

end
return M ;

end

Fig. 5. Random strand design algorithm

In this Strand-Design(M), a random search is used for finding a structure
free set of sequences. In real applications to sequence design, we should use
more sophisticated search strategies, such as stochastic local search([18]), genetic
algorithm([4]), etc.

8 Conclusion

We give an efficient algorithm for testing the structure freeness of a finite set
of strands. We also give a method for strand design generating a finite set of
structure free strands. Our future works will include the improvement of the
algorithm for computing minI and the implementation of the strand design
system based on the results presented in this paper.

References

1. L. Adleman, Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence, vol.266, pp.1021-1024, 1994.

2. M. Andronescu, D. Dees, L. Slaybaugh, Y. Zhao, A. Condon, B. Cohen, and
S. Skiena, Algorithms for Testing That Sets of DNA Words Concatenate with-
out Secondary Structure. Proc. of The 9th International Meeting on DNA Based
Computers, LNCS, vol.2568, pp.182-195, 2003.

3. M. Arita and S. Kobayashi, DNA sequence design using templates. New Generation
Computing, vol.20, pp.263-277, 2002.

4. M. Arita, A. Nishikawa, M. Hagiya, K. Komiya, H. Gouzu, and K. Sakamoto,
Improving sequence design for DNA computing. Proc. of Genetic and Evolutionary
Computation Conference 2000, pp.875-882, 2000.

5. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, E. Shapiro, An autonomous molecular
computer for logical control of gene expression. Nature, vol.429, pp.423-429, 2004.

6. A. Brenneman and A. E. Condon, Strand Design for Bio-Molecular Computation.
Theoretical Computer Science, vol.287, pp.39-58, 2002.

180 A. Kijima and S. Kobayashi

7. A. Carbone and N. C. Seeman, Circuits and programmable self-assembling DNA
structures. Proc. Natl. Acad. Sci. USA, vol.99, pp.12577-12582, 2002.

8. A. E. Condon, Problems on RNA Secondary Structure Prediction and Design. Proc.
of ICALP’2003, Lecture Notes in Computer Science, vol.2719, pp.22-32, 2003.

9. R. M. Dirks, N. A. Pierce, An algorithm for computing nucleic acid base-pairing
probabilities including pseudoknots. Journal of Computational Chemistry, vol.25,
pp.1295-1304, 2004.

10. A. G. D’yachkov, A. J. Macula, W. K. Pogozelski, T. E. Renz, V. V. Rykov,
D. C. Torney, A weighted insertion-deletion stacked pair thermodynamic metric for
DNA codes. Preliminary Proc. of Tenth International Meeting on DNA Computing,
pp.142-151, 2004.

11. I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schus-
ter, Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA
Package). Monatshefte für Chemie, vol.125, pp.167-188, 1994.

12. L. Kari, S. Konstantinidis, and P. Sośık, Bond-free languages: formalizations, max-
imality and construction methods. Preliminary Proc. of Tenth International Meet-
ing on DNA Computing, pp.16-25, 2004.

13. S. Kobayashi, Testing structure freeness of regular sets of biomolecular sequence.
Preliminary Proc. of Tenth International Meeting on DNA Computing, pp.395-404,
2004.

14. S. Kobayashi, T. Yokomori, and Y. Sakakibara, An Algorithm for Testing Structure
Freeness of Biomolecular Sequences. Aspects of Molecular Computing — Essays
dedicated to Tom Head on the occasion of his 70th birthday, Springer-Verlag, LNCS,
vol.2950, pp.266-277, 2004.

15. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Logical computation us-
ing algorithmic self-assembly of DNA triple-crossover molecules. Nature, vol.407,
pp.493-496, 2000.

16. J. S. McCaskill, The equilibrium partition function and base pair binding proba-
bilities for RNA secondary structure. Biopolymers, vol.29, pp.1105-1119, 1990.

17. D. Sankoff, J. B. Kruskal, S. Mainville, and R. J. Cedergen, Fast Algorithms to
Determine RNA Secondary Structures Containing Multiple Loops. Time Warps,
String Edits, and Macromolecules : The Theory and Practice of Sequence Compar-
ison, D. Sankoff and J. Kruskal, Editors, Chapter 3, pp.93-120, 1983.

18. D. C. Tulpan, H. H. Hoos, and A. E. Condon, Stochastic local search algorithms for
DNA word design. Proc. 8th International Workshop on DNA-Based Computers,
LNCS 2568, pp.229-241, 2002.

19. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design self-assembly of
two-dimensional DNA crystals. Nature, vol.394, pp.539-544, 1998.

20. M. Zuker, On finding all suboptimal foldings of an RNA molecule. Science, vol.244,
pp.48-52, 1989.

Communicating Distributed H Systems: Optimal
Results with Efficient Ways of Communication

Shankara Narayanan Krishna

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay,

Powai, Mumbai 400 076, India
krishnas@cse.iitb.ac.in

Abstract. Distributed H systems and several variants of distributed H
systems have been studied extensively [1, 2, 3, 4]. This paper is an ef-
fort in the direction of obtaining efficient distributed systems. To this
end, a universality result using 2 components is obtained using two-level
distributed H systems. This is an improvement over the existing univer-
sality result with 3 components. Further, we propose lazy communicating
distributed H systems (LCDH systems), a variant of communicating dis-
tributed H systems, with lesser communication. A universality result is
obtained with this variant, using only 2 components. This improves the
universality result RE = CDH3 by reducing the number of components
as well as the communication between components.

1 Introduction

Communicating distributed H (CDH) systems were introduced in [1] as efficient
extensions of splicing systems. In CDH systems, parts of the model which are
able to work independently can be separated, and the result can be obtained by
synthesizing the partial results produced by the individual parts. However, the
communication in CDH systems is rather inefficient since they allow transport
of possibly the entire contents of each component in every step. Distributed H
systems [2, 3, 4] have been studied extensively, with different means of communi-
cation, one of them being two-level distributed H systems. These systems do not
allow communication between components in the sense of CDH systems, and so
are more efficient.

In this paper, we concentrate on two-level distributed H systems and CDH
systems. We introduce lazy CDH systems as a variant of CDH systems, wherein,
some components are classified as lazy, depending on the way they communicate.
The idea of having lazy components is to reduce the number of strings that can
be considered for communication in every step. We also obtain an unexpected
improved universality result for two-level distributed H systems (without any
laziness conditions), as well as a universality result for lazy CDH systems, both
in 2 components, which show that with better means of communication, the
number of components can be reduced. In the following subsection, we give
some basic definitions and notions of formal language theory used in this paper;
more details can be found in [4].

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 181–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

182 S.N. Krishna

1.1 Prerequisites and Basic Definitions

An alphabet is a finite nonempty set of symbols. For an alphabet V , we denote
by V ∗ the set of strings of symbols over V . The empty string is denoted by λ. V ∗

is the free monoid generated by V under the operation of concatenation. (The
unit element of this monoid is λ). Each subset of V ∗ is called a language over V .

Let x ∈ V ∗. If x = x1x2, for some x1, x2 ∈ V ∗, then x1 is called a prefix of x
and x2 is called a suffix of x. If x = x1x2x3, for some x1, x2, x3 ∈ V ∗, then x2 is
called a substring of x. The length of a string x is denoted by |x|. The number
of occurrences of a symbol a in x denoted |x|a.

Consider an alphabet V and two special symbols #, $ /∈ V . A splicing rule
over V is a string u1#u2$u3#u4 where u1, u2, u3, u4 ∈ V ∗. For a splicing rule
r = u1#u2$u3#u4, the result of splicing two strings x = x1u1u2x2, y = y1u3u4y2
is defined as (x, y) |=r (z, w) where z = x1u1u4y2, w = y1u3u2x2.

An H scheme is a pair σ = (V, R) where V is an alphabet and R ⊆
V ∗#V ∗$V ∗#V ∗ is a set of splicing rules. For an H scheme σ = (V, R), and
a language L, the set obtained by using the splicing operation on L is denoted
by σ2(L) = {z ∈ V ∗ | (x, y) |=r (z, w) or (x, y) |=r (w, z)}, for some x, y ∈ L, and
r ∈ R. σi

2(L) is defined inductively: σ0
2(L) = L, σi+1

2 (L) = σi
2(L)∪σ2(σi

2(L)), i ≥
0. Hence, σ∗

2(L) =
⋃

i≥0 σi
2(L).

An extended H system is a quadruple γ = (V, T, A, R) where T ⊆ V is the
terminal alphabet, R is the set of splicing rules and A is the set of axioms. Thus,
γ has an underlying H scheme σ = (V, R), augmented with a subset of V and a
set of axioms. The language generated by γ is defined as L(γ) = σ∗

2(A) ∩ T ∗.
The power of extended H systems as well as some extensions of H systems

have been studied extensively in the literature. In this paper, we are interested
in two such extensions viz., communicating distributed H systems and two level
H systems. We give the definitions of these systems in sections 2 and 3.

We denote by RE the family of recursively enumerable languages. A
recursively enumerable language can be generated by a type-0 grammar
G = (N, T, S, P) where N is a set of non-terminals, T ⊆ N is the set of terminal
symbols, S is the start symbol, and P consists of productions of the form
u→ v, u, v ∈ (N ∪ T)∗, |u|N > 0.

Notation: In the following sections, a splicing rule is represented by x#y$a#b.
However, while explaining the functionality of such a rule in the proofs, we
represent them by (x|y, a|b) |= (xb, ay).

2 Two-Level Distributed H Systems

Two-level distributed H systems were introduced in [2], [3]. In [2], two-level
distributed systems were considered in the non-separated form, whereas in [3],
separated systems were considered.

A two-level (non-separated) communicating distributed H system of degree
n, n ≥ 1 is a construct Γ = (V, T, (w1, A1, I1, E1), . . . (wn, An, In, En)), where
V is the alphabet, T ⊆ V is the terminal alphabet, wi ∈ V ∗, Ai ⊆ V ∗, and

CDH Systems: Optimal Results with Efficient Ways of Communication 183

Ii, Ei ⊆ V ∗#V ∗$V ∗#V ∗, for symbols #, $ not in V . All sets Ai, Ii, Ei, 1 ≤ i ≤ n
are finite; (wi, Ai, Ii, Ei) is the ith component of the system; wi is the active
axiom, Ai is the set of passive axioms, Ii and Ei are the sets of internal and
external splicing rules respectively.

The contents of a component i is described by a pair (xi, Mi), where xi ∈ V ∗

is the active string and Mi ⊆ V ∗ is the set of passive strings. An n-tuple π =
[(x1, M1), . . . , (xn, Mn)] is called a configuration of the system. For 1 ≤ i ≤ n
and a given configuration π as above, we define μ(xi, π) = external if there are
r ∈ Ei and xj , j �= i such that (xi, xj) |=r (u, v) for some u, v ∈ V ∗. Otherwise,
μ(xi, π) is internal.

For two configurations π, π′ as above, we write π ⇒int π′ if the following
conditions hold: (i) for all i, 1 ≤ i ≤ n, we have μ(xi, π) = internal, (ii) for each
i, 1 ≤ i ≤ n, either (xi, z) |=r (x′

i, z
′) for some z ∈ Mi, z

′ ∈ V ∗, r ∈ Ii, and
M ′

i = Mi ∪ {z′}, or (iii) no rule r ∈ Ii can be applied to (xi, z), for any z ∈Mi,
and then (x′

i, M
′
i) = (xi, Mi).

The relation ⇒ext defines an external splicing, and ⇒int defines an internal
splicing. In both cases, splicing is performed in parallel and all components not
able to use a splicing rule do not change their contents. External splicing has
priority over internal splicing and all operations have as their first term an active
string; the first string obtained by splicing becomes the new active string of the
component and the second string becomes an element of the set of passive strings
of that component.

The language generated by a two-level distributed H system Γ is defined by
L(Γ) = {w ∈ T ∗ | [(w1, A1), . . . , (wn, An)] ⇒∗ [(x1, M1), . . . , (xn, Mn)]}, for
w = x1, xi ∈ V ∗, 2 ≤ i ≤ n, and Mi ⊆ V ∗, 1 ≤ i ≤ n. LDHn denotes the
family of languages generated by two level distributed H systems with utmost
n components. If in the above, we consider all the sets Ei to be the same, i.e,
if Ei = E, for all 1 ≤ i ≤ n, then we get a separated two-level distributed H
system. The family of languages generated by separated two-level distributed
H systems with n components is denoted by SLDHn. When no restriction is
imposed on the number of components, n is replaced by ∗. In the following, we
improve the universality result in [3, 4].

Theorem 1. RE = SLDHn = LDHn for all n ≥ 2.

Proof. The idea behind the proof is very close to the one used in [3] and the proof
is much simpler. Consider a type-0 grammar G = (N, T, S, P). We construct the
SLDH system Γ = (V, T, (w1, A1, I1), (w2, A2, I2), E) with

V = N ∪ T ∪ {X, Z, Zs, Zl, Zr, C1, C2},

w1 = SXXC1,

A1 = {ZvXZs | u → v ∈ P}
∪ {ZXXαZl , ZαXXZr | α ∈ N ∪ T}

I1 = {#uXZ$Z#vXZs | u → v ∈ P}
(Replacing u by v simulating u → v. Zs is introduced after replacement)

184 S.N. Krishna

∪ {#αXZ$Z#XXαZl | α ∈ N ∪ T}
(shifting α to the right of X. Zl is introduced after the right shift)

∪ {#XZ$Z#αXXZr | α ∈ N ∪ T},

(shifting α to the left of X. Zr is introduced after the left shift)

w2 = C2Z,

A2 = {ZsZ, ZlZ, ZZr},

I2 = {C2#Zs$Zs#Z, C2#Zl$Zl#Z, C2#Zr$Zr#Z},

(Changing Zs, Zl, Zr back to Z to start a new simulation)

E consists of the rules

E1. X#X$C2#Z, C2#Z$X#X,

(First step while simulating a rule u → v, or while shifting)

E2. X#Zs$C2#X, C2#X$X#Zs,

(Replace Zs by a string ending in C1 in w1; replace the suffix of w2 by Zs)

E3. XXα#Zl$C2X#, C2#X$XXα#Zl, α ∈ N ∪ T,

(Replace Zl by a string ending in C1 in w1; replace the suffix of w2 by Zl)

E4. αXX#Zr$C2Xα#, C2#Xα$αXX#Zr , α ∈ N ∪ T,

(Replace Zr by a string ending in C1 in w1; replace the suffix of w2 by Zr)

E5. #XXC1$C2Z#.

(To terminate, cut off the symbols XXC1 from the right)

Component 1 simulates rules of P and also shifts symbols to the right and left
of the marker XX . Component 2 saves the suffix of the active string w1 that
is cut while simulation and shifting, and also checks that the shifting done in
component 1 is correct.

To start with, we have w1 = SXXC1, w2 = C2Z. In general, assume that
w1 = z1uXXz2C1, w2 = C2Z, where u = u′a, where a ∈ V, u ∈ V ∗. (initially,
z1u

′ = λ, a = S, z2 = λ).
Case 1: Simulation of a rule u→ v ∈ P . To begin, E1 is the only applicable rule.
E1 is applied in parallel to both components.

1. E1 ⇒ w1 = z1uXZ, C2Xz2C1 ∈ M1, w2 = C2Xz2C1, z1uXZ ∈ M2. In the
next step, no external rules are applicable, since w1 does not contain XX or
XZs or XXC1. Note that E1 cuts the suffix Xz2C1 of w1 and appends it
to w2; it also cuts the suffix Z of w2 and appends it to w1.

2. Use the internal rule (z1|uXZ, Z|vXZs) |= (z1vXZs, ZuXZ) in component
1 obtaining w1 = z1vXZs, w2 = C2Xz2C1, to simulate u → v. Component
2 is idle. In the next step, only E2 is applicable, and it acts in parallel on
both components.

3. Now, E2 ⇒ w1 = z1vXXz2C1, w2 = C2Zs, re adjoining the suffix z2C1 to
w1. No external rules are applicable in the next step since w2 �= C2X, C2Z.

4. To get back to C2Z, use the internal rule (C2|Zs, Zs|Z) |= (C2Z, ZsZs) in
component 2 (component 1 is idle) giving w1 = z1vXXz2C1, w2 = C2Z .

CDH Systems: Optimal Results with Efficient Ways of Communication 185

Case 1 handles w1 = z1uXXz2C1, when there is a rule u→ v ∈ P . Assume now
that for u = u′a, there exists no rule in P for a, but there exists u′ → v′ ∈ P . To
simulate u′ → v′ as above, we need u′ to be adjacent to XX in w1. To obtain
this, we need to shift a to the right of XX obtaining z1u

′XXaz2C1. Case 2
handles this situation.
Case 2: Transforming w1 = z1u

′aXXz2C1 into z1u
′XXaz2C1, given w2 = C2Z.

1. To begin, only E1 is applicable in both components. E1 ⇒ w1 =
zu′aXZ, C2Xz′C1 ∈ M1, w2 = C2Xz′C1, zu′aXZ ∈ M2. In the next step,
no external rules are applicable since w1 does not contain XX, XZs, XC1.

2. By assumption (since there is no rule in P for a), we choose any of the two in-
ternal rules (different from the one chosen in case 1, step 2). Component 2 will
remain idle in this step. Using (zu′|aXZ, Z|XXaZl) |= (zu′XXaZl, ZaXZ)
in component 1, we obtain w1 = zu′XXaZl, and w2 = C2Xz′C1. E3 is only
applicable in the next step, and it acts in parallel on both components.

3. Now, E3⇒ w1 = zu′XXaz′C1, C2XZl ∈ M1, w2 = C2Zl, zu′XXaXz′C1 ∈
M2, shifting a to the right of XX in w1. In the next step, no external rules
are applicable, since w2 �= C2X, C2Z.

4. To get back to C2Z, use the internal rule (C2|Zl, Zl|Z) |= (C2Z, ZlZl) in
component 2 (component 1 remains idle) giving w1 = z1u

′XXaz2C1, w2 =
C2Z .

After cases 1 and 2, one more situation needs to be handled. Assume that we
have w1 = z1XXaz2C1, with rules z1a → z ∈ P , and no rules in P for any
substring of z1. Clearly, case 2 is not useful, and to simulate a rule as in case1,
we need z1a to the left of XX . To do this, the a should be shifted to the left of
XX obtaining w1 = z1aXXz2C1.
Case 3: Transforming w1 = z1XXaz2C1 into z1aXXz2C1, given w2 = C2Z.

1. As in the above cases, we start with E1. E1 ⇒ w1 = z1XZ, C2Xaz′1C1 ∈
M1, w2 = C2Xaz′1C1, z1XZ ∈ M2. No external rules are applicable in the
next step.

2. We can choose an internal rule in component 1 involving Zl or Zr, lets choose
the one with Zr. Using (z1|XZ, Z|αXXZr) |= (z1αXXZr, ZXZ), α ∈ N∪T
in component 1, we obtain w1 = z1αXXZr. Component 2 is idle, and hence
w2 = C2Xaz′1C1. E4 is only applicable in the next step to both components.

3. E4⇒ w1 = z1aXXz′1C1, C2XaZr ∈M1, w2 = C2Zr, z1aXXXaz′1C1 ∈ M2,
shifting a to the left of XX . Note that E4 can be applied only if α = a
in the previous step. No external rules are applicable in the next step since
w2 = C2Zr.

4. Using the internal rule (C2|Zr, Zr|Z) |= (C2Z, ZrZr) in component 2 (com-
ponent 1 being idle), we obtain w1 = z1aXXz′1C1, w2 = C2Z.

Now, any of the three cases can be iterated. To terminate, we have only one
choice: to remove the substring XX of w1 which facilitates simulation of rules
or shifting. This is done by using E5, when all symbols are to the left of XX .
This will cut off from the active string wXXC1 in component 1, the tail XXC1,

186 S.N. Krishna

leaving w as the active string. Now, no more rules can be applied to w. If w ∈ T ∗,
it gets listed in the language, otherwise, nothing is computed. ��

Note the almost symmetric nature of the external rules in the above theorem. It
helps in applying the external rules simultaneously in both components, with no
waiting. Even when applying internal rules, there is a minimal wait of exactly
one step for the other component.

3 Communicating Distributed H (CDH) Systems

CDH systems have been explored extensively in [1, 3, 5, 6], obtaining universal-
ity results with arbitrarily many components, six components, three components
and nine components respectively. In the following section, we briefly recall the
basics of CDH systems [4] and introduce the concept of laziness into CDH sys-
tems. We then consider an example and prove that universality can be obtained
with 2 components.

A CDH system is a construct Γ = (V, T, (A1, R1, V1), . . . , (An, Rn, Vn)), where
V is an alphabet, T ⊆ V , Ai are finite languages over V , Ri are finite sets of
splicing rules over V , and Vi ⊆ V, 1 ≤ i ≤ n. Each triple (Ai, Ri, Vi), 1 ≤ i ≤ n,
is called a component of Γ ; Ai, Ri, Vi are the sets of axioms, the sets of splicing
rules, and the selector of the component i, respectively. Let B = V ∗ −

⋃n
i=1 V ∗

i .
The pair σ(i) = (V, Ri) is the underlying H scheme associated to the component
i of the system.

An n−tuple (L1, L2, . . . , Ln), Li ⊆ V ∗, is called a configuration of the sys-
tem. The initial configuration of the system is (A1, . . . , An). For two config-
urations (L1, . . . , Ln), (L′

1, . . . , L
′
n), we define (L1, . . . , Ln) ⇒ (L′

1, . . . , L
′
n) iff

L′
i =

⋃n
j=1(σ

(j)
2

∗
(Lj) ∩ V ∗

i) ∪ (σ(i)
2

∗
(Li) ∩ B), for each i, 1 ≤ i ≤ n.

In words, the contents of each component are spliced according to the set of
rules (we pass from Li to σ

(i)
2

∗
(Li)) and the result is redistributed among the

n components according to the selectors V1, . . . , Vn; the part which cannot be
redistributed remains in the component. As no conditions are imposed on the
alphabets Vi, when a string in σ

(j)
2

∗
(Lj) belongs to several languages V ∗

i , then
copies of the string will be distributed to all components i with this property.

The language generated by Γ is defined as L(Γ) = {w ∈ T ∗ | w ∈
L1 for L1, . . . , Ln ⊆ V ∗ such that (A1, . . . , An) ⇒∗ (L1, . . . , Ln)}. The fam-
ily of languages generated by communicating distributed H systems of degree
utmost n, n ≥ 1 is denoted by CDHn. When n is not specified, then we replace
n by ∗.

3.1 Introducing Laziness

Let Γ be a CDHn system. We now define three kinds of strings viz., active,
passive and inactive based on Γ as follows:

CDH Systems: Optimal Results with Efficient Ways of Communication 187

1. A string w ∈ σ
(i)
2

∗
(Li) is said to be active if there exists (i) a splicing rule

(w′
2#w′′

2$a#b) in Ri, (ii) a string xaby in σ
(i)
2

∗
(Li), and (iii) a substring

w′
2w

′′
2 of w. Note that we can also describe w having ab as a substring such

that there exists a string xw′
2w

′′
2y in σ

(i)
2

∗
(Li). Clearly, if w is an active

string, it can be spliced using rules of Ri to obtain further strings.
2. A string w ∈ σ

(i)
2

∗
(Li) is said to be passive if for all splicing rules

(w′
2#w′′

2$a#b) in Ri, such that w′
2w

′′
2 (or ab) is a substring of w, there does

not exist any string xaby (or x1w
′
2w

′′
2x2) in σ

(i)
2

∗
(Li).

3. A string w ∈ σ
(i)
2

∗
(Li) is said to be inactive if for all splicing rules

(w′
2#w′′

2$a#b) in Ri, w does not contain w′
2w

′′
2 or ab as a substring.

A lazy communicating distributed H system is a construct

Γ = (V, T, (A1, R1, V1, γ1), . . . , (An, Rn, Vn, γn)),

where V is an alphabet, T ⊆ V , Ai are finite languages over V , Ri are finite sets of
splicing rules over V , and Vi ⊆ V, 1 ≤ i ≤ n. Each tuple (Ai, Ri, Vi, γi), 1 ≤ i ≤ n,
is called a component of Γ ; Ai, Ri, Vi are the sets of axioms, the sets of splicing
rules, and the selector of the component i, respectively; γi is a parameter taking
values l or e, depending on whether the component is lazy or eager; T is the
terminal alphabet of the system. Let B = V ∗ −

⋃n
i=1 V ∗

i .
There are two kinds of components : lazy components and eager components.

The two kinds of components differ in the way they communicate : eager com-
ponents behave the same way as the components in a CDH system, whereas lazy
components communicate only their inactive strings, provided they pass the
necessary filters.

The pair σ(i) = (V, Ri) is the underlying H scheme associated to the compo-
nent i of the system.

An n−tuple (L1, L2, . . . , Ln), Li ⊆ V ∗, is called a configuration of the sys-
tem. Li is also called the contents of component i. The initial configuration of
the system is (A1, . . . , An). For two configurations (L1, . . . , Ln), (L′

1, . . . , L
′
n), we

define (L1, . . . , Ln)⇒ (L′
1, . . . , L

′
n) iff

1. L′
i =

⋃n
j=1(Sj ∩ V ∗

i) ∪ (σ(i)
2

∗
(Li) ∩ B), for each eager i, 1 ≤ i ≤ n,

and Sj = σ
(j)
2

∗
(Lj) if j is eager, and Sj ⊆ σ

(j)
2

∗
(Lj) is the set consisting of

all inactive strings of σ
(j)
2

∗
(Lj), if j is lazy.

2. L′
j =

⋃n
i=1(Si ∩ V ∗

j) ∪ (Sj ∩ B) ∪ (Lj\Sj) for each lazy j, 1 ≤ j ≤ n,

and Si = σ
(i)
2

∗
(Li) if i is eager, and Sj ⊆ σ

(j)
2

∗
(Lj) is the set of inactive

strings of σ
(j)
2

∗
(Lj), if j is lazy.

In words, the contents of a component i are spliced according to the associated
set of rules, and,

– If i is eager, the result is redistributed among the n components according
to the selectors V1, . . . , Vn; the part which cannot be redistributed (which
does not belong to some V ∗

i , 1 ≤ i ≤ n) remains in the component.

188 S.N. Krishna

– If i is lazy, the subset of σ
(i)
2

∗
(Li) consisting of the inactive strings of

σ
(i)
2

∗
(Li) is redistributed among the n components according to the selectors

V1, . . . , Vn, and the part of the subset which cannot be redistributed remains
in the component.

The language generated by Γ is defined by L(Γ) = {w ∈ T ∗ | w ∈
L1 for some L1, . . . , Ln ⊆ V ∗ such that (A1, . . . , An)⇒∗ (L1, . . . , Ln)}.

We denote by LCDHn the family of languages generated by lazy communi-
cating distributed H systems of degree utmost n, n ≥ 1. When n is not specified,
we replace n by ∗.

Note that an LCDH system with all components eager is the same as a CDH
system. Let us consider an example.

Example 1. Consider the system Γ

({a, b, c, X, Y, Z, Z′, F1, F2, F}, {a, b, c}, (A1, R1, V1, e), (A2, R2, V2, l), (A3, R3, V3, l)),

A1 = {XY, aX}, R1 = {a#X$X#Y, c#F$#aY, c#F$aY #}, V1 = T ∪ {F},

A2 = {bZ, Z′Z′}, R2 = {a#Y $#bZ, ab#Z$Z′#Z′}, V2 = T ∪ {Y },

A3 = {F1cF1, F2, FF}, R3 = {b#Z′$F1#cF1, c#F1$#F2, c#F2$F#F},

V3 = T ∪ {Z′}.

No communication between components is possible before any splicing, since
A1 ∩V ∗

j = ∅, j = 2, 3; strings of A2 are passive; FF ∈ A3 is passive, and the rest
of A3 is active. Hence, splicing is possible only in the first and third components;
(a|X, X |Y) |= (aY, XX) in the first component and (F1c|F1, |F2) |= (F1cF2, F1)
in the third component. The string aY is communicated from component 1 to
component 2, and in component 3, the string F1 is a candidate for communi-
cation, since it is inactive. However, F1 /∈ V ∗

i , i = 1, 2, 3, and hence remains in
component 3.

In component 2, the string aY is spliced according to the rule (a|Y, |bZ) |=
(abZ, Y) and in component 3, the new splicings are (F1c|F2, F |F) |= (F1cF, FF2)
or (F1c|F1, F1c|F2) |= (F1cF2, F1cF1). The string abZ in component 2 is ac-
tive, whereas Y is inactive. Similarly, in component 3, the string F1cF is in-
active. Therefore, Y, F1cF are candidates for communication in components
2,3. However, since Y /∈ V1, V3, F1cF /∈ V ∗

1 , V ∗
2 , V ∗

3 , Y remains in component
2 and F1cF in component 3. Continuing with abZ in component 2, we ob-
tain (ab|Z, Z ′|Z ′) |= (abZ ′, Z ′Z) or (a|Y, a|bZ) |= (abZ, aY). Now the strings
abZ ′, Z ′Z are inactive and therefore are candidates for communication. Of the
two, abZ ′ is sent to component 3, while Z ′Z remains in component 2.

In component 3, abZ ′ is spliced as (ab|Z ′, F1|cF1) |= (abcF1, F1Z
′). Now, F1Z

′

is inactive; however since it does not belong to any V ∗
i , it remains in component

3. The string abcF1 is spliced as (abc|F1, |F2) |= (abcF2, F1). Now, abcF2 is active,
and F1 is inactive. F1 remains in component 3 since it fails all filters, and we
splice abcF2. Some possible splicings are (F1c|F1, abc|F2) |= (F1cF2, abcF1) or
(abc|F1, abc|F2) |= (abcF2, abcF1) or (abc|F2, F |F) |= (abcF, FF2). All strings
except abcF are active, and abcF is communicated to component 1.

CDH Systems: Optimal Results with Efficient Ways of Communication 189

In component 1, we have either the option of appending an aY to abc and
thus continuing, or using (abc|F, aY |) |= (abc, aY F). The string abc remains
in component 1, and a copy is sent to components 2 and 3. Clearly, L(Γ) =
{(abc)n | n ≥ 1}.

Theorem 2. RE = LCDH2

Proof. Consider a type-0 grammar G = (N, T, S, P). Let N ∪ T ∪ {B} =
{D1, . . . , Dm}, where B is a new symbol. Since N, T �= ∅, m ≥ 3. Construct
the LCDH system Γ = (V, T, (A1, R1, V1, e), (A2, R2, V2, l)), with

V = N ∪ T ∪ {X, Y, Z, Z′, E1, E2, Xi, Yi, X
′
2j , Y

′
2j | −1 ≤ i ≤ 2m, 1 ≤ j ≤ m},

A1 = {XBSY } ∪ {ZvY | u → v ∈ P} ∪ {ZX ′
2iY

′
2i | 1 ≤ i ≤ m} ∪ {E1E2, XZ0, Z0Y }

∪ {X2iZ, ZY2i | 1 ≤ i ≤ m}, and R1 consists of the following rules:

Simulating rules of P :

1. #uY $Z#vY, u → v ∈ P,

Rotation : For 1 ≤ i, j, k ≤ m,

2. Dj#DiY $ZX ′
2i#Y ′

2i,

3. X#DjDk$ZX ′
2iDi#Y,

4. #XY $Z#X ′
2iDiDj ,

Updation of Indices (Odd to even) :

5. X2j+1#Di$X2j#Z, 0 ≤ j ≤ m, 1 ≤ i ≤ m,

6. Di#Y2j+1$Z#Y2j , 0 ≤ j ≤ m, 1 ≤ i ≤ m,

Going back to end markers X, Y, from X0, Y0

7. X0#Dj$X#Z0, 1 ≤ j ≤ m,

8. Dj#Y0$Z0#Y, 1 ≤ j ≤ m,

Possible Termination : For Dj , Dk ∈ T, 1 ≤ j, k ≤ m,

9. Dj#BY $E1#E2,

10. X#Dk$E1#BY,

11. E1#Dk$#E1E2,

12. Dj#E2$E1E1E2#,

V1 = N ∪ T ∪ {B, X, Y, X0, Y0} ∪ {X2i+1, Y2i+1 | 0 ≤ i ≤ m − 1},

A2 = {X2iZ
′, Z′Y2i, Z

′Y2i−1, X2i−1Z
′, X−1Z

′, Z′Y−1}, 0 ≤ i ≤ m, and

R2 consists of rules

Initialize : For 1 ≤ i, j ≤ m,

13. X ′
2i#Di$X2i#Z′,

14. Dj#Y ′
2i$Z′#Y2i,

Updation of Indices (Even to odd) : For 1 ≤ i, j ≤ m,

15. X2i#Dj$X2i−1$Z′,

16. Dj#Y2i$Z′#Y2i−1,

Removal of X0, Y0 : For 1 ≤ j ≤ m,

17. X0#Dj$X−1#Z′,

190 S.N. Krishna

18. Dj#Y0$Z′#Y−1.

V2 = N ∪ T ∪ {B, X2i, Y2i, X
′
2j , Y

′
2j | 0 ≤ i ≤ m, 1 ≤ j ≤ m}

Let us examine the work of Γ . The underlying idea is to rotate and simulate. We
start from the string XBSY in component 1, and in component 2, there are no
rules that can be applied with respect to strings in A2. However since all strings
in A2 are passive, and since none of the strings in A1 pass the filter V2, there is
no communication before any splicing. In the first component, we can simulate
rules of P by using the rule 1, replacing suffixes. Since the new strings obtained
as a result of rule 1 do not pass the filter V2, and since there are no inactive
strings in component 2, there is no communication between the components.

This can go on as long as rule 1 is applied. If we choose to rotate a sym-
bol at any point of time, then we choose rule 2, giving (Xw|DiY, ZX ′

2i|Y ′
2i) |=

(XwY ′
2i, ZX ′

2iDiY). Both of these strings /∈ V ∗
2 , and hence cannot be com-

municated to component 2. We can choose next, (X |Dj, ZX ′
2iDi|Y) |=

(XY, ZX ′
2iDiDjw1Y

′
2i), provided w = Djw1. The two new strings obtained

here also /∈ V ∗
2 and hence we continue in component 1. We can now use

(|XY, Z|X ′
2iDiDj) |= (X ′

2iDiDjw1Y
′
2i, ZXY), and in this step, the string

X ′
2iDiDjw1Y

′
2i is communicated to component 2. No string from component

2 is communicated to component 1.
In the next step, in component 2, we can use rules 13 or 14 to X ′

2iDiDjw1Y
′
2i,

resulting in (X ′
2iZ

′, X2iDiDjw1Y
′
2i) or (X ′

2iDiDjw1Y2i, Z
′Y ′

2i). The strings
X ′

2iZ
′, Z ′Y ′

2i in component 2 are inactive, and so are considered for communi-
cation. However, since they do not pass V1, they remain in component 2. The
strings X ′

2iDiDjw1Y2i or X2iDiDjw1Y
′
2i are active and so are not considered

for communication. We can apply rule 14 or 15 to X2iDiDjw1Y
′
2i and rule 13

or 16 to X ′
2iDiDjw1Y2i. In either case, we ultimately obtain the inactive string

X2i−1DiwY2i−1. Since X2i−1DiwY2i−1 ∈ V ∗
1 , it is sent to component 1.

Let w′ = Diw. In component 1, rules 5 and 6 are applicable to
X2i−1w

′Y2i−1. If we choose rule 5 first, we obtain (X2i−1|Di, X2i−2|Z) |=
(X2i−1Z, X2i−2w

′Y2i−1). Both these strings cannot be communicated to com-
ponent 2, since they do not pass the filter. We continue with rule 6 to obtain
(Dk|Y2i−1, Z|Y2i−2) |= (X2i−2w

′Y2i−2, ZY2i−1). We would obtain the same set
of strings even if rule 6 is applied first. The string X2i−2w

′Y2i−2 obtained after
application of rules 5,6 is communicated to component 2, since it passes the filter.

In component 2, we now decrement the end markers using rules 15, 16.
Observe that until both are used, we cannot communicate the intermediate
string (X2i−2w

′Y2i−3 or X2i−3w
′Y2i−2), since it is active. The other strings

obtained as a result of rules 15,16 are X2i−2Z
′, Z ′Y2i−2, which cannot be

communicated even though they are inactive, since they are not over V ∗
1 .

Continuing like this, a string X1w
′Y1 is communicated to component 1.

Now, using rules 5,6 as before we decrement X1, Y1 to X0, Y0. Note that before
decrementing both X1 and Y1, we cannot communicate to component 2, since
V2 does not contain X2i+1, Y2i+1, i ≥ 0. However, when we have X0w

′Y0
in component 1, since V1, V2 contain X0, Y0, the string is communicated to
component 2, and a copy is retained in component 1.

CDH Systems: Optimal Results with Efficient Ways of Communication 191

In component 1, the X0 is replaced by X and Y0 by Y by rules 7 and 8. Observe
that the intermediate strings obtained (with X, Y0 and X0, Y as the end markers)
cannot be communicated to component 2, since X, Y /∈ V2. But, we can start an-
other simulation in component 1 using Xw′Y . Simultaneously, in component 2,
rules 17,18 are applicable to X0w

′Y0. We do not consider the intermediate strings
for communication since they are active. But, even after application of 17,18,
the string we obtain, viz., X−1w

′Y−1 cannot be communicated, since it is not
over V1.

Note that, the first time a rotation is done in component 1, the indices of the
end markers will be the same, since rule 3 can be applied only after applying
rule 2, thus obtaining the correct string ZX ′

2iDiY . However, this is not the case
for subsequent rotations. (since all strings ZX ′

2iDiY produced in previous steps
will be available). In general, it is possible to obtain a string X ′

2iw
′Y ′

2j , i �= j
in component 1. We communicate this string to component 2, and, after a
sequence of communications, we will end up with a string X0w

′Y2l, l > 0 or
X2kw′Y0, k > 0. Let us examine how to handle this case.

Let us assume that we have the string X2kw′Y0 in component 1. Obviously,
this is obtained after application of rules 5,6 in the two previous steps. This
string is communicated to component 2 since it passes the filter V2, without
retaining a copy in component 1 (X2kw′Y0 /∈ V ∗

1). In component 2, rules 15,18
are applicable. This leads us to the intermediate strings X2k−1w

′Y0 (15 applied
first) or X2kw′Y−1 (18 applied first). In either case, both strings are active. We
end up, in either case with X2k−1w

′Y−1, which is inactive. But however, this
string belongs to neither V ∗

1 nor V ∗
2 and so, remains in component 2, without

contributing to the output.
Thus, we can continue a simulation iff we end up with X0w

′′Y0 in component
1, in which case, the copy sent to component 2 remains stuck there, but the
copy in component 1 is useful by replacing X0 by X and Y0 by Y .

Let us now examine how a string over terminals can be generated, contribut-
ing to L(Γ). Assume that we have in component 1, a string XwBY . We can
choose to either rotate B using rule 2, or eliminate B using rule 9. Let us see
what happens if rule 9 is chosen. We obtain (Xw|BY, E1|E2) |= (XwE2, E1BY).
Both these strings cannot be communicated, since they fail to pass the filter V2.
We can continue with rule 10, (X |Dk, E1|BY) |= (XBY, E1Dkw′E2), provided
w = Dkw′. Now, rule 11, (E1|Dk, |E1E2) |= (E1E1E2, Dkw′E2) is used to
remove E1. This is followed by application of rule 12 removing E2 and obtaining
Dkw′. The only information we have about this string is that if w′ = w1Dj or
w = Dkw1Dj , then Dk, Dj ∈ T . However, if this string is not over terminals, then
it does not contribute to the language and is hence “lost”. Thus, only terminal
strings obtained starting from XBSY , which are rotated correctly every time
(so that X0wY0 is obtained in component 1) can contribute to the language. ��

Remark 1. To see how the above system communicates less, we will examine
what happens if component 2 was eager in the above result. As long as no rota-
tion takes place (for the first time) in component 1, there is no communication
between components, irrespective of the nature of the individual components.

192 S.N. Krishna

The number of strings communicated between components is the same (if compo-
nent 2 is eager or lazy) even after rotation, in case, rotation takes place correctly,
yielding X0wY0 in component 1. Now assume that rotation goes wrong, giving
X0wY2k or X2lwY0, k, l > 0 in component 1. Either of these strings will be com-
municated to component 2. If component 2 was eager, then if rule 15 or 16 is
chosen first, we get a string X2l−1wY0 or X0wY2k−1, which will be communicated
to component 1, leading to wrong results. That means an extra communication
is made, which also leads to wrong results in case component 2 was eager. But if
component 2 is lazy, this communication will not be made, and the results also
do not go wrong. The same is the case if X0, Y0 are not replaced in subsequent
steps in component 1, when having X0wY0. (X0w

′Y ′
2i can be obtained in com-

ponent 1, which will be communicated to component 2. Component 2 if eager,
can then communicate X0w

′Y2i−1 to component 1, and things go wrong).

4 Conclusion

We have improved the universality result of two-level distributed H systems,
and conjecture that the result obtained is optimal. Likewise, by introducing
laziness, we have proved that a better characterization of RE can be obtained,
as compared to the result CDH3 = RE [5]. The power of LCDH2, with both
components being lazy, is open.

References

1. E. Csuhaj-Varju, L. Kari, Gh. Păun, Test tube distributed systems based on splicing,
Computers and AI, 15, 5 (1996), 419–436.

2. Gh. Păun, Two-level distributed H systems, Proc. of the Third Conf. on Develop-
ments in Language Theory, Aristotle Univ. of Thessaloniki, 1997, 309-327.

3. Gh. Păun, DNA Computing: Distributed splicing systems, Structures in Logic and
Computer Science : A Selection of Essays in Honor of A. Ehrenfeucht, LNCS 1261,
1997, 351–370.

4. Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing : New Computing
Paradigms, Springer, 1998.

5. L. Priese, Y. Rogozhin, M. Margenstern, Finite H systems with 3 tubes are not
predictable, Pacific Symposium on Biocomputing, Hawaii, 1998 (R. B. Altman, A.
K. Dunker, L. Hunter, T. E. Klein, eds), World Sci, Singapore, 1998, 547-558.

6. C. Zandron, C. Ferretti, G. Mauri, A reduced distributed splicing system for RE
languages, New Trends in Formal Languages : Control, Cooperation, Combinatorics,
LNCS 1218, 1997, 346-366.

Intensive In Vitro Experiments of Implementing
and Executing Finite Automata in Test Tube

Junna Kuramochi1 and Yasubumi Sakakibara2

1 Softbank BB Corporation, Japan
2 Keio University, Department of Biosciences and Informatics,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
yasu@bio.keio.ac.jp

Abstract. We report our intensive in vitro experiments in which we
have implemented and executed several finite-state automata in test
tube. First, we employ the length-encoding technique proposed and pre-
sented in [4, 3] to implement finite automata in test tube. In the length-
encoding method, the states and state transition functions of a target
finite automaton are effectively encoded into DNA sequences, a com-
putation (accepting) process of finite automata is accomplished by self-
assembly of encoded complementary DNA strands, and the acceptance of
an input string is determined by the detection of a completely hybridized
double-strand DNA. Second, we design and develop practical laboratory
protocols which combine several in vitro operations such as annealing,
ligation, PCR, and streptavidin-biotin bonding to execute in vitro finite
automata based on the length-encoding technique. We have carried labo-
ratory experiments on various finite automata of from 2 states to 6 states
for several input strings. To our knowledge, this is the first in vitro exper-
iments that have succeeded to execute 6-states automaton in test tube.

1 Introduction

The finite-state automata (machines) are the most basic computational model
in Chomsky hierarchy and are the start point to build universal DNA comput-
ers. Several works [1, 2, 3, 4] have attempted to develop finite automata in vitro.
Benenson et al. [1] have successfully implemented the two state finite automata
by the sophisticated use of the restriction enzyme (actually, FokI) which cut out-
side of its recognition site in a double-stranded DNA. However, their method has
some limitations for extending to more than 2 states. Yokomori et al. [4] have
proposed a theoretical framework using length-encoding technique to implement
finite automata on DNA molecules. Theoretically, the length-encoding technique
has no limitations to implement finite automata of any larger states.

In this paper, we attempt to implement and execute finite automata of a
larger number of states in vitro, and carry intensive laboratory experiments on
various finite automata of from 2 states to 6 states for several input strings.
To our knowledge, this is the first in vitro experiments that have succeeded to
compute 6-states automaton in test tube.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 193–202, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

194 J. Kuramochi and Y. Sakakibara

2 Methods

2.1 Length-Encoding Method to Implement Finite-State Automata

Let M = (Q, Σ, δ, q0, F) be a (deterministic) finite automaton, where Q is a
finite set of states numbered from 0 to k, Σ is an alphabet of input symbols, δ is
a state-transition function such that δ : Q×Σ −→ Q, q0 is the initial state, and
F is a set of final states. We adopt the length-encoding technique [4] to encode
each state in Q by the length of DNA subsequences.

For the alphabet Σ, we encode each symbol a in Σ into a single-strand
DNA subsequence, denoted e(a), of fixed length. For an input string w on Σ,
we encode w = x1x2 · · ·xm into the following single-strand DNA subsequence,
denoted e(w):

5’- e(x1) X1X2 · · · Xk︸ ︷︷ ︸
k times

e(x2) X1X2 · · · Xk︸ ︷︷ ︸
k times

· · · e(xm) X1X2 · · · Xk︸ ︷︷ ︸
k times

-3’,

where Xi is one of four nucleotides A, C, G, T, and the subsequences X1X2 · · · Xk are
used to encode k + 1 states of the finite automaton M . For example, when we
encode a symbol ’1’ into a ssDNA subsequence GCGC and a symbol ’0’ into GGCC,
and encode three states into TT, a string “1101” is encoded into the following
ssDNA sequence:

5’-

1︷ ︸︸ ︷
GCGC TT

1︷ ︸︸ ︷
GCGC TT

0︷ ︸︸ ︷
GGCC TT

1︷ ︸︸ ︷
GCGC TT -3’

In addition, we append two supplementary subsequences at both ends for PCR
primers and probes for affinity purifications with magnetic beads which will be
used in laboratory protocol:

5’- S1S2 · · ·Ss︸ ︷︷ ︸
PCR primer

e(x1)X1X2 · · ·Xk · · · e(xm)X1X2 · · · Xk Y1Y2 · · · Yt︸ ︷︷ ︸
probe

R1R2 · · · Ru︸ ︷︷ ︸
PCR primer

-3’.

For a state-transition function from state qi to state qj with input symbol
a ∈ Σ, we encode the state-transition function δ(qi, a) = qj into the following
complementary single-strand DNA subsequence:

3’- Xi+1Xi+2 · · ·Xk︸ ︷︷ ︸
k−i times

e(a) X1X2 · · · Xj︸ ︷︷ ︸
j times

-5’

where Xi denotes the complementary nucleotide of Xi, and y denotes the com-
plementary sequence of y. Further, we put two more complementary ssDNA
sequences for the supplementary subsequences at both ends:

3’- S1S2 · · · Ss -5’, 3’- Y1Y2 · · · YtR1R2 · · · Ru︸ ︷︷ ︸
biotinylated

-5’,

where the second ssDNA is biotinylated for streptavidin-biotin bonding.

Intensive In Vitro Experiments 195

Now, we put all those ssDNAs encoding an input string w and encoding state-
transition functions and the supplementary subsequences of probes and PCR
primers. Then, a computation (accepting) process of the finite automata M is
accomplished by self-assembly among those complementary ssDNAs, and the
acceptance of an input string w is determined by the detection of a completely
hybridized double-strand DNA.

The main idea of length-encoding technique is explained as follows. Two con-
secutive valid transitions δ(h, an) = i and δ(i, an+1) = j are implemented by
concatenating two corresponding encoded ssDNAs, that is,

3’- AAA · · · A
k−h

e(an) AAA · · · A
i

-5’,

and
3’- AAA · · · A

k−i

e(an+1) AAA · · · A
j

-5’

together make

3’- AAA · · · A
k−h

e(an) AAA · · · A
k

e(an+1) AAA · · · A
j

-5’.

Thus, the subsequence AAA · · · A︸ ︷︷ ︸
k

plays a role of “joint” between two consecutive

state-transitions and it guarantees for the two transitions to be valid in M .

2.2 Designing Laboratory Protocols to Execute Finite Automata in
Test Tube

In order to practically execute the laboratory experiments for the method de-
scribed in the previous section, we design the following experimental laboratory
protocol, which is also illustrated in Fig. 1:

0. Encoding: Encode an input string into a long ssDNA, and state-transition
functions and supplementary sequences into short pieces of complementary
ssDNAs.

1. Hybridization: Put all those encoded ssDNAs together into one test tube,
and anneal those complementary ssDNAs to be hybridized.

2. Ligation: Put DNA “ligase” into the test tube and invoke ligations at tem-
perature of 37 degree. When two ssDNAs encoding two consecutive valid
state-transitions δ(h, an) = i and δ(i, an+1) = j are hybridized at adjacent
positions on the ssDNA of the input string, these two ssDNAs are ligased
and concatenated.

3. Denature and extraction by affinity purification: Denature double-
stranded DNAs into ssDNAs and extract concatenated ssDNAs containing
biotinylated probe subsequence by streptavidin-biotin bonding with
magnetic beads.

4. Amplification by PCR: Amplify the extracted ssDNAs with PCR
primers.

196 J. Kuramochi and Y. Sakakibara

Fig. 1. The flowchart of laboratory protocol to execute in vitro finite automata which
consists of five steps: hybridization, ligation, denature and extraction by affinity pu-
rification, amplification by PCR, and detection by gel-electrophoresis. The acceptance
of the input string by the automata is the left case, and the rejection is the right case.

5. Detection by gel-electrophoresis: Separate the PCR products by length
using gel-electrophoresis and detect a particular band of the full-length. If
the full-length band is detected, that means a completely hybridized double-
strand DNA is formed, and hence the finite automaton “accepts” the input
string. Otherwise, it “rejects” the input string. In our laboratory experi-
ments, we have used a “capillary” electrophoresis microchip-based system,
called Bioanalyser 2100 (Agilent Technologies), in place of conventional gel-
electrophoresis. The capillary electrophoresis is of higher resolution and more
accurate than gel electrophoresis such as agarose gel.

Further, we have carefully designed DNA sequences encoding symbols, states,
probes for affinity purification, PCR primers as follows. Two main factors for
designing those DNA sequences are (1) Tm (melting temperature) to avoid mis-
hybridizations and (2) to avoid forming secondary structures:

DNA sequence Tm
symbol ’0’ GACGTTGGATGTGGG 50.165
symbol ’1’ GCGTGTACGATGCAG 51.523
state AAGCAGTTTT 23.641
probe CTGGTTGCTTGTCCC 50.344
PCR primers GCGTCTTGGTTGCTGAAATG 58.521

CCGACTTCGTACGAGATTAG 55.481

Intensive In Vitro Experiments 197

3 Experiments

We have carried laboratory experiments on various finite automata of from 2
states to 6 states for several input strings.

3.1 2-States Automaton with Two Input Strings

Our experiments begin with a simple two-states automaton shown in Fig. 2 (left)
with two input strings, (a) “1101” and (b) “1010”. The language accepted by
this automaton is (10)+, and hence the automaton accepts the string 1010 and
rejects the other string 1101.

The results of electrophoresis by Bioanalyser are displayed in the form of
electropherogram (as shown in Fig. 3) which plots standard curve of migration
time against DNA size where the x-axis is migration time and the y-axis is
fluorescence intensity. They can also be displayed in gel-like image (as shown
in Fig. 2 (right)). For these two input strings, the full-length DNA is of 190
bps (mer). Hence, if a band at position of 190 mer is detected in the result

Fig. 2. (Left:) A simple 2-states automaton used for this experiment. (Right:) The
results of electrophoresis are displayed in gel-like image. Lane (a) is for the input
string 1101, and lane (b) for 1010. Since the full-length band (190 mer) is detected
only in lane (b), we determine the automaton accepts only the input string (b) 1010.

(b)
(a)

Fig. 3. The results of electrophoresis are displayed in the form of electropherogram
where the vertical axis is fluorescence intensity. Peaks at the full-length position are
marked with circles. Plot (a) is for the input string 1101, and plot (b) for 1010. A strong
peak at the full-length position is detected only in plot (b), and hence we determine
the automaton accepts the input string (b) 1010.

198 J. Kuramochi and Y. Sakakibara

of electrophoresis, that means a completely hybridized double-strand DNA is
formed, and hence the finite automaton “accepts” the input string.

Both figures 2 and 3 clearly show that our in vitro experiments have success-
fully identified the correct acceptance of this automaton for two input strings,
and hence correctly executed the computation process of the automaton in vitro.

3.2 4-States Automaton with Three Input Strings

Our second experiment attempts 4-states automaton shown in Fig. 4 (upper
left) for the three input strings (a) 1101, (b) 1110, and (c) 1010. This 4-states
automaton accepts the language (1(0∪1)1)∗∪(1(0∪1)1)∗0, and hence it accepts
1110 and 1010 and rejects 1101.

A F
0

B C
0

1

1 1

(a) (b) (c)

190mer

Fig. 4. (Left:) A 4-states automaton used for this experiment. (Right:) The results of
electrophoresis are displayed in gel-like image. Lane (a) is for the input string 1101,
lane (b) for 1110, and lane (c) for 1010. Since the full-length band (190 mer) is detected
in lane (b) and (c), we determine the automaton accepts two input strings (b) 1110
and (c) 1010.

1

1 1

CA

B

1

1 1

CA

B

0

0 0

CA

B

0 0

190mer

Fig. 5. (Upper:) Three different types of 3-states automata used for this experiment.
(Lower:) The results of electrophoresis are displayed in gel-like image. Lane (1) is for
the automaton (1), lane (2) for the automaton (2), and lane (3) for the automaton
(3). Since the full-length band (190 mer) is detected only in lane (3), we determine the
automaton (3) accepts the input string 1101.

Intensive In Vitro Experiments 199

The results are shown in Fig. 4 (upper right) in gel-like image. As in the first
experiment, the full-length DNA is of 190 bps (mer). Bands at position of 190
mer is detected in lane (b) and lane (c). Hence, our in vitro experiments have
successfully detected that the automaton accepts two input string (b) 1110 and
(c) 1010.

3.3 Three 3-States Automata with One Input String

In this experiment, we execute three different types of 3-states automata shown
in Fig. 5 (upper) for one input string “1101”. The automaton (1) accepts the
language 000∗0, (2) accepts (111)∗, and (3) accepts (110∗1)∗. Hence, the au-
tomaton (3) only accepts the input string 1101.

1

1

1 1

1

1 1

1

1

1

1

1
A C

A C

EFCA

B

1

1

11

1

1

A

B

C

D

E

F

1 1

1

1 1

A

C

D

EF

240mer

(2) (3) (4) (5) (6)

Fig. 6. (Upper:) Five different automata of from 2 states to 6 states used for this
experiment. (Lower:) The results of electrophoresis are displayed in gel-like image.
Lane (2) is for the automaton (2), (3) for (3), (4) for (4), (5) for (5), and (6) for (6).
Since the full-length bands (240 mer) are detected in lane (2), (3) and (6), we determine
the automata (2), (3) and (6) accepts the input string 111111.

200 J. Kuramochi and Y. Sakakibara

The results are shown in Fig. 5 (lower) in gel-like image. Again, the full-
length DNA is of 190 bps (mer). A band at position of 190 mer is detected only
in lane (3). Hence, in our in vitro experiments, the automaton (3) has correctly
accepted the input string 1101 and the automaton (1) and (2) have correctly
rejected 1101.

Fig. 7. The results of electrophoresis are displayed in the form of electropherogram.
Peaks at the full-length position are detected in plot (2), (3) and (6).

Intensive In Vitro Experiments 201

3.4 From 2-States to 6-States Automata with One Input String
“111111” of Length 6

Our final experiments are 5 different automata of from 2 states to 6 states shown
in Fig. 6 (upper) for one input string “111111” of length 6. The automaton (2)
accepts the language (11)∗, that is, strings with even numbers of symbol ’1’, (3)
accepts the language (111)∗, strings repeating three times of 1s, (4) accepts the
language (1111)∗, strings repeating four times of 1s, (5) accepts the language
(11111)∗, strings repeating five times of 1s, (6) accepts the language (111111)∗,
strings repeating six times of 1s. Since 6 is a multiple of 2, 3 and 6, the automata
(2), (3) and (6) accept the input string 111111 of length 6.

The results are shown in Fig. 6 (lower) in gel-like image and in Fig. 7 in the
form of electropherogram. For the input string 111111, the full-length DNA is of
240 bps (mer). Bands at position of 240 mer are detected in lanes (2), (3) and (6)
in Fig. 6, and strong peaks at the full-length position are also detected in plot
(2), (3), and (6) in Fig. 7. Hence, in our in vitro experiments, the automaton (2),
(3) and (6) have correctly accepted the input string 111111 and the automaton
(4) and (5) have correctly rejected 111111.

4 Discussions

Since the full-length ssDNAs contain repeated patterns on DNA sequences, PCR
amplifications with such templates produce many unexpected and unnecessary
products which become obstacles for the precise detections using electrophoresis.
The use of fluorescence tags is a possible solution for this problem.

An interesting future work is execute our in vitro automata for multiple input
strings in parallel.

Acknowledgements

This work is supported in part by Grant-in-Aid for Scientific Research on Pri-
ority Area No. 14085205. This work was also performed in part through Special
Coordination Funds for Promoting Science and Technology from the Ministry of
Education, Culture, Sports, Science and Technology, the Japanese Government,
and a grant of Keio Leading-edge Laboratory of Science and Technology (KLL)
specified research projects.

References

1. Benenson, Y., T. Paz-Ellzur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Pro-
grammable and autonomous computing machine made of biomolecules. Nature, 414,
430–434, 2001.

2. Păun, Gh., G. Rozenberg, and A. Salomaa. DNA Computing. Springer-Verlag, Hei-
delberg, 1998.

202 J. Kuramochi and Y. Sakakibara

3. Sakakibara, Y. and T. Hohsaka. In Vitro Translation-based Computations. Proceed-
ings of 9th International Meeting on DNA Based Computers, Madison, Wisconsin,
175–179, 2003.

4. Yokomori, T., Y. Sakakibara, and S. Kobayashi. A Magic Pot : Self-assembly com-
putation revisited. Formal and Natural Computing, LNCS 2300, Springer-Verlag,
418–429, 2002.

Development of an In Vivo Computer Based on
Escherichia coli

Hirotaka Nakagawa1, Kensaku Sakamoto2, and Yasubumi Sakakibara1

1 Keio University, Department of Biosciences and Informatics,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

yasu@bio.keio.ac.jp
2 RIKEN Genomic Sciences Center,

1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
sakamoto@gsc.riken.jp

Abstract. We present a novel framework to develop a programmable
and autonomous in vivo computer using E. coli, and implement in vivo
finite-state automata based on the framework by employing the protein-
synthesis mechanism of E. coli. Our fundamental idea to develop a pro-
grammable and autonomous finite-state automata on E. coli is that we
first encode an input string into one plasmid, encode state-transition
functions into the other plasmid, and introduce those two plasmids into
an E. coli cell by electroporation. Second, we execute a protein-synthesis
process in E. coli combined with four-base codon techniques to simulate a
computation (accepting) process of finite automata, which has been pro-
posed for in vitro translation-based computations in [8]. This approach
enables us to develop a programmable in vivo computer by simply replac-
ing a plasmid encoding a state-transition function with others. Further,
our in vivo finite automata are autonomous because the protein-synthesis
process is autonomously executed in the living E. coli cell. We show some
successful experiments to run an in vivo finite-state automaton on E. coli.

1 Introduction

The finite-state automata (machines) are the most basic computational model in
Chomsky hierarchy and are the start point to build universal DNA computers.
Several works have attempted to develop finite automata in vitro. However,
there have been no experimental research works which attempt to build a finite
automaton in vivo.

We have previously proposed a method using the protein-synthesis mechanism
combined with four-base codon techniques to simulate a computation (accepting)
process of finite automata in vitro [8] (a codon is normally a triplet of base, and
different base triplets encode different amino acids in protein). The proposed
method is quite promising and has several advanced features such as the protein-
synthesis process is very accurate and overcomes mis-hybridization problem in
the self-assembly computation and further offers an autonomous computation.
Our aim was to extend this novel principle into a living system, by employing
the in vivo protein-synthesis mechanism of E. coli. This in vivo computation

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 203–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 H. Nakagawa, K. Sakamoto, and Y. Sakakibara

possesses the following two novel features, not found in any previous biomolecular
computer. First, an in vivo finite automaton is implemented in a living E. coli
cell; it does not mean that it is executed simply by an incubation at a certain
temperature. Second, this automaton increases in number very rapidly according
to the bacterial growth; one bacterial cell can multiply to over a million cells
overnight. The present study explores the feasibility of in vivo computation.

The main feature of our in vivo computer based on E. coli is that we first
encode an input string into one plasmid, encode state-transition functions into
the other plasmid, and transform E. coli cells with these two plasmids by elec-
troporation. Second, we execute a protein-synthesis process in E. coli combined
with four-base codon techniques to simulate a computation (accepting) process
of finite automata, which has been proposed for in vitro translation-based com-
putations in [8]. The successful computations are detected by observing the ex-
pressions of a reporter gene linked to mRNA encoding an input data. Therefore,
when an encoded finite automaton accepts an encoded input string, the reporter
gene, lacZ, is expressed and hence we observe a blue color. When the automaton
rejects the input string, the reporter gene is not expressed and hence we observe
no blue color. Our in vivo computer system based on E. coli is illustrated in
Fig. 1.

plasmid encoding
input string

plasmid encoding Ser tRNA
reading AGGU

E. coli

LacZ expression

colony exhibits a blue
color = accept

incubation
= computation

LacZ no expression

transformation

colony exhibits no
color = reject

Fig. 1. The framework of our in vivo computer system based on E. coli

Thus, our E. coli-based computer enables us to develop a programmable and
autonomous computer. To our knowledge, this is the first experimental develop-
ment of in vivo computer and has succeeded to execute an finite-state automaton
on E. coli.

Development of an In Vivo Computer Based on Escherichia coli 205

2 Methods

2.1 A Framework of Programmable and Autonomous In Vivo
Computer on E. coli

Two important issues on developing DNA-based computers are programmable
and autonomous . We realize these two mechanisms by using the main features
of our in vivo computer based on E. coli.

Programmable: The programmable means that a program is stored as a data
(i.e., stored program computer) and any computation can be accomplished by
just choosing a stored program. In DNA-based computers, it requires that a
program is encoded into a molecule different from the main and fixed units of
DNA computer, a molecule encoding programs can be stored and changed, and
a change of molecules encoding programs accomplishes any computations.

The main features of our in vivo computer enable us to develop a pro-
grammable in vivo computer. We simply replace a plasmid encoding a state-
transition function with other plasmid encoding a different state-transition
function, and the E. coli cell transformed a new plasmid computes a different
finite automaton.

Autonomous: The autonomous DNA computers mean that once we set a pro-
gram and an input data and start a computation, the entire computational
process is carried out without any operations from the outside. Our in vivo fi-
nite automata are autonomous in the sense that the protein-synthesis process
which corresponds to a computation (accepting) process of an encoded finite
automata is autonomously executed in a living E. coli cell and require no labo-
ratory operations from the outside.

2.2 Simulating Computation Process of Finite Automata Using
Four-Base Codons and Protein-Synthesis Mechanism

Sakakibara and Hohsaka [8] have proposed a method using the protein-synthesis
mechanism combined with four-base codon techniques to simulate a computation
(accepting) process of finite automata. An important objective of this paper is
to execute the proposed method on E. coli in order to improve the efficiency of
the method and further develop a programmable in vivo computer. We describe
the proposed method using an example of simple finite automaton, illustrated
in Fig. 3, which is of two states {s0, s1}, defined on one symbol ‘1’, and accepts
input strings with even numbers of symbol 1 and rejects input strings with odd
numbers of 1s.

The input symbol ‘1’ is encoded to the four-base subsequence AGGU and an
input string is encoded into an mRNA by concatenating AGGU and A alternately
and adding AAUAAC at the 3’-end. This one-nucleotide A in between AGGU is used
to encode two states {s0, s1}, which is a same technique presented in [9]. For
example, a string “111” is encoded into an mRNA:

AGGU︸ ︷︷ ︸
1

A AGGU︸ ︷︷ ︸
1

A AGGU︸ ︷︷ ︸
1

AAAUAAC.

206 H. Nakagawa, K. Sakamoto, and Y. Sakakibara

plasmid encoding
input string

Programmable:

choosing plasmid encoding tRNAs

E. coli

Autonomous:

computation is executed by living E.coli

transformation
. . .A B Z

Fig. 2. A programmable and autonomous in vivo computer system based on E. coli

s0 s1
1

1

Fig. 3. A simple finite automaton of two states {s0, s1}, defined on one symbol ‘1’,
and accepting input strings with even numbers of symbol 1 and rejecting input strings
with odd numbers of 1s

(This encoding will be replaced with other four-base encoding in real labora-
tory experiments because of the translation efficiency.) The four-base anticodon
(3’)UCCA(5’) of tRNA encodes the transition rule s0

1−→ s1, that is a transition
from state s0 to state s1 with input symbol 1, and the combination of two three-
base anticodons (3’)UUC(5’) and (3’)CAU(5’) encodes the rule s1

1−→ s0. Further,
the encoding mRNA is linked to lacZ-coding RNA subsequence as a reporter
gene for the detection of successful computations. Together with these encod-
ings and tRNAs containing four-base anticodon (3’)UCCA(5’), if a given mRNA
encodes an input string with odd numbers of symbol 1 , an execution of the in
vivo protein-synthesis system stops at the stop codon, which implies that the
finite automaton does not accept the input string, and if a given mRNA encodes
even numbers of 1s, the translation goes through the entire mRNA and the de-
tection of acceptance is found by the blue signal of lacZ. Examples of accepting
processes are shown in Fig. 4: (Upper) For an mRNA encoding a string “1111”,
the translation successfully goes through the entire mRNA and translates the
reporter gene of lacZ which emits the blue signal. (Lower) For an mRNA encod-
ing a string “111”, the translation stops at the stop codon UAA, does not reach
to the lacZ region and produces no blue signal.

Development of an In Vivo Computer Based on Escherichia coli 207

A G G U A A G G U A A G G U A A G G U A A A U A A C lacZmRNA

tRNAs

U C C A U U C C A U U C C A U U C C A U U U A U U G

1 1 1 1

5’- -3’

A G G U A A G G U A A G G U A A A U A A C lacZ
U C C A U U C C A U U C C A U U U

Stop codon

1 1 1

5’- -3’

Fig. 4. Examples of accepting processes: (Upper) For an mRNA encoding a string
“1111”, the translation successfully goes through the mRNA and translates the reporter
gene of lacZ emitting the blue signal. (Lower) For an mRNA encoding a string “111”,
the translation stops at the stop codon UAG, does not reach to the lacZ region and
produces no blue signal.

If the competitive three-base anticodon (3’)UCC(5’) comes faster than the
four-base anticodon (3’)UCCA(5’), the incorrect translation (computation) im-
mediately stops at the following stop codon UAA.

2.3 Designing Laboratory Protocols Using E. coli

In order to practically execute the laboratory experiments for our in vivo finite
automata described in the previous sections, we have designed the following
details of laboratory protocol. For the translation efficiency, we use tRNA with
“UCCU” four-base anticodon in place of “UCCA”.

(1) Construction of plasmid for tRNA with UCCU anticodon. The
gene encoding a serine-inserting frameshift suppressor tRNA (designated as FS-
Sup tRNA) [6] was generated by polymerase chain reaction (PCR) with four
synthetic oligomers shown in Table 1. This PCR was performed using Pyrobest
DNA polymerase (Takara Shuzo, Kyoto, Japan) and Gene Amp PCR System
2700 (ABI). The PCR product, after treated with MicroSpin Columns (QIA-
GEN), was digested with BamHI and Eco52I, and was then ligated into the corre-
sponding sites of a derivative of pACYC184, by using Ligation kit ver.1 (Takara),
to create plasmid pFSSuptRNA. This derivative of pACYC184 contains the lpp
promoter before the BamHI site and the rrnC terminator after the Eco52I site.
The use of these promoter and terminator for expressing tRNA in E. coli has
been reported in [7]. E. coli MV1184 ElectroCells (Takara a) was transformed
by electroporation with pFSSuptRNA and incubated in SOC medium at 37oC.
The cells were then transferred onto LB Lennox plates (Nacarai) containing chlo-
ramphenicol (Wako) of 25 μg/ml to be inoculated at 37oC overnight. To extract

208 H. Nakagawa, K. Sakamoto, and Y. Sakakibara

Oligomer (i)

(ii) (iii)

(iv)

BamHI tRNA with UCCU anticodon rrnC terminator Eco52I

Fig. 5. Construction of FSSup tRNA with UCCU anticodon

Table 1. Oligomers for frameshift suppressor tRNA

Oligomer Sequence
(i) (5’) CACACAGGATCCCCGTGGAGAGATGC (3’)

(ii) (5’) GGATCCCCGTGGAGAGATGCCGGAGCGGCTGAACGGACCGGTCTTCCT

AAACCGGAGTAGGGGCAAC (3’)

(iii) (5’) GCTTTCGCTAAGGATCGTCGACTTTGGCGGAGAGAGGGGGATTTGAAC

CCCCGGTAGAGTTGCCCCTACTCCGGTTTAG (3’)

(iv) (5’) CACACACGGCCGTAAAAAAAATCCTTAGCTTTCGCTAAGGATCGTCG (3’)

the plasmid, the cells from one colony were transplanted to LB Lennox medium
of 1.5 ml containing chloramphenicol 25 μg/ml and cultured overnight at 37oC.
Plasmid DNA from the cells was extracted by using QIAprep Spin Miniprep
kit (Qiagen). Finally, the sequence of the FSSup tRNA gene was confirmed by
sequencing using the standard dideoxy method.

(2) Plasmid carrying an encoded input string. DNA fragment carrying
an encoded input string was made by annealing two oligomers, phosphorylated
by T4 polynucleotide kinase (Toyobo), in an H buffer (Toyobo) with a thermal
program of 95oC 2 mim followed by slow cooling to room temperature. The
obtained fragment had overhanging bases at either end to be ligated into the
PstI-XbaI sites pUC19 (Takara) (See Fig. 6). Amplification and sequence con-
firmation of this plasmid, pUC19 with the encoded input string, was performed
as described in (1) except for a use of ampicillin (Nacarai) of 50 μg/ml in place
of chloramphenicol.

(3) Cell preparation for electroporation. E. coli MV1184 with pFSSup-
tRNA was cultured overnight in LB Lennox (3ml). This overnight culture was

(v)

(vi)

PstI sticky end XbaI sticky end

Fig. 6. Encoded input string

Development of an In Vivo Computer Based on Escherichia coli 209

Table 2. Oligomers for an encoded input string

Oligomer Sequence
(v) (5’) GCAGGTA · · · AGGTA

AGGTA×n

AATAACACT (3’)

(vi) (5’) CTAGAGTGTTATTTACCT · · · TACCT

TACCT×n

GCTGCA (3’)

added to LB Lennox (150 ml) containing chloramphenicol 25 μg/ml, and inocu-
lated at 37oC until OD595 becomes 0.6 ∼ 0.8. The fresh culture, thus prepared,
was cooled on ice. Then, the culture was centrifuged at 5,000Xg for 15 min at
4oC, and then the supernatant was discarded and the pellet was re-suspended
in cold water. This step of cell wash was repeated. The pellet thus obtained was
suspended in 10 % glycerol, and was then centrifuged at 5,000Xg for 15 min at
4oC. After discarding the supernatant, the pellet was suspended in 10 % glycerol
again. This cell suspension was applied to flash freezing with liquid nitrogen for
store at −80oC.

E.coli MV1184 with pACYC184 instead of pFSSuptRNA was similarly
treated for preparing cells for electroporation. MV1184 with pACYC184 was
used for a control experiment.

(4) Calculation. The cells prepared in (3) were transformed with the plasmids
carrying an encoded input string by electroporation. The transformed cells were
added together with IPTG and X-Gal onto LB Lennox plates containing chlo-
ramphenicol of 25 μg/ml and ampicillin of 50 μg/ml. The cells were grown at
37oC overnight.

3 Experiments

We have done some laboratory experiments by following the laboratory protocols
presented in Section 2.3 to execute the finite automaton shown in Fig. 3, which
is of two states {s0, s1}, defined on one symbol ’1’, and accepts input strings
with even numbers of symbol 1 and rejects input strings with odd numbers of 1s.

We tested our method for six input strings, “1”, “11”, “111”, “1111”, “11111”,
and “111111”, to see whether the method correctly accepts the input string “11”,
“1111”, “111111”, and rejects the strings “1”, “111”, “11111”.

The results are shown in Fig. 7. Blue-colored colonies which indicates the
expression of lacZ reporter gene have been observed only in the plates for the
input strings 11, 1111, and 111111. Therefore, our in vivo finite automaton has
succeeded to correctly compute the six input strings, that is, it correctly accepts
the input strings 11, 1111, 111111 of even numbers of symbol ’1’ and correctly
rejects 1, 111, 11111 of odd number of 1s. To our knowledge, this is the first
experimental development of in vivo computer and has succeeded to execute an
finite-state automaton on E. coli.

210 H. Nakagawa, K. Sakamoto, and Y. Sakakibara

(-)

(-)

(+)

(-)

(-)

(-)

“1” “11” “111”

(+)

(-)

(-)

(-)

(+)

(-)

“1111” “11111” “111111”

Fig. 7. Computation by the E. coli cells with plasmids of the input strings: 1, 11,
111, 1111, 11111, 111111. In each panel, the upper plate (part of a LB plate) shows
the result in the presence of the suppressor tRNA with UCCU anticodon in the cell,
while the lower plate shows the result of control experiment with no suppressor tRNA
expressed. The signs (+) and (-) indicate the theoretical values about the expressions
of lacZ reporter gene: (+) means that the cultured E. coli cells must express lacZ
theoretically, and (-) means it must not express. Circles indicate the blue-colored colony
expressing lacZ . Therefore, our in vivo finite automaton has correctly computed the
six input strings, that is, it correctly accepts the input strings 11, 1111, 111111 of even
numbers of symbol ’1’ and correctly rejects 1, 111, 11111 of odd number of 1s.

4 General Theory to Implement Finite Automata Using
n-Base Codons

A general theory to implement any kinds of finite automata and any input strings
on any alphabet is described as follows.

First, in theory, we assume that n-base codons (for arbitrary n = 3, 4, 5, . . .),
tRNAs containing the complementary n-base anticodons, and the in vivo protein-
synthesis mechanism are available.

Next, we implement a finite automaton using n-base codons and some specific
encodings. Let M = (Q, Σ, δ, q0, F) be a (deterministic) finite automaton, where

Development of an In Vivo Computer Based on Escherichia coli 211

Q is a finite set of states numbered from 0 to k, Σ is an alphabet of input
symbols, δ is a state-transition function such that δ : Q × Σ −→ Q, q0 is the
initial state, and F is a set of final states.

For the alphabet Σ, we encode each symbol a in Σ into a DNA subsequence,
denoted e(a), of fixed length. For an input string w on Σ, we encode w =
x1x2 · · ·xm into the following DNA subsequence, denoted e(w):

e(x1) AA . . . A︸ ︷︷ ︸
k times

e(x2) AA . . .A︸ ︷︷ ︸
k times

. . . e(xm) AA . . . A︸ ︷︷ ︸
k times

For the state-transition function from state qi to state qj with input symbol
a ∈ Σ, we encode δ(qi, a) = qj into tRNA containing the following anticodon:

(3′) UU . . . U︸ ︷︷ ︸
i times

c(e(a)) UU . . . U︸ ︷︷ ︸
k−j times

(5′)

where c(y) denotes the complementary sequence of y. Thus, we represent each
state in Q by the length of DNA sequence. This is the same technique presented
in [9]. Finally, we add some specific DNA subsequence containing stop codons at
the 3’-end of the encoding sequence e(w). This is for the in vivo protein-synthesis
system to stop a translation if the finite automaton does not accept an input
string.

It would be easy to see that the protein-synthesis mechanism of E. coli with
these specific encodings of the input string and tRNAs containing the anticodons
encoding the state-transition function will simulate the computation process of
a target finite automaton.

In practice, several four-base anticodons such as AUCU, GGGA and GAUC are
executable [6] and some five-base anticodons [1] have been proved in laboratory
experiments.

5 Discussions

The presented experiments of our in vivo finite automata based on E. coli pro-
pose a kind of population computations in the following two senses: (1) While
a computation by one single E. coli cell is not effective and accurate, a colony
consisting of a large number of E. coli cells provides a reliable computation. (2)
Since one bacterial cell can multiply to over a million cells overnight, our in vivo
computation framework offers a massively parallel computation. Further, our in
vivo finite automata have a quite distinguished feature that an in vivo finite
automaton is implemented in a living E. coli cell; it is not implemented simply
by an incubation at a certain temperature.

Acknowledgements

This work was also performed in part through Special Coordination Funds for
Promoting Science and Technology from the Ministry of Education, Culture,

212 H. Nakagawa, K. Sakamoto, and Y. Sakakibara

Sports, Science and Technology, the Japanese Government, and a grant of Keio
Leading-edge Laboratory of Science and Technology (KLL) specified research
projects.

References

1. Anderson, J. C., T. J. Magliery, and P. G. Schultz. Exploring the limits of codon
and anticodon size. Chemistry & Biology, 9, 237–244, 2002.

2. Benenson, Y., T. Paz-Ellzur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Pro-
grammable and autonomous computing machine made of biomolecules. Nature, 414,
430–434, 2001.

3. Bishop, R. E., B. K. Leskiw, R. S. Hodges, C. M. Kay, and J. H. Weiner. The
entericidin locus of Escherichia coli and its implications for programmed bacterial
cell death. Journal of Molecular Biology, 280, 583–596, 1998.

4. Hohsaka, T., Y. Ashizuka, H. Taira, H. Murakami, M. Sisido. Incorporation of non-
natural amino acids into proteins by using various four-base codons in an Escherichia
coli in vitro translation system. Biochemistry, 40, 11060–11064, 2001.

5. Hohsaka, T., Y. Ashizuka, H. Murakami, M. Sisido. Five-base codons for incorpora-
tion of nonnatural amino acids into proteins. Nucleic Acids Research, 29, 3646–3651,
2001.

6. Magliery, T. J., J. C. Anderson, and P. G. Schultz. Expanding the genetic code:
selection of efficient suppressors of four-base codons and identification of “shifty”
four-base codons with a library approach in Escherichia coli. Journal of Molecular
Biology, 307, 755–769, 2001.

7. Normanly, J., J. M. Masson, L. G. Kleina, J. Abelson, and J. H. Miller. Construction
of two Escherichia coli amber suppressor genes. Proceeding of the National Academy
of Sciences USA, 83, 6548–6552, 1986.

8. Sakakibara, Y. and T. Hohsaka. In Vitro Translation-based Computations. Proceed-
ings of 9th International Meeting on DNA Based Computers, Madison, Wisconsin,
175–179, 2003.

9. Yokomori, T., Y. Sakakibara, and S. Kobayashi. A Magic Pot : Self-assembly com-
putation revisited. Formal and Natural Computing, LNCS 2300, Springer-Verlag,
418–429, 2002.

Control of DNA Molecules on a Microscopic
Bead Using Optical Techniques for Photonic

DNA Memory

Yusuke Ogura1,3, Taro Beppu1, Masahiro Takinoue2,3,
Akira Suyama2,3, and Jun Tanida1,3

1 Graduate School of Information Science and Technology, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

{ogura, t-beppu, tanida}@ist.osaka-u.ac.jp
2 Graduate School of Arts and Sciences, The University of Tokyo,

3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
suyama@dna.c.u-tokyo.ac.jp, takinoue@genta.c.u-tokyo.ac.jp

3 Japan Science and Technology Agency (JST-CREST)

Abstract. This paper focuses on a photonic DNA memory, which is a
DNA memory using optical techniques. Positional information of DNA is
utilized for scaling up the address space of the DNA memory. Use of the
optical techniques is useful in controlling positional addresses in parallel.
We performed some experiments on control of the reactions of hairpin
DNA molecules on a microscopic bead. Experimental results demonstrate
that operations of writing and erasing of data DNA on a bead for the
photonic DNA memory can be achieved by using optical techniques.

1 Introduction

Various computations can be implemented by use of parallelism and autonomous
reactions of DNA. Storing of manipulated data improves the efficiency of the
computations. This means that a DNA memory, which is a memory using DNA
and its reactions, is considered to be fundamental to a wide range of applications
of DNA computing[1, 2, 3].

The size of DNA is a nanometer scale. This is an important characteristic
for constructing a valuable memory because showing the potential of the DNA
memory as a high-capacity memory. For realizing the DNA memory, the capa-
bility to store huge data using a large amount of DNA is essential. In addition to
this, it is required that one can access and use arbitrary data among the stored
data at his disposal.

From this viewpoint, it is important to develop a method for addressing in-
dividual data to identify them. DNA molecules are distinguished depending on
their base sequences; namely, the DNA molecules have their address informa-
tion inherently, and addressing with DNA base sequences is possible. However,
simple use of address information that relates to base sequences requires a hard
task to design the sequences for making huge address space. In addition, it is
difficult to control the DNA with such a variety of base sequences accurately.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 213–223, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 Y. Ogura et al.

Use of information that is independent from base sequences is another possible
strategy for scaling up the address space of a DNA memory. The positional
information of DNA is considered to be usable information for the purpose. It
it not necessary to control the positions of DNA molecules individually at a
nanometer scale. For identifying the individual DNA molecules, addressing with
base sequences is suitable. The positional information at a micrometer scale
is more effective to use than that at a nanometer scale. Combining addresses
relating to the base sequences and to the positional information provides large
address space. For realizing this idea, methods should be developed for operating
the DNA memory in the individuals of an array of micrometer-scale volumes.

We have been studying methods for manipulating DNA at a micrometer
scale by the basis of optical techniques[4, 5]. For example, we demonstrated
that multiple microscopic beads, on which many DNA molecules were attached,
were simultaneously translated by optical manipulation that uses vertical-cavity
surface-emitting laser (VCSEL) array sources. We also succeeded in controlling
reactions of DNA with the resolution of a few micrometer by irradiating with
a laser beam. These optical techniques for manipulating DNA are promising to
realize addressing of the DNA memory using the positional information of DNA
molecules. The characteristics of DNA and light can be effectively utilized by
combining the method for addressing the DNA memory using optical techniques
at a micrometer scale and the method using molecular reactions at a nanometer
scale. The DNA memory is controlled in spatially parallel owing to the paral-
lelism of light propagation. The reaction parallelism of DNA is exploited at a
micrometer scale.

It is important to develop a method for addressing the DNA memory by us-
ing optical techniques not only from the viewpoint of DNA computing but also
from the viewpoint of optical computing. Optical computing is a computational
technique for parallel information processing that uses inherent property of light
such as fast propagation, parallelism, and a large bandwidth. Many interesting
results were obtained with various demonstration systems, which were associ-
ated with, for example, optical interconnection and digital optics[6]. However,
the diffraction limit determines the resolution of the light and often restricts
the density and capacity of information that is dealt with in an optical system.
The precise alignment of optical devices is necessary for manipulating the light
in diffraction limited systems.

The DNA memory that uses optical techniques, which we refer to as a pho-
tonic DNA memory, gives a practical solution for these problems. For example,
the diffraction limit is approximately 1 μm in a typical optical system. On the
other hand, a volume of 1 μm3 of a DNA solution with density of 10 μM contains
6×103 DNA molecules. When DNA molecules each includes information of 1 bit,
the amount of information of the volume is an order of 103 bits. This suggests
that the photonic DNA memory has potential for dealing with information more
than that is dealt with in the diffraction limited optical system. The difficult
alignment of the optical system is avoidable because DNA molecules float in a
volume of the solution and react autonomously.

Control of DNA Molecules on a Microscopic Bead Using Optical Techniques 215

In this paper, we focus on the photonic DNA memory, which uses optical
techniques for addressing with positional information. We studied a method for
controlling reactions of hairpin DNA on a microscopic bead by laser irradiation.
Experimental results of the operations of writing and erasing on a bead are
shown.

2 Photonic DNA Memory

In photonic DNA memory, DNA with a hairpin formation, which is referred to
as hairpin DNA, is immobilized on the surface of a microscopic bead. The beads
are used for translating DNA. The detail of translation is described later.

A solution of our DNA memory contains hairpin DNA, tag DNA, and anti-tag
DNA. The base sequence of the tag DNA is completely or partially complement
to that of the hairpin DNA. Anti-tag DNA that has a sequence complement to
the tag DNA is immobilized on a substrate. The reason for using hairpin DNA
is to achieve two stable states. If the temperature of the solution is decreased
gradually, hairpin DNA and tag DNA molecules hybridize with each other. In
contrast, if the temperature of the solution is decreased rapidly, the hairpin DNA
forms the hairpin formation and does not hybridize with the tag DNA.

A tag DNA molecule includes address information of the DNA memory in its
base sequence. When using tag DNA by itself as data, the state that the anti-tag
DNA and the tag DNA construct dsDNA on the substrate is considered as the
value “1”, and the other state is considered as the value “0.” One can, in contrast,
append an additional DNA, genome DNA, proteins, and other molecules to
the tag DNA as data. In this paper, we refer to tag DNA with or without an
additional molecule as data DNA.

Let T1 and T ′
1 be the melting temperature of the hairpin DNA and that of

the dsDNA consisting of the tag DNA and the anti-tag DNA, respectively. Let
T2(> T1, T

′
1) denotes the melting temperature of dsDNA consisting of the hairpin

DNA and the tag DNA.
Figure 1 shows the molecular reaction behavior of the DNA memory con-

sidered in this paper. The procedure for writing and erasing operations is as
follows. At the initial condition, the temperature is set to T0(< T1, T

′
1) and the

data DNA molecules bind to the substrate by hybridization of the data DNA
and anti-tag DNA. When the temperature of the solution is increased to higher
than T2, the data DNA is detached from the substrate and floats in the solution.
The temperature is decreased to T2, then the data DNA and the hairpin DNA
hybridize. After the temperature is decreased to T0, the DNA is stable. By the
method, the data DNA can be read out from the substrate and written in to the
bead.

When the temperature is decreased from higher than T2 to T0 rapidly, the
hairpin DNA forms a hairpin formation, and cannot hybridize with the data
DNA. As a result, the data DNA hybridizes with the anti-tag DNA, and it is
immobilized to the substrate. This means that the data DNA can be read out
from the bead and written in to the substrate. If hairpin DNA molecules that

216 Y. Ogura et al.

Fig. 1. The molecular reaction behavior of the photonic DNA memory

have different base sequences are immobilized to a bead, specific data DNA
molecules are written in to the bead selectively due to addressing with base
sequences.

Note that our scheme uses the substrate as a memory device and the positional
addresses are defined on the substrate. The operations of writing and reading
data DNA on beads are useful in storing a cluster of data DNA temporarily and
necessary for translating the data from a position on the substrate to another
position to process the data.

In the photonic DNA memory, the DNA memory is operated by using optical
techniques. The scheme of a method for controlling molecular reactions of the
photonic DNA memory is shown in Fig. 2. A solution containing microscopic
beads is put on a substrate that is coated with a sort of material for light ab-
sorption. When the substrate is irradiated with a focused laser beam, the surface
of the substrate is heated up owing to light absorption, and the temperature of
the solution around irradiated area increases. By the basis of the phenomenon,
the temperature of the solution can be controlled by changing the power of the
beam used. The positional address of the photonic DNA memory can be used
by changing the irradiating position.

It is possible to generate optical field patterns at a micrometer scale. Effective
use of optical devices provides a method for generating various optical field pat-
terns, so that the operations of the photonic DNA memory can be controlled in
parallel. Operating the DNA memory at a local position using light is regarded
as addressing based on positional information of the DNA memory. Different

Control of DNA Molecules on a Microscopic Bead Using Optical Techniques 217

Fig. 2. The conceptual diagram of a method for controlling molecular reactions of the
photonic DNA memory

positional addresses can be given at a pitch that is no more than several mi-
crometer.

The bead with data DNA molecules can be translated by VCSEL array optical
manipulation[4]. Optical manipulation is a non-contact manipulation method of
an object using a radiation pressure force induced by the interaction between
light and the object. A VCSEL array is high density array sources, the optical
outputs of which can be controlled independently. Flexible manipulation for
microscopic objects is achieved by control of spatial and temporal optical fields
generated by the VCSEL array sources. The method is effective for parallel
manipulation of multiple objects with compact hardware.

Use of the light in the DNA memory is effective in the following points.

1. It is possible to access to DNA memories that have different positional ad-
dresses in parallel.

2. Independent operations are executed for the DNA memories with the differ-
ent positional addresses.

3. Physical interconnections are not required for flowing the data DNA.
4. Procedures of processing are programmable.

The photonic DNA memory can be applied, for example, to a programmable
free-space micro-reactor array system. A variety of information is previously
stored in individual reactors. Addressing with positional information of the DNA
memory is performed by selecting reactors operated by optical field patterns.
Operations of the DNA memory in the individual reactors are implemented by
addressing with base sequences. The data DNA molecules are translated between
reactors. The reactors are used as not only memories but also processing units
and registers. The role of the individual reactors can be changed, so that the

218 Y. Ogura et al.

5'-biotin-ggacacggTGCAGTGTAAGCAACTATTGTCTccgtgtcc-3'

5'-GGACACGGAGACAATAGTTGCTTACACTGCA -3'

Hairpin DNA

Data DNA

Fig. 3. The base sequences of hairpin DNA and data DNA

system is reconfigurable. Applications of the system include on-chip systems for
genome analysis and DNA authentication.

3 Experiments

We performed some experiments on writing and erasing of data DNA on a micro-
scopic bead by using optical techniques. The operations on the bead are required
to take data DAN selectively from the substate (DNA memory) and to use it in
processing.

The base sequences of hairpin DNA and data DNA are shown in Fig. 3. In
the hairpin DNA, the part of the sequence indicated with small letters is the
part of a stem, and the part with capital letters forms a loop. The underlined
letters of the hairpin DNA and the data DNA indicate a complementary part
of the sequences. The detail of molecular reactions of the hairpin DNA and the
data DNA is described in [7].

The hairpin DNA molecules which were modified with biotin at the 5’-end
were mixed in a solution that contains polystyrene beads of 6 μm diameter coated
with streptavidin. The hairpin DNA molecules were immobilized to the surface of
the bead by biotin-streptavidin binding. The beads were extracted and put into
a TE buffer solution. Fluorescence molecules (Molecular Probes, Alexa Fluor
546) were attached to the data DNA. The absorption and fluorescence emission
maxima of the florescence molecules are 555 nm and 570 nm, respectively. The
solution of the data DNA was mixed with the solution that contained beads with
the hairpin DNA.

The substrate used in the experiments was a glass substrate that was coated
with titanylphthalocyanine of 0.15−μm thickness as a layer of light absorption.
The sample was irradiated from below with a beam that was generated from a
semiconductor laser of a wavelength of 854 nm and focused with an objective lens
(Olympus Corp., LUMPlan Fl 60×). A fluorescence microscope with a cooled
CCD was used for observation.

We measured the optical power required for the operation of erasing on a
bead. The data DNA and the hairpin DNA that was immobilized on the bead
were annealed previously in a tube. The sample was put on the substrate and
irradiated with the laser beam. An irradiation cycle consisted of the first phase of
irradiating for 10 seconds and the second phase of capturing a fluorescence image
for 2 seconds. This irradiation cycle was repeated. The power of the irradiation
beam used was 1, 2, 3, 4, or 5 mW.

Control of DNA Molecules on a Microscopic Bead Using Optical Techniques 219

(a)

(b)

Irradiation cycle

Before irradiation After irradiation

10μm

F
lu

or
es

ce
nc

e
po

w
er

 (
a.

u.
)

1 mW

2 mW

3 mW

4 mW

5 mW
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Fig. 4. (a) Fluorescence images captured before (left) and after irradiation (right). (b)
The relationship between the number of irradiation cycles and fluorescence power.

If the data DNA molecules are immobilized to a bead, the fluorescence power
observed around the bead is high because fluorescence molecules is concentrated
on the bead. After denaturing, the data DNA dispersed in the solution, and the
intensity around the bead decreases.

As an example, the fluorescence images captured before and after irradiating
a bead with 5 mW for 10 seconds is shown in Fig. 4(a). Decrease of fluores-
cence intensity means that the data DNA was denatured by laser irradiation.
Figure 4(b) shows the relationship between the number of irradiation cycles and
fluorescence power. The fluorescence power was averaged values of 5 measure-
ments. It can be seen from Fig. 4(b) that, with the irradiation power of 1 or 2
mW, the fluorescence power changes little. This result suggests that the tem-
perature did not increase to the temperature required for denaturing. When the
irradiation power was no less than 3 mW, in contrast, the fluorescence power
decreased. We can conclude that the power of no less than 3 mW is required for
erasing operation on the bead by denaturing the hairpin DNA and the tag DNA.

We investigated a suitable irradiating condition for writing the data DNA
on a bead. The sample solution was prepared by mixing the solution of the
beads including the hairpin DNA with the solution of the data DNA. The mixed

220 Y. Ogura et al.

Before irradiation After irradiation

F
lu

or
es

ce
nc

e
in

te
ns

ity
 (

a.
u.

)

Position (μm)

0

10

20

30

40

0 10 20 30

F
lu

or
es

ce
nc

e
in

te
ns

ity
 (

a.
u.

)

Position (μm)

0

10

20

30

40

0 10 20 30

Irradiated bead Irradiated bead

Fig. 5. Cross sections of a target bead of fluorescence images captured before (left)
and after irradiating the bead with 2 mW for 30 seconds (right)

solution contained the enough data DNA for reaction. A suitable irradiation
condition for hybridization was found by changing laser power, irradiation time,
and other parameters.

As an example, we irradiated a target bead with a laser beam of 2 mW for
30 seconds and stopped irradiating. Cross sections of the bead of fluorescence
images captured during this trial are shown in Fig. 5. The fluorescence intensity
of the bead did not change, which means failure in writing.

In contrast, when a target bead was irradiated with the irradiation schedule
shown in Fig. 6 (a), the obtained fluorescence images are shown in Fig. 6 (b). Fig-
ure 6 (c) shows cross sections of fluorescence images along the line indicated in
Fig 6 (b). The background fluorescence intensity is removed to show these figures.

The fluorescence intensity of the irradiated bead increases obviously. This
result indicates that the tag DNA hybridizes with the hairpin DNA on the bead.
We succeeded in writing the data DNA on the bead using the optical technique.
The fluorescence intensities of another beads around the target bead did not
change, and a hybridization reaction can be controlled with the resolution of no
more than 10μm. If the reaction area is divided to many small areas of 10μm
square, different positional addresses can be given to the individual small areas.

In the next experiment, we repeated writing and erasing operations on a bead.
At the beginning, the data DNA molecules were not attached to a bead with the
hairpin DNA. The following steps were repeated 3 times. Step 1: writing with
the irradiation schedule shown in Fig. 6 (a), step 2: erasing by irradiating with
the laser beam of 5 mW for 10 seconds.

Figure 7 shows the fluorescence power measured after the individual steps.
The fluorescence power increases after step 1 and decreases after step 2. This is
an expected result. Note that efficiencies of writing and erasing indicate almost
the same values during 3 repetitions.

Control of DNA Molecules on a Microscopic Bead Using Optical Techniques 221

2 mW

Laser power

Time (sec)30 60
(a)

(b)

(c)

Before irradiation After irradiation

0

20

40

60

80

100

0 10 20 30

F
lu

or
es

ce
nc

e
in

te
ns

ity
 (

a.
u.

)

Before irradiation

Position (μm)

0

20

40

60

80

100

0 10 20 30

After irradiation

F
lu

or
es

ce
nc

e
in

te
ns

ity
 (

a.
u.

)

Position (μm)

Irradiated bead Irradiated bead

Fig. 6. Experimental results on writing data DNA on a bead. (a) Irradiation schedule,
(b) fluorescence images, and (c) cross sections along the line shown in (b).

222 Y. Ogura et al.

Number of operations

F
lu

or
es

ce
nc

e
po

w
er

 (
a.

u.
)

Step 1
Step 1 Step 1

Step 2 Step 2Step 2

0

0.2

0.4

0.6

0.8

1

0 2 4 6

Fig. 7. The experimental result of repetitions of writing and erasing operation on a
bead

4 Conclusions

We demonstrated that the operations of writing and erasing of data DNA on
beads with hairpin DNA can be controlled by laser irradiation. The method is
a fundamental technique for realizing the photonic DNA memory, which is a
memory based on the nature of DNA and optical techniques. The use of optical
techniques is effective to scale up the address space of a DNA memory because
it provides a method for addressing based on positional information of DNA.

For practical use, lots of beams are required for parallel operation. VCSEL
array sources are usable because, with the device, one can generate multiple laser
beams simultaneously and modulate them independently. Fortunately, much ef-
fort is being made to increase the pixel number of VCSEL arrays, and the VCSEL
arrays are expected to be applied to the photonic DNA memory. Future issues
include optimization of writing conditions, transfer of data DNA molecules be-
tween a substrate and a bead, and demonstration of DNA memory using multiple
kinds of data DNA.

Acknowledgments

This work was supported by JST CREST and the Ministry of Education, Science,
Sports, and Culture, Grant-in-Aid for Scientific Research (A), 15200023, 2003.

References

1. Chen, J., Deaton, R., Wang, Y.: A DNA-based memory with in vitro Learning and
associative recall. In: Chen, J., Reif, J. (eds.): DNA computing: 9th International
Workshop on DNA Based Computers, DNA 9. Lecture Notes in Computer Science,
Vol. 2943. Springer-Verlag, Berlin Heidelberg New York (2004) 145-156

Control of DNA Molecules on a Microscopic Bead Using Optical Techniques 223

2. Kameda, A., Yamamoto, M., Uejima, H., Hagiya, M., Sakamoto, K., Ohuchi, A.:
Conformational addressing using the hairpin structure of single-strand DNA. In:
Chen, J., Reif, J. (eds.): DNA computing: 9th International Workshop on DNA
Based Computers, DNA 9. Lecture Notes in Computer Science, Vol. 2943. Springer-
Verlag, Berlin Heidelberg New York (2004) 219-224

3. Takahashi, N., Kameda, A., Yamamoto, M., Ohuchi, A.: Aqueous computing with
DNA hairpin-based RAM. In: Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA
computing: 10th International Workshop on DNA Computing, DNA 10. Lecture
Notes in Computer Science, Vol. 3384. Springer-Verlag, Berlin Heidelberg New York
(2005) 355-364

4. Ogura, Y., Kawakami, T., Sumiyama, F., Suyama, A., Tanida, J.: Parallel trans-
lation of DNA clusters by VCSEL array trapping and temperature control with
laser illumination. In: Chen, J., Reif, J. (eds.): DNA computing: 9th International
Workshop on DNA Based Computers, DNA 9. Lecture Notes in Computer Science,
Vol. 2943. Springer-Verlag, Berlin Heidelberg New York (2004) 10-18

5. Ogura, Y., Sumiyama, F., Kawakami, T., Tanida, J.: Manipulation of DNA
molecules using optical techniques for optically assisted DNA computing. In Do-
bisz, E.A., Eldada, L.A. (eds.): Nanoengineering: Fabrication, Properties, Optics,
and Devices. Proceedings of SPIE, Vol. 5515. SPIE, Belligngham, WA (2004)
100-108

6. Tanida, J., Ichioka, Y.: Optical computing. In Brown, T.G., Creath, K., Kogelnik,
H. (eds.): The Optics Encyclopedia, Vol. 3, Wiley-VCH, Berlin (2003) 1883-1902

7. Takinoue, M., Suyama, A.: Molecular reactions for a molecular memory based on
hairpin DNA. Chem-Bio Infomatics Journal, 4 (2004) 93-100

Linearizer and Doubler: Two Mappings to Unify
Molecular Computing Models Based on DNA

Complementarity

Kaoru Onodera1 and Takashi Yokomori2

1 Mathematics Major, Graduate School of Education, Waseda University,
1-6-1 Nishiwaseda, Shinjyuku-ku, Tokyo 169-8050, Japan

kaoru@akane.waseda.jp
2 Department of Mathematics, Faculty of Education and Integrated Arts

and Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjyuku-ku,
Tokyo 169-8050, Japan
yokomori@waseda.jp

Abstract. Two specific mappings called doubler fd and linearizer f�

are introduced to bridge two domains of languages. That is, fd maps
string languages into (double-stranded) molecular languages, while f�

transforms in the other way around. Using these mappings, we give new
characterizations for the families of sticker languages and of Watson-
Crick languages, which leads to not only a unified view of the two families
of languages but also a clarified view of the computational capability of
the DNA complementarity. One of the results implies that any recursively
enumerable language can be expressed as the projective image of fd(L)
for a minimal linear language L.

1 Introduction

In the late 1990’s history of theoretical research on molecular computing models,
sticker systems have been proposed to model the behaviors of biomolecules with
sticky ends and to investigate the computational capability of those molecules
based on the biomolecular property of DNA complementary. On the other hand,
almost in parallel a new type of machine model called Watson-Crick automaton
was introduced and studied, which is taken as a finite state machine working
on double-stranded molecules (rather than linear strings). Similarly, a sticker
system was introduced as one of the generative systems by using the DNA com-
plementarity. The above two systems have a great deal of potential to provide
the promising models for DNA computings. One can find a huge amount of inter-
esting results on a variety of families of these systems and automata in, e.g., [3].

The present paper concerns a new approach to unifying a great variety of
these models of computation based on DNA complementarity. The purpose of
this paper is twofold : One is to explore the computational power of annealing
operations between complementary molecules in terms of notions in formal lan-
guage theory. The other is to clarify the current (chaotic) landscape of a variety
of existing computational models based on DNA complementarity, by providing
a unified view of those models.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 224–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 225

For our purpose, we introduce two specific mappings “doubler fd” and
“linearizer f�” that can bridge the two worlds of string languages and of double-
stranded molecular languages. Using these mappings, we will give new character-
izations for the families of sticker languages and of Watson-Crick languages. For
example, through the mapping fd, we show that the difference between sticker
systems and Watson-Crick automata is essentially reduced to the one between
minimal linear and regular grammars, respectively.

2 Preliminaries

We assume the reader to be familiar with the rudiments on Watson-Crick finite
automata and sticker systems as well as basic notions in formal language theory
(see, e.g., [3, 4]).

For an alphabet V , ρ ⊆ V ×V is a symmetric relation. We denote an element

(x1, x2) ∈ V ∗ × V ∗ by
(

x1
x2

)
. Instead of using a notation V ∗ × V ∗, we often

use
(

V ∗

V ∗

)
. For elements

(
x1
y1

)
,
(

x2
y2

)
∈
(

V ∗

V ∗

)
, by

(
x1
y1

)(
x2
y2

)
, we represent a

double stranded molecule (x1x2, y1y2) ∈ V ∗ × V ∗.

Let
[
V
V

]
ρ

= {
(

a
b

)
| a, b ∈ V, (a, b) ∈ ρ} and WKρ(V) =

[
V
V

]∗
ρ

(the set of

all complete double stranded molecules over V including
(

ε
ε

)
).

For an element
(

a1
b1

)(
a2
b2

)
· · ·

(
an

bn

)
∈ WKρ(V), we also write in the form[

w1
w2

]
, where w1 = a1a2 · · · an, w2 = b1b2 · · · bn.

We define a set of incomplete molecules over V : Wρ(V) = Lρ(V) ∪ Rρ(V) ∪
LRρ(V), where

Lρ(V) = { x1 y1
y2

,
y1

x2 y2
| x1, x2 ∈ V ∗,

[
y1
y2

]
∈
[
V
V

]∗
ρ

},

Rρ(V) = { y1 z1
y2

,
y1
y2 z2

| z1, z2 ∈ V ∗,

[
y1
y2

]
∈
[
V
V

]∗
ρ

},

LRρ(V) = { x1 y1 z1
y2

,
y1

x2 y2 z2
,
x1 y1

y2 z2
,

y1 z1
x2 y2

|

x1, x2, z1, z2 ∈ V ∗,

[
y1
y2

]
∈
[
V
V

]+

ρ

}.

Elements in Wρ(V) are called bricks.

[Sticker systems]
A sticker system is a 4-tuple γ = (V, ρ, A, D), where V is a finite set of symbols,
ρ ⊆ V × V is the complementary relation on V , A ⊆ LRρ(V) is a finite set of
axioms, and D is a finite set of elements in Wρ(V)×Wρ(V).

226 K. Onodera and T. Yokomori

For γ = (V, ρ, A, D) and α, β ∈Wρ(V), we write α
dπ=⇒γ β (or simply α =⇒ β)

if and only if β = uαv, for some dπ : (u, v) ∈ D. That is, for example, in a
graphical representation, it means

dπ :
(

u3 u2
ū2 u1

,
v2 v3

v1 v̄2

)
= (u, v) and

α = ū1 α1 v̄1
ᾱ1

dπ=⇒ u3 u2 ū1 α1 v̄1 v2 v3
ū2 u1 ᾱ1 v1 v̄2

= β,

where u1, u2, v1, v2 and ū1, ū2, v̄1, v̄2 are complementary, respectively.
For any other types of bricks for dπ in γ, we similarly define dπ=⇒γ . We denote

by =⇒∗ the reflexive and transitive closure of =⇒.
A set of molecules generated by γ called molecular language is defined by

LM(γ) = {w ∈ WKρ(V) | x1 =⇒∗ w, x1 ∈ A}.

Furthermore, a (string) language L(γ) generated by γ is a coding image of
LM(γ), i.e., the set of all upper components of the molecular language LM(γ).
The classes of molecular languages and of string languages generated by γ are
denoted by SLm and SL, respectively.

[Watson-Crick finite automata]
A Watson-Crick finite automaton (abb. WK-automaton) is defined by the tuple

M = (V, ρ, Q, q0, F, δ).

V is an (input) alphabet, Q is a finite set of states, V and Q are disjoint alphabets.
ρ ⊆ V × V is a symmetric relation. q0 is the initial state in Q. F ⊆ Q is the

set of final states. δ : Q ×
(

V ∗

V ∗

)
→ P(Q) is a transition mapping such that

δ(q,
(

x
y

)
) �= φ only for finitely many triples (s, x, y) ∈ Q×V ∗×V ∗, where P(Q)

is the set of all possible subsets of Q.

A transition in a WK-automaton can be defined as follows: For
(

x1
x2

)
,

(
u1
u2

)
,(

y1
y2

)
∈
(

V ∗

V ∗

)
with

[
x1u1y1
x2u2y2

]
∈ WKρ(V), and q1, q2 ∈ Q, we write

(
x1
x2

)
q1

(
u1
u2

)(
y1
y2

)
=⇒M

(
x1
x2

)(
u1
u2

)
q2

(
y1
y2

)

if and only if δ(q1,

(
u1
u2

)
) (q2. We denote by =⇒∗

M the reflexive and transitive

closure of the relation =⇒M . If there is no confusion, we use =⇒ instead of
=⇒M .

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 227

A molecular language and a (string) language over V recognized by M are
defined by

LM(M) = {
[
w1
w2

]
∈ WKρ(V) | q0

[
w1
w2

]
=⇒∗

M

[
w1
w2

]
qf , qf ∈ F}

and L(M) is the set of all upper components of the molecular language LM(M).
A WK-automaton M = (V, ρ, Q, q0, F, δ) is 1-limited if for any transition

δ(q1,

(
x1
x2

)
) (q2, |x1x2| = 1 holds.

Let WKm and 1WKm be the classes of molecular languages recognized by
WK-automata and 1-limited WK-automata, resp. Further, WK and 1WK de-
note their corresponding string language classes.

Theorem 1. ([3]) WKm = 1WKm (and WK = 1WK).

[External contextual grammars ([2])]
An external contextual grammar is a construct G = (V, A, C), where V is an
alphabet, A (⊆ V ∗) is a finite set of axioms, C is a finite set of elements in
V ∗ × V ∗. For α, β ∈ V ∗, we write α =⇒G β if β = uαv, for some (u, v) ∈ C.

An external contextual language generated by G is

L(G) = {w ∈ V ∗ | x1 =⇒∗
G w, x1 ∈ A}.

Let EC be the class of external contextual languages.

Theorem 2. ([2]) It holds that EC = MLIN (the class of minimal linear
languages).

[Twin-shuffle languages and their extensions]
Let V and V̄ = {ā | a ∈ V } be alphabets. A twin-shuffle language over V is
defined as

TS(V) =
⋃

x∈V ∗
x �⊥ x̄, where

x �⊥ y = {x1y1 · · · xnyn | x = x1 · · · xn, y = y1 · · · yn, n ≥ 1, 1 ≤ i ≤ n, xi, yi ∈ V ∗}.

Consider alphabets V , V̄ and V ′, where V ∩ V ′ = φ and V̄ ∩ V ′ = φ. We
define an extended twin-shuffle language over V and V ′ as follows :

ETS(V, V ′) = {x1y1 · · ·xnyn | n ≥ 1, for 1 ≤ i ≤ n, xi ∈ TS(V), yi ∈ V ′∗}.

3 Two Specific Mappings: Linearizer and Doubler

In order to materialize our goal of providing an unified view of WK-automata
and sticker systems, we newly introduce two specific mappings : one is a mapping

228 K. Onodera and T. Yokomori

that linearizes a given molecular language (consisting of elements in Wρ(V)) into
its coded form of string language, and the other is the one that, given a string
language, transforms into its double stranded version of molecular language.

[Linearizer mapping: f�]
In this paper, for an alphabet V let V̄ = {ā | a ∈ V }, and we assume that
ρ ⊆ V × V̄ is a complementary symmetric relation and for any a ∈ V , (a, ā) ∈ ρ
and ¯̄a = a. We first define a mapping f� to transform double strands into strings.

Let Σ = V ∪ V̄ , then we introduce new notations : for a ∈ Σ,
(

a
ε

)
= â,(

ε
a

)
= ǎ,

(
a
ā

)
= ã. Further, let Σ̂ = {â | a ∈ Σ}, Σ̌ = {ǎ | a ∈ Σ}, Σ̃ = {ã |

a ∈ Σ}. Now, we define the linearizer mapping f�:

f� : Wρ(V)∗ → (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗ ∪ (Σ̂ ∪ Σ̌)∗,

which transforms double strands over Σ to single strands over Σ̂ ∪ Σ̌ ∪ Σ̃.

For example, for double strands u =
u1 u2

ū2 u3
(resp. u =

u2 u3
u1 ū2

), our

intention is that f�(u) = û1ũ2ǔ3, (resp. f�(u) = ǔ1ũ2û3).

Formally, for a double strand
(

x1
x2

)[
y1
y2

](
z1
z2

)
, we define f�(

(
x1
x2

)[
y1
y2

](
z1
z2

)
) =

xỹ1z, where x =
{

x̂1 if x2 = ε,
x̌2 if x1 = ε,

z =
{

ẑ1 if z2 = ε,
ž2 if z1 = ε.

For a double strand
(

a
ε

)
= â with a ∈ V , a double strand

(
ε
ā

)
= ˇ̄a is comple-

mentary, in the sense that
(

a
ε

)(
ε
ā

)
=
(

a
ā

)
. Therefore, for â in Σ̂ and ǎ in Σ̌, we

consider a complementary relation defined by ψ as follows: ψ(â) = b̌, ψ(ǎ) = b̂,
where (a, b) ∈ ρ, i.e., b = ā. In Σ̂ and Σ̌, we consider this complementary relation
defined by ψ.

Thus, a twin-shuffle language TS(Σ̂) is defined as follows:

TS(Σ̂) =
⋃

x∈Σ̂∗

x �⊥ ψ(x).

[Doubler mapping: fd]
Conversely, we want to reconstruct a double strand from a string over Σ̂∪Σ̌∪Σ̃.

Consider a string y=y1ay2 ∈ (Σ̂∪Σ̌)∗ with length n. For an alphabet Σ̂, we
say that a symbol a is Σ̂-occurrence at position i of y with 1≤ i≤n if |y1|Σ̂ = i−1
and a is in Σ̂, where |x|V is the number of symbols in V in the string x.

Let y be a string in TS(Σ̂) with length 2m ≥ 2. Consider a complete double
strand of length m which satisfies the following conditions:

– if a ∈ Σ is the i-th symbol with 1 ≤ i ≤ m in the upper strand, then â is
Σ̂-occurrence at position i of y.

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 229

– if a ∈ Σ is the i-th symbol with 1 ≤ i ≤ m in the lower strand, then ǎ is
Σ̌-occurrence at position i of y.

fd(y) =
a1 · · · āi · · · am

ā1 · · · ai · · · ām
y = ˇ̄a1 â1 · · · ǎi · · · · · · ˆ̄ai · · · âm ˇ̄am

The double strand thus obtained is called the doubler of y and denoted by

fd(y). In particular, for ε we define fd(ε) =
[
ε
ε

]
. Note that for a string y /∈

TS(Σ̂), fd(y) is undefined. Then, fd(x) =
[

ε
ε

]
implies that x = ε.

For example, for strings âˆ̄bĉˇ̄ab̌ˇ̄c, âˇ̄aˆ̄bĉb̌ˇ̄c, ˇ̄aâˆ̄bb̌ˇ̄cĉ, in (Σ̂ ∪ Σ̌)∗,

fd(âˆ̄bĉˇ̄ab̌ˇ̄c) = fd(âˇ̄aˆ̄bĉb̌ˇ̄c) = fd(ˇ̄aâˆ̄bb̌ˇ̄cĉ) =
[

ab̄c
ābc̄

]
.

Lemma 1. For a string w in (Σ̂ ∪ Σ̌)∗, fd(w) is a complete double strand if
and only if w is in TS(Σ̂).

We now want to extend the mapping fd so as to apply to strings in ETS(Σ̂, Σ̃).
Let y = x1x2 · · ·x2n be a string in ETS(Σ̂, Σ̃), where n ≥ 1, and for 1 ≤ i ≤

n, x2i−1 ∈ TS(Σ̂), x2i ∈ Σ̃∗. Then, a doubler mapping fd is extended in the
following manner.

– For a string x2i = ũ2i in Σ̃∗, fd(x2i) is a complete double strand
[
u2i

ū2i

]
.

– For a string x2i−1 in TS(Σ̂), fd(x2i−1) is the same one as already defined.

In a graphical representation, this means the following :

fd(y) = fd(x1)fd(ũ2) · · · fd(x2n−1)fd(ũ2n) = fd(x1)
u2

ū2
· · · fd(x2n−1)

u2n

ū2n

Note that for a string y /∈ ETS(Σ̂, Σ̃), fd(y) is undefined.
For example, for strings âˆ̄bˇ̄ab̌c̃d̂ď, âˇ̄aˆ̄bĉb̌ˇ̄cd̃, ã˜̄bc̃d̃ in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗,

fd(âˆ̄bˇ̄ab̌c̃d̂ď) = fd(âˇ̄aˆ̄bĉb̌ˇ̄cd̃) = fd(ã˜̄bc̃d̃) =
[
ab̄cd
ābc̄d̄

]
.

Note 1. fd is different from �p (in [5]) in that �p has no Σ̃ for its alphabet, and
fd has more flexibility of y than �p to build up a double strand fd(y).

Lemma 2. For a string w in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗, fd(w) is a complete double strand
if and only if w is in ETS(Σ̂, Σ̃).

4 Characterization Results in Terms of Doubler

In this section, by using the doubler mapping fd, we characterize languages rec-
ognized by a Watson-Crick finite automaton and generated by a sticker system.

230 K. Onodera and T. Yokomori

4.1 WK Molecular Languages Are fd(Regular Languages)

Lemma 3. For a Watson-Crick finite automaton MW , there exists a finite au-
tomaton M such that LM(MW) = fd(L(M)) = {fd(w) | w ∈ L(M)}.
Proof. We may consider a 1-limited WK-automaton MW = (Σ, ρ, Q, q0,F, δW).
Then, construct a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ) derived from MW

as follows: For δW (qi, x) (qj in MW , construct δ(qi, f�(x)) (qj in M .

It suffices to show that
[
z1
z2

]
is in LM(MW) if and only if there exists a string

w ∈ L(M) such that fd(w) =
[
z1
z2

]
.

Assume that
[
z1
z2

]
is in LM(MW) and there exists a transition,(

u1 · · ·ui

v1 · · · vi

)
qi

(
ui+1
vi+1

)(
ui+2 · · ·un

vi+2 · · · vn

)
=⇒MW

(
u1 · · ·ui

v1 · · · vi

)(
ui+1
vi+1

)
qi+1

(
ui+2 · · ·un

vi+2 · · · vn

)
,

where n ≥ 1,
[
u1 · · ·un

v1 · · · vn

]
=

[
z1
z2

]
, 0 ≤ i ≤ n, and

(
uj

vj

)
∈
(

Σ
ε

)
∪
(

ε
Σ

)
, for

1 ≤ j ≤ n, and qn ∈ F .
From the way of constructing δ, for each 0 ≤ i ≤ n, there exists a transition

δ(qi, bi+1) (qi+1 in M , where bi+1 = f�(
(

ui+1
vi+1

)
). Then, there exists a transition

δ(q0, b1 · · · bn) (qn in M .

Since
[
z1
z2

]
is the complete double strand, the i-th symbol in the upper strand

and the i-th symbol in the lower strand are complementary. Therefore, for the
string w = b1 · · · bn, Σ̂-occurrence at position i of w and Σ̌-occurrence at position
i of w are complementary. Then, it holds that b1 · · · bn ∈ û1 · · · ûn �⊥ v̌1 · · · v̌n,

which leads to that fd(b1 · · · bn) =
[
z1
z2

]
.

Conversely, assume that a string w is in L(M) such that fd(w) =
[
z1
z2

]
.

Let w = b1 · · · b2n, where n ≥ 1, for 1 ≤ i ≤ 2n, bi ∈ Σ̂∪Σ̌, then from Lemma
1, w is in TS(Σ̂). Let w ∈ û1 · · · ûn �⊥ v̌1 · · · v̌n.

There exists a transition δ(q0, b1 · · · b2n) (q2n with q2n ∈ F . From the way of
constructing δ, for a transition δ(qi, bi+1) (qi+1 in M , there exists a transition
δW (qi, b

′
i+1) (qi+1, where 0 ≤ i ≤ 2n− 1, bi+1 = f�(b′i+1).

Then, there exists a transition in MW , q0

(
u1 · · ·un

v1 · · · vn

)
=⇒∗

MW

(
u1 · · ·un

v1 · · · vn

)
qf ,

where qf is in F . Since w is in TS(Σ̂), for each 1 ≤ i ≤ n, ui and vi are

complementary, which means that
[
u1 · · ·un

v1 · · · vn

]
∈ WKρ(V). ��

Lemma 4. For a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ), there ex-
ists a Watson-Crick finite automaton MW = (Σ, ρ, Q, q0, F, δW) such that
LM(MW) = fd(L(M)) = {fd(w) | w ∈ L(M)}.

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 231

Proof (sketch). For a finite automaton M = (Σ̂ ∪ Σ̌, Q, q0, F, δ), construct a
WK-automaton MW = (Σ, ρ, Q, q0, F, δW) as follows:

For a transition δ(qi, â) (qj in M , construct δW (qi,

(
a
ε

)
) (qj in MW .

For a transition δ(qi, ǎ) (qj in M , construct δW (qi,

(
ε
a

)
) (qj in MW .

It suffices to show that a complete double strand
[
z1
z2

]
is in LM(MW) if

and only if there exists a string w ∈ L(M) such that fd(w) =
[
z1
z2

]
, which is

proved in a manner similar to the above lemma. Thus, we can prove the equation
LM(MW) = {fd(w) | w ∈ L(M)}. ��

From Lemmas 3 and 4, we have the following theorem.

Theorem 3. A molecular language L is in WKm if and only if there exists a
regular language R such that L = fd(R).

4.2 Sticker Molecular Languages Are fd(Minimal Linear Languages)

We slightly extend fd to f ′
d as follows : For w = xyz in (Σ̂ ∪ Σ̌ ∪ Σ̃)∗ such that

only fd(y) is well-defined and x, z are in Σ̂∗ ∪ Σ̌∗, define f ′
d(w) = x′fd(y)z′,

where x′ (z′) represents that x (z) forms an “upper stand” if x (z) is in Σ̂∗ or
“lower one” otherwise.

Lemma 5. For a sticker system γW , there exists an external contextual gram-
mar G such that LM(γW) = fd(L(G)) = {fd(w) | w ∈ L(G)}.

Proof. For a sticker system γW = (Σ, ρ, AW , DW), we define an external con-
textual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C) derived from γW as follows:

For (u, v) in DW , construct (f�(u), f�(v)) in C. Let A = {f�(α) | α ∈ AW }.

It suffices to show that for any α′ =
(

α′
1

α′
2

)
in LRρ(Σ), there exists a com-

putation
(

α′
1

α′
2

)
=⇒n

γW

[
z1
z2

]
if and only if there exists a computation α′′ =⇒n

G z,

where f ′
d(α

′′) = α′ and fd(z) =
[
z1
z2

]
.

We will prove this by the induction on n.
Base step : (n = 0) It trivially holds. Induction step : There exists a computation

α′
1

α′
2

=⇒γW

u
u′

α′
1

α′
2

v
v′ =⇒n

γW

z1

z2

iff (by inductive hypothesis and the way of constructing C) there uniquely exist

(f�(
(

u
u′

)
), f�(

(
v
v′

)
)) in C such that

232 K. Onodera and T. Yokomori

f�(α′) =⇒G f�(
(

u
u′

)
)f�(α′)f�(

(
v
v′

)
) = w and w =⇒n

G z,

where f ′
d(w) =

(
u
u′

)(
α′

1
α′

2

)(
v
v′

)
and fd(z) =

[
z1
z2

]
iff there exists

f�(α′) =⇒G f�(
(

u
u′

)
)f�(α′)f�(

(
v
v′

)
) =⇒n

G z, and fd(z) =
[
z1
z2

]
.

Considering α′ = α ∈ AW , we have that

α=⇒n
γW

[
z1
z2

]
if and only if f�(α) =⇒n

G z, where fd(z) =
[
z1
z2

]
. ��

An external contextual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C) is said to be restricted
if (1) for any (u, v) in C, u and v are in (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗ ∪ (Σ̂ ∪ Σ̌)∗,
and (2) A ⊂ (Σ̂ ∪ Σ̌)∗ Σ̃+ (Σ̂ ∪ Σ̌)∗.

Let r-EC be the class of languages generated by restricted external contextual
grammars.

Lemma 6. For a given restricted external contextual grammar G = (Σ̂ ∪ Σ̌ ∪
Σ̃, A, C), there exists a sticker system γW = (Σ, ρ, AW , DW) such that LM(γW)
= {fd(w) | w ∈ L(G)}.

Proof (sketch). For a given G above, we construct a sticker system γW = (Σ, ρ,
AW , DW) as follows : For (x, y) in C, construct (f ′

d(x), f ′
d(y)) in DW . Let AW =

{f ′
d(α) | α ∈ A}.

We can prove that
[
z1
z2

]
is in LM(γW) if and only if there exists a string

w ∈ L(G) such that fd(w) =
[
z1
z2

]
, in a manner similar to the above lemma,

which implies the equation LM(γW) = {fd(w) | w ∈ L(G)}. ��

From Lemmas 5 and 6, we have the following theorem.

Theorem 4. A molecular language L is in SLm if and only if there exists an
external contextual language R in r-EC such that L = fd(R).

4.3 Characterizing Recursively Enumerable Languages by fd

Based on the doubler mapping fd and a projection, we first introduce a mapping
fpr. For the projection prT : V ∗

2 → T ∗, we define fpr : (Σ̂ ∪ Σ̌ ∪ Σ̃)∗ → T ∗

as follows: fpr(w) = prT (x), where fd(w) =
[

x
x′

]
for some x′ ∈ Σ∗. Then,

using the class EC and fpr, we have the following characterization of recursively
enumerable languages.

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 233

Theorem 5. For a recursively enumerable language L, there exists an external
contextual grammar G such that fpr(L(G)) = L.

Proof. It is well known that for any recursively enumerable language L ⊆ T ∗,
there exist two ε-free morphisms h1, h2, a regular language R, and a projection
prT such that L = prT (h1(EQ(h1, h2))∩R). Let M = (Q, Γ2, δ, q0, F) be a finite
automaton such that L(M) = R. Let h1, h2 : V ∗

1 → V ∗
2 .

We construct an external contextual grammar G = (Σ̂ ∪ Σ̌ ∪ Σ̃, A, C):

1. Let (wa, uava) be in C, where ua = b̂1 · · · b̂n, with h1(a) = b1 · · · bn,
va = ˇ̄c1 · · · ˇ̄cm, with h2(a) = c1 · · · cm,

for any q1 in Q, wa = q̂n+1#̃ˇ̄qn q̂n#̃ˇ̄qn−1 · · · q̂3#̃ˇ̄q2 q̂2#̃ˇ̄q1,
if δ(qi, bi) (qi+1 for each 1 ≤ i ≤ n, qn+1 /∈ F ,

wa = q̃n+1#̃ˇ̄qn q̂n#̃ˇ̄qn−1 · · · q̂3#̃ˇ̄q2 q̂2#̃ˇ̄q1,
if δ(qi, bi) (qi+1 for each 1 ≤ i ≤ n, qn+1 ∈ F .

The strings ua, va are used to check the equality for the homomorphisms h1

and h2. The string wa corresponds to the brick qn+1 #qn# · · · q3#q2#
#̄q̄n#̄q̄n−1 · · · #̄q̄2#̄ q̄1

which is used to check whether a string is in R = L(M).

2. Let Σ = ΓQ ∪ Γ2 ∪ Γ# for ΓQ = Q ∪ Q̄, Γ2 = V2 ∪ V̄2, Γ# = {#, #̄} and let
A = {q̂0#̃}.

We will show the equality fpr(L(G)) = L. Assume that w is in fpr(L(G)), then
there exists a string w′ in L(G) such that fpr(w′) = w. From the definition of C,
w′ = w1q̂0#̃w2, where w1 ∈ (Γ̂Q ∪ Γ̌Q ∪ {#̃})∗, w2 ∈ (Γ̂2 ∪ Γ̌2)∗. Since fpr(w′) is
defined, w′ is in ETS(Σ̂, Σ̃). Further, w1 ∈ ETS(Γ̂Q, Γ̃Q∪{#̃}), w2 ∈ TS(Γ̂2).
Then, there must exist a string z = a1 · · · am ∈ Γ ∗

1 which satisfies the following
two conditions : for h1(z) = b1 · · · bm′ with m′ ≥ 1,

– w1 = q̃m′#̃ˇ̄qm′−1 q̂m′−1#̃ˇ̄qm′−2 · · · q̂2#̃ˇ̄q1 q̂1#̃ˇ̄q0, where for 0 ≤ i ≤ m′ − 1,
δ(qi, bi+1) (qi+1, qm′ ∈ F . This implies that b1 · · · bm′ is in R.

– w2 ∈ b̂1 · · · b̂m′ �⊥ ˇ̄b1 · · · ˇ̄bm′ This implies that h1(z) = h2(z).

Therefore, b1 · · · bm′ is in h1(EQ(h1, h2))∩R, then from the definition of fpr,
fpr(w′) = prT (b1 · · · bm′) ∈ L.

Conversely, assume that w is in L. Then, there exists a string z such that
z ∈ h1(EQ(h1, h2)), z ∈ R and prT (z) = w. Then, there exists a string z′ =
a1 · · · am such that z′ ∈ EQ(h1, h2) and h1(z′) = h1(a1) · · ·h1(am) = b1 · · · bm′ =
h2(a1) · · ·h2(am) for m′ ≥ 1.

For z′, there exists a derivation q̂0#̃ =⇒∗
G w1q̂0#̃w2 in G such that w2 =

ĥ1(a1)ȟ2(a1) · · · ĥ1(am)ȟ2(am), where ĥ1(ai) = b̂i1 · · · b̂ik for h1(ai) = bi1 · · · bik,
ȟ2(ai) = ˇ̄ci1 · · · ˇ̄ci� for h2(ai) = ci1 · · · ci�. Then, w2 ∈ b̂1 · · · b̂m′ �⊥ ˇ̄b1 · · · ˇ̄bm′ .

At the same time, since δ(q0, z) (qf with qf ∈ F , from the way of constructing
C, w1 = q̃m′#̃ˇ̄qm′−1 q̂m′−1#̃ˇ̄qm′−2 · · · q̂2#̃ˇ̄q1 q̂1#̃ˇ̄q0, where for 0 ≤ i ≤ m′ − 1,
δ(qi, bi+1) (qi+1, qm′ ∈ F . Therefore, w1q̂0#̃w2 is in ETS(Σ̂, Σ̃). Then, from
the definition of fpr, we have fpr(w1q̂0#̃w2) = w. ��

234 K. Onodera and T. Yokomori

4.4 WK Molecular Languages Are Proj(Sticker Molecular
Languages)

Let us define a double-strand projection (abb. d-projection) d-pr on double

strands as follows : For z in
[
V1∪V2
V1∪V2

]
, d-pr(z)=z if z is in

[
V1
V1

]
and d-pr(z)=

[
ε
ε

]
otherwise.

Lemma 7. For any Watson-Crick finite automaton M , there exists a sticker
system γ such that LM(M) = d-pr(LM(γ)).

Proof. (sketch) From Theorem 1, we may consider a 1-limited WK-
automaton M = (Σ, ρ, Q, q0, F, δ). Based on M , construct a sticker system
γ = (Σ∪ΓQ∪Γ#, ρQ, A, D) as follows : ΓQ = Q∪ Q̄, Γ# = {#, #̄}. For a transi-

tion δ(qi,

(
x1
x2

)
)(qj in M with qj /∈ F , construct (

(
qj

ε

)[
#
#̄

](
ε
q̄i

)
,

(
x1
x2

)
) in D.

For a transition δ(qi,

(
x1
x2

)
) (qf with qf ∈ F , construct (

[
qf

q̄f

][
#
#̄

](
ε
q̄i

)
,

(
x1
x2

)
)

in D. Finally, let A = {
(

q0 #
ε #̄

)
}. Consider a d-projection d-pr on the alphabet[

Σ
Σ̄

]
. From the way of constructing γ, by the induction on the length of a

computation, we can prove that for qf ∈ F , q0

(
w1
w2

)
=⇒∗

M

(
w1
w2

)
qf if and

only if there exists a computation
(

q0 #
ε #̄

)
=⇒∗

γ

[
qf

q̄f

][
z1
z2

][
#
#̄

](
w1
w2

)
, where[

z1
z2

]
∈
[
#Q
#̄Q̄

]+

. Finally, from the definition of d-pr, it holds that a complete

double strand
[
w1
w2

]
is in LM(M) if and only if there exists a complete double

strand
[
qf

q̄f

][
z1
z2

][
#
#̄

][
w1
w2

]
∈LM(γ) such that d-pr(

[
qf

q̄f

][
z1
z2

][
#
#̄

][
w1
w2

]
)=

[
w1
w2

]
. ��

Fig. 1. Landscape of Double-Decker Families of Languages

Linearizer and Doubler: Two Mappings to Unify Molecular Computing Models 235

5 Conclusion

By introducing two specific mappings called “doubler fd” and “linearizer f�”,
we have given new characterization results for the families of sticker languages
and of Watson-Crick languages which lead to not only an unified view of the
two families of languages but also a clarified view of the computational capabil-
ity of the DNA complementarity. From Theorems 1 and 5, we have the result
RE = fpr(MLIN), which seems shed some new insights into computations in
comparison to the existing ones such as RE = dgsm(SL) or RE = coding(WK)
(in [3]).

Acknowledgements

This work is supported in part by Grant-in-Aid for Scientific Research on Pri-
ority Area no.14085205, Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

1. Hoogeboom, H.J. and Vugt, N.V. : Fair sticker languages, Acta Informatica, 37,
213–225 (2000).

2. Păun, Gh. : Marcus contextual grammar. Kluwer Academic Publishers (1997).
3. Păun, Gh., Rozenberg, G. and Salomaa, A. : DNA Computing. New Computing

Paradigms., Springer (1998).
4. Rozenberg, G. and Salomaa, A. (Eds.) : Handbook of Formal Languages, Springer

(1997).
5. Salomaa, A. : Turing, Watson-Crick and Lindenmayer : Aspects of DNA Comple-

mentarity, In Unconventional Models of Computation, Auckland, Springer, 94–107
(1998).

6. Sakakibara, Y. and Kobayashi, S. : Sticker systems with complex structures. Soft
Computing, 5, 114–120 (2001).

7. Vliet, R. van, Hoogeboon, H.J. and Rozenberg, G. : Combinatorial Aspects of Mini-
mal DNA Expressions, Pre-proc. In Tenth International Meeting on DNA Comput-
ing, Univ. of Milano-Bicocca, Italy, 84–96 (2004).

Analysis and Simulation of Dynamics
in Probabilistic P Systems�

Dario Pescini1, Daniela Besozzi2,
Claudio Zandron1, and Giancarlo Mauri1

1 Università degli Studi di Milano-Bicocca,
Dipartimento di Informatica, Sistemistica e Comunicazione,

Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
{pescini, zandron, mauri}@disco.unimib.it

2 Università degli Studi di Milano,
Dipartimento di Informatica e Comunicazione,

Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

Abstract. We introduce dynamical probabilistic P systems, a variant
where probabilities associated to the rules change during the evolution
of the system, as a new approach to the analysis and simulation of the
behavior of complex systems. We define the notions for the analysis of
the dynamics of these systems and we show an application for the in-
vestigation of the properties of the Brusselator (a simple scheme for the
Belousov-Zhabothinskii reaction).

1 Introduction

P systems [8] are a class of distributed and parallel computing devices, inspired
by the structure and the functioning of cells. The basic model consists of a cell-
like membrane structure, composed by several compartments where multisets
of objects evolve according to given rules, in a nondeterministic and maximally
parallel manner. A computation device is obtained starting from an initial con-
figuration and letting the system evolve. In the following, we assume that the
reader is familiar with the basic notions and the terminology underlying P sys-
tems. We refer, for details, to [9]. Updated information about P systems can be
found at http://psystems.disco.unimib.it/.

Many research studies around P systems concentrates on computational power
aspects. In this paper, we propose a new approach for the investigation and the
application of P systems, which consists in interpreting them as tools for the
description and the analysis of the dynamical behavior of complex systems. A
similar approach is considered also in [3,10,12], where different methods are
used to investigate several biological and chemical processes, among which one
can find the Belousov-Zhabothinskii reaction. As said, membrane systems are
inspired from the functioning of the cell, hence it is natural to consider them for
� Work supported by the Italian Ministry of University (MIUR), under project PRIN-

04 “Systems Biology: modellazione, linguaggi e analisi (SYBILLA)”.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 236–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Analysis and Simulation of Dynamics in Probabilistic P Systems 237

modelling different cellular processes and natural living systems, with the final
goal of producing new tools and acquiring useful information for the scientists
(mainly, biologists) working on the modelled system. Some first steps in this
direction have already been made, see [4] for various applications.

Since we are interested in describing the evolution of a complex system, and
since changes of many different conditions can have direct influence on the reac-
tion parameters and behavior, the basic non-deterministic model of P systems
is not suitable to describe these kind of processes. Indeed, many efforts have
been recently done to introduce the notion of probability in P systems. The first
definition of a probabilistic P system appeared in [7], where probabilities are
assigned to evolution rules, an initial probability distribution is defined in each
region, and vectors related to each rule specify which rules can be applied at the
next step. Though, two assumptions are made which seem quite unnatural from
a biological point of view: priority relations among rules are used and, above all,
probability values are initially assigned and never change during a computation,
which corresponds to a static nature of the system. In [6] some more proposals
for approaching probabilistic P systems are suggested: priority relations are no
more formally considered, though they are implicitly included in computations,
since one does not consider a stochastic application of rules. Lately, P systems
with probabilistic rules have been also applied for the investigation of cellular
phenomena and structures, such as respiration and photosynthesis processes in
[2], mechanosensitive channels in [1].

In order to overcome the limitations outlined above, we propose a new version
of probabilistic P systems, where probability values are dynamically assigned
to evolution rules, according to the form of the current multiset. Moreover,
the application of rules is stochastic (we will talk about evolution instead of
computation).

The paper is structured as follows. In Section 2 we give the formal definition of
dynamical probabilistic P systems, in Section 3 we introduce some notions which
will then be used to analyze, via software tools, the behavior of such systems. In
Section 4 we show an application to the Brusselator, a well known and simplified
theoretical scheme which describes the Belousov-Zhabotinskii reaction (BZ, in
short). Finally, in Section 5 we present the conclusion and give some perspective
for future work.

2 Dynamical Probabilistic P Systems

In this section we give the definition of a probabilistic P system, where the
probabilities associated to the rules vary during the evolution of the system. The
method for evaluating probabilities and the way the system works are explained
in details. Then, we extend the definition to consider families of P systems of this
type, whose members differ among each other for the choice of some parameters,
but not for the main structure.

We assume the reader to be familiar with the basic notions and notations of
P systems [9]. Some prerequisites about multisets are here recalled.

238 D. Pescini et al.

Let V be an alphabet, we denote by V ∗ the set of all strings over V , by λ the
empty string, and by V + = V ∗\{λ} the set of non-empty strings. A multiset over
V is a map M : V → N, where M(a) is the multiplicity of any symbol a ∈ V ,
N is the set of natural numbers. A multiset M over V = {a1, . . . , al} can be
explicitly represented by the string x = a

M(a1)
1 a

M(a2)
2 . . . a

M(al)
l , for all ai ∈ V

such that M(ai) �= 0, and by all its possible permutations. By interpreting a
multiset in the corresponding form of a string x, we can denote by |x| its length
and by |x|a the number of occurrences of a symbol a in x. The set of symbols
from V occurring in x is denoted by alph(x). Moreover, to every string x ∈ V ∗

we can associate the Parikh vector ΨV (x) = (|x|a1 , |x|a2 , . . . , |x|al
).

Definition 1. A dynamical probabilistic P system (DPP, in short) of degree n
is a construct Π = (V, O, μ, M0, . . . , Mn−1, R0, . . . , Rn−1, E, I) where:

– V is the alphabet of the system, O ⊆ V is the set of analyzed symbols ;
– μ is a membrane structure consisting of n membranes labelled with the

numbers 0, . . . , n− 1. The skin membrane is labelled with 0;
– Mi, i = 0, . . . , n−1, is the multiset over V initially present inside membrane i;
– Ri, i = 0, . . . , n − 1, is a finite set of evolution rules associated with mem-

brane i. An evolution rule is of the form r : u
k−→ v, where u is a multiset

over V , v is a string over V × ({here, out} ∪ {inj | 1 ≤ j ≤ n − 1}) and
k ∈ R

+ is a constant associated to the rule;
– E = {VE , ME, RE} is called the environment, it consists of an alphabet

VE ⊆ V , a feeding multiset ME over VE and a finite set of feeding rules RE

of the type r : u→ (v, in0), for u, v multisets over VE ;
– I ⊆ {0, . . . , n − 1} ∪ {∞} is the set of labels of the analyzed regions (the

label ∞ corresponds to the environment).

The alphabet O and the set I specify which symbols and regions (environment
included) are of peculiar importance in Π , namely those elements whose evolu-
tion will be actually analyzed and simulated.

Definition 2. Let Π be a DPP. We call the parameters of Π the set P consisting
of: (1) the multisets M0, . . . , Mn−1, ME initially present in μ and in E, (2) the
constants associated to all rules in R0, . . . , Rn−1.

Note that the alphabets V, O, VE , the membrane structure μ, the form of the
rules in R0, . . . , Rn−1, RE and the set I of analyzed regions do not belong to
the set of parameters of Π . We call these components the main structure of Π .
We can now extend Definition 1 and consider a family of DPPs, where the main
structure is equal for all members of the family, while the parameters can change
from member to member.

Definition 3. A family of DPPs is defined as F = {(Π,Pi) | Π is a DPP and
Pi is the set of parameters of Π, i ≥ 1}.

Hence, given any two elements (Π,P1), (Π,P2) ∈ F , it holds P1 �= P2 for the
choice of (all or some) values in P1 and P2. For instance, one can choose to

Analysis and Simulation of Dynamics in Probabilistic P Systems 239

analyze the same DPP with some different settings of initial conditions, such
as different initial multisets and/or different rule constants (this can be useful
when not all of them are previously known) and/or different feeding multisets.

In the following, we will talk about the evolution, not computation, of a DPP,
since we are not interested in generating languages but in simulating biological
or chemical systems. The family F describes a general model of the biological
or chemical system of interest and, for any choice of the parameters, we can
investigate the evolution of the corresponding fixed DPP.

A fixed initial configuration of Π depends on the choice of P , hence it con-
sists of the multisets initially present inside the membrane structure, the chosen
rule constants and the feeding multiset, which is given as an input to the skin
membrane from the environment at each step of the evolution by applying the
feeding rules. Different strategies in the feeding process can be used: for instance,
one can use the feeding rules to keep at a constant value the concentrations of
chemicals involved in a certain reaction (see Section 4 for an application of this
strategy to the BZ), or to increase the concentrations of substances mimicking
the biological transport from the extracellular space. We assume that, as long
as the system evolves, the environment contains as many symbols as they are
needed to continuously feed the system.

At each step of the evolution, all applicable rules are simultaneously applied
and all occurrences of the left-hand sides of the rules are consumed, hence the
parallelism is maximal at both levels of objects and of rules. For simplicity, in this
paper we assume that the system evolves according to a universal clock, that is,
all membranes and the application of all rules are synchronized. The applied rules
are chosen according to the probability values dynamically assigned to them;
the rules with the highest normalized probability value will be more frequently
tossed. In simulations, the tossing process is obtained by means of a random
number generator, as described below. If some rules compete for objects and
have the same probability values, then objects are nondeterministically assigned
to those rules.

The probability associated to each rule in any set Ri, i = 0, . . . , n − 1, is a
function of its constant and of the current multiset occurring in membrane i,
and it is evaluated as follows. Let V = {a1, . . . , al}, Mi be the multiset inside
membrane i, r : u

k−→ v a rule in Ri; let u = aα1
1 . . . aαs

s , alph(u) = {a1, . . . , as}
and H = {1, . . . , s}. To obtain the actual normalized probability pi of applying r
with respect to all other rules that are applicable in membrane i at the same step,
we need to evaluate the non-normalized probability p̃i(r) of r, which depends on
the constant associated to r and on the left-hand side of r, namely:

p̃i(r) =

⎧⎪⎪⎨⎪⎪⎩
0 if Mi(ah) < αh for some h ∈ H

k ·
∏
h∈H

Mi(ah)!
αh!(Mi(ah)− αh)!

if Mi(ah) ≥ αh for all h ∈ H
(1)

240 D. Pescini et al.

that is, whenever the current multiset inside membrane i contains all occur-
rences of all symbols appearing in the left-hand side of rule r (second case in
Equation (1)), then p̃i(r) is dynamically defined according to the current mul-
tiset inside membrane i: we choose αh copies of each symbol ah among all its
Mi(ah) copies currently available in the membrane itself. In other words, we
consider all possible distinct combinations of the symbols appearing in alph(u).
Thus, p̃i(r) corresponds to the probability of having a collision among reactant
objects, which are considered undistinguishable.

If Ri = {r1, . . . , rm}, the normalized probability of any rule rj is

pi(rj) =
p̃i(rj)∑m

j=1 p̃i(rj)
. (2)

In the simulations, the parallel application of the rules is done by splitting one
parallel step into several sequential sub-steps. It is possible to separate each single
parallel step into two stages, exploiting the fact that the probability distribution
and the applicability of the rules are functions only of the left-hand side of the
rules and their constants. In the first stage objects are assigned to rules by means
of a random number generator, while in the second one the multiset is updated
using a stored trace of the rules previously tossed. It should be pointed out
that, during the first stage, the probability distribution of the rules has to be
kept constant, otherwise the application of the rules would become sequential.
A detailed description of he simulation algorithm will appear elsewhere.

Remark 1. A different probability distribution over rules could be obtained by
using the classical rate law of Chemistry, though the approach used in Equation
(1) is more accurate from the combinatorial point of view (see also [5], where a
similar approach is considered). Indeed, at high concentrations (multiplicities)
the two approaches are undistinguishable, but at lower ones our choice is prefer-
able since it accounts for the exact number of all possible tuples of evolving
objects.

3 Analysis of the Dynamics in DPP

In this section we introduce some notions that will be used for the analysis
of the behavior of a DPP via software tools, whose complete description and
functioning will appear in a forthcoming paper. The final goal is to introduce
an appropriate definition of the phase space, thus creating a bridge between P
systems and well known tools from the Physics of dynamical systems. Usually,
the evolution of a physical system is completely determined by means of the
motion equations, a set of differential equations inferred by the system properties.
In the case of P systems this role should be accomplished by the evolution rules,
which create a one-to-one mapping between the application of each rule and the
relative displacement of the system in the phase space.

First of all, to keep trace of the system evolution we extend the definition of
the alphabet V = {a1, . . . , al} of Π by introducing the parameter time, that is,
we define the space Ṽ := V × N = V × {time}.

Analysis and Simulation of Dynamics in Probabilistic P Systems 241

Definition 4. Let M = {aα1
1 . . . aαl

l } be a multiset over V , where αi ≥ 0 for all
h = 1, . . . , l. We call a t-multiset the structure M = {aα1

1 , . . . , aαl

l , t} ∈ Ṽ .

By abuse of notation, we will denote both the multiset over V and the t-multiset
in Ṽ with the same symbol M , being it clear when one considers also the time
component or not. To represent a t-multiset in the space Ṽ we define its position
relatively to the t-multiset O = {0, . . . , 0} of Ṽ (the first l components of O are
the null multiplicities of the symbols from V). We need also to extend the notion
of Parikh vector to the space Ṽ as ΨV (M) = (α1, . . . , αl, t). This is necessary if
we want to distinguish among two multisets having the same total numbers of
symbols but different multiplicities for (at least) one symbol from V .

Definition 5. The position of a t-multiset M ∈ Ṽ is the vector
−→
M = ΨV (M).

The vector
−→
O = ΨV (O) is called the origin of Ṽ .

From Definition 5 it follows that the positions of t-multisets
−→
O and

−→
M are

vectors in the space N
l+1. The next step is to introduce a scalar product in

N
l, to naturally define the notion of distance between t-multisets, thus giving

the structure of an euclidean space to N
l. By convention, in the following we

will always denote the components of a generic position
−→
M i as the l + 1-tuple

(αi,1, αi,2, . . . , αi,l, ti).

Definition 6. Let
−→
M i,

−→
M j be two positions in N

l × N. The distance between
−→
M i,

−→
M j is a function d : N

l+1 × N
l+1 −→ R

+ defined as

d2(
−→
Mi,
−→
Mj) =

m∑
k=1

(αi,k − αj,k)2 . (3)

Note that the two positions
−→
M i,

−→
M j in Definition 6 need not to be necessarily one

the evolution of the other (that is, the multiset inside the same membrane taken
into different time steps). In fact, given a family F of DPP and two positions
−→
M i,

−→
M j , the following cases may hold: (i)

−→
M i,

−→
M j occur in distinct time steps,

in the same membrane of the same DPP with equal setting P ; (ii)
−→
M i,

−→
M j

occur in distinct or equal time steps, in different membranes of the same DPP
with equal setting P ; (iii)

−→
M i,

−→
M j occur in distinct or equal time steps, in the

same membrane of the same DPP with different settings P1, P2; (iv)
−→
M i,

−→
M j

occur in distinct or equal time steps, in different membranes of the same DPP
with different settings P1, P2. That is, we might be interested in looking at the
multiset occurring inside a membrane during its evolution, or comparing two
multisets of different membranes of the same DPP (in equal or different time
steps), or else two multisets inside the same (or even a different) membrane but
analyzed in two different evolutions of the family of the DPP. In each of the
four cases, the distance gives information about “how far” the states in the two
trajectories are (that is, the t-multisets in the two evolutions).

242 D. Pescini et al.

In particular, given any couple of positions
−→
M i,

−→
M j of the same DPP (for the

same or different set of fixed parameters P), we can say that they are simultane-
ous if they exist at the same time step. This concept can be useful mainly when
one considers a membrane structure with degree n > 1, where many multisets
are co-evolving.

Definition 7. Let
−→
M i,

−→
M j be two positions in N

l+1. The displacement between
−→
M i,

−→
M j is a function −→u : N

l+1 × N
l+1 −→ Z

l defined as

−→u (
−→
Mi,
−→
Mj) = (αi,1 − αj,1, . . . , αi,l − αj,l) . (4)

Note that the displacement can be either a positive or negative value, and it tells
how the system “moves”; in details, it tells how the multiplicities in the positions−→
M j differ from those in

−→
M i. Hence, it gives more information than the distance,

since it also considers the direction of the variation. Indeed, it is also possible
to construct the versor û : N

l+1 × N
l+1 −→ R

l of the displacement which only
gives the information about the direction of −→u :

û(
−→
Mi,
−→
Mj) =

(
αi,1 − αj,1

d(
−→
Mi,
−→
Mj)

, . . . ,
αi,l − αj,l

d(
−→
Mi,
−→
Mj)

)
. (5)

Note that −→u = û · d, by definition.
The last step before arriving to the definition of the phase space consists in

defining the velocity, which carries on the information about the time the dis-
placement between two t-multisets (in the same DPP, with equal initial settings)
needs to take place. That is, it tells how fast the evolution from one state of the
DPP to the other is.

Definition 8. Let
−→
Mi,
−→
Mj be two positions with ti �= tj occurring inside the

same membrane of a DPP (for a fixed choice of the parameters). The average
velocity between

−→
Mi,
−→
Mj is a function −→v : N

l+1 × N
l+1 −→ R

l defined as

−→v (
−→
Mi,
−→
Mj) =

(
αi,1 − αj,1

ti − tj
, . . . ,

αi,l − αj,l

ti − tj

)
. (6)

When ti−tj = 1, which is the minimal time increment allowed in P systems, then
the average velocity −→v (

−→
Mi,
−→
Mj) becomes the “instantaneous” velocity between

time steps tj and ti = tj + 1, that we denote by −→v (
−→
Mj). Note that if

−→
Mi is

the position evolved from
−→
Mj in the same membrane, then the instantaneous

velocity gives the variation of that multiset in a single time step.
We are now ready to define the phase space for a DPP, which is constructed

as the cartesian product of the phase spaces of all membranes in the DPP. Let−→
M i = (α1, . . . , αl, t) be the position of the t-multiset inside membrane i at time
t, and let −→v (

−→
M i) = (v1, . . . , vl) be its instantaneous velocity.

Definition 9. We call a phase point of
−→
M i the vector −→ϕt

i = (α1, . . . , αl, v1, . . . ,
vl) ∈ N

l × R
l, for any fixed t ∈ N.

Analysis and Simulation of Dynamics in Probabilistic P Systems 243

The phase point represents the state of membrane i at any given time t. The
evolution of the multiset in membrane i can be described by the phase curve,
which is a function −→ϕ i : N −→ N

l × R
l such that −→ϕ i(t) = −→ϕt

i.
The space Φi ⊆ N

l × R
l is the set of all the points −→ϕt

i corresponding to an
evolution of the multiset inside any membrane.

Definition 10. Let Π be a DPP of degree n, for some n ≥ 1. The space Φi ⊆
N

l × R
l is called the phase space of the membrane i, ΦE ⊆ N

l × R
l is the phase

space of the environment. The space ΦΠ = Φ0×· · ·×Φn−1×ΦE ⊆ (Nl×R
l)n+1

is called the phase space of the DPP.

Hence, the phase space of a DPP describes the evolution of the whole system,
with respect to both the change of all multisets and the passing of time. Actually,
in analyzing the behavior of a given DPP, we will be interested in considering only
the phase space restricted to the regions specified in the set I (see Definition 1).
Similarly, only the evolution of symbols from O will be analyzed for the multisets
present in the regions appearing in I.

4 Case Study: The Belousov-Zhabotinskii Reaction

The BZ chemical reaction is considered the prototype oscillator and exhibits an
extraordinary variety of temporal and spatial phenomena. Its oscillating behav-
ior is one of the most widely studied, both theoretically and experimentally, thus
making this reaction a suitable workbench for the capabilities of DPP. Its basic
mechanism consists in the oxidation of malonic acid, in acid medium, by bromate
ions and catalyzed by cerium, which has two states. The sustained periodic oscil-
lations are observed in the cerium ions. The Brusselator is a simplified theoretical
scheme introduced in [11] to explain the nonlinear oscillating behavior, and after
that was carefully studied in, e.g., [13]. Despite the fact that it is physically un-
realistic, as it involves a trimolecular state, it is recognized to be the skeleton for
the explanation of the oscillating behavior in chemical reactions. Moreover, it has
a very simple description: A

k1−→ X, B+X
k2−→ Y +D, 2X+Y

k3−→ 3X, X
k4−→ E.

In this section we describe the Brusselator in terms of DPP and we show
the analysis and some results obtained from the simulations. Indeed, in order
to describe a chemical or a biological system evolving over time, a kind of rule
able to react to the variation of occurrences of symbols (that is, concentra-
tions of substances) is needed. For this purpose, we believe that the dynam-
ical probabilistic rules are really suitable, so we consider the DPP defined as
ΠBZ = (V, O, μ, M0, R0, EBZ , 0) where

– V = {A, B, X, Y }, O = {X, Y };
– μ = [0]0;
– M0 = {Am1Bm2Xm3Y m4};
– R0 consists of the rules

244 D. Pescini et al.

r1 : A
k1−→ X

r2 : BX
k2−→ Y

r3 : XXY
k3−→ XXX

r4 : X
k4−→ λ

for some k1, . . . , k4 ∈ R
+;

– the environment EBZ is given by the alphabet {A,B}, the multiset MEBZ =
{An1 , Bn2}, for some n1, n2 ∈ N, and the feeding rules REBZ = {r5 : A −→
(A, in0), r6 : B −→ (B, in0)}.

Note that, with respect to the original equations in the Brusselator, we choose
not to consider the chemicals D and E since they are not relevant for the
system evolution. According to Definition 2, the set of parameters of ΠBZ is
PBZ = {m1, . . . , m4, k1, . . . , k4, n1, n2}. A family FBZ can be given by consider-
ing different values for the elements in PBZ .

 0

 500

 1000

 1500

 2000

 2500

 3000

0e0 1e2 2e2 3e2 4e2 5e2

m
ul

tip
lic

iti
es

t

a) X(t)
Y(t)

 0e+00

 5e+02

 1e+03

 2e+03

 2e+03

 2e+03

 3e+03

 4e+03

0e+00 5e+02 1e+03 2e+03 2e+03 2e+03 3e+03 4e+03 4e+03

Y

X

b) (X,Y)

0e0
2e2

4e2
6e2

8e2
1e3 0

 500
 1000

 1500
 2000

 2500
 3000

 3500

 0

 500

 1000

 1500

 2000

 2500

 3000

Y

c)
(X(t),Y(t))

t

X

Y

 0

 20

 40

 60

 80

 100

 120

0e0 2e-2 4e-2 6e-2 8e-2 1e-1 1e-1 1e-1 2e-1 2e-1 2e-1

|F
F

T
(m

)|
2

freq

d) X
Y

Fig. 1. Quasi-periodic cycle

The simulations based on the DPP approach have shown all the dynam-
ical behaviors which characterize the continuously stirred BZ (see for exam-
ple [3,5,13]); here we present the quasi periodic oscillations (in Figure 1, for
Pqp

BZ={100, 100, 1000, 2000, 50, 0.5, 5 · 10−5, 5, 100, 100}) and the attractor (in
Figure 2, for Patt

BZ = {100, 100, 1000, 2000, 1, 1, 1, 1, 100, 100}). A fading tran-
sition from one to the other is possible by tuning the parameters in PBZ . Since

Analysis and Simulation of Dynamics in Probabilistic P Systems 245

 0

 500

 1000

 1500

 2000

 2500

0e0 1e2 2e2 3e2 4e2 5e2

m
ul

tip
lic

iti
es

t

a) X(t)
Y(t)

 0e+00

 2e+02

 4e+02

 6e+02

 8e+02

 1e+03

 1e+03

 1e+03

 2e+03

 2e+03

 2e+03

4e+02 5e+02 6e+02 7e+02 8e+02 9e+02 1e+03

Y

X

b) (X,Y)

0e0
2e2

4e2
6e2

8e2
1e3 0

 500

 1000

 1500

 2000

 2500

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

Y

c)
(X(t),Y(t))

t

X

Y

 0.1

 1

 10

 100

 1000

0e0 5e-4 1e-3 2e-3 2e-3 2e-3 3e-3 4e-3 4e-3

|F
F

T
(m

)|
2

freq

d) X
Y

Fig. 2. Attractor

in the literature about the Brusselator the phase plane has been widely identified
with the X-Y plane, our attention is focused on the dynamic of these symbols. A
first characterization of the system dynamic can be obtained by looking directly
to the temporal evolution of the two variables: Fig.1.(a) and Fig.2.(a) allow to
discriminate the quasi periodic oscillation of the first case from the attracted
dynamic of the second one. Fig.1.(b) and Fig.2.(b) show the phase space of
membrane 0: in the first case we obtain a limit cycle, in the second case only the
initial multiset (point at right-up corner) and the attractor (point at left-bottom
corner) can be displayed. Fig.1.(c) and Fig.2.(c) show the evolution of multiplic-
ities of X and Y ; the projection on X − Y plane of these pictures obviously
correspond to Fig.1.(b), Fig.2.(b), respectively. Finally, Fig.1.(d) and Fig.2.(d)
show the spectra: in the first case, the spectrum shows the highest peak, corre-
sponding to the principal oscillation frequency, and some other harmonics, plus
the stochastic contribute which is spread all over the other frequencies; in the
second case (where the Y axis is in logarithmic scale), the spectrum corresponds
to a δ of Dirac centered in the 0 frequency (the height of δ is equal to the mean
value of the multiplicities of X and Y), since this is the Fourier transform of a
constant (in time) signal.

Remark 2. To make clear the definitions of Section 3, we give some examples by
extracting three t-multisets from the simulated evolution of (ΠBZ ,Pqp

BZ). Chosen
the t-multisets M39 = {100, 100, 1921, 1029, 39}, M40 = {100, 100, 2701, 262, 40},
M53 = {100, 100, 109, 1055, 53}, their positions are

−→
M39 = (100, 100, 1921, 1029,

246 D. Pescini et al.

39),
−→
M40 = (100, 100, 2701, 262, 40),

−→
M53 = (100, 100, 109, 1055, 53). The dis-

tance between M53 and M39 is d(
−→
M53,

−→
M39) = (0 + 0 + (−1812)2 + 262)1/2 ≈

1812.19, while the displacement is −→u (
−→
M53,

−→
M39) = (0, 0,−1812, 26). The ver-

sor associated to this displacement is û(
−→
M53,

−→
M39) = (0, 0,− 1812

1812.19 , 26
1812.19) ≈

(0, 0,−0.99, 0.0014), which says that the predominant direction of the motion
is along the X axes (that is, the highest variation occurs for the multiplici-
ties of the symbol X). The average velocity −→v (

−→
M53,

−→
M39) = (0, 0,− 1812

14 , 26
14) ≈

(0, 0,−129.43, 1.86) is quite different from the instantaneous one, which is
−→v (
−→
M39) = (0, 0, 780,−767) (evaluated between time steps 39 and 40).

5 Conclusions and Future Work

In this paper we introduced dynamical probabilistic P systems as a new ap-
proach for describing and analyzing complex biological or chemical processes.
We also sketched some novel definitions, such as timed-multisets, the position
and displacement of a multiset, the phase space of a P system, which are needed
for the investigations of dynamical properties of the system of interest.

In particular, we applied such system to the analysis of well-known Belousov-
Zhabotinskii reaction, showing that we can simulate the behavior of chemical
oscillator reactions. Indeed, the interaction of two or more oscillating systems
is of interest for many biological processes and systems, as it constitutes an
important factor to keep alive an organism or a complex system constituted by
several sub-components of different types.

The future work will consist in a further deep investigation of our model, both
from a theoretical and an experimental point of view, e.g., by considering also
non-synchronized evolutions, as well as in its use for the analysis of complex cel-
lular processes. For instance, we are currently applying dynamical probabilistic
P systems and the tools here introduced to the analysis of the role of protein
p53 in cell growth arrest and apoptosis.

References

1. I.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy, P system models for
mechanosensitive channels, in [4].

2. I.I. Ardelean, M. Cavaliere, Modelling biological processes by using a probabilistic
P system software, Natural Computing, 2 (2003), 173-197.

3. L. Bianco, F. Fontana, G. Franco, V. Manca, P systems for biological dynamics, in
[4].

4. G. Ciobanu, G. Păun, M.J. Pérez-Jiménez eds., Applications of Membrane Com-
puting, Springer–Verlag, Berlin, in press.

5. D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, Journ.
Phys. Chem., 81 (1977), 2340-2361.

6. A. Obtu�lowicz, G. Păun, (In search of) probabilistic P systems, BioSystems, 70
(2003), 107-121.

Analysis and Simulation of Dynamics in Probabilistic P Systems 247

7. M. Madhu, Probabilistic rewriting P systems, Int. J. Found. Comput. Sci., 14, 1
(2003), 157-166.

8. G. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108-143.

9. G. Păun, Membrane Computing. An introduction. Springer–Verlag, Berlin, 2002.
10. M.J. Pérez-Jiménez, F.J. Romero-Campero, Modelling EGFR signalling cascade

using continuous membrane systems, Pre-Proceedings of CMSB (G. Plotkin ed.),
Edinburgh, 3-5 April 2005, 118-129.

11. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II,
Journ. Chem. Phys., 48 (1968), 1695-1700.

12. Y. Suzuki, H. Tanaka, Abstract rewriting systems on multisets and their appli-
cation for modelling complex behaviours, Rovira i Virgili Univ. Tech. Rep. 26
(M. Cavaliere, C. Mart́ın-Vide, G. Păun, eds.), Brainstorming Week on Membrane
Computing, Tarragona 2003, 313-331.

13. J.J. Tyson, Some further studies of nonlinear oscillations in chemical systems,
Journ. Chem. Phys., 58 (1973), 3919-3930.

Experimental Validation of DNA Sequences for
DNA Computing: Use of a SYBR Green I Assay

Wendy K. Pogozelski1,�, Matthew P. Bernard1,��,
Salvatore F. Priore1,���, and Anthony J. Macula2,†

1 Department of Chemistry, SUNY Geneseo, Geneseo, NY 14454
pogozels@geneseo.edu

2 Department of Mathematics, SUNY Geneseo, Geneseo, NY 14454
macula@geneseo.edu

Abstract. In developing hybridization-based DNA computing meth-
ods, DNA codes must be created that behave as predicted; otherwise
computing errors can result. Here we describe the experimental valida-
tion of two DNA codes, each containing 16-nucleotide strands designed
to hybridize only with their complements and not with themselves or
with any other strands in the set. Code I was constructed simply to
restrict potential for cross-hybridized (CH) secondary structure. Code
II was constructed using the software SynDCode, incorporating nearest-
neighbor thermodynamics and generalizations of the Levenshtein edit
distance. Every combination of strands was tested for potential to mi-
spair, both in individual pairings and in pools. Since the strands are
designed to be linked together in a long bit string, we also tested end-to-
end junctions of Code II strands. Hybridization was examined by mea-
suring fluorescence as a function of temperature in the presence of SYBR
Green I, a dye whose fluorescence increases exponentially when bound to
double-stranded DNA. This method shows promise as a means for rapid
experimental validation of large numbers of sequences.

1 Introduction

The success of hybridization-based architectures for DNA computing depends on
the predictability of the behavior of the DNA. DNA strands must have far greater
affinity for their canonical Watson-Crick base-paired reverse complements than
for any other strand in the set. Sequences must be carefully designed to avoid
secondary structures such as loops (both symmetrical and non-symmetrical) and
to avoid misalignments, non-Watson-Crick base pairs and other mismatches.

� Partially supported by FA8750-04-2-0218, Air Force Research Laboratory, AFRL,
IFTC, Rome, NY and NSF- UBM 0436298.

�� Partially supported by FA8750-04-2-0218, AFRL, IFTC, Rome, NY and SUNY
Geneseo Foundation.

��� Partially supported supported by NSF-UBM 0436298 and SUNY Geneseo Foun-
dation.

† Partially supported by AFOSR F30602-03-C-0059 and NSF-UBM 0436298.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 248–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Experimental Validation of DNA Sequences for DNA Computing 249

Furthermore, DNA codes must be designed with the goal of finding a fixed
temperature that is well below the melting point of properly-paired duplexes
and well above the melting point of mispaired duplexes. Lastly, properly-paired
sequences in a code should have similar melting points.

The affinity of one DNA strand for another and the stability of the resultant
helix are dependent on several factors. The greatest contribution, according to
both mathematical models and empirical verification, is the vertical stacking
(mainly π−π interactions) of adjacent base pairs [1]. Therefore, the identities of
the nearest-neighbor bases are crucially important, as they determine the extent
of stacking [2]. The nearest-neighbor model has been extended for heteroduplex
stability to include parameters for the interactions that arise with mismatches
[3], [4] These models were used in designing a DNA code in which potential
mispairing was minimized.

Here we show how the reliability of these DNA strands can be validated
experimentally. We describe a method employing the dye SYBR Green I and
a Sequence Detection System, also known as a Real-time PCR thermalcycler.
This instrument contains a light source, various filters, a 96-well platform, a
programmable heating/cooling apparatus and a fluorescence detector capable of
monitoring SYBR Green absorption and emission. While there are some limita-
tions to this method, it is fast and suitable for testing large numbers of sequences.

SYBR Green I is a nonsymmetric positively-charged cyanine dye whose fluo-
rescence emission at 510–520 nm increases markedly in the presence of double-
stranded DNA. Recently, a structure was proposed for SYBR Green on the
basis of nuclear magnetic resonance and mass spectrometry experiments [5]. (See
Figure 1). The compound’s chemical name, which is proprietary, was reported
on the basis of these experiments to be to be [2-[N-(3-dimethylaminopropyl)
-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene] -
1 - phenyl -quinolinium.

In this study, we exploited SYBR Green’s binding and fluorescent properties
to distinguish between DNA strands likely to form mismatches, and strands with
suitably large preference for their reverse complements.

S

N

N

N

Fig. 1. Proposed structure of SYBR Green I

250 W.K. Pogozelski et al.

2 Methods

2.1 Creation of DNA Strands

We first created two codes (I and II) comprised of primary strands of length
16 and their Watson-Crick complements. Code I is actually a subset of a code
of 26 pairs constructed so that, apart from the 26 proper Watson-Crick pairs
(here referred to as WC pairs), no other pair of different or identical strands
would have a common subsequence of length greater than nine. In terms of the
well-known insertion-deletion distance (very similar to the sequence alignment
Levenshtein edit distance), each pair of crosshybridized strands (here referred
to as CH strands) requires at least 14 insertions and/or deletions to transform
one into the other. Because the code is closed under complementation, these
equivalent conditions imply that any mispaired duplex can have at most nine
complementary base pairings in any secondary structure without pseudoknots.
Code I was constructed simply to reduce crosshybridizations by severely restrict-
ing the potential for CH secondary structure. The only other enhancement to the
properties of Code I was the condition that the subword GGGG not appear in
any strand. The method did not use the state-of-the-art nearest-neighbor ther-
modynamic model for DNA hybridization. A subset of 13 pairs of this code was
tested simply as an initial study of our validation method. The advantage of
using this suboptimal code was that it gave us a few sequences that we knew
had very different melting temperatures and would probe the limits of our assay.

Code II is a subcode of a complemented DNA code constructed by the software
tool SynDCode containing 233 WC pairs. SynDCode incorporates the nearest-
neighbor thermodynamics and generalizations of the Levenshtein edit distance.
Specifics are described [6],[7].

1. Each WC duplex x : x has ΔGhyb between −16 kcal/mol and −20 kcal/mol.
2. GGG does not appear in any codeword.
3. Each CH duplex x : y has ΔGhyb greater than −10 kcal/mol.
4. Each CH duplex x : y has at most eight stacked pairs (2-stems) in any

secondary structure.
5. Each CH duplex x : y has at most four stacked triples (3-stems) in any

secondary structure. Moreover, if x is a codeword and z is the 16-mer in the
center (bases 9-24) of any junction strand (of which x is not a part), then
the same conditions 2-5 hold for the CH duplex x : z. This is if:
a. GGG does not appear in any junction strand.
b. Each CH duplex x : z has its ΔGhyb greater than -10 kcal/mol.
c. Each CH duplex x : z has at most eight stacked pairs (2-stems) in any

secondary structure
d. Each CH duplex x : z has at most four stacked triples (3-stems) in any

secondary structure.

Code II was also designed to take into account the sequences that would
result when strands are ligated together. In other words, the strands were de-
signed with the extra constraint to minimize mispairing that could potentially

Experimental Validation of DNA Sequences for DNA Computing 251

occur in junctions of sequences. For this purpose, junction oligonucleotides were
constructed that represented the latter half (3’-end) of one strand and the first
half (5’-end) of the sequence it would be joined to if two primary strands were
ligated together. Strands could be ligated with either a primary strand or a com-
plement. We tested 32 pairs (16 strands and 16 complements) as well as the 64
junction strands that would arise from the ligation of the various strands and
complements.

The DNA oligonucleotides were synthesized using phosphoramidite chemistry
and were desalted (InVitrogen). It should be noted that we tested more highly-
purified strands (HPLC-purified) and found that the additional purification did
not alter our experimental results in any observable way. Because these strands
are short, truncation of the strands is not likely to be a problem. Lyophilized
oligonucleotides were dissolved in 10 mM Tris buffer/1 mM EDTA for a concen-
tration of 1 μg/μL (0.48 M). All water used in dilutions and buffers was distilled
and deionized via a Millipore purification system.

2.2 Fluorescence Measurements

Immediately prior to insertion into the sequence detection system, strands were
heated to 90 ◦C in a standard thermalcycler to remove secondary structure.
Samples were then slowly cooled to 25 ◦C to allow duplexes to form. Upon
reaching 25 ◦C, samples were pipetted into a 96-well plate (Applied Biosystems)
and placed in an Applied Biosystems Model 7000 Sequence Detection System.

In testing Code I, every possible combination of the 26 DNA strands was
made. To do so, each well of the 96-well plates consisted of 0.5 μg of each
oligonucleotide, 1X SYBR Green I Master Mix that included a buffer and SYBR
Green (Applied Biosystems), and enough distilled deioinized water for a 50 μL
volume. The Master Mix included a passive reference for standardization of
the fluorescence. It was important to keep the concentration of SYBR Green
constant, since excess SYBR Green can quench the DNA-mediated fluorescence
[8]. The actual concentration of SYBR Green is proprietary, regardless of who
manufactures it, but Zipper et al. have estimated that most preparations of
10000X are approximately 10 mg/mL5.

Fluorescence emission was monitored at 520 nm over a 35 ◦C temperature
window. Measurements were made by slowly increasing the temperature to 60–70
◦C over a period of several minutes. The software collected raw fluorescence data
(relative to the passive reference) and plotted it as a function of temperature. In
addition, the data were converted into melting curves by plotting the negative
derivative for fluorescence vs. temperature (-dF/dT vs. T). Data were exported
to Microsoft Excel for additional analysis. The maximum of each derivative curve
corresponds to the melting temperature (Tm) of the duplex. We show derivative
plots in Figures 2 and 3 and a raw fluorescence plot in Figure 4.

Code II was tested in a slightly different manner. All strands were examined
in the “pooled” format—that is; all strands were pooled in a single well to
test for CH strands in the presence of all potentially competing strands. The
approach was the following: one well contained all strands except the perfect

252 W.K. Pogozelski et al.

reverse complement of the strand being tested. In this way we could see whether
or not SYBR Green would bind to potential CH duplexes that would form in
the absence of the WC duplex. In another well, the same strands were pipetted,
but this time the strand able to form a WC duplex was included. This procedure
allowed us to measure the fluorescence when the complement was present and
compare it with the fluorescence that would be detected without the complement.
Monitoring fluorescence in the absence of a known complement was an extra-
stringent test of cross-hybridization. A similar protocol was followed in testing
junction sequences.

In testing Code II, we obtained plots of both raw fluorescence and the deriva-
tive of the fluorescence, but here we report only the former, since we are less
interested in the Tm.

3 Results and Discussion

3.1 Use of Fluorescence to Monitor Hybridization

SYBR Green I shows greatly increased fluorescence when bound to double-
stranded DNA. The change in fluorescence as a function of temperature is low
at very low temperatures, shows a maximum at the melting temperature (Tm)
of the sequence, and returns to low values at higher temperatures. A typical
illustration of the change in fluorescence beginning at the Tm can be seen in
Figure 2. This figure shows the sequence 5’-AGAAACGGACTAGTGG-3’ be-
ing tested for hybridization with its complement as well as against each of the
other sequences of the code. The change in fluorescence(-dF/dT) is plotted as
a function of temperature. Each curve represents a different pair combination
of sequences. The magnitude of the change in fluorescence for the test sequence
binding to its complement is far greater than that of any other combination.
Moreover, the temperature which corresponds to the maximum in the curve,
the melting temperature or Tm is far greater for the WC duplex than for any
other combination. This observation indicates that the test sequence with its
complement is a far more stable than any other combination of strands. The
code strand thus shows very little potential to cross-hybridize with other strand
in the set other than its WC complement, even when the WC complement is
absent from the mixture.

An example of a strand that does cross-hybridize with other strands in the
code or pairs to itself is shown in Figure 3. In this plot, the sequence 5’-A4T8A4-
3’ shows the highest fluorescence when combined with the complement but the
strand can form competing duplex regions that bind SYBR Green. In particular,
it binds with itself. This strand is clearly not acceptable for DNA computing.
Although it is obvious from inspection that this strand would form CH duplexes,
it is nonetheless useful to show the type of results that a CH duplex would yield
using this experimental validation method.

Analysis of the experimental results for all sequences of Code I led to the
following conclusion. If the derivative fluorescence data of a CH duplex was
more than 10% that of the Watson-Crick duplex, then that particular sequence

Experimental Validation of DNA Sequences for DNA Computing 253

 Test of Sequence 5'-AGAAACGGACTAGTGG-3'

0

0.5

1

1.5

2

38
.5

40
.0

41
.5

43
.0

44
.5

46
.0

47
.5

49
.0

50
.5

52
.0

53
.5

55
.0

56
.5

58
.0

59
.5

61
.0

62
.5

64
.0

65
.5

67
.0

Temperature (oC)

No DNA control

aaaaaaaaaaaaaaaa

tttttttttttttttt

aaaattttttttaaaa

cccaaaaaagttcccg

cgggaacttttttggg

cccaaaaaagttcccg

agggtccctggtaaaa

ttttaccagggaccct

attccaaaaaccttaa

ttaaggtttttggaat

cggaaacctaaacgca

tgcgtttaggtttccg

aaccgttcagtccaca

tgtggactgaacggtt

cctaaagttgaaaaac (WC complement)

gtttttcaactttagg

ccactagtccgtttct

agaaacggactagtgg (self)

caggtatagcagatta

taatctgctatacctg

tcctcgctggcatgtc

gacatgccagcgagga

acttttgagttgctat

atagcaactcaaaagt

-d
F

/d
T

 (
fl

u
o

re
sc

en
ce

 d
er

iv
at

iv
e

)

Fig. 2. Rate of change of fluorescence as a function of temperature for the sequence
5’-AGAAACGGACTAGTGG-3’ with its perfect complement as well as with itself, and
with every other sequence in the set. The maximum corresponds to the Tm.

Test Sequence 5'-AAAATTTTTTTTAAAA-3'

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

43.4 46.3 49.3 52.2 55.2 58.1 61.1 64 66.9 69.9

Temperature (C)

F
lu

o
re

sc
e

n
c

e
 d

e
ri

v
a

ti
v

e
 (

-d
F

/d
T

)

aaaaaaaaaaaaaaaa

tttttttttttttttt

aaaattttttttaaaa-self

ttttaaaaaaaatttt-
complement
cgggaacttttttggg

cccaaaaaagttcccg

agggtccctggtaaaa

ttttaccagggaccct

attccaaaaaccttaa

ttaaggtttttggaat

cggaaacctaaacgca

tgcgtttaggtttccg

aaccgttcagtccaca

tgtggactgaacggtt

cctaaagttgaaaaac

gtttttcaactttagg

ccactagtccgtttct

agaaacggactagtgg

caggtatagcagatta

taatctgctatacctg

tcctcgctggcatgtc

gacatgccagcgagga

acttttgagttgctat

atagcaactcaaaagt

Fig. 3. Example of a sequence (5’-A4T8A4-3’) that forms competing CH duplexes with
itself and with other sequences in the code

and its complement should be omitted from the final DNA code. The resulting
collection of nine complementary pairs of sequences has the property that each
forms a Watson-Crick duplex that is at least ten times as favorable as any of the

254 W.K. Pogozelski et al.

162 potential cross-hybridized duplexes. The revised set of sequences is shown
in Table 1 (without parentheses).

We then tested a subcode of the more rigorously-designed Code II. These
experiments were performed a bit differently in that the strands were pooled
rather than tested in pair combinations. All of the strands of Code II were found
to be acceptable by the above test; they showed far greater affinity for their
reverse complement than for other members of the set or for self-binding.

Since we envision an architecture in which these individual strands will ulti-
mately be linked together to form much longer bit strings, we also needed to test
whether the junctions of these sequences might be able to mispair. One could

Table 1. Subset of Code I. This code included some known mismatches to test our
assay. The codewords in parentheses showed cross-hybridization. “S” indicates primary
strand; “C” indicates complement.

S1. (AAAAAAAAAAAAAAAA) C1. (TTTTTTTTTTTTTTTT)
S2. (AAAATTTTTTTTAAAA) C2. (TTTTAAAAAAAATTTT)
S3. CGGGAACTTTTTTGGG C3. CCCAAAAAAGTTCCCG
S4. (AGGGTCCCTGGTAAAA) C4. (TTTTACCAGGGACCCT)
S5. ATTCCAAAAACCTTAA C5. TTAAGGTTTTTGGAAT
S6. CGGAAACCTAAACGCA C6. TGCGTTTAGGTTTCCG
S7. AACCGTTCAGTCCACA C7. TGTGGACTGAACGGAA
S8. (CGCGGGCCCACCAATT) C8. (AATTGGTGGGCCCGCG)
S9. CCTAAAGTTGAAAAAC C9. GTTTTTCAACTTTAGG
S10. CCACTAGTCCGTTTCT C10. AGAAACGGACTAGTGG
S11. CAGGTATAGCAGATTA C11. TAATCTGCTATACCTG
S12. TCCTCGCTGGCATGTC C12. GACATGCCAGCGAGGA
S13. ACTTTTGAGTTGCTAT C13. ATAGCAACTCAAAAGT

Table 2. Subset of Code II Designed with SynDCode

S1. AGGCTAAAGTTATCAC C1. GTGATAACTTTAGCCT
S2. GTCTTCGTTTTTTTCA C2. TGAAAAAAACGAAGAC
S3. GCAAGCGACCAATACT C3. AGTATTGGTCGCTTGC
S4. TACCTTTTCTCGACGC C4. GCGTCGAGAAAAGGTA
S5. CTCAATAAAATGCGCG C5. CGCGCATTTTATTGAG
S6. CGTTGCACTCAAGATC C6. GATCTTGAGTGCAACG
S7. GACTGGAATGTTTTGT C7. ACAAAACATTCCAGTC
S8. GGATGCAGGTTGATTA C8. TAATCAACCTGCATCC
S9. AAGCCTTAGAAGAGAG C9. CTCTCTTCTAAGGCTT
S10. TTTCTGTGGCACTGGT C10. ACCAGTGCCACAGAAA
S11. TGTGTGTCCGATGAGA C11. TCTCATCGGACACACA
S12. TTAAAAGACGTTGGTT C12. AACCAACGTCTTTTAA
S13. TACGCTAATCGGTAAG C13. CTTACCGATTAGCGTA
S14. TGGAGGAACTACCGGA C14. TCCGGTAGTTCCTCCA
S15. CCATAGCTGAGTTCTT C15. AAGAACTCAGCTATGG

Experimental Validation of DNA Sequences for DNA Computing 255

imagine that the new sequence created when two strands are ligated end-to-end
might potentially form CH duplexes. For example, while strand S1 might not
hybridize to any other strand in the code except its perfect complement C1, we
needed to consider whether or not S1/S2 (strands S1 and S2 ligated together) or
S1/C2 (strands S1 and C2 ligated together) would have affinity for other oligonu-
cleotides in the mixture. Therefore, we created 56 strands of 32 nucleotides in
length that represented junctions of sequences. We studied the fluorescence of
these junction strands both in the presence and absence of their complements.
The complement would be expected to bind to only half of the junction strand.
For example, if testing junction strand S14/C15, we would expect strand S15
(the complement of C15) to bind to the latter (3’) portion (the C15 portion) of
the junction strand.

Typical results for a successful experiment to test junction sequences are
shown in Figure 4. The graph shows the junction sequence S14/C15 being tested
against all other strands in the code. Here we show raw fluorescence rather than
derivative fluorescence. All of the primary strands (S1–S15) and complementary
strands (C1–C15) show baseline fluorescence when pooled, indicating that there
is no appreciable duplex formation among these strands. When the junction
sequence S14/C15 (bearing half of S14 and half of C15 as illustrated in Figure 4)
is added to the pool of strands C1–C15, there is no additional fluorescence,
indicating that the junction strand does not cross-hybridize to any strand in

Junction Strand S14/C15 tested against every strand in the code

0

10

20

30

40

50

60

32 37 42 47 52 57 62 67

Temperature (C)

Fl
u

o
re

sc
en

ce

S14/C15 junction with strands C1-C15 (minus C14)

S14/C15 junction with strands S1-S15 (minus S15)

S14/C15 junction with strands C1-C15

S14/C15 junction with strand S1-S15

No DNA Control

Fig. 4. Example of fluorescence experiment testing a junction sequence against all
other strands in the DNA code. Closed squares and triangles (the topmost curves)
show fluorescence of the duplex created when half the complementary strand is present.
The open symbols show fluorescence when known complements are omitted. The low
fluorescence for these bottom curves indicates little or no hybridization.

256 W.K. Pogozelski et al.

this set. In mixing the junction sequence S14/C15 with the complement “S”
pool of strands (S1–S15), we had to be a little more careful and take extra
steps. We knew that junction sequence S14/C15 would hybridize with C14 and
S15. Therefore, we tested binding to the “S” pool both in the presence and
absence of these complements. Fluorescence was barely above baseline when all
the “S” strands (minus S14 and S15) were mixed with the junction C14/C15
and rose dramatically when S15 was added. This is the behavior expected for
sequences that do not cross-hybridize. Therefore, these sequences appear to be
well-behaved enough to be used in DNA computing. All of the strands in Code
II were found to be acceptable.

4 Conclusions

The method as described here does have a few disadvantages; for example, the
Sequence Detection System is automated and doesn’t permit much user control.
Users are limited to measuring fluorescence within a 35 ◦C temperature range,
and the rate of data sampling cannot be altered. However, the method is fast,
suitable for screening large numbers of strands, and is easy, robust, and effective.

References

1. Borer, P.N., Gengler, B., Tinoco, I., Jr. (1974) Stability of ribonucleic acid double-
stranded helices. J. Mol. Biol. 86, 843–853.

2. Freier, S.M., Sugimoto, N., Sinclair, A., Alkema, D., Neilson, T., Kierzek, R. et
al. (1986). Stability of XGCGCp- GCGCYp- and XGCGCYp helixes: an empir-
ical estimate of the energetics of hydrogen bonds in nucleic acids. Biochemistry,
25- 3214–3219.

3. Allawi, H.T., SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G-T
mismatches in DNA. Biochemistry, 36, 10581–10594.

4. McDowell, J.A., Turner, D.H. (1996) Investigation of the structural basis for ther-
modynamic stabilities of tandem GU mismatches: solution structure of (rGAG-
GUCUC)2 by two-dimensional NMR and simulated annealing, Biochemistry, 35,
14077–14089.

5. Zipper, H., Brunner, H., Bernhage, J., Vitzthum, F. Investigations on DNA inter-
calation and surface binding by SYBR Green I, its structure determination and
methodological implications. Nucleic Acids Res. 2004, 32(12), e103.

6. D’yachkov A.G., Macula, A., Pogozelski, W.K., Renz, T.E., Rykov, V., Torney,
D.C. An insertion-deletion like metric with application to DNA hybridization ther-
modynamic modeling, DNA Computing: 10th International Workshop on DNA
Computing, DNA10, Milan, Italy, June 7–10, 2004, Revised Selected Papers,
Springer-Verlag, LNCS, Volume 3384, 90–103, 2005.

7. Bishop, M., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., SynDCode:
Cooperative DNA code generating software, DNA 11 Conf. Preproceedings, London,
Ont. June 6–9, 2005 .

8. Lipsky, R.H., Mazzanti, C.M., Rudolph, J.G., Xu, K., Vyas, G., Bozak, D., Radel,
M.Q., Goldman, D. (2001) DNA melting analysis for detection of single nucleotide
polymorphisms, Clinical Chemistry, 47, 635–644.

Complexity of Graph Self-assembly in Accretive
Systems and Self-destructible Systems�

John H. Reif1, Sudheer Sahu1, and Peng Yin1

Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA

{reif, sudheer, py}@cs.duke.edu

Abstract. Self-assembly is a process in which small objects autonomously
associate with each other to form larger complexes. It is ubiquitous in bi-
ological constructions at the cellular and molecular scale and has also been
identified by nanoscientists as a fundamental method for building nano-scale
structures. Recent years see convergent interest and efforts in studying self-
assembly from mathematicians, computer scientists, physicists, chemists, and
biologists. However most complexity theoretic studies of self-assembly utilize
mathematical models with two limitations: 1) only attraction, while no repulsion,
is studied; 2) only assembled structures of two dimensional square grids are stud-
ied. In this paper, we study the complexity of the assemblies resulting from the
cooperative effect of repulsion and attraction in a more general setting of graphs.
This allows for the study of a more general class of self-assembled structures than
the previous tiling model. We define two novel assembly models, namely the ac-
cretive graph assembly model and the self-destructible graph assembly model,
and identify one fundamental problem in them: the sequential construction of
a given graph, referred to as Accretive Graph Assembly Problem (AGAP) and
Self-Destructible Graph Assembly Problem (DGAP), respectively. Our main re-
sults are: (i) AGAP is NP-complete even if the maximum degree of the graph
is restricted to 4 or the graph is restricted to be planar with maximum degree 5;
(ii) counting the number of sequential assembly orderings that result in a target
graph (#AGAP) is #P-complete; and (iii) DGAP is PSPACE-complete even
if the maximum degree of the graph is restricted to 6 (this is the first PSPACE-
complete result in self-assembly). We also extend the accretive graph assembly
model to a stochastic model, and prove that determining the probability of a given
assembly in this model is #P-complete.

1 Introduction

Self-assembly is the ubiquitous process in which small objects associate autonomously
with each other to form larger complexes. For example, atoms can self-assemble into
molecules; molecules into crystals; cells into tissues, etc. Recently, self-assembly has
also been explored as a powerful and efficient mechanism for constructing synthetic
molecular scale objects with nano-scale features. This approach is particularly fruitful
in DNA based nanoscience, as exemplified by the diverse set of DNA lattices made from

� The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC
Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 257–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

258 J.H. Reif, S. Sahu, and P. Yin

self-assembled branched DNA molecules (DNA tiles) [9, 15, 23, 25, 30, 43, 44]. An-
other nanoscale example is the self-assembly of peptide molecules [8]. Self-assembly
is also used for mesoscale construction, for example, via the use of capillary forces [29]
or magnetic forces [1] to provide attraction and repulsion between mesoscale tiles and
other objects.

Building on classical Wang tiling models [40] dating back to 1960s, Rothemund and
Winfree [31] in 2000 proposed an elegant discrete mathematical model for complexity
theoretic studies of self-assembly known as the Tile Assembly Model. In this model,
DNA tiles are treated as oriented unit squares (tiles). Each of the four sides of a tile
has a glue with a positive integral strength. Assembly occurs by accretion of tiles it-
eratively to an existing assembly, starting with a distinguished seed tile. A tile can be
“glued” to a position in an existing assembly if the tile can fit in the position such that
each pair of abutting sides of the tile and the assembly have the same glue and the total
strength of the glues is greater than or equal to the temperature, a system parameter.
Research in this field largely focuses on studying the complexity of and algorithms for
(uniquely and terminally) producing assemblies with given properties, such as shape. It
has been shown that the construction of n×n squares has a program size complexity (the
minimum number of distinct types of tiles required) of Θ(log n

log log n) [3, 31]. The upper
bound is obtained by simulating a binary counter and the lower bound by analyzing the
Kolmogorov complexity of the tiling system. The model was later extended by Adle-
man et al. to include the time complexity of generating specified assemblies [3]. Later
work studies various topics, including combinatorial optimization, complexity prob-
lems, fault tolerance, and topology changes, in the standard Tile Assembly Model as
well as some of its variants [4, 6, 10, 11, 12, 13, 14, 19, 27, 33, 34, 35, 36, 37, 38, 41, 42].

Though substantial progress has been made in recent years in the study of self-
assembly using the above tile assembly model, which captures many important aspects
of self-assembly in nature and in nano-fabrications, the complexity of some other im-
portant aspects of self-assembly requires further study:

– Only attraction, while no repulsion, is studied. However, repulsive forces often
occur in self-assembly. For example, there is repulsion between hydrophobic and
hydrophilic tiles [7, 29]; between tiles labeled with magnetic pads of the same po-
larity [1]; and there is also static electric repulsion in molecular systems, etc.. In-
deed, the study of repulsive forces in the self-assembly system was posed as an
open question by Adleman and colleagues in [3]. Though there has been previous
work on the kinetics of such systems [20], no complexity theoretic study has been
directed towards such systems.

– Tile Assembly Model captures well assembled structures of two dimensional
square grids, but are not well adaptable to study assemblies of general graph
structure. However, many molecular self-assemblies using DNA and other ma-
terials involve the assembly of more diverse graph-like structures in both two
and three dimensions. Pioneer work in modeling DNA self-assembly as graphs
include [16, 17, 18, 32]. In particular, Jonoska et al studied the computational
capacity of the self-assembly of realistic DNA graphs and showed that 3SAT
and 3-colorability problems can be solved in constant laboratory steps in the-
ory [16, 17, 18]. In addition, Seeman’s group have experimentally constructed

Complexity of Graph Self-assembly in Accretive Systems 259

topoisomers of self-assembled DNA graphs [32]. Klavins showed how to produce
desired topology of self-assembled structures with planar graph structure using
graph grammars [21, 22].

In this paper, we study the cooperative effect of repulsion and attraction on the com-
plexity of the self-assembly system in a graph setting. This approach thus allows the
study of a more general class of assemblies.

We distinguish two systems, namely the accretive system and the self-destructible
system. In an accretive system, an assembled component cannot be removed from the
assembly. In contrast, in the self-destructible system, a previously assembled compo-
nent can be “actively” removed from the assembly by the repulsive force exerted by
another newly assembled component. In other words, the assembly can (partially) de-
struct itself. We define the accretive graph assembly model for the former and the self-
destructible graph assembly model for the latter.

We first define an accretive assembly model and study a fundamental problem in
this model: the sequential construction of a given graph, referred to as Accretive Graph
Assembly Problem (AGAP). Our main result for this model is that AGAP is NP-
complete even if the maximum degree of vertices in the graph is restricted to 4; the
problem remains NP-complete even for planar graphs (planar AGAP or PAGAP)
with maximum degree 5. We also prove that the problem of counting the number of
sequential assembly orderings that lead to a target graph (#AGAP) is #P-complete.
We further extend the AGAP model to a stochastic model, and prove that determining
the probability of a given assembly (stochastic AGAP or SAGAP) is #P-complete.

If we relax the assumption that an assembled component always stays in the as-
sembly, repulsive force between assembled components can cause self-destruction in
the assembly. Self-destruction is a common phenomenon in nature, at least in bio-
logical systems. One renowned example is apoptosis, or programmed cell death [39].
Programmed cell death can be viewed as a self-destructive behavior exercised by a
multi-cellular organism, in which the organism actively kills a subset of its constituent
cells to ensure the normal development and function of the whole system. It has been
shown that abnormalities in programmed cell death regulation can cause a diverse range
of diseases such as cancer and autoimmunity [39]. It is also conceivable that self-
destruction can be exploited in self-assembly based nano-fabrication: the components
that serve to generate intermediate products but are unnecessary or undesirable in the
final product should be actively removed.

To the best of our knowledge, our self-destructible graph assembly model is the first
complexity theoretic model that captures and studies the fundamental phenomenon of
self-destruction in self-assembly systems. Our model is different from previous work on
reversible tiling systems [2, 5]. These previous studies use thermodynamic or stochastic
techniques to investigate the reversible process of tile assembly/disassembly: an assem-
bled tile has a probability of “falling” off the assembly in a kinetic system. In contrast,
our self-destructible system models the behavior of a self-assembly system that “ac-
tively” destructs part of itself.

To model the self-destructible systems, we define a self-destructible graph assembly
model, and consider the problem of sequentially constructing a given graph, referred to

260 J.H. Reif, S. Sahu, and P. Yin

g

b

h i

1
2

2 1 2
e f

1

ca

2 2

2 2

d

-1 1

Fig. 1. An example of graph assembly in the accretive model

as the Self-Destructible Graph Assembly Problem (DGAP). We prove that DGAP is
PSPACE-complete even if the graph is restricted to have maximum degree 6.

The rest of the paper is organized as follows. We first define the accretive graph
assembly model and the AGAP problem in Section 2. In this model, we first show the
NP-completeness of AGAP and PAGAP (planar AGAP) in Section 3 and then show
the #P-completeness of SAGAP (stochastic AGAP) in Section 4. Next, we define the
self-destructible graph assembly model and the DGAP problem in Section 5 and show
the PSPACE-completeness of DGAP in Section 6. We close with a discussion of our
results in Section 7.

2 Accretive Graph Assembly Model

Let N and Z denote the set of natural numbers and the set of integers, respectively. A
graph assembly system is a quadruple T = 〈G = (V, E), vs, w, τ〉, where G = (V, E)
is a given graph with vertex set V and edge set E, vs ∈ V is a distinguished seed vertex,
w : E → Z is a weight function (corresponding to the glue function in the standard tile
assembly model [31]), and τ ∈ N is the temperature of the system (intuitively temper-
ature provides a tunable parameter to control the stability of the assembled structure).
In contrast to the canonical tile assembly model in [31], which allows only positive
edge weight, we allow both positive and negative edge weights, with positive (resp.
negative) edge weight modeling the attraction (resp. repulsion) between the two ver-
tices connected by this edge. We will see that this simple extension makes the assembly
problem significantly more complex.

Roughly speaking, given a graph assembly system T = 〈G, vs, w, τ〉, G is sequen-
tially constructible if we can attach all its vertices one by one, starting with the seed
vertex; a vertex x can be assembled if the support to it is equal to or greater than the
system temperature τ , where support is the sum of the weights of the edges between x
and its assembled neighbors.

Figure 1 gives an example. Here the temperature is set to 2. If h gets assembled
before e, then the whole graph can get assembled: an example assembly ordering can
be a ≺ b ≺ c ≺ d ≺ f ≺ g ≺ h ≺ i ≺ e. In contrast, if vertex e gets assembled before
h, the graph cannot be assembled: h can be assembled only if it gets support from both
g and i; while i cannot get assembled without the support from h.

Formally, given a graph assembly system T = 〈G, vs, w, τ〉, G is sequentially
constructible if there exists an ordering of all the vertices in V ,OT = (vs = v0 ≺ v1 ≺

Complexity of Graph Self-assembly in Accretive Systems 261

vs

x2 x3 x2 x̄2 x3x1x̄1x1 x̄3

Fig. 2. A graph construction corresponding to an AGAP reduction from 3SAT formula (x1 ∨
x2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3). An edge between two literal vertices is depicted as
a dashed arch and assigned weight -1; all other edges have weight 2.

v2 ≺ · · · ≺ vn−1) such that
∑

vj∈NG(vi),j<i w(vi, vj) ≥ τ, 0 < i ≤ n − 1, where
NG(vi) denotes the set of vertices adjacent to vi in G. The ordering OT is called an
assembly ordering for G. σO(vi) =

∑
vj∈NG(vi),j<i w(vi, vj) is called the support

of vi in ordering O. When the context is clear, we simply use O and σ(vi) to denote
assembly ordering and support, respectively.

We define the accretive graph assembly problem as follows,

Definition 1. Accretive Graph Assembly Problem (AGAP): Given a graph assem-
bly system T = 〈G, vs, w, τ〉 in the accretive model, determine whether there exists an
assembly orderingO for G.

The above model is accretive in the sense that once a vertex is assembled, it cannot
be “knocked off” by the subsequent assembly of any other vertex. If we relax this
assumption, we will obtain a self-destructible model, which is described in Section 5.

3 AGAP and PAGAP Are NP-Complete

3.1 4-DEGREE AGAP Is NP-Complete

Lemma 1. AGAP is in NP.

Proof. Given an assembly ordering of the vertices, sequentially check whether each
vertex can be assembled. This takes polynomial time. �

Recall that the NP-complete 3SAT problem asks: Given a Boolean formula φ in con-
junctive normal form with each clause containing 3 literals, determine whether φ is sat-
isfiable [26]. 3SAT remains NP-complete for formulas in which each variable appears
at most three times, and each literal at most twice [26]. We will reduce this restricted
3SAT to AGAP to prove AGAP is NP-hard.

Lemma 2. AGAP is NP-hard.

Proof. Given a 3SAT formula φ where each variable appears at most three times,
and each literal at most twice, we will construct below an accretive graph assembly
system T = 〈G, vs, w, τ〉 for φ. We will then show that the satisfiability problem
of φ can be reduced (in logarithmic space) to the sequential constructibility problem
of G in T .

262 J.H. Reif, S. Sahu, and P. Yin

For each clause in φ, construct a clause gadget as in Figure 2. For each literal, we
construct a literal vertex (colored white). We further add top vertices (black) above and
bottom vertices (black) below the literal vertices. We next take care of the structure
of formula φ as follows. Connect all the clause gadgets sequentially via their top ver-
tices as in Figure 2; connect two literal vertices if and only if they correspond to two
complement literals. This produces graph G. Designate the leftmost top vertex as the
seed vertex vs. We next assign weight −1 to an edge between two literal vertices and
weight 2 to all the other edges. Finally, set the temperature τ = 2. This completes the
construction of T = 〈G, vs, w, τ〉.

The following proposition implies the lemma.

Proposition 1. There is an assembly orderingO for T if and only if φ is satisfiable.

⇒
First we show that if φ can be satisfied by truth assignment T , then we can derive an
assembly orderingO based on T .

Stage 1. Starting from the seed vertex, assemble all the top vertices sequentially.
This can be easily done since each top vertex will have support 2, which is greater than
or equal to τ = 2, the temperature.

Stage 2. Assemble all the literal vertices assigned true. Since two true literals can-
not be complement literals, no two literal vertices to be assembled at this stage can
have a negative edge between them. Hence all these true literal vertices will receive a
support 2 (≥ τ = 2).

Stage 3. Assemble all the bottom vertices. Note that truth assignment T satisfies φ
implies that every clause in φ has at least one true literal. Thus every clause gadget in
G has at least one literal vertex (a true literal vertex) assembled in stage 2, which in
turn allows us to assemble the bottom vertex in that clause gadget.

Stage 4. Assemble all the remaining literal vertices (the false literal vertices). Ob-
serve that any remaining literal vertex v has support 4 from its already assembled neigh-
boring top vertex and bottom vertex and that v can have negative support at most −2
from its assembled literal vertex neighbors (recall that each literal vertex can have at
most two literal vertex neighbors since each variable appears at most three times in φ).
Hence the total support for v will be at least 2 (≥ τ).
⇐
Suppose that there exists an assembly orderingO, then we can derive a satisfying truth
assignment T for φ. For each literal vertex, assign its corresponding literal true if it
appears in O before all of its literal vertex neighbors (this assures no two complement
literals are both assigned true); otherwise assign it false.

To show T satisfies φ, we only need to show every clause contains at least one
true literal. For contradiction, suppose there exists a clause gadget A with three
false literal vertices, where v is the literal vertex assembled first. However, v cannot be
assembled: it has support 2 from the top vertex; no support from the bottom vertex (v
gets assembled first and hence the bottom vertex in A cannot be assembled before v); at
least −1 negative support from one of its literal vertex neighbors (v is assigned false);
the total support of v is thus at most 1, less than temperature τ = 2. Contradiction.
Hence T must satisfy φ. �

Complexity of Graph Self-assembly in Accretive Systems 263

e4

v2

u2

v3

u1

v1

u3

e5e1

e2

e3

c5

v2

c2

c1

c3

v1 v3

u1 u3
vs

c4

u2

(a) (b)

Fig. 3. (a) and (b) show an example bipartite graph B and the corresponding graph G used in
the proof of Lemma 4, respectively. In (b), ci’s denote connector vertices (colored white); u1 is
the seed vertex. The weight of an edge connecting two connector vertices (dashed line) is −4; the
weight of any other edge is 2.

We note that the technique of translating 3SAT formula into graph structure by model-
ing variables as vertices and connecting complement literals is a classical technique [26],
and has also been used powerfully in other different graph self-assembly context [18].

The following theorem follows immediately from Lemma 1 and Lemma 2.

Theorem 1. AGAP is NP-complete.

Let k-DEGREE AGAP be the AGAP in which the largest degree of any vertex in
graph G is k. Observe that the largest degree of any vertex in the graph construction in
the proof of Lemma 2 is 4. Hence we have

Corollary 1. 4-DEGREE AGAP is NP-complete.

3.2 5-DEGREE PAGAP Is NP-Complete

We next study the planar AGAP (PAGAP) problem, where the graph G in the assembly
system T is planar. Here, we show PAGAP is NP-hard by a reduction from the NP-
hard planar three-satisfiability problem (P3SAT) [24]. The reduction is in similar spirit
as that in the proof of Lemma 1. For lack of space, we skip the proof and only state our
results.

Theorem 2. PAGAP is NP-complete.

Corollary 2. 5-DEGREE PAGAP is NP-complete.

4 #AGAP and SAGAP Are #P-Complete

4.1 #AGAP Is #P-Complete

We now consider a more general version of AGAP: given an accretive graph assembly
system T = 〈G, vs, w, τ〉 and a target vertex set Vt ⊆ V , determine if there exists
an ordering Õ(V, Vt) of V such that Vt is assembled after we attempt assembling each
vertex v ∈ V sequentially according to Õ. Vertex v will be assembled if there is enough
support; otherwise it will not. Õ is called the assembly ordering of V for Vt. When the
context is clear, we simply call it assembly ordering for Vt and denote it by Õ. Note that

264 J.H. Reif, S. Sahu, and P. Yin

the assembly ordering Õ is an ordering on all the vertices in V , but we only care about
the assembly of the target vertex set Vt: the assembly of vertices in V \ Vt is neither
required nor prohibited. For Vt = V , the general AGAP is then precisely the standard
AGAP. The problem of counting the number of assembly orderings for Vt ⊆ V under
this general AGAP model is referred to as #AGAP.

Lemma 3. #AGAP is in #P.

We next show #AGAP is #P-hard, using a reduction from the #P-complete problem
PERMANENT, the problem of counting the number of perfect matchings in a bipartite
graph [26].

Lemma 4. #AGAP is #P-hard.

Proof. Given a bipartite graph B = (U, V, E) with two partitions of vertices U and V
and edge set E, where U = {u1, . . . , un}, V = {v1, . . . , vn}, and E = {e1, . . . , em}
(recall that by definition of bipartite graph, there is no edge between any two vertices
in U and no edge between any two vertices in V), we construct an assembly system
T = 〈G, vs, w, τ〉. First, we derive graph G by adding vertices and edges to B (see
Figure 3 for an example): on each edge ek, add a splitting connector vertex ck; add an
edge (dashed line) between two connector vertices if they share a same neighbor in U ;
connect ui and ui+1 for i = 1, . . . , n − 1. Next, assign weight −4 to an edge between
two connector vertices; assign weight 2 to all the other edges. Finally, designate u1 as
the seed vertex vs, and set the temperature τ = 2. The target vertex set Vt is U

⋃
V .

A crucial property of G is that the assembly of one connector vertex c will make
all of c’s connector vertex neighbors unassemblable, due to the negative edge connect-
ing c and its neighbors. Thus, starting from a vertex u ∈ U , only one connector ver-
tex and hence only one v ∈ V can be assembled. For a concrete example, see Figure 3
(b): starting from u1, if we sequentially assemble c1 and v1, vertex c1 will render c2
unassemblable, and hence the assembly sequence u1 ≺ c2 ≺ v2 is not permissible.

We first show that if there is no perfect matching in B, there is no assembly ordering
for U

⋃
V . If there is no perfect matching in B, there exists S ⊆ V s.t. |N(S)| < |S|

(Hall’s theorem), where N(S) ⊆ U is the set of neighboring vertices to the vertices
in S in original graph B. However, as argued above, one vertex in U can lead to the
assembly of at most one vertex in V . Thus |N(S)| < |S| implies that at least one vertex
in S remains unassembled. Hence, no assembly ordering exists that can assemble all
vertices in U

⋃
V .

Next, when there exists perfect matching(s) in B, we can show that each perfect
matching in B corresponds to a fixed number of assembly orderings for U

⋃
V . First

note that the total number of vertices in graph G is 2n+ m (recall that m is the number
of edges in B and hence the number of connector vertices in G), giving a total s =
(2n + m)! permutations. We divide s by the following factors to get the number of
assembly orderings for U

⋃
V .

1. For every matching edge ek between u ∈ U and v ∈ V , we have to follow the strict
order u ≺ ck ≺ v, where ck is the connector vertex on ek. This is ensured by our
construction as argued above. There are altogether n such matching edges. So we
need to further divide s by (3!)n.

Complexity of Graph Self-assembly in Accretive Systems 265

2. For the n vertices in U , we have to follow the strict order of assembling the vertices
from left to right, and hence we need to divide s by n!.

3. Denote by di the degree of ui in graph B. For the di connector vertices corre-
sponding to the di edges incident on ui, the connector vertex corresponding to the
matching edge must be assembled first, and thus, we need to further divide s by
Πn

i=1di.

Putting together 1), 2), and 3), we have that each perfect matching in B corresponds
to (2n+m)!

(3!)n(n!)(Πn
i=1di)

assembly orderings for U
⋃

V in G. �

Lemma 3 and Lemma 4 imply

Theorem 3. #AGAP is #P-complete.

4.2 SAGAP Is #P-Complete

An intimately related question to counting the total number of assembly orderings is
the problem to calculate the probability of assembling a target structure in a stochastic
setting. We next extend the accretive graph self-assembly model to stochastic accretive
graph self-assembly model. Given a graph G = (V, E), where |V | = n, starting with
the seed vertex vs, what is the probability that the target vertex set Vt ⊆ V gets as-
sembled if anytime any unassembled vertex can be picked with equal probability? This
problem is referred to as stochastic AGAP (SAGAP).

Since any unassembled vertex has equal probability of being selected and the
assembly has to start with the seed vertex, the total number of possible orderings are
(n − 1)!. Then SAGAP asks precisely how many of these (n − 1)! orderings are as-
sembly orderings for the target vertex set Vt. Thus, #AGAP can be trivially reduced to
SAGAP, and the reduction is obviously a logarithmic space parsimonious reduction.
We immediately have

Theorem 4. SAGAP is #P-complete.

5 Self-destructible Graph Assembly Model

The assumption in the above accretive model is that once a vertex is assembled, it
cannot be “knocked off” by the later assembly of another vertex. Next, we relax this as-
sumption and obtain a more general model: the self-destructible graph assembly model.
In this model, the incorporation of a vertex a that repulses an already assembled ver-
tex b can make b unstable and hence “knock” b off the assembly. This phenomenon
renders the assembly system an interesting dynamic property, namely (partial) self-
destruction.

The self-destructible graph assembly system operates on a slot graph. A slot graph G̃
= (S, E) is a set of “slots” S connected by edges E ⊆ S × S. Each “slot” s ∈ S is
associated with a set of vertices V (s). During the assembly process, a slot s is either
empty or is occupied by a vertex v ∈ V (s). A slot s occupied by a vertex v is denoted
as 〈s, v〉.

266 J.H. Reif, S. Sahu, and P. Yin

Slot Graph

sf

sish

sd

sb sc

sg

ss = sa

se

Vertex Set

{ , }

{ }

{ , }

Association

{ }

{ }{ }{ }

{ }

{ }{ }

se
sf

scsa sb

sd

sg sh si

(a) (b) (c)

Edge Weights

sf
sd

sg sh si sh si

sb sc sb scsa

sg

sd

0

2 -22

2

0

2 2

1 3

2
1

1

sa

sfse

11

1
se

Target Graph

sf

2

scsb

sd

sg sh si

0

2 2

1 3

2
1

2

2 0 1

sa

se

(d) (e)

Fig. 4. An example self-destructible graph assembly system

A self-destructible graph assembly system is defined as T = 〈G̃ = (S, E), V, M, w,
〈ss, vs〉, τ〉, where G̃ = (S, E) is a given slot graph with slot set S and edge set
E ⊆ S × S; V =

⋃
s∈S V (s) is the set of vertices; the association rule M ⊆ S × V is

a binary relation between S and V , which maps each slot s to its associated vertex set
V (s) (note that the sets V (s) are not necessarily disjoint); for any edge (sa, sb) ∈ E,
we define a weight function w : V (sa) × V (sb) → Z (here a weight is determined
cooperatively by an edge (sa, sb) and the two vertices occupying sa and sb); 〈ss, vs〉
is a distinguished seed slot ss occupied by vertex vs; τ ∈ N is the temperature of the
system. The size of a self-destructible assembly system is the bit representation of the
system.

A configuration of G̃ is a function A : S → V
⋃
{empty}, where empty indicates a

slot being un-occupied. For ease of exposition, a configuration is alternatively referred
to as a graph, denoted as G. When the context is clear, we simply refer to a slot occupied
by a vertex as a vertex, for readability.

Given the above self-destructible graph assembly system, we aim at assembling a tar-
get graph, i.e. reaching a target configuration, Gt, starting with the seed vertex 〈ss, vs〉
and using the following unit assembly operations. In each unit operation, we temporar-
ily attach a vertex v to the current graph G and obtain a graph G′, and then repeat the
following procedure until no vertex can be removed from the assembly: inspect all the
vertices in current graph G′; find the vertex v′ with the smallest support, i.e. the sum of
the weights of edges between v′ and its assembled neighbors, and break the ties arbitrar-
ily (note that v′ can be v); if the support to v′ is less than τ , remove v′. This procedure
ensures that when a vertex that repulses its assembled neighbors is incorporated in the
existing assembly, all the vertices whose support drops below system temperature will

Complexity of Graph Self-assembly in Accretive Systems 267

be removed. However, in the case when a vertex to be attached exerts no repulsive force
to its already assembled neighbors, the above standard unit assembly operation can be
simplified as follows: a vertex can be assembled if the total support it receives from
its assembled neighbors is equal to or greater than the system temperature τ – this is
exactly the same as the operation in the accretive graph assembly model.

Figure 4 gives a concrete example of a self-destructible graph assembly system T =
〈G̃ =(S, E), V, M, w, 〈ss, vs〉, τ〉. Here, slot sa is designated as the distinguished seed
slot ss and temperature τ is set to 2. Figure 4 (a) depicts the slot graph G̃ = (S, E),
where S = {sa, sb, sc, sd, se, sf , sg, sh, si}, E = {(sa, sb), (sb, sc), (sa, sd), (sb, se),
(sc, sf), (sd, se), (se, sf), (sd, sg), (se, sh), (sf , si), (sg, sh), (sh, si)}. Figure 4 (b)
gives the vertex set V = {black, grey}. Figure 4 (c) shows the association rule M :
V (se) = {black, grey}; V (s) = {black}, for s ∈ S \ se. Figure 4 (d) illustrates w.
A numerical value indicates the weight of an edge incident to two occupied slots. The
left panel of Figure 4 (d) describes the cases when both slots incident to an edge are
occupied by black vertices; the right panel describes the case when slot se is occupied
by a grey vertex but its neighboring slot is occupied by a black vertex. For example,
the weight for edge (se, sh), when both se and sh are occupied with black vertices,
is 2; when se is occupied by a grey vertex and sh by a black vertex, the weight is
−2. The negative weight is indicated by a dashed edge. Figure 4 (e) depicts the target
graph (configuration) Gt, where each the slot in S is occupied by a black vertex, i.e.
A(s) = black for any s ∈ S.

Now we are ready to define the Self-Destructible Graph Assembly Problem
(DGAP).

Definition 2. Self-destructible Graph Assembly Problem (DGAP): Given a self-
destructible graph assembly system T = 〈G = (S, E), V, M, w, 〈ss, vs〉, τ〉 and a
target graph (configuration) Gt, determine whether there exists a sequence of assembly
operations such that Gt can be assembled starting from 〈ss, vs〉.

6 DGAP Is PSPACE-Complete

Theorem 5. DGAP is PSPACE-complete.

Proof. Recall that the PSPACE-complete problem IN-PLACE ACCEPTANCE is
as follows: given a deterministic Turing machine (TM for short) U and an input string x,
does U accept x without leaving the first |x|+ 1 symbols of the string [26]? We reduce
IN-PLACE ACCEPTANCE to DGAP using a direct simulation of a deterministic
TM U on x with self-destructible graph assembly in PSPACE.

The proof builds on 1) a classical technique for simulating TM using self-assembly
of square tiles [28, 31], which takes exponential space for deciding PSPACE-
complete languages; and 2) our new cyclic gadget, which helps the classical TM simu-
lation to reuse space and thus achieve a PSPACE simulation. We will first reproduce
the classical simulation; next introduce our modification to the classical simulation;
then describe our cyclic gadget; finally integrate the cyclic gadget with the modified
TM simulation to obtain a PSPACE simulation and thus conclude the proof.

268 J.H. Reif, S. Sahu, and P. Yin

Classical TM simulation. The classical scheme uses the assembly of vertices on a 2D
square grid to mimic a TM’s transition history [28, 31]. Consecutive configurations of
TM are represented by successive horizontal rows of assembled-vertices.

Given a TM U(Q, Σ, δ, q0), where Q is a finite set of states, Σ is a finite set of
symbols, δ is the transition function, and q0 ∈ Q is the initial state, we construct a self-
destructible assembly system T = 〈G = (S, E), V, M, w, 〈ss, vs〉, τ〉 as follows. The
slot graph G = (S, E) is an infinite 2D square grid; each node of the grid corresponds
to a slot s ∈ S. A vertex v ∈ V is represented as a quadruple v = 〈a, b, c, d〉, where
a, b, c, and d are referred to as the North, East, South, and West ‘glues’ (see Figure 5).
Each glue x is associated with an integral strength g(x). More specifically, we construct
the following vertices:

N

S
W E

s

s s s
transition verticessymbol vertices state vertices termination vertices

s’s’

qs qsqsqs
q q q’ q’

qsqs rejectaccept
γγ γ γ γ γ γ γ γγ

Fig. 5. Vertices used in the basic TM simulation

– For each s ∈ Σ, construct a symbol vertex 〈s, γ, s, γ〉, where γ is a special symbol
/∈ Σ.

– For each 〈q, s〉 ∈ Q × Σ, construct state vertices 〈〈q, s〉, γ, s,
→
q 〉 and 〈〈q, s〉,

←
q ,

s, γ〉.
– For each transition 〈q, s〉 → 〈q′, s′, L〉 (resp. 〈q, s〉 → 〈q′, s′, R〉), where L (resp.

R) is the head moving direction “Left” (resp. “Right”), construct a transition vertex

〈s′, γ, 〈q, s〉,
←
q′〉 (resp. 〈s′,

→
q′, 〈q, s〉, γ〉).

– For transition 〈q, s〉 → ACCEPT (resp. REJECT), construct a termination vertex
〈ACCEPT, γ, 〈q, s〉, γ〉 (resp. 〈REJECT, γ, 〈q, s〉, γ〉).

The glue strength g(〈q, s〉) is set to 2; all other glue strengths are 1. Mapping relation
M : every vertex in V can be mapped to every slot in S. We next describe weight func-
tion V × V × E → Z. Consider two vertices v1 = 〈a, b, c, d〉 and v2 = 〈a′, b′, c′, d′〉
connected by edge e, if e is horizontal and v1 lies to the East (resp. West) of v2, the
weight function is g(b′, d) (resp. g(b, d′)); if e is vertical and v1 lies to the North (resp.
South) of v2, the weight function is g(c, a′) (resp. g(a, c′)); where g(x, y) = g(x) (resp.
0) if x = y (resp. x �= y). In other words, the edge weight for two neighboring vertices
is the strength of the abutting glues, if the abutting glues are the same; otherwise it is 0.

It is straightforward to show that the assembly of the vertices in V on the
slot graph G = (S, E) simulates the operation of the TM U . Figure 6 (a) gives a
concrete example to illustrate the simulation process as in [31]. Here we assume the
bottom row in the assembly in Figure 6 (a) is pre-assembled.

Our modified TM simulation. We add two modifications to the classical simulation
and obtain the scheme in Figure 6 (b): 1) a set of vertices are added to assemble an
input row (bottom row in the figure) and 2) a dummy column is added to the leftmost of
the assembly. For the construction, see the self-explanatory Figure 6 (b). The leftmost
bottom vertex is the seed vertex and a thick line indicates a weight 2 edge. The reason

Complexity of Graph Self-assembly in Accretive Systems 269

for adding the dummy column is as follows. The glue strength g(〈q, s〉) is 2 in Figure 6
(a); this is necessary to initiate the assembly of a new row and hence a transition to
next configuration. However, due to a subtle technical point explained later (in the part
“Integrating cyclic gadget with TM simulation”), we cannot allow weight 2 edge(s) in
a column unless all the edges in this column have weight 2. So we add the leftmost
dummy column of vertices connected by weight 2 edges, and this enables us to set
g(〈q, s〉) = 1 and thus avoid weight 2 edge other than those in the dummy column.
The modified scheme simulates a TM on input x with the head initially residing at s0
and never moving to the left of s0. The assembly proceeds from bottom to top; within
each row, it starts from the leftmost dummy vertex and proceeds to the right (note the
difference in the assembly sequence in Figure 6 (a) and (b), as indicated by the thick
grey arrows).

symbol vertices

transition vertices

1

1

1

1

state vertices

0

1

1

1

1 1

0 0

0 0

1

0

0 1

1

1

1

1

1

1

0

1

0 1
0

0

1

1
γ γ

A, 0 → B, 1, R

B, 0 → A, 1, L

A, 1 → C, 1, RC
A1

A0 A0

A0

A1

A1

C1

BB
B0

B0

γ

γ γ

B0

A
A1

γ

γ

γ γ

A0

B0
γ

γ

γ

γ

B

A

B

A

A γ

γ

A1

γCCγ

γγγγ

γ γγ

γ

A0

B0

γ γγγ

A

A

B

A

A

γ

(a)

0

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

i=3

i=2

i=1

i=0

j=1 j=2 j=3j=0

CC

B

A
α

α
γ

γγ

C1

B0

B0

A1

A0

A0

A1

α

α

α

α

α

γ

γ

γγγ

γ

γ

γ

γ γ

γ

β1 β2 β2 β3
β0

γ

β1β0

A

B

(b)

Fig. 6. (a) An example classical simulation of a Turing machine U(Q, Σ, δ, q0), where Q =
{A, B, C}; Σ = {0, 1}; transition function δ is shown in the figure; q0 = A. The top of the left
panel shows two symbol vertices; below are some example transition rules and the corresponding
state vertices and transition vertices. The right panel illustrates the simulation of U on input 001
(simulated as the bottom row, which is assumed to be preassembled), according to the transition
rules in the figure; the head’s initial position is on the leftmost vertex. Each transition of U adds
a new row. (b) Our modified scheme. The leftmost bottom vertex is the seed vertex. The leftmost
column is the dummy column. In both (a) and (b), a thick line indicates a weight 2 edge; a thin
line indicates weight 1; thick grey arrows indicate the assembly sequence.

270 J.H. Reif, S. Sahu, and P. Yin

Our cyclic gadget. The above strategy to simulate TM by laying out its configurations
one above another can result in a graph with height exponential in the size of the input
(|x|): the height of the graph is precisely the number of transitions plus one. A crucial
observation is that once row i is assembled, row i− 1 is no longer needed: row i holds
sufficient information for assembling row i + 1 and hence for the simulation to pro-
ceed. Thus, we can evacuate row i − 1 and reuse the space to assemble a future row,
say row i + 2. Using this trick, we can shrink the number of rows from an exponen-
tial number to a constant. The self-destructible graph assembly model can provide us
with precisely this power. To realize this power of evacuating and reusing space, we
construct a cyclic gadget, shown in Figure 7 (a). The gadget contains three kinds of
vertices: the computational vertices (a, b, and c) that carry out the actual simulation
of the Turing machine; the knocking vertices (x, y, and z) that serve to knock off the
computational vertices and thus release the space; the anchor vertices (x′, y′, and z′)
that anchor the knocking vertices. Edge weights are labeled in the figure.

−3

−32

−3 2

2

2

2

2 2

2

2

ba

c

x′

z′ y′

x

yz

(a)

−4

1

1

1

1

1

1

2
3−4

2

2
−3

3 2

2

3 2

−4 −3

3

3

2

3

1
1

1

−3

2

2

y1y0 x0 x2

a1a0

b0 b1

c0 c1

a2 a3

b2 b3

c2 c3

B

C

A

vs

v′
s z1

y′
1 y′

3

x′
2x′

1x′
0

y′
0 y′

2

z3

z′
3z′

2z′
1z′

0

z0 z2

x′
3

y2 y3 x3x1

(b)

Fig. 7. (a) The construction and operation of our cyclic gadget. The counterclockwise grey cycle
indicates the desired sequence of events. (b) The integrated scheme. Grey edges have weight 2.
Unlabeled black edges have weight 1. vs indicates the seed vertex; z0 is the seed slot. v′

s indicates
a distinguished computational “seed”.

Complexity of Graph Self-assembly in Accretive Systems 271

For ease of exposition, we introduce a little more notation. The event in which a new
vertex b is attached to a pre-assembled vertex a is denoted as a · b; the event in which a
knocks off b is denoted as a + b.

We next describe the operation of the cyclic gadget. We require that anchor ver-
tices x′, y′, and z′ and computational vertex a are pre-assembled. The anchor ver-
tices and computational vertices will keep getting assembled and then knocked off in
a counterclockwise fashion. First, b is attached to a (event a · b). Then x is attached to
b (event b · x). At this point, x has total support 1 from b, x′, and a (providing support
2, 2, and −3, respectively); a has total support −1 from b and x (providing support 2
and -3, respectively). Since the temperature is 2, x will knock off a (x + a). Next, we
have b · c followed by c · y. At this point, y has total support 1 from c and y′; b has total
support 1 from x and c. Therefore, either y + b or b + y can happen, but y + b is in the
desired counterclockwise direction. Next, we will have cycles of (reversible) events. In
summary, the following sequence of events occur, providing the desired cyclicity:

a · b, b · x, x + a; b · c, c · y, y + b; (c · a, a + x, a · z, z + c; a · b, b + y, b · x, x + a;
b · c, c + z, c · y, y + b)∗;

The steps in the () will keep repeating. Note that the steps in the () are reversible,
which will facilitate our reversible simulation of a Turing machine below.

Integrating cyclic gadget with TM simulation. We next integrate the cyclic gadget
with the modified TM simulation in Figure 6 (b). In the resulting scheme, we obtain
a reversible simulation of a deterministic TM on a slot graph of constant height, by
evacuating old rows and reusing the space: row i is evacuated after the assembly of row
i + 1, providing space for the assembly of row i + 3.

Figure 7 (b) illustrates the integrated scheme. Slot rows A, B, and C correspond to
rows i = 3r, i = 3r + 1, and i = 3r + 2 in Figure 6 (b), respectively. Let |x| = n.
A is a sequence of slots A = [a0, a1, . . . , an+1]; similarly, B = [b0, b1, . . . , bn+1]
and C = [c0, c1, . . . , cn+1] as in Figure 7 (b). Slots a0, b0, and c0 are dummy slots
(corresponding to the dummy column in Figure 6 (b)). For each aj , bj , and cj , we
construct a cyclic gadget by introducing slots xj , yj , zj , x′

j , y′
j , and z′j .

Slot z′0 is designated as the seed slot ss and one of its associated vertices as the seed
vertex vs and the temperature is again set to 2.

The edge weights are shown in the figure. We emphasize that the weight for an edge
between two computational vertices (vertices in A, B, and C) u and v is set to the glue
strength if u and v have the same glue on their abutting sides; otherwise it is 0. This is
consistent with the scheme in Figure 6 (b) and helps to ensure the proper operation of
the computational assembly. In contrast, the weight for any other edge is always set to
the value shown in Figure 7 (b), regardless of the actual computational vertices present
in the slots in A, B, and C; this ensures the proper operation of the cyclic gadget.

There are some subtle technical points regarding edge weight assignment. First, the
weight for the edge connecting vertices vs = z0 and v′s is 2; while the weight for
an edge connecting z′0 and subsequent vertices other than v′s that occupy slot a0 is 0.
This ensures the correct operation of the cyclic gadget for the dummy slots. Second,
the assembly of the first row (input row) involves computational vertices with glue
strength 2 (rather than 1) and hence weight 2 edges between neighboring vertices in

272 J.H. Reif, S. Sahu, and P. Yin

this row. However no modification on the edge weight of the edges incident to the
knocking vertices and anchor vertices is required to accommodate this edge weight
difference: the initial step (a · b, b · x, x + a) is irreversible and it is straightforward
to check that x + a can occur successfully. Third, except for the edges connecting
dummy vertices, no weight 2 edge exists between the computational vertices after the
evacuation of the input row. This is essential for upper bounding the number of vertices
associated with each slot: otherwise, an exponential number of knocking vertices and
anchor vertices would be required.

The assembly proceeds as follows. First, the frame of anchoring vertices (subgraph
with grey edges) will be assembled, starting from the seed vertex at z′0. The seed vertex
at z′0 will pull in a distinguished computational vertex v′s (corresponding to the seed ver-
tex in Figure 6 (b)) at slot a0, and v′s subsequently initiates the assembly of the input row
(corresponding to the bottom row in Figure 6 (b)). Then the computational vertices will
assemble, simulating the process shown in Figure 6 (b). Meanwhile, the cyclic gadget
functions along each layer of aj , bj , and cj (corresponding to column j in Figure 6
(b)), effecting the reusing of space. More specifically, vertices corresponding to those
in rows i = 3r, i = 3r + 1, and i = 3r + 2 in Figure 6 (b) will be assembled in A,
B, and C respectively. Similar to the process in Figure 7 (a), row i + 1 gets assembled
with the support from row i, and subsequently pulls in knocking vertices, which knock
off row i and thus evacuate space for future row i + 3 to assemble. Within a row, the
vertices are knocked off sequentially from left to right, starting with the dummy vertex.

Concluding the proof. We set the target graph Gt as a complete row of vertices con-
taining ACCEPT termination vertex 〈ACCEPT, γ, 〈s, q〉, γ〉. Then Gt can be assembled
if and only if TM U accepts x. We insist Gt to be a complete row of vertices (occu-
pying s0, s1, . . . , s|x|+1, where s ∈ {a, b, c}) to avoid false positives. Note the size of
the slot graph used in the proof is polynomial in the size of the input |x| and hence our
simulation is in PSPACE. �

Corollary 3. 6-DEGREE DGAP is PSPACE-complete.

7 Conclusion

In this paper, we define two new models of self-assembly and obtain the following
complexity results: 4-DEGREE AGAP is NP-complete; 5-DEGREE PAGAP is
NP-complete; #AGAP and SAGAP are #P-complete; 6-DEGREE DGAP is
PSPACE-complete. One immediate open problem is to determine the complexity of
these problems with lower degrees. In addition, it would be nice to find approximation
algorithms for the optimization version of the NP-hard problems. Note AGAP can
be solved in polynomial time if only positive edges are permitted in graph G, using a
greedy heuristic. In contrast, when negative edges are allowed, for each negative edge
e = (v1, v2), we need to decide the relative order for assembling v1 and v2. Thus k
negative edges will imply 2k choices, and we have to find out whether any of these 2k

choices can result in the assembly of the target graph. This is the component that makes
the problem hard.

Complexity of Graph Self-assembly in Accretive Systems 273

References

1. http://mrsec.wisc.edu/edetc/selfassembly/.
2. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722,

University of Southern California, 2000.
3. L. Adleman, Q. Cheng, A. Goel, and M.D. Huang. Running time and program size for self-

assembled squares. In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 740–748. ACM Press, 2001.

4. L. Adleman, Q. Cheng, A. Goel, M.D. Huang, D. Kempe, P.M. de Espans, and P.W.K. Rothe-
mund. Combinatorial optimization problems in self-assembly. In Proceedings of the thirty-
fourth annual ACM symposium on Theory of computing, pages 23–32. ACM Press, 2002.

5. L. Adleman, Q. Cheng, A. Goel, M.D. Huang, and H. Wasserman. Linear self-assemblies:
Equilibria, entropy, and convergence rate. In Sixth International Conference on Difference
Equations and Applications, 2001.

6. G. Aggarwal, M.H. Goldwasser, M.Y. Kao, and R.T. Schweller. Complexities for generalized
models of self-assembly. In Proceedings of 15th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 880–889. ACM Press, 2004.

7. N. Bowden, A. Terfort, J. Carbeck, and G.M. Whitesides. Self-assembly of mesoscale objects
into ordered two-dimensional arrays. Science, 276(11):233–235, 1997.

8. R.F. Bruinsma, W.M. Gelbart, D. Reguera, J. Rudnick, and R. Zandi. Viral self-assembly as
a thermodynamic process. Phys. Rev. Lett., 90(24):248101, 2003 June 20.

9. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

10. H.L. Chen, Q. Cheng, A. Goel, M.D. Huang, and P.M. de Espanes. Invadable self-assembly:
Combining robustness with efficiency. In Proceedings of the 15th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 890–899, 2004.

11. H.L. Chen and A. Goel. Error free self-assembly using error prone tiles. In DNA Based
Computers 10, pages 274–283, 2004.

12. Q. Cheng, A. Goel, and P. Moisset. Optimal self-assembly of counters at temperature two.
In Proceedings of the first conference on Foundations of nanoscience: self-assembled archi-
tectures and devices, 2004.

13. M. Cook, P.W.K. Rothemund, and E. Winfree. Self-assembled circuit patterns. In DNA
Based Computers 9, volume 2943 of LNCS, pages 91–107, 2004.

14. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA tiles.
In DNA Based Computing 10, pages 284–293, 2004.

15. Y. He, Y. Chen, H. Liu, A.E. Ribbe, and C. Mao. Self-assembly of hexagonal DNA two-
dimensional (2D) arrays. J. Am. Chem. Soc., 127:12202–12203, 2005.

16. N. Jonoska, S.A. Karl, and M. Saito. Three dimensional DNA structures in computing.
BioSystems, 52:143–153, 1999.

17. N. Jonoska and G.L. McColm. A computational model for self-assembling flexible tiles.
Unconventional Computing. To appear, 2005.

18. N. Jonoska, P. Sa-Ardyen, and N.C. Seeman. Genetic programming and evolvable machines.
Computation by Self-assembly of DNA Graphs, 4.

19. M. Kao and R. Schweller. Reduce complexity for tile self-assembly through temperature
programming. In Proceedings of 17th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). To appear. ACM Press, 2006.

20. E. Klavins. Toward the control of self-assembling systems. In Control Problems in Robotics,
volume 4, pages 153–168. Springer Verlag, 2002.

21. E. Klavins. Directed self-assembly using graph grammars. In Foundations of Nanoscience:
Self Assembled Architectures and Devices, Snowbird, UT, 2004.

274 J.H. Reif, S. Sahu, and P. Yin

22. E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic systems.
In Proceedings of the International Conference on Robotics and Automation, 2004.

23. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

24. D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343, 1982.
25. J. Malo, J.C. Mitchell, C. Venien-Bryan, J.R. Harris, H. Wille, D.J. Sherratt, and A.J. Turber-

field. Engineering a 2D protein-DNA crystal. Angew. Chem. Intl. Ed., 44:3057–3061, 2005.
26. C.M. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, Inc.,

1st edition, 1994.
27. J.H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies.

In Proc. 10th International Meeting on DNA Computing, pages 248–260, 2004.
28. R.M. Robinson. Undecidability and non periodicity of tilings of the plane. Inventiones Math,

12:177–209, 1971.
29. P.W.K. Rothemund. Using lateral capillary forces to compute by self-assembly. Proc. Natl.

Acad. Sci. USA, 97(3):984–989, 2000.
30. P.W.K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of DNA sier-

pinski triangles. PLoS Biology 2 (12), 2:e424, 2004.
31. P.W.K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares

(extended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 459–468. ACM Press, 2000.

32. P. Sa-Ardyen, N. Jonoska, and N.C. Seeman. Self-assembling DNA graphs. Lecture Notes
in Computer Science, 2568:1–9, 2003.

33. S. Sahu, P. Yin, and J.H. Reif. A self assembly model of time-dependent glue strength. In
Proc. 11th International Meeting on DNA Computing, pages 113–124, 2005.

34. R. Schulman, S. Lee, N. Papadakis, and E. Winfree. One dimensional boundaries for DNA
tile self-assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 108–125, 2004.

35. R. Schulman and E. Winfree. Programmable control of nucleation for algorithmic self-
assembly. In DNA Based Computers 10, LNCS, 2005.

36. R. Schulman and E. Winfree. Self-replication and evolution of DNA crystals. In The 13th
European Conference on Artificial Life (ECAL), 2005.

37. D. Soloveichik and E. Winfree. Complexity of compact proofreading for self-assembled
patterns. In Proc. 11th International Meeting on DNA Computing, pages 125–135, 2005.

38. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. In DNA Based Com-
puters 10, LNCS, 2005.

39. A. Strasser, L. O’Connor, and V.M. Dixit. Apoptosis signaling. Annu. Rev. Biochem.,
69:217–245, 2000.

40. H. Wang. Proving theorems by pattern recognition ii. Bell Systems Technical Journal, 40:
1–41, 1961.

41. E. Winfree. Self-healing tile sets. Draft, 2005.
42. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-

assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.
43. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-

dimensional DNA crystals. Nature, 394(6693):539–544, 1998.
44. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA

tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):
8103–8108, 2003.

Designing Nucleotide Sequences for Computation: A
Survey of Constraints

Jennifer Sager and Darko Stefanovic

Department of Computer Science, University of New Mexico,
MSC01 1130, 1 University of New Mexico,

Albuquerque, NM 87131
{sagerj, darko}@cs.unm.edu

Abstract. We survey common biochemical constraints useful for the design of
DNA code words for DNA computation. We define the DNA Code Constraint
Problem and cover biochemistry topics relevant to DNA libraries. We examine
which biochemical constraints are best suited for DNA word design.

1 Introduction

Most DNA1 computation models assume that computation is error-free. For example,
Adleman [2] and Lipton [3] used randomly generated DNA strings in their experiments
because they assumed that errors due to false positives are rare. However, it has been
experimentally shown that randomly generated codes are inadequate for accurate DNA
computation as the size of the problem grows [4], since a poorly chosen set of DNA
strands can cause errors. Therefore, for many types of DNA computers, it may be prac-
tical or even necessary to create a ‘library’ or ‘pool’ of DNA word codes suitable for
computation.2

A properly constructed library will help to minimize errors so that DNA computa-
tion is more practical, reliable, scalable, and less costly in terms of materials and labo-
ratory time. However, the construction of a library is non-trivial for two reasons. First,
there are 4N unique DNA strings of length N; thus the number of candidate molecules
grows exponentially in the length of the DNA string. Second, the constraints used to
find a library are complex since they are subject to the laws of biochemistry as well as
the specific algorithm and computation style. Given an algorithm for a type of DNA
computer, the DNA Code Constraint Problem is to find a set of constraints that the
DNA strands must satisfy to minimize the number of errors due to the choice of DNA
strands. The constraints are determined by the physical reality of performing the algo-
rithm in the laboratory and the specific algorithm and computation style. We examine
the biomolecular constraints typically used to choose a set of DNA strings suitable for
computation.

1 Even though we describe most of the constraints in terms of DNA, RNA computers also exist
(for an example see [1]) and all of the constraints described here are also relevant to RNA.

2 For an overview of library design see [5]. For a survey of algorithms that have been used to
solve the DNA/RNA Code Design Problem see [6].

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 275–289, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

276 J. Sager and D. Stefanovic

2 Positive and Negative Design

Even though there are many types of DNA computers, most share similar biochemical
requirements because they use the same fundamental biochemical processes for com-
putation. The fundamental computation step for most DNA computers occurs through
the bonding (hybridization) and unbonding (denaturation) of oligonucleotides (short
strands of DNA). For background information about DNA chemistry, see Appendix A.

Creating an error-free library typically requires that planned hybridizations and de-
naturations (between a word and its Watson-Crick complement) do occur and unplanned
hybridizations and denaturations (between all other combinations of code words and
their complements) do not occur. The former situation is referred to as the positive
design problem while the latter is referred to as the negative design problem [6, 7].

The positive design problem requires that there exists a sequence of reactions that
produces the desired outputs, starting from the given inputs. Thus, positive design at-
tempts to “optimize affinity for the target structure” [7]. These reactions must occur
within a reasonable amount of time for feasible concentrations. Usually the strands
must satisfy a specified secondary structure criterion (e.g., the strand must have a de-
sired secondary structure or have no secondary structure at all). Since a strand is typi-
cally identified by hybridization with its perfect Watson-Crick complement, the positive
design problem requires that each Watson-Crick duplex is stable. In addition, for com-
putation styles that use denaturation, the positive design problem often requires all of
the strands in the library to have similar melting temperatures, or melting temperatures
above some threshold. In short, positive design tries to maximize hybridization between
perfect complements.

The negative design problem requires that: (1) no strand has undesired secondary
structure such as hairpin loops, (2) no string in the library hybridizes with any other
string in the library, and (3) no string in the library hybridizes with the complement
of any other string in the library. Thus, negative design attempts to “optimize speci-
ficity for the target structure” [7]. Unplanned hybridizations can cause two types of
potential errors: false positives and false negatives. False negatives occur when all (ex-
cept an undetectable amount) of DNA that encodes a solution is hybridized in un-
productive mismatches. Since mismatched strands are generally less stable than per-
fectly matched strands, false negatives can be controlled by adjusting strand concentra-
tions. Deaton experimentally verified the occurrence of false positives, which happen
when a mismatched hybridization causes a strand to be incorrectly identified as a so-
lution [4]. False positives can be prevented by ensuring that all unplanned hybridiza-
tions are unstable. In short, the negative design problem tries to minimize non-specific
hybridization.

Positive design often uses GC-content and energy minimization as heuristics (see
below). Negative design uses combinatorial methods (such as Hamming distance, re-
verse complement Hamming distance, shifted Hamming distance, and sequence sym-
metry minimization), and thermodynamic methods (such as minimum free energy).
Constraints which incorporate both positive and negative design are probability, average
incorrect nucleotides, energy gap, probability gap, and energy minimization in combi-
nation with sequence symmetry minimization. The best-performing models for design-
ing single-strand secondary structure use simultaneous positive and negative design,

Designing Nucleotide Sequences for Computation: A Survey of Constraints 277

and significantly outperform either method alone; however, kinetic constraints must be
considered separately since low free energy does not necessarily imply fast folding [7].
We believe that this same principle holds for designing hybridizations between multiple
strands.

2.1 Secondary Structure of Single Strands

Most DNA computation styles need strands with no secondary structure (i.e., no ten-
dency to hybridize with itself). There are, on the other hand, cases where specific
secondary structures are desired, such as for deoxyribozyme logic gates [8]; Figure 1
shows the desired structure. Even there, structures different from the desired must be
eliminated.

T

G
A

A
G

A
G

A

T

T
T

AT
A

G

A

C

G

C
A G A

C
T

C
T

T
C

A

G

C
G

A
T

G

A

C

T

GA
C

C

G

T

G
A G A

A

T

T

A

G

A
C

A

G

T

C C A
C

C
C
A
T
G

T
T

A
G

T
G

A
A C A

A

A

C

A

G

A
CT

A
T

A

C

T
C

A
C

T
A

A

Fig. 1. Example of secondary structure in Stojanovic and Stefanovic’s DNA automaton [8] as
computed by Mfold [9, 10, 11] using 140 mM Na+ and 2 mM Mg++ at 25◦C. The strand has
three hairpin loops, which is the desired secondary structure. Here ΔG is −12.3 kcal/mol.

There are several heuristics that are used to prevent secondary structure. Sometimes,
repeated substrings and complementary substrings within a single strand which are non-
overlapping and longer than some minimum length are forbidden in order to prevent
stem formation. This heuristic is often called sequence symmetry minimization [12, 7]
or substring uniqueness [13]. Another heuristic is to forbid particular substrings; these
forbidden substrings are usually strings known to have undesired secondary structure.
For example, sequences containing GGGGG should be avoided because they may form
the four-stranded G4-DNA structure [14,15].3 Alternatively, strands are designed using

3 For more information about alternative base pairing structures see [16].

278 J. Sager and D. Stefanovic

only a three-letter alphabet (A, C, T for DNA and A, C, U for RNA) to eliminate the
potential for GC pairs which could cause unwanted secondary structure [17].

In order to design a strand with a desired secondary structure, the nucleotides at
positions which bond together must be complementary. This simple approach can be
improved by also requiring the strands to satisfy some free-energy-based criteria, such
as those described below from Dirks et al. [7].

The minimum free energy constraint, which can be calculated in O(N3) time for
structures with no pseudoknots [18], is used to choose sequences such that the target
structure has the minimum free energy. However, since this method is negative design,
it does not ensure the absence of other structures that the sequence is likely to form.
Algorithms also exist to determine whether a set of strands are structure free, where a
set of sequences is considered to be structure free if the minimum free energy of every
strand in the set is greater than or equal to zero [19, 20, 21].

The energy minimization constraint is used to choose sequences which have a low
free energy in the target structure, but not necessarily the minimum free energy. To
design strands with this constraint, first generate a random string s that satisfies the
complementary requirements of the desired secondary structure. For each step (Dirks
used 106 steps), choose a random one-point mutation. Let s′ be the sequence with this
random one-point mutation (and a mutation in the corresponding base required by the
structure constraint, if any). Accept the mutation by replacing s with s′ if:

e−
ΔG(s′)−ΔG(s)

RT ≥ ρ

where ρ ∈ [0,1] is a random number drawn from a uniform distribution, ΔG(s) is the
free energy of the sequence in secondary structure s, and ΔG(s′) is the free energy of the
sequence in secondary structure s′ (the free energy of a given structure can be calculated
in O(N) time). Thus, this equation always accepts any mutations which result in no
change or a decrease in free energy, and accepts with some probability any mutations
which increase the free energy.

Sequences can also be chosen which maximize the probability of sampling the target
structure. The probability p(s) that every nucleotide in the sequence exactly matches the
target structure s at thermodynamic equilibrium is calculated by:

p(s) =
1
Q

e−
ΔG(s)

RT

where ΔG(s) is the free energy of the sequence in secondary structure s. The partition
function, Q, is:

Q = ∑
s∈Ω

e−
ΔG(s)

RT

where Ω is the set of all secondary structures that the sequence can form in equilib-
rium. If s∗ is the target secondary structure and p(s∗)≈ 1, then the sequence has a high
affinity and high specificity for s∗. An optimal dynamic programming algorithm calcu-
lates p(s∗) for structures with no pseudoknots in O(N3) time [22]; p(s∗) for secondary
structures with pseudoknots can be calculated in O(N5) time [23].

Designing Nucleotide Sequences for Computation: A Survey of Constraints 279

Additionally, sequences can be chosen to minimize the average number of incorrect
nucleotides, n(s), over all equilibrium secondary structures Ω . The structure matrix Ss

for a given sequence of length N in structure s is:

Ss[i, j] =
{

1, if base i is paired with base j in s
0, otherwise

Ss[i,N + 1] =
{

1, if base i is unpaired in s
0, otherwise

where 1≤ i≤ N and 1≤ j ≤ N. The probability matrix Ps is:

Ps[i, j] = ∑
s∈Ω

p(s)Ss[i, j]

where 1≤ i≤N and 1≤ j≤N +1. When 1≤ j≤N, Ps[i, j] is the probability of forming
a base pair between the nucleotides at position i and j. Ps[i,N + 1] is the probability
that base i is unpaired. n(s) is the average number of incorrect nucleotides over the
equilibrium ensemble of secondary structures Ω . If s∗ is the target structure then:

n(s∗) = N−
N

∑
i=1

N+1

∑
j=1

Ps[i, j]Ss∗ [i, j]

n(s∗) can be calculated in O(N3) time in structures with no pseudoknots and O(N5) in
structures with pseudoknots.

Dirks et al. determined that the best-performing models are probability, average in-
correct nucleotides, and energy minimization in combination with sequence symmetry
minimization for the substrings that are not constrained by the desired secondary struc-
ture. The models with medium performance are the negative design methods (minimum
free energy, and sequence symmetry minimization alone). The worst performing model
is energy minimization (a positive design method). Surprisingly, minimum free energy
performs similarly to sequence symmetry minimization; these results show that free
energy measurements do not guarantee good design. An effective search must use both
positive and negative design methods.

2.2 Secondary Structure of Multiple Strands

The strength of a perfectly matched duplex, a positive constraint, is often estimated
by either: (1) the type of hydrogen bonds, AT vs. GC, expressed as the percentage of
nucleotides that are G and C bases in a strand or duplex, which is known as GC-content;
or (2) the amount of free energy released from the formation of the hydrogen bonds and
the phosphodiester bonds that hold together adjacent nucleotides in a strand. The latter
model is known as the nearest-neighbor model.

Since GC base pairs are held together by three hydrogen bonds while AT base pairs are
held together by only two hydrogen bonds, double-stranded DNA with a high GC content
is often more stable than DNA with a high AT content. Many DNA library searches re-
quire each strand to have a 50% GC-content to balance the requirement of stable matched

280 J. Sager and D. Stefanovic

hybridizations for identification purposes with the requirements of denaturation. The
GC-content heuristic is simple to calculate; only the length and the number of GC bases
are needed, where the length refers to the number of nucleotide base pairs. However the
nearest-neighbor heuristic is more accurate than the GC-content heuristic because the
nearest neighbor base stacking energies account for more of the change in free energy
than the energy of the hydrogen bonding between nucleotide bases.

Requiring all pairs of strings in the library to have at least a given minimum Ham-
ming distance (i.e., the number of characters in corresponding places which differ be-
tween two strings), is intended to satisfy the negative requirement that no pair of strings
in the library should hybridize. A variation of this idea is the reverse complement Ham-
ming distance which is the number of corresponding positions which differ in the com-
plement of s1 and the reverse of s2. This constraint is used to reduce the false positives
that occur from hybridization between a word and the reverse of another word in the
library.

The advantage of Hamming distance (and its variations) is its theoretical simplicity
and the vast body of extant work in coding theory. Many bounds have been calculated
on the optimal size of codes with various Hamming-distance-based constraints [24].
Many early DNA library search algorithms used Hamming distance as a constraint to
develop combinatorial algorithms based on the results from coding theory. However,
Hamming distance alone is an insufficient constraint.

One problem with Hamming-distance-based heuristics is that this measure assumes
that position i of the first string is aligned with position i of the second string. However,
since duplexes can be formed with dangling ends and loops, this is not the only pos-
sible alignment. Various Hamming distance slides, substring uniqueness [13], partial
words [25], and H-measure [26] constraints have been developed to fix the alignment
problem. Another problem with heuristics based on Hamming distance is that the per-
centage of matching base pairs necessary to form a duplex is not necessarily known.
Melting temperature can be used to approximate what the minimum Hamming distance
should be4, however, for a given temperature and word set, there can be significant
variation in the required minimum distance.

Now that accurate free-energy information is available for all but the most com-
plicated secondary structures (e.g., branching loops), the nearest-neighbor model is a
much more accurate method to use than the constraints based on Hamming distance. It
has also been experimentally determined for a sequence A of length n and a sequence B
of length m that minimum free energy is a superior constraint to BP, where

BP = min(n,m)−min−m<k<nH(A,σ k(B))

where H(∗,∗) is the Hamming distance, B is the reverse complement of B, and σ k is the
shift rightward when k > 0 or leftward when k < 0 [14]5. One way of using free-energy-
based calculations as a constraint to prevent mismatched duplexes is to maximize the

4 Deaton estimates the melting temperature of mismatched duplexes by decreasing 1◦C per 1%
mismatch between oligonucleotides [4]. Since this calculation is outdated (see Section 3), if
this heuristic is used for a library search, it is recommended that the melting temperature should
be estimated from free energy calculations.

5 BP is equivalent to the H-measure constraint if n = m.

Designing Nucleotide Sequences for Computation: A Survey of Constraints 281

gap between the free energy of the weakest specific hybridization and the free energy of
strongest nonspecific hybridization, which we refer to as the energy gap; this approach
was used by Penchovsky [27]. A metric also exists which calculates the maximum
number of stacked base pairs in any secondary structure; a thermodynamic weight-
ing of this metric gives an upper bound on the free energy of duplex formation [28].
The probability, p(s∗), measurement could also be applied to duplexes. A reasonable
heuristic would be to maximize the gap between the lowest probability of the desired
specific hybridizations and the highest probability of undesired non-specific hybridiza-
tions, which we refer to as the probability gap. Algorithms exist which calculate the
probability, p(s∗), for all possible combinations of single and double stranded foldings
between a pair of strands [29]. Various equilibrium thermodynamic approaches have
been used [30,31,32,33,34]. Computational incoherence, ξ , predicts the probability of
error hybridization per-structure based on statistical thermodynamics [30, 35].

The physically-based models can be divided into categories based on the level of
chemical detail [36]. Techniques which model single molecules include molecular me-
chanics models such as Monte Carlo minimum free energy simulations and molecular
dynamics which models the change of the system with time. Techniques which average
system behavior, or mass action approaches, are less accurate but more computationally
feasible. Molecular mechanics (which models the movement of the system to the lowest
energy), chemical kinetics, melting temperature, and statistical thermodynamics are all
mass action approaches.

3 Melting Temperature

Melting temperature is typically used as a constraint in DNA paradigms that use multi-
ple hybridization and denaturation steps to identify the answer, for an example see [1].
When DNA is heated, the hydrogen bonds that bind two bases together tend to break
apart, and the strands tend to separate from each other. The probability that a bond will
break increases with temperature. This probability can be described by the melting tem-
perature, which is the temperature in equilibrium at which 50% of the oligonucleotides
are hybridized and 50% of the oligonucleotides are separated. Since temperature con-
trol is often used to help denature the strands in intermediate steps, it is advantageous
for these paradigms to require all of the strands in the library to have similar melting
temperatures, or melting temperatures above some threshold.

The melting temperature of a perfectly matched duplex can be roughly estimated
from the 2–4 rule [5], which predicts the melting temperature as twice the number of
AT base pairs plus 4 times the number of GC base pairs. Another rough estimate of
the change in melting temperature due to mismatched duplexes can also be obtained
by decreasing the melting temperature of a corresponding matched duplex by 1◦C per
1% mismatch; unfortunately, the inaccuracy is typically greater than 10◦C [37]. Nei-
ther method is recommended. A better method is to use the nearest-neighbor model
regardless of whether the duplex is perfectly matched or mismatched. This method
produces more accurate results because melting temperature is closely related to free
energy. Melting temperature has been used to characterize the hybridization potential
of a duplex [38,39], but this measure cannot be used to predict whether two strands are

282 J. Sager and D. Stefanovic

bound at a given temperature since the melting temperatures of different duplexes do
not necessarily correspond to relative rankings of stability.

4 Reaction Rates

Once the structure of candidate strands is known, the next logical question to ask is how
fast do these reactions occur and what concentration is needed. Kinetics deals with the
rate of change of reactions. For some implementations of DNA computers, the rate of
the reaction could be an additional search constraint. System-level simulation software
has been described for this purpose [40].

5 DNA Prediction Software

There exists many software packages that predict DNA/RNA structure, thermodynam-
ics, or kinetics. A few well-know structure prediction software packages are: Dynalign
[41], MFold [9], NUPACK [23, 42], RNAsoft [43], RNAstructure [44], and the Vi-
enna Package [45]. RNA free energy nearest neighbor parameters are available from
the Turner Group [44]. Some software packages which calculate thermodynamics are:
HyTher [46, 10, 47], BIND [38], MELTING [48], MELTSIM [49], and MeltWin [50].
Kinfold [51] simulates kinetics. EdnaCo [52] and Visual OMP (Oligonucleotide Mod-
eling Platform; DNA Software Inc.) [53] simulate biochemical protocols in silico. In
addition, there are many library design software packages such as: DNA Design Tool-
box [54], DNASequenceCompiler [13], DNASequenceGenerator [13], NACST/
Seq [55], NucleicPark [34], PERMUTE [1], PUNCH [56], SCAN [39], SEQUIN [12],
SynDCode [28, 57, 58], and TileSoft [59].

6 Conclusion

Structure prediction can be separated into two problems. The first is to understand how
DNA folds in nature. The second is to understand how computers should fold DNA
strands to obtain the structure. Since nature has the advantage of parallel processing
and the proximity of the molecules in space, the way nature finds the solution to the
folding problem should not necessarily be the same as the way a computer finds the
solution.

Early algorithms to find DNA word sets focused on the Hamming distance con-
straint or variations thereof to achieve a theoretical abstraction of the constraints, which
allowed the use of combinatorial algorithms and proofs of completeness (i.e., that the
size of the pool is optimal or near optimal). However, in the process the constraints are
simplified so much that they no longer accurately predict DNA structure. Current algo-
rithms tend to use a more complex combination of the constraints. However, since these
constraints are difficult to abstract, more recent programs resort to genetic algorithms,
random search, exhaustive search, and local stochastic search algorithms.

Thermodynamics, melting temperature and kinetics are best at predicting DNA
structure, reaction rates and reaction temperatures. However, calculating these mea-
sures can be costly. According to the requirements mentioned for the negative design

Designing Nucleotide Sequences for Computation: A Survey of Constraints 283

problem, checking that a library of size M meets specifications requires O(M2) string
comparisons, where each comparison of a pair of strings of length N is potentially poly-
nomial in N. Thus, the weaker combinatorial and heuristic predictors could be used to
quickly filter a candidate set of library molecules, and then the free energy model could
be used to more accurately check this set. If this approach is adopted, the correlation
between these alternative heuristics and free energy measurements should be explored.
Alternatively, free energy or probability approximation algorithms could be used. This
approach has the advantage that techniques from randomized algorithm analysis could
be used to prove the correctness of the approximation.

Research in DNA libraries has two main goals: (1) to further understand DNA chem-
istry, and (2) to understand search techniques useful for constructing sets of DNA codes.
Although there is a growing consensus that DNA computers will never be as practical
or as fast as conventional computers, biological computers have the advantage that their
style of computation is closer to natural processes. Deaton states that the process of con-
verting an algorithm into a biomolecular systems “is as difficult [i.e., NP-hard or harder]
as the combinatorial optimization problems they are intended to solve” [60]. However,
successful research in DNA libraries will help to reduce errors in DNA computation and
may discover new information about how DNA interacts with itself. Although current
DNA computers are simplistic in comparison to natural biochemical processes, DNA
computation may help to develop alternative theories for how cells work or could have
evolved [61]. In addition, research in DNA design also pertains to DNA nanotechnol-
ogy, PCR-based applications, and DNA arrays. Breakthroughs in this field will add to
the current knowledge of DNA chemistry as well as DNA computers.

Acknowledgments

We are grateful to Milan Stojanovic for his advice and encouragement, and to the
anonymous reviewers for their extensive comments. This material is based upon work
supported by the National Science Foundation (grants CCR-0219587, CCR-0085792,
EIA-0218262, EIA-0238027, and EIA-0324845), Sandia National Laboratories, Mi-
crosoft Research, and Hewlett-Packard (gift 88425.1). Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the sponsors.

References

1. Dirk Faulhammer, Anthony R. Cukras, Richard J. Lipton, and Laura F. Landweber. Molecu-
lar computation: RNA solutions to chess problems. Proceedings of the National Academy of
Sciences of the USA (PNAS), 97(4):1385–1389, February 2000. The PERMUTE Program is
available at http://www.pnas.org/cgi/content/full/97/4/1385/DC1.

2. Leonard M. Adleman. Molecular computation of solutions to combinatorial problems. Sci-
ence, 266(5187):1021–1024, November 1994.

3. Richard J. Lipton. DNA solution of hard computational problems. Science, 268:542–545,
April 1995.

284 J. Sager and D. Stefanovic

4. Russell J. Deaton, Randy C. Murphy, Max Garzon, Donald R. Franceschetti, and S. E.
Stevens, Jr. Good encodings for DNA-based solutions to combinatorial problems. In
Landweber and Baum [62], pages 247–258.

5. Arwen Brenneman and Anne E. Condon. Strand design for bio-molecular computation.
Technical report, University of British Columbia, March 2001.

6. Giancarlo Mauri and Claudio Ferretti. Word design for molecular computing: A survey. In
Junghuei Chen and John H. Reif, editors, DNA Computing: 9th International Workshop on
DNA-Based Computers, DNA 2003 (University of Wisconsin: Madison, WI), volume 2943 of
Lecture Notes in Computer Science, pages 37–47. Springer, 2004.

7. Robert M. Dirks, Milo Lin, Erik Winfree, and Niles A. Pierce. Paradigms for computational
nucleic acid design. Nucleic Acids Research, 32(4):1392–1403, 2004.

8. Milan N. Stojanovic and Darko Stefanovic. A deoxyribozyme-based molecular automaton.
Nature Biotechnology, 21(9):1069–1074, September 2003.

9. Michael Zuker. Mfold web server for nucleic acid folding and hybridization predic-
tion. Nucleic Acids Research, 31(13):3406–3415, 2003. Mfold is available at http://
www.bioinfo.rpi.edu/applications/mfold.

10. John SantaLucia, Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proceedings of the National Academy of Sciences of the USA
(PNAS), 95:1460–1465, 1998.

11. Nicolas Peyret. Prediction of Nucleic Acid Hybridization: Parameters and Algorithms. PhD
thesis, Wayne State University, Dept. of Chemistry, 2000.

12. Nadrian C. Seeman. De Novo design of sequences for nucleic acid structural engineering.
Journal of Biomolecular Structure & Dynamics, 8(3):573–581, 1990.

13. Udo Feldkamp, Hilmar Rauhe, and Wolfgang Banzhaf. Software tools for DNA sequence
design. Genetic Programming and Evolvable Machines, 4(2):153–171, June 2003.

14. Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi. Specificity of
hybridization between DNA sequences based on free energy. In Carbone et al. [63], pages
366–375.

15. Dipankar Sen and Walter Gilbert. Formation of parallel four-stranded complexes by guanine-
rich motifs in DNA and its implications for meiosis. Nature, 334(6180):364–366, July 1988.

16. Nadrian C. Seeman. It started with Watson and Crick, but it sure didn’t end there: Pitfalls and
possibilities beyond the classic double helix. Natural Computing: an international journal,
1(1):53–84, 2002.

17. Kalim U. Mir. A restricted genetic alphabet for DNA computing. In Landweber and
Baum [62].

18. Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133–148, 1981.

19. Mirela Andronescu, Danielle Dees, Laura Slaybaugh, Yinglei Zhao, Anne Condon, Barry
Cohen, and Steven Skiena. Algorithms for testing that sets of DNA word designs avoid
unwanted secondary structure. In Hagiya and Ohuchi [64], pages 182–195.

20. Satoshi Kobayashi. Testing structure freeness of regular sets of biomolecular sequences. In
Ferretti et al. [65], pages 395–404.

21. Atsushi Kijima and Satoshi Kobayashi. Efficient algorithm for testing structure freeness of
finite set of biomolecular sequences. In Carbone et al. [63], pages 278–288.

22. John S. McCaskill. The equilibrium partition function and base pair binding probabilities for
RNA secondary structure. Biopolymers, 29(6-7):1105–1119, May-Jun 1990.

23. Robert M. Dirks and Niles A. Pierce. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. Journal of Computational Chemistry, 24(13):
1664–1677, October 2003. NUPACK is available at http://www.acm.caltech.edu/
˜niles/software.html.

Designing Nucleotide Sequences for Computation: A Survey of Constraints 285

24. Amit Marathe, Anne E. Condon, and Robert M. Corn. On combinatorial DNA word design.
Journal of Computational Biology, 8(3):201–220, 2001.

25. Peter Leupold. Partial words for DNA coding. In Ferretti et al. [65].
26. Max Garzon, P. Neathery, Russell J. Deaton, Randy C. Murphy, Donald R. Franceschetti, and

S. E. Stevens, Jr. A new metric for DNA computing. In Proceedings 2nd Genetic Program-
ming Conference, pages 472–478, 1997.

27. Robert Penchovsky and Jorg Ackermann. DNA library design for molecular computation.
Journal of Computational Biology, 10(2):215–229, 2003.

28. Arkadii G. D’yachkov, Anthony J. Macula, Wendy K. Pogozelski, Thomas E. Renz, Vy-
acheslav V. Rykov, and David C. Torney. A weighted insertion-deletion stacked pair
thermodynamic metric. In Claudio Ferretti, Giancarlo Mauri, and Claudio Zandron, edi-
tors, DNA Computing: 10th International Workshop on DNA-Based Computers, DNA 2004
(University of Milano-Bicocca: Milan, Italy), volume 3384 of Lecture Notes in Computer
Science, pages 90–103. Springer, 2005. SynDCode is available at http://cluster.ds.
geneseo.edu:8080/ParallelDNA/ .

29. Roumen A. Dimitrov and Michael Zuker. Prediction of hybridization and melting for double-
stranded nucleic acids. Biophysical Journal, 87:215–226, July 2004.

30. John A. Rose, Russell J. Deaton, Donald R. Franceschetti, Max Garzon, and S. E. Stevens,
Jr. A statistical mechanical treatment of error in the annealing biostep of DNA computation.
In Special program in GECCO-99, pages 1829–1834, June 1999.

31. John A. Rose and Russell J. Deaton. The fidelity of annealing-ligation: A theoretical analy-
sis. In Anne Condon and Grzegorz Rozenberg, editors, DNA Computing: 6th International
Workshop on DNA-Based Computers, DNA 2000 (Leiden Center for Natural Computing:
Leiden, The Netherlands), volume 2054 of Lecture Notes in Computer Science. Springer,
2001.

32. John A. Rose, Russell J. Deaton, Masami Hayiya, and Akira Suyama. The fidelity of the
tag-antitag system. In Jonoska and Seeman [66].

33. John A. Rose, Russell J. Deaton, Masami Hagiya, and Akira Suyama. An equilibrium analy-
sis of the efficiency of an autonomous molecular computer. Physical Review E, 65(021910),
2002.

34. John A. Rose, Masami Hagiya, and Akira Suyama. The fidelity of the tag-antitag system
II: Reconcilation with the stringency picture. In Proceedings of the Congress on Evolution-
ary Computation, pages 2749–2749, 2003. NucleicPark is available at http://hagi.
is.s.u-tokyo.ac.jp/johnrose/ and http://engronline.ee.memphis.
edu/molec/demos.htm .

35. John A. Rose, Russell J. Deaton, Donald R. Franceschetti, Max Garzon, and S. E. Stevens,
Jr. Hybridization error for DNA mixtures of N species.
http://engronline.ee.memphis.edu/molec/Misc/ci.pdf, 1999.

36. John A. Rose and Akira Suyama. Physical modeling of biomolecular computers: Models,
limitations, and experimental validation. Natural Computing, 3(4):411–426, 2004.

37. John SantaLucia, Jr. and Donald Hicks. The thermodynamics of DNA structural motifs.
Annual Review of Biophysics Biomolecular Structure, 33:415–40, June 2004.

38. Alexander J. Hartemink and David K. Gifford. Thermodynamic simulation of deoxyoligonu-
cleotide hybridization for DNA computation. In Harvey Rubin and David Harlan Wood,
editors, Preliminary Proceedings of DNA Based Computers III, DIMACS Workshop 1997
(University of Pennsylvania: Philadelphia, PA), pages 15–25, 1997.

39. Alexander J. Hartemink, David K. Gifford, and Julia Khodor. Automated constraint-based
nucleotide sequence selection for DNA computation. In Lila Kari, Harvey Rubin, and
David Harlan Wood, editors, DNA Based Computers IV, DIMACS Workshop 1998 (Univer-
sity of Pennsylvania: Philadelphia, PA), Biosystems, volume 52, issues 1-3, pages 227–235.
Elsevier, October 1999.

286 J. Sager and D. Stefanovic

40. Akio Nishikawa, Masayuki Yamamura, and Masami Hagiya. DNA computation simulator
based on abstract bases. Soft Computing, 5(1):25–38, 2001.

41. David H. Mathews and Douglas H. Turner. Dynalign: An algorithm for finding the secondary
structure common to two RNA sequences. Journal of Molecular Biology, 317(217):191–203,
2002.

42. Robert M. Dirks and Niles A. Pierce. An algorithm for computing nucleic acid base-pairing
probabilities including pseudoknots. Journal of Computational Chemistry, 25:1295–1304,
2004.

43. Mirela Andronescu, Rosalia Aguirre-Hernandez, Anne Condon, and Holger H. Hoos. RNA-
soft: a suite of RNA secondary structure prediction and design software tools. Nu-
cleic Acids Research, 31(13):3416–3422, 2003. RNAsoft is available at http://
www.rnasoft.ca/.

44. David H. Mathews, Matthew D. Disney, Jessica L. Childs, Susan J. Schroeder, Michael
Zucker, and Douglas H. Turner. Incorporating chemical modification constraints into
a dynamic programming algorithm for prediction of RNA secondary structure. Pro-
ceedings of the National Academy of Sciences of the USA (PNAS), 101(19):7287–
7292, May 2004. The free energy nearest neighbor parameters are available
at http://rna.chem.rochester.edu/, RNAstructure is available at http://
128.151.176.70/RNAstructure.html.

45. Ivo Ludwig Hofacker. Vienna RNA secondary structure server. Nucleic Acids Re-
search, 31(13):3429–3431, 2003. Vienna Package is available at http://www.tbi.
univie.ac.at/˜ivo/RNA/.

46. Nicolas Peyret, Pirro Saro, and John SantaLucia, Jr. HyTher server. HyTher Version 1.0 is
available at http://ozone2.chem.wayne.edu/.

47. Nicolas Peyret, P. Ananda Seneviratne, Hatim T. Allawi, and John SantaLucia, Jr. Nearest-
neighbor thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G, and
T-T mismatches. Biochemistry, 38:3468–3477, 1999.

48. Nicolas Le Novère. MELTING, computing the melting temperature of nucleic acid du-
plex. Bioinformatics, 17(12):1226–1227, 2001. Melting is available at http://www.ebi.
ac.uk/˜lenov/meltinghome.html.

49. Richard D. Blake, Jeffrey W. Bizzaro, Jonathan D. Blake, G. R. Day, S. G. Delcourt,
J. Knowles, Kenneth A. Marx, and John SantaLucia, Jr. Statistical mechanical simulation
of polymeric DNA melting with MELTSIM. Bioinformatics, 15(5):370–375, 1999.

50. MeltWin. MeltWin is available at http://www.meltwin.com/.
51. Christoph Flamm, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. RNA folding at

elementary step resolution. RNA, 6:325–338, 2000. Kinfold is available at http://www.
www.tbi.univie.ac.at/˜xtof/RNA/Kinfold/.

52. Max Garzon, Russell J. Deaton, John A. Rose, L. Lu, and Donald R. Franceschetti. Soft
molecular computing. Proc. DNA5-99 Workshop, AMS DIMACS Series in Theoretical
Computer Science, 54:91–100, 2000. EdnaCo is available at http://zorro.cs.
memphis.edu/˜cswebadm/csweb/research/pages/bmc/ or http://
engronline.ee.memphis.edu/molec/demos.htm.

53. Visual OMP (Oligonucleotide Modeling Platform), DNA Software, Inc. Visual OMP is
available at http://www.dnasoftware.com.

54. The DNA and Natural Algorithms Group. DNA design toolbox. DNA Design Toolbox is
available at http://www.dna.caltech.edu/DNAdesign/.

55. Dongmin Kim, Soo-Yong Shin, In-Hee Lee, and Byoung-Tak Zhang. NACST/Seq: A se-
quence design system with multiobjective optimization. In Hagiya and Ohuchi [64], pages
242–251.

56. Adam J. Ruben, Stephen J. Freeland, and Laura F. Landweber. PUNCH: An evolutionary
algorithm for optimizing bit set selection. In Jonoska and Seeman [66], pages 150–160.

Designing Nucleotide Sequences for Computation: A Survey of Constraints 287

57. Morgan Bishop, Anthony J. Macula, Wendy K. Pogozelski, Thomas E. Renz, and Vyach-
eslav V. Rykov. SynDCode: Cooperative DNA code generating software. In Carbone
et al. [63], page 391.

58. Wendy K. Pogozelski, Matthew P. Bernard, Salvatore F. Priore, and Anthony J. Macula.
Experimental validation of DNA sequences for DNA computing: Use of a SYBR green assay.
In Carbone et al. [63], pages 322–331.

59. Peng Yin, Bo Guo, Christina Belmore, Will Palmeri, Erik Winfree, Thomas H. LaBean,
and John H. Reif. Tilesoft: Sequence optimization software for designing DNA seco-
ndary structures. http://www.cs.duke.edu/˜reif/paper/peng/TileSoft/
TileSoft.pdf, January 2004.

60. Russell J. Deaton and Max Garzon. Thermodynamic constraints on DNA-based computing.
In Gheorghe Păun, editor, Computing with Bio-Molecules, pages 138–152. Springer-Verlag,
Singapore, 1998.

61. Warren D. Smith. DNA computers in vitro and vivo. In Richard J. Lipton and Eric B. Baum,
editors, DNA Based Computers, DIMACS Workshop 1995 (Princeton University: Princeton,
NJ), volume 27 of Series in Discrete Mathematics and Theoretical Computer Science, pages
121–185. American Mathematical Society, 1996.

62. Laura F. Landweber and Eric B. Baum, editors. DNA Based Computers II, DIMACS Work-
shop 1996 (Princeton University: Princeton, NJ), volume 44 of Series in Discrete Mathe-
matics and Theoretical Computer Science. American Mathematical Society, 1999.

63. Alessandra Carbone, Mark Daley, Lila Kari, Ian McQuillan, and Niles Pierce, editors. Pre-
liminary Proceedings of the 11th International Workshop on DNA-Based Computers, DNA
2005 (University of Western Ontario: London, Ontario, Canada), June 2005.

64. Masami Hagiya and Azuma Ohuchi, editors. DNA Computing: 8th International Workshop
on DNA-Based Computers, DNA 2002 (Hokkaido University: Sapporo, Japan), volume 2568
of Lecture Notes in Computer Science. Springer, 2003.

65. Claudio Ferretti, Giancarlo Mauri, and Claudio Zandron, editors. Preliminary Proceedings
of the 10th International Workshop on DNA-Based Computers, DNA 2004 (University of
Milano-Bicocca: Milan, Italy), 2004.

66. Nataša Jonoska and Nadrian C. Seeman, editors. DNA Computing: 7th International Work-
shop on DNA-Based Computers, DNA 2001 (University of South Florida: Tampa, FL), vol-
ume 2340 of Lecture Notes in Computer Science. Springer, 2002.

67. Peter Schuster. Counting and maximum matching of RNA structures. Preprint, http://
www.tbi.univie.ac.at/˜pks accessed on 2/1/2005, January 2004.

68. James D. Watson, Nancy H. Hopkins, Jeffrey W. Roberts, Joan Argetsinger Steitz, and
Alan M. Weiner. Molecular Biology of the Gene. Benjamin/Cummings, Menlo Park, CA,
fourth edition, 1988.

69. Mitsuhiro Kubota and Masami Hagiya. Minimum basin algorithm: An effective analysis
technique for dna energy landscapes. In Ferretti et al. [65], pages 202–213.

70. Ignacio Tinoco, Jr., Kenneth Sauer, James C. Wang, and Joseph D. Puglisi. Physical Chem-
istry: Principles and Applications in Biological Sciences. Prentice Hall, fourth edition, 2002.

71. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Wal-
ter. Molecular Biology of the Cell. Garland, New York, fourth edition, 2002.

72. Peter Schuster, Peter F. Stadler, and Alexander Renner. RNA structures and folding: from
conventional to new issues in structure predictions. Current Opinion in Structural Biology,
7(2):229–235, April 1997.

73. Douglas H. Turner, Naoki Sugimoto, and S. M. Freier. RNA structure prediction. Annual
Review of Biophysics and Biophysical Chemistry, 17:167–192, June 1988.

288 J. Sager and D. Stefanovic

A Appendix: DNA Structure

This section provides background information on DNA chemistry that pertains to DNA
word design.

A single strand of DNA is a sequence of nucleotides. Each nucleotide contains a
sugar (deoxyribose or ribose), a phosphate group, and one of four bases, adenine (A),
thymine (T), guanine (G), or cytosine (C). RNA is composed similarly except that
thymine is replaced by the closely related uracil (U). Hybridization or annealing occurs
when a sequence of nucleotides bonds to the nucleotides of another sequence, starting
from the 5′ end (the ribose end) of one sequence and the 3′ end (the phosphate end) of
the other sequence. The nucleotides only form stable bonds in certain combinations: A
hydrogen-bonds to T or U, and G hydrogen-bonds to C. Thus A is the Watson-Crick
complement of T/U, and G is the Watson-Crick complement of C. In addition, the “wob-
ble pair”, G and U, can form weak bonds. The Watson-Crick complement of a strand is
obtained by first reversing it, and then complementing each base.

DNA (and RNA) can fold back upon itself into loops or other irregular complex
twisted shapes. The remaining subsections can be a combination of different types of
loop structures, which are single-stranded sections bounded by bonded base pairs (stem
sections). Loops can be classified into several categories, Figure 2. A hairpin loop is a
loop with a single stem. Internal loops are loops with single bases on both sides of the
stem. Bulging loops are loops with single bases on only one side of the stem. Loops
with three or more stems are called branching loops.

Hairpin Loop Bulge Loop Internal LoopStem Branching Loop

Fig. 2. DNA loops. Solid areas represent double stranded sections. Lines represent single stranded
sections.

Structure calculations attempt to predict which reactions will occur (i.e., which
bonds will form and which will break). The tendency of the atoms in a molecule to
bond together is referred to as the molecule’s stability. Stability is affected by the se-
quence of bases, as well as environmental factors such as temperature, pH, the time
given to allow reaction to complete, salt concentration, and the concentrations of the
chemical components. Temperature is the most significant of these environmental fac-
tors. The DNA folding problem refers to the prediction of the structure and folding
energy of a given sequence. There is an exponential number (approximately 1.8N) of
possible secondary structures for a sequence of length N [37, 67]. The inverse of this
problem is the selection of a sequence with a given structure.

The stability of a DNA structure is a result of the change in free energy owing to
bonding. The simplest explanation of free energy is that “free energy is energy that
has the ability to do work” [68]. When a spontaneous reaction occurs at constant tem-
perature and pressure, there is a decrease in free energy. This decrease in free energy
is equal to the maximum amount of work that the system can do on its surroundings.

Designing Nucleotide Sequences for Computation: A Survey of Constraints 289

Conversely, for a non-spontaneous reaction, the free energy is the amount of work that
must be done to cause the reaction to occur. The change in free energy is denoted ΔG.
If ΔG < 0, the reaction is spontaneous in the forward direction. If ΔG = 0, the reaction
is at equilibrium. If ΔG > 0, the reaction is spontaneous in the reverse direction. When
a bond between atoms forms, stronger bonds produce bigger changes in free energy;
consequently, atoms that bond strongly together are more likely to exist in bonded form.

The most widely used method to estimate the free energy of DNA is the nearest
neighbor model, which predicts the free energy of a duplex as the sum of the free energy
of each nearest neighbor pair plus a few correction factors. The model is valid for single
strands, Watson-Crick complementary duplexes, and mismatched duplexes. It can be
adjusted for various temperature, pH, and salt conditions. Nearest neighbor parameters
have been measured for several different types of nearest neighbors including matched
pairs, internal mismatched pairs, dangling ends, internal loops, hairpin loops, and bulge
loops. However, the fastest algorithms assume that the structure has no pseudoknots. (A
pseudoknot is an occurrence of two pairs of bonded bases at positions (i,k) and (j, l)
such that i < j < k < l.) Probabilistic measurements of free energy can also be derived
from the nearest neighbor model to predict the most likely structure. Algorithms also
exist which predict the energy landscape of the structures that a strand can form [69].

Thus, DNA is more stable when it has lower free energy and in most cases it will
fold into the structure that has the minimum free energy. However, this structure is not
necessarily the most likely structure to form. In fact, the equilibrium structure may not
be a single structure at all; “what actually occurs, on the time scale of most enzymatic
reactions relevant for biological function, is rather an ensemble of related structures
interchanging more or less rapidly with one another” [22]. For example, the structure
of the DNA of the bacterial virus T4 has several forms in solution including a tight coil
and an extended form [70].

For more comprehensive information about DNA chemistry, see [68,71]. For a sum-
mary of nearest-neighbor thermodynamics see [37]. For more information about nu-
cleotide structures see [72, 67]. For more information about structure prediction
algorithms see [73].

A Self-assembly Model of Time-Dependent
Glue Strength�

Sudheer Sahu, Peng Yin, and John H. Reif

Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA

{sudheer, py, reif}@cs.duke.edu

Abstract. We propose a self-assembly model in which the glue strength between
two juxtaposed tiles is a function of the time they have been in neighboring posi-
tions. We then present an implementation of our model using strand displacement
reactions on DNA tiles. Under our model, we can demonstrate and study cataly-
sis and self-replication in the tile assembly. We then study the tile complexity for
assembling shapes in our model and show that a thin rectangle of size k × N can
be assembled using O(log N

log log N
) types of tiles.

1 Introduction

Self-assembly is a ubiquitous process in which small objects self-organize into larger
and complex structures. Examples in nature are numerous: atoms self-assemble into
molecules, molecules into cells, cells into tissues, and so on. Recently, self-assembly
has also been demonstrated as a powerful technique for constructing nano-scale objects.
For example, a wide variety of DNA lattices made from self-assembled branched DNA
molecules (DNA tiles) [9, 19, 21, 22, 40, 42, 43] have been successfully constructed.
Peptide self-assembly provides another nanoscale example [8]. Self-assembly is also
used for mesoscale constructions using capillary forces [7, 26] or magnetic forces [1].

Mathematical studies of tiling dates back to 1960s, when Wang introduced his
tiling model [36]. The initial focus of research in this area was towards the decid-
ability/undecidability of the tiling problem [25]. A revival in the study of tiling was
instigated in 1996 when Winfree proposed the simulation of computation [41] using
self-assembly of DNA tiles.

In 2000, Rothemund and Winfree [28] proposed the abstract Tile Assembly Model,
a mathematical model for theoretical studies of self-assembly. This model was later ex-
tended by Adleman et al. to include the time complexity of generating specified assem-
blies [3]. Later work includes combinatorial optimization, complexity problems, fault
tolerance, and topology changes, in the abstract Tile Assembly Model as well as in some
of its variants [4, 5, 6, 10, 11, 12, 13, 14, 17, 18, 20, 23, 24, 27, 29, 31, 32, 34, 35, 38, 39].

In this paper, we use the term standard model to refer to the above abstract Tile
Assembly Model proposed by Winfree. For detailed description of the standard model,
see [28].

� The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC
Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 290–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Self-assembly Model of Time-Dependent Glue Strength 291

Roughly speaking, a tile in the standard model is a unit square where each side
of the square has a glue from a set Σ associated with it. In this paper we use the
terms pad and side of the tile interchangeably. Formally, a tile is an ordered quadru-
ple (σn, σe, σs, σw) ∈ Σ4, where σn, σe, σs, and σw represent the northern, eastern,
southern, and western side glues of the tile, respectively. Σ also contains a special sym-
bol null, which is a zero-strength glue. T denotes the set of all tiles in the system. A
tile cannot be rotated. So, (σ1, σ2, σ3, σ4) �= (σ2, σ3, σ4, σ1). Also defined are vari-
ous projection functions n : T → Σ, e : T → Σ, s : T → Σ, and w : T → Σ,
where n(σ1, σ2, σ3, σ4) = σ1, e(σ1, σ2, σ3, σ4) = σ2, s(σ1, σ2, σ3, σ4) = σ3, and
w(σ1, σ2, σ3, σ4) = σ4.

A glue strength function g : Σ ×Σ → R determines the glue strength between two
abutting tiles. g(σ, σ′) = g(σ′, σ) is the strength between two tiles that abut on sides
with glues σ and σ′. If σ �= σ′, g(σ, σ′) = 0; otherwise it is a positive value. It is also as-
sumed that g(σ, null) = 0, ∀σ ∈ Σ. In the tile set T , there is a special seed tile s. There
is a system parameter to control the assembly known as temperature and denoted as τ .
All the ingredients described above constitute a tile system, a quadruple 〈T, s, g, τ〉. A
configuration is a snapshot of the assembly. More formally, it is the mapping from Z

2 to
T
⋃
{EMPTY } where EMPTY is a special tile (null, null, null, null), indicating

a tile is not present. For a configuration C, a tile A = (σn, σe, σs, σw) is attachable
at position (i, j) iff C(i, j) = EMPTY and g(σe, w(C(i, j + 1))) + g(σn, s(C(i +
1, j))) + g(σw, e(C(i, j − 1))) + g(σs, n(C(i− 1, j))) ≥ τ .

Assembly takes place sequentially starting from a seed tile s at a known position.
For a given tile system, any assembly that can be obtained by starting from the seed and
adding tiles one by one, is said to be produced. An assembly is called to be terminally
produced if no further tiles can be added to it. The tile complexity of a shape S is
the size of the smallest tile set required to uniquely and terminally assemble S under
a given assembly model. One of the well-known results is that the tile complexity of
self-assembly of a square of size N ×N in standard model is Θ(log N

log log N) [3, 28].
Adleman introduced a reversible model [2], and studied the kinetics of the reversible

linear self-assemblies of tiles. Winfree also proposed a kinetic assembly model to study
the kinetics of the self-assembly [37]. Apart from these basic models, various gener-
alized models of self-assembly are also studied [6, 16]: namely, multiple temperature
model, flexible glue model, and q-tile model.

Though all these models contribute greatly towards a good understanding of the pro-
cess of self-assembly, there are still a few things that could not be easily explained or
modeled (for example, the process of catalysis and self-replication in tile assembly).
Recently, Schulman and Winfree show self-replication using the growth of DNA crys-
tals [33], but their system requires shear forces to separate the replicated units. In this
paper we propose a new model, in which catalysis and self-replication is possible with-
out external intervention. In this new model, which is built on the basic framework of
abstract Tile Assembly Model, the glue strength between different glues is dependent
on the time for which they have remained together.

The rest of the paper is organized as follows. First we define our model formally in
Section 2. We then put forth a method to physically implement such a system in Sec-
tion 3. Then we present the processes of catalysis and self-replication in tile assembly

292 S. Sahu, P. Yin, and J.H. Reif

in our model in Sections 4 and 5, respectively. In Section 6, we discuss the tile com-
plexity of assembly of various shapes. We conclude with the discussion of our results
and future research directions in Section 7.

2 Time-Dependent Glue Model

We propose a Time-dependent Glue Model, which is built on the framework described
above. In this model, the glue-strength between two tiles is dependent upon the time for
which the two tiles have remained together.

Let τ be the temperature of the system. Tiles are defined as in standard model. How-
ever, in our model, glue strength function g is defined as g : Σ ×Σ × R→ R.

In g(σ, σ′, t) the argument t is the time for which two sides of the tiles with glue-
labels σ and σ′ have been juxtaposed. For every pair (σ, σ′), the value g(σ, σ′, t) in-
creases with t up to a maximum limit and then takes a constant value determined by σ
and σ′. We define the time when g reaches this maximum as time for maximum strength,
tms : Σ ×Σ → R. Note g(σ, σ′, t) = g(σ, σ′,tms(σ, σ′)) for t > tms(σ, σ′).

We also have a function minimum interaction time defined as mit : Σ ×Σ → R.

Time

G
lu

e
St

re
n

g
th

tms

Maximum Strength

mit

g

t

Fig. 1. Figure illustrates the concept of time-dependent glue strength, minimum interaction time,
and time for maximum strength

For every pair (σ, σ′), a function mit(σ, σ′) is defined as the minimum time for which
the two tiles with abutting glue symbols σ and σ′ stay together. If g(σ, σ′, mit(σ, σ′))
≥ τ , the two tiles will stay together; otherwise they will separate if there is no other
force holding them in their abutting positions. An example of glue-strength function is
shown in Figure 1. Intuitively speaking, mit serves as the minimum time required by
the pads to decide whether they want to separate or remain joined. We further define
mit(σ, null) = 0, tms(σ, null) = 0, and g(σ, null, t) = 0.

Next we give the justification and estimation of mit for a pair (σ, σ′) of glues. Let
g(σ, σ′, t) be the glue strength function. For more realistic estimation of mit, consider a
physical system in which, in addition to association, dissociation reactions also occur.

A Self-assembly Model of Time-Dependent Glue Strength 293

Let p(b) be the probability of dissociation when the bond strength is b, and f(t) be the
probability that no dissociation takes place in the time interval [0 . . . t]. Then,

f(t + δt) = f(t) · (1− p(g(t + δt))) · δt,
f(t + δt)

f(t)
= (1− p(g(t + δt))) · δt.

The probability that the dissociation takes place between time t and t+δt is given by
f(t) ·p(g(t+ δt)) · δt. Since mit is defined as the time for which two glues are expected
to remain together once they come in contact, its expected value is:

E[mit] = lim
δt→0

∞∑
t=0

t · f(t) · p(g(t + δt)) · δt,

where p(b) can be determined using Winfree’s kinetic model [37]. Hence, based on the
knowledge of glue strength function it is possible to determine the expected minimum
interaction time for a pair (σ, σ′). For simplicity, we will use the expected value of mit
as the actual value of mit for a pair of glues (σ, σ′).

Next we illustrate the time-dependent model with an example of the addition of a
single tile to an aggregate. When a position (i, j) becomes available for the addition of
a tile A, it will stay at (i, j) for a time interval t0, where t0 = max {mit(e(A), w(C(i, j+
1))), mit(n(A), s(C(i+1, j))),mit(w(A), e(C(i, j−1))),mit(s(A), n(C(i−1, j)))}.
Recall that our model requires that if two tiles ever come in contact, they will stay
together till the minimum interaction time of the corresponding glues.

After this time interval t0, if g(e(A), w(C(i, j + 1)), t0) + g(n(A), s(C(i +
1, j)), t0) + g(w(A), e(C(i, j − 1)), t0) + g(s(A), n(C(i − 1, j)), t0) < τ , A will
detach; otherwise, A will continue to stay at position (i, j).

We describe in the next section a method to implement our model of time-dependent
glue strength with DNA tiles.

3 Implementation of Time-Dependent Glue Model

If the hydrogen bonds between the bases in two hybridizing DNA strands build up
sequentially, the total binding force between the two strands will increase with time
up to the complete hybridization, which will provide a simple way of obtaining time-
dependent glue strength between DNA tiles. However, even if we assume that the
hybridization of two complementary DNA strands is instantaneous, we can design a
multi-step binding mechanism to implement the idea of time-dependent glue strength,
which exploits the phenomenon of strand displacement.

Figure 2 (a) illustrates the process of strand displacement in which strand B
displaces strand C from strand A. Figure 2 (b) illustrates one step during this process.
At any time either the hybridization of B with A (and hence dehybridization of C
from A) or hybridization of C with A (and hence dehybridization of B from A) can
proceed with 1/2 probability. Hence, we can model the strand displacement process
as a random walk, with forward direction corresponding to hybridization between B

294 S. Sahu, P. Yin, and J.H. Reif

B C

127A

136A

B CB C

118A

p q

A

B

C

C

(a) (b)

C

B

A

A

B

Fig. 2. Figure (a) illustrates the process of strand displacement. Figure (b) shows a single step of
strand-displacement as single step of random walk. In (b), the numbers represent the number of
DNA base pairs.

(a)

C1 C1C1

A A A

A

A

A

BB

B

B

B B

(b)

(h)(e)

(c) (d)

C2 C3

A

B

(f)

A

B

(g)

C2 C3 C2 C3
C2 C3

C2 C3
C3 C3

Time

G
lu

e
St

re
n

g
th

c1 displaced

c displaced

c displaced3

2

(i)

Fig. 3. Figures (a) to (h) illustrate a mechanism by which strand displacement reaction is used to
implement time-dependent glue between two pads. They show step by step removal of Ci’s by
B from A. In Figure 3 (i) an imaginary graph illustrates the variation of glue-strength between A
and B w.r.t. time.

A Self-assembly Model of Time-Dependent Glue Strength 295

and A, and backward direction corresponding to hybridization between C and A. To
simplify the model, we can assume that the step length in this random walk is 1 base
pair long. Hence, if the length of C is n bases, the expected number of steps required
for B to replace C is n2 [15].

Next we describe the design of the pads of DNA tiles with time dependent glue using
the above mechanism of strand displacement.

To make the glue between pad A and pad B time-dependent, we need a construction
similar to the one in Figure 3 (a). Strand representing pad A has various smaller strands
(Ci’s, called protector strands) hybridized to it as shown in Figure 3 (a). Strand B will
displace these protector strands Ci sequentially.

The variable tms here will be the time required for B to displace all the Ci’s. In
the case when there are k different small strands Ci of length ni attached to A, tms is∑k

i=1 n2
i .

Figure 3 gives the step by step illustration of the above process. The variation of
glue strength between A and B is shown in Figure 3 (i). By controlling the length of
various Ci’s (i.e. n1, n2, . . . , nk), we can control the glue-strength function g for a pair
of tile-pads (or glues). Thus, we have shown a method to render the DNA tiles the
characteristic of time-dependent glue strength.

An interesting property is that the individual strand displacement of B against Ci is
modeled as a random walk, but the complete process described above can be viewed as
roughly monotonic. As shown in Figure 3 (i), the strength of the hybridization between
strand A and strand B increases in a roughly monotonic fashion with the removal of
every Ci. However during the individual competition between B and Ci, the increase
is not monotonic.

4 Catalysis

Catalysis is the phenomenon in which an external substance facilitates the reac-
tion of other substances, without itself being used up in the process. The follow-
ing question was posed by Adleman [2]: can we model the process of catalysis
in self-assembly of tiles? In this section, we present a model for catalysis in self-
assembly of tiles using time-dependent glue model. Now consider a supertile X (com-
posed of two attached tiles C and D) and two single tiles A and B as shown in
Figure 4 (a). We describe below how X can serve as a catalyst for the assembly of
A and B. Assume t0 = mit(e(A), w(B)) such that g(e(A), w(B), t0) is less than
the temperature τ . Let mit(s(A), n(C)) = mit(s(B), n(D)) = t1 > t0. Also assume
g(s(A), n(C), t1) + g(s(B), n(D), t1) < τ and g(e(A), w(B), t1) ≥ τ .

The graph in Figure 4 (b) illustrates an example set of required conditions for the
glue strength functions in the system.

To show that X acts as a catalyst, we first show that without X stable A · B can not
form. Next we show that A · B will form when X is present and X will be recovered
unchanged after the formation of A · B.

WithoutX in the system, A and B can only be held in neighboring positions for time
t0 = mit(e(A), w(B)), since g(e(A), w(B), t0) < τ . Hence, at t0, A and B will fall
apart.

296 S. Sahu, P. Yin, and J.H. Reif

A B

X

A B

X

A B

X

A B

X C D C D

C D C D

Time
G

lu
e

St
re

n
g

th

tms

temperature

mit mit

(a) (b)

tt 10

Fig. 4. Figure (a) shows catalyst X with the tiles C and D catalyzes the formation of A · B.
(b) shows the conditions required for catalysis in terms of the glue strength function. Solid
line shows the plot of g(e(A), w(B), t) and dashed line shows the plot of g(s(A), n(C), t) +
g(s(B), n(D), t).

However, in the presence of X , the situation changes. Supertile X has two neighbor-
ing tiles C and D. Tiles A and B attach themselves to C and D as shown in Figure 4
(a). Since we let mit(s(A), n(C)) = mit(s(B), n(D)) = t1 > t0, tiles A and B are
held in the same position for time t1. By our construction, as shown in Figure 4 (b), the
following two events will occur at time t1:

– At t1, the glue strength between A and B is g(e(A), w(B), t1) ≥ τ and hence
A and B will be glued together. That is, in the presence of X , A and B remain
together for a longer time, producing stably glued A · B.

– At t1, the total glue strength between A · B and X is g(s(A), n(C), t1) +
g(s(B), n(D), t1) < τ , and the glued A · B will fall off X . X is recovered un-
changed from the reaction and the catalysis is complete. NowX is ready to catalyze
other copies of A and B.

Note that if only A (resp. B) comes in to attach with C (resp. D), it will fall off at the
end of time mit(s(A), n(C)) (resp. mit(s(B), n(D))). If assembled A ·B comes in, it
will also fall off, at time t1. These two reactions are futile reactions, and do not block
the desired catalysis reaction. However, as the concentration of A · B increases and
the concentration of unattached A and B decreases, the catalysis efficiency of X will
decrease due to the increased probability of the occurrence of futile reaction between
A ·B and C ·D.

5 Self-replication

Self-replication process is one of the fundamental process of nature, in which a system
creates copies of itself. We discuss below an approach to model self-replication using
the time-dependent glue model.

A Self-assembly Model of Time-Dependent Glue Strength 297

A

C

B

D

A A
A

A

A

B B
B

B

B

C C

C

C

C

D D

D

D

D

State 1

State 2

Fig. 5. A schematic of self-replication

Our approach is built on the above described process of catalysis: a product A · B
catalyzes the formation of C ·D, which in turn catalyzes the formation of A · B. And
hence an exponential growth of self-replicated A · B and C ·D takes place.

More precisely, let t0 < t1, consider tiles A, B, C, and D, such that :

mit(e(A), w(B)) = mit(e(C), w(D)) = t0,

mit(s(A), n(C)) = mit(s(B), n(D)) = t1,

g(e(A), w(B), t0) = g(e(C), w(D), t0) < τ,

g(e(A), w(B), t1) = g(e(C), w(D), t1) > τ,

g(s(A), n(C), t1) + g(s(B), n(D), t1) < τ.

A system containing these four types of tiles has two states:

State 1. If there is no template A · B or C · D in the system, no assembled super-
tile exists since no two tiles can be held together long enough to form strong enough
glue between them such that they become stably glued. Since mit(e(A), w(B)) =
mit(e(C), w(D)) = t0 and g(e(A), w(B), t0) = g(e(C), w(D), t0) < τ , neither sta-
ble A ·B nor stable C ·D can form. Similarly, mit(s(A), n(C)) = mit(s(B), n(D)) =
t1, g(s(A), n(C), t1) < τ , and g(s(B), n(D), t1) < τ implies that neither stable A ·C
nor stable B ·D can form.

State 2. In contrast, if there is an initial copy of stable A · B in the system, self-
replication occurs as follows. A · B serves as catalyst for the formation of C · D, and
C ·D and A ·B separate from each other at the end of the catalysis period, as described
in Section 4; in turn, C ·D serves as catalyst for the formation of A · B. Thus we have
a classical self-replication system: one makes a copy of itself via its complement. The
number of the initial template (A ·B) and its complement (C ·D) grows exponentially
in such system.

Hence, if the system is in state 1, it needs a triggering activity (formation of an stable
A·B or C ·D) to go into state 2. Once the system is in state 2, it starts the self-replication
process. Figure 5 illustrates the process of self-replication in the assembly of tiles.

298 S. Sahu, P. Yin, and J.H. Reif

If the system is in state 1, then the triggering activity (formation of an stable A · B
or C · D) can take place only if A, B, C, D co-position themselves so that the east
side of A faces the west side of B and the south side of A faces the north side of C,
and at the same time the south side of B faces the north side of D. In such a situation,
A and C will remain abutted till time t1, B and D will remain abutted till time t1, and A
and B (and C and D) might also remain together for time t1, producing stable A · B
and stable C · D. And this will bring the system to state 2. But such copositioning of
4 tiles is a very low probability event. Thus a very low probability event can perturb
a system in state 1 and triggers tremendous changes by bringing the system to state 2
where self-replication occurs.

6 Tile Complexity Results

In the standard model, the tile complexity of assembling an N×N square is Θ(log N
log log N)

[3, 28]. It is also known that the upper bound on the tile complexity of assembling a
k × N rectangle in the standard model is O(k + N1/k) and that the lower bound on

tile complexity of assembling a k × N rectangle is Ω(N1/k

k) [6]. For small values of
k this lower-bound is asymptotically larger than O(log N

log log N). Here we claim that, in
our model, as in the multi-temperature model defined in [6], a k ×N rectangle can be
self-assembled using O(log N

log log N) types of tiles, even for small values of k. The proof
technique follows the same spirit as in [6].

Theorem 1. In time-dependent glue model, the tile complexity of self-assembling a k×
N rectangle for an arbitrary integer k ≥ 2 is O(log N

log log N).

Proof. The tile complexity of self-assembling a k ×N rectangle is O(N
1
k + k) for the

standard model [6]. In time dependent glue model, we can use the similar idea as in [6]
to reduce the tile complexity of assembling thin rectangles. For given k and N , build a
j × N rectangle with j > k such that the glues among the first k rows become strong
after their mit (minimum interaction time), while the glues among the last j − k rows
do not become as strong. As such, these j − k rows, referred to as volatile rows, will
fall apart after certain time and produce the target k ×N rectangle.

The tile set required to accomplish this construction is shown in Figure 6, which is
similar to the one used in [6]. For more detailed illustration of this tile set, refer to [6].
First, a j-digit m-base counter is assembled as follows. Starting from the west edge of
the seed tile, a chain of length m is formed in the first row using m chain tiles. At the
same time tiles in the seed column also start assembling. It should be noted that first k
tiles in the seed column have sufficient glue-strength and they are stable. Now starting
from their west edges, the 0 normal tiles start filling the m − 1 columns in the upper
rows. Then the hairpin tiles HP

1 and HR
1 assemble in the second row, which causes

the assembly of further m chain tiles in the first row, and the assembly of 1 normal
tiles in the second row (and 0 normal tiles in the upper rows) in the next section of m
columns. Generally speaking, whenever a Cm−1 chain tile is assembled in the first row,
probe tiles in the upper rows are assembled until reaching a row that does not contain
an m− 1 normal tile. In such a row, the appropriate hairpin tiles are assembled and this
further propagates the assembly of return probe tiles downwards until the first row is

A Self-assembly Model of Time-Dependent Glue Strength 299

rggp g

c
0c

1
c

2
c

m-1
c

m-2 c
i+1

c
i

c
0

S 0

S 1

S k-2

S k-1

S k

S 'k+1

S 'j-1H H

H H

H H

i'

i

i

P'R'

P

P

R

R

C 0C 1
C iCm-2

Cm-1

s 1

s 2

s k-2

s k-1

s k

s k+1

s k+2

s j-1

p

r' p'

r

d

u

u

u

u

u

u

c
1

u

u

u

u **

u '

u '

p'

p

p

p

p'r'

r'

r

r

r

g g

pr

p**
r**

g'g'

g** g**

g'

g'

g**

g

g

g

u 'i u 'i

u i

u i
* u i

*

u i
'

u 0
*

u 0
'

u i

u i

u i
*

u 0

i-1
'

m-1

m-1
'

i-1
*

m-1
*

i-1

hi

hi

*

hi
'

0
* d

0
*

d
0

d
0

d
0
'

d
0
'

0

*
*

0

0

0

0

0

*

i

*

P

R' P'

*R

*

*

PR
ii

ii

i

**H H

i

PR
d

u

u

p

p

r

r

p'r'

g' g'

g'

g**

u i
** u i

**

u 0
**

u i
**

i-1
**

m-1
**

hi
**

0
** d

0
**

**

**

P**R

**

**

ii

s k

**

**

Hairpin Tiles,

Return probes and Probes

Seed ColumnNormal Tiles

Seed Tile

Chain Tiles

* row

** row

Fig. 6. Tile set to construct a k × N rectangle using only O(N1/j + j) tiles. The glue strength
functions of gray, dashed, and black glues are defined in the proof.

reached, where a C0 chain tile gets assembled. This again starts an assembly of a chain
of length m. The whole process is repeated until a j ×mj rectangle is assembled.

Next we describe our modifications which are required for the j − k upper volatile
rows to get disassembled after the complete assembly of the j ×mj rectangle. First of

300 S. Sahu, P. Yin, and J.H. Reif

all we need to have a special (k + 1)-th row (∗∗ row), which will assemble to the north
of the k-th row (∗ row), as shown in Figure 6.

The operating temperature τ = 2. Assume that for all glue-types, mit = t0 and
tms = t1. There are three kinds of glues shown in Figure 6: black, gray, and dashed.
Assume that the glue-strength function for a single black glue is gblack(t) , a single gray
glue is ggray(t), and a single dashed glue is gdashed(t). They are defined as

gblack(t) =

⎧⎨⎩
4t
5t0

t < t0
4
5 + t−t0

5(t1−t0) t0 ≤ t < t1
1 t ≥ t1

ggray(t) =

⎧⎨⎩
2t
5t0

t < t0
2
5 + t−t0

10(t1−t0)
t0 ≤ t < t1

1
2 t ≥ t1

gdashed(t) =
{ 2t

5t0
t < t0

2
5 t ≥ t0

Multiple glues shown on the same side of a tile in Figure 6 are additive. For example,

the glue strength between Ci and Ci+1 (0 ≤ i ≤ m− 2) is 2gblack(t) + ggray(t).
This system will start assembling like a base N1/j counter of j digits, as briefed

above and detailed in [3, 6]. It will first construct a rectangle of size j×N using N1/j+j
type of tiles. Once the rectangle is complete, the tile on the north-west corner will start
the required disassembly of the upper (j− k) volatile rows, which results in the forma-
tion of a k × N rectangle. We call these two phases Assembly phase and Disassembly
phase respectively, and describe them below.

Assembly Phase
In the Assembly Phase, we aim at constructing a j×N rectangle. In the time dependent
model, the assembly proceeds as in the standard model until the assembly of P ∗ tile in
the k-th row (∗ row). At this point, an HR∗∗

tile is required to get assembled. How-
ever, when the HR∗∗

tile is assembled in the (k + 1)-th row, the total support on HR∗∗

from its east neighbor is only 4
5 + 2

5 < 2 at the end of mit. Thus HR∗∗
must obtain

additional support; otherwise it will get disassembled, blocking the desired assembly
process. The additional support comes both from its south neighbor and its west neigh-
bor. (1) On the south front, tile R∗ can arrive and be incorporated in the k-th row (∗ row)
of the assembly. It holds HR∗∗

for another time interval of mit and provides a support
of 2

5 . Further note that during this second interval, an R tile can be assembled in the
(k− 1)-th row, and the R∗ tile in the k-th row will then have support 2 at mit and hence
stay attached. In addition, tile R has support 2 at mit, so it will also stay attached. Re-
garding HR∗∗

, the end result is that it receives an additional stable support 2
5 from its

south neighbor. However, the maximum support from both the south and the east is at
most 1+ 1

2 + 2
5 , which is still less than τ = 2. Fortunately, additional rescue comes from

the west. (2) On the west front, an i∗∗ tile can get attached to HR∗∗
, and stabilize it by

raising its total support above 2. However, this support is unstable, or volatile, in the
sense that i∗∗ itself needs additional support from its own west and south neighbors to

A Self-assembly Model of Time-Dependent Glue Strength 301

stay attached. If this support can not come in time, that is, before mit, i∗∗ will get disas-
sembled, in turn causing the disassembly of HR∗∗

. The key observation here is that this
assembly/disassembly is a reversible dynamic process: the disassembly may stop and
start going backwards (i.e. assembling again) at any point. Thus in a dynamic, reversible
fashion, the target structure of the Assembly Phase, namely the j×N rectangle, can be
eventually constructed.

The above added complication is due to the fact that we require the HR∗∗
tiles in the

(k + 1)-th row to get a total support of < 2 from the south and the east. This is crucial
because during the subsequent Disassembly Phase (as we describe next) the desired
disassembly can only carry through if the total support of each volatile tile from the
south and the east is < 2.

Disassembly Phase
In the Disassembly Phase, we will remove the j − k volatile rows, and reach the final
target structure, a k ×N rectangle. Once the j ×N rectangle is complete, the tile T at
the north-west corner (P ′ tile in the j-th row) initiates the disassembly. When the mit of
the glue-pairs between tile T and its neighbors is over, tile T will get detached because
the total glue strength that it has accumulated is 4

5 + 2
5 < τ = 2. Note that, unlike the

above case for HR∗∗
, no additional support can come from the west for tile T since T

is the west-most tiles. As such, T is doomed to get disassembled. With T gone, T ’s east
neighbor will get removed next, since it now has a total glue strength ≤ 1 + 1

2 < τ .
Similarly, all the tiles in this row will get removed one by one, followed by the removal
of the tiles in the next row (south row). Such disassembly of the tiles continues until we
are left with the target rectangle of size k×N , whose constituent tiles, at this stage, all
have a total glue strength no less than τ = 2, and hence stay stably attached.

Note that, similar as in the Assembly Phase, the volatile tiles that just got removed
might come back. But again, ultimately they will have to all fall off (after the mit), and
produce the desired k ×N rectangle.

Concluding the Proof
We can construct a k×N rectangle using O(N1/j + j) type of tiles (where j > k). As
in [6], it can be reduced to O(log N

log log N) by choosing j = log N
log log N−log log log N . �

1

2

3

4Connector
 Tiles

k

k

seed

Fig. 7. Direction of the gray arrow shows the direction of construction of a square with a hole,
starting from the indicated seed

302 S. Sahu, P. Yin, and J.H. Reif

Thin rectangles can serve as building blocks for the construction of many other interest-
ing shapes. One example is a square of size N×N with a large square hole of size k×k

(k ∼ N). Under the standard model, the lower bound can be shown to be Ω((k)
2

N−k

N−k)
by a lower bound argument similar to the one in [6]. Note that as N − k decreases,
i.e. the square hole in the square increases, the lower bound increases. In the case when
N − k is smaller than log N

log log N−log log log N , the lower bound is more than log N
log log N . In

the case when N − k is a small constant, the complexity is almost N c, where c is some
constant < 1. However, in time-dependent model, the tile complexity of this shape can
be reduced to O(log k

log log k) even for small values of N − k, using our thin rectangle
construction.

The basic idea is quite simple. We sequentially grow four different (N−k−2
2)× (k +

2) rectangles that will make up the major part of the square’s sides. To enable the
sequential growth of these rectangles, we introduce four connector tiles that concatenate
them. After the completion of one rectangle the connector tile will assemble and provide
basis for the assembly of the subsequent rectangle. Finally, some more constant type of
tiles will be introduced to fill in the gaps at the four corners this N ×N square, and the
gap between two subsequent connector tiles, producing the target N ×N square with a
k × k hole.

The upper bound on the number of tiles is exactly the same as the upper bound for
constructing the four thin rectangles, which is O(log k

log log k).

7 Discussion and Future Work

In this paper, we define a model in which the glue strength between tiles depends upon
the time they have been abutting each other. Under this model, we demonstrate and
analyze catalysis and self-replication, and show how to construct a thin k×N rectangle
using O(log N

log log N) tiles. The upper bound on assembling a thin rectangle is obtained
by applying similar assembly strategy as in the multi-temperature model [6]. Thus, an
interesting question is whether the multi-temperature model can be simulated using
our time-dependent model. We also want to further investigate if under our model the
lower bound of Ω(log N

log log N) for the tile complexity of an N ×N square can be further
improved.

Another interesting direction is to study the kinetics of the catalysis and self-
replication analytically. Winfree’s kinetic model [37] can be used to study them, but
the challenge here is that the rate constant for the dissociation for a particular species
varies with time because of changing glue strengths of its bonds. This makes the analyt-
ical study hard. However, these catalytic and self-replicating systems can be modeled
as a continuous time markov chain, and studied using computer simulation to obtain
empirical results.

References

1. http://mrsec.wisc.edu/edetc/selfassembly/.
2. L. Adleman. Towards a mathematical theory of self-assembly. Technical Report 00-722,

University of Southern California, 2000.

A Self-assembly Model of Time-Dependent Glue Strength 303

3. L. Adleman, Q. Cheng, A. Goel, and M.D. Huang. Running time and program size for self-
assembled squares. In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 740–748. ACM Press, 2001.

4. L. Adleman, Q. Cheng, A. Goel, M.D. Huang, D. Kempe, P.M. de Espans, and P.W.K. Rothe-
mund. Combinatorial optimization problems in self-assembly. In Proceedings of the thirty-
fourth annual ACM symposium on Theory of computing, pages 23–32. ACM Press, 2002.

5. L. Adleman, J. Kari, L. Kari, and D. Reishus. On the decidability of self-assembly of infinite
ribbons. In Proceedings of the 43rd Symposium on Foundations of Computer Science, pages
530–537, 2002.

6. G. Aggarwal, M.H. Goldwasser, M.Y. Kao, and R.T. Schweller. Complexities for generalized
models of self-assembly. In Proceedings of 15th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 880–889. ACM Press, 2004.

7. N. Bowden, A. Terfort, J. Carbeck, and G.M. Whitesides. Self-assembly of mesoscale objects
into ordered two-dimensional arrays. Science, 276(11):233–235, 1997.

8. R.F. Bruinsma, W.M. Gelbart, D. Reguera, J. Rudnick, and R. Zandi. Viral self-assembly as
a thermodynamic process. Phys. Rev. Lett., 90(24):248101, 2003 June 20.

9. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

10. H.L. Chen, Q. Cheng, A. Goel, M.D. Huang, and P.M. de Espanes. Invadable self-assembly:
Combining robustness with efficiency. In Proceedings of the 15th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 890–899, 2004.

11. Q. Cheng and P.M. de Espanes. Resolving two open problems in the self-assembly of
squares. Technical Report 03-793, University of Southern California, 2003.

12. Q. Cheng, A. Goel, and P. Moisset. Optimal self-assembly of counters at temperature two.
In Proceedings of the first conference on Foundations of nanoscience: self-assembled archi-
tectures and devices, 2004.

13. M. Cook, P.W.K. Rothemund, and E. Winfree. Self-assembled circuit patterns. In DNA
Based Computers 9, volume 2943 of LNCS, pages 91–107, 2004.

14. K. Fujibayashi and S. Murata. A method for error suppression for self-assembling DNA tiles.
In DNA Based Computing 10, pages 284–293, 2004.

15. B.D. Hughes. Random Walks and Random Environments, Vol. 1: Random Walks. New York:
Oxford University Press, 1995.

16. M. Kao and R. Schweller. Reduce complexity for tile self-assembly through temperature
programming. In Proceedings of 17th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA) (to appear). ACM Press, 2006.

17. E. Klavins. Directed self-assembly using graph grammars. In Foundations of Nanoscience:
Self Assembled Architectures and Devices, Snowbird, UT, 2004.

18. E. Klavins, R. Ghrist, and D. Lipsky. Graph grammars for self-assembling robotic systems.
In Proceedings of the International Conference on Robotics and Automation, 2004.

19. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

20. M.G. Lagoudakis and T.H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA
Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Soci-
ety, 2000.

21. D. Liu, M. Wang, Z. Deng, R. Walulu, and C. Mao. Tensegrity: Construction of rigid DNA
triangles with flexible four-arm dna junctions. J. Am. Chem. Soc., 126:2324–2325, 2004.

22. C. Mao, W. Sun, and N.C. Seeman. Designed two-dimensional DNA holliday junction arrays
visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

23. J.H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies.
In Proc. 10th International Meeting on DNA Computing, pages 248–260, 2004.

304 S. Sahu, P. Yin, and J.H. Reif

24. J.H. Reif, S. Sahu, and P. Yin. Complexity of graph self-assembly in accretive systems and
self-destructible systems. In Proc. 11th International Meeting on DNA Computing, pages
101–112, 2005.

25. R.M. Robinson. Undecidability and non periodicity of tilings of the plane. Inventiones Math,
12:177–209, 1971.

26. P.W.K. Rothemund. Using lateral capillary forces to compute by self-assembly. Proc. Natl.
Acad. Sci. USA, 97(3):984–989, 2000.

27. P.W.K. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD thesis,
University of Southern California, 2001.

28. P.W.K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares
(extended abstract). In Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 459–468. ACM Press, 2000.

29. P. Sa-Ardyen, N. Jonoska, and N.C. Seeman. Self-assembling DNA graphs. Lecture Notes
in Computer Science, 2568:1–9, 2003.

30. S. Sahu, P. Yin, and J.H. Reif. A self-assembly model of DNA tiles with time-dependent
glue strength. Technical Report CS-2005-04, Duke University, 2005.

31. R. Schulman, S. Lee, N. Papadakis, and E. Winfree. One dimensional boundaries for DNA
tile self-assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 108–125, 2004.

32. R. Schulman and E. Winfree. Programmable control of nucleation for algorithmic self-
assembly. In DNA Based Computers 10, LNCS, 2005.

33. R. Schulman and E. Winfree. Self-replication and evolution of DNA crystals. In The 13th
European Conference on Artificial Life (ECAL), 2005.

34. D. Soloveichik and E. Winfree. Complexity of compact proofreading for self-assembled
patterns. In Proc. 11th International Meeting on DNA Computing, pages 125–135, 2005.

35. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. In DNA Based Com-
puters 10, LNCS, 2005.

36. H. Wang. Proving theorems by pattern recognition ii. Bell Systems Technical Journal, 40:
1–41, 1961.

37. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech,
1998.

38. E. Winfree. Self-healing tile sets (draft). 2005.
39. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-

assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.
40. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-

dimensional DNA crystals. Nature, 394(6693):539–544, 1998.
41. E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA:

Some theory and experiments. In L.F. Landweber and E.B. Baum, editors, DNA Based Com-
puters II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1999.

42. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA
tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):
8103–8108, 2003.

43. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly
of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.

Complexity of Compact Proofreading
for Self-assembled Patterns

David Soloveichik and Erik Winfree

Department of CNS and CS, California Institute of Technology
{dsolov, winfree}@caltech.edu

Abstract. Fault-tolerance is a critical issue for biochemical computa-
tion. Recent theoretical work on algorithmic self-assembly has shown
that error correcting tile sets are possible, and that they can achieve
exponential decrease in error rates with a small increase in the number
of tile types and the scale of the construction [24, 4]. Following [17], we
consider the issue of applying similar schemes to achieve error correction
without any increase in the scale of the assembled pattern. Using a new
proofreading transformation, we show that compact proofreading can be
performed for some patterns with a modest increase in the number of
tile types. Other patterns appear to require an exponential number of
tile types. A simple property of existing proofreading schemes – a strong
kind of redundancy – is the culprit, suggesting that if general purpose
compact proofreading schemes are to be found, this type of redundancy
must be avoided.

1 Introduction

The Tile Assembly Model [22, 23] formalizes a generalized crystal growth process
by which an organized structure can spontaneously form from simple parts. This
model considers the growth of two dimensional “crystals” made out of square
units called tiles. Typically, there are many types of tiles that must compete to
bind to the crystal. A new tile can be added to a growing complex if it binds
strongly enough. Each of the four sides of a tile has an associated bond type
that interacts with matching sides of other tiles that have already been incor-
porated. The assembly starts from a specified seed assembly and proceeds by
sequential addition of tiles. Tiles do not get used up since it is assumed there
is an unbounded supply of tiles of each type. This model has been used to
theoretically examine how to use self-assembly for massively parallel DNA com-
putation [21, 26, 16, 13], for creating objects with programmable morphogenesis
[10, 1, 2, 20], for patterning of components during nanofabrication of molecular
electronic circuits [6], and for studying self-replication and Darwinian evolution
of information-bearing crystals [18, 19]. Fig. 1 illustrates two different patterns
and the corresponding tile systems that self-assemble into them. Both patterns
are produced by similar tile systems using only two bond types, four tile types,
simple boolean rules and similar seed assemblies (the L-shaped boundaries).

Confirming the physical plausibility and relevance of the abstraction, several
self-assembling systems have been demonstrated using DNA molecules as tiles,

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 305–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

306 D. Soloveichik and E. Winfree

0
0

0
0

1
0

1
0

0
1

1
1

1
0

0
1

0 0 0

1

1

1

.

. .
.

. .
.

0
0

0
0

1
1

1
0

0
0

1
1

1
1

0
1

0 0 0

1

0

0

.

. .
.

. .
.

.

. .
 .
. .
 .

a) b)

c) d)

(0,0)

.

. .
 .
. .
 .

(0,0)

Fig. 1. (a) A binary counter pattern and (b) a tile system constructing it. (c) A Sierpin-
ski pattern and (d) a tile system constructing it. In this formalism, identically-labeled
sides match and tiles cannot be rotated. Tiles may attach to the growing assembly only
if at least two sides match, i.e., if two bonds can form. Mismatches neither help nor hin-
der assembly. Note that the tile choice at each site is deterministic for these two tile sets.

including both periodic [25, 15, 12] and algorithmic patterns [14, 9, 3]. A major
stumbling block to making algorithmic self-assembly practical is the error rate
inherent in any stochastic biochemical implementation. Current implementations
seem to suffer error rates of 1% to 15% [9, 3]. This means that on average every
eighth to hundredth tile that is incorporated does not correctly bond with its
neighbors. Once such a mistake occurs, the erroneous information can be prop-
agated to tiles that are subsequently attached. Thus, a single mistake can result
in a drastically different pattern being produced. With this error rate, structures
of size larger than roughly 100 tiles cannot be assembled reliably.

Complexity of Compact Proofreading for Self-assembled Patterns 307

There are generally two ways to improve the error-robustness of the assembly
process. First, the physics of the process can be modified to achieve a lower
probability of the incorporation of incorrect tiles into the growing complex. The
second method, which we pursue here, is to use some logical properties of the
tiles to perform error correction.

Proofreading tile sets for algorithmic self-assembly were introduced by Winfree
and Bekobolatov [24]. The essential idea was to make use of a redundant encoding
of information distributed across k tiles, making isolated errors impossible: to
continue growth, errors must appear in multiples of k. Thanks to the reversible
nature of crystallization, growth from erroneous tiles stalls and the erroneous
tiles subsequently dissociate, allowing another chance for correct growth. Using
this approach, a large class of tile sets can be transformed into more robust tile
sets that assemble according to the same logic.

However (a) the proofreading tile sets produce assemblies k times larger than
the original tile sets, involving k2 times as many tiles; and (b) the improvement
in error rates did not scale well with k in simulation. Chen and Goel [4] developed
snaked proofreading tile sets that generalize the proofreading construction in a
way that further inhibits growth on crystal facets. They were able to prove,
with respect to a reversible model of algorithmic self-assembly, that error rates
decrease exponentially with k, and thus to make an N × N pattern required
only k = Ω(log N). This provides a solution for (b), although the question
of optimality remains open. Reif et al [17] raised the question of whether more
compact proofreading schemes could be developed, and showed how to transform
the two tiles sets shown in Fig. 1 to obtain lower error rates without any sacrifice
in scale. However, Reif et al did not give a general construction that works for
any original tile set, and did not analyze how the number of tile types would
scale if the construction were to be generalized to obtain greater degrees of
proofreading. Thus, question (a) concerning whether this can be improved in
general and at what cost remained open.

The question of compactness is particularly important when self-assembly is
used for molecular fabrication tasks, in which case the scale of the final pat-
tern is of direct and critical importance. Furthermore, the question of scale is a
fundamental issue for the theory of algorithmic self-assembly. In the error-free
case, disregarding scale can drastically change the minimal number of tile types
required to produce a given shape [20]; some shapes can be assembled from few
tile types at a small scale, while other shapes can only be assembled from few tile
types at a large scale. Examining whether proofreading can be performed with-
out sacrificing scale is both of practical significance and could lead to important
theoretical distinctions.

If it is the case that some patterns can’t be assembled with low error rates
at the original scale using a concise tile set, while for other patterns compact
proofreading can be done effectively, then we would be justified in calling the for-
mer intrinsically fragile, and the latter intrinsically robust. Any such distinctions
should be independent of any particular proofreading scheme. Indeed, we here
show that this is true (in a certain sense), and we give a combinatorial criterion

308 D. Soloveichik and E. Winfree

that distinguishes fragile patterns from robust patterns. As examples, we show
that the two patterns discussed in Reif et al’s work on compact proofreading [17]
and shown in Fig. 1 are fundamentally different, in that (within a wide class of
potential proofreading schemes considered here) the cost of obtaining reliable
assembly at the same scale becomes dramatically different as lower error rates
are required.

1.1 The Abstract Tile Assembly Model

This section informally summarizes the abstract Tile Assembly Model (aTAM).
See [8, 20] for a formal treatment. Self assembly occurs on a Z × Z grid of unit
square locations, on which unit-square tiles may be placed under specific con-
ditions. Each tile has bond types on its north, east, south and west sides. A
finite set of tile types defines the set of possible tiles that can be placed on
the grid. Tile types are oriented and therefore a rotated version of a tile type is
considered to be a different tile type. A single tile type may be used an arbitrary
number of times. A configuration is a set of tiles such that there is at most one
tile in every location (i, j) ∈ Z × Z. Two adjacent tiles bond if their abutting
sides have matching bond types. Further, each bond type forms bonds of a spe-
cific strength, called its interaction strength. In this paper the three possible
strengths of bonds are {0, 1, 2}. A new tile can be added to an empty spot in a
configuration if and only if the sum of its interaction strengths with its neighbors
reaches or exceeds some parameter τ . The tile systems shown in this paper use
τ = 2, i.e., at least a single strong (strength 2) or two weak (strength 1) bonds
are needed to secure a tile in place.

For the purposes of this paper, a tile system consists of a finite set of tile types
T with specific interaction strengths associated with each bond type, and a start
configuration. Whereas a configuration can be any arrangement of tiles, we are
interested in the subclass of configurations that can result from a self-assembly
process. Thus, an assembly is a configuration that can result from the start
configuration by a sequence of additions of tiles according to the above rules at
τ = 1 or τ = 2 (i.e., it is connected). A τ-stable assembly is one that cannot be
split into two parts without breaking bonds with a total strength of at least τ .
Deterministic tile systems are those whose assemblies can incorporate at most
1 tile type at any location at any time.

1.2 The Kinetic Tile Assembly Model and Errors

The Kinetic Tile Assembly Model (kTAM) augments the abstract Tile Assembly
Model with a stochastic model of self-assembly dynamics, allowing calculation
of error rates and the duration of self-assembly. Following [23, 24] we make the
following assumptions. First, the concentration of each tile type in solution is
held constant throughout the self-assembly process, and the concentrations of
all tile types are equal. We assume that for every tile association reaction there
is a corresponding dissociation reaction (and no others). We further assume
that the rate of addition (forward rate f) of any tile type at any position of

Complexity of Compact Proofreading for Self-assembled Patterns 309

the perimeter of the growing assembly is the same. Specifically, f = kfe−Gmc

where kf is a constant that sets the time scale, and Gmc is the logarithm of
the concentration of each tile type in solution. The rate that a tile falls off the
growing assembly (reverse rate rb) depends exponentially on the number of
bonds that must be broken. Specifically, rb = kf e−bGse where b is the total
interaction strength with which the tile is attached to the assembly, and Gmc is
the unit bond free energy, which may depend, for example, on temperature.

We assume the following concerning f and rb. Following [23] we let f ≈ r2 for
a τ = 2 system since it provides the optimal operating environment [23]. Further,
we assume f (and therefore r2) can be arbitrarily chosen in our model by chang-
ing Gmc and Gse, for example by changing tile concentrations and temperature.
(In practice, there are limits to how much these parameters can be changed.)
However, kf is assumed to be a physical constant not under our control.

In the kTAM, the τ = 2 tile addition requirement imposed by the abstract Tile
Assembly Model is satisfied only with a certain probability: assuming f ≈ r2 so
r1 - f , if a tile is added that bonds only with strength 1, it falls off very quickly
as it should in the aTAM with τ = 2. Tiles attached with strength 2 stick much
longer, allowing an opportunity for other tiles to attach to them. Once a tile is
bonded with total strength 3, it is very unlikely to dissociate (unless surrounding
tiles fall off first).

Following [4], the fundamental kind of error we consider here is an insufficient
attachment. At threshold τ = 2, an insufficient attachment occurs when a tile
attaches with strength 1, but before falling off, another tile attaches next to it,
resulting in a 2-stable assembly. Since insufficient attachments are the only kind
of error we analyze in this paper, we’ll use “error” and “insufficient attachment”
interchangeably.

Chen and Goel [4] make use of a simplification of the kTAM that captures
the essential behavior while being more tractable for rigorous proofs. Under the
conditions where f = r2, the self-assembly process is dominated by tiles being
added with exactly 2 bonds and tiles falling off via exactly 2 bonds. The locking
kTAM model assumes that these are the only possible single-tile events. That is,
rb = 0 for b ≥ 3, and tiles never attach via a single strength-1 bond. Additionally,
insufficient attachments are modeled in the locking kTAM as atomic events, in
which two tiles are added simultaneously at any position in which an insufficient
attachment can occur. Specifically, any particular pair of tile types that can cre-
ate an insufficient attachment in the kTAM is added at a rate ferr = O(e−3Gse).
(This is asymptotically the rate that insufficient attachments occur in kTAM [4].)
Thus the total rate of insufficient attachments at a particular location is Qferr,
where Q is the number of different ways (with different tile types) that an in-
sufficient attachment can occur there. We don’t absorb Q into the O(·) notation
because we will be considering tile sets with an increasing number of tile types
that can cause errors. Note that Q can be bounded by the square of the total
number of tile types. These insufficient attachments are the sole cause of errors

310 D. Soloveichik and E. Winfree

during growth.1 Growth during which no insufficient attachments occur we call
(reversible) τ = 2 growth.

1.3 Quarter-Plane Patterns

The output of the self-assembly process is usually considered to be either the
shape of the uniquely produced terminal assembly [10, 1, 2, 20] or the pattern
produced if we focus on the locations of certain types of tiles [24, 4, 17, 6]. Here
we will focus on self-assembling of quarter-plane patterns. A quarter-plane
pattern (or just pattern for short) P is an assignment of symbols from a finite
alphabet of “colors” to points on the quarter plane (Z+ ×Z

+ by convention). A
deterministic tile system can be thought to construct a pattern in the sense that
there is some function (not necessarily a bijection) mapping tile types to colors
such that tiles in any produced assembly correctly map to corresponding colors of
the pattern. As the assembly grows, a larger and larger portion of the pattern gets
filled. There are patterns that cannot be deterministically constructed by any tile
system (e.g., uncomputable ones), but for the purposes of this paper we consider
patterns constructible from deterministic tile systems where all bond strengths
are 1 and the seed assembly (defining the boundary conditions) is an infinite L
shape that is eventually periodic, with its corner on the origin. See Fig. 1 for
two examples. Such tile system we’ll call quarter plane tile systems and the
patterns produced by them the constructible quarter-plane patterns. These
systems include a wide variety of patterns, including the Sierpinski pattern, the
binary counter pattern, the Hadamard pattern [6], and patterns containing the
space-time history of arbitrary 1D block cellular automata and Turing machines.
Note that by including the infinite seed assembly we are avoiding the issue of
nucleation, which requires distinct error correcting techniques [18].

2 Making Self-assembly Robust

The kinetic Tile Assembly Model predicts that for any quarter plane tile system,
arbitrarily small error rates can be achieved by increasing Gmc and Gse, but at
the cost of decreasing the overall rate of assembly. Specifically, the worst case
1 Another error, with respect to the aTAM, that can occur in the original kTAM is

when a tile attached by strength 3 (or more) falls off. Why do we feel comfortable
neglecting this error in the locking kTAM, especially since as a function of Gse, both
r3 and ferr are both O(e−3Gse)? One reason is that in practice the dissociation of
tiles held to the assembly with strength 3 does not seem to cause the problems that
insufficient attachments induce, in tile sets that we have simulated and examined: no
incorrect tiles are immediately introduced, often the correct tile will quickly arrive
to repair the hole, and if an incorrect tile fills the hole, further growth may be impos-
sible, usually allowing time for the incorrect tile to fall off. A second reason is that
as the number of tile types increases (i.e., with more complex patterns or more com-
plex proofreading schemes), Qferr becomes arbitrarily large, while r3 stays constant.
Nonetheless, a more satisfying treatment would not make these approximations and
would address the original kTAM directly.

Complexity of Compact Proofreading for Self-assembled Patterns 311

analysis (which assumes that after any single error, assembly can be continued
by valid τ = 2 growth) predicts that the relationship between per tile error rate ε
and the rate of assembly r (layers per second) approximately satisfies r ∝ ε2 [23].
This is rather unsatisfactory since, for example, decreasing the error rate by a
factor of 10 necessitates slowing down self-assembly by a factor of 100.

Rather than talking about the relationship between the per tile error rate
and the total rate of self-assembly, following [4] one can ask how long it takes to
produce the correct N ×N initial portion of the pattern with high probability.
To produce this initial portion correctly with high probability, we need the per-
tile error rate to be ε = O(N−2) to ensure that no mistake occurs. This implies
that r = O(N−4) for worst case tile sets. This informal argument suggests that
the time to produce the N ×N square is Ω(N5). This is unsatisfactory, because
the same assembly can be grown in time O(N) in the aTAM augmented with
rates [1], and thus the cost of errors appears to be considerable.

Despite this pessimistic argument, certain kinds of tile systems can achieve
better error rate/rate of assembly tradeoffs. Indeed, the reversibility of the self-
assembly process can help. Some tile systems have the property that upon en-
countering an error, unless many more mistakes are made, the self-assembly
process stalls. Stalling gives time for the incorrectly incorporated tiles to be
eventually replaced by the correct ones in a random walk process, so long as not
too many incorrect tiles have been added.

Exploiting this observation, several schemes have been proposed for convert-
ing arbitrary quarter plane tile systems into tile systems producing a scaled-up
version of the same pattern, resulting in better robustness to error. The initial
proposal due to Winfree and Bekbolatov [24] suggests replacing each tile type
of the original tile system with k2 tile types, with unique internal strength-1
bonds (Fig. 2(a)). Such proofreading assemblies have the property that for a
block corresponding to a single tile in the old system to get completed, either no

n

e
s

w

n1
w4

n2 n3 n4
e4

e3

e2

w3

w2

s2 s3
e1

s4s1
w1

a) b)

n

e
s

w

n1
w4

n2 n3 n4
e4

e3

e2

w3

w2

s2 s3
e1

s4s1
w1

output

in
p

u
t

o
u

tp
u

t

input

output

in
p

u
t

o
u

tp
u

t

input

Fig. 2. Winfree and Bekbolatov (a) and Chen and Goel (b) proofreading transforma-
tions using 4×4 blocks. Each tile type is replaced with k2 tile types that fit together to
form the block as shown. Strength 2 bonds are indicated with 2 dots. Strength 0 bonds
are indicated with a cross. All unlabeled (internal) bond types are unique (within the
block and between blocks.) The placement of weak and strong bonds is dependent upon
the orientation of growth, which in this case is to the north-east, since for quarter plane
tile systems the input is always received from the west and south sides.

312 D. Soloveichik and E. Winfree

E E E E G G G G G

Fig. 3. The Winfree and Bekbolatov proofreading scheme is susceptible to single facet
nucleation errors. If an insufficient attachment results in the two E tiles shown, then
subsequent τ = 2 growth (G) can continue indefinitely to the right. Thus many incor-
rect tiles can be added following a single facet nucleation error even if the block that
E is in does not get completed. The dotted lines indicate block boundaries (for 4 × 4
blocks). Note that most of the incorrect tiles are attached with strength 3; therefore,
they do not easily fall off, except at the left and the right sides.

mistakes, or at least k mistakes must occur. However, this scheme suffers from
the problem that the self-assembly process after a single insufficient attachment
can still result in a large number of incorrect tiles that must later be removed,
spanning the length of the assembly. Consider the situation depicted in Fig. 3.
If the insufficient attachment illustrated occurs (The first E is added with inter-
action strength 1, but before it dissociates, a tile attaches to it on the right with
interaction strength 2), the incorrect information can be propagated indefinitely
to the edge of the assembly by subsequent τ = 2 tile additions.

Currently the only scheme that provably achieves a guaranteed level of proof-
reading is due to Chen and Goel [4] using the locking kTAM model. Their
proofreading scheme, called snaked proofreading, is similar to the Winfree and
Bekbolatov system, but additionally controls the order of self-assembly within
each block by using strength-0 and strength-2 bonds, making sure that not too
many incorrect tiles can be added by τ = 2 growth after an insufficient attach-
ment. In particular, the strength-0 bonds ensure that unless most of the block
gets completed, self-assembly stalls. Fig. 2(b) shows their 4 × 4 construction;
see their paper for the general construction for arbitrary block size.2 They can
attain a polynomial decrease in the error rate with only a logarithmic increase
in k. Specifically the formal results they obtain are the following:34

Theorem 1 (theorem 4.2 of [4]). For any constant p < 1, the N × N block
initial portion of the pattern is produced correctly with probability at least p in
2 Note that unlike the original proofreading transformation, the snake proofreading

transformation does not result in a quarter plane tile system as it uses both strong
and weak bonds.

3 [4] also guarantees that the assembly is stable for a long time after it is complete, a
concern we ignore in this paper. For fixed k, they also provide theorem 4.1, which
guarantees reliable assembly of an N × N square in time O(N1+8/k).

4 Chen and Goel only prove their result for the case when the initial L seed assembly
has arms that span exactly N blocks. We need to cover the case when an infinite L
seed assembly is used. See Appendix A for a proof that their results can be extended
to an infinite seed assembly.

Complexity of Compact Proofreading for Self-assembled Patterns 313

time O(Npoly(log(N)) by the k × k snaked proofreading tile system where k =
θ(log N), using the locking kTAM with appropriate Gmc and Gse.

To obtain this result, assembly conditions (Gmc and Gse) need be adjusted only
slightly as N increases.5

The above construction requires increasing the scale of the produced pat-
tern, even if only logarithmically in the size of the total desired size of the
self-assembled pattern. Reif et al [17] pointed this out as a potential problem
and proposed schemes for decreasing the effective error rate while preserving the
scale of the pattern. However, they rely on certain specific properties of the orig-
inal tile system, and do not provide a general construction that can be extended
to arbitrary levels of error correction. Further, their constructions suffer from
the same problem as the original Winfree and Bekbolatov proofreading system.
In the next section we argue that the snaked proofreading construction can be
adopted to achieve same-scale proofreading for sufficiently “simple” patterns.

3 Compact Proofreading Schemes for Simple Patterns

In this section we argue that a wide variety of sufficiently “simple” patterns can
be produced with arbitrarily small effective error rates without increasing the
scale of self-assembly, at the cost of slightly increasing the number of tile types
and the time of self-assembly. Based on Reif et al’s nomenclature [17], we call
these proofreading schemes compact to indicate that the scale of the pattern is
not allowed to change.

The following definition illustrates our goal:

Definition 1. Let p < 1 be a constant (e.g., 0.99). A sequence of deterministic
tile systems {T1,T2, . . .} is a compact proofreading scheme for pattern P if:

(1: correctness) TN produces the full infinite pattern P under the aTAM.
(2: conciseness) TN has poly(logN) tile types.
(3: robustness) TN produces the correct N × N initial portion of pattern P

(without scaling) with probability at least p in time O(Npoly(log N)) in the
locking kTAM for some Gse and Gmc.

If you want to construct the initial N × N portion of pattern P with prob-
ability at least p in time O(Npoly(log N)) you pick tile system TN and the
corresponding Gse and Gmc. The same tile system might be used for many N
(i.e., the sequence of tile systems may have repetitions). The second condition
indicates that we don’t want this tile system to have too many tile types. For
constructible quarter plane patterns, a constant number of tile types suffices to
5 It is hard to say whether the snaked proofreading construction is asymptotically

optimal. While the best possible assembly time in a model where concentrations are
held constant with changing N is linear in N , we assume that Gmc and Gse are free
to change as long as the relationship f = r2 is maintained. Of course while decreasing
Gmc and Gse speeds up the assembly process, the rate of errors is increased; thus,
the optimal tradeoff is not obvious.

314 D. Soloveichik and E. Winfree

create the infinite pattern in the absence of errors. If the second condition is
satisfied then the error correction itself is accomplished with a polylogarithmic
number of additional tiles, which is comparable to the cost of error correction
in other models studied in computer science. While one can imagine different
versions of these conditions, the stated version gives the proofreading condition
that can be obtained by adapting the snaked proofreading construction, as
argued below. Finally, note that the tile systems {T1,T2, . . .} do not have to
be quarter plane tile systems, and therefore our theorems will apply to a wide
range of potential proofreading schemes.

For which patterns do there exist compact proofreading schemes? Given a
pattern and a quarter plane tile system T producing it, consider any assembly
of T. For a given k, imagine splitting the assembly into k × k disjoint blocks
starting at the origin. We’ll use the term block to refer to aligned blocks, and
square to refer to blocks without the restriction that they be aligned to integer
multiples of k with respect to the origin. Each complete block contains k2 tiles;
two blocks at different locations are considered equivalent if they consist of the
same arrangement of tile types. If there is some polynomial Q(k) such that
repeating this process for all assemblies and all k yields at most Q(k) different
(completed) block types, then we say that T segments into poly(k) k× k block
types.6 Patterns produced by such tile systems are the “simple” patterns, for
which, we will argue, there exist compact proofreading schemes; we term such
patterns robust to indicate this.

On the other hand, there are patterns for which it is easy to see that no
quarter tile system producing them segments into poly(k) k × k block types.
For example these include patterns which have 2Ω(k) different types of k × k
squares of colors.7 We’ll prove negative results about such patterns, which we
term fragile in the next section.8

6 We use disjoint blocks aligned with the origin for simplicity in what follows. It is
inessential that we define segmentation in terms of blocks rather than squares: A tile
system segments into poly(k) different k × k block types if and only if it produces
assemblies that contain poly(k) different types of non-aligned k × k squares. This is
also true for other shapes than squares, as long as they have sufficient extent. See
Appendix B for an example, the size-k diagonals.

7 In what follows, we will consider both the number of blocks (or squares) in an
assembly, in which case we mean blocks (or squares) of tile types, as well as the
number of blocks (or squares) in a pattern, which which case we mean block (or
squares) of colors. Since each tile type has a color, the latter is less than or equal to
the former for patterns produced by quarter-plane tile systems.

8 Analogous to the uncomputability of topological entropy for cellular automata [11],
it is in general undecidable whether a tile set produces a robust or fragile pattern,
due to the undecidability of the Halting Problem: a tile system that simulates a
universal Turing machine may either produce a pattern that is eventually periodic (if
the Turing machine halts), or else it may continue to produce ever more complicated
subpatterns. The former patterns (that are eventually periodic) are formally robust,
although only for very large k does this become apparent, while the latter patterns
are fragile.

Complexity of Compact Proofreading for Self-assembled Patterns 315

abcd1

xy
zw

4

abcd2 abcd3 abcd4 klm
n4

klm
n3

klm
n2

xy
zw

3
xy

zw
2

opqr2 opqr3

klm
n1

opqr4opqr1

xy
zw

1

a

x

b c d

k

l

m

y ? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

z

p q
n

r

?
?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

? ? ? ?

o
w

?

output

outputin
pu

t

input

Fig. 4. Compact proofreading transformations using 4 × 4 blocks. Strength 2 bonds
are indicated with 2 dots. Strength 0 bonds are indicated with a cross. Question marks
indicate arbitrary bond types. All unlabeled (internal) bond types are unique (within
the block and between blocks.) This construction is equivalent to “compressing” the
k × k block on the left to a single tile and then applying the snaked proofreading
construction, remembering to paint the resulting tiles with the original colors.

Definition 2. A pattern P is called robust if it is constructible by a quarter
plane tile system T that segments into poly(k) different k × k block types. A
pattern P is called fragile if every quarter plane tile system segments into 2Ω(k)

different k × k block types.

The natural way to use Chen and Goel’s construction to implement compact
proofreading for robust patterns is as follows. For any k, for each of the poly(k)
k×k block types described above, create k2 unique tile types with bond strengths
according to the snaked proofreading blocks and colors according to the original
pattern. The internal bond types are unique to each transformed k×k block type
and do not depend upon the internal bond types in the original k×k block type.
External bond types in the transformed block redundantly encode the full tuple
of external bond types in the original block. (This transformation for a 4 × 4
block is illustrated in Fig. 4.) The L-shaped seed assembly must also be revised
to use the new compound bond types. The above set of tile types together with
this seed assembly yields a new tile system T(k).

It is easy to check that under aTAM T(k) correctly produces the pattern. At
the corner between two existing blocks, only a tile that matches all the border
tiles of both blocks, can attach. Any other internal tile must bind correctly
since at least one side must match a bond type unique to the block. Since the
original block assembled deterministically from its west and south sides, the
transformed block also grows deterministically in the same direction. In fact,
T(k) is locally deterministic [20], which makes a formal proof easy. Furthermore,
for any particular choice of k, Chen and Goel’s theorem 4.1 applies directly to our
compact proofreading tile sets, but with multiplicative constants that increase
with k. But we also claim the following, where M = $N/k% is the size of our
target assembly in units of blocks:

316 D. Soloveichik and E. Winfree

Lemma 1. If a pattern P is robust then: For any constant p < 1, the M ×M
block initial portion of the pattern is produced correctly with probability at least p
in time O(Mpoly(log M)) by some T(k) (as defined above) where k = θ(log M),
using the locking kTAM with appropriate Gmc and Gse.

Proof. Recall, as long as a particular location remains susceptible, insufficient
attachments at that location constitute a Poisson process with rate QO(e−3Gse).
Here Q can be upper bounded by the total number of different blocks since that is
the maximum number of different tile types that can be added as an insufficient
attachment at any location. Thus, the maximum rate of insufficient attachments
at any location is q(Gse) = Q(k)O(e−3Gse), where Q(k) = poly(k) since the
pattern is robust.

The difference between the proof of Chen and Goel [4] and what we need
is that Chen and Goel assumed that Q(k) was a constant. Thus, whereas they
were able to increase k without increasing the rate of insufficient attachments,
q, we are not so fortunate. To remedy this situation, we must slow down growth
slightly in order to sufficiently decreases the rate of insufficient attachments, but
not so fast as to change the asymptotic form of the results.

Informally, note that Chen and Goel’s bound on the probability of successfully
completing the square within a certain time (scaled relative to f) depends only on
the ratio q/f ; the absolute time scale does not matter, nor does it matter whether
q is the result of many or a few possible erroneous block types. Thus, we can slow
down f by a polynomial in k without affecting the completion time asymptotics
of O(Mpoly(log M), since k = Θ(log M). Does q decrease enough? So long as it
decreases faster relative to f , we can compensate for the polynomial increase in
insufficient attachments. We will see that a factor of Q(k)2 is sufficient.

Formally, assuming the maximum rate of insufficient attachments is any
q̃(Gse) = O(e−3Gse) independent of k, and the forward (=reverse) rate is any
f̃(Gse) = Ω(e−2Gse), for any M , Chen and Goel give a value k̃ for k and
G̃se for Gse such that with high probability the assembly completes correctly
in time t = O(Mpoly(log M)). We, of course, have q(Gse) = O(Q(k)e−3Gse)
and f(Gse) = Ω(e−2Gse). Now let us define q̃(Gse) = q(Gse + lnQ(k)) · Q(k)2

and f̃(Gse) = f(Gse + lnQ(k)) · Q(k)2. Observe that q̃(Gse) = O(e−3Gse) and
f̃(Gse) = O(e−2Gse). This means that if the maximum rate of insufficient at-
tachments and the forward rate were these q̃ and f̃ , then Chen and Goel’s
proof gives values k̃ and G̃se such that with high probability the assembly com-
pletes correctly in time t = O(Mpoly(log M)). But now note that if we set
Gse = G̃se + lnQ(k̃) then the actual maximum rate of insufficient attachments
and the forward rate are both exactly a factor of Q(k̃)2 slower than q̃ and f̃ .
Thus our system is simply overall slower by a factor of Q(k̃)2. This means that
our system would finish correctly with the same high probability as achieved
by Chen and Goel by time O(tQ(k̃)2). But this is still O(Mpoly(log M)) since
k̃ = θ(log M) and Q(k̃) = poly(k̃). ��

Theorem 2. If a pattern P is robust then there exists a compact proofreading
scheme for P.

Complexity of Compact Proofreading for Self-assembled Patterns 317

Proof. Let us use the sequence {TN = T(k)}N where k for each N is from
lemma 1. Each of these tile systems can produce the whole pattern correctly
under aTAM so the correctness condition of definition 1 is satisfied. Since O(M
poly(logM)) = O(Npoly(log N)), lemma 1 implies that the sequence satisfies
the robustness condition. Further, because T segments into poly(k) different
k × k block types and k = θ(log M) implies k = O(log N), TN = T(k) has only
poly(k)k2 = poly(log N) tile types, satisfying the conciseness condition. ��

For some patterns, Chen and Goel’s theorem can be applied directly (without
requiring lemma 1). These include patterns whose quarter plane tile systems
segment into a constant number of k× k block types. Furthermore, consider the
Sierpinski pattern (Fig. 1(c)). The Sierpinski pattern is a fractal that has the
following property: split the pattern into blocks of size k × k for any k that is
a power of 2, starting at the origin. For any such k there are exactly 2 different
types of blocks in the pattern. If you consider the assembly produced by the
Sierpinski tile system in Fig. 1(d), there are exactly 4 different k × k blocks of
tiles (the difference is due to the fact there are now two types of black and two
types of white tiles.) We can let the sequence of tile systems for the compact
proofreading scheme for the Sierpinski pattern consist only of T(k) for k that
are a power of 2. Note that because of the restriction on k, we may have to use
a block size larger than that which results from Chen and Goel’s theorem. But
since it does not have to be more than twice as large, definition 1 is still satisfied.

It would be interesting to identify constructible quarter plane patterns that
have at least kd different k×k block types for all k and for some constant d ≥ 1.

4 A Lower Bound

In this section we will show that we cannot make compact proofreading schemes
for fragile patterns using known methods.

First of all, note that although the definition of fragile patterns quantifies
over all quarter plane tile systems, it can be very easy to prove that a pattern
is fragile using the following lemma.

Lemma 2. If a pattern P has 2Ω(k) different types of k × k squares of colors
then it is fragile.

Proof. If a pattern contains 2Ω(k) different types of k× k squares of colors, then
any tile system producing it contains at least 2Ω(k) different types of k × k
squares, and therefore comparably many block types. ��

The scheme described in the previous section does not work for quarter plane tile
systems that segment into 2Ω(k) k× k block types (i.e., fragile patterns). This is
because for k = θ(log N), T(k) would then have poly(N) tile types, violating the
second condition (conciseness) of compact proofreading schemes (Definition 1).9

9 Further, we believe Lemma 1 does not hold if the number of block types increases
exponentially, rather than polynomially in k. This is an open question.

318 D. Soloveichik and E. Winfree

However, it is unclear whether other methods exist to make compact proof-
reading schemes for patterns produced by such tile systems. While we cannot
eliminate this possibility entirely, we can show that a variety of schemes will not
work.

Existing attempts at making self-assembly robust through combinatorial
means ([24, 4, 17]) are based on creating redundancy in the produced assem-
bly. Specifically, knowing only a few tiles allows one to figure out a lot more
of the surrounding tiles. Intuitively, this redundancy allows the tile system to
“detect” when an incorrect tile has been incorporated and stall. We will argue
that if a pattern is sufficiently complex, then only if there are many possible tile
types can a few tiles uniquely determine a large portion of the pattern. Since the
definition of compact proofreading schemes (Definition 1) limits the number of
tiles types, we will be able to argue that for complex patterns there do not exist
compact proofreading schemes that rely on this type of redundancy.

Definition 3. An assembly A is (k, d)-redundant if there exists a decision
procedure that, for any k × k (completed) square of tiles in A, querying at most
d relative locations in the assembly for its tile type, can determine the types of
all tiles in that square.

The proofreading schemes of [24] and [4], using a block size k × k, are (k, 3)-
redundant: even if the square is not aligned with the blocks, it is enough to ask
for the types of the tiles in the upper-left, lower-left, and lower-right corners of
the square. Because all tiles in a block are unique, and because the tile system
is deterministic, these three tiles allow you to figure out all four blocks that the
square may intersect. A proofreading construction that generalizes Reif et al’s
[17] 2-way and 3-way overlay tile sets to k-way overlays is shown in Appendix B
to be (k, 3)-redundant as well. This construction is not based on block trans-
formations; the fact that its power is nonetheless limited by Theorem 3, below,
illustrates the strength of our lower bound.

Lemma 3. If a tile system T produces (k, d)-redundant assemblies in which
more than 2ck different types of (completed) k × k squares appear, then it must
have at least 2ck/d tile types.

Proof. Let m be the number of tile types of T. If an assembly produced by T
is (k, d)-redundant, then it has no more than md types of squares of size k × k
because the decision procedure’s decision tree is of depth at most d and of fan-
out at most m. But we assumed that T makes assemblies that have 2ck different
types of k×k squares. Thus, md ≥ 2ck, which can only happen if m ≥ 2ck/d. ��

Lemma 4 lets us limit the types of compact proofreading schemes that such
complex patterns may have.

Theorem 3. If a pattern is fragile then there does not exist a compact
proofreading scheme {T1,T2, . . .} such that TN produces assemblies that are
(Ω(log N), d)-redundant (for any constant d).

Complexity of Compact Proofreading for Self-assembled Patterns 319

Proof. Any tile system producing this pattern makes 2Ω(k) different types of
k × k (completed) squares of tiles. Suppose TN produces assemblies which are
(c′ log N, d)-redundant, for constants c′, d. Take k = c′ log N and note that for
large k, TN makes at least 2ck k×k squares for some constant c. Apply Lemma 3
to conclude that TN has at least 2ck/d = N cc′/d tile types, which violates the
second condition of Definition 1. ��

Even though both the Sierpinski pattern and the counter pattern (Fig. 1) are infi-
nite binary patterns that can be constructed by very similar tile systems, they are
very different with respect to error correction. We saw that the Sierpinski pattern
has compact proofreading schemes. However, because the counter must count
through every binary number, for any k there are 2k rows that have different
initial patterns of black and white squares. This implies that there are exponen-
tially many (in k) different squares. By Theorem 3 this implies that the counter
pattern does not have compact proofreading schemes that use (Ω(log N), d)-
redundant assemblies. That is, no existing proofreading scheme can be adapted
for making compact binary counters arbitrarily reliable.

This theorem suggests that in order to find universal compact proofreading
schemes we must find a method of making self-assembly more error-robust with-
out making it too redundant. However, we conjecture that there are inherent
tradeoffs between robustness and conciseness (small number of tile types) rais-
ing the possibility that there do not exist compact proofreading schemes for
patterns having an exponential number of k × k squares.

Acknowledgments

We thank Ho-Lin Chen, Ashish Goel, Paul Rothemund, Matthew Cook, and
Nataša Jonoska for discussions that greatly contributed to this work. This work
was supported by NSF NANO Grant No. 0432193.

References

1. L. M. Adleman, Q. Cheng, A. Goel, and M.-D. A. Huang. Running time and pro-
gram size for self-assembled squares. In ACM Symposium on Theory of Computing
(STOC), pages 740–748, 2001.

2. G. Aggarwal, M. Goldwasser, M. Kao, and R. T. Schweller. Complexities for gen-
eralized models of self-assembly. In Symposium on Discrete Algorithms (SODA),
pages 880–889, 2004.

3. R. D. Barish, P. W. K. Rothemund, and E. Winfree. Two computational primitives
for algorithmic self-assembly: Copying and counting. NanoLetters, to appear.

4. H.-L. Chen and A. Goel. Error free self-assembly using error prone tiles. In Ferretti
et al. [7], pages 62–75.

5. J. Chen and J. Reif, editors. DNA Computing 9, volume LNCS 2943, Berlin Hei-
delberg, 2004. Springer-Verlag.

6. M. Cook, P. W. K. Rothemund, and E. Winfree. Self-assembled circuit patterns.
In Chen and Reif [5], pages 91–107.

320 D. Soloveichik and E. Winfree

7. C. Ferretti, G. Mauri, and C. Zandron, editors. DNA Computing 10, volume LNCS
3384, Berlin Heidelberg, 2005. Springer-Verlag.

8. P. W. K. Rothemund. Theory and Experiments in Algorithmic Self-Assembly. PhD
thesis, University of Southern California, Los Angeles, 2001.

9. P. W. K. Rothemund, N. Papakakis, and E. Winfree. Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology, 2:e424, 2004.

10. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. In ACM Symposium on Theory of Computing (STOC), pages
459–468, 2000.

11. L. Hurd, J. Kari, and K. Culik. The topological entropy of cellular automata is
uncomputable. Ergodic Theory Dynamical Systems, 12:255–265, 1992.

12. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C.
Seeman. Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. Journal of the Americal Chemical Society, 122:1848–1860, 2000.

13. M. G. Lagoudakis and T. H. LaBean. 2-D DNA self-assembly for satisfiability. In
E. Winfree and D. K. Gifford, editors, DNA Based Computers V, volume 54 of
DIMACS, pages 141–154, Providence, RI, 2000. American Mathematical Society.

14. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman. Logical computation using
algorithmic self-assembly of DNA triple-crossover molecules. Nature, 407:493–496,
2000.

15. C. Mao, W. Sun, and N. C. Seeman. Designed two-dimensional DNA holliday
junction arrays visualized by atomic force microscopy. Journal of the Americal
Chemical Society, 121:5437–5443, 1999.

16. J. Reif. Local parallel biomolecular computing. In H. Rubin and D. H. Wood,
editors, DNA Based Computers III, volume 48 of DIMACS, pages 217–254, Prov-
idence, RI, 1999. American Mathematical Society.

17. J. H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling
assemblies. In Ferretti et al. [7], pages 293–307.

18. R. Schulman and E. Winfree. Programmable control of nucleation for algorithmic
self-assembly. In Ferretti et al. [7], pages 319–328.

19. R. Schulman and E. Winfree. Self-replication and evolution of DNA crystals. In
M. S. Capcarrere, A. A. Freitas, P. J. Bentley, C. G. Johnson, and J. Timmis, edi-
tors, Advances in Artificial Life: 8th European Conference (ECAL), volume LNCS
3630, pages 734–743. Springer-Verlag, 2005.

20. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes, 2005. Ex-
tended abstract; preprint of the full paper is cs.CC/0412096 on arXiv.org.

21. E. Winfree. On the computational power of DNA annealing and ligation. In R. J.
Lipton and E. B. Baum, editors, DNA Based Computers, volume 27 of DIMACS,
pages 199–221, Providence, RI, 1996. American Mathematical Society.

22. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena, 1998.

23. E. Winfree. Simulations of computing by self-assembly. Technical Report CS-
TR:1998.22, Caltech, 1998.

24. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error-correction for algo-
rithmic self-assembly. In Chen and Reif [5], pages 126–144.

25. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of
two dimensional DNA crystals. Nature, 394:539–544, 1998.

26. E. Winfree, X. Yang, and N. C. Seeman. Universal computation via self-assembly of
DNA: Some theory and experiments. In L. F. Landweber and E. B. Baum, editors,
DNA Based Computers II, volume 44 of DIMACS, pages 191–213, Providence, RI,
1998. American Mathematical Society.

Complexity of Compact Proofreading for Self-assembled Patterns 321

A Extension of Chen and Goel’s Theorem to Infinite
Seed Boundary Assemblies

The following argument uses terms and concepts from [4].
First, suppose we desire to build an (N +N2)×(N +N2) block initial portion

of the pattern starting with the L seed assembly having arms that are N +
N2 blocks long. The extra N2 blocks will serve as a buffer region. Chen and
Goel’s [4] theorem 4.2 then gives us a k = θ(log (N + N2)) = θ(log N) and Gse

s.t. with high probability no block error occurs in the (N + N2) × (N + N2)
block region in time O(N2poly(logN)) that it takes to finish it. Further, with
high probability the initial N ×N block portion of the pattern is completed in
time tN = O(Npoly(log N)).

Now, let’s suppose we use this k and Gse with an infinite L seed assembly, and
we’ll be interested in just the N × N block initial portion of the pattern. The
only way the infinite seed assembly can affect us is if a block error outside the
(N +N2)× (N +N2) block region propagates to the N ×N initial region before
it completes. For this to occur, at least N2 tiles must be added sequentially,
at least one per block through the buffer region, to propagate the error. The
expected time for this to happen is N2/f with standard deviation N/f (i.e.,
it is a gamma distribution with shape parameter N2 and rate parameter f).
However, the propagated error can only cause a problem if it reaches the N ×N
rectangle before time tN . Since tN = O(Npoly(log N)), this becomes less and
less likely as N increases by Chebyshev’s inequality. Small N are handled by
increasing k and Gse appropriately, which does not affect the asymptotic results.
Thus we have a k = θ(log N) and Gse such that with high probability (i.e., ≥ p)
the initial N × N block portion of the pattern is completed correctly in time
O(Npoly(log N)), even if we use an infinite L seed assembly.

B An Overlay Proofreading Scheme

In this appendix we give an example showing that our lower bound on the com-
plexity of same-scale proofreading schemes also applies to proofreading schemes
that are not based on block transformations. Here, we consider a k-way overlay
scheme (suggested by Paul Rothemund and Matt Cook) that generalizes the
2-way and 3-way overlay schemes introduced by Reif et al [17]. The construction
is shown in Fig. 5.

Consider the assembly grown using some original tile set, as in Fig. 5a. When
the shaded tile x was added, it attached to the tiles a and b to its west and to its
south. Since we consider only deterministic quarter-plane tiles sets, the tile type
at a particular location is a function of the tile types to its south and to its west,
e.g., x = f(a, b) = fab. Therefore, it is possible to reconstruct the same pattern
without keeping track of bond types, explicitly transmitting only information
about tile types.

The 1-overlay tile set, derived from the original tile set, is a deterministic tile
set for doing exactly that. As shown in Fig. 5b, for each triple of neighboring

322 D. Soloveichik and E. Winfree

tiles a,b, and x that appears in the assembly produced by the original tile set (in
the relative positions shown in (a)), create a new tile (x, x, b, a), colored the same
as x, that “inputs” the original tile types of its west and its south neighbors,
and “outputs” tile type x to both its north and its east neighbor. With an
appropriately re-coded L-shaped boundary, the new tile set will produce exactly
the same pattern as the original tile set: the output of the tile at location 〈i, j〉 in
the 1-overlay assembly is the tile type at 〈i, j〉 in the original assembly. Supposing
the original tile set T has |T | tile types, the new tile set contains at most |T |2
tile types, and possibly fewer if not all pairs of inputs a, b appear in the pattern.

Redundancy is achieved in a k-way overlay tile set by encoding not just one
original tile, but k adjacent tiles along the diagonal growth front. Specifically,
each tile in the k-way overlay assembly will output the k-tuple of original tile
types that appear in the same location in the original assembly and locations
to the east and south. For example, in Fig. 5c, the output of the tile at 〈i, j〉 in
the 4-overlay assembly is the 4-tuple abcd containing the tile types at locations
〈i, j〉, 〈i + 1, j − 1〉, 〈i + 2, j − 2〉, and 〈i + 3, j − 3〉. Each new tile is colored
according to the first tile type in its output tuple. The new tile set consists of all
such tiles that appear in the k-overlay assembly10,11. The new tile set contains
at most |T |k+1 tiles, since there are at most |T |k input k-tuples, and the two
inputs to a given tile will always agree at k− 1 indices. This is exponential in k,
but for some patterns – e.g., robust patterns, as we will see – only a polynomial
number of tile types will be necessary. Note that growth with the new tile set is
still deterministic, since the tuple output by a tile is a function of the two input
tuples.

In what sense is the k-overlay tile set guaranteed to be proofreading? Consider
a growth site where a tile is about to be added. Unless the two input k-tuples
agree at all k − 1 overlapping positions, there will be no tile that matches both
inputs. Thus, every time that a tile is added without a mismatch, it provides a
guarantee that k − 1 parallel computations are carrying the same information,
locally. Note that the fact that site 〈i, j〉 in the original assembly contains tile
type t is encoded in k locations in the k-overlay assembly. It is reasonable to
conjecture that it is impossible for all k locations to have incorrect information,
unless at least k insufficient attachments have occurred.

Unfortunately, like the original proofreading tile sets of [24] and the 2-way
and 3-way overlay tile sets described in [17], the k-way overlay tile sets do not
protect against facet nucleation errors, and therefore we do not expect error

10 In addition, the L-shaped boundary must be properly re-coded to carry the boundary
information in the form the new tiles require. This is easy to do if the pattern
is consistent with a larger hypothetical assembly that extends k tiles beyond the
quarter plane region, since then tuples on the boundary encode for tile types in this
buffer zone. Otherwise a few extra tile types will be necessary, but as this does not
change the nature of our arguments, we ignore this detail here.

11 Note that the exact (minimal) set of such tiles is in general uncomputable, since the
original tile set could be Turing-universal, and thus predicting whether a particular
original tile appears in the assembly is equivalent to the Halting Problem. However,
the new tile set is well-defined and in many cases can be easily computed.

Complexity of Compact Proofreading for Self-assembled Patterns 323

fab
 fbc

 fcd
 fde

fbc
 fcd

 fde
 fef

fcd
 fde

 fef ffg

a b c d

b c d e

c d e f

d e f g

?
?

a
a

?
?

b
b

?
?

c
c

?
?

d
d

b
a

x
x

c
b

y
y

d
c

z
z

6
1

9
a x

x=fab y=fbc z=fcd

b

8

12
7

5
3 y

4
3

15
23

z
5

13
51

35c
12

10
4

13

d
11

14
5

3

5
8

4
2

original 1-overlay 4-overlay

a) b) c)

Fig. 5. The construction for k-way overlay proofreading tile sets. (a) An original
quarter-plane tile set T , containing |T | tile types. Numbers indicate bond types. Letters
name the tile types. For example, the tile x = (4, 8, 5, 2). (b) The 1-overlay transfor-
mation of the original tile set. The question marks indicate that there may be several
different new tile types that output a or b; (c) The 4-overlay transformation of the
original tile set.

rates to decrease substantially with k. We do not see an obvious way to correct
this deficiency.

Nonetheless, as a demonstration of the general applicability of our lower
bound, we will show that even if the k-way overlay tile sets reduced errors
sufficiently, for fragile patterns the k-way overlay tile sets will contain an expo-
nential number of tile types and are thus infeasible, whereas for robust patterns
the k-way overlay tile sets will contain a polynomial number of tile types and
are thus feasible.

First we show that all k-overlay tile sets are (k, 3)-redundant, regardless of
the original tile set. To determine all tile types in the k×k square with lower left
coordinate 〈i, j〉, we need only know the tiles at 〈i, j − 1〉, 〈i− k, j + k− 1〉, and
〈i + k− 1, j− k〉. The outputs of these tiles encodes for the entire diagonal from
〈i−k, j +k−1〉 to 〈i+2k−2, j−2k+1〉 in the original assembly. Deterministic
growth from this diagonal results in a triangle of tiles with upper right corner
at 〈i + 2k− 1, j + k− 1〉, in the original assembly. Thus all tile types are known
for the input and output k-tuples of overlay tiles in the k× k square of interest.

Theorem 3 tells us that fragile patterns cannot have compact proofreading
schemes that are (Ω(log N), d)-redundant for any constant d. Therefore, k-overlay
tile sets can’twork as compactproofreading schemes for fragilepatterns; they must
have an exponential number of tile types. This is what we wanted to show.

Alternatively, we could have directly bounded the number of tile types in k-
overlay tile sets for fragile and robust patterns. For robust patterns, with poly(k)
k × k squares of tile types, clearly there are also poly(k) size-k diagonals. Since

324 D. Soloveichik and E. Winfree

each tile in the k-overlay tile set contains two inputs encoding size-k diago-
nals,there can be at most poly(k)2 = poly(k) tile types altogether. Thus, (al-
though probably not satisfying the robustness criterion of Definition 1) k-overlay
tile sets are at least concise for robust patterns. Conversely, concise k-overlay
tile sets, having poly(k) tile types by construction, have a comparable number
of size-k diagonals in the original assembly. Consider now the original assembly.
Since growth is deterministic, the diagonal determines the upper right half of a
k × k square, and thus there are poly(k) tops and poly(k) sides; taking these as
inputs to other squares, we see that there are poly(k)2 = poly(k) k × k squares.
In this loose sense, k-overlay tile sets are neither more nor less concise than k×k
snaked proofreading, for robust patterns.

On the other hand, for a fragile pattern, requiring 2Ω(k) k×k squares of tiles in
any tile system that produces it, we can see that there will also be at least 2Ω(k)

size-k diagonals of tiles. Specifically, if S(k) is the number of such squares, and
D(k) is the number of such diagonals, then S(k) ≤ D(2k) because deterministic
growth from a size-2k diagonal results in the completion of a triangular region
containing a k × k square. S(k) being at least exponential therefore implies the
same for D(k). Conversely, a pattern generated by a tile system with 2Ω(k) size-k
diagonals obviously also has at least that many k× k squares as well. Thus, our
notions of fragile and robust patterns appears to be sufficiently general.

A Microfluidic Device for DNA Tile
Self-assembly

Koutaro Somei1, Shohei Kaneda2, Teruo Fujii2, and Satoshi Murata1

1 Tokyo Institute of Technology, Yokohama, 226-8502 Japan
somei@mrt.dis.titech.ac.jp
murata@dis.titech.ac.jp

2 The University of Tokyo, Tokyo, 153-8505 Japan

Abstract. This paper presents a microfluidic device specially designed
for DNA tile self-assembly. The DNA tile is one of the most promis-
ing building blocks for complex nanostructure, which can be used as a
molecular computer or a scaffold for functional molecular machineries.
In order to build desired nanostructure, it is necessary to realize error-
less self-assembly under thermal fluctuation. We propose a method to
directly control environmental parameters of DNA self-assembly such
as concentration of each monomer tile and temperature in the reaction
chamber by using a microfluidic device. The proposed device is driven
by a capillary pump and has an open reaction chamber which enables
real-time observation by AFM. Results of preliminary experiments to
evaluate performance of the device will be reported.

1 Introduction

The DNA Computing is one of the emerging nanotechnologies based on hy-
bridization of DNA molecules. In the earliest DNA computer proposed by Adle-
man, computation is based on hybridization of linear DNA molecules [1]. Seeman
and Winfree introduced “DNA tiles” which has four “sticky ends.” It is proven
that DNA tiles have much stronger computational power compared to linear
DNA strands [2] [3] [9]. The results of experiments showed DNA tile’s ability to
self-assemble nanofabric, which has programmed periodic or aperiodic patterns
corresponding to some computational processes of cellular-automata. Stimulated
by their work, many researches related to DNA tile have been made. For instance,
the idea of DNA tile is extended to self-assembling RNA tiles [7]. Self-folding
octahedron composed of concatenation of DNA tile-like motif [8] will be a step to
realize three-dimensional self-assembling nanoblocks. Using DNA molecules as
building blocks for nanostructure is very advantageous because they specifically
bind to other kinds of molecules such as proteins. Self-assembled DNA tiles can
be used as a scaffold of functional molecular machinery.

Currently, suppression of assembly errors is the central problem of the DNA
tile based nanotechnology, because in order to build desired structure, it is nec-
essary to realize errorless self-assembly under thermal fluctuation. Numbers of
error reduction methods have been proposed so far, but most of them consider

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 325–335, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

326 K. Somei et al.

only the design of DNA tile sets [11]. They usually result in complicated tile
sets, and thus, none of them are actually implemented yet.

Instead of complicating tile sets, we propose a new method to control environ-
mental parameters of DNA self-assembly. Error rate of self-assembly is essentially
dependent on parameters such as concentrations of each monomer tile and tem-
perature in the reaction chamber. If we can directly control these parameters, it
is not only possible to reduce errors, but also simplify the tile set.

Based on this idea, we propose a microfluidic device specially designed for DNA
tile assembly. All the components of the microfluidic device are integrated on a sin-
gle chip; a capillary pump and a stop valve to drive solution including DNA tiles,
an open reaction chamber which enables direct AFM observation of self-assembly,
and micro heater and sensor printed beneath the reaction chamber. It requires
very small amount of DNA sample, and needs almost no external apparatus such
as an array of syringe pumps. In the following sections, we will explain the details
of the microfluidic device and some results of preliminary experiments.

2 Microfluidic Device for DNA Tile Self-assembly

In conventional methods, all the DNA tiles are mixed in a single test tube, an-
nealed for self-assembly, and then the mixture is dropped on a mica surface for
AFM observation. Since all kinds of tiles are assembled in one pot, DNA tile set
must be very carefully designed such that each sticky end has an appropriate
bonding specificity and strength to obtain desired structure. Actually, it is very
difficult to keep concentrations of each monomer tile in one-pot self-assembly.
Even in the best condition, resultant aggregates include more than 1% mismatch
errors. In conventional methods, all the DNA tiles are mixed in a single test tube,
annealed for self-assembly, and then the mixture is dropped on a mica surface
for AFM observation. Since all kinds of tiles are assembled in one pot, DNA tile
set must be very carefully designed such that each sticky end has an appropriate
bonding specificity and strength to obtain desired structure. Actually, it is very
difficult to keep concentrations of each monomer tile in one-pot self-assembly.
Even in the best condition, resultant aggregates include more than 1% mismatch
errors. Our purpose is to show a different way of DNA self-assembly. If the solu-
tion surrounding the aggregation can be replaced step by step, the self-assembly
process is much easier to design and also rate of errors can be reduced (Fig. 1).

To illustrate the idea, we assume only three types of sticky ends here (rep-
resented by shapes of edges of each tile). If all kinds of tiles are mixed in one
pot, you get a random aggregation (Fig.1 left). In contrast, in the “step by step
self-assembly,” you apply solutions one by one. Each solution contains no tile
or only one kind of tile. Self-assembly is initiated by immobilized strands in the
reaction chamber. After tiles aggregate, surplus unbound tiles can be flushed out
by water, or, directly replaced by the next solution containing different tiles. By
this process you will obtain an arranged layered lattice, in which each layer is
made of single kind of tiles. Note that only three types of sticky ends are enough
to make arbitrary sequence of layers. If you want the same thing by one-pot

A Microfluidic Device for DNA Tile Self-assembly 327

Connecting tile

White tile

Black tile

Same sticky ends

One pot reaction Stepwise assembly

Immobilized initial strand

Flash out

Add gray tiles

Add white tiles

Fig. 1. One pot vs. Stepwise self-assembly

reaction, you need many different kinds of sticky ends. Different arrangements
other than layered lattice are also possible depending on design of the tile set.
A computational model of stepwise self-assembly based on the same idea was
proposed by Reif [12].

In order to realize this, we have developed a microfluidic device. The proposed
device has the following functions.

– Concentration control (replacement of solution)
– Temperature control
– Real-time observation of reaction chamber by AFM
– Requires very small amount of DNA sample
– Can be used as a platform for further experiments after self-assembly of

DNA structure

3 Prototype of Microfluidic Device

Fig.2 shows the overall configuration of the first prototype. The device is one
chip device made of PDMS (poly-dimethylsiloxane) on a glass substrate. Each
chip has three identical sets of the fluidic channels with micro heater/ sensor
made of ITO (Indium Tin Oxide). Each channel is composed of three parts; 1)
a service port where DNA sample solution is applied by pipetting, 2) a reaction
chamber where DNA tile self-assembly takes part under controlled temperature,
and 3) a capillary pump which generates suction force to pull the next solution
from the service port. The whole channel is covered by oil to prevent evaporation

328 K. Somei et al.

Temperature sensor

Heater

Microfluidic devices

(3 sets)

Glass plate Oil frame

Oil

Fig. 2. Microfluidic device

of the solution. In the following subsections, each component will be explained
in detail.

The PDMS fluidic chip was fabricated by soft lithography and the ITO sensor
and heater were made by wet etching process [10]. The details of the fabrication
methods are omitted in this paper.

3.1 Flow Control by Capillary Pump and Stop Valve

Capillary force is a phenomenon that we usually observe at the boundary of two
different kinds of liquids (or liquid and gas) they do not mix. The capillary force
is caused by surface tension, in other words, tendency to minimize free energy
on the boundary surface.

We use a capillary pump, which is actually a very long channel engraved on
a solid plate (PDMS in this case). Let us consider a flow in a channel. Capillary
force Fc depends on the cross-sectional area of the channel A and the contact
angle θ between the liquid and wall material.

Fc = γA cos θ (1)

where γ represents surface tension.
Driving force of a capillary pump is given in a form of pressure head,

Pc = γ

(
cosαb + cosαt

d
+

cosαl + cosαr

w

)
(2)

where, d is depth and w is width of the channel, αb, αt, αl, and αr are contact
angles at the bottom, upper, right, and left side of the channel section, respec-
tively [4]. From equation (2), we can conclude that the thinner the channel, the
more the suction force. Also, to get a large suction force, we need large θ or α,
namely, the surfaces of the channel must be hydrophilic.

A Microfluidic Device for DNA Tile Self-assembly 329

15mm Capillary pump

Service port

2mm

4mm

Stop valve

Reaction chamber

Fig. 3. Microfluidic channel

Fig.3 shows design of the overall channel. It is composed of a service port, a
stop valve, a reaction chamber, and a capillary pump.

Fig.4 shows the profile of the capillary force along the channel. The channel
is 1.5 m long in total, 50 μm in width, and 50 μm in depth. Tapered shape of
service port is to introduce the droplet to the channel. A bottleneck between
the service port and the reaction chamber is called a “stop valve.” It has the
same width with that of capillary pump.To begin with the self-assembly process,
a droplet is injected to the service port by a pipette (Fig. 5 (1)). Through the

0

1000

2000

3000

1.00 2.00 3.00 4.00 5.000

Capillary force (Pa)

Length (mm)

Fig. 4. profile of capillary force

330 K. Somei et al.

(1)

(2)

(3)

(4)

(5)

(6)

Capillary force Pipette

Fig. 5. Microfluidic Capillary System

stop valve, it goes to the reaction chamber (90 x 120 μm) and then sucked into
the capillary pump (Fig. 5 (2)). In the reaction chamber, some seed strands
are immobilized on the bottom, to initiates self-assembly process and also to
hold resultant aggregations against flow. When the tail of the droplet reaches at
the mouth of the stop valve (Fig.5 (3)), capillary force at the mouth balances
with that of the capillary pump. As a result, first (blue) solution is kept in
the reaction chamber. When the next (red) solution is injected (Fig.5 (4)), the
boundary surface at the stop valve vanishes. Then the capillary pump restarts.
Duration allowed to each step can be controlled by the interval of injection.

3.2 Experiment of Flow Control

Performance of proposed device was evaluated by experiments. Fig.6 shows micro-
scope images of the reaction chamber. In the first experiment, water solution of

(a) (b)

Fig. 6. Performance of stop valve

A Microfluidic Device for DNA Tile Self-assembly 331

fluorescent beads was injected at the service port (Fig.6 (a)). 50 second later, the
tail of droplet reaches at the mouth of stop valve, and flow is stopped (Fig.6 (b)).

In the following experiment, dyed solutions with streptavedin (blue: 350nm,
green: 488nm, red: 546nm) were injected consecutively (green→ water→ red→
water→ blue), and successful replacement of solutions is observed by fluorescent
microscope with multi-band-path filter.

3.3 Preventing Evaporation by Oil Coverage

During the above experiments, we found that evaporation of the solution makes
a serious problem. The solution dries out very quickly in micro scale, actually
almost all the solution in the service port is gone in about a minute. This is not
good for DNA tile assembly, because concentration of the tile must be kept at
desired level. Moreover, we want to observe the self-assembly process by AFM,
thus we cannot cover the channel with glass plate.

To solve the problem, the device was covered by oil. The whole channel in-
cluding the service port and the capillary pump is covered by mineral oil for
PCR. It allows cantilever access for AFM observation and also doesn’t effect
hybridization reaction. This method prevents evaporation perfectly.

Oil frame Pipette

Service port

Glass plate
PDMS

Oil

Fig. 7. Oil coverage

Sensor

Heater

Microfluidic device

5mm

Fig. 8. Temperature distribution by ITO heater (24V)

332 K. Somei et al.

(a) (b)

Fig. 9. Immobilized DNA at reaction chamber.(a) By using a rectangular mask 100
m in width, gold layer is patterned on PDMS surface (black horizontal band). DSP is
immobilized on gold surface by Au-S bonding. (b) After DNA solution is supplied into
the channel, fluorescence from Cy3 label on a complementary strand to the linker was
detected.

3.4 Temperature Control

Another important parameter of DNA tile self-assembly is temperature. To ob-
tain a perfect crystal of DNA tiles, the temperature must be kept slightly below
the melting temperature [2]. Microfluidic device is advantageous to control tem-
perature, because surface area per volume is very large in micro scale, which
means heat exchange is extremely efficient. We use a combination of a heater
and a sensor both made of ITO (Indium Tin Oxide) beneath the reaction cham-
ber (Fig.8).

This figure also shows obtained temperature distribution measured by a ther-
mography. More precise temperature measurement is possible by measuring re-
sistance of sensor wires, but it is not used yet.

3.5 Immobilization of DNA Molecule at Reaction Chamber

Immobilization techniques are often used in biochemical experiments. Immo-
bilization of DNA molecules is very important in practical use such as DNA
microarrays [5] [6]. In our method, some initial strands have to be anchored in
the reaction chamber. To realize this, DNA linker was immobilized on a gold
surface using DSP (dithiobis-succinimidyl propionate: PIERCE, U.S.A.).

The gold surface was patterned by vapor deposition through stencil mask,
thus we can specify the place to fix the initial strands (in this case the whole
reaction chamber). Fig.9 shows immobilized DNA in the reaction chamber.

3.6 Microfluidic Channel Fabricated on Silicon

The microfluidic device described so far is made of PDMS. PDMS is widely used
material for micro-fluidic devices because of its easy fabrication, but it is not the
optimal material for our purpose for some reasons; 1) PDMS is hydrophobic in

A Microfluidic Device for DNA Tile Self-assembly 333

Fig. 10. Microfluidic channel fabricated on Silicon

nature, thus its surface must be changed to hydrophilic before experiments. We
use oxygen plasma to change the surface, however its effect does not last long. 2)
PDMS does not have enough solvent resistance. DMSO for DNA immobilization
dissolves surface of fluidic channel. 3) PDMS is resin and its stiffness is not
enough for AFM observation.

We are currently working on the second version of our microfluidic device
made of silicon (Fig. 10). Most of the above problems will be solved by silicon
based device, because the surface of silicon is spontaneously covered by silicon
oxide, which is much smoother and more stiff than PDMS, and also hydrophilic
and solvent-resistant. Gold deposition and DNA immobilization is much easier
than PDMS.

4 Conclusions and Future Work

We propose a novel microfluidic device specially designed for DNA tile assembly
in this paper. It has a capillary pump to drive water solution including DNA
tiles, an open reaction chamber which enables AFM direct observation, and micro
heater/sensor under the reaction chamber. All these components are patterned
on a single chip made of PDMS. We have fabricated a prototype to evaluate its
basic functionalities such as replacement of solution and temperature control.

Our goal is to achieve complex nano structure by the self-assembly, and the
microfluidic device has a large potential in self-assembly of various kind of nano-
particles such as DNA tiles and other motifs. In the complex self-assembly,
the process should be stepwise, and also, the environment of the self-assembly
must be precisely controlled. Fig. 11 illustrates such multi-stage self-assembler
(Nano factory). In this figure, the self-assembly process has four stages. Each
of them is controlled at the optimal temperature for each corresponding step
(e.g. single tile assembly, lattice assembly etc.). Seed structure is immobilized at
the reaction chamber (final stage) in which concentration of nano particles are
continuously measured by fluorescents. Undesired spurious structures around the

334 K. Somei et al.

Fig. 11. Nano factory

seed are washed out by flow to give enough space and material around the seed.
These surplus byproducts are fed back to the decomposition. This kind of con-
trolled self-assembly will drastically improve the size and yield of errorless nano
structure. It is also possible to produce desired nano structures on a patterned
template in the reaction chamber for various applications.

Acknowledgement

This work was supported by Ministry of Education, Culture, Sports, and Science
and Technology of Japan under Grant-in-Aid for Scientific Research on Priority
Areas, No. 17059001, 2005.

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems,
Science, Vol.266, pp.1021-1024, 1994.

2. Winfree, E.: Algorithmic Self-Assembly of DNA, Ph.D Thesis, California Institute
of Technology, 1998.

3. Winfree, E., Yang, X. and Seeman, N. C.: Universal Computation via Self-assembly
of DNA : Some Theory and Experiments, DNA based Computers 2, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, Vol.44, pp.
191-213,1999.

4. Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij,
N., and Delamarche, E.: Autonomous Microfluidic Cappilary System: Analytical
Chemistry, Vol. 74, No. 24, pp.6139-6144, 2002.

5. Delamarche, E., Bernard, A., Schmid, H., Michel, B., Biebuyck, H.: Science, Vol.
276, pp.779-781, 1997.

A Microfluidic Device for DNA Tile Self-assembly 335

6. Smith, E.A., Wanat, M.J., Cheng, Y., Barreira, S.V.P., Frutos, A.G., and Corn,
R.M: Formation, Spectroscopic Characterization, and Application of Sulfhydryl-
Terminated Alkanethiol Monolayers for the Chemical Attachment of DNA onto
Gold Surfaces: Langmuir, Vol.17, pp.2502-2507, 2001.

7. Chworos, A., Severcan, I., Koyfman, A.Y., Weinkam, Y., Oroudjev, E., Hansma,
H.G., and Jaeger, L.: Building Programmable Jigsaw Puzzles with RNA, Science
Vol.306, pp.2068-2072, 2004.

8. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that
folds into a nanoscale octahedron, Nature Vol.427, pp.618-21, 2004.

9. Winfree, E., Liu, F., Wenzler, L., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals, Nature, Vol. 394, pp.539-544, 1998.

10. Yamamoto, T. Fujii, T. and Nojima, T: PDMS-glass hybrid microreactor array with
embedded temperature control device. Application to cell-free protein synthesis:
Lab on a Chip, Vol.2 (4), pp197 - 202

11. Several papers related to error suppression of DNA tiles are presented in: Prelimi-
nary Proceedings of Tenth International Meeting on DNA Computing (Edtors. C.
Ferretti, et. al), Milan, 2004.

12. J.H. Reif: Local Parallel Biomolecular Computation: Proc. DNA-Based Computers,
III: University of Pennsylvania, June 23-26, 1997.

Photo- and Thermoregulation of DNA
Nanomachines

Keiichiro Takahashi1, Satsuki Yaegashi2,
Hiroyuki Asanuma3, and Masami Hagiya2,4

1NovusGene Inc., 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512, Japan
takahashi-k@novusgene.co.jp

2Japan Science and Technology Corporation (JST-CREST)
yaegashi@lyon.is.s.u-tokyo.ac.jp

3Department of Molecular Design and Engineering, Graduate School of Engineering,
Nagoya University, Chikusa, Nagoya 464-01, Japan

asanuma@mol.nagoya-u.ac.jp
4Department of Computer Science, Graduate School of Information Science and

Technology, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

hagiya@is.s.u-tokyo.ac.jp

Abstract. We have been investigating DNA state machines, especially
those based on the opening of hairpin molecules in which state transi-
tions are realized as hairpin loops are opened by molecules called openers.
This paper introduces photo- and thermoregulation of such hairpin-based
DNA machines, in which the openers become active by sensing external
signals in the form of light or heat. We conducted fluorescence exper-
iments and show that photo- and thermoregulation is possible. In the
experiments, the openers become active when they are irradiated by UV
light or when they receive heat as external input. For photoregulation, we
use azobenzene-bearing oligonucleotides developed by the third author.

1 Introduction

Implementing controllable molecular nanomachines made of DNA is one of the
goals of DNA computing and DNA nanotechnology, and a variety of imple-
mentations of DNA machines have been reported [1,2, 3,4, 5]. One of the most
typical methods for controlling such DNA machines is to use DNA strands that
hybridize with target machines and drive their state transition [1, 7, 2]. DNA
strands can also be used as catalysts for the formation of double helices in such
machines [13, 6]. As another approach to control DNA machines, Mao et al.
showed that the B-Z transition of DNA owing to a change in solution condition
can switch the conformation of their DNA motor [3].

In this paper, we show that signals in the form of light or heat can be used as
another means to control DNA machines. We have been investigating DNA state
machines that are based on the opening of hairpin molecules, in which state transi-
tions are realized as hairpin loops are opened by molecules called openers [8,9,10].

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 336–346, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Photo- and Thermoregulation of DNA Nanomachines 337

Signals in the form of light or heat change the activity of the openers. The proposed
reaction systems will be used as components of a larger molecular system, consist-
ing of various sensors, computing elements, and actuators. We envision that such
general-purpose molecular systems can be constructed from a network of DNA
machines based on hairpins or other kinds of loop structure, as proposed by Seelig
et al. [6] and the authors [12], the operations of which are driven by the formation
of double helices and the dissociation of loops. The photo- and thermoregulation
of hairpin-based machines introduced here can be incorporated into such systems
and extend their range of application.

In this paper, we first briefly describe our previous experiments on hairpin
dissociation using various kinds of opener. Then, we present experimental results
of photo- and thermoregulation, and discuss our model of hairpin dissociation.

2 Previous Work

Before describing the reaction systems operated by light or heat, let us briefly
introduce our previous work [11], which constitutes the basis of those systems.
In these preliminary experiments, we measured the efficiency of various kinds of
opener molecules using fluorescence, and introduced some techniques to achieve
robust hairpin dissociation, as seen in the work of Yurke’s group [13, 14].

The main reaction system in our study is depicted in Figure 1. We call the
hybridization site of the hairpin or opener the lead section. The overhang of the
hairpin is the hairpin’s lead section, and this hybridizes with the lead section of
the opener. The substrand of the opener that invades the hairpin and replaces
one of the stem strands via branch migration is called an invasion section .

In the study, we varied the length of the opener’s lead section from 0 to 20
(20, 10, 7, and 0). The lead section with length 10 resulted in the most efficient
kinetic rate (3.9 × 105 M−1s−1) in our experiment (0.05μM hairpin molecules
and 0.05μM opener molecules in 1×SSC buffer at 25◦C). Although a longer lead
section causes a faster reaction in general [15], the kinetic rate for the 20-base
lead section resulted in about 1.5× 105 M−1s−1 because the opener strand folds
into a conformation more stably than the openers with a lead section 10 or 7
bases long (see Fig. 2(a)).

Then, we verified that openers with a mismatching lead section cannot open
the hairpin, and that if the hairpin’s lead section is covered with its complemen-
tary strand, no proper openers can open the hairpin (see Fig. 2(b)).

We also tested openers with a lead section (seven bases) that was comple-
mentary to the hairpin loop and with an invasion section that might invade the
hairpin stem from top to bottom (in the direction opposite to that of ordinary
openers) (see Fig. 2(b)). Unlike the so-called molecular beacon [16], the small
loop of the hairpin inhibits the invasion of the openers. An extra random coil
attached to the lead section strengthens this inhibition, as reported by Yurke
et al. [13]

338 K. Takahashi et al.

(A)

lead sectioninvasion section

ATA
AAA

CCC
TAT

CTA
TGC

G

CGCATAGATAGGGTTTTATACCGCACGAGACCCCACCCTC
lead section

GAGGGTGGGGTCTCGTGCGGTATAAAACCCTATCTATGCC

Dabcyl

TAMRA

GAGGGTGGGGTCTCGTGCGGTATAAAACCCTATCTATGCG

ATAAAACCCTATCTATGCG

CGCATAGATAGGGTTTTATACCGCACGAGACCCCACCCTC

Dabcyl

A

A

T

A

A C

C

TAMRA(B)

Fig. 1. [Hairpin Structure and Detection Scheme]: The hairpin molecule is labeled at
the 5′-end with TAMRA and at the end of the stem with Dabcyl. (A) If TAMRA and
Dabcyl are in close proximity, Dabcyl quenches the fluorescence of TAMRA. (B) The
fluorescence intensity increases in proportion to the opening of the hairpin structure.

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

OpenO
OpenLx

OpenLxx
OpenOL

OpenOLyy
OpenH+OpenL

OpenL
OpenL30
OpenL27

(a)

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

OpenO
OpenLx

OpenLxx
OpenOL

OpenOLyy
OpenH+OpenL

(b)

Fig. 2. [Experimental Results of the Previous Study]: (a) From the top curve, the ef-
ficiencies of the openers that have 10-, 7- and 20-base lead sections are each depicted.
And the other curves show the efficiencies of the suppressed openers. (b) The fluo-
rescence intensity of the suppressed openers (scaled up). The efficiency of the opener
consisting of the invasion section and the lead section complementary to the hairpin
loop is drawn in the pink line (top), and the opener with a random coil reached down
to the light blue line (under the yellow curve). And we observed that the opener with-
out any lead section cannot open the hairpin (the red curve), that the openers with a
mismatching lead section cannot open the hairpin (the green and the blue curves), and
that if the hairpin’s lead section is covered with its complementary strand, the hairpin
cannot be opened by any proper opener (the yellow curve).

3 Photoregulation

3.1 Photoregulation with Azobenzene

Using the isomerization of azobenzene residues in the side chain of an oligonu-
cleotide (see Fig. 3(a)), hybridization between the oligomer and its complement

Photo- and Thermoregulation of DNA Nanomachines 339

(a)

C
C
A
G
T
A
T
A
T
A
C
C
A
G
C
A
C
C
T
G

C
A
G
G
T
G
C
T
G
G
T
A
T
A
T
A
C
T
G
G

G
G
C
C
T
C
A
C
T
C

CAGGTGCTGGTATATACTGGGAGTGAGGCC

T
A
M
R
A

Dabcyl

CAGGTGCTGGTATATACTGGGAG

ctcccagtat

Dabcyl

CAGGTGCTGGTATATACTGGGAGTGAGGCC

ggcctcactc

Dabcyl

(A) Hairpin

(B) Azo-type1

(C-1) Azo-type2-1

(C-2) Azo-type2-2

invasion section

lead section

lead
 section

lead section

lead section

invasion section

invasion section

(b)

Fig. 3. [Photoregulation using Azobenzene]: (a) Isomerization scheme of an azobenzene
in the side chain upon irradiation. (b) (A) A hairpin structure labeled at the top of
the stem with TAMRA. (B) An opener for the hairpin structure labeled at the 5′-end
with Dabcyl, which contains azobenzenes in its lead section. (C-1) and (C-2) Other
openers with lead sections that form a stem region with their counterparts. These
openers have supplementary bases allowing them to fold into a loop structure. The
fluorescence intensity decreases as the reaction between the hairpin molecule and each
opener molecule proceeds.

can be photoregulated [17,18]. When azobenzenes are isomerized from the trans
form to the cis form by irradiating them with UV light (300 nm < λ < 400
nm), the melting temperature of the duplex is lowered considerably. Moreover,
when the cis-form azobenzenes are irradiated with visible light (λ > 400 nm), the
azobenzene residues are isomerized back to the trans form. Using these properties
of azobenzenes, we show the feasibility of controlling hairpin opening with light.

Figure 3(b) depicts the reaction system used for photoregulation. Opener
(B) has a 10-base lead section and openers (C-1) and (C-2) fold into a stem-
loop in the trans condition. Even when opener (B) isomerized to the cis form
is added to the solution containing hairpin molecules, the hairpin structure is
retained because the lead section of the cis opener has a much lower melting
temperature. Once the solution of dissolved molecules of the hairpin and its
cis opener is irradiated with visible light, the reaction between the hairpin and
the opener is permitted. By contrast, openers (C-1) and (C-2) will open the
hairpin structure (A) when the solution is irradiated with UV light, because the
stem-loop of the openers is dissociated and the lead section is exposed.

3.2 Materials and Methods

The oligomers intercalating azobenzenes, shown in Table 1, were synthesized
by the third author, while H-TAM was synthesized by Sigma-Aldrich Japan,
Genosys Division. Each opener strand has four azobenzenes in its lead section;
these are located every two bases. The difference between Azo-type2-1 and Azo-
type2-2 is that in Azo-type2-1 , part of the lead section is exposed in the loop,
while in Azo-type2-2 , it is completely concealed in the stem.

340 K. Takahashi et al.

Table 1. [Sequences of the Photo-Sensor Systems]: From top to bottom, these se-
quences correspond to structures (A), (B), (C-1), and (C-2) in Fig. 3(b). The sequence
H-TAM folds into a hairpin stem with a sticky end. The base on the 5′-side of the
closing pair is labeled with TAMRA. Azo-type1, Azo-type2-1, and Azo-type2-2 are the
hairpin openers intercalating azobenzenes, which are labeled with Dabcyl at the 5′-end.
Each X represents an azobenzene residue.

H-TAM : 5’-GGCCTCACTC-CCAGTATATACCAGCACCTG(-TAMRA)
-TTAGCCC-CAGGTGCTGGTATATACTGG-3’

Azo-type1 : 5’-(Dabcyl-)CAGGTGCTGGTATATACTGG-GAXGTXGAXGGXCC-3’
Azo-type2-1 : 5’-(Dabcyl-)CAGGTGCTGGTATATACTGG-GAG

-TGAGGCC-CTXC-CXCAXGTXAT-3’
Azo-type2-2 : 5’-(Dabcyl-)CAGGTGCTGGTATATACTGG-GAGTGAGGCC

-TAGTCAT-GGXCCXTCXACXTC-3’

In an actual application, we would use light as input to the entire molecular
system. In our experiments, however, instead of irradiating the entire system,
which consists of both the opener and the hairpin machine, we irradiated only
the openers in advance, to facilitate quantitative measurement. These experi-
ments were conducted at 40◦C, which is roughly the melting temperature of
trans [18]. The openers Azo-type1 , Azo-type2-1, and Azo-type2-2 were irradi-
ated for isomerization before being added to the solution. The temperature of
the sample cell fixed in a HITACHI F-2500 spectrophotometer was maintained
with a LAUDA RC6 thermostatic bath. In each measurement, the opener and
hairpin machine were diluted to 0.05μM and 0.0225μM in 1×SSC buffer, respec-
tively. The concentration of the hairpin molecules was planned to be half that of
the openers (0.025μM), but an approximately 9% difference occurred after quan-
titative adjustments. We preprocessed the sample tube to dissolve the opener by
heating it at 60 ◦C before irradiating it because we can attain a higher rate of
azobenzene isomerization at a higher temperature. Subsequently, we exposed the
tube to UV light through UV-D36C glass (a filter from Asahi Techno Glass that
transmits UV and absorbs visible light) with a UVP B-100AP 100-W lamp (the
original light filter was removed) for five minutes in order to effectively isomerize
the azobenzenes from trans to cis. This treatment resulted in an isomerization
rate of about 80% (roughly three of the four azobenzenes were isomerized), as
observed using BECKMAN DU 650 spectroscopy (data not shown).

For the experiments with the trans-form openers, we irradiated the openers
through an L-39 filter (a UV blocking filter from Asahi Techno Glass) with the
100-W lamp, because some cis azobenzenes might exist in the normal condition.

As the “half life” of cis-form azobenzenes is about twelve hours at 37◦C and
about one day at room temperature, we dropped each opener into the solution
containing the H-TAM molecules immediately after irradiating it with UV light.
Therefore, although our experiments were conducted at 40◦C for thirty minutes,
the temperature would not have affected the isomerization back to the trans
form.

Photo- and Thermoregulation of DNA Nanomachines 341

3.3 Experimental Results

Figure 4 shows the experimental result for the reaction between the hairpin
machine H-TAM and the opener Azo-type1. The fluorescence intensity decreases
as the hairpin machines are opened, since the TAMRA is quenched by the Dabcyl
on the opener. Although we tethered fluorescent dyes at the bottom of the stem
in the previous study while dyes are put at the top of the stem in this experiment,
it seems that their position does not affect fluorescent properties judging from
the kinetic rates (data will be shown later). The trans opener was expected to be
far more efficient than the cis one for opening the hairpin structure. As the figure
shows, however, in this experiment our expectation was rarely met. Assuming
the reactions follow the second-order kinetics of ordinary duplex formation, we
estimated that the rate constants are around 1.2 × 105 M−1s−1 for the trans
openers and 8.1× 104 M−1s−1 for the cis openers from fitting the fluorescence
data. Therefore, even if the opener Azo-type1 has a cis lead section, branch
migration can proceed via partial hybridization between the lead sections.

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type1(trans)
Azo-type1(cis)

Fig. 4. [Comparison of the trans and cis forms of Azo-type1]: The upper line is the
change in fluorescence intensity as the reaction between the trans opener Azo-type1
and the hairpin structure H-TAM proceeds. The lower line is for the reaction between
the cis opener Azo-type1 and the hairpin structure.

Figure 5 depicts the fluorescence intensities of the reactions between the hair-
pin machine and the hairpin openers Azo-type2-1 and Azo-type2-2. As the opener
Azo-type2-1 has a partially exposed lead section in its hairpin loop, this opener
is more likely to open the hairpin machine in the trans condition as compared to
Azo-type2-2 (see Fig. 6(b)). In other words, the length of the lead section on the
hairpin structure H-TAM is slightly shorter to avoid the interference between
the lead sections [11]. By contrast, Azo-type2-2 , which carries the trans-form
azobenzenes, is more robust, as the lead section of the opener is completely con-
cealed in the stem region. However, in exchange for this advantage, Azo-type2-2
is less capable of breaking the hairpin machine (see Fig. 6(a)) because it is more
stable. On the assumption that the reaction of the Azo-type2 openers takes the
second-order kinetics, we also tried to fit the curves and estimated the rates;

342 K. Takahashi et al.

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type2-1(trans)
Azo-type2-1(cis)

(a)

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type2-2(trans)
Azo-type2-2(cis)

(b)

Fig. 5. [The Efficiencies of Azo-type2-1 and Azo-type2-2]: (a) This figure shows the
difference in the efficiency of Azo-type2-1 between the trans(upper) and cis(lower)
conditions. (b) This figure shows the difference in the efficiency of Azo-type2-2 between
the trans(upper) and cis(lower) conditions.

(a) (b)

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type2-1(cis)
Azo-type2-2(cis)

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type2-1(trans)
Azo-type2-2(trans)

(c) (d)

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type1(trans)
Azo-type2-1(cis)
Azo-type2-2(cis)

 0 200 400 600 800 1000 1200 1400 1600 1800

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Azo-type1(cis)
Azo-type2-1(trans)
Azo-type2-2(trans)

Fig. 6. Some Comparisons of the Photoregulation

1.2× 105 M−1s−1 for the cis form Azo-type2-1 and 8.3× 104 M−1s−1 for the cis
form Azo-type2-2. As for the trans form openers, we could not fit the curves well.
If we borrow the coefficients obtained for the cis form other than the reaction
rate and use the fluorescent intensity at 1800s, the reaction rate for the trans
form is approximated by 5.1×104 M−1s−1 and 5.3×104 M−1s−1 for Azo-type2-1
and Azo-type2-2, respectively.

Photo- and Thermoregulation of DNA Nanomachines 343

Figure 6(c) compares the switched-on openers. Azo-type1 with trans azoben-
zenes and Azo-type2-1 with cis azobenzenes have equal ability, while the cis
opener Azo-type2-2 is slightly less efficient. Fig. 6(d) compares the switched-
off openers. Unfortunately, Azo-type1 works as if it were an always switched-on
opener in contrast to other suppressed openers.

4 Thermoregulation

As another possible means of sensing environmental changes, this section intro-
duces thermoregulation of hairpin opening.

4.1 Materials and Methods

We verified the dissociation of a hairpin machine as a thermo-sensor using the
two openers Th8 and Th6 listed in Table 2. Hairpin is the same molecule that
we used in our preliminary experiment. These oligomers were also synthesized
by Sigma-Aldrich Japan, Genosys Division. The secondary structure of each
sequence is shown in Fig. 8, where the hairpin loops of the openers might be
closed by wobble pairs of (T, G).

Table 2. [Sequences of the Thermo-Sensor Systems]: Hairpin folds as the hairpin
machine that is opened by the thermo-reactive opener strands Th8 and Th6

Hairpin : TAMRA-5’-TATAAAACCCTATCTATGCG-ACACATA
-CGCATAGATAGGGTTTTAT(-Dabcyl-)A

CCGCACGAGACCCCACCCTC-3’
Th8 : 5’-GTTTTATA-TCTCGTGCGG-TATAAAACCCTATCTATGCG-3’
Th6 : 5’-TTTATA-TCTCGTGCGG-TATAAAACCCTATCTATGCG-3’

The openers have a lead section of length 10 enclosed in their hairpin loop.
These openers exist as hairpins until they receive external input in the form of
heat, i.e., until the temperature is raised (to 50◦C in this system) so that their
hairpin structure is dissociated. Therefore, the thermo-sensing system consisting
of the hairpin machine and opener should measure the difference in tempera-
ture between 25◦C (the room temperature) and 50◦C. The hairpin machine and
its opener were each diluted to 0.05μM in 1×SSC buffer, and each experiment
was measured using a HITACHI spectrophotometer and a LAUDA thermostatic
bath.

4.2 Experimental Results

Figure 7(a) plots the fluorescence intensity of TAMRA as a function of time
during the reaction of Hairpin and Th6 . The red line shows the efficiency of

344 K. Takahashi et al.

(a) (b)

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Th6 at 25C
Th6 at 50C

Th6 at 50C (adjusted)

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Th8 at 25C
Th8 at 50C

Th8 at 50C (adjusted)

(c) (d)

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Th6 at 25C
Th8 at 25C

OpenL30 at 25C

 0 200 400 600 800 1000 1200 1400 1600

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

Th6 at 50C
Th8 at 50C

OpenL30 at 50C

Fig. 7. Experimental Results of Thermoregulation
TATAAAACCCTATCTATGCG GTTTTATA

A
T
A
A
A
A
C
C
C
T
A
T
C
T
A
T
G
C
G

C
G
C
A
T
A
G
A
T
A
G
G
G
T
T
T
T
A
T
A

CCGCACGAGACCCCACCCTCT
A
M
R
A

D
a
b
c
y
l

Th8

TATAAAACCCTATCTATGCG TTTATATh6

(a) Hairpin

(b)

(c)

invasion section

invasion section

lead section

lead section

lead section

Fig. 8. [Thermo-Sensor Systems]: (a) The sequence of the hairpin structure is the
same as the hairpin machine used in our preliminary experiments. The machine’s lead
section is a part of its overhang and the rest part functions as a hybridization inhibitor
of the hairpin formed openers Th8 and Th6. (b,c) The openers for the thermo-sensor
machine. Th8 has a stem of length 8 and Th6 has a stem of length 6, and both have
a lead section of length 10.

the hairpin-formed opener at 25 ◦C and the green line shows the efficiency of
the single-stranded opener at 50 ◦C. As the fluorescence intensity of TAMRA is
inversely proportional to the temperature, we adjusted the green curve to the
fluorescence intensity at 25 ◦C and obtained the blue curve. In addition, the
efficiency of opener Th8 at 25 ◦C and 50 ◦C is shown in Figure 7(b).

Photo- and Thermoregulation of DNA Nanomachines 345

Since these reactions do not follow the ordinal hybridization kinetics, we could
not fit the curves. However, Figure 7(a) clearly shows that we cannot effectively
control the dissociation of the haripin machine with Th6, while Figure 7(b)
shows that Th8 at 25◦C does not have much ability to open the machine.
Figure 7(c) and (d) depict the comparisons between the two openers at 25◦C and
50◦C, respectively. We also compare the two openers against the proper opener
with the 10-base lead section used in our preliminary experiment (Fig. 2(a)).
The adjustment of the fluorescence intensity in (a) and (b) is made according to
the measurement of this opener. In exchange for the good controllability, Th8
is totally inferior to Th6 in terms of efficiency because it has a more stable
stem.

5 Discussion

In this paper, we showed that photoregulation and thermoregulation of hairpin
opening are possible in the same framework of hairpin opening. Note that there
are a variety of methods for thermoregulation other than the method proposed
in this paper, but the openers for thermoregulation in this study can be used
in conjunction with other kinds of openers, including those for photoregulation
and those containing aptamers as proposed by Dirks et al. [19].

In the photoregulation experiments, we succeeded in controlling the opening
of the hairpin machine using UV light. However, control using visible light (as
was expected for Azo-type1) remains a future goal. In the thermoregulation
experiments, we succeeded in regulating the conformational change of the hairpin
machine with openers that changed structure according to external input in the
form of heat. These kinds of sensors will be used to regulate general-purpose
molecular systems such as DNA logical circuits [12].

Compared with the functionally suppressed openers used in the preliminary
experiments mentioned in the first section, we have not adequately inhibited
the switched-off openers. In order to apply the current results effectively, we
need to construct more robust sensor machines by suppressing the switched-off
openers more strongly. As for the switched-on openers, on the other hand, we
need to make hairpin opening more efficient. As suggested by an anonymous
reviewer, in order to drive the equilibrium of the system towards the complete
hairpin opening, we could add a few bases to the invading substrand, which
complements the first few bases on the hairpin loop.

Acknowledgments

The authors would like to thank anonymous reviewers for valuable comments.
The work reported here is also supported in part by Grand-in-Aid for Scientific
Research on Priority Area No.14085202, Ministry of Education, Culture, Sports,
Science and Technology, Japan.

346 K. Takahashi et al.

References

1. B. Yurke et al. A DNA-fuelled molecular machine made of DNA. Nature 406,
605–608 (2000)

2. F. C. Simmel et al. Using DNA to construct and power a nanoactuator. Physical
Review E 63, 041913 (2001)

3. C. Mao et al. A DNA nanomechanical device based on the B-Z transition. Nature
397, 144–146 (1999)

4. Y. Benenson et al. Programmable and autonomous computing machine made of
biomolecules. Nature 414, 430–434 (2001)

5. M. Hagiya et al. Towards Parallel Evaluation and Learning of Boolean μ-Formulas
with Molecules. DNA Based Computers III, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science 48, 57–72 (1999)

6. G. Seelig et al. DNA Hybridization Catalysts and Catalyst Circuits DNA10,
Tenth International Meeting on DNA Based Computers, Preliminary Proceedings
202–213 (2004)

7. H. Yan et al. A robust DNA mechanical device controlled by hybridization topology
Nature 415, 62–65 (2002)

8. H. Uejima et al. Secondary Structure Design of Multi-state DNA Machines Based
on Sequential Structure Transitions. Ninth International Meeting on DNA Based
Computers, LNCS, Springer 2943, 74–85 (2004)

9. M. Kubota et al. Branching DNA Machines Based on Transitions of Hairpin Struc-
tures. Proceedings of the 2003 Congress on Evolutionary Computation (CEC’03),
2542–2548 (2003)

10. A. Kameda et al. Conformational Addressing Using the Hairpin Structure of Single-
Strand DNA. Ninth International Meeting on DNA Based Computers, LNCS,
Springer 2568, 219–223 (2004)

11. K. Takahashi et al. Preliminary Experiments on Hairpin Structure Dissociation for
Constructing Robust DNA Machines. Proceedings of the 2004 IEEE Conference on
Cybernetics and Intelligent Systems (CIS’04), 285–290 (2004)

12. K. Takahashi et al. Chain Reaction Systems based on Loop Dissociation of DNA.
submitted

13. Turberfield A. J et al. DNA fuel for free-running nanomachines. Physical Review
Letters 90, 118102 (2003)

14. B. Yurke et al. Using DNA to power nanostructures. Genetic Programming and
Evolvable Machines 4, 111–122 (2003).

15. L. E. Morrison et al. Sensitive fluorescence-based thermodynamic and kinetic mea-
surements of DNA hybridization in solution. Biochemistry 32, 3095–3104 (1993)

16. W. Tan et al. Molecular beacons for DNA biosensors with micrometer to submi-
crometer dimensions. Analitical Biochem. 283, 56–63 (2000)

17. H. Asanuma et al. Photo-regulation of DNA function by azobenzene-tethered
oligonucleotides. Nucleic Acids Res. Supple. 3, 117–118 (2003)

18. H. Asanuma et al. Photoregulation of the Formation and Dissociation of a DNA
Duplex by Using the cis-trans Isomerization of Azobenzene. Angewandte Chemie
International Edition, 38, 2393–2395 (1999)

19. R. M. Dirks et al. Triggered amplification by hybridization chain reaction. PNAS
101, 15275–5278 (2004)

Chain Reaction Systems Based on
Loop Dissociation of DNA

Keiichiro Takahashi1, Satsuki Yaegashi2,
Atsushi Kameda2, and Masami Hagiya2,3

1 NovusGene Inc., 2-3 Kuboyama-cho, Hachioji-shi, Tokyo 192-8512, Japan
takahashi-k@novusgene.co.jp

2 Japan Science and Technology Corporation (JST-CREST)
yaegashi@lyon.is.s.u-tokyo.ac.jp, kameda@complex.eng.hokudai.ac.jp

3 Department of Computer Science, Graduate School of Information Science and
Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

hagiya@is.s.u-tokyo.ac.jp

Abstract. In the field of DNA computing, more and more efforts are
made for constructing molecular machines made of DNA that work in
vitro or in vivo. States of some of those machines are represented by their
conformations, such as hairpin and bulge loops, and state transitions are
realized by conformational changes, in which such loops are opened. The
ultimate goal of this study is to implement not only independent molec-
ular machines, but also networks of interacting machines, called chain
reaction systems, where a conformational change of one machine triggers
a conformational change of another machine in a cascaded manner. A
chain reaction system would result in a much larger computational power
than a single machine in the number of states and in the complexity of
computation. As a simple example, we propose a general-purpose molec-
ular system consisting of logical gates and sensors. As a more complex
example, we present a new idea of constructing a DNA automaton by a
chain reaction system, which can have an arbitrary number of states.

1 Introduction

Seeman and Winfree’s tile assembly model has made it possible to construct
large structures of DNA by programmed self-assembly of basic components. The
structures constructed so far include DNA nanotubes and planar patterns such
as Sierpinski triangle. Meanwhile, DNA nanomachines like the molecular tweez-
ers [11] have come under the spotlight of nanorobotics. Those nanomachines
realize finite state machines, where states are represented by their conforma-
tions, and conformational changes make state transitions.

The ultimate goal of this study is to construct general-purpose molecular
systems consisting of interacting molecular machines. In contrast to self-assembly
of DNA tiles, where static components only hybridize together, each component
of such a system is a DNA machine that changes its state through interactions
with other machines. In other words, we aim at constructing networks of DNA
machines interacting with one another, where a conformational change of one

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 347–358, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 K. Takahashi et al.

machine triggers a conformational change of another machine in a cascaded
manner. We call such networks of machines chain reaction systems in this paper.
By a chain reaction system, it would be possible to realize information processing
at the molecular level. Recently, molecular systems involving a chain reaction
have been investigated by several other groups. For example, Dirks et al. have
already demonstrated self-assembly of two stable hairpin species, triggered by
an initiator strand, which may contain a DNA aptamer and become active when
ATP binds the aptamer and exposes a sticky end [19]. In the chain reaction,
one hairpin opening mutually triggers another hairpin opening and long linear
complexes are yielded.

In the next section, we briefly introduce the design method that we have
suggested to construct chain reaction systems. And in the subsequent sections,
we introduce two examples of chain reaction systems. The first one is the chain
reaction system simulating AND-OR circuits, where an AND gate is represented
by a DNA machine including two bulge loops and an OR gate is composed of
two hairpin structure molecules. The thermo- and photo-regulated hairpins [18],
can be used as sensors that produce inputs to such logical circuits. As the second
example, we present DNA automata, where both the transition rules and states
would be implemented by DNA machines.

2 Design Method of Chain Reaction Systems

There have been developed various methods for designing DNA sequences [4].
However, those methods are not enough for designing DNA machines and their
networks as mentioned above. Developing a new and systematic design frame-
work for constructing DNA machines is also a goal of our study [1,2].

The framework for designing and implementing DNA machines advocated in
this paper consists of the following three steps. We first pre-design candidate
DNA sequences that fold into intended initial conformations. Secondly, we pre-
dict thermodynamic properties of the pre-designed sequences and select optimal
ones. Finally, we actually verify behaviors of machines in laboratory experiments.

In the first step, we adopt the template method [5, 6] that can be used to
systematically generate a set of DNA sequences in which different sequences are
guaranteed to have a certain number of mismatches. Briefly, in the template
method, a DNA library X can be derived as X = τ ·E := {τ ·w | w ∈ E}, where
τ is a mismatch-guaranteed binary string called template and E is an error-
correcting code. The · operator stands for a bit-wise product as 1·1=G, 1·0=C
(or 1·1=C, 1·0=G), 0·0=A and 0·1=T (or 0·0=T, 0·1=A). However, since the
original template method requires all sequences to have the same length, we
have modified the method so that templates of different lengths can be mixed
to generate a set of DNA sequences of different lengths. By concatenating DNA
sequences of different lengths generated by the extended template method, we
can obtain candidate sequences that fold into target structures.

As for the second step, many existing programs for thermodynamic analysis
of DNA, such as the Vienna Package [7], can only handle a single DNA sequence.

Chain Reaction Systems Based on Loop Dissociation of DNA 349

Therefore, we have extended the Vienna Package to handle multiple sequences for
both minimum free energies and partition functions [1,2, 3]. Using the extended
Vienna Package, we select optimal sequences from the candidates.

3 DNA Logical Circuits

Logical circuits consisting of wired logic elements are one of the simplest models
of computation, and hence DNA-based simulation of logical circuits has been
investigated by many researchers in DNA computing. For example, the first
DNA-based simulation of logical circuits is reported by Ogihara and Ray [8],
Amos et al. have proposed a DNA simulation of logical circuits using NAND
gates in time proportional to the depth of the circuit [9], Carbone et al. have ap-
plied DNA tiles to the evaluation of circuits [10], and Seelig et al. have proposed
the way of simulating circuits using hybridization catalysts [12].

Our chain reaction system realizing a DNA logical circuit consists of AND
gate machines having two bulge loops and OR gate machines composed of two
hairpin molecules. Figure 1 presents these logical gates. The AND gate contains
regions that can hybridize with its inputs on the topside chain and its output
as the downside chain. If the gate receives two input signals in the form of
single-stranded molecules, it produces its output which will become an input to
a successive gate. The dotted region on the left side of the second input prevents
it from interacting with the first bulge loop before the first input breaks the stem
region, constructing a robust kinetic wall that prevents the system from rapidly
moving to the equilibrium [17].

Meanwhile, the OR gate consists of two hairpin machines that have the same
hairpin loops, which work as a converter of the input. An input that has the
lead section complementary to that of either hairpin machine opens the hairpin
and exposes the lead section of the output. This means that the gate converts
the lead section of the input to that of the output.

Inputs to those logical gates can be thermo- and photo-regulated hairpins,
which we are now developing [18]. So far, we have verified that an input with
a small hairpin that covers its lead section can be used as a thermo-sensor
because the small hairpin is dissociated in high temperature. A small hairpin
bearing azobenzenes in its stem can be used as a photo-sensor because UV
light isomerizes the azobenzenes and dissociates the hairpin. In this way, we
can construct a general-purpose molecular system consisting of logical gates and
sensors, which combines various inputs and produces their boolean combination.

3.1 Design of an AND Gate

Hereafter, the term unit is used for a subsequence of a specified length on a given
target sequence. When the given target sequence is scanned from 5′ to 3′ end,
the pair of lengths of adjacent two units appearing on the sequence is called a
concatenation pattern, denoted by n ∗m, where n is the length of the unit on
the 5′-end side and m is the length of the unit on the 3′-end side. The set of

350 K. Takahashi et al.

first input

output
second input

AND gate

first bulge

second bulge

(a)

input input

output output

OR gate

successor machine

(b)

Fig. 1. [AND Gate and OR Gate]: The panel (a) shows the behavior of an AND gate.
The AND gate is implemented by two strands that fold into a double-bulge structure.
The panel (b) shows how an OR gate works. The OR gate consists of two hairpin
molecules.

all concatenation patterns of a given chain reaction system is used as the only
information to generate optimal template tuples.

We are currently conducting some preliminary experiments of an AND gate.
The actual sequences for the AND gate and its inputs are shown in Table 1.
These sequences are designed using the extended template method. We selected
10 ∗ 15, 15 ∗ 10 and 15 ∗ 15 as the concatenation patterns for the system and
we chose the template tuple (0001001011, 111011101000111) by the extended
template method, taking their GC-content into account. While the template
00010010011 is used for the loop regions and overhanging sections, the template
111011101000111 is relevant to the stem regions. Since the stems of length 15 on
the AND gate have to stabilize the two bulge loops of length 10, the stem regions

Table 1. [Sequences for AND Gate]: The sequences correspond to the sequences in
Fig. 1(a). The upper two strands fold into a double bulge structure that functions as
an AND gate when they hybridize together. For the sake of detecting behavior in the
fluorescence experiment mentioned in the next subsection, the topside strand TopB is
labeled at 3′ end with the black hole quencher dye BHQ-1 and the downside strand
DownB is labeled at 5′ end with the reporter dye FAM. FO and SO are input molecules
to the AND gate.

TopB : 5’-AAACTTCACC-GGGTCCGTGAATGGG-ATACTCTACTGC
-CGCACCCTGATACCG-CGCTGGCAGATTCCG-(BHQ-1)-3’

DownB : 5’-(FAM-)CGGAATCTGCCAGCG-AATCTAGACC
-CGGTATCAGGGTGCG-CCCATTCACCGGACCC-3’

FO : 5’-CCCATTCACGGACCC-GGTGAAGTTT-3’
SO : 5’-CGGAATCTGCCAGCG-CGGTATCAGGGTGCG

-GCAGTAGTAT-CCGTGCGTCTTAGCG-3’

Chain Reaction Systems Based on Loop Dissociation of DNA 351

have a little extra GC-content of 67%. The actual DNA libraries of lengths 10
and 15 are obtained with BCH code, where the Tm values are about 55 ± 1◦C
and about 25± 1◦C in our experimental conditions, respectively. Table 1 shows
the sequences of the AND gate and the inputs.

The sequences TopBulge and DownB compose the AND gate, where TopB
has regions that can hybridize with the two inputs, and DownB works as the
output molecule after receiving the inputs. The sequence named FO is the first
input and the sequence named SO is the second one.

3.2 Experimental Results of an AND Gate

By gel electrophoresis and fluorescence experiments, we have verified that the
AND gate releases the output signal only when the two inputs exist.

Figure 2(a) shows the result of electrophoresis on 10% PAGE (non-denaturing
gel). The boxes labeled with a lower-case letter on the gel classify the enclosed
bands into the structures that we predict. The band on the cross of Lane 2 and
the box (b) corresponds to the double-bulge structure of the AND gate. And
the clear band on the cross of Lane 3 and the box (a) is the AND gate whose
first bugle loop is opened by FO. Importantly, Lane 4 shows whether the output
is produced only by the second input or not. In fact, the output molecules are
rarely released from the AND gate, judging from the box (e) on which the output
molecules are present. Through Lanes 5 to 7, the AND gate and the two inputs
are applied to the gel. Each lane has almost the same appearance, but the order
of mixing FO and SO is different in each lane. Lane 5 shows the result of the
AND gate on receiving the two inputs at a time. In Lane 6, after hybridization
between the AND gate and the first input, the second input is mixed. Conversely,

1. 20bp DNA Marker
2. Top+Down
3. (Top+Down)+FO
4. (Top+Down)+SO
5. (Top+Down)+(FO+SO)
6. ((Top+Down)+FO)+SO
7. ((Top+Down)+SO)+FO
8. Down
9. Top
10.FO
11.SO

BHQ-1
FAM

Output

SO

FO

bulge
1 2 3 4 5 6 7 8 9 10 11

(a)

(b) (c)

(d)

(e)

(f)

(g)

(a)

 0 1000 2000 3000 4000 5000 6000 7000

F
lu

or
es

ce
nc

e
In

te
ns

ity

Time [s]

(b)

Fig. 2. [Experimental Results]: (a) The composition of each lane is given in the bottom
right box, where each + means a hybridization process for thirty minutes. (b) The
fluorescence intensity change from 0s to 2000s is by the reaction between the AND
gate and the second input SO. FO is put at 2000s, and all the molecules exist from
2000s to 7000s.

352 K. Takahashi et al.

after interaction between the AND gate and the second input, the first input is
mixed in Lane 7. The important result is that the output is produced only when
both of the inputs exist.

The electrophoresis result is in good agreement with the fluorescence experi-
ment. In order to confirm that the output molecules are derived only if the AND
gate receives the first and second input molecules, we mixed the AND gate with
the second input before giving the first one (Fig. 2(b)). While the reaction be-
tween the AND gate and the second input reaches saturation relatively fast in
a small change of fluorescence intensity, the output molecules are released in a
larger quantity when the two inputs exist.

3.3 Discussion

We verified the function of the AND gate made of DNA molecules. However,
the experiment unfortunately results in that most of the molecules of the AND
gate hybridizing with the first input molecules are still intact even if the second
input molecules exist as seen in the box (a) in Figure 2(a). The main reasons of
this problem are as follows.

– There is a thermodynamic limitation in the system. Namely, since the system
does not contain strands that the output molecules can hybridize with, the
total energy change of the system is relatively small. Therefore, by preparing
strands that are complementary to the final output molecules of a logical
circuit, we should lower the energy of the system after the reaction.

– At the time of designing the sequences, our design framework did not take
the structure of each sequence into consideration. Therefore, each sequence
adopts a secondary structure that has many base pairs by itself. For example,
the second input SO adopts the structure ((((..(((((.((((.........))))))))).....)))).
((......)). (-8.86 kcal/mol) as the optimal one at 35◦C.

The first problem does not arise in the approach using hybridization cata-
lysts [12]. However, there is another problem concerning AND gates, which even
the catalyst approach does not escape: the output will be attenuated if other
AND gates that can receive the first signal exist. In our case, although the second
input signal can be accepted by the AND gate only after the gate receives the
first signal, the first input molecules can hybridize with any other AND gates
that have the complementary lead section even if their second inputs do not
exist.

A possible solution to this attenuation problem is to keep hybridization and
dissociation between the AND gate and the first signal under certain equilibrium
as shown in the left part of Figure 3(a). If the second input signal does not exist
in the system, the equilibrium will be kept. And if the second input molecule
exists in the system, the AND gate with its first bulge loop opened by the first
input will take the second input, moving the equilibrium towards hybridization.
Figure 3(b) depicts the example of the improved strategy. The AND gate situated
in the middle can accept the first input, but the reaction is in the equilibrium
as mentioned above since the second input to the gate does not exit. Therefore,
only the intended reaction will gradually proceed.

Chain Reaction Systems Based on Loop Dissociation of DNA 353

input1

input2

output

(a)

output

outputinput2

input2

input1

input1

(b)

Fig. 3. [Improvement of the AND Gate]: (a) Keeping the three states on the left equi-
librium, the decay of signals will be prevented. (b) This figure shows the improved
AND gates.

4 DNA Automata

In this section, we propose another chain reaction system. A wide variety of
ideas for implementing finite automata by DNA have been reported. Among
them, Gao et al. have proposed to use double-stranded molecules including one
bulge loop which encode transition rules and several kinds of enzymes [13, 14].
And Benenson et al. have actually implemented finite automata using more
sophisticated encoding techniques [15]. And more recently, they have succeeded
in analyzing mRNA levels of gene expression using their molecular computer in
vitro [16].

Formally, a deterministic finite automaton (DFA) is a structure

M = (Q, Σ, δ, s, F),

where Q is a finite set of states , Σ is a finite set called input alphabet, δ : Q×Σ →
Q is the transition function, s ∈ Q is the initial state and F (⊂ Q) is a set of
final states.

Here we propose a new kind of deterministic finite automaton (Q, {0, 1},
δ, s, F) comprised of only DNA molecules, based on our chain reaction system.
The automaton receives external input molecules one by one, which are manu-
ally put into the solution, and makes transitions by chain reaction. The design
of our DNA automaton is flexible in that it can have arbitrarily many states.

To construct such a chain reaction system which simulates a DFA, three
kinds of component molecules encoding the corresponding components of the
DFA are required: state molecules, transition rule molecules and state activa-
tion molecules. Each state molecule uniquely encodes a state q ∈ Q and also
contains the hairpins corresponding to the acceptable input symbols 0 and 1
(Fig. 5(a)(1)). A transition rule consists of two modules of DNA molecules,
where one is comprised of a bulge loop, an interior loop and a hairpin loop,

354 K. Takahashi et al.

p q1 10

0

p p

q q

δ(p,0)=q

δ(p,1)=p

δ(q,0)=p

δ(q,1)=q

0 1 0
input string

Fig. 4. [DNA Automaton]: The solution dissolving state molecules and transition rule
molecules processes an input binary string

and the other consists of a hairpin loop and a 3-loop (Fig. 6(b)). The former
module, triggered by the state molecule, hybridizes with the latter one, which
then releases a state activation molecule at the completion of the transition. The
state activation molecule identifies the next state and contains the hybridization
site of input molecules (Fig. 5(a)(2)). Only state molecules which hybridize with
the activation molecule represent the current state, and other state molecules
remain inactive, that is, they cannot read any input symbols (Fig. 5(b)).

In order to explain how the chain reaction proceeds, let us show a simple DNA
automaton (Fig. 4: for simplicity, blocker subsequences that hinder unwanted
interference as found in [17] are omitted) which is found in the work of Benenson
et al. [15]:

M = (Q, Σ, δ, s, F),

where Q = {p, q}, Σ = {0, 1}, s = p, F = {p} and δ : Q×Σ −→ Q is specified
by δ(p, 0) = q, δ(p, 1) = p, δ(q, 0) = p and δ(q, 1) = q, as shown on the upper
right panel of the figure.

At first, since the initial state p is the current state, the state activation
molecule, which should be kept equimolar to the first input molecule, stochas-
tically hybridizes with the state p molecule. If the molecule encoding the input
symbol 0 is put into the solution, the initial state p takes in the symbol 0 via
branch migration, opening the hairpin stem and exposing the region encoding
the label (p, 0) on the hairpin loop as in Figure 6(a). The region encoding (p, 0)
works as a specifier for the transition rule modules representing δ(p, 0) = q.
Note that the label (p, 0) is hidden from the transition modules until the hairpin
structure opens.

In the next step, the molecular interaction between the initial state p and the
transition rule δ(p, 0) = q proceeds through the label (p, 0) as in Figure 6(b).
Figure 7 depicts the interaction of the two modules after the hybridization with
the initial state. The first module hybridizing with the initial state uniquely
communicates with the second module via the opened bulge structure, which

Chain Reaction Systems Based on Loop Dissociation of DNA 355

p

0 1

(p,0) (p,1)

p

0

(p,0)

1

(p,1)

p

or

p

(1) state molecule

(2) state activation molecule

(a)

p

q p

state activation molecule

p

p

current state molecule

state molecule state molecule

(b)

Fig. 5. [State Molecules and Current State Molecules]: (a) The panel (1) shows state
molecules encoding state p. Each state molecule encodes the state in its overhang and
the acceptable inputs 1 and 0 in its hairpin stem(s). The hairpin loops encode the
elements of Q×{0, 1}. If the transition rule applied to the state p is a partial function,
the state molecule consists of one hairpin stem and overhang (the two molecules on
the right hand side). And the panel (2) describes a state activation molecule, which
contains the subsequence p complementary to the state p. And the molecule also has
the hybridization site of input molecules on the rest of it. The state activation molecule
is released from a transition rule molecule (Fig. 6(b)) if the state transition succeeds.
(b) A state molecule that an state activation molecule hybridizes with works as the
current state and receives an input molecule.

0 1

0
(p,0)

(p,0)

input molecules

reading the input molecule

current state

input

p

p

(a)

(p,0)

(p(,0),

transition rule

transition rule molecules

current state

(p,0) (p,0)

(p,0)

(b)

Fig. 6. [Input Molecules and Transition Rule Molecules]: (a) Input molecules are shown
in the upper box. The red region encodes the input symbol 0 and the blue region encodes
the input symbol 1. The ocher region is common to both the input molecules, which
is complementary to the counterpart of state activation molecules. The bottom box
shows the current state reading input 0. (b) The pair of two molecules in the upper
box represents the transition rule δ(p, 0) = p. The transition rule is only applied to the
current state through the hybridization of (p, 0) and (p, 0).

356 K. Takahashi et al.

second transition module

current state molecule + first transition module

state activation
molecule

Fig. 7. [State Transition]: The transition rule releases a state activation molecule for
the next state

encodes the label δ(p, 0) and which is complementary to the end part of the
overhang on the second module (Fig. 5(b)).

At the end of the transition reaction, the state activation molecule for the
next state q is released. And then, the activation molecule will also stochastically
hybridize with the state q molecule and represent the current state. At this point,
the next input molecule can be mixed. For the detection of acceptance, we can
label the final state molecule with fluorescent dye.

Although the lengths of stems and loops (or sticky ends) have to be carefully
chosen, we expect that the DNA automaton can be stably constructed with
units of lengths 10 and 25 for stems and loops, respectively, where concatenation
patterns are 10*25, 25*10 and 25*25.

5 Conclusion and Future Work

In this paper, we proposed the notion of chain reaction systems based on interac-
tion of multiple DNA machines. And as examples of chain reaction systems, we
proposed and explained the DNA logical circuit and the DNA automaton. The
former system would realize a multi-sensor system and the latter is expected to
have more states than existing DNA automata.

We also showed the results of preliminary experiment for the AND gate. Im-
plementation of an actual multi-sensor system consisting of multiple AND gates,
OR gates and sensor machines remains as future work. We are currently refining
AND gates so that they efficiently receive the pair of input signal molecules and
release the output molecule. And also, the actual design of the DNA automaton
is future work.

Chain Reaction Systems Based on Loop Dissociation of DNA 357

In order to construct a robust chain reaction system, it is essential to establish
techniques to keep the current state of each machine stable unless it is given an
input signal that takes part in the cascading chain of transitions, and it is also
important to make each cascading reaction rapid. For the first problem, we
proposed the combination of

1. preventing loop opening by blocker substrands,
2. mismatches systematically guaranteed by the (extended) template method,

and
3. optimal selection of sequences by the extended Vienna Package.

We expect that this combination of techniques is effective in constructing large
chain reaction systems, although we are currently dealing with a single gate.

For the second problem, however, the current gate is very slow because of the
inefficient reaction between SO and the gate. According to Figure 2(b) from 0s
to 2000s and Lane 4 of Figure 2(a), we can observe that a certain amount of
SO rapidly completes a reaction with the gate without FO (the cross of Lane
4 and the box(d) in Figure 2(a)), while the rest of SO remains independent
of the gate as intended (the cross of Lane 4 and the box(f) in Fig. 2(a)). And
some of the latter SO seems allowed to push away the output from the gate
quite rapidly as soon as FO completely hybridizes with the gate (from 2000s to
4000s in Figure 2(b)). The efficiency of hybridization between FO and the gate
is indicated in the boxes (a) and (g) of Figure 2(a). After 4000s in Figure 2(b),
the remaining SO seems allowed to react with the gate very slowly, due to some
kinetic trap in which SO is considered to form a certain structure with the gate
and FO. As mentioned in Subsection 3.3, we consider that in order to avoid
unwanted kinetic traps and facilitate the reaction we should enhance the driving
force of the system and use small structure openers as well as select proper
lengths of stems and loops.

Acknowledgments

The authors would like to thank anonymous reviewers for valuable comments. The
work reportedhere is also supported inpartbyGrand-in-Aid forScientificResearch
onPriorityAreaNo.14085202,Ministry ofEducation,Culture, Sports, Science and
Technology, Japan. And the authors deeply thank Professor Satoshi Kobayashi
(University of Electro-Communications) for designing DNA libraries that we used
in our early experiments and advices on the extended template method.

References

1. H. Uejima et al. Secondary Structure Design of Multi-state DNA Machines Based
on Sequential Structure Transitions. Ninth International Meeting on DNA Based
Computers, LNCS, Springer 2943, 74–85 (2004)

2. M. Kubota et al. Branching DNA Machines Based on Transitions of Hairpin Struc-
tures. Proceedings of the 2003 Congress on Evolutionary Computation (CEC’03),
2542–2548 (2003)

358 K. Takahashi et al.

3. K. Takahashi et al. On Computation of Minimum Free Energy and Partition Func-
tion of Multiple Nucleic Acid Sequences. FIT2004, Forum on Information Science
and Technology, 91–92 (2004)

4. R. M. Dirks et al. Paradigms for computational nucleic acid design. Nucleic Acids
Res., 32, 1392–1403 (2004)

5. M. Arita et al. DNA Sequence Design Using Templates. New Generation Comput-
ing, 20, 263–277 (2002)

6. S. Kobayashi et al. On Template Method for DNA Sequence Design. DNA Based
Computers (DNA8), LNCS, Springer, 2568, 205–214 (2003)

7. I. L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res. 31,
3429–3431 (2003)

8. M. Ogihara et al. Simulating Boolean circuits on a DNA computer. Algorithmica,
25, 239–250 (1999)

9. M. Amos et al. DNA simulation of Boolean circuits. Proc. of the Third Annual
Conference on Genetic Programming, Morgan Kaufmann, 679–683 (1998)

10. A. Carbone et al. Circuits and programmable self-assembling DNA structures.
PNAS, 99, 12577–12582 (2002)

11. B. Yurke et al. A DNA-fuelled molecular machine made of DNA. Nature, 406,
605–608 (2000)

12. G. Seelig et al. DNA Hybridization Catalysts and Catalyst Circuits DNA10, Tenth
International Meeting on DNA Based Computers, Preliminary Proceedings, 202–
213 (2004)

13. Y. Gao et al. DNA implementation of nondeterminism. DNA Based Computers
III, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
48, 137–148 (1999)

14. M. Garzon et al. In vitro Implementation of Finite-State Machines. Proc. Workshop
on Implementing Automata (WIA ’97), 56–74 (1998)

15. Y. Benenson et al. Programmable and autonomous computing machine made of
biomolecules. Nature 414, 430–434 (2001)

16. Y. Benenson et al. An autonomous molecular computer for logical control of gene
expression. Nature 429, 423–429 (2004)

17. K. Takahashi et al. Preliminary Experiments on Hairpin Structure Dissociation for
Constructing Robust DNA Machines. Proceedings of the 2004 IEEE Conference on
Cybernetics and Intelligent Systems (CIS’04), 285–290 (2004)

18. K. Takahashi et al. Photo- and Thermo-Regulation of DNA Nanomachines. sub-
mitted

19. R. M. Dirks et al. Triggered amplification by hybridization chain reaction. PNAS
101, 15275–5278 (2004)

A Local Search Based Barrier Height Estimation
Algorithm for DNA Molecular Transitions�

Tsutomu Takeda��, Hirotaka Ono���,
Kunihiko Sadakane, and Masafumi Yamashita

Dept. of Electrical Engineering and Computer Science, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan

takeda@tcslab.csce.kyushu-u.ac.jp, {ono, sada, mak}@csce.kyushu-u.ac.jp

Abstract. An accurate estimation of the barrier height between two
given secondary structures of DNA molecules is known to be a funda-
mental and difficult problem. In 1998 Morgan and Higgs proposed a
heuristic algorithm based on the shortest path between the two struc-
tures, and in DNA 10, Kubota and Hagiya did an exact algorithm based
on the flooding. The former runs in a practical time for sufficiently large
length n of molecule and would always show a good performance if the
barrier always appeared near the shortest path. The only but crucial
drawback of the latter on the other hand is that it cannot run for a large
n; we found an instance of even length n = 46 for which the run did
not complete because of the memory. In this paper we formulate it as an
optimization problem, and then propose a new heuristic algorithm based
on the local search strategy. We use the Morgan and Higgs’ heuristics
as the engine to find a locally optimal solution, and based on the local
search paradigm, we repeat this local search starting from the solution of
the previous local search, with the hope that this sequence of improve-
ments will eventually reach the optimum solution. We also discuss some
techniques to improve the performance. We demonstrate that for size
about 200, our algorithm runs in 5 seconds, and for many of the cases
(13 cases out of 16) in which the Kubota and Hagiya’s algorithm can
complete, our algorithm exactly answers the optimum values.

1 Introduction

Molecular/DNA computing is a computing paradigm that utilizes molecular
reactions as state transitions; computation is implemented by conformational
change or structural formation of DNA molecules [3]. In this sense, how to con-
trol reactions of DNA molecules is a fundamental issue in DNA computing, and
understanding how DNA molecular structures change is indispensable to design
DNA molecules.

� This work was supported by the Scientific Grant-in-Aid by the Ministry of Educa-
tion, Science, Sports and Culture of Japan.

�� The first author is now working on Fujitsu Limited.
��� Corresponding author.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 359–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

360 T. Takeda et al.

The energy barrier is one of the clearest barometers of the efficiency / ineffi-
ciency of transitions between two structures; the higher (resp., lower) the energy
barrier of the transition between the two structures is, the slower (resp., faster)
the corresponding reaction (transition) would be. In fact, several DNA comput-
ing machines based on the heights of the energy barriers have been proposed.
For example, Uejima et al. [9] designed the “multi-state DNA machine” which
sequentially changes the formation of repeating open DNA hairpin structures by
extending the fuel DNA model [12]. The computation utilizes the differences of
the heights of the energy barriers among several structures.

However, it is not easy to find the energy barrier between two given struc-
tures, because the barrier is defined by all the intermediate structures of all
the transition paths, the number of which is exponential of the length of the
DNA sequence [2]. For the problem, Morgan and Higgs proposed a heuristic al-
gorithm (Morgan and Higgs’ heuristics, MH heuristics, for short) based on the
shortest path between the two structures in 1998 [7]. MH heuristics runs in a
practical time even for sufficiently large length n of DNA sequence since MH
heuristics assumes that the barrier would appear near the shortest path and
searches areas near the shortest path in a greedy manner. However, if the path
of the barrier are quite far from the shortest path, the performance is of course
not necessarily good. To overcome this, Kubota and Hagiya proposed an exact
algorithm, called the minimum basin algorithm (MB algorithm, for short), in
DNA 10 [5]. The idea of the algorithm is based on the flooding algorithm [8]
that captures the landscape of all the secondary structures, though the algo-
rithm does not search the whole landscape but only the landscape near the
given structures. They implemented the algorithm and applied it to a DNA se-
quence with length 154, and the run time is just a few seconds. However, the
algorithm is sensitive not only to the length of the sequence but also to the
landscape itself, e.g., the number of stable structures; we found an instance of a
DNA sequence with length n = 46 and structures for which the run halts with-
out outputting the result after a few days’ computation, because of the memory
shortage.

In this paper, we formulate the problem as a combinatorial optimization prob-
lem, and apply a popular metaheuristics of the local search [10]. The generic local
search is as follows: Start from an initial solution and repeat replacing with a bet-
ter solution in the the neighborhood of the current solution [1]. Since the strategy
is quite natural and simple, many researchers propose local search-based algo-
rithms for many combinatorial optimization problems, but the “performances”
are not always good; the design of a good local search algorithm is not trivial.
For example, if we adopt a very large neighborhood, the algorithm might find
a very good solution, but the algorithm would require a very large amount of
run time. (If the neighborhood is whole the solution space, the “local search”
algorithm will find the optimal solution, but useless.) Contrarily, if we adopt a
very small neighborhood, each neighborhood search will finish very quickly, but
it would be difficult to find a better solution. (If the neighborhood is just the

A Local Search Based Barrier Height Estimation Algorithm 361

current solution itself, the search will immediately finish, but also useless.) These
observations imply that it is important to adopt an adequate neighborhood and
an efficient neighborhood search in order to design practically good local search
algorithms.

Taking these into consideration, we propose a local search algorithm for solv-
ing this problem. The key idea of our local search is to consider that the solution
space is the set of (s, f)-paths (transitions) where s is the initial structure and
f is the final structure. In this solution space, an (s, f)-path is considered a
collection of several sub-paths each of which is a “shortest path” from a struc-
ture to another structure. This device enables to control the size of the solution
spaces; an adequate size of the neighborhood is defined. Another point is that
we best utilize MH heuristics for an efficient neighborhood search algorithm: By
using the property that paths found by MH heuristics in sequential searches are
similar, we present an efficient neighborhood search.

We then conduct computational experiments. We apply our algorithm to 24
instances with length 46, 100, 154 and 194. Some of them are real DNA se-
quences, i.e., they were used in bio-experiments, and the others are randomly
generated. For comparison, we also apply MB algorithm, which solved 16 in-
stances (i.e., found the optimal energy barrier), though for the rest 8 instances
it could not find the solutions because of the memory problem and the run times
are not practical even for some instances of the solved 16 ones; it takes a few
days to find the solution. On the other hand, our algorithm found the solutions
for all of the above 24 instances in a few seconds, and the quality of the so-
lutions is good; actually in total 17 instances are guaranteed to be optimally
solved 1. These experimental results show that our algorithm has a sufficiently
good performance for the practical estimation of the energy barrier.

The remainder of the paper is organized as follows: In Section 2, we formulate
the problem of estimating the energy barrier and present the idea of MH heuris-
tics. In Section 3, we propose the local search algorithm for the problem, and
Section 4 discusses some techniques for accelerating the neighborhood search. In
Section 5, we report the experimental results, and then Section 6 concludes this
paper.

2 Preliminaries

2.1 The Transition Path and the Barrier Height

Let us consider a DNA molecule X that undergoes a change from one confor-
mation s0 (initial structure) to another sf (final structure). For a molecular or
a sequence X , S(X) denotes the set of all the secondary structures formed by
X . A structural transition path p from s0 to sf is a series of structures

p = 〈s0, s1, ..., sf 〉,
1 MB algorithm guaranteed the optimality of the 13 instances among the 17, and the

rest 4 are guaranteed by the estimation of the lower bound of the energy barrier,
although we omit the detail due to the space limitation.

362 T. Takeda et al.

where si conformationally changes into si+1 by either of “addition of one base
pair” or “removal of one base pair”. We define 1 transition step as the transition
from si to si+1 . A transition path whose step size is the shortest is called a
direct path. We denote the set of all the structural transition paths from s0 to
sf by P (s0, sf).

The free energy of a structure s is denoted by E(s). The top energy, or simply
the energy, of a transition path p = 〈s0, s1, ..., sf 〉 is defined by

Etop(p) = max{E(si) | si ∈ p = 〈s0, s1, ..., sf 〉}.

The energy barrier Ebar(s0, sf) of the structural transitions between s0 and sf

is defined by

Ebar(s0, sf) = min{Etop(p) | p ∈ P (s0, sf)}.

The energy barrier estimation is a problem of finding a path p that minimizes
Etop(p) for given a sequence X , an initial structure s0, and a final structure sf .
As mentioned in Section 1, the size of P (s0, sf) is an exponential of the length
of X . This means that estimating Ebar(s0, sf) is non-trivial.

2.2 MH Heuristics

In this subsection, we present a key idea of MH heuristics, since our local search
algorithm searches the solution spaces defined by MH heuristics; The local search
repeatedly invokes MH heuristics.

MH heuristics searches for a direct path whose intermediate structures have
as many base pairs as possible. The heuristics consists of 2 steps: One is remove
step in which a base pair in s0 that does not exist in sf (incompatible pair, say)
is removed, and the other is add step in which a base pair in sf that does not
exist in s0 is added. (See Fig. 1.)

G

C

G

A

T

C C

T

T

C

C

G C

G

G

A

T

C

C

T

T

C

C G

sfs0

base pair of sf

4

3

2

1

5

6

incompatible pair of s0

5 2,3

46

Fig. 1. An example of incompatible pairs

A Local Search Based Barrier Height Estimation Algorithm 363

Morgan and Higgs’ Heuristics [7]
1. Find the pair in sf which has the least number of incompatible pairs

in s0.2

2. Remove the incompatible pair found in 1. from s0, and add a pair
in sf to s0 if possible2. This creates a new structure s′.

3. Repeat this procedure with s′ instead of s0, until the intermediate
structure is transformed into the final structure sf .

The policy of MH heuristics is based on the hypothesis that if the structure
has the more base pairs then it is more stable (i.e., the free energy is lower).

2.3 The Local Search

The local search is one of the most popular metaheuristics approaches, and many
other metaheuristics are considered to be based on the local search algorithm.
Also, it is reported to be quite practical for many combinatorial optimization
problems [1, 10].

The local search starts from an initial solution x and replaces x with a better
solution x′ on condition that evaluate function g(x′) < g(x) in its neighborhood
N(x), where N(x) is a set of solutions obtainable by slight perturbations. It
repeats replacing until no better solution is found in N(x). The solution found
eventually is called locally optimal (Fig.2).

As mentioned in Introduction, the performance of a local search algorithm
highly depends on the neighborhood used and the neighborhood search (algo-
rithm). Thus the points of this paper are how adequate the proposed neighbor-
hood is (Section 3) and how elaborate the algorithm searches the neighborhood
(Section 4).

initial solution

local optimal

neighborhood

improve

Fig. 2. Local Search

3 A Local Search for Barrier Height Estimation

3.1 Formulation: Barrier Height Estimation Problem

In this section, we propose a local search algorithm solving the barrier height
estimation problem. First, we formulate the problem as a combinatorial
2 If there are several pairs with an equal number, choose one that reduces the energy

maximally or increases the energy minimally one by one.

364 T. Takeda et al.

optimization problem. Here, we consider a structural transition path p a solution
itself, and use Etop(p) as evaluate function. The problem is formally described
as follows:

Problem: Barrier Height Estimation (BHE)
Input : DNA sequence X , initial structure s0 and final structure sf .
Goal : Find a p ∈ P (s0, sf) that gives Ebar(s0, sf), i.e.,

Etop(p) = max{Etop(q) | q ∈ P (s0, sf)}

3.2 Neighborhood Solutions

Under the above formulation, we give a basic idea of our local search algorithm
as follows.

Algorithm Local Search for BHE:

Step 1. Generate a transition path p0 from s0 to sf . Set p := p0.
Step 2. Search for a transition path p′ ∈ N(p) such that Etop(p′) <

Etop(p). If such p′ exists, set p := p′ and return to step2.
Step 3. Output p and stop.

In Step 1., we need to find a transition path p0 as an initial solution. Here,
we find a path by using MH heuristics. We then consider how we define the
“neigborhood paths” N(p) in Step 2. If we use sufficiently large N(p), then the
solution found might be optimal. However, it is not practical because very large
N(p) requires quite a large amount of time to search the neighborhood. Thus
we consider to define a suitable neighborhood to be searched. For this purpose,
we again use MH heuristics.

For two structures si and sj , we define MH(si, sj) as the path from si

to sj which is the solution of MH heuristics with initial structure si and fi-
nal structure sj . Also we define the replacement of the transition path p =
〈s0, . . . , si, si+1, . . . , sj−1, sj , . . . , sf〉 with p′ = 〈si, s

′
i+1, . . . , s

′
j−1, sj〉, as p′′ =

〈s0, . . . , si, s
′
i+1, . . . , s

′
j−1, sj , . . . , sf〉, and we simply write this p′′ = 〈p[0, i− 1],

p′, p[j + 1, f]〉, where p[a, b] is denoted by 〈sa, . . . , sb〉 part of p.
Now we consider to generate a new transition path from the current transition

path p. Since the new transition path p′ is better to have a lower top energy, the
new path should not contain structure top(p), where top(p) denotes the structure
sh satisfying E(sh) = Etop(p). Namely, a new path p′ should be a path avoiding
top(p). To obtain a path having this property, we utilize MH heuristics and define
k–back neighborhood as

N(p)k =
⋃

h−k+1≤i≤h

{〈p[0, i− 1], MH(s′i, sf)〉 | s′i �= si.},

where sh = top(p). Note that s′i is a structural transformed from si−1 by 1 step
(Fig. 3). By using this, we define the following three neighborhood searches:

A Local Search Based Barrier Height Estimation Algorithm 365

generate neighborhood

neighborhood solution

 solution(transition path)
maximum energy structure on the path

1-back

replacement

initial structure final structure

initial structure
final structure

MH path

Fig. 3. Generate the Neighborhood Solution

• 1–back neighborhood search
Its search space is 1–back neighborhood, and it repeats the search until no
better solution is found.

• Full–back neighborhood search
Its search space is Full–back neighborhood (N(p)Full = {p′(p, si) | 1 ≤ i ≤
h)}, and it repeats the search until no better solution is found.

• VD–back neighborhood search
First, the search space is set 1–back neighborhood. If no better solution is
found in neighborhood, then it is enlarged to be 2–back, 3–back, one after
another. When a better solution is found, the search space is set 1–back
neighborhood again (This scheme is called variable depth search [11]).

VD–back neighborhood search
1. k := 1.
2. If no better solution is found in k–back neighborhood, go to 3.

Otherwise go to 1.
3. If the neighborhood is not able to be enlarged, stop.

Otherwise k := k + 1 and go to 2.

Note that we employ MH heuristics for each neigborhood search.

4 Accelerating the Neighborhood Search

In this section, we discuss the possibility of the speeding up the proposed local
search and the techniques. In the local search, the current solution and the pre-
vious solution have similar solution structures in general. This means that the
current and the previous solutions (transition paths) may have some common
partial paths in our local search. Here, by using this property, we consider to
accelerate our local search. Figure 4 provides an idea of the acceleration. The
upper two figures show how the original local search searches the paths. The

366 T. Takeda et al.

new path

final structure

initial structure

replaced structure

replaced structure

10
30

40

10
30

40

initial structure

initial structure

initial structure

final structure

final structure

Original

accelerated

current path

1:current solution

2:improved solution

current path

1:current solution

2’ :improved solution

30
10

10

30

40

These partial paths are same, but
they are independently found in the search.

the structures
are same.

new path The search is terminated here.
(Since the partial path from here is same as
 the above one, we can omit the search.)

COPY

Fig. 4. Same Path Omission

numbers (e.g., 10, 30, and 40) mean step numbers in the structural transition.
Suppose that Path 1 is a current solution and Path 2 is the next (improved) so-
lution. Path 2 is obtained by replacing node 10 and then applying MH heuristics
for structural transition between step 10 to the final structure.

In the example, the partial path from step 30 to 40 in path 1 and the one of
path 2 have the same structures (i.e., the partial paths are common). Actually,
this kind of phenomenon can be frequently seen. This is because of the property
of MH heuristics, which is the engine of our local search. The paths found by MH
heuristics have the following property: For two transition paths pa = 〈sa, . . . , sf〉
and pb = 〈sb, . . . , sf 〉 by MH heuristics, if there exists a structure s such that
s ∈ pa and s ∈ pb (i.e., pa = 〈sa, . . . , s, . . . , sf〉 and pb = 〈sb . . . , s . . . , sf 〉), then

pa = 〈sa, . . . , s′a, MH(s, sf)〉 and pb = 〈sb, . . . , s
′
b, MH(s, sf)〉

hold.
From the observation, we consider the device of accelerating the local search

by omitting the search of the partial paths as mentioned above. (See the lower
two figures of Fig. 4.)

How to Omit the Partial Path Search
Here, we consider how the above omission is performed. For the omission, first
we need to find a path that has a same partial path with the previous solution
(structural transition), that is, we need to check the correspondence between each
structure in the previous solution and the structure which MH heuristics is now
constructing (expanding).The easiestway of checking the correspondence between
two structures is to match structures sequentially, though it is time-consuming.
Thus, we elaborate the method of checking the correspondence efficiently.

A Local Search Based Barrier Height Estimation Algorithm 367

The point is to utilize the property of MH heuristics again. MH heuristics
constructs the transition path in the order of adding and removing base pairs
which is defined by the numbers of incompatible base pairs. Instead of matching
the structures sequentially, we just compare the numbers of incompatible base
pairs, which greatly reduces the comparison time. To describe the idea, we intro-
duce an incompatible-table as follows: Let m denote the number of base pairs in
the final structure sf , and associate the number 1, ..., m to the base pairs. Given
a structure s, we define incompatible-table IT (s, sf) of s, by the number ti of
incompatible base pairs of the base pair i, for i = 1, . . . , m. That is,

IT (s, sf) = (t1(s), t2(s), . . . , tm(s)).

Note that the m is much smaller than n, the length of DNA molecule. Roughly
speaking, for two given structures s and s′, we can judge if s = s′ by comparing
IT (s, sf) and IT (s′, sf) instead of s and s′ themselves 3.

5 Computational Experiments

To evaluate the performance of the proposed local search, we conducted compu-
tational experiments. In the experiments, we used a version of Vienna package
modified by Uejima et al. [9] to calculate the free energy of DNA structures. The
Vienna RNA Package is developed by Vienna university and distributed4 [4].

Table 1 shows the instances we used. “instance” and “sequence length”
columns represent the IDs of instances and their length. For example, 46(1–5)
and 46 mean that we have instances of ID 46(1), 46(2), . . ., 46(5) and their length
is 46, respectively. “initial structure” and “final structure” represent how the
initial/final structure of the instance is given: “random” means that the pairs
of the structure are randomly chosen, “real” means real DNA structure used
in [6], and “mes” means the structure with the minimum free energy. In the
initial structures of 100(6), 154(8), “min(x)+min(y)” means the combination of
two minimum free energy structures with length x and y.

We then implemented the local search algorithm by 1–back and Full–back or
VD–back neighborhood search. We also run MB algorithm for comparison. The
programs are run on Pentium 4 CPU 2.4GHz with 512MB memory.

Table 2 shows the experimental results by 1–back, Full–back and the VD–
back neighborhood search after generating an initial solution by MH heuristics
for the instances in Table 1. Also the results by MB algorithm are shown. The
time column shows the run time (second). The column Etop(kcal/mol) shows
the maximum energy on the path found by the algorithm and the column initial
shows that the value of Etop of the initial solution (i.e., the value by MH heuris-
tics). The hyphens in the results of MB algorithm mean that the result could
not be obtained because of the memory shortage. The energy value in boldfaced

3 More precisely, there are several additional conditions to affirm that they are exactly
same structures, though they can be quickly checked anyway.

4 http://www.tbi.univie.ac.at/̃ivo/RNA

368 T. Takeda et al.

Table 1. Instances

instance sequence length initial structure final structure
46(1–5) 46 random mes
46(6–7) 46 random random
100(1–5) 100 random mes
100(6) 100 min(50)+min(50) mes

154(1–5) 154 random mes
154(6–7) 154 real mes
154(8) 154 min(77)+min(77) mes
194(1) 194 real mes

194(2–3) 194 random random

Table 2. Run Time(s), the Value of Etop(p)(kcal/mol) and Lower Bound

initial 1–back Full–back VD–back minimum basin
instance Etop(p) time Etop(p) time Etop(p) time Etop(p) time Etop(p) lower bound
46(1) 33.02 0.08 28.60 0.08 28.60 0.07 28.60 0.11 28.60 28.60
46(2) 21.27 0.08 18.35 0.08 18.35 0.09 18.35 0.14 18.35 18.35
46(3) 28.81 0.07 27.24 0.08 27.24 0.08 27.24 0.14 27.24 27.24
46(4) 34.41 0.08 31.33 0.08 31.33 0.08 31.33 0.13 31.33 31.33
46(5) 18.36 0.09 14.30 0.09 14.30 0.09 14.30 0.14 14.30 14.30
46(6) 33.91 0.07 28.60 0.09 28.60 0.08 28.60 - - 28.60
46(7) 30.92 0.08 21.71 0.09 19.56 0.08 21.71 - - 18.35
100(1) 70.89 0.12 63.32 0.13 63.32 0.11 63.32 0.50 63.32 63.32
100(2) 59.24 0.12 52.09 0.14 52.09 0.12 52.09 3.22 52.09 52.09
100(3) 50.20 0.11 44.50 0.11 44.50 0.10 44.50 4.74 44.50 44.50
100(4) 58.62 0.11 52.55 0.10 52.55 0.10 52.55 0.74 52.55 52.55
100(5) 68.23 0.11 64.36 0.11 64.36 0.11 64.36 0.43 64.36 64.36
100(6) 3.32 0.17 -1.34 0.18 -1.34 0.18 -1.34 0.17 -1.34 -1.95
154(1) 73.80 0.28 69.39 0.28 63.39 0.28 69.39 1.27 69.39 69.39
154(2) 80.23 0.87 73.85 0.87 73.85 0.87 73.85 - - 73.85
154(3) 87.06 0.85 80.89 1.03 80.89 0.84 80.89 - - 80.89
154(4) 68.92 0.48 65.18 0.48 65.18 0.48 65.18 - - 65.18
154(5) 87.55 0.44 75.82 0.44 75.82 0.44 75.82 11.85 75.82 75.82
154(6) -43.49 0.66 -46.27 0.65 -46.27 0.65 -46.27 1.94 -48.41 -48.78
154(7) -43.43 1.46 -46.71 2.43 -46.71 2.03 -46.71 262.85 -48.92 -51.49
154(8) -35.13 1.08 -36.01 2.36 -36.01 2.06 -36.01 133.84 -38.34 -42.03
194(1) -47.48 3.61 -52.73 3.62 -52.73 3.61 -52.73 - - -53.70
194(2) 109.01 0.22 102.43 3.59 102.23 3.28 102.23 - - 93.78
194(3) 102.53 0.71 95.79 6.78 95.79 1.85 95.79 - - 90.43

type means that the corresponding result is optimal, i.e., the true energy bar-
rier height is found. The last column “lower bound” shows lower bounds of the
energy barrier obtained by another kind of approximation algorithms.5 Even in
the case where the optimal value cannot be found, such as 154 (2), (3), (4), if
the solution value coincides with the “lower bound”, the solution is confirmed
to be optimal.

5 The energy barrier can be found also by solving the dual problem of the barrier
height estimation, which implies that approximate solutions of the dual problem
give lower bounds on the solutions of the (primal) barrier height estimation, though
we omit the detailed explanation. The values of the last column “lower bound” were
obtained by calculating the minimum energy value of a cut-set between the initial
and the final structures approximately.

A Local Search Based Barrier Height Estimation Algorithm 369

Comparison with MB Algorithm
Although MB algorithm found the solutions for many small instances (e.g.,
46(1)–46(5) and 100(4)–100(6)) in very short time, there are several instances of
which MB could not find the solution. On the other hand, all the variations of
the proposed local search find the solution for most cases in less than 1 second,
and at most 7 seconds. Also the run time of the proposed algorithm is not so
influenced by the growth of the instance length, while the one of MB algorithm
is not. As for the solution quality, our algorithm found the optimal solutions for
17 instances among 24 instances, while the number of the instances optimally
solved by MB algorithm is 16. Even in the cases where our algorithm could
not find the optimal solution, the differences from the optimal values are quite
small.

Difference by Neighborhood Search
The differences of both the run times and the solution qualities between 1–
back, Full–back and VD–back neighborhood search are small for the short length
instances. For the larger instances, also the solution qualities have almost no
differences, but Full–back is slightly better than 1–back. As for the run times,
Full–back tend to be a little larger than 1–back and VD–back, but also the
differences are small.

The readers might feel strange, because the differences of the neighborhood
sizes would cause the differences of (at least) the run times. However, it is not
necessarily true because of the following reasons: One Full–back neighborhood
search may tend to require larger run time than one 1–back, but the number of
improvements of Full-back neighborhood search may tend to be much less than
the ones of 1–back search. Of course, the total amount of run time depends on
not only the size of the neighborhood but also the number of the improvements.
Also, Full–back neighborhood search may be not so different from 1–back neigh-
borhood search, when the maximum energy structure is very near to the initial
structure.

Anyway, there might exist a small trade-off between the run time and the
solution quality, though we need more experimental studies to confirm the
relationship.

6 Conclusion

In this paper, we proposed a local-search based heuristic algorithm for barrier
height estimation problem, which uses well-known Morgan Higgs’ heuristics al-
gorithm as the engine. Experimental results for synthetic/real DNA sequences
show that the proposed algorithm can optimally find solutions for many instances
some of which cannot be solved by the existing exact algorithm, the minimum
basin algorithm. Also the run time is fast enough and it completes the calculation
within a few seconds for most cases. The authors believe that the proposed algo-
rithm is practically useful for the sequence design in molecular/DNA computing
fields.

370 T. Takeda et al.

Acknowledgements

The authors would like to thank Professor Masami Hagiya and Mr. Mitsuhiro
Kubota of University of Tokyo, who suggested the problem and gave the source
code of the minimum basin algorithm [5], and the anonymous reviewers for their
helpful comments which improved the presentation of this paper.

References

1. E. H. L. Aarts, J. K. Lenstra, eds., “Local Search in Combinatorial Optimization”,
Chichester England: Wiley, 1997.

2. J. Cupal, C. Flamm, P.F. Stadler “Density of States, Metastable States, and Saddle
Points Exploring the Energy Landscape of an RNA Molecule”, ISMB 1997, pp.
88-91, 1997.

3. M. Hagiya “Towards Molecular Programming”, Modelling in Molecular Biol-
ogy (G. Ciobanu, G. Rozenberg, Eds.), Natural Computing Series, Springer, pp.
125-140, 2004.

4. I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M. tacker, P. Schuster
“Fast Folding and Comparison of RNA Secondary Structures”, Monatsh. Chem.
125, pp. 167-188, 1994.

5. M. Kubota, M. Hagiya, “Minimum Basin Algorithm: An Effective Analysis Tech-
nique for DNA Energy Landscapes”, 10th International Workshop on DNA Com-
puting, DNA10, LNCS 3384, pp. 202-214, 2005.

6. M. Kubota, K. Ohtake, K. Komiya, K. Sakamoto, M. Hagiya, “Branching DNA
Machines Based on Transitions of Hairpin Structures”, CEC2003, pp. 2542-2548,
2003.

7. S. R. Morgan, P. G. Higgs, “Barrier heights between ground states in a model of
RNA secondary structure”, J.Phys.A: Math. Gen. 31, pp. 3153-3170, 1998.

8. P. F. Stadler, C. Flamm, “Barrier Trees on Poset-Valued Landscapes”, J. Gen.
Prog. Evol. Machines 4, pp. 7-20, 2003.

9. H. Uejima, M. Hagiya “Secondary Structure Design of Multi-state DNA Machine
Based on Sequential Structure Transitions”, DNA9, Springer LNCS 2943 pp.
74-85, 2004.

10. M. Yagiura, T. Ibaraki, “On Metaheuristic Algorithms for Combinatorial Opti-
mization Problems”, Systems and Computers in Japan 32(3), pp. 33-55, 2001.

11. M. Yagiura, T. Yamaguchi, T. Ibaraki, “A Variable Depth Search Algorithm for
the Generalized Assignment Problem”, in: S. Voss, S. Martello, I.H. Osman and C.
Roucairol, eds., Meta-Heuristics: Advances and Trends in Local Search Paradigms
for Optimization, Kluwer Acad. Publ., pp. 459-471, 1999.

12. B. Yurke, A. J. Turberfield, A. P. Mills, Jr., F. C. Simmel and J. L . Neumann, “A
DNA-fuelled molecular machine made of DNA”, Nature 406, pp. 605-608, 2000.

Specificity of Hybridization Between DNA
Sequences Based on Free Energy

Fumiaki Tanaka1, Atsushi Kameda2,
Masahito Yamamoto2,3, and Azuma Ohuchi2,3

1 Graduate School of Engineering, Hokkaido University,
North 13, West 8, Kita-ku, Sapporo 060-8628, Japan

2 CREST, Japan Science and Technology Corporation,
4-1-8, Honmachi, Kawaguchi, Saitama 332-0012, Japan

3 Graduate School of Information Science and Technology, Hokkaido University,
North 14, West 9, Kita-ku, Sapporo 060-0814, Japan

{fumiaki, kameda, masahito, ohuchi}@dna-comp.org

Abstract. We investigated the specificity of hybridization based on a
minimum free energy (ΔGmin) through gel electrophoresis analysis. The
analysis, using 94 pairs of sequences with length 20, showed that se-
quences that hybridize each other can be separated using the constraint
ΔGmin ≤ −14.0, but cannot be separated using the number of base pairs
(BP) in the range from 9 to 18. This demonstrates that the ΔGmin is
superior to the BP in terms of the capability to separate specific from
non-specific sequences. Furthermore, the comparison between sequence
design based on ΔGmin and that based on the BP , done through a
computer simulation, showed that the former outperformed the latter in
terms of the number of sequences designed successfully as well as the
ratio of successfully designed sequences to the total number of sequences
checked.

1 Introduction

Sequence design is an essential step towards success in various applications of
DNA computing, including DNA-based computation [1][2] and nano-fabrication
[3][4]. Many efforts have been made to design a set of sequences that hybridize
only with their complementaries based on the Hamming distance (i.e., the num-
ber of base pairs, BP) [5][6][7] or the minimum free energy (ΔGmin) [8]. Al-
though many algorithms have been proposed for sequences whose BP or ΔGmin

values exceed a threshold for satisfactory hybridization specificity, the threshold
itself is still unknown. Furthermore, it is not known whether sequence design
with the appropriate threshold is best based on the BP or on ΔGmin.

We have investigated the specificity of hybridization by analyzing 94 pairs of
sequences with length 20 using gel electrophoresis based on the BP or ΔGmin.
Based on this experiment, we estimated the thresholds that the BP and ΔGmin

must reach to enable satisfactory hybridization specificity under regulated con-
ditions such as where two sequences hybridize each other with a 1:1 concen-
tration ratio. We then compared the number of sequences that can be designed

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 371–379, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

372 F. Tanaka et al.

based on the BP with that based on ΔGmin with these thresholds. Furthermore,
through the gel electrophoresis analysis, we found that sequences containing sub-
sequence “GGGGG” formed an unintended structure, which appeared to be the
four-stranded G4-DNA structure [9]. To confirm that this structure was formed
by interaction between GGGGG and GGGGG, we analyzed mutated sequences
obtained by changing the sequences with GGGGG.

2 Materials and Methods

Two sequences were hybridized with each other and then analyzed through
gel electrophoresis to investigate the hybridization specificity. Because gel elec-
trophoresis does not require an enzyme reaction (e.g., kination and PCR), we
can investigate the hybridization specificity while avoiding the influence of extra
experimental steps. We checked whether two sequences, A and B, hybridized
each other as follows. Sequences A, B, and A + B with a 1:1 concentration ra-
tio were electrophoresed through a 10% polyacrylamide gel. If the band in the
lane for A + B corresponded to neither the band in the lane for A nor that for
B, we assumed A and B hybridized each other (Figure 1). Thus, if any extra
bands in the lane for A + B were observed by eye, we classified the outcome as
“hybridize”; otherwise, we classified it as “non-hybridize”. However, the double
strand between A and B could break down into two single strands during the
gel electrophoresis, so we had to take into account that we could not distinguish
these from the sequences that did not hybridize with each other. Although this
simple model only focuses on the hybridization between two sequences without
any competitive sequences, the sequences found to hybridize in the experiment
are likely to be harmful even under other conditions. Therefore, it is better to
avoid such sequences to avoid blocking a specific hybridization.

The BP between sequences A with length n and B with length m is defined as

BP := min(n, m)− min
−m<k<n

H(A, σk(B)), (1)

where H(∗, ∗) denotes the Hamming distance, σk denotes the right (left) bit
shift in the case of k > 0 (k < 0), k denotes the number of the shift, and B
denotes the reverse complementary of B. Note that the BP is equivalent to the
H-measure proposed by Garzon et al. [10] in the case of n = m.

We calculated ΔGmin between two sequences using the extended algorithm
for the ΔGmin calculation of a single strand [11]. The calculation was done as
reported previously [8].

We analyzed 94 pairs of sequences with length 20 having various values of
ΔGmin for each BP in a range from 9 to 18. The 94 pairs of sequences were
chosen as follows. First we randomly generated 100,000 pairs of sequences for
each BP through a computer simulation where TM was in the range 69.58 ≤
TM ≤ 72.58 and the ΔGmin between each sequence and itself was greater than
or equal to a threshold, −3.0, so that the sequence would not form secondary

Specificity of Hybridization Between DNA Sequences 373

structures by itself. The TM values of 69.58 and 72.58 were, respectively, TM
ave−

1.5 and TM
ave + 1.5, where TM

ave is the average calculated from 10,000 ran-
domly generated sequences with length 20. The frequency distribution curves in
Figure 2 show that the number of sequences with a particular BP varies with
ΔGmin. We then chose pairs of sequences that would contain the maximum
and minimum ΔGmin value for each BP . When the BP was 12, for example,
the selected sequences included those with ΔGmin = −0.54 and those with
ΔGmin = −21.24, respectively the maximum and minimum from 100,000 pairs
of sequences.

Oligonucleotides were supplied by Hokkaido System Science and were synthe-
sized using column purification. All oligonucleotides were dissolved in a buffer
containing 1 M NaCl, 10 mM Na2HPO4, and 1 mM Na2EDTA with a pH of 7.0.
The oligonucleotide concentrations (Ct) of each sample were determined from
the difference in absorbance at 260 nm and that at 320 nm using extinction
coefficients calculated from dinucleoside monophosphates and nucleotides [12].
The oligonucleotides were hybridized by increasing the temperature to 90 ◦C
for 10 min and lowering the temperature to 20 ◦C at heating rates of 0.08 and
0.02 ◦C/s, respectively. It took about 14 and 58 minutes, respectively, to go from
20 ◦C to 90 ◦C and from 90 ◦C to 20 ◦C: this is almost the typical protocol for
the thermodynamic analysis [13]. All gel electrophoresis profiles were obtained
using a 10% polyacrylamide gel in a 1×TAE buffer at 200 V for 35 min. We
used 2 μl samples at a concentration of 1 μM. Bands in the gels were dyed using
SYBR Gold nucleic acid gel stain for 20 min.

3 Experimental Results

3.1 Specificity of Hybridization Based on BP Versus ΔGmin

Figure 1 shows an example where the BP was 14 with length 20 and the se-
quences used in this example. A pair of sequences with ΔGmin = −18.64 or
ΔGmin = −16.41 formed double strands resulting in a new band, while that
with ΔGmin = −5.39 or ΔGmin = −4.49 remained two single strands with no
extra band. Similar experiments were iterated using 94 pairs of sequences con-
taining the above sequences where the BP was in the range from 9 to 18 with
length 20.

The results are shown in Figure 2. All the pairs of sequences that hybridized
with each other can be separated from the other pairs by the constraint ΔGmin ≤
−14.0, but these two groups could not be separated using the BP in the range
from 9 to 18. Table 1 shows the number of sequences from 100,000 sequences
where ΔGmin ≤ −14.0 for each BP . The BP had to be less than 13 to guarantee
that the number of sequence pairs where ΔGmin ≤ −14.0 would be lower than
5% of the total. These results demonstrate that ΔGmin is superior to the BP in
terms of the capability to separate specific from non-specific sequences. However,
there seemed to be some pairs of sequences that did not hybridize with each other
even though ΔGmin ≤ −14.0 (e.g., the pair of sequences where ΔGmin = −15.1

374 F. Tanaka et al.

Name Sequence

a CACAGTCCCGATTTAGCCAG

b ACTCAACTGGCTAAATCGGG

c GAGTGCTTGGGGTCAATTTG

d ATGACCCAAAGCACTCCTTG

e ACCTCCCCGTTTATTAAGCA

f TGATTGAGAAAGCGAGAGGT

g CATTGTGCGGGATTACAAGC

h GCGTGTAGTGACCCAAAATG

Fig. 1. LEFT: An example of experimental results from the gel electrophoresis. Four
sets of sequences, whose BP was 14, were analyzed. The lanes in each set correspond
(from left to right) to a sequence A, a sequence B, and sequences A + B. RIGHT:
Sequences used in the left figure are listed in the direction 5’ to 3’ from left to right.
The letters correspond to lanes from the gel electrophoresis in the left figure.

Fig. 2. LEFT: The frequency distribution curve of 100,000 sequences with length 20
for each odd-numbered BP from 9 to 18. RIGHT: Specificity of hybridization based
on BP versus ΔGmin from the gel electrophoresis analysis using 94 pairs of sequences.

Table 1. Number of sequences out of 100,000 sequences where ΔGmin ≤ −14.0 for
each BP in the range from 9 to 18

BP 9 10 11 12 13 14 15 16 17 18
Number of Sequences 46 179 757 2,934 8,544 20,333 41,587 64,716 92,754 99,944

and the BP was 13). This was probably due to the prediction error for ΔGmin

and the limit of separability with gel electrophoresis.
Through the above experiment, we found that five single oligonucleotides re-

sulted in unexpected bands on gels with slow mobility. All of these sequences con-
tained sub-sequence “GGGGG”,while the othersdidnot.We believe the sequences
containing GGGGG may have formed the four-stranded G4-DNA structures [9].

Specificity of Hybridization Between DNA Sequences 375

3.2 Sequences Forming Four-Stranded G4-DNA Structures

Sen et al. discovered that guanine-rich sequences form four-stranded structures,
called G4-DNA, that are linked by Hoogsteen-bonded guanine quartets [9]. In
particular, they observed that sequences containing GGGGG formed G4-DNA.
In addition, the characteristic feature of G4-DNA is its slow electrophoretic
mobility, which is consistent with our results. Thus, we think that the unexpected
bands, which were observed through the experiment in previous subsection, were
due to interaction between GGGGG and GGGGG.

To confirm this, we analyzed five sets of sequences; each set consisted of a
sequence with GGGGG, its complementary with CCCCC, and two mutated se-
quences. The two mutated sequences were generated as follows. One contained
GGGG rather than GGGGG, while the other did not contain base G except for
GGGGG (Figure 3). For example, in set ‘a’ in Figure 3, AAGGGGTTCTATGGT-
GTATT and AGGGGGTTCTATACTCTATT were, respectively, the sequence
containing GGGG and the sequence containing no Gs except for GGGGG, where
the underlined base is the base changed from the sequence AGGGGGTTC-
TATGGTGTATT.

Figure 3 shows that sequences with GGGGG formed a structure with slow
electrophoretic mobility regardless of the presence of other Gs, while the sequence

Set No. Sequence

1 AGGGGGTTCTATGGTGTATT
a 2 AAGGGGTTCTATGGTGTATT

3 AGGGGGTTCTATACTCTATT
4 AATACACCATAGAACCCCCT

1 AAAGTTCTCAAAAGAGGGGG

b 2 AAAGTTCTCAAAAGAGGGGC
3 AAACTTCTCAAAACAGGGGG

4 CCCCCTCTTTTGAGAACTTT

1 TCTTGTTATCTCGTAGGGGG

c 2 TCTTGTTATCTCGTAAGGGG
3 TCTTATTATCTCATAGGGGG

4 CCCCCTACGAGATAACAAGA

1 CTCTTGTGGGGGTGTATTTT
d 2 CTCTTGTAGGGGTGTATTTT

3 CTCTTATGGGGGTATATTTT
4 AAAATACACCCCCACAAGAG

1 CCTTAACATTCTAGGGGGGT
e 2 CCTTAACATTCTAGGGGAAT

3 CCTTAACATTCTACGGGGGT
4 ACCCCCCTAGAATGTTAAGG

Fig. 3. LEFT: Five sets of sequences consisting of a sequence with GGGGG and mu-
tated sequences were analyzed. In each set, 1: sequence with GGGGG; 2: sequence with
GGGG; 3: sequence without G except for GGGGG; 4: complementary of sequence 1
with CCCCC. RIGHT: Sequences used in the left figure are listed in the direction 5’
to 3’ from left to right. The letters and numbers correspond to lanes for the gel elec-
trophoresis in the left figure. Sequence GGGGG is shown in boldface. The underlined
bases show mutated bases from the sequence with GGGGG.

376 F. Tanaka et al.

with GGGG and the sequence with CCCCC did not form such a structure. This
indicates that the structures of the unexpected bands were formed by interaction
between GGGGG and GGGGG.

The structures of the unexpected bands, which we believe are G4-DNA, must
compete with the specific hybridization and will be intermediate to the unin-
tended structures. Therefore, we conclude that sequences with GGGGG should
be avoided when designing specific sequences.

3.3 Sequence Design Based on ΔGmin Versus That Based on BP

To evaluate sequence design based on ΔGmin, we compared it with sequence
design based on the BP in terms of the number of sequences successfully de-
signed within 10 hours. We designed sequences with length 20 such that 69.58 ≤
TM ≤ 72.58 and ΔGmin > ΔG∗

min (BP < BP ∗) in the combinations described
below, where ΔG∗

min and BP ∗ are the thresholds. We set ΔG∗
min = −14.0 and

BP ∗ =11, 12, or 13 based on Figure 2 and Table 1; for BP =11, 12, or 13, there
were, respectively, 757, 2,934, or 8,544 pairs of sequences (out of the 100,000
pairs of sequences) where ΔGmin ≤ −14.0. In the case that n sequences were to
be designed, the combinations to be considered for the ΔGmin (BP) calculation
were as follows.

1. < Ui, UjUk > (0 ≤ i, j, k ≤ n− 1)
2. < Ui, UjVk > (0 ≤ i, j, k ≤ n− 1), i �= k
3. < Ui, VjUk > (0 ≤ i, j, k ≤ n− 1), i �= j
4. < Ui, VjVk > (0 ≤ i, j, k ≤ n− 1), (i �= j) ∧ (i �= k),

where Ui is the i − th sequence, Vj is the complementary of Uj , XjXk (Xj ∈
{Uj, Vj}, Xk ∈ {Uk, Vk}) is the concatenation of sequences Xj and Xk in that
order, and < Ui, XjXk > is the combination of sequences Ui and XjXk. For
example, if Ui = CCCCC, Uj = AGAGA, and Uk = TCTCT , < Ui, UjUk >
means the combination of sequences CCCCC and AGAGATCTCT . The al-
gorithm for both sequence designs was a random generate-and-test algorithm
that generated a candidate sequence randomly and tested whether the sequence
satisfied the constraints. Furthermore, when we designed sequences based on
ΔGmin, we used the ΔGgre filtering method, which effectively excluded inap-
propriate sequences where ΔGmin ≤ ΔG∗

min, thereby reducing the computation
time. Finally, the sequence design based on ΔGmin checked the candidate se-
quence with the TM , ΔGgre, and ΔGmin filters in that order, while that based
on BP checked the candidate sequence with TM and BP filters in that order
(see reference [8] for details). The computational experiments were performed
using Turbolinux Workstation 7.0 on a computer with a Pentium 4 2.26-GHz
CPU and 256 MB of memory. The experiments were iterated five times with a
different seed for the random generator. The results are shown in Table 2. The
number of sequences successfully designed based on ΔGmin exceeded that based
on the BP . This shows that sequence design based on ΔGmin is more effective
than that based on the BP when designing specific sequences that hybridize
with only the complementary.

Specificity of Hybridization Between DNA Sequences 377

Table 2. Number of sequences successfully designed within 10 hours based on ΔGmin

versus BP . The experiments were iterated five times with a different seed for the ran-
dom generator. In the column ΔGmin > −14.0, the numbers in parentheses correspond
to the design strategy without ΔGgre filtering. Using ΔGgre filtering enables the design
of more sequences. Sequence design based on ΔGmin outperformed that based on the
BP even without ΔGgre filtering.

Trial ΔGmin > −14.0 BP < 11 BP < 12 BP < 13
1 106 (92) 11 27 64
2 106 (90) 11 27 65
3 96 (87) 13 27 60
4 103 (87) 12 24 62
5 104 (87) 10 25 62
Average 103 (88.6) 11.4 26 62.6
Standard Deviation 4.1 (2.3) 1.1 1.4 1.9

3.4 Comparison Between the Solution Space Based on ΔGmin and
That Based on BP

Above we demonstrated that more sequences can be successfully designed based
on ΔGmin than based on the BP . However, the number of sequences that can be
designed also depends on the sequence design algorithm. Thus, one might think
that sequence design based on the BP with a more sophisticated algorithm
might outperform that based on ΔGmin. It is difficult to prove that any and
all algorithms based on ΔGmin are superior to those based on the BP . Instead,
we investigated the ratio of successfully designed sequences to the total number
of sequences checked because this ratio corresponds to the size of the solution
space that can be designed under predefined constraints. Table 3 shows that the
ratio of sequences successfully designed based on ΔGmin was far larger than that
based on the BP (e.g., 2.8%- 1.9 · 10−4%). This means that the solution space
that can be designed based on ΔGmin is undoubtedly larger than that based

Table 3. Ratio of successfully designed sequences to total number of sequences checked.
The experiments were iterated five times with a different seed for the random generator.
In the column ΔGmin > −14.0, the numbers in parentheses correspond to the design
strategy without ΔGgre filtering.

Trial ΔGmin > −14.0 BP < 11 BP < 12 BP < 13
1 3.0 (5.1) % 4.0 · 10−6 % 2.3 · 10−5 % 2.0 · 10−4 %
2 2.8 (4.9) % 1.6 · 10−6 % 1.2 · 10−5 % 2.2 · 10−4 %
3 2.4 (4.5) % 5.9 · 10−6 % 1.4 · 10−5 % 1.9 · 10−4 %
4 3.2 (4.2) % 1.8 · 10−6 % 2.3 · 10−5 % 1.7 · 10−4 %
5 2.6 (5.1) % 1.7 · 10−6 % 1.1 · 10−5 % 1.9 · 10−4 %
Average 2.8 (4.8) % 3.0 · 10−6 % 1.7 · 10−5 % 1.9 · 10−4 %
Standard Deviation 0.3 (0.4) % 1.9 · 10−6 % 0.6 · 10−5 % 0.2 · 10−4 %

378 F. Tanaka et al.

on the BP . Therefore, although the time complexity of BP is less than that
of ΔGmin, the number of sequences that can be designed based on ΔGmin is
greater than that for the BP (Table 2). These results demonstrate the rationality
of sequence design based on ΔGmin.

4 Conclusions

We conclude that using ΔGmin is preferable to using the BP to separate specific
hybridization from non-specific hybridization. With an appropriate threshold,
sequence design using ΔGmin outperformed that using the BP in terms of the
number of sequences that could be successfully designed. Comparison of the
ratio of successfully designed sequences to the total number of sequences checked
showed that the superiority of ΔGmin over the BP probably does not depend
on the algorithm used for the sequence design.

In addition, our analysis of sequences with GGGGG and their mutated se-
quences suggested that the sequences with GGGGG formed G4-DNA. Thus,
sequences with GGGGG should be avoided when designing specific sequences.

References

1. D Faulhammer, AR Cukras, RJ Lipton, and LF Landweber. Molecular computa-
tion: RNA solutions to chess problems. Proc Natl Acad Sci U S A, 97(4):1385–9,
Feb 2000.

2. Ravinderjit S Braich, Nickolas Chelyapov, Cliff Johnson, Paul W K Rothemund,
and Leonard Adleman. Solution of a 20-variable 3-SAT problem on a DNA com-
puter. Science, 296(5567):499–502, Apr 2002.

3. Hao Yan, Xiaoping Zhang, Zhiyong Shen, and Nadrian C Seeman. A robust DNA
mechanical device controlled by hybridization topology. Nature, 415(6867):62–5,
Jan 2002.

4. William M Shih, Joel D Quispe, and Gerald F Joyce. A 1.7-kilobase single-stranded
DNA that folds into a nanoscale octahedron. Nature, 427(6975):618–21, Feb 2004.

5. M. Arita and S. Kobayashi. DNA sequence design using templates. New Generation
Computing, 20:263–277, 2002.

6. D. Tulpan, H. Hoos, and A. Condon. Stochastic local search algorithms for DNA
word design. Proceeding of 8th International Workshop on DNA-Based Computers,
LNCS, 2568:229–241, 2002.

7. Satoshi Kashiwamura, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi.
Two-step search for DNA sequence design. IEICE TRANSACTIONS on Funda-
mentals of Electronics, Communications and Computer Sciences Special Section on
Papers Slected from 2003 International Technical Conference on Circuts/Systems,
Computer and Communications (ITC-CSCC 2003), E87-A(6):1446–1453, 2004.

8. Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi. De-
sign of nucleic acid sequences for DNA computing based on a thermodynamic
approach. Nucleic Acids Res, 33(3):903–11, 2005.

9. D Sen and W Gilbert. Formation of parallel four-stranded complexes by guanine-
rich motifs in DNA and its implications for meiosis. Nature, 334(6180):364–6, Jul
1988.

Specificity of Hybridization Between DNA Sequences 379

10. M. Garzon, R. Deaton, P. Neather, D. R. Franceschetti, and R. C. Murphy. A new
metric for DNA computing. In Poceedings of 2nd Annual Genetic Programming
Conference, volume GP-97, pages 472–8, 1997.

11. M Zuker and P Stiegler. Optimal computer folding of large RNA sequences using
thermodynamics and auxiliary information. Nucleic Acids Res, 9(1):133–48, Jan
1981.

12. DM Gray, SH Hung, and KH Johnson. Absorption and circular dichroism spec-
troscopy of nucleic acid duplexes and triplexes. Methods Enzymol, 246:19–34, 1995.

13. Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi.
Thermodynamic parameters based on a nearest-neighbor model for DNA sequences
with a single-bulge loop. Biochemistry, 43(22):7143–50, Jun 2004.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 380 – 386, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Poor Man’s Microfluidic DNA Computer

Danny van Noort

Biointelligence Lab., School of Computer Science and Engineering,
Seoul National University, San 56-1, Sinlim-dong, Gwanak-gu,

Seoul 151-742, Korea
danny@bi.snu.ac.kr

Abstract. Not everyone has the knowledge or facility to do microfabrication.
This paper will show that with a few simple off-the-shelf items a microfluidic
DNA computer can be build. It also shows hybridisation and annealing working
in such a system. Furthermore, there are some tentative results of a small
computing problem. Finally, in the conclusion, it gives some suggestion of
ways of automation.

Keywords: microfluidics, DNA hybridisation and denaturing, finemachining,
Perspex®, Delrin®, automation.

1 Introduction

Compared to test-tubes, microfluidics has certain advantages. Some of these
advantages are the small amount of solution, and therefore DNA and capture probes,
high reaction speeds, because of the fast diffusion rate in small scale structures and
the possibility for easy automation [1]. However, there are also some disadvantages,
the most important being the lack of expertise and/or facilities. Unfortunately, to
manufacture microfluidics one needs sophisticated equipment and cleanroom, as well
as an operator or technician. These facilities are not always readily available. While
test-tubes are cheap and can be easily implemented in DNA computing, automating
the process can be expensive (requiring, for example, a pipetting robot [2]), but they
don’t have the advantages of microsystems.

The alternative is to utilize fine-mechanics, micro-bore tubing and connectors. The
latter is readily available off-the-shelf (for example, Upchurch Scientific, Oak Harbor,
WA, USA), as are the filters, nuts, frits and ferrules which are necessary for
connection and bead retention. A standard fine-mechanics workshop can drill
channels in plastic down to a diameter of 250 m. The most preferred materials are
Perspex® (poly(methyl methacrylate)) and Delrin® (Polyoxymethylene) for their
inertness to most chemicals. Tubes and channels can be filled with capture probes,
immobilised to beads, to perform hybridisation and therefor selection [3]. This paper
will show two design possibilities and the ease of connectivity.

2 Experimental Set-Up

Performing Boolean logic in fluidics is straight forward [4, 5]. In principle, one only
needs a concatenation of selection probes, whether it is in gels or microreactors filled

 A Poor Man’s Microfluidic DNA Computer 381

with beads. To perform a selection in the poor man’s DNA computer, selection
modules can be made from short sections of micro-bore tubing, which are then filled
with functionalised beads. The inner dimension of the tubing is truly microfluidic, for
example, an 1/32” outer diameter PEEK tubing can be obtained with a 25 m bore.
However, in transparent tubing, TEFLON has the smallest bore of 150 m. These
tube sections are then capped with frits containing inline filters (Fig. 1; Upchurch
Scientific, Oak Harbor, WA, USA) to retain the beads in the tube. An OR function is
two selection modules in parallel, while an AND is two selection modules in
sequential flow, similar to the logic proposed earlier by van Noort et al. [5].

 (a) (b)

Fig. 1. (a) A ferrule with a frit. The plastic part of the ferrule has a filter, i.e. a frit, embedded in
it. This can be used to retain beads in tube sections. (b) A nut falls over the ferrule. By
tightening the nut, the metal part of the ferrule pushes down on the tube, effectively
immobilising the tube.

There are two ways to set up a simple microfluidic system. The first is to buy all
the items off-shelf. For instances, an OR function can be made by using two
T-junctions, while an AND function is made by connecting two tube sections with a
union. Actually, for an AND function, the beads representing the variables can be
mixed in one tube section, i.e. selection module. The whole system is then connected
to a syringe pump (PHD 2000; Harvard Apparatus, Holliston, MA, USA).

However, a fluidic biocomputer like this, while very flexible and very easy to build
up, will be difficult to work with under a microscope. Therefore, I have opted for
fine-machined holders. Again, there are two possibilities. Two holders can be used to
support tube sections in between (Fig. 2a). These holders were made from Perspex®
or Delrin® while the tube sections were capped with filters and connected to the
holders with short nuts. The second possibility is to make the holder from Perspex®
and fill the fine-machined channel between the connectors with beads (Fig. 2b). In
both cases TEFLON tubing (Upchurch Scientific, Oak Harbor, WA, USA) with a
150 m inner diameter were used to make the connections. Both type of holders
were manufactured by the in-house fine-mechanics workshop. And both holder types
could be easily placed under the microscope. The advantage of the first holder set is
that the selection modules with beads can be easily exchanged, making it a very
flexible system, while the advantages of the second system is its compactness.

382 D. van Noort

 (a) (b)

Fig. 2. (a) A set of 2 Delrin holders with short Teflon tubes. There are frits with filters at both
sides of the tubes. The tubes diameter is 150 m. (b) A Perspex holder where the micro-
machined channel is used to retain the beads. The channel’s diameter is 250 m.

Furthermore, the materials have both advantages and disadvantages. Perspex is
transparent, while Delrin is easier to fine-machine. The disadvantage is that Perspex,
for reasons unknown, can form hair cracks that widen when cleaning the system with
acetone, while Delrin is black.

3 Hybridisation and Denaturing

This section will show that hybridisation and denaturing is possible with this setup.
Streptavidin functionalised Sepharose beads with a diameter of 34 m were used
(Amersham Bioscience Corp., Piscataway, NJ, USA) as a support for capture probes.
Biotinylated single d(T)25 strands (Integrated DNA Technologies, Coralville, IA,
USA) were immobilised to these beads in a PBS buffer (pH 7.4). Hereafter, they were
directly injected into the selection module, capped with 2 m pore sized filters. 10 l,
1 M of d(A)25 was loaded into the system, after which the tubing was connected to
the syringe pump. The flow rate was 5 l/min. The hybridisation was visualised by
using the intercalater JOJOTM-1 (ex. 529, em. 545; Molecular Probes, Eugene, OR,
USA), which is only activated when a double stranded DNA is present.

The holder was placed on an inverted fluorescence microscope (Zeiss, Jena,
Germany) and images were taken with a high-resolution peltier cooled monochrome
CCD camera (AxioCam, Zeiss, Jena, Germany) at a 1 sec. interval. The images were
processed by a programme written in Mathematica® (Wolfram Research Inc.).
Figure 3a shows the hybridisation curve under the previous mentioned conditions.
The flattening out of the curve was caused by signal saturation.

Figure 3b shows the denaturation curve. Denaturation was achieved by flowing a
solution of NaOH at pH 12 through the selection module. The flow rate was again 5

l/min. The noise in the signal is due to the movement of the beads, as flow had been
stopped, NaOH injected and the flow re-started. From the figures it can be seen that
while hybridisation occurs in 30 sec, denaturing is a 2 times faster process.

 A Poor Man’s Microfluidic DNA Computer 383

 (a) (b)

Fig. 3. (a) Intensity versus time of the hybridisation of d(T)25 functionalised beads with 10 l of
1 M single stranded d(A)25. (b) Intensity versus time of the denaturing process with NaOH at a
pH of 12.

4 Tentative Boolean Problem

A first attempt was made to solve a small 3-bit Boolean problem in the system described
above (Fig. 4). A subset of the DNA library reported by Faulhammer et al. [6] was used
(Table 1), as it was proven to be a reliable set. The problem was given by:

A1 B0 C1

A0

B1

C0

A0

B1

C0

A1 C1

Fig. 4. The connections and placement of the beads with complimentary sequences to solve the
simple Boolean equation: A1 B0 C1

384 D. van Noort

Table 1. The DNA library used in the Boolean problem. A0 mean string A with bit value 0,
while A0 is the complementary of A0.

A0 CTCTTACTCAATTCT A0 AGAATTGAGTAAGAG

A1 TCCTCACATTACTTA A1 TAAGTAATGTGAGGA

B0 CATATCAACATCTTA B0 TAAGAGGTTGATATG

B1 ACTTCCTTTATATCC B1 GGATATAAAGGAAGT

C0 ATCCTCCACTTCACA C0 TGTGAAGTGGAGGAT

C1 TTATAACAAACATCC C1 GGATGTTTGTTATAA

(a)

(b)

(c)

(d)

Fig. 5. Intensity versus the position in the modules. The data was taken from over the length of
the channel. (a) A0, B1 and C0 negative selection module. (b) the control of the first module,
containing the same capture strands. (c) A1 detection module. (d) C1 detection module.

The only strands that should be left are A1, B0 and C1. The problem was solved
by negative selection, i.e. everything that is not wanted in the solution is hybridised to
the capture probes while all others are passed on to the next selection module. This
means in order to solve the problem, A0, B1 and C0 should be retained, i.e. captured,
by the complimentary sequences A0, B1 and C0.

 A Poor Man’s Microfluidic DNA Computer 385

When an AND operation is performed in selection modules, all the variables of
that AND can be actually located in only one module, instead of concatenating the
single variables. Here, the beads with A0, B1 and C0 were injected into the
firstmodule. As a control for the effectiveness of negative selection, a second select-
ion module was made identically to the first one. After the selection, two of the
remaining three strands were detected by positive selection. For this purpose, modules
were filled with complimentary strands A1 and C1.

The success of the experiment was mixed. The first modules showed a typical
hybridisation behaviour, while the second module, the check to see whether negative
in the first selection module was successful, showed no significant signal, as expected
(Fig. 5a, b). The third module, a detection module capturing A1, showed a weaker
signal than the first module, which was expected as well (Fig. 5c). The first and the
second module had 3 times more binding capacity compared to the third one, as the
third module only had one capture probe, compared to three in the first two. The
intensity is collected in a 2 dimensional space, so the intensity of the third module
should be 9 times lower than the first. The results show that this was indeed
measured. However, the fourth module containing the C1 probe didn’t show any
signal, while it should have shown the same signal as the A1-module (Fig. 5d).

A reason why the selection procedure didn’t work properly is because the
operating temperature was at room temperature and not at the melting temperature, at
around 40° C. This can cause unpredicted hybridisations.

5 Conclusion

The poor man’s microfluidic computer is very promising for groups with limited
facilities, and it is not just limited to DNA computing. Off-the-shelf components and
small fine-machined holders are needed to make a extremely flexible setup. Any
problem size can be handle with these components, while it lends it self for full
automation. By using computer controlled selection ports (e.g. Valco Instruments Co.
Inc., Houston, TX, USA) and software packages like LabVIEW (National Instru-
ments), selection modules can be programmed, making the computer programmable.
Using a standard fluorescence microscope, together with some image processing
software, is all what is needed to check the selections. Detections modules can also be
incorporated so that there is no need for any gel-electrophoresis.

Acknowledgement

The author wish to acknowledge the support from DARPA award F30602-01-2-0560
to Laura F. Landweber and NSF award 0121405 to Lydia L. Sohn and L. F. L.; the
support from the Molecular Evolutionary Computing (MEC) project of the Korean
Ministry of Commerce, Industry and Energy, and the National Research Laboratory
(NRL) Program from the Korean Ministry of Science and Technology. And thanks to
LiChin Wong at Princeton University for the help in preparing the DNA samples.

386 D. van Noort

References

[1] van Noort, D., Tang Z.-L. and Landweber, L. F. (2004) Fully controllable microfluidics
for molecular computers. JALA 9, 5 October 2004.

[2] Suyama, A. (2002) Programmable DNA computer with application to mathematical and
biological problems. Preliminary Proceedings, Eighth International Meeting on DNA
Based Computers, June 10-13, 2002, Japan, 91.

[3] van Noort, D. and Landweber, L. F. (2004) Towards a re-programmable DNA computer.
LNCS 2943, 190 – 197.

[4] Adleman, L., 1994. Molecular computation of solutions to combinatorial problems.
Science 266, 1021-1024.

[5] van Noort, D., Wagler, P. and McCaskill, J. S. (2002) The role of microreactors in
molecular computing. Smart Mater. Struct. 11, 756-760.

[6] Faulhammer, D., Cukras, A. R., Lipton, R. J. & Landweber, L. F. (2000) Molecular
computation: RNA solutions to chess problems. PNAS 97, 1385-1389.

Two Proteins for the Price of One: The Design
of Maximally Compressed Coding Sequences�

Bei Wang1, Dimitris Papamichail2, Steffen Mueller3, and Steven Skiena2

1 Dept. of Computer Science, Duke University, Durham, NC 27708
beiwang@cs.duke.edu

2 Dept. of Computer Science, State University of New York, Stony Brook, NY 11794
{dimitris, skiena}@cs.sunysb.edu

3 Dept. of Microbiology, State University of New York, Stony Brook, NY 11794
smueller@ms.cc.sunysb.edu

Abstract. The emerging field of synthetic biology moves beyond con-
ventional genetic manipulation to construct novel life forms which do not
originate in nature. We explore the problem of designing the provably
shortest genomic sequence to encode a given set of genes by exploit-
ing alternate reading frames. We present an algorithm for designing the
shortest DNA sequence simultaneously encoding two given amino acid
sequences. We show that the coding sequence of naturally occurring pairs
of overlapping genes approach maximum compression. We also investi-
gate the impact of alternate coding matrices on overlapping sequence de-
sign. Finally, we discuss an interesting application for overlapping gene
design, namely the interleaving of an antibiotic resistance gene into a
target gene inserted into a virus or plasmid for amplification.

1 Introduction

The emerging field of synthetic biology moves beyond conventional genetic ma-
nipulation to construct novel life forms which do not originate in nature. The
synthesis of poliovirus from off-to-shelf components [1] attracted worldwide at-
tention when announced in July 2002. Subsequently, the bacteriophage PhiX174
was synthesized using different techniques in only three weeks [2], and Kodu-
mal, et al. [3] recently set a new record for the longest synthesized sequence, at
31.7 kilobases. The ethics and risks associated with synthetic biology continue to
be debated [4], but the pace of developments is quickening. Indeed, Tian, et al. [5]
have just proposed a method for DNA synthesis based on microarrays and mul-
tiplex PCR that promises a substantial reduction in cost.

Once you can synthesize an existing genome from scratch, you can do the
same for new and better designs as well. In this paper, we explore an interest-
ing problem in genome design, namely designing the provably shortest genomic
sequence to encode a given set of genes, by exploiting alternate reading frames
and the redundancy of the genetic code. Theoretically, up to six proteins can be

� This research was partially supported by NSF grants EIA-0325123 and DBI-0444815.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 387–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

388 B. Wang et al.

encoded on the same genomic sequence using three alternate reading frames on
both strands. Indeed, long gene overlaps occur frequently in nature.

Our contributions in this paper are:

– Finding Shortest Encodings for Given Protein Pairs – We present an al-
gorithm for designing the shortest DNA sequence simultaneously encoding
two given amino acid sequences. Our algorithm runs in worst-case quadratic
time, but we provide an expected-case analysis explaining its observed linear
running time when employing the standard DNA triplet code.

– Comparing Natural and Synthetic Coding-Pair Sequences – We compare the
overlapping gene designs constructed by our algorithm to those occurring
in natural viral sequences. We show that the coding sequence of naturally
occurring pairs of overlapping genes in general approach maximum com-
pression, meaning that it is impossible to design overlapping shorter coding
sequences for them which save more than 1-2% over independent genes. This
counterintuitive result has natural explanation in terms of the evolutionary
mechanics of overlapping gene sequences.

Further, we show interesting differences between the preferred phase (read-
ing frame), strand, and orientation of natural and optimized overlapping
sequences.

– Impact of Alternate Coding Matrices on Overlapping Sequence Design – Pro-
tein designs are not immutable; indeed, certain pairs of amino acids share
such similar physical/chemical properties they can be fairly freely substi-
tuted without altering protein function. This freedom can be exploited to
design substantially shorter encodings for a given pair of proteins.

We investigate the impact of increasingly permissive amino acid substitu-
tion matrices (derived from the well-known PAM250 matrix) on the potential
for constructing tight encodings. Extremely tight encodings are often pos-
sible while largely preserving the hydrophobicity of the associated residues.
Further, the encodings designed under each of these matrices shows inter-
esting differences between the preferred phase (reading frame), strand, and
orientation.

– Biotechnology Applications of Nested Encodings – We propose an interest-
ing application for overlapping gene design, namely the interleaving of an
antibiotic resistance gene into a target gene inserted into a virus or plas-
mid for amplification. Selective pressures tend to quickly remove such target
genes as disadvantageous to the host. However, coupling such a target with
a resistance gene provides a means to select for individuals containing the
arbitrarily selected target gene.

To demonstrate the feasibility of this technique, we apply our algorithm to
encode each of five important antibiotic resistance genes within the body of
the Hepatitis C virus. In fact, we demonstrate there are many possible places
to encode each resistance gene within the virus, assuming a sufficiently (but
not excessively) permissive codon replacement matrix.

These sequence design problems naturally arise in our project, currently un-
derway, to design and synthesize weakened viral strains to serve as candidate

Two Proteins for the Price of One 389

vaccines [6]. This work also follows our previous efforts to design encoding se-
quences for proteins which minimize or maximize RNA secondary structure [7]
and avoid restriction sites [8].

This paper is organized as follows. In Section 2, we survey the literature
concerning why gene overlaps occur in nature and how they evolve. We present
our algorithm for constructing optimal encodings in Section 3, with associated
analysis, and compare our synthesized designs with wildtype viral encodings. In
Section 4, we study the impact of alternate codon substitution matrices on the
size and parity of minimal pairwise gene encodings. Finally, in Section 5, we
present our results on encoding antibiotic resistance genes within viral coding
sequences.

2 Overlapping Genes in Nature

Overlapping genes are adjacent genes whose coding regions are at least partly
overlapping. They occur most frequently in prokaryotes, bacteriophages, animal
viruses and mitochondria, but are seen in higher organisms as well. Gene over-
lapping presumably results from evolutionary pressure to minimize genome size
and maximize encoding capacity [9]. For viruses, this is manifested in two ways;
first when genome size substantially affects the speed of replication, and second
when an upper bound on the genome size is imposed by packaging.

Overlapping genes are common for viruses with prokaryotic hosts because they
must be able to replicate sufficiently fast to keep up with their host cells [10].
As an example, many bacteriophages have compact genomes which maximize
coding information into the minimum genome size [10].

In term of evolutionary pressure to minimize genome size, packaging size
pressure (the packaging size of the virus particle as the amount of nucleic acid
which can be incorporated into the virion) sets the genome size upper bound for
viruses with eukaryotic hosts [10].

Overlap between genes is very common in genomes mutating at high rates,
such as bacteria and mitochondria, but especially viruses. Although a mutation
in an overlapping region can impair more than one protein and would be natu-
rally selected against, there are several reasons overlapping genes can benefit an
organism:

– By reducing the size of the genome, without affecting the number of genes
encoded.

– By generating new (or sometimes more complex) proteins without increasing
the size of the genome.

– By coordinating the expression levels of functionally related genes.
– By coordinating the expression levels of genes, where the expression of one

gene requires the deactivation of the other.

The first two functions are supported by the theory of “overprinting”, which
attempts to describe the origin of new genes from an existing genome with
minimal mutational change [11]. Size reduction is considered important under

390 B. Wang et al.

the assumption that replication rate is inversely related to genome length, since
it has an obvious effect in increased rates of replication and minimization of
mutation load [12].

Overlapping reading frames can serve to expedite efficient translation. Over-
laps can bring translation machinery close to both overlapping genes, which can
co-ordinate or co-regulate their expression [12]. In other cases an overlap can
bring the termination site of one gene into the same region as the translation
initiation site for the next gene [13].

The rate of evolution can be expected to be slower in overlapping genes [14].
Since point mutations in overlapping regions can affect two genes simultane-
ously, a mutant variant produced with a mutation in an overlapping region will
have a lower growth rate and in most cases cannot compete with the wild type
variant [15].

Although high mutation rates and selection towards a compacted genome
would indicate that overlapping genes should occur mostly in viral and cellular
prokaryotic genomes and mitochondria, recent studies show that mammalian
genomes have relatively frequent occurrences of overlapping genes too. The ob-
served 774 overlapping genes in the human and 542 overlapping genes in the
mouse genome [16] do not compare favorably with the 806 overlapping gene
pairs in the genome of E.Coli [9], since the latter genomes is three orders of
magnitude smaller. Nevertheless, the same mechanisms of evolution, like rear-
rangements or loss of parts and utilization of neighboring gene signals, provide
explanation for the origin of these overlaps.

Overlapping genes offer an efficient way to study how coding and control
sequences have evolved. With direct comparison of the overlapping genes for re-
lated species, one can determine how the overlaps evolved and under which con-
ditions, like neighboring gene distance (for example, in closely related bacterial
species it has been observed that most of the overlapping genes were generated
or degraded in gene pairs that have a short intergenic region [17]). By compar-
ing gene overlaps that are not conserved between related species, the mutational
changes that caused the diversion can often be identified. In other cases further
species sequencing are necessary to decipher the evolutionary mechanisms and
tendencies (see [9] [16] and [17]).

In bacterial species it has been observed that the total number of overlapping
genes depends on the genome size or the total number of genes, which could
imply that the rates for the accumulation and degradation of overlapping genes
are universal among bacterial species [17].

Overlapping gene regions can also provide information for evolution patterns
among classes of organisms and seem to converge with ribosomal RNA phylo-
genetic methods’ results [18]. For certain bacterial species, the extent of con-
servation of unidirectional overlaps correlates with the evolutionary distances
between pairs of species [9]. Gene overlaps have even been correlated with cer-
tain human disease genes; further genomic rearrangements are likely to occur
within overlapping regions, possibly as a consequence of anomalous sequence
features prevalent in these regions [19].

Two Proteins for the Price of One 391

3 Finding Maximally Compressed Gene-Pair Encodings

Our algorithm for constructing the maximally compressed encoding for a given
pair of amino acid sequences P1 and P2 can be most succinctly described via a
dynamic program. We consider the canonical case where the encoding of P1 starts
to the left (5’ end) of P2 as shown in Figure 1; the reverse case follows by simply
relabeling the proteins. We present only the algorithm for the case of same-strand
encodings; the case of alternate strand encodings follows analogously.

Let P1 contain n residues and P2 m residues, respectively. Let o1, o2, and o3
denote possible DNA sequences of 0 to 3 bases in length. There are two general
cases:

– We say that C[i, j, o1, top] is realizable iff there exists a pair of sequences o2,
o3 such that o1o2 codes for residue P1[i], o2o3 codes for residue P2[j], and
C[i + 1, j, o3, bottom] is realizable or i = n.

– We say that C[i, j, o1, bottom] is realizable iff there exists a pair of sequences
o2, o3 such that o1o2 codes for residue P2[j], o2o3 codes for residue P1[i], and
C[i, j + 1, o3, top] is realizable or j = m.

An exception occurs only when the residues are aligned, where only one case
is needed, in which we advance both indices i and j and we check for reaching
both ends of the proteins.

The basis cases for the canonical labeling assert that an overlap is attainable
(C[n, j, o1, top] or C[i, m, o1, bottom] is realizable) iff C[j, 1, o1, top] is realizable
for some 1 < j < n.

Since there are only a constant number of possible short strings o1, o2, and o3,
it takes constant time to evaluate a given value of C[i, j, o, b] given the solution
of all smaller cases. With Θ(mn) values to evaluate, the algorithm runs in worst
case Θ(mn) time.

By ceasing evaluation once no realizable values remain, the longest overlap
can be computed in O((n + m)l), where l is the length of the longest overlap
between the protein sequences. Below, we argue that l should in general be
of constant length on non-degenerate substitution matrices; this states that on
average this algorithm should run in linear time on such matrices.

We say that two overlapping proteins are in-phase if the overlap length is
congruent to 0 mod 3, i.e. they align along codon boundaries. Non-trivial

P
1

P
2

o
1

o
2 3

o

i

j

P
1

P
2

o
1

o
2 3

i

j

o

P
1

P
2

1 n

1 m

top case bottom casecannonical arrangement

Fig. 1. Notation for the gene encoding algorithm: the canonical encoding (left), with
the top (center) and bottom (right) overhang cases

392 B. Wang et al.

in-phase, same-strand overlapping designs are in principle forbidden by the fact
that proteins must end with stop codons. However, we consider an abstraction
of this case to simplify the analysis.

Here we consider the expected length of the maximal overlap as a function of
the residue equivalence probability, defined as the probability that two randomly
selected amino acids have an equivalent codon between them. This residue equiv-
alence probability p is a function both of the codon substitution matrix and the
distribution of amino acids in the proteins.

Assuming independence of the protein sequences, the expected length of the
longest left-right overlap E(O) of two random sequences P1 and P2 is given by

E1(O) =
∞∑
l=0

lpl
∞∏

i=l+1

(1− pi) (1)

For the case of two-sided overlaps (i.e. either P1 or P2 may occur on the left side
of the alignment),

E2(O) =
∞∑
l=0

l(2pl − p2l)
∞∏

i=l+1

(1− (2pi − p2i)) (2)

The above analysis demonstrates that the expected maximum overlap length
remains quite small until the residue equivalence probability approaches 1. This
suggests that two arbitrary proteins are unlikely to permit substantially com-
pressed in-phase encodings except under a forgiving (degenerate) coding matrix.

Still, all is not lost. Our analysis of both wildtype and synthetic overlaps
demonstrates that out-of-phase encodings are likely to be substantially longer
than in-phase encodings. This phenomenon appears to be difficult to analyze in
general because it strongly depends upon the properties of the codon equivalence
matrix.

Each amino acid is encoded by a minimum of one and a maximum of six
different codons. In total, 61 of the 64 codons encode 20 amino acids while
the other three are stop codons, a termination point for protein-synthesizing
machinery. Thus there is an approximate 1-to-3 correspondence between amino
acids and their codon encodings. It is this redundancy that offers the flexibility
in amino acid sequence encoding.

To study the extent of gene overlapping in viruses, we analyzed all 1058
completely sequenced viral genomes available in Genbank as of February 22,
2004. After excluding 273 genomes containing a single annotated gene (and hence
not a candidate for gene overlapping) and 108 genomes with sequence ambiguity
or obvious annotation errors, we were left with 677 viruses of interest.

In total, these viruses contained 3,232 pairs of overlapping genes, 2,407 of
which had overlaps of length greater than four bases.1

Figure 2 presents the frequency distribution of gene overlaps by length, the tail
of which demonstrates that long overlaps occur with surprisingly high frequency.
1 Overlaps of less than four bases are not particularly interesting, since the possible

overlaps are restricted to the start and stop codons possessed by every gene.

Two Proteins for the Price of One 393

Fig. 2. Length distribution of pairwise-overlapping genes in viral genomes

Table 1 partitions these overlaps into disjoint cases, distinguished by whether the
genes occur on the same strand, or are head-to-head or tail-to-tail on opposing
strands. Same strand overlaps dominate in the sample. Table 1 also partitions
these overlaps by the length mod 3. In-phase overlaps are understandably rare
(any stop codon breaks both same strand sequences), but there is also a clear
preference for 2 mod 3 parity over 1 mod 3.

Table 1. Parities of natural gene overlaps, ties discarded. All 3232 gene pairs (left).
The 2407 gene pairs with overlap > 4.

All overlaps, parity mod 3 Length > 4, parity mod 3
Pattern 0 1 2 All 0 1 2 All
SAME 0.0% 23.1% 39.9% 63.0% 0.0% 12.9% 53.3% 66.2%

HH 4.4% 1.9% 4.8% 21.1% 5.9% 4.9% 6.5% 17.3%
TT 3.0% 1.9% 11.0% 15.9% 4.0% 2.6% 9.9% 16.5%

Total 7.4% 36.9% 55.7% 100% 9.9% 20.4% 69.7% 100%

Using our gene pair encoder, we attempted to find more compressed representa-
tions of the wildtype gene pairs. In general we failed badly, with the vast majority
of cases having zero or insignificant improvement (recall that approximately one
third of all natural overlaps were of length 4 or less). In no case were we able to
increase the overlap length of such an overlapping gene pair by more than 20 bases.

394 B. Wang et al.

The lesson here is that gene overlaps occur because the proteins evolved to-
gether – significant potential overlaps are extremely unlikely to arise in unrelated
sequence pairs because the genetic code does not provide sufficient flexibility.
Figure 3 presents the results of optimally encoding 135,869 pairs of unrelated
proteins. In no case were we able to reduce the length of an overlapping gene
pair by more than 30 bases.

More interesting is the breakdown of our optimized encodings by strand and
parity, reported in Table 2. The optimized encodings show sharply different
preferences than the wildtype encodings. Functional demands likely constrict
the choice of same strand encodings, although it is less obvious why there is
such dramatic difference in head-to-head and tail-to-tail preferences. The differ-
ence in preferred parity is largely explained by the change in strand encoding
distribution.

Table 2. Longest optimized overlap using codon matrix, ties discarded. All 135,869
overlapping gene pairs (left), the 14,925 overlapping gene pairs of length > 4 (right).

All overlaps, parity mod 3 Length > 4, parity mod 3
Pattern 0 1 2 All 0 1 2 All
SAME 0.01% 31.92% 1.47% 33.40% 0.05% 3.04% 13.16% 16.25%

HH 5.09% 35.51% 2.31% 42.91% 45.55% 7.77% 21.07% 74.39%
TT 0.08% 0.91% 22.70% 23.69% 0.62% 8.28% 0.46% 9.36%

Total 5.18% 68.34% 26.48% 100.00% 46.22% 19.09% 34.69% 100.00%

Fig. 3. Distribution of maximum overlaps under four different codon substitution
matrices

Two Proteins for the Price of One 395

4 Experiments in Synthetic Gene Encoding

Recent studies [20] have demonstrated that the genetic code maximizes the like-
lihood that a gene mutation will not harm and may even improve the protein. In
general, the code is resilient to random mutations leading to significant changes
of the affected amino-acid properties, so that a misread codon often codes for
the same amino acid or one with similar biochemical properties. Furthermore,
simulations by Gilis et al. [21] have shown that taking the amino-acid frequency
into account further increases the resilience of the code compared to random
codings. It is also known that proteins with a limited number of point mutations
which lead to non-synonymous substitutions fold in similar ways, in a degree that
homology database search can detect function similarity in proteins differing in
up to 50% of their amino-acid compositions [22].

Based on these results, we decided to further investigate the pairwise gene
overlapping possibilities using non-synonymous amino-acid substitution matri-
ces, which increase the combinatorial possibilities of compressed overlapping
representations at the cost of minor changes in the residues in the underlying
proteins.

Our substitution matrices are derived from the well-known PAM 250 amino
acid substitution scoring matrix. The value of each entry describes the reward or
penalty in replacing an instance of the first amino acid with the second in aligned
sequences. Positive values contribute favorably to an alignment, and negative
values unfavorably. We may derive a permissive codon equivalence matrix from
PAM 250 as a function of a threshold t by permitting replacement of amino
acid x with y if the score is ≥ t. By decreasing t, we can define a sequence of
increasingly permissive substitution matrices for our experiments.

Clearly other substitution matrices are possible (e.g. Levitt’s hydrophobicity
scoring matrix [23]), and perhaps even preferable. Our primary interest is es-
tablishing the flexibility for compressed sequences as a function of more tolerant
substitution matrices.

The results of our overlapping experiments with the use of the alternate sub-
stitution matrices are shown in Figure 3. One can observe the significant increase
in both the number and frequency of long overlaps with increasing length as the
matrices become more permissive. In particular, almost arbitrarily long overlaps
appear possible under t ≥ −3 substitution.

5 Hiding Short Genes in Long Genes

Here we report on proof-of-concept simulations of two related biotechnology
applications for carefully designed overlapping of synthetic gene sequences:

– Plasmid incorporation into mammalian cells – A common technique for in-
corporating target gene expression into mammalian cell involved plasmid
incorporation and mammalian cell transfection. Initially, the plasmid con-
taining the target gene is propagated in bacteria. The naked plasmid DNA
is extracted and then introduced into the mammalian cell by transfection.

396 B. Wang et al.

Typically the target gene is paired with an antibiotic resistance gene, so as
to create a marker for selection in the eukaryotic cell. All cells not expressing
this marker can be eliminated with the corresponding antibiotic drug (ex.
geneticin or G418), to isolate cells expressing the target protein. Sometimes,
however only one gene is expressed, such as when the cell fails to incorporate
the entire plasmid. Because the plasmid is linearized to be incorporated in
a chromosome, the cut may also occur in the target gene location.

By overlapping the target and marker genes, we reduce the probability
that either the cut will eliminate the target gene but the not the marker, as
well as the probability that the two genes will be separated.

– Foreign gene incorporation into viruses – RNA viruses are very prone to
recombination, so an added sequence has a high probability to be deleted.
Since RNA viruses are streamlined to perform a limited number of specific
tasks, the addition of a gene slows down the virus processes, merely by
extending slightly its length. Since the foreign gene is undesirable, its deletion
will result in a faster produced replicon that will eventually outgrow the
engineered virus we implanted.

Interleaving the target gene into a gene that the virus needs can prohibit
its deletion through reversion.

Positive indications in the direction of gene overlap engineering are the recent
results of [20], which show that the amino acid code minimizes the effects of muta-
tions and maximizes the likelihood that a gene mutation will improve the result-
ing protein. Additionally, methods of local sampling (see [24] and [25]) can help us
simulate the behavior of slightly altered proteins in respect to folding and docking,
so that we can test the codon substitution effects without lab experimentation.

To evaluate the potential for such synthetic overlap encodings, we attempted
to find maximal encodings of five important antibiotic genes (whose length ranges
from 375 to 1026 nucleotides) within the coding region of the Hepatitis C virus
(HCV). Consistent with the results of the previous section, only trivial overlaps
can be obtained using synonymous substitutions.

However, multiple complete encodings are possible under t ≥ −2 and t ≥
−3 substitution for each of the five antibiotic resistance genes, as reported in
Table 3. There is a strong bias for alternate strand encodings, although all five

Table 3. Number of fully-enclosed t ≥ −2 and t ≥ −3 encodings of antibiotic resistance
genes within the Hepatitis C virus, same strand (SS) and alternate strand (AS)

t ≥ −2 encodings t ≥ −3 encodings
Gene Accession Length SS AA SS AS
Hygromycin X03615 1026 0 1 4 1
Neomycin M55520 795 0 1 2 3
Puromycin X92429 600 0 11 16 25
Blasticidin AYI96214 423 56 250 217 442
Zeocin A31902 375 35 132 163 175

Two Proteins for the Price of One 397

antibiotic resistance genes offer same strand encodings for t ≥ −3. In fact, the
preferable target for the inserted gene encoding (and promoter region) in the
virus application is the minus strand, so this bias appears fortunate.

Based on these results, we are pursing more rigorous designs for intended
synthesis and implementation.

Acknowledgments

We thank Eckard Wimmer for his interest and support. We also thank Chen
Zhao, Huei-Chi Chen, and Rahul Sinha for discussions and contributions to this
research.

References

1. J. Cello, A. Paul, and E. Wimmer. Chemical synthesis of poliovirus cDNA: Genera-
tion of infectious virus in the absence of natural template. Science, 297:1016–1018,
2002.

2. H. Smith, C. Hutchison, C. Pfannkoch, and J. C. Venter. Generating a synthetic
genome by whole genome assembly: phix174 bacteriophage from synthetic oligonu-
cleotides. Proc. Nat. Acad. Sci., 100:15440–15445, 2003.

3. S. Kodumal, K. Pael, R. Reid, H. Menzella, M. Welch, and D. Santi. Total synthesis
of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene
cluster. Proc. Nat. Acad. Sci., 44:15573–15578, 2004.

4. P. Ball. Starting from scratch. Nature, 431:624–626, 2004.
5. J. Tian, H. gong, N. Sheng, Z. Zhou, E. Gulari, X. Gao, and G. Church. Accu-

rate multiplex gene synthesis from programmable DNA microchips. Nature, 432:
1050–1054, 2004.

6. S. Skiena and E. Wimmer. Gene design for vaccines and theraputic phages. NSF
ITR Award 0325123, 2003.

7. B. Cohen and S. Skiena. Natural selection and algorithmic design of mrna. J.
Computational Biology, 10:419–432, 2003.

8. S. Skiena. Designing better phages. Bioinformatics, 17:253–261, 2001.
9. Y. Fukuda, T. Washio, and M. Tomita. Evolution of overlapping genes: Compara-

tive genomics of mycoplasma genitalium and mycoplasma pneumoniae. The Ninth
Workshop on Genome Informatics, 1998.

10. Cann A.J. Principles of Molecular Virology. Academic Press, 1993.
11. P. Keese and A. Gibbs. Origins of genes: “big bang” or continuous creation? Proc.

Natl. Acad. Sci., 89:9489–9493, 1992.
12. D. C. Krakauer. Evolutionary principles of genomic compression. Comments on

Theor. Biol., 2002.
13. D. Oppenheim and C. Yahofsky. Translational coupling during expression of the

tryptophan operon of e. coli. Genetics, 95:785–795, 1980.
14. T. Miyata and T. Yasunaga. Evolution of overlapping genes. Nature, 272:532–535,

1978.
15. D. C. Krakauer. Stability and evolution of overlapping genes. Evolution, 54(3):

731–739, 2000.

398 B. Wang et al.

16. V. Veeramachaneni, W. Makalowski, M. Galdzicki, R. Sood, and I. Makalowska.
Mammalian overlapping genes: The comparative method. Genome Research,
14:280–286, 2004.

17. Y. Fukuda, Y. Nakayama Y, and M. Tomita. On dynamics of overlapping genes
in bacterial genomes. Gene, 323:181–7, 2003.

18. I. Rogozin, A. Spiridonov, A. Sorokin, Y. Wolf, J. King, R. Tatusov, and E. Koonin.
Purifying and directional selection in overlapping prokaryotic genes. Trends Genet.,
18(5):228–232, 2002.

19. S. Karlin, C. Chen, A. Gentles, and M. Cleary. Associations between human disease
genes and overlapping gene groups and multiple amino acid runs. Proc. Natl. Acad.
Sci., 99(26):17008–13, 2002.

20. S. Freeland and L. Hurst. Evolution encoded. Sci Am., 290(4):84–91, 2004.
21. D. Gilis, S. Massar, N.J. Cerf, and M. Rooman. Optimality of the genetic code

with respect to protein stability and amino-acid frequencies. Genome Biol., 2(11),
2001.

22. M.A. Marti-Renom, A.C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali. Com-
parative protein structure modeling of genes and genomes. Annu Rev Biophys
Biomol Struct., 29:291–325, 2000.

23. M. Levitt. A simplified representation of protein conformations for rapid simulation
of protein folding. J. Mol. Biol., 104:59–107, 1976.

24. R. Elber and M. Karplus. Enhanced sampling in molecular dynamics: Use of
the time-dependent hartree approximation for a simulation of carbon monoxide
diffusion through myoglobin. J. Am. Chem. Soc., 112:9161–9175, 1990.

25. V. Hornak and C. Simmerling. Generation of accurate protein loop conformations
through low-barrier molecular dynamics. Proteins, 51:577–590, 2003.

Design of Autonomous DNA Cellular Automata�

Peng Yin1, Sudheer Sahu1, Andrew J. Turberfield2, and John H. Reif1

1 Department of Computer Science, Duke University,
Box 90129, Durham, NC 27708-0129, USA

{py, sudheer, reif}@cs.duke.edu
2 University of Oxford, Department of Physics, Clarendon Laboratory,

Parks Road, Oxford OX 1 3PU, UK
a.turberfield@physics.ox.ac.uk

Abstract. Recent experimental progress in DNA lattice construction, DNA
robotics, and DNA computing provides the basis for designing DNA cellular
computing devices, i.e. autonomous nano-mechanical DNA computing devices
embedded in DNA lattices. Once assembled, DNA cellular computing devices
can serve as reusable, compact computing devices that perform (universal) com-
putation, and programmable robotics devices that demonstrate complex motion.
As a prototype of such devices, we recently reported the design of an Autonomous
DNA Turing Machine, which is capable of universal sequential computation, and
universal translational motion, i.e. the motion of the head of a single tape uni-
versal mechanical Turing machine. In this paper, we describe the design of an
Autonomous DNA Cellular Automaton (ADCA), which can perform parallel
universal computation by mimicking a one-dimensional (1D) universal cellular
automaton. In the computation process, this device, embedded in a 1D DNA lat-
tice, also demonstrates well coordinated parallel motion. The key technical in-
novation here is a molecular mechanism that synchronizes pipelined “molecular
reaction waves” along a 1D track, and in doing so, realizes parallel computation.
We first describe the design of ADCA on an abstract level, and then present de-
tailed DNA sequence level implementation using commercially available protein
enzymes. We also discuss how to extend the 1D design to 2D.

1 Introduction

DNA has recently been used, with great success, to fabricate nanoscale lattices
and tubes [3, 8, 11, 14, 15, 16, 18, 20, 21, 22, 29, 31, 32], to construct nanomechani-
cal devices [2, 4, 9, 10, 24, 25, 27, 23, 28, 33, 34, 36, 37], and to perform computation
[1, 5, 6, 7, 13, 17, 19, 26]. The progress in these three fields together provides the ba-
sis for the next step forward: designing and constructing autonomous DNA computing
devices embedded in well defined DNA lattices, which are capable of (universal) com-
putation. We call such devices DNA cellular computing devices.

Once assembled, DNA cellular computing devices can serve as reusable, compact
computing devices that perform (universal) computation, and programmable robotics

� The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC
Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 399–416, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 P. Yin et al.

devices that demonstrate complex motion. First, DNA cellular computing devices rep-
resent a step forward beyond the prior molecular computing schemes, such as algorith-
mic self-assembly of DNA tiles, which performs a one-time computation during the
assembly. In contrast, DNA cellular computing devices, once assembled, can perform
multi-round computations. The output, embedded in the DNA lattices, is preserved and
can serve as input for future computations. In addition, DNA cellular computing de-
vices are more compact than the tiling scheme. A 1D Autonomous DNA Turing ma-
chine holds equivalent computational power as a 2D tiling lattice. Second, DNA cellular
computing devices can demonstrate sophisticated programmable motion, for example,
universal translational motion, which we define as the motion of the head of a single
tape universal mechanical Turing machine. As such, DNA cellular computing devices
may promise interesting applications in nanorobotics and nano-computation, as well as,
nano-fabrication, nano-sensing, and nano-actuated electronics.

As one prototype of the DNA cellular computing devices, we previously reported
the design of an autonomous unidirectional DNA mechanical device capable of univer-
sal sequential computation, termed as Autonomous DNA Turing Machine [35]. Here,
we extend our previous work and obtain the design of an Autonomous DNA Cellular
Automaton (ADCA). By mimicking a 1D universal cellular automaton, the ADCA can
perform parallel universal computation, and in the process, demonstrate well coordi-
nated parallel motion. The parallel computation and motion is realized using a novel
molecular mechanism that synchronizes pipelined “molecular reaction waves” along a
1D track.

A cellular automaton is a set of “colored” cells on a grid of specified shape that
evolve through discrete time steps according to a set of transition rules based on the
colors of neighboring cells [30]. If the lattice is a one (resp. two) dimensional lattice, the
cellular automaton is called a one (resp. two) dimensional cellular automaton. Figure 1
(a) shows the cells of an example one-dimensional cellular automaton. Each cell of this
automaton can have one of two states, or equivalently two colors, WHITE and BLACK.
The evolving process of a cellular automaton is specified by the transition rules. Figure 1
(b) illustrates one example rule set for the cellular automaton shown in Figure 1 (a). The
rule set consists of 8 transition rules (numbered (1) - (8) in the figure). For example,

(2)(1) (4)(3) (6)(5) (8)(7)

Fig. 1. A universal cellular automaton with two colors: Rule 110. The figure is adapted from [30].

Design of Autonomous DNA Cellular Automata 401

according to rule (1), if the current cell and both of its neighbors have color BLACK,
at next time step, the middle cell will change to color WHITE. This rule is denoted
as BLACK, BLACK, BLACK → WHITE. Applying the rules in Figure 1 (b) to the initial
configuration in Figure 1 (a), we obtain the transition history table depicted in Figure 1
(c). Cellular automaton can hold universal computing power. The cellular automaton
depicted in Figure 1 is one such universal cellular automaton, known as rule 110, as
described in [30]. This cellular automaton can be simulated by the ADCA described in
this paper.

The rest of the paper is organized as follows. In Sect. 2, we describe the structural
design and operational process of our ADCA. In Sect. 3, we give a detailed molecular
implementation of the design presented in Sect. 2. We then briefly describe how to
extend the design of ADCA to two-dimensions in Sect. 4 and close in Sect. 5.

2 Design

2.1 Structure

The ADCA operates in a solution system. Figure 2 illustrates an example abstract cel-
lular automaton in the top panel, and the structure of the corresponding ADCA in the
bottom panel. The ADCA is composed of four parts: a rigid symbol track, a linear ar-
ray of dangling DNA molecules tethered to the symbol track, a set of floating DNA
molecules, and a group of floating protein enzymes.

– Symbol track. The symbol track provides a rigid structural platform on which the
dangling-molecules are tethered. It can be implemented, for example, as a rigid
addressable DNA lattice, such as the barcode DNA lattice reported in [31].

Fig. 2. Top panel: the initial configuration of an abstract cellular automaton. Bottom Panel:
schematic drawing of the structure of an ADCA corresponding to the abstract cellular automaton
in the top panel. The backbones of DNA strands are depicted as directed line segments. The short
bars represent base pairing between DNA strands.

402 P. Yin et al.

– Dangling DNA molecules. The array of dangling-molecules, also called symbol-
molecules, tethered to the symbol track represent the array of cells (symbols) in the
cellular automaton (and hence the name symbol-molecule). A dangling-molecule
is a duplex DNA fragment, with one end tethered to the symbol track via a flexible
single strand DNA fragment and the other end possessing a single strand DNA ex-
tension (the sticky end). Due to the flexibility of the single strand DNA linkage, a
dangling-molecule moves rather freely around its joint on the symbol track. We re-
quire that the only possible interactions between two dangling-molecules are those
between two immediate neighbors. This requirement can be ensured by properly
spacing the dangling-molecules along the rigid track.

– Floating DNA molecules. In addition to the array of dangling-molecules,
the system contains floating-molecules. A floating-molecule is a free floating
(unattached to the symbol track) duplex DNA segment with a single strand
overhang at one end (sticky end). A floating-molecule floats freely in the
solution and thus can interact with another floating-molecule or a dangling-
molecule provided that they possess complementary sticky ends. There are two
kinds of floating-molecules: the rule-molecules and the assisting-molecules. The
rule-molecules collectively specify the computational rules and are the pro-
grammable part of the ADCA, while the assisting-molecules assist in carrying
out the operations of the ADCA, which we describe in detail in Sect. 2.2 and
Sect. 2.3.

– Protein enzymes. The system also contains floating DNA ligase and three types
of DNA endonucleases. The enzymes perform ligations and cleavages on the DNA
molecules to effect the designed structural changes and hence the information pro-
cessing. The cleavage patterns of the endonucleases are described in Figure 3.

2.2 Structural Changes

Figure 4 illustrates the structural changes during the operation of ADCA.

Initial configuration. Figure 4 (a) depicts an example abstract cellular automaton in
its top panel, and a corresponding ADCA in its bottom panel. For simplicity and clar-
ity, the floating enzymes and the floating DNA molecules in the ADCA are omitted
from the figure; the symbol track, as well as the duplex and sticky end portions of a
dangling-molecule, is depicted as a thick line segment; the flexible hinge of a dangling-
molecule as a thin curve. The leftmost symbol-molecule is a special initiator dangling-
molecule, I , representing the cell 0 in the abstract cellular automaton (see Figure 4).
To the right of I , three types of dangling-molecules, A, B, and C, are positioned
evenly along the track in a periodic order such that cells 3i + 1, 3i + 2, and 3i + 3,

Fig. 3. Three endonucleases used in the molecular implementation of the ADCA. The recognition
site of an enzyme is bounded by a box and the cleavage site indicated with a pair of arrows. The
symbol “−” indicates the position of a base that does not affect endonuclease recognition.

Design of Autonomous DNA Cellular Automata 403

A B CA B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A B CI

A

A

A

A

A B CI A

A

A

A

A

A

A

A

A

A

A

A

A

1 2 30 4 1 2 30 4 1 2 30 4 1 2 30 4

1 2 30 4 5 6

Fig. 4. Structural changes during the operation of an ADCA. In (b), red(dark) and green(grey)
boxes indicate two pipelined.

where i is a non-negative integer, in the abstract cellular automaton are represented
in the ADCA by symbol-molecules A, B, and C, respectively. The symbol-molecules
differ in their default sticky ends, i.e. the sticky ends they possess in their respective
initial configurations before the reaction starts. As we shall see later, this is essen-
tial for the synchronization of the operation of the ADCA. The color of each cell in
the abstract cellular automaton is encoded in a corresponding symbol-molecule in the
ADCA.

Pipelined reaction waves. Figure 4 (b) illustrates structural changes. During the op-
eration of the ADCA, the initiator molecule I sends out a “reaction wave” that travels
down the track from left to right. A critical novel property of the ADCA is that multiple
reaction waves can travel down the track in a “pipelined” fashion. However, we have
carefully engineered a “synchronization” mechanism so that a reaction wave that starts
at a later stage can never overtake one that starts earlier. This ensures the synchroniza-
tion of the state changes of the ADCA, and hence its correct operation.

Figure 4 (b) illustrates two consecutive reaction waves, respectively indicated with
red (dark) and green (grey) boxes and arrows. Next, we focus on the first reaction wave
(indicated by dark boxes and arrows), and describe the structural changes of ADCA.

In Stage 0, the reaction wave starts at the initiator I at position 0, then travels se-
quentially to A in Stage 1, B in Stage 2, and C in Stage 3. The reaction wave finishes
one full cycle in Stages 1, 2, and 3, and thus goes on inductionally down the track.

404 P. Yin et al.

In Stage i, where i = 0, 1, 2, and 3, three types of reactions occur, namely reactions
i.0, i.1. and i.2.

– In Stage 0, I has a complementary sticky end to its right neighbor A and is thus
ligated to A, and the ligation product is subsequently cleaved by an endonuclease
(Reaction 0.1). Next, I is “modified” by an assisting-molecule, depicted as a pink
(grey) line segment, and restored to its default configuration (Reaction 0.2). The
“modification” will be implemented as ligation and cleavage events and will be
described in detail in Sect. 3. In a parallel reaction 0.3, A is also modified by another
assisting-molecule such that A will possess a complementary sticky end to B, and
thus the reaction wave is ready to enter Stage 1 (Reaction 0.3).

– In Stage 1, similar structural changes occur as in Stage 0. However, after reaction
1.1, A will possess a sticky end that encodes the state, i.e. color, information of
itself, its left neighbor I , and its right neighbor B. In the ensuing reaction 1.2, a
rule-molecule corresponding to a transition rule in Figure 1 recognizes A’s sticky
end and effects a state transition of molecule A. A will then be modified by an
assisting-molecule and restored to its default configuration, encoding its new state.
In the example shown in Figure 4 (b), a rule-molecule corresponding to rule (7)
in Figure 1 changes the color encoded in A from WHITE to BLACK. In the parallel
reaction 1.3, B will be modified to posses a complementary sticky end to C.

– In Stages 2 and 3, reactions of the same nature as in Stage 1 will occur. Details are
omitted for brevity.

2.3 Information Flow

Notation. We next describe the information flow during the operation of the ADCA.
For ease of exposition, we first introduce some notation. An information encoding DNA
molecule is denoted as Xa[y]b, where X is its duplex portion, [y] is its sticky end por-
tion, and a and b respectively represent the state information encoded in X and [y]. This
is illustrated in Figure 5. As shown in the figure, there are two ways to encode informa-
tion a in the duplex X . In Figure 5 (a), a is encoded as a unique DNA sequence GTA;
in Figure 5 (b), a is encoded as the number of base pairs (L bp in the Figure) between
an endonuclease recognition site and the sticky end of DNA molecule. The sequence of
the sticky end [y], in this case CGC, encodes the state information b. Furthermore, we

Fig. 5. Encoding state information in DNA molecules. The backbones of DNA strands are de-
picted as directed line segments. X and [y] represent the duplex portion and the sticky end of the
DNA molecule, respectively. The bases shaded in blue are used to encode state information, a
or b. “L bp” indicates L DNA base pairs, where L is a non negative integer. In Figure (b), the
number L is used to encode state information a and is thus shaded in blue. The red (dark) box
indicates the recognition site for an endonuclease, in this case, EcoPl5 I.

Design of Autonomous DNA Cellular Automata 405

use [ȳ] to denote the complementary sticky end of [y]. Finally, we describe how to rep-
resent ligation and cleavage events. The ligation of two molecules Xa[y]b and [ȳ]cZd

is described by the equation

Xa[y]b + [ȳ]cZd → XY.

Suppose XY incorporates an endonuclease recognition site and is cut into Xa′
[u]b

′
and

[ū]c
′
Zd′

. This is represented as

XY → Xa′
[u]b

′
+ [ū]c

′
Zd′

.

We can combine the above two equations and obtain,

Xa[y]b + [ȳ]cZd → Xa′
[u]b

′
+ [ū]c

′
Zd′

.

Initial configuration. Figure 6 shows the ADCA in its default configuration before the
reaction starts. As mentioned in Sect. 2.2, molecules A, B, and C possess different
default sticky ends: [ū], [v̄], and [w̄]. Note that the state information a, b, and c are
encoded in the duplex portions of A, B, and C, not their sticky ends. This is essential
to ensure that repeated reactions between neighboring symbol-molecules can occur for
multiple rounds, as described below.

Information flow. Figure 7 illustrates the information flow. We follow the framework
of four-stage structural changes presented in Sect. 2.2 and enumerate the involved reac-
tions below.

1. Reaction 0.1. Initiator molecule Ii[u] and its immediate right neighbor [ū]Aa share
complementary sticky ends u and [ū], and result in reaction,

Ii[u] + [ū]Aa → I[t]ia + [t̄]iaA.

Note that the sticky end [t̄] of product A encodes both the state information i from
reactant I and the state information a from reactant A.

2. Reaction 0.2. The rule-molecule [t̄]iaR restores I[t]ia to its default configuration in
reaction,

I[t]ia + [t̄]iaR→ Ii[u] + [ū]R.

3. Reaction 0.3. Molecule [t̄]iaA is modified by assisting-molecule T ia[t]ia in reaction

T ia[t]ia + [t̄]iaA→ T [v̄] + [v]Aia.

Now A is transformed to [v]Aia. This essentially transduces the state information
ia initially encoded in the sticky end of A to its duplex portion. Hence we term
the assisting-molecule T ia[t]ia as a transducer-molecule. The above reaction also
modifies A’s sticky end to [v], which is complementary to the default sticky end of
A’s immediate right neighbor B. This makes A ready to interact with B.

A BA B CI

Fig. 6. Initial configuration

406 P. Yin et al.

Fig. 7. Information flow

4. Reaction 1.1. Molecule Aia[v] interacts with its right neighbor [v̄]Bb in reaction,

Aia[v] + [v̄]Bb → A[t]iab + [t̄]iabB.

Now the sticky end of the product A encodes state information iab, i.e. the current
state of A’s left neighbor, the current state of A, and the current state of A’s right
neighbor. This suffices to specify a transition rule shown in Figure 1 and results in
Reaction 1.2 below.

5. Reaction 1.2. Reaction 1.2 has two steps. In step 1.2.1, A[t]iab interacts with a
rule-molecule [t̄]iabRa′

in reaction,

A[t]iab + [t̄]iabRa′
→ A[e]qa′

+ [ē]qa′
R.

This effects a state transition of molecule A, as specified by the rule iab → a′.
However, to enable A to repeatedly perform computation, we need to further re-
store A to its default configuration, i.e. a configuration with a default sticky end
[ū] and encoding its new state a′ in its duplex portion. This task is carried out
by another kind of assisting-molecule called extension-molecule E. However, as
a floating molecule, E needs to not only recognize A’s current state but also dis-
tinguish A from the other two types of symbol-molecules, B and C. As such, we

Design of Autonomous DNA Cellular Automata 407

require the sticky end of A encodes not only its state information but also its type
information q, where q ∈ {qA, qB, qC}. Hence, in the above equation, the prod-
uct A possesses a sticky end [e] encoding both its type information q and its new
state a′ (a′ not shown in Figure 7 (b)). This molecule A[e]qa′

is then modified by
extension-molecule E[ē]qa′

in reaction 1.2.2,

A[e]qa′
+ [ē]qa′

E → Aa′
[ū] + [u]E.

6. Reaction 1.3. Molecule [t̄]iabB is modified by transducer-molecule T ab[t]iab in
reaction,

T ab[t]iab + [t̄]iabB → T [w̄] + [w]Bab.

Note that now B encodes state ab in its duplex portion (state i is not kept since it
is not required for effecting B’s transition), and possesses sticky end [w], which is
complementary to the default sticky end of C.

7. Other reactions. Similar to reactions 1.1, 1.2, and 1.3.

3 Molecular Implementation

3.1 Step-by-Step Implementation

To demonstrate the practicality of our design, we next give a detailed description of
the molecular implementation of the ADCA. The complete DNA molecule set will be
described in Sect. 3.2.

1. Reaction 0.1. Figure 8 depicts an example molecular implementation of reaction
0.1,

Ii[u] + [ū]Aa → I[t]ia + [t̄]iaA.

For simplicity, only the end sequences of dangling-moleculeA are depicted; for full
sequences, see Figure 15 (a) in Appendix. Panels (a) and (b) respectively illustrate
cases when a = WHITE and a = BLACK. In molecule [ū]Aa, the state information
a ∈ {WHITE, BLACK}, is encoded by the presence or absence of a DNA base pair
between the sticky end [ū] (sequence TA) and the half recognition site for endonu-
clease Bsl I (sequence GG/CC) in the duplex portion. This is further indicated in
Figure 8 by the shaded blue (grey) region. In the case a = WHITE, the cleavage of
ligation product IA by Bsl I produces a sticky end sequence GGT for molecule I ,
and CCA for molecule A. Both these unique sticky end sequences encode state in-
formation ia. When a = BLACK, a different pair of sticky ends [t]/[t̄] are generated
(CGG/GCC).

Molecule A contains a pair of unnatural bases, i.e. synthetic bases other than the
natural bases A, C, G, and T. They are required because the four-letter ACGT natural
vocabulary does not provide sufficient encoding space for our construction. For a
survey on experimental synthesis of unnatural bases, see [12].

2. Reaction 0.2. Figure 9 depicts an example molecular implementation of reaction
0.2,

I[t]ia + [t̄]iaR→ Ii[u] + [ū]R.

The endonuclease involved is EcoPl5 I. This restores I to its default configuration
with sticky end sequence [u] = AT.

408 P. Yin et al.

Fig. 8. Example molecular implementation of reaction 0.1. The red (dark) box and red (dark) ar-
rows respectively indicate the recognition and cleavage sites for endonuclease Bsl I. The encoded
state information is indicated with blue (grey) region. Base pair 1/1̄ is a pair of unnatural bases.

Fig. 9. Example molecular implementation of reaction 0.2

3. Reaction 0.3. Figure 10 depicts an example molecular implementation of reaction
0.3,

T ia[t]ia + [t̄]iaA→ T [v̄] + [v]Aia.

Here, we only illustrate the case a = WHITE, and omit the similar case a = BLACK
for brevity. Note that the state information ia initially encoded in the sticky end [t̄]
(sequence CCA) of A is now encoded in the blue (grey) region in its duplex portion
(sequence CGA/GCT).

4. Reaction 1.1. Figure 11 depicts an example molecular implementation of reaction
1.1,

Aia[v] + [v̄]Bb → A[t]iab + [t̄]iabB.

Again, we only illustrate the case a = WHITE and b = WHITE for brevity. This
reaction is similar to reaction 0.1. Both the sticky ends [t] and [t̄] encode state
information iab.

Two technical points warrant explanation in this reaction. First, the bases labeled
with red (dark) circles contain phosphorothioate bond and are hence resistant to en-
zyme cleavage. This modification of the bases is required to prevent the unwanted

Design of Autonomous DNA Cellular Automata 409

Fig. 10. Example molecular implementation of reaction 0.3

Fig. 11. Example molecular implementation of reaction 1.1. The red (dark) box and red (dark)
arrows respectively indicate the recognition and cleavage sites for endonuclease Bsl I. The bases
labeled with red (dark) circles contain phosphorothioate bond and are hence resistant to enzyme
cleavage. The light blue (grey) box indicates the Mwo I recognition site.

cleavage of the DNA duplex by Mwo I, whose recognition sites are indicated with
blue (grey) boxes in the figure. This trick will be used again in reaction 1.2.2. Sec-
ond, we assume here that the cleavage by endonuclease Bsl I will occur, but the
cleavage by EcoP15 I will not occur (note that both molecule A and molecule B
contain EcoP15 I recognition site, i.e. CAGCAG/CTGCTG). This assumption is based
on the fact that Bsl I, a Type II endonuclease, can act far more efficiently than
EcoP15 I, a Type III endonuclease.

5. Reaction 1.2.1. Figure 12 (a) depicts an example molecular implementation of re-
action 1.2.1,

Aq[t]iab + [t̄]iabRa′ → A[e]qa′
+ [ē]qa′

R.

Recall that this reaction effects a state transition for molecule A, as specified by
the rule iab → a′. Here, the rule molecule incorporates a spacer region, the length
of which (L bp) encodes the new state information a′. In particular, when L = 2,
a′ = BLACK; when L = 6, a′ = WHITE.

When a′ = WHITE (the EcoP15 I cleavage step not shown in Figure 12 (a)),
molecule A is restored to the desired target configuration [ū]Aa′

, with the default

410 P. Yin et al.

Fig. 12. Example molecular implementation of reaction 1.2. Panel (a): reaction 1.2.1. Panels (b):
reaction 1.2.2.

sticky end [ū] = AT. In this case, the next step, reaction 1.2.2, is not required. The
reaction can thus be rewritten as,

Aq[t]iab + [t̄]iabRa′
→ Aa′

[ū] + [u]R.

However, when a′ = BLACK (the EcoP15 I cleavage step shown in the figure),
molecule A is modified to A[e]qa′

, with a unique sticky end [e] = 1G that en-
codes both A’s type information q = qA and A’s new state a′ (Recall that
q ∈ {qA, qB, qC} encodes type information, in the case illustrated here, q = qA.
This information is initially encoded in the blue (grey) duplex portion of A, in the
form of sequence 1/1̄). Then the reaction proceeds to the next step, reaction 1.2.2,
which will finish the state transition for A.

In our molecular implementation, in a transition xyz → y′, the values of y, z,
and z′ cooperatively determine the spacer length L, which in turn decides the result
of the transition. For detail, see Figure 15 (c) in Appendix.

6. Reaction 1.2.2. Figures 12 (b) depicts the case a = WHITE, a′ = BLACK, which
follows from the case illustrated in Figures 12 (a).

A[e]qa′
+ [ē]qa′

E → Aa′
[ū] + [u]E.

Design of Autonomous DNA Cellular Automata 411

Here, extension-molecule E[ē]qa′
restores A to its default configuration with sticky

end [ū] = AT. However, now A encodes new state a′ in its duplex portion.
7. Other reactions. Similar to the above reactions, and hence omitted for brevity.

3.2 Complete Molecule Set

The complete set of DNA molecules constituting ADCA are described in Figure 15 and
Figure 16 in the Appendix. The dangling-molecules (Figure 15 (a)) and the floating
rule-molecules (Figure 15 (c)) are the programmable parts of the ADCA: the selections
of dangling-molecules and rule-molecules respectively determine the initial configura-
tion and the transition rules of the ADCA. Note that all the sticky ends of rule-molecules
are unique. In contrast, the floating assisting-molecules, i.e. transducer-molecules (Fig-
ure 16) and extension-molecules (Figure 15 (b)), only assist in the proper operation of
the ADCA and are non-programmable.

3.3 Futile Reactions

Besides the main reactions described above, there exist reversible futile reactions in the
system. These futile reactions are carefully engineered such that they will not block
the main reactions. Futile reactions, however, can also be used to maintain a dynamic
balance among the floating molecules, and, in doing so, ensure the proper operation of
the devices. Figure 13 shows an example where futile reactions are used to maintain a
balance between R and T molecules that have complementary sticky ends. For a more
detailed discussion of futile reactions, see [35].

Fig. 13. An example futile reaction

3.4 Computer Simulation

Fully debugging the above molecular implementation requires meticulous inspec-
tion of every step of the ADCA operation, which can become exceedingly tedious.
We thus developed a computer simulator and used it to test and debug the ADCA.
The simulator takes as input the DNA sequences which specifies an ADCA in-
stance, simulates the operations of ADCA, and gives graphical output. For detail, see
http://pengyin.org/paper/dnaCA/.

4 Two-Dimensional ADCA

To illustrate the operational principle of 2D ADCA, we first present an abstract view
of the 1D ADCA in Figure 14 (a) and (b). Figure 14 (a) illustrates a reaction wave of

412 P. Yin et al.

the 1D ADCA: the reaction wave starts at initiator I and travels sequentially down the
one-dimensional track. Figure 14 (b) examines one individual dangling-molecule X ,
where X = A, B, C. Assume w.l.o.g., X = B. As shown in Figure 14 (b), B in a 1D
ADCA undergoes the following four phases in one full reaction cycle.

1. Phase 1. B has a sticky end that is complementary to its left neighbor A (indicated
by a solid square to the left of B in Figure 14 (b)). This is before reaction 1.1 as
depicted in Figure 7. In this phase, B encodes in its duplex portion its own state
information denoted by C (C for center).

2. Phase 2. In reaction 1.1, B interacts with its left (i.e. west) neighbor, and enters
phase 2. Now B encodes in its sticky end both the state information of itself, C, and
the state information of its west neighbor, W. This sticky end is complementary to a
floating transducer-molecule, indicated by a circle around B.

3. Phase 3. After reaction 1.3, B now encodes state information CW in its duplex por-
tion, and possesses a sticky end complementary to its right (i.e. east) neighbor (in-
dicated by a solid square to the right of B).

4. Phase 4. In reaction 2.1, B interacts with its east neighbor, and enters phase 4.
Now B encodes in its sticky end the state information of itself C, its west neighbor
W, and its east neighbor E. This sticky end thus encodes all the state information
required to effect a state transition for B, and is recognized by a floating rule-
molecule (indicated by a thick circle). And this state transition restores B to its
default configuration, finishing a full cycle.

With the above understanding of the 1D ADCA, we can extend it to 2D as follows.
First, we take care of reaction waves by positioning two arrays of initiators as shown

Fig. 14. (a) (b) Operational overview of 1D ADCA. (c) (d) Operational overview of two-
dimensional ADCA. In panels (b) and (d), black numbers indicate the phases of X; blue (grey)
numbers indicate reactions corresponding to reactions depicted in Figure 7; red (dark) letters
indicate the state information carried by X.

Design of Autonomous DNA Cellular Automata 413

in Figure 14 (c). Each initiator can send out a reaction wave that travels either horizon-
tally or vertically. Next, we take care of the information flow and synchronization, by
again examining one single molecule X . As shown in Figure 14 (d), we engineer the
system such that molecule X undergoes 8 phases. During these 8 phases, X sequen-
tially interacts with its west (W), north (N), east (E), and south (S) neighbors to garner
the state information from each of them. As such, upon entering phase 8, X carries in
its sticky end the state information CWNES. This state information is sufficient to effect a
state transition for X . As in the 1D case, X will undergo a state transition and re-enters
phase 1, completing a full circle.

5 Conclusion

In this paper, we present the theoretical design and molecular implementation of 1D
ADCA and describe how to extend it to 2D.

Open question: can we simplify the current complex design?

References

1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 1994.

2. P. Alberti and J.L. Mergny. DNA duplex-quadruplex exchange as the basis for a nanomolec-
ular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.

3. R. Barish, P.W.K. Rothemund, and E. Winfree. Algorithmic self-assembly of a binary counter
using DNA tiles. 2005. In preparation.

4. J. Bath, S.J. Green, and A.J. Turberfield. A free-running DNA motor powered by a nicking
enzyme. Angew. Chem. Intl. Ed., 44:4358–4361, 2005.

5. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA, 100:2191–2196,
2003.

6. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular com-
puter for logical control of gene expression. Nature, 429:423–429, 2004.

7. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Program-
mable and autonomous computing machine made of biomolecules. Nature, 414:430–434,
2001.

8. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925,
2004.

9. Y. Chen, M. Wang, and C. Mao. An autonomous DNA nanomotor powered by a DNA
enzyme. Angew. Chem. Int. Ed., 43:3554–3557, 2004.

10. L. Feng, S.H. Park, J.H. Reif, and H. Yan. A two-state DNA lattice switched by DNA
nanoactuator. Angew. Chem. Int. Ed., 42:4342–4346, 2003.

11. Y. He, Y. Chen, H. Liu, A.E. Ribbe, and C. Mao. Self-assembly of hexagonal DNA two-
dimensional (2D) arrays. J. Am. Chem. Soc., 127:12202–12203, 2005.

12. A.A. Henry and F.E. Romesberg. Beyond A, C, G, and T: augmenting nature’s alphabet.
Curr. Opin. Chem. Biol., 7:727–733, 2003.

414 P. Yin et al.

13. J. Kuramochi and Y. Sakakibara. Intensive in vitro experiments of implementing and exe-
cuting finite automata in test tube. In Proc. 11th International Meeting on DNA Computing,
pages 59–67, 2005.

14. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

15. D. Liu, M. Wang, Z. Deng, R. Walulu, and C. Mao. Tensegrity: Construction of rigid DNA
triangles with flexible four-arm dna junctions. J. Am. Chem. Soc., 126:2324–2325, 2004.

16. J. Malo, J.C. Mitchell, C. Venien-Bryan, J.R. Harris, H. Wille, D.J. Sherratt, and A.J. Turber-
field. Engineering a 2D protein-DNA crystal. Angew. Chem. Intl. Ed., 44:3057–3061, 2005.

17. C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman. Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.

18. J.C. Mitchell, J.R. Harris, J. Malo J, J. Bath, and A.J. Turberfield. Self-assembly of chiral
DNA nanotubes. J. Am. Chem. Soc., 126:16342–16343, 2004.

19. P.W.K. Rothemund. A DNA and restriction enzyme implementation of Turing machines. In
R. J. Lipton and E.B. Baum, editors, DNA Based Computers: Proceedings of the DIMACS
Workshop, April 4, 1995, Princeton University, volume 27, pages 75 – 119, Providence,
Rhode Island, 1996. American Mathematical Society.

20. P.W.K. Rothemund. Generation of arbitrary nanoscale shapes and patterns by scaffolded
DNA origami. 2005.

21. P.W.K. Rothemund, A. Ekani-Nkodo, N. Papadakis, A. Kumar, D.K. Fygenson, and E. Win-
free. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc.,
126:16344–16353, 2004.

22. P.W.K. Rothemund, N. Papadakis, and E. Winfree. Algorithmic self-assembly of DNA sier-
pinski triangles. PLoS Biology 2 (12), 2:e424, 2004.

23. N.C. Seeman. From genes to machines: DNA nanomechanical devices. Trends in Biochem-
ical Sciences, 30:119–125, 2005.

24. W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nano
Lett., 4:1203–1207, 2004.

25. J.S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. J. Am. Chem.
Soc., 126:10834–10835, 2004.

26. M.N. Stojanovic, S. Semova, D. Kolpashchikov, J. Macdonald, C. Morgan, and D. Ste-
fanovic. Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem.
Soc., 127:6914–6915, 2005.

27. Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao. Molecular devices - a DNAzyme that walks
processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed.,
44:4355–4358, 2005.

28. A.J. Turberfield, J.C. Mitchell, B. Yurke, Jr. A.P. Mills, M.I. Blakey, and F.C. Simmel. DNA
fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.

29. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

30. S. Wolfram. A new kind of science. Wolfram Media, Inc., Champaign, IL, 2002.
31. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile

complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–
8108, 2003.

32. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly
of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.

33. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled
by hybridization topology. Nature, 415:62–65, 2002.

Design of Autonomous DNA Cellular Automata 415

34. P. Yin, A.J. Turberfield, and J.H. Reif. Designs of autonomous unidirectional walking DNA
devices. In Proc. 10th International Meeting on DNA Computing, pages 119–130, 2004.

35. P. Yin, A.J. Turberfield, S. Sahu, and J.H. Reif. Design of an autonomous DNA nanomechan-
ical device capable of universal computation and universal translational motion. In Proc. 10th
International Meeting on DNA Computing, pages 344–356, 2004.

36. P. Yin, H. Yan, X.G. Daniell, A.J. Turberfield, and J.H. Reif. A unidirectional DNA walker
moving autonomously along a linear track. Angew. Chem. Int. Ed., 43:4906–4911, 2004.

37. B. Yurke, A.J. Turberfield, Jr. A.P. Mills, F.C. Simmel, and J.L. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406:605–608, 2000.

Appendix: Complete Molecule Set

Fig. 15. (a)Dangling-molecules. Left and right panels respectively depict the cases when the en-
coded information a/b/c = WHITE and BLACK. (b) Extension-molecules. Left and right panels
respectively depict the cases when the transition is x,WHITE, z → BLACK and x, BLACK, z →
WHITE, where x, z ∈ {BLACK, WHITE}. (c) Rule-molecules. The eight columns (1-8) corre-
spond to the eight possible configurations of xyz in the rule xyz → y′, where x, y, z, y′ ∈
{BLACK, WHITE}. The symbol BBW stands for the configuration xyz = {BLACK, BLACK, WHITE}.
The value of L is determined cooperatively by y, z, and z′.

416 P. Yin et al.

Fig. 16. Transducer-molecules. The bases labeled with red (dark) circles contain phosphoroth-
ioate bond and are hence resistant to enzyme cleavage (see reaction 1.1, Figure 11).

Use of DNA Nanodevices in Modulating the
Mechanical Properties of Polyacrylamide Gels

Bernard Yurke1, David C. Lin2, and Noshir A. Langrana2

1 Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
yurke@lucent.com

2 Department of Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, NJ 08854

dclin@eden.rutgers.edu, langrana@rutgers.edu

Abstract. Here we show that bulk materials can be given new prop-
erties through the incorporation of DNA-based nanodevices. In partic-
ular, by employing simple nanodevices as crosslinks in polyacrylamide
gels we have made the mechanical properties of these gels responsive
to the presence of particular DNA strands. Two examples will be fo-
cused on here. One consists of a polymer system that can be switched
between a sol and a gel state though the application of DNA strands
that either form crosslinks or remove crosslinks. The other consists of
a hydrogel whose crosslinks incorporate a motor domain. The stiffness
of this hydrogel can be altered through the application of fuel strands,
which stiffen and lengthen the crosslinks, or through the application of
removal strands which remove the fuel strands form the motor domain.
Such DNA-responsive gels may find applications in biomedical technol-
ogy ranging from drug delivery to tissue engineering.

1 Introduction

A variety of DNA-based nanomachines have been devised [1]-[14]. Many of these
employ fuel and removal strands or set and reset strands to advance the machine
through its various states. It is likely that such machines will have application
in bio-medical fields, chemistry, and nanotechnology. Here, by way of examples
of how polyacrylamide gels can be given new functionality by the incorporation
of DNA-based nanodevices, we demonstrate that DNA-based nanodivices may
have application in materials science as well. Two examples will be focused on.
One consists of a polymer system that can be converted from a sol to a gel
or from a gel to a sol through the application of set and reset DNA strands
[15, 16]. In contrast to the more usual thermoset gels, these gels do not require
cycling of the material across a sol-gel transition by varying the temperature.
Nor do they require a change of the chemical composition of the buffer, apart
from the addition of DNA strands. The other example consists of a hydrogel
whose stiffness can be modulated as a function of time through the application
of DNA strands [17]. The crosslinks of this gel posses a motor domain to which
fuel strands can bind. The binding of fuel strands to the motor domain length-
ens and stiffens the DNA-crosslinks and thereby stiffens the gel. The gel can

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 417–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

418 B. Yurke, D.C. Lin, and N.A. Langrana

SA1

CHCH2 CHCH2

NH2

C O

NH2

C O

NH2

C O

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH
C O

NH2

C O

NH2

C O

CHCH2 CHCH2

NH2

C O

2

CH2

2H C
CH2

2H C
CH2

2H C
CH2

2H C
CH

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH2

C O

NH2

C O

NH2

C O

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH

C O

NH2

C O

NH2

C O

CH2

2H C
CH2

2H C
CH2

2H C
CH2

2H C
CH2 SA2

L2Toehold

Fig. 1. A DNA-crosslinked gel

be returned to a more relaxed state through the application of removal strands
that remove the fuel strands though toe-hold mediated strand exchange. The
ability to change the stiffness of a gel as a function of time and in a biologically
compatible way makes these gels an attractive candidate for tissue engineering
applications, particularly since the shape, movement, proliferation rate, and dif-
ferentiation of tissue cells are influenced by the mechanical properties of their
environment.

2 DNA Induced Sol-Gel Transitions

The use of DNA as a crosslinking agent for a hydrogel was first reported by
Nagahara and Mathsuda [18]. In their studies poly(N,N-dimethylacrylamide-co-
N-acryloxyloxysuccinimide) was reacted with 5’-amino-modified 10-mer oligonu-
cleotides consisting of all adenine bases (oligo A) or thymine bases (oligo T) to
form polymer chains with short DNA side branches. Crosslinking was achieved
by two different methods. One method consisted of mixing polymer with oligo A
side branches with polymer having oligo T side branches. Hybridization between
the oligo A and oligo T side branches formed a crosslinked network. The second
method consisted of mixing 20-mer adenine strands with polymer having oligo
T side branches to form a crosslinked network.

Use of DNA Nanodevices in Modulating the Mechanical Properties 419

Fig. 2. Dissociation of a DNA crosslinked gel through the application of a removal
strand

The method we have used to establish DNA crosslinks in a polyacrylamide
gel is most similar to the second of the methods of Nagahara and Mathsuda.
The structure of the crosslink is illustrated in Fig. 1. Polyacrylamide having 20-
mer oligo sidebranches labeled SA1 was prepared by copolymerizing acrylamide
with Acrydite modified SA1 oligomers. Polyacrylamide having a 20-mer oligo
sidebranches labeled SA2 was similarly prepared. The methods are given in the
Methods section and the sequences for the oligomers are given in Tabel 1. The re-
sulting polymer solutions consisted of viscous fluids which when mixed together
remained fluid. Upon the addition of the oligomer L2, which has a region that is
complementary to SA1 and a region that is complementary to SA2, and mixing,
hybridization of L2 with the SA1 and SA2 sidebranches, establishes crosslinks
resulting in rapid gelation of the mixture. The gel sets on the time scale of a
few seconds. The stiffness of the gel is a function of the amount of L2 added,
that is, the number of crosslinks formed. Our study of the stiffness of this gel as
a function of crosslink density along with our studies of the viscocity as a function

420 B. Yurke, D.C. Lin, and N.A. Langrana

Table 1. Oligonucleotide base sequences

Strand Sequence (5’ to 3’)

SA1 ACG GAG GTG TAT GCA ATG TC
SA2 CAT GCT TAG GGA CGA CTG GA
L2 ACT AAT CCT CAG ATC CAG CTA AGT AGG TGT GTG

CGA TAC TTT ACA TTG AT
L3 TCC AGT CGT CCC TAA GCA TGT GTT CGA CGG TAC

AAG AAG AGG GTT ACG CTA ATG AGT GCT GAC ATT
GCA TAC ACC TCC GT

R1 ATC AAT GTA AAG TAT CGC ACA CAC CTA CTT AGC
TGG ATC TGA GGA TTA GT

F1 AGC ACT CAT TAG CGT AAC CCT CTT CTT GTA CCG
TCG AAC AGA TAG AGC TG

CF1 CAG CTC TAT CTG TTC GAC GGT ACA AGA AGA GGG
TTA CGC TAA TGA GTG CT

of temperature when the gel is heated above the DNA melting temperature have
been published in reference [15] and [16]. By varying the crosslink density from
close to the percolation threshold to the fully crosslinked state we were able to
vary the Young’s modulus over the range from 39 Pa to 9.0 kPa.

As illustrated in Fig. 1, L2, when fully hybridized with SA1 and SA2, has a
single stranded extension or ”toehold” that can serve to nucleate the removal of
the L2 strand by the introduction of its complement, the removal strand R1. To
demonstrate that the DNA-hydrogel can be dissociated by the application of the
R1 strand, we prepared a gel in which L2 was added at 33% the amount required
for full crosslinking. This amount of L2 is well above that needed to achieve the
percolation threshold of 23.6%. The gel incorporated fluorescent beads (Flouros-
brite Carboxy YG latex microspheres; Polysciences, Inc.) to enhance visibility.
A small piece of this gel having a volume of ∼0.01 mm3 was placed in each
of two wells, one containing 20 μl of TE buffer and the other containing a like
volume of 1 mM R1 stock solution. The photographs of figure two show a se-
quence of images of the two gels. The gel in the presence of the removal strand
dissociates in about 4 min. In contrast, the gel in buffer solution exhibited some
swelling but remained intact over a period of 24 hr after which the experiment
was terminated. We have thus shown that DNA-crosslinked gels can be formed
and dissociated without having to heat or cool through a transition tempera-
ture, or without having to change the buffer composition, apart from adding the
appropriate DNA strands to the buffer solution.

3 Crosslinks with Motor Domains

In this section we consider the case when the crosslinking strand L2 of Fig. 1
is replaced by a crosslinking strand L3 which, when fully hybridized with SA1
and SA2 has a central region that remains single stranded as shown in Fig. 3.

Use of DNA Nanodevices in Modulating the Mechanical Properties 421

CHCH2 CHCH2

NH2

C O

NH2

C O

NH2

C O

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH
C O

NH2

C O

NH2

C O

CHCH2 CHCH2

NH2

C O

2

CH2

2H C
CH2

2H C
CH2

2H C
CH2

2H C
CH

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH2

C O

NH2

C O

NH2

C O

CHCH2 CHCH2 CHCH2 CHCH2

NH2

C O

NH

C O

NH2

C O

NH2

C O

CH2

2H C
CH2

2H C
CH2

2H C
CH2

2H C
CH2

SA1

SA2

L3

Fig. 3. A DNA-crosslinked gel in which the crosslike possesses a motor domain

This central region functions as a motor domain to which the fuel strand F1 of
Table 1 can bind. As shown in Fig. 4(b), when the F1 strand binds with the
motor domain M the DNA crosslink is transformed from a floppy random coil
structure to a relatively rigid strand of duplex DNA. In the process the two ends
of the crosslink will be pushed apart. The maximum force that can develop on
the ends of the crosslinks can be estimated as the ratio of the average free energy
change in forming a base pair divided by the distance the ends move apart as a
base pair is formed. The force estimated from such a calculation [17] is 17 pN. For
long DNA crosslinks this force will not be realized due to Euler buckling. For the
case of the 60 bp crosslink used in our investigations one expects Euler buckling
to occur once 5 pN of force has been developed [17]. This force sets the scale for
the maximum outward force that the DNA crosslinks are expected to exert on
the polyacrylamide network. As the ends of the crosslinks are pushed apart, the
polyacrylamide strands will be stretched from a random coil configuration to a
more linear configuration as illustrated by the change in the acrylamide strand
configurations in going from (a) to (b) in Fig. 4. The opposing force that the
crosslink must do work against as the ends of the crosslinks are pushed apart is
thus the entropic force developed by the stretched polyacrylamide strands. One
thus expects that after the formation of duplex crosslinks, the crosslinks will
be under compression while the polyacrylamide strands will be under tension.
A structure possessing some members that are under compression while others
are under tension is said to posses prestress. Prestress is generally expected to
stiffen the gel.

422 B. Yurke, D.C. Lin, and N.A. Langrana

(a)

(b)

(c)

(d)

F1

CF1

W

T

M

Fig. 4. Cycle of operation of a DNA-crosslinked gel in which the crosslinks posses a
motor domain

As illustrated in Fig. 4 by the transitions from (b) to (c) to (d) to (a), the
fuel strands can be removed from the gel network through the addition of the
complement CF1 of the fuel strand. When the fuel strand F1 is fully hybridized
with the motor domain M of the crosslink, a single stranded region remains, as
shown in (b). This single stranded region or toehold serves as an attachment site
for the removal strand CF1, as shown in (c). This initiates a strand displacement
process that proceeds via the random walk of a three strand junction, as shown
in (d). Once the branch point reaches the far side of the motor domain F1 and
CF1 become fully hybridized and form the waste product W. In the process the
gel is restored to its relaxed configuration (a).

To test whether a DNA-crosslinked gel possessing motor domains would stiffen
upon application of fuel strands and return to its relaxed configuration upon ap-
plication of the removal strand the apparatus depicted schematically in Fig. 5
was constructed. The apparatus provides a means of introducing fuel or re-
moval strands into the DNA crosslinked gel through electrophoresis and a means
for measuring the gel compliance by applying a known magnetic force on a
magnetic inclusion embedded in the gel. The apparatus consisted of a funnel
whose upper portion served as a buffer reservoir in which the negative electrode
for gel electrophoresis was immersed. The neck of the funnel had a spheroidal
chamber in which the DNA-crosslinked gel and the magnetic inclusion resided.
A bis-crosslinked 20% polyacrylamide gel plug at the bottom of the funnel
prevented loss of DNA-crosslinked gel from the sample chamber. The bottom
of the funnel was immersed in buffer reservoir into which the positive elec-
trode for electrophoresis was immersed. The magnetic inclusion consisted of a

Use of DNA Nanodevices in Modulating the Mechanical Properties 423

+

-

+

-

Electromagnet

1x TBE

1x TBE
DNA-crosslinked
gel with magnetic
inclusion

Polyacrylamide
plug

Upper buffer
reservor

Lower buffer
reservor

V

Fig. 5. Schematic of apparatus for measuring gel stiffness

spherical steal bead 0.79 mm in diameter and force was applied to the bead via
an electromagnet. Details on the calibration procedure for the force is given in
reference [17]. In addition to 1× TBE buffer the reservoirs contained a small
amount of universal pH indicator solution (pH 2-10, Science Kit, Tonawanda,
NY) to monitor the buffer condition. The buffer was replaced by fresh buffer
when the indicator solution signaled that the buffer had become exhausted.
TAMRA or TET dye labeled fuel strands were used so that the migration of the
fuel strands into the gel by electrophoresis could be followed. The use of unla-
beled removal strands allowed the progress of the clearing of the motor strands
of the fuel strands to also be followed.

For the experiment reported here 12 μl each of SA1 and SA2 were added to the
sample chamber, followed by enough L3 solution to produce 50% crosslinking.
The magnetic inclusion was added and the sample was heated above the melting
temperature and stirred to insure uniformity of composition. The sample was
removed from heat and manipulated to maintain the magnetic inclusion at the
center of the cell as the sample cooled and the gel set. Figure 6 shows data from
one of our runs. The vertical axis is the magnitude F of the force applied on the
magnetic inclusion and the horizontal axis is the resulting displacement δ. Three
sets of data points are shown. The diamonds correspond to the measurements
performed on in the gel before fuel or removal strands were added. The triangles
correspond to the measurements performed once the fuel strands had fully pen-
etrated the gel. The triangles correspond to the measurements after the removal
strands had cleared the gel of fuel strands. Each of these data sets are closely

424 B. Yurke, D.C. Lin, and N.A. Langrana

y = 0.9091x

R
2
 = 0.9983

y = 1.1644x

R
2
 = 0.9936

y = 2.2211x

R
2
 = 0.9889

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400

Displacement (m)

F
o

r
c
e
 (

N
)

Initial Stiffened Final

102 Pa

276 Pa

148 Pa

μ

μ

Fig. 6. Gel compliance data

dispersed about a straight line indicating that the measurements were performed
in a linear regime. The Young’s modulus E of the gel can be determined form
the slope of force vs displacement curve. To perform this conversion we used the
formula

E =
F

δ

[
4n5 − 5n4 − 5n3 + 5n2 + 5n− 4
8πR0(n5 + n4 + n3 + n2 + n)

]
, (1)

where R0 is the radius of the spherical inclusion and n is the ratio R1/R0 where
R1 is the distance between the center of the inclusion and the sample chamber
wall. This equation is strictly true for a spherical inclusion in a spherical sample
chamber [17, 19]. However, via validation experiments and numerical simulations
[17], we have shown that it gives accurate results for our sample chamber ge-
ometry and when n is taken as the shortest distance between the center of the
inclusion and the sample chamber wall for an approximately centered inclusion.
As indicated in Fig. 6, the initial elastic modulus of the gel was measured to be
102 Pa. Upon addition of the fuel strands the gel stiffened to a value of 276 Pa.
After the fuel strands had been removed the elastic modulus dropped to a value
of 148 Pa. Thus a stiffening of more than a factor of 2.5 was observed. The
incomplete return of the gel to its initial stiffness may be due to residual fuel
strands not cleared by the removal strand or may be due to gel swelling.

Use of DNA Nanodevices in Modulating the Mechanical Properties 425

4 Conclusion

We have shown that, by incorporating DNA-crosslinks into a hydrogel, the gel
can be given functionality that would be difficult to obtain by other means. Gels
can be constructed whose sol-gel transitions are not tied to a thermodynamic
transition. Also, gels can be constructed whose stiffness as a function of time can
be controlled by the application of DNA. For tissue cells, it is known [20, 21] that
the mechanical properties of the extracellular matrix influences cell morphology,
cell movement, and cell differentiation. DNA-crosslinked gels, whose mechanical
properties can be changed in a relatively benign way through the application of
DNA strands may thus find application in tissue engineering and organ growth.

5 Methods

The oligomers, including Acrydite modified oligomers were purchased, purified,
from Integrated DNA Technologies (Coralville IA). The manufactures numbers
for quantity of DNA were relied upon in preparing the stock solutions at 3 mM
concentration in TE buffer and were not independently checked. Polymer with
SA1 side branches was produced by first preparing a solution consisting of 10%
acrylamide solution (consisting of 40% acrylamide in H2O, by weight), 60% SA1
stock solution, 20% H2O, and 10% 10× TBE buffer. Quantities (∼ 100 μl) of
this solution were degassed by bubbling dry nitrogen through the solution for
five minutes. Polymerization was initiated by adding 1 μl of a freshly prepared
solution of ∼20% ammonium persulfate and catalyzed by the addition of 1 μl
TEMED. Nitrogen was bubbled through the mixture for another five minutes.
Polymer with SA2 side branches was similarly prepared.

References

1. C. Mao, W. Sun, Z. Shen, and N. C. Seeman, ”A nanomechanical device based on
the B-Z transition of DNA,” Nature 397, 144 (1999).

2. B. Yurke, A.J. Turberfield, A.P. Mills, Jr., F.C. Simmel, and J.L. Neumann, ”A
DNAfuelled molecular machine made of DNA,” Nature 406, 605 (2000).

3. F.C. Simmel and B. Yurke, ”Using DNA to construct and power a nanoactuator,”
Phys. Rev. E 63, 041913 (2001).

4. F.C. Simmel and B. Yurke, ”A DNA-based molecular device switchable between
three distinct mechanical states,” Appl. Phys. Lett. 80, 883 (2002).

5. H. Yan, X. Zhang, Z. Shen, and N. C. Seeman, ”A robust DNA mechanical device
controlled by hybridization topology,” Nature 415, 62 (2002).

6. B. Yurke and A.P. Mills, Jr., ”Using DNA to power nanostructures,” Genet. Pro-
gram. Evol. Mach. 4, 111 (2003).

7. A.J. Turberfield, J.C. Mitchell, B. Yurke, A.P. Mills, Jr., M.I. Blakey, and F.C.
Simmel, ”DNA fuel for free-running nanomachines,” Phys. Rev. Lett. 90, 118102
(2003).

8. L. Feng, S.H. Park, J.H. Reif, and H. Yan, ”A two-state DNA lattice switched by
DNA nanoactuator,” Angew. Chem. Int. Ed. 42, 4342 (2003).

426 B. Yurke, D.C. Lin, and N.A. Langrana

9. J.J. Li and W. Tan, ”A single DNA molecule nanomotor,” Nano Lett. 2, 315 (2002).
10. P. Alberti and J.L. Mergny, ”DNA duplex-quadruplex exchange as the basis for a

nanomolecular machine,” Proc. Natl. Acad. Sci. U. S. A. 100, 1569 (2003).
11. W. U. Dittmer, A. Reuter, and F. C. Simmel, ”A DNA-based machine that can

cyclically bind and release thrombin,” Angew. Chem. Int. Ed. 43, 3549 (2004).
12. S. P. Liao and N. C. Seeman, ”Translation of DNA signals into polymer assembly

instructions,” Science 306, 2072 (2004).
13. W. B. Sherman and N. C. Seeman, ”A precisely controlled DNA biped walking

device,” Nano Lett. 4, 1203 (2004).
14. J. S. Shin and N. A. Pierce, ”A synthetic DNA walker for molecular transport,” J.

Am. Chem. Soc. 126, 10834 (2004).
15. D. C. Lin, B. Yurke, and N. A. Langrana, ”Mechanical properties of a reversible,

DNA-crosslinked polyacrylamide hydrogel,” J. Biomech. Eng. 126, 104 (2004).
16. D.C. Lin, B. Yurke, and N.A. Langrana, ”Use of rigid spherical inclusions in

Young’s moduli determination: application to DNA-crosslinked gels,” J. Biomech.
Eng. 127, 571 (2005).

17. D. C. Lin, B. Yurke, and N. A. Langrana, ”Inducing reversible stiffness changes in
DNA-crosslinked gels,” J. Mater. Res. 20, 1456 (2005).

18. S. Nagahara and T. Matsuda, ”Hydrogel formation via hybridization of oligonu-
cleotides derivatized in water-soluble vinyl polymers,” Polym. Gels Networks 4,
111 (1996).

19. D.C. Lin, N.A. Langrana, and B. Yurke, ”Force-displacement relationships for
spherical inclusions in finite elastic media,” J. Appl. Phys. 97, 043510 (2005).

20. E. J. Semler, and P. V. Moghe, ”Engineering hepatocyte functional fate through
growth factor dynamics: the role of cell morphologic priming,” Biotechnol. Bioeng.
75, 510 (2001).

21. E. J. Semler, C. S. Ranucci, and P. V. Moghe, ”Mechanochemical manipulation
of hepatocyte aggregation can selectively induce or repress liver-specific function,”
Biotechnol. Bioeng. 69 359 (2000).

Molecular Learning of wDNF Formulae

Byoung-Tak Zhang and Ha-Young Jang

Biointelligence Laboratory, Seoul National University, Seoul 151-742, Korea
{btzhang, hyjang}@bi.snu.ac.kr

http://bi.snu.ac.kr/

Abstract. We introduce a class of generalized DNF formulae called
wDNF or weighted disjunctive normal form, and present a molecular al-
gorithm that learns a wDNF formula from training examples. Realized
in DNA molecules, the wDNF machines have a natural probabilistic se-
mantics, allowing for their application beyond the pure Boolean logical
structure of the standard DNF to real-life problems with uncertainty.
The potential of the molecular wDNF machines is evaluated on real-life
genomics data in simulation. Our empirical results suggest the possibil-
ity of building error-resilient molecular computers that are able to learn
from data, potentially from wet DNA data.

1 Introduction

Disjunctive normal form (DNF) is a disjunction of conjunctions of Boolean vari-
ables, such as (x1 AND x2) OR (x1 AND x̄3) OR (x2 AND x3) where xi represent
attributes or binary-valued variables and x̄i are their negations. The conjunc-
tions in the form of (x1 AND x2) are called terms. DNF offers an interesting
structure for representing knowledge in a logical form. For example, any Boolean
function can be represented by a finite set of terms. Although previous research
shows that the k-term DNF, i.e. DNF having k terms at most, is learnable with
attribute noise if the noise rate is known exactly [10, 8], the pure Boolean logical
nature of DNF restricts its application [11].

Here we introduce a generalized form of DNF that is more resilient to noisy
and/or incomplete data thus applicable beyond the pure logical problems. This
weighted DNF or wDNF formula extends DNF twofold. On the conjunction level
the attributes can appear multiple times, e.g. x1x1 = x2

1 as well as x1. This allows
for higher-order attributes, enhancing the expressive power of DNF (We hurry to
mention that logically x1 AND x1 = x1, but this is true only when the variable
does not contain noise). On the disjunction level the terms are permitted to appear
multiple times. Thus the entire formula is a “disjunctive ensemble of conjunctions
of higher-order terms”. The number of copies of the terms represents the weight
of voting in decision making, hence the “weighted DNF”.

We show that the wDNF formulae can be learned from training examples
using DNA computing, resulting in molecular wDNF machines. The probabilis-
tic nature of the computation performed by the molecular wDNF machines is
discussed along with its robustness against uncertainty arising from both in-
ternal (e.g., molecular reaction) and external (e.g., data) sources. The general

A. Carbone and N.A. Pierce (Eds.): DNA11, LNCS 3892, pp. 427–437, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

428 B.-T. Zhang and H.-Y. Jang

setting for learning the wDNF machines is similar to the genetic programming
(GP) framework where the programs for digital computers are evolved using
the principle of natural selection [5, 14, 7]. While GP evolves tree-structured ex-
pressions, here we evolve the wDNF expressions encoded in DNA molecules.
Starting from a random combinatorial library of wDNF expressions our “molec-
ular programming” (MP) method evolves a wDNF formula that best fits to the
learning sample. The potential of the molecular wDNF machines is evaluated
on a DNA-based diagnosis problem. The terms in wDNF in this particular case
represent the conjunctive rules of DNA markers for diagnosing a leukemia. Our
simulation studies demonstrate a robust and highly competitive performance of
the molecular wDNF machines on this real-life data.

The paper is organized as follows. Section 2 presents a formal description
of the wDNF form. Section 3 presents the molecular algorithm for learning
a wDNF formula. Section 4 explains the probabilistic nature of the molecu-
lar wDNF machines based on statistical mechanics of DNA hybridization re-
actions. Section 5 shows the simulation results on the diagnosis problem. We
also evaluate the robustness of wDNF formulae by analyzing wDNF formulae
containing small portions of the complete combinatorial terms. Section 6 draws
conclusions.

2 Weighted Disjunctive Normal Form (wDNF)

Let xi denote an attribute or a Boolean variable, i.e. xi ∈ {0, 1}. A literal consists
of a variable xi or its negation x̄i. The former is called a positive literal and the
latter a negative literal. For notational simplicity, the negative literal can be con-
sidered as a new positive literal by renaming it as xj = x̄i. We shall adopt this
convention in the following, unless otherwise noted. More generally, we consider
the powers of literals and denote a literal of degree r by xr

i , where r is an integer.
Then, a term is defined as a conjunction of the (positive) literals of degree

one:

Ci = (xi1 , xi2 , · · · , xik
, · · · , xini

) = xi1xi2 · · ·xik
· · ·xini

, (1)

where xik
∈ {x1, x2, ..., xn}. For example, Ci = (xi1 , xi2 , xi3) = x1x4x5 repre-

sents a term consisting of three literals x1, x4 and x5. In general, the number
of variables ni in a term Ci may vary. A disjunctive normal form, DNF, on n
literals is defined as the disjunction of the terms:

DNF = {C1, C2, · · · , Cj , · · · , CN} = C1 + C2 + · · ·+ Cj + · · ·+ CN , (2)

where Cj is a term of an arbitrary number of literals out of x1, ..., xn. A k-
term DNF formula is a DNF formula with maximum k terms. For instance,
{x1x2x3, x4x5, x1x3x5} is an example of a 3-term DNF formula on five literals
x1, x2, x3, x4, x5.

The weighted DNF (wDNF) generalizes the DNF in two ways. First, at the
conjunction level the terms can be of higher degree r. Second, at the disjunction

Molecular Learning of wDNF Formulae 429

Fig. 1. A wDNF formula in two different representations: (a) a collection of terms, (b)
a library of DNA molecules corresponding to (a). The DNA code shown is illustration-
purposes only.

level a term can appear w copies. Note that in Eqn. (1) all the literals in DNF
are of maximum degree 1. In wDNF the term is generalized to contain literals
of arbitrary degree. A term of degree r is defined then a conjunction of literals
of the form:

Ci = (xri1
i1

, x
ri2
i2

, · · · , xrik

ik
, · · · , xrini

ini
) = x

ri1
i1

x
ri2
i2
· · ·xrik

ik
· · ·xrini

ini
(3)

where xij ∈ {x1, x2, ..., xn} and rij ≤ r, j = 1, ..., ni for fixed r. For example,
Ci = (x2

i1
, x3

i2
, x1

i3
) = x2

i1
x3

i2
x1

i3
= xi1xi1xi2xi2xi2xi3 represents a term of degree

3. The generalized term is satisfied only if every occurrence of the literal is bound
to a “sample” value. There are the designated instantiated “samples” of each
literal.

Using the terms of degree r on n literals, a wDNF formula is defined as:

wDNF = {wiC1, w2C2, · · · , wjCj , · · · , wNCN}
= w1C1 + w2C2 + · · ·+ wjCj + · · ·+ wNCN , (4)

where wjCj means wj copies of the term Cj . The coefficient wj is interpreted to
represent the “weight” or strength of the term. Thus, the number of variables
matter in the generalized terms and the wDNF formulae.

To be more concrete, consider a wDNF formula for DNA-based diagnosis
of disease shown in Figure 1(a). In this case the wDNF consists of four terms
C1, ..., C4. A term is said to be “instantiated” if the values of the variables are
bound to specific values. The instantiated term C1 = (x1 = 0, x2 = 1, x2 =
1, y = 1), for example, encodes a diagnosis rule, where y = 1 indicates the label
for disease. The meaning is that a DNA sample is decided positive (y = 1) if it
contains two of the DNA marker 2 (x2 = 1, x2 = 1) and does not contain the

430 B.-T. Zhang and H.-Y. Jang

DNA marker 1 (other variables do not care for this decision). This procedure
can be implemented by hybridization reaction of complementary DNA molecules.
For example, bead separation can be used to check whether the required values
are contained or not. In the following, unless otherwise stated, we shall assume
every term in wDNF has a label variable y in it while other x-variables may
appear or not. This does not lose the generality of the method since y-variable
can be incorporated as an extra x-variable, but it makes the presentation more
readable.

As shown in Figure 1 we encode the value of each variable as a DNA oligomer.
For example, if we assume x1 = 0 be encoded as a 6-mer like ‘AAAACC’, where
‘AAAA’ represents x1 and ‘CC’ denotes the value 0. In this encoding scheme, a
term consisting of 10 literals in total can be encoded as a 60-mer DNA.

3 Learning a wDNF Formula

In this section we describe the molecular algorithm for learning the wDNF for-
mulae. The theoretical backgrounds of this procedure is given in the next section.

The goal is to learn a wDNF formula that best fits to a data set. We assume
the training set D of K labeled DNA samples be given in the form

D = {(xi, yi)}Ki=1

xi = (xi1 , xi2 , ..., xin) ∈ {0, 1}n

yi ∈ {0, 1},
where xi is the sample data and yi is the associated label. In the DNA-marker-
based diagnosis problem, a training example (10101, 1) means the sample is
diagnosed positive (y = 1) if it contains the DNA markers numbered 1, 3, and 5
(x1 = 1, x3 = 1, x5 = 1) and does not contain the rest (x2 = 0, x4 = 0). Figure
1 shows an example in DNA encoding.

To learn the formula we initialize a library of DNA molecules representing
random combinatorial wDNF terms as shown in Figure 2. Given a query pattern
xq we extract from the library all the molecules (terms) that match the query.
The extraction can be implemented using hybridization reaction in the same
way to check which markers exist. The idea is to chop the query sequence into
subsequences for individual variables. These chopped query sequences hybridize
with the wDNF formula in the library. Only the fully double-stranded sequences
are then separated (by selecting out the single-stranded sequences by beads).

These molecules will have class labels from which we decide the majority label
as the class of the query pattern. To perform the matching between xi and xq

for i = 1, ..., N in parallel, we present multiple copies (up to the number of the
library size) of it. That is, we generate a collection

Q = {Δc(x1), Δc(x2), ..., Δc(xn), Δc(y)}, (5)

where Δc(·) denotes copies made by PCR. The class decision is made by com-
paring the number of elements in class 1, N1, with that in class 0, N0:

y∗ = argmax
y
{Ny}, (6)

Molecular Learning of wDNF Formulae 431

Fig. 2. Illustration of the decision-making procedure using the population of DNA-
encoded terms. The query sample is chopped and provided in multiple copies to hy-
bridize in parallel with the terms in the library.

where y takes 0 or 1. The next section discusses a theoretical background for this
rule. For learning, we prepare two collections, M+ and M−, consisting of library
elements that correctly (or incorrectly) classifies the query sample as follows:

– M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}
– M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi �= y}.

Now, we describe how the library is revised to learn from newly observed
data. The basic protocol is similar to that described in [13]. The difference is
that the DNA molecules are now describing the generalized terms rather than
simple examples and the whole test tube represents a wDNF formula. As a new
training example (x, y) is given, we extract from the library the terms whose
x-part matching with x. The class y∗ of x is determined by the classification
procedure described above. Then, the matching terms (library patterns) are
modified in their frequency depending on their contribution to the correct or
incorrect classification of x. If the label v of the library pattern (u, v) matching
x is correct, i.e. v = y, it is reproduced:

Lt ← Lt + Δc(M+). (7)

If the label v is incorrect, i.e. v �= y, the matching library pattern is removed
from the library:

Lt ← Lt −Δc(M−). (8)

432 B.-T. Zhang and H.-Y. Jang

– 1. Let the library L0 = {(ui, vi)} contain the initial wDNF formula. Let t = 0.
– 2. Let t ← t + 1.
– 3. Get a training example (x, y) = (x1, x2, ..., xn, y).
– 4. Let Q = {Δc(x1), Δc(x2), ..., Δc(xn), Δc(y)}.
– 5. Classify x using Lt as described in the text and construct the following:

• M+ = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi = y}.
• M− = {(ui, vi)|ui consists of xi for i = 1, ..., n and vi �= y}.

– 6. Update the library L as follows:
• Lt ← Lt−1 + Q.
• Lt ← Lt + Δc(M+).

Optionally, Lt ← Lt − Δc(M−).
– 7. Go to Step 2 if not terminated.

Fig. 3. The molecular programming (MP) procedure for learning a wDNF formula
from examples

Figure 3 summarizes the molecular algorithm for learning a wDNF formula.
Note that the library represents a kind of associative memory learned from data.
In contrast to other molecular computation models of associated memory [2, 3, 6]
proposed so far, the wDNF models contain higher-order patterns. An explicit
probabilistic semantics underlying wDNF is also distinguished from other related
work.

4 The Molecular wDNF Machine as a Probabilistic
Computer

We consider the hybridization reaction between two single-stranded DNA
molecules xi and xq. Without loss of generality we consider xi as the ith el-
ement (a term in wDNF) in the library and xq as a query data. The probability
of the ith term being retrieved by the query pattern is then expressed as Boltz-
mann distribution

P (xi|xq) =
exp (−ΔG(xi|xq)/kBT)∑
j exp (−ΔG(xj |xq)/kBT)

, (9)

where j runs over the possible states of hybridization at the absolute temperature
T [12]. ΔG is the Gibbs free energy change for the hybridization reaction and
kB is the Boltzmann constant [9].

A direct computation of this probability is difficult. However, we can ap-
proximate this by a Monte Carlo method performed “in vitro”. To do this, we
duplicate the molecules, both xi and xq, let them hybridize, and count the
double-stranded DNA at a fixed temperature T below the melting temperature
Tm. The estimated value is obtained by averaging the values over the sample of
size |S|:

P (xi|xq) ≈
1
|S|

|S|∑
i=1

ρ(xi,xq), (10)

Molecular Learning of wDNF Formulae 433

where ρ(xi,xq) = 1 if i and q form a double-strand, and ρ(xi,xq) = 0 otherwise.
The approximation can be made arbitrarily accurate by increasing the number
of copies of the molecules.

By generalizing the above idea of “molecular” Monte Carlo simulation into
the collection L of terms, xi, and a collection Q of a excessive number of the
query pattern, xq, we can compute the probability distribution over the term
patterns matching with a query pattern by

PL(X |xq) ≈
1
|L|

|L|∑
i=1

P (xi|xq), (11)

where we assume that an excessive number of query molecules are put into the
test tube so that all the terms have a fair chance of hybridizing with a query.

We now consider the library representing a k-wDNF, the wDNF formula with
terms consisting only of k variables of degree 1. The ith molecule representing a
termwithk variables canbe consideredas apoint estimatorf

(k)
i (X1, X2, ..., Xn, Y)

of the probability distribution PL(X, Y). The whole library can then be thought of
as a table representing the empirical distribution of the patterns

PL(X, Y) ≈ 1
|L|

|L|∑
i=1

f
(k)
i (X1, X2, ..., Xn, Y), (12)

f
(k)
i (X1, X2, ..., Xn, Y) =

exp (−ΔG(X1, X2, ..., Xn|xq)/kBT)∑
j exp (−ΔG(X1, X2, ..., Xn|xq)/kBT)

, (13)

where ΔG is the Gibbs free energy change for the hybridization reaction and kB

is the Boltzmann constant.
Given the statistical physical interpretation of DNA hybridization and the

wDNF representation as an empirical probability distribution, the learning pro-
cess can be formulated in a probabilistic framework. The objective of learning is
to find a wDNF or the library L that best predicts the output label y given input
variables x for all possible training data (x, y) in the problem space (X, Y). The
L can be found iteratively by starting with an initial L0 and updating it as new
sample x is observed:

L∗ = argmax
L

P (L|x, y) = arg max
L

P (x, y|L)P (L)
P (x, y)

= argmax
L

P (x, y|L)P (L) = arg max
L

PL(x, y)P (L), (14)

where we used the Bayes rule P (A|B) = P (B|A)P (A)
P (B) .

Once an L is given, the best class label for a query pattern can be determined
by computing the probability of each class conditional on the input pattern x,
and then determining the class whose conditional probability is the highest, i.e.

y∗ = arg max
Y ∈{0,1}

PL(Y |x) = arg max
Y ∈{0,1}

PL(Y,x)
P (x)

, (15)

where we used the relation P (A, B) = P (A|B)P (B) and Y represents the can-
didate classes.

434 B.-T. Zhang and H.-Y. Jang

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of epochs

C
la

ss
fic

at
io

n
ra

tio

Fig. 4. Learning curve of the complete wDNF library. Shown are the average values
for 12 runs. Parameters used are the learning rate = 10−2 and β = 20.

5 Simulation Results and Discussion

We evaluated this method on a real-life medical diagnosis problem in simulation.
Gene expression data are collected from microarray experiments for AML/ALL
leukemia [4]. The microarray data are preprocessed and 10 genes were selected
out of 12600 genes. The training set consists of 120 examples each consisting
of 10 genes plus the associated leukemia class. A 6-fold cross-validation is used
for testing the performance. That is, the whole data set of 120 examples is
partitioned into 6 subsets and a total of six learning trials are executed, where
each trial used a subset of 20 examples for test and the remaining 100 examples
for training. The library was initialized to contain each and every term of wDNF
on the 10 variables. These include (x1 = 0, y = 0), (x1 = 0, y = 1), (x1 = 1, y =
0), (x1 = 1, y = 1), (x1 = 0, x2 = 0, y = 0), (x1 = 0, x2 = 0, y = 1), (x1 = 1, x2 =
0, y = 0), Thus, the total number of the different library elements is

N =
∑10

k=1 10Ck · 2k · 2 = 118, 096,

where 10Ck denotes the number of cases choosing k variables out of 10. For the
simulation of in vitro computation of the wDNF formula, we used the library size
of 118, 096× 106, i.e. the initial library was generated by copying each element 106

times. Thus, the library consists ofmultiple copies of the same terms andwe evolved
the distributions of the terms through the molecular programming procedure.

For decision making, we used a sigmoid squashing function:

f(x) =
1

1 + exp(−βx)
(16)

where β is a constant which reflects the level of noise and sets the decision
boundary. As mentioned in the previous section, we count the number of each

Molecular Learning of wDNF Formulae 435

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Number of epochs

C
la

ss
ifi

ca
tio

n
ra

tio

Fig. 5. Learning curve of the partial wDNF libraries (average over 12 runs each) con-
taining 10 % of the complete wDNF. Same parameters as in Figure 4.

term which answers positive or negative. Then, the proportion of the positives
and the negatives is calculated. This result is the input to the sigmoid function.
We make a decision probabilistically based on the output of the sigmoid function.

Figure 4 shows the evolution of the performance as learning proceeds. We
presented the positive training example and the negative example alternatingly.
It should be mentioned that one generation consists of the presentation of one
positive and one negative example. The performance was measured at every
generation, i.e. each time a pair of new training examples was observed. One
sweep through the training set constitutes an epoch which is equivalent to 60
generations in this experiment. The best performance of approximately 95%
correct classification on the test data set was obtained in 2 epochs.

It is observed that the total number of the different library elements grows
exponentially as we allow higher-order terms in the wDNF formulae. That is,
if the dimension of the query is high, the total number of the different library
elements grows very rapidly. Considering this, it is interesting to know how the
total number of library elements affects the performance of wDNF formulae.
In order to see how much the performance of wDNF formulae dependends on
the complexity of structures, we ran simulations with partial libraries which are
generated by eliminating some terms from the complete library. The results are
shown in Figure 5. As expected, the wDNF formulae with partial terms perform
less than the complete wDNF formulae. However, the results of the partial li-
braries are still robust. In particular, in the extreme case of the partial library
consisting of only 10 % of the full combinatorial terms achieved approximately
90% in absolute accuracy. Figure 6 compares the performances of different partial

436 B.-T. Zhang and H.-Y. Jang

Fig. 6. The performance of partial libraries in which some portion of libraries are
eliminated after 5 epochs. From left to right 10%, 20%, ..., 90% of whole libraries are
eliminated.

libraries made by knocking out 10 % to 90 %. The performance was measured
in 5 epochs. These results clearly show that the full library is not absolutely
necessary to solve this real-life problem using wDNF formulae, suggesting the
potential for robust decision making in vitro experiments.

6 Conclusion

We introduced the weighted disjunctive normal form (wDNF) as a scheme for
representing probability distributions and presented a method for learning a
wDNF formula from examples. The learning approach is distinguished from
other DNA computing tasks in that the computational result here is a program
or machine that can be reused for solving multiple instances of the problem.
As the genetic programming provides an automatic programming method for
digital computers, the molecular programming provides a method for automatic
programming of molecular computers, in our case a wDNF machine.

The results on the leukemia diagnosis problem show that effective solution is
possible using the wDNF learning. In particular, our simulation results were
competitive to existing state-of-the-art machine learning algorithms. This is
somewhat surprising considering the fact that the terms are random conjunc-
tive combinations of Boolean variables. Our analysis suggests that even though
the individual terms are simple, their collection as a whole, i.e. wDNF, has a
weighted, ensemble representation with redundancy that leads to error-resilient
decision making.

Our results on DNA-based diagnosis also suggest a potential use of the molec-
ular learning method for automatically deriving decision rules from wet DNA
data. Recently, Benenson et al. [1] demonstrate the possibility of in vitro or in
vivo diagnosis. Here the decision rules for diagnosis are hard-coded by the de-
signer. The wDNF learning approach may provide a further step forward into

Molecular Learning of wDNF Formulae 437

this direction of research by providing a potential means for automatically con-
structing the robust decision rules from raw data.

Acknowledgements

This research was supported by the Molecular Evolutionary Computing (MEC)
Project of MICE and by the National Research Laboratory (NRL) Program of
MOST.

References

1. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E. “An autonomous molec-
ular computer for logical control of gene expression,” Nature, 429, 423-429, 2004.

2. Baum, E. B., “Building an associative memory vastly larger than the brain,” Sci-
ence, 268:583-585, 1995.

3. Chen, J. Deaton, R. and Wang, Y.-Z., “A DNA-based memory with in vitro
learning and associative recall,” DNA9, Lecture Notes in Computer Science 2943:
145-156, 2004.

4. Cheok, M.̋. et al., “Treatment-specific changes in gene expression discriminate in
vivo drug response in human leukemia cells,” Nature Genetics, 34:85-90, 2003.

5. Koza, J. R., Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, USA, 1992.

6. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S., “Experimental construction of very large scale DNA databases with
associative search capability,” DNA7, Lecture Notes in Computer Science 2340:
231-247, 2002.

7. Rose, J. A., Deaton, R. J., Hagiya, M., Suyama, A., “A DNA-based in vitro genetic
program”, Journal of Biological Physics, 28:493-498, 2002.

8. Sakakibara, Y., “Solving computational learning problems with Boolean formulae
on DNA computers,” DNA6, Lecture Notes in Computer Science, 2052:220-230,
2001.

9. SantaLucia, J. and Hicks, D., “The thermodynamics of DNA structural motifs,”
Annu. Rev. Biophys. Biomol. Struct., 33:415-440, 2004.

10. Shackelford, G. and Volper, D., “Learning k-DNF with noise in the attributes,”
COLT ’88: Proc. First Annual Workshop on Computational Learning Theory,
97-103, 1988.

11. Valiant, L., “Robust logics”, Proc. ACM Symposium on the Theory of Computing
(STOC 99), pp. 642-651, 1999.

12. Wartel, R.M. and Benight, A.S., “Thermal denaturation of DNA molecules: A
comparison of theory with experiments,” Physics Reports, 126(2):67-107, 1985.

13. Zhang, B.-T. and Jang, H.-Y., “A Bayesian algorithm for in vitro molecular evolu-
tion of pattern classifiers,” Proc. of 10th Int. Meeting on DNA Computing, Milan,
Italy, pp. 294-303, 2004.

14. Zhang, B.-T. and Mühlenbein, H., “Balancing accuracy and parsimony in genetic
programming,” Evolutionary Computation, 3(1):17-38, 1995.

Author Index

Asanuma, Hiroyuki 336

Baryshnikov, Yuliy 1
Beppu, Taro 213
Bernard, Matthew P. 248
Besozzi, Daniela 236
Bobba, Kiran C. 81

Cavaliere, Matteo 12
Coffman, Ed 1

Daley, Mark 27

Farfel, Joseph 38
Franco, Giuditta 55
Frisco, Pierluigi 67
Fujii, Teruo 325

Garzon, Max H. 81
Giagulli, Cinzia 55

Hagiya, Masami 336, 347
Harju, Tero 96
Henkel, Christiaan 67

Ibarra, Oscar H. 112, 129

Jang, Ha-Young 427
Jonoska, Nataša 12, 144

Kameda, Atsushi 347, 371
Kaneda, Shohei 325
Kari, Lila 158
Kijima, Atsushi 171
Kobayashi, Satoshi 171
Konstantinidis, Stavros 158
Kontham, Raghuver 81
Krishna, Shankara Narayanan 181
Kuramochi, Junna 193

Langrana, Noshir A. 417
Laudanna, Carlo 55
Leupold, Peter 12
Lin, David C. 417
Losseva, Elena 158

Macula, Anthony J. 248
Manca, Vincenzo 55
Mauri, Giancarlo 236
McColm, Gregory L. 144
McQuillan, Ian 27
Mueller, Steffen 387
Murata, Satoshi 325

Nakagawa, Hirotaka 203

Ogura, Yusuke 213
Ohuchi, Azuma 371
Ono, Hirotaka 359
Onodera, Kaoru 224

Papamichail, Dimitris 387
Păun, Andrei 112
Pescini, Dario 236
Petre, Ion 96
Phan, Vinhthuy 81
Pogozelski, Wendy K. 248
Priore, Salvatore F. 248

Reif, John H. 257, 290, 399
Rogojin, Vladimir 96
Rozenberg, Grzegorz 96

Sadakane, Kunihiko 359
Sager, Jennifer 275
Sahu, Sudheer 257, 290, 399
Sakakibara, Yasubumi 193, 203
Sakamoto, Kensaku 203
Seeman, Nadrian 1
Skiena, Steven 387
Soloveichik, David 305
Somei, Koutaro 325
Sośık, Petr 158
Staninska, Ana 144
Stefanovic, Darko 38, 275
Suyama, Akira 213

Takahashi, Keiichiro 336, 347
Takeda, Tsutomu 359
Takinoue, Masahiro 213
Tanaka, Fumiaki 371

440 Author Index

Tanida, Jun 213
Tengely, Szabolcs 67
Thierrin, Gabriel 158
Turberfield, Andrew J. 399

van Noort, Danny 380

Wang, Bei 387
Winfree, Erik 305
Woodworth, Sara 129

Yaegashi, Satsuki 336, 347
Yamamoto, Masahito 371
Yamashita, Masafumi 359
Yimwadsana, Teddy 1
Yin, Peng 257, 290, 399
Yokomori, Takashi 224
Yurke, Bernard 417

Zandron, Claudio 236
Zhang, Byoung-Tak 427

	Frontmatter
	Self-correcting Self-assembly: Growth Models and the Hammersley Process
	Recognizing DNA Splicing
	On Computational Properties of Template-Guided DNA Recombination
	Towards Practical Biomolecular Computers Using Microfluidic Deoxyribozyme Logic Gate Networks
	DNA Recombination by XPCR
	An Algorithm for SAT Without an Extraction Phase
	Sensitivity and Capacity of Microarray Encodings
	Simple Operations for Gene Assembly
	Counting Time in Computing with Cells
	On Bounded Symport/Antiport P Systems
	Expectation and Variance of Self-assembled Graph Structures
	Hairpin Structures in DNA Words
	Efficient Algorithm for Testing Structure Freeness of Finite Set of Biomolecular Sequences
	Communicating Distributed H Systems: Optimal Results with Efficient Ways of Communication
	Intensive {\itshape In Vitro} Experiments of Implementing and Executing Finite Automata in Test Tube
	Development of an {\itshape In Vivo} Computer Based on {\itshape Escherichia coli}
	Control of DNA Molecules on a Microscopic Bead Using Optical Techniques for Photonic DNA Memory
	Linearizer and Doubler : Two Mappings to Unify Molecular Computing Models Based on DNA Complementarity
	Analysis and Simulation of Dynamics in Probabilistic P Systems
	Experimental Validation of DNA Sequences for DNA Computing: Use of a SYBR Green I Assay
	Complexity of Graph Self-assembly in Accretive Systems and Self-destructible Systems
	Designing Nucleotide Sequences for Computation: A Survey of Constraints
	A Self-assembly Model of Time-Dependent Glue Strength
	Complexity of Compact Proofreading for Self-assembled Patterns
	A Microfluidic Device for DNA Tile Self-assembly
	Photo- and Thermoregulation of DNA Nanomachines
	Chain Reaction Systems Based on Loop Dissociation of DNA
	A Local Search Based Barrier Height Estimation Algorithm for DNA Molecular Transitions
	Specificity of Hybridization Between DNA Sequences Based on Free Energy
	A Poor Man's Microfluidic DNA Computer
	Two Proteins for the Price of One: The Design of Maximally Compressed Coding Sequences
	Design of Autonomous DNA Cellular Automata
	Use of DNA Nanodevices in Modulating the Mechanical Properties of Polyacrylamide Gels
	Molecular Learning of wDNF Formulae
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

