
Class-Specific Subspace Discriminant Analysis
for High-Dimensional Data

Charles Bouveyron1,2, Stéphane Girard1, and Cordelia Schmid2

1 LMC – IMAG, BP 53, Université Grenoble 1,
38041 Grenoble, Cedex 9 – France

charles.bouveyron@imag.fr, stephane.girard@imag.fr
2 LEAR – INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot,

38334 Saint-Ismier, Cedex – France
cordelia.schmid@inrialpes.fr

Abstract. We propose a new method for discriminant analysis, called
High Dimensional Discriminant Analysis (HDDA). Our approach is based
on the assumption that high dimensional data live in different subspaces
with low dimensionality. We therefore propose a new parameterization of
the Gaussian model to classify high-dimensional data. This parameteriza-
tion takes into account the specific subspace and the intrinsic dimension
of each class to limit the number of parameters to estimate. HDDA is
applied to recognize object parts in real images and its performance
is compared to classical methods.

Keywords: Discriminant analysis, class-specific subspaces, dimension
reduction, regularization.

1 Introduction

Many scientific domains need to analyze data which are increasingly complex. For
example, visual descriptors used in object recognition are often high-dimensional
and this penalizes classification methods and consequently recognition. In high-
dimensional feature spaces, the performance of learning methods suffers from
the curse of dimensionality [1] which deteriorates both classification accuracy
and efficiency. Popular classification methods are based on a Gaussian model
and show a disappointing behavior when the size of the training dataset is too
small compared to the number of parameters to estimate. To avoid overfitting,
it is therefore necessary to find a balance between the number of parameters to
estimate and the generality of the model. In this paper we propose a Gaussian
model which determines the specific subspace in which each class is located and
therefore limits the number of parameters to estimate. The maximum likelihood
method is used for parameter estimation and the intrinsic dimension of each class
is determined automatically with the scree-test of Cattell. This allows to derive
a robust discriminant analysis method in high-dimensional spaces, called High
Dimensional Discriminant Analysis (HDDA). It is possible to make additional
assumptions on the model to further limit the number of parameters. We can
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assume that classes are spherical in their subspaces and it is possible to fix
some parameters to be common between classes. A comparison with standard
discriminant analysis methods on a recently proposed dataset [4] shows that
HDDA outperforms them.

This paper is organized as follows. Section 2 presents the discrimination prob-
lem and existing methods to regularize discriminant analysis in high-dimensional
spaces. Section 3 introduces the theoretical framework of HDDA and, in section 4,
some particular cases are studied. Section 5 is devoted to the inference aspects.
Our method is then compared to classical methods on a real image dataset in
section 6.

2 Discriminant Analysis Framework

2.1 Discrimination Problem

The goal of discriminant analysis is to assign an observation x ∈ R
p with un-

known class membership to one of k classes C1, ..., Ck known a priori. For this, we
have a learning dataset A = {(x1, c1), ..., (xn, cn)/xj ∈ R

p and cj ∈ {1, ..., k}},
where the vector xj contains p explanatory variables and cj indicates the in-
dex of the class of xj . The optimal decision rule, called Bayes decision rule,
assigns the observation x to the class Ci∗ which has the maximum a poste-
riori probability. This is equivalent to minimize a cost function Ki(x), i.e.,
i∗ = argmini=1,...,k{Ki(x)}, with Ki(x) = −2 log(πi fi(x)), where πi is the a pri-
ori probability of class Ci and fi(x) denotes the class conditional density of x,
∀i = 1, ..., k. For instance, assuming that fi(x) is a Gaussian density leads to the
well known Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA) methods.

2.2 Dimension Reduction and Parsimonious Models

In high dimensional spaces, the majority of classification methods shows a dis-
appointing behavior when the size of the training dataset is too small compared
to the number of parameters to estimate. To avoid overfitting, it is therefore
necessary to reduce the number of parameters. This is possible by either reduc-
ing the dimension of the data or by using a parsimonious model with additional
assumptions on the model.

Dimension reduction. Many methods use global dimension reduction techniques
to overcome problems due to high-dimensionality. A widely used solution is to
reduce the dimensionality of the data before using a classical discriminant analy-
sis method. The dimension reduction can be done using Principal Components
Analysis (PCA) or a feature selection technique. It is also possible to reduce the
data dimension with classification as a goal by using Fisher Discriminant Analy-
sis (FDA) which projects the data on the (k − 1) discriminant axes and then
classifies the projected data. The dimension reduction is often advantageous in
terms of performance but loses information which could be discriminant due to
the fact that most approaches are global and not designed for classification.
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Parsimonious models. Another solution is to use a model which requires the es-
timation of fewer parameters. The parsimonious models used most often involve
an identical covariance matrix for all classes (used in LDA), i.e., ∀i, Σi = Σ,
or a diagonal covariance matrix, i.e., Σi = diag(σi1, ..., σip). Other approaches
propose new parameterizations of the Gaussian model in order to find different
parsimonious models. For example, Regularized Discriminant Analysis [6] uses
two regularization parameters to design an intermediate classifier between QDA
and LDA. The Eigenvalue Decomposition Discriminant Analysis [2] proposes to
re-parameterize the covariance matrices of the classes in their eigenspace. These
methods do not allow to efficiently solve the problem of the high-dimensionality,
as they do not determine the specific subspaces in which the data of each class
live.

3 High Dimensional Discriminant Analysis

The empty space phenomenon [9] allows us to assume that high-dimensional
data live in different low-dimensional subspaces hidden in the original space. We
therefore propose in this section a new parameterization of the Gaussian model
which combines a local subspace approach and a parsimonious model.

3.1 The Gaussian Mixture Model

Similarly to classical discriminant analysis, we assume that class conditional
densities are Gaussian N (μi, Σi), ∀i = 1, ..., k. Let Qi be the orthogonal matrix
of eigenvectors of the covariance matrix Σi and Bi be the eigenspace of Σi,
i.e., the basis of eigenvectors of Σi. The class conditional covariance matrix Δi

is then defined in the basis Bi by Δi = Qt
i Σi Qi. Thus, Δi is diagonal and

made of eigenvalues of Σi. We assume in addition that Δi has only two different
eigenvalues ai > bi:

Δi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ai 0
. . .

0 ai

0

0

bi 0
. . .

0 bi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬
⎭ di

⎫⎬
⎭ (p − di)

Let Ei be the affine space generated by the eigenvectors associated with the
eigenvalue ai with μi ∈ Ei, and let E

⊥
i be Ei ⊕ E

⊥
i = R

p with μi ∈ E
⊥
i . Thus,

the class Ci is both spherical in Ei and in E
⊥
i . Let Pi(x) = Q̃iQ̃i

t
(x − μi) + μi

be the projection of x on Ei, where Q̃i is made of the di first columns of Qi and
supplemented by zeros. Similarly, let P⊥

i (x) = (Qi − Q̃i)(Qi − Q̃i)t(x − μi) + μi

be the projection of x on E
⊥
i . Figure 1 summarizes these notations.
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Fig. 1. The subspaces Ei and E
⊥
i of the class Ci

3.2 Decision Rule and a Posteriori Probability

Deriving the Bayes decision rule with the model described in the previous section
yields the decision rule of High Dimensional Discriminant Analysis (HDDA).

Theorem 1. Bayes decision rule yields the decision rule δ+ which classifies x
as the class Ci∗ such that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
ai

‖μi−Pi(x)‖2+
1
bi

‖x−Pi(x)‖2+di log(ai)+(p−di) log(bi)−2 log(πi).

Proof. We derive Bayes decision rule for the Gaussian model presented in sec-
tion 3.1. Writing fi with the class conditional covariance matrix Δi gives:

−2 log(fi(x)) = (x − μi)t(QiΔiQ
t
i)

−1(x − μi) + log(det Δi) + p log(2π).

Moreover, Qt
iQi = Id and consequently:

−2 log(fi(x)) =
[
Qt

i(x − μi)
]t

Δ−1
i

[
Qt

i(x − μi)
]
+ log(det Δi) + p log(2π).

Given the structure of Δi, we obtain:

−2 log(fi(x)) =
1
ai

‖Q̃i
t
(x − μi)‖2 +

1
bi

‖(Qi − Q̃i)
t
(x − μi)‖2

+ log(det Δi) + p log(2π).

Using definitions of Pi and P⊥
i and in view of figure 1, we obtain:

−2 log(fi(x)) =
1
ai

‖μi − Pi(x)‖2 +
1
bi

‖x − Pi(x)‖2 + log(detΔi) + p log(2π).

The relation log(det Δi) = di log(ai) + (p − di) log(bi) concludes the proof. �

The a posteriori probability P (x ∈ Ci|x) measures the probability that x belongs
to Ci and allows to identify dubiously classified points. Basing on Bayes’ formula,
we can write: P (x ∈ Ci|x) = 1/

∑k
l=1 exp

( 1
2 (Ki(x) − Kl(x))

)
.
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4 Particular Rules

By allowing some of the HDDA parameters to be common between classes, we
obtain particular rules which correspond to different types of regularization,
some of which are easily geometrically interpretable. Due to space restrictions,
we present only the two most important particular cases: HDDAi and HDDAh.
In order to interpret these particular decision rules, the following notations are
useful: ∀i = 1, ..., k, ai = σ2

i

αi
and bi = σ2

i

(1−αi)
with αi ∈]0, 1[ and σi > 0.

4.1 Isometric Decision Rule (HDDAi)

Here, the following additional assumptions are made: ∀i = 1, ..., k, αi = α,
σi = σ, di = d and πi = π∗. In this case, the classes are isometric.

Proposition 1. Under these assumptions, the decision rule classifies x as the
class Ci∗ such that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
σ2

(
α‖μi − Pi(x)‖2 + (1 − α)‖x − Pi(x)‖2) .

For particular values of α, HDDAi has simple geometrical interpretations:

– Case α = 0: HDDAi assigns x to the class Ci∗ if ∀i = 1, ..., k, d(x, Ei∗ ) <
d(x, Ei). From a geometrical point of view, the decision rule assigns x to the
class associated with the closest subspace Ei.

– Case α = 1: HDDAi assigns x to the class Ci∗ if ∀i = 1, ..., k, d(μi∗ , Pi∗(x)) <
d(μi, Pi(x)). It means that the decision rule assigns x to the class for which
the mean is closest to the projection of x on the subspace.

– Case 0 < α < 1: the decision rule assigns x to the class realizing a compro-
mise between the two previous cases. The estimation of α is discussed in the
following section.

4.2 Homothetic Decision Rule (HDDAh)

This method differs from the previous one by removing the constraint σi = σ,
and classes are thus homothetic.

Proposition 2. In this case, the decision rule classifies x as the class Ci∗ such
that i∗ = argmini=1,...,k{Ki(x)} where Ki is defined by:

Ki(x) =
1
σ2

i

(α‖μi − Pi(x)‖2 + (1 − α)‖x − Pi(x)‖2) + 2p log(σi).

HDDAh generally favours classes with a large variance. We can observe on
Figure 2 that HDDAh favours the blue class which has the largest variance
whereas HDDAi gives the same importance to both classes. It assigns to the
blue class a point which is far from the axis of the red class, i.e., which does not
live in the specific subspace of the red class.
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(a) HDDAi (b) HDDAh

Fig. 2. Decision rules obtained with HDDAi and HDDAh on simulated data

4.3 Removing Constraints on di and πi

The two previous methods assume that di and πi are fixed. However, these as-
sumptions can be too restrictive. If these constraints are removed, it is necessary
to add the corresponding terms in Ki(x): if di are free, then di log(1−α

α ) must
be added and if πi are free, then −2 log(πi) must be added.

5 Estimators

The estimators are obtained by Maximum Likelihood (ML) estimation based on
the learning dataset. In the following, parameters πi, μi and Σi of the class Ci

are estimated by their empirical counterparts:

π̂i =
ni

n
, μ̂i =

1
ni

∑
xj∈Ci

xj , Σ̂i =
1
ni

∑
xj∈Ci

(xj − μ̂i)t(xj − μ̂i),

where ni is the cardinality of the class Ci.

5.1 HDDA Estimators

Assuming for the moment that the di are known, we obtain the following ML
estimates.

Proposition 3. The ML estimators of matrices Q̃i and parameters ai and bi

exist and are unique, ∀i = 1, ..., k:

(i) The di first columns of Q̃i are estimated by the eigenvectors associated to
the di largest eigenvalues of Σ̂i,

(ii) âi is the mean of the di largest eigenvalues of Σ̂i:

âi =
1
di

di∑
l=1

λil,

where λil is the lth largest eigenvalue of Σ̂i,
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(iii) b̂i is the mean of the (p−di) smallest eigenvalues of Σ̂i and can be written:

b̂i =
1

(p − di)

(
Tr(Σ̂i) −

di∑
l=1

λil

)
.

Proof. Equation (2.5) of [5] provides the following log-likelihood expression:

−2 log(Li(xj ∈ Ci, μi, Σi)) = ni

p∑
l=1

(
log δil +

1
δil

qt
ilΣ̂iqil

)
+ Cte,

with δil = ai if l ≤ di and δil = bi otherwise. This quantity is to be minimized
under the constraint qt

ilqil = 1, which is equivalent to find a saddle point of the
Lagrange function:

Li = ni

p∑
l=1

(
log δil +

1
δil

qt
ilΣ̂iqil

)
−

p∑
l=1

θil(qt
ilqil − 1),

where θil are the Lagrange multipliers. The derivative with respect to ai is:

∂Li

∂ai
=

nidi

ai
− ni

a2
i

di∑
l=1

qt
ilΣ̂iqil,

and the condition ∂Li

∂ai
= 0 implies that:

âi =
1
di

di∑
l=1

qt
ilΣ̂iqil. (1)

In the same manner, the partial derivative of Li with respect to bi is:

∂Li

∂bi
=

ni(p − di)
bi

− ni

b2
i

p∑
l=di+1

qt
ilΣ̂iqil,

and the condition ∂Li

∂bi
= 0 implies that:

b̂i =
1

(p − di)

p∑
l=di+1

qt
ilΣ̂iqil =

1
(p − di)

(
Tr(Σ̂i) −

di∑
l=1

qt
ilΣ̂iqil

)
. (2)

In addition, the gradient of Li with respect to qil is ∀l ≤ di:

∇qil
Li = 2

ni

δil
Σ̂iqil − 2θilqil,

and by multiplying this quantity on the left by qt
il, we obtain:

qt
il∇qil

Li = 0 ⇔ θil =
ni

δil

ˆqt
ilΣiqil.
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Consequently, Σ̂iqil = θilδil

ni
qil which means that qil is the eigenvector of Σ̂i

associated to the eigenvalue λil = θilδil

ni
. Replacing in (1) and (2), we obtain

the ML estimators for ai and bi. Vectors qil being eigenvectors of Σ̂i which is
a symmetric matrix, this implies that qt

ilqih = 0 if h 	= l. In order to minimize
the quantity −2 logLi at the optimum, âi must be as large as possible. Thus,
the di first columns of Qi must be the eigenvectors associated to the di largest
eigenvalues of Σ̂i. �

Note that the decision rule of HDDA requires only the estimation of the matrix
Q̃i instead of the entire Qi and this reduces significantly the number of para-
meters to estimate. For example, if we consider 100-dimensional data, 4 classes
and common intrinsic dimensions di equal to 10, HDDA estimates only 4 323
parameters whereas QDA estimates 20 603 parameters.

5.2 HDDAi Estimators

Proposition 4. The ML estimators of parameters α and σ exist and are unique:

α̂ =
b̂

â + b̂
, σ̂2 =

âb̂

â + b̂
,

with â =
�k

i=1 ni

�di
l=1 λil

npγ , b̂ =
�k

i=1 ni

�
Tr(Σ̂i)−

�di
l=1 λil

�

np(1−γ) where γ = 1
np

∑k
i=1 nidi

and λil is the lth largest eigenvalue of Σ̂i.

Proof. In this case, the log-likelihood expression is:

−2 log(L) =
k∑

i=1

ni

p∑
l=1

(
log δil +

1
δil

λil

)
+ Cte,

where δil = a if l ≤ di and b otherwise. One can write:

−2
∂

∂a
log(L) = 0 ⇔

k∑
i=1

ni

di∑
l=1

(
1
a

− 1
a2 λil

)
= 0 ⇔ â =

∑k
i=1 ni

∑di

l=1 λil

npγ
,

with γ = 1
np

∑k
i=1 nidi. Similarly,

−2
∂

∂b
log(L) = 0 ⇔ b̂ =

∑k
i=1 ni

(
Tr(Σ̂i) −

∑di

l=1 λil

)

np(1 − γ)
.

Replacing these estimates in expressions of α and σ concludes the proof. �

5.3 HDDAh Estimators

Proposition 5. The ML estimate of α has the following formulation according
to σi, ∀i = 1, ..., k:

α̂(σ1, ..., σk) =
(Λ + 1) −

√
Δ

2Λ
,
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with the notations:

Δ = (Λ + 1)2 − 4Λγ, Λ =
1
np

k∑
i=1

ni

σ2
i

(
2

di∑
l=1

λil − Tr(Σ̂i)

)
,

and the ML estimate of σ2
i has the following formulation according to α:

∀i = 1, ..., k, σ̂2
i (α) =

1
p

(
(2α − 1)

di∑
l=1

λil + (1 − α)Tr(Σ̂i)

)
.

Proof. In this case, one can write:

−2 log(L) =
k∑

i=1

ni

[
2p log σi − di log α − (p − di) log(1 − α)

+
1
σ2

i

(
(2α − 1)

di∑
l=1

λil + (1 − α)Tr(Σ̂i)

)]
.

Therefore,

∂

∂α
log(L) = 0 ⇔

k∑
i=1

ni

(
−di

α
+

(p − di)
(1 − α)

+
2

∑di

l=1 λil

σ2
i

− Tr(Σ̂i)
σ2

i

)
= 0,

⇔ np

(
− γ

α
+

(1 − γ)
(1 − α)

+ Λ

)
= 0,

where γ = 1
np

∑k
i=1 nidi and Λ = 1

np

∑k
i=1

ni

σ2
i

(
2

∑di

l=1 λil − Tr(Σ̂i)
)
. Thus,

∂

∂α
log(L) = 0 ⇔ ψ(α) = Λα2 − (Λ + 1)α + γ = 0.

The discriminant of the previous equation is Δ = (Λ + 1 − 2γ)2 + 4γ(1 − γ)
with γ < 1 and consequently Δ > 0. By remarking that ψ(0) = γ > 0 and
ψ(1) = γ − 1 < 0, one can conclude that the solution is in [0, 1] and is the
smallest of both solutions of ∂

∂α log(L) = 0. In addition,

∂

∂σi
log(L) = 0 ⇔ σ2

i =
1
p

(
(2α − 1)

di∑
l=1

λil + (1 − α)Tr(Σ̂i)

)
,

and thus provides the expression of σ2
i according to α. �

Note that the estimators of both α and σi are not explicit and thus they should
be computed using an iterative procedure.
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5.4 Estimation of the Intrinsic Dimension

The estimation of the dataset intrinsic dimension is a difficult problem which
does not have an explicit solution. If the dimensions di are common between
classes, i.e., ∀i = 1, ..., k, di = d, we determine by cross-validation the dimen-
sion d which maximizes the correct classification rate on the learning dataset.
Otherwise, we use an approach based on the eigenvalues of the class conditional
covariance matrix Σ̂i. The jth eigenvalue of Σ̂i corresponds to the fraction of
the full variance carried by the jth eigenvector of Σ̂i. We therefore estimate the
class specific dimension di, i = 1, ..., k, with the empirical method scree-test of
Cattell [3] which analyzes the differences between eigenvalues in order to find a
break in the scree. The selected dimension is the one for which the subsequent
differences are smaller than a threshold t. In our experiments, the threshold t is
chosen by cross-validation. We also used the probabilistic criterion BIC [8] which
gave very similar dimension choices. In our experiments, the estimated intrinsic
dimensions are on average 10 whereas the dimension of the original space is 128.

6 Experimental Results

Object recognition is one of the most challenging problems in computer vi-
sion. Many successful object recognition approaches use local images descriptors.
However, local descriptors are high-dimensional and this penalizes classification
methods and consequently recognition. HDDA seems therefore well adapted to
this problem. In this section, we use HDDA to recognize object parts in images.

6.1 Protocol and Data

For our experiments, small scale-invariant regions are detected on each image
and they are characterized by the local Sift descriptor [7]. We extracted Sift
descriptors of dimension 128 for 100 motorbike images from a recently proposed
visual recognition database [4]. For these local descriptors, we selected 2000 de-
scriptors representing 4 classes: wheels, seat, handlebars and background. The
learning and the test dataset contain respectively 500 and 1500 descriptors. The
pre-processed data are available at http://lear.inrialpes.fr/~bouveyron/
data/data_swc.tgz. We compared HDDA to the following classical discrimi-
nant analysis methods: Linear Discriminant Analysis (LDA), Fisher Discrimi-
nant Analysis (FDA) and Support Vector Machines with a RBF kernel (SVM).
The parameters t of HDDA and γ of SVM are estimated by cross-validation on
the learning dataset.

6.2 Recognition Results

Figure 3 shows recognition results obtained using HDDA methods and state-
of-the-art methods with respect to the number of descriptors classified as pos-
itive.To obtain the plots we vary the decision boundary between object classes
and background, i.e., we change the posterior probabilities provided by gener-
ative methods and, for SVM, we vary the parameter C. On the left, only the

http://lear.inrialpes.fr/~bouveyron/
data/data_swc.tgz
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Fig. 3. Classification results for the “motorbike” recognition: comparison between
HDDA methods (left) and between HDDAi and state-of-the-art methods (right)

Fig. 4. Recognition of “motorbike” parts using HDDAi (top) and SVM (bottom). The
colors blue, red and green are respectively associated to handlebars, wheels and seat.

descriptors with the highest probabilities to belong to the object are used. As
a results only a small number of descriptors are classified as positive and their
precision (number of correct over total number) is high.

The left plot shows that HDDAi is more efficient than other HDDA methods
for this application. This is due to the fact that parameters bi are common in
HDDAi, i.e., the noise is common between classes. More extensive experiments
have confirmed that HDDA with common bi performs in general well for our
data. The right plot compares HDDAi to SVM, LDA and FDA. First of all,
we observe that the results for LDA (without dimension reduction) are unsatis-
fying. The results for FDA show that global dimension reduction improves the
results. Furthermore, HDDAi obtains better results than SVM and FDA and this
demonstrates that our class-specific subspace approach is a good way to classify
high-dimensional data. Note that HDDA and HDDAh are also more precise than
these three methods when the number of detected positives is small. A compar-
ison with a SVM with a quadratic kernel did not improve the results over the
RBF kernel.



150 C. Bouveyron, S. Girard, and C. Schmid

Figure 4 presents recognition results for a few test images. These results
confirm that HDDAi gives better recognition results than SVM, i.e., the classi-
fication errors are significantly lower for HDDAi than for SVM. For example, in
the 3rd column of Figure 4, HDDA recognizes the motorbike parts without error
whereas SVM makes five errors. In addition, training time for HDDA is as fast
as other generative methods and 7 times faster than SVM. Note that recognition
time is negligible for all methods.

7 Conclusion

We presented a parameterization of the Gaussian model to classify high-dimen–
sional data in a supervised framework. This model results in a robust and fast
discriminant analysis method. We successfully used this method to recognize
object parts in natural images. An extension of this work is to use the statistical
model of HDDA to adapt the method to unsupervised classification.
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