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1 Introduction

Partial Least Squares (PLS) is a wide class of methods for modeling relations
between sets of observed variables by means of latent variables. It comprises
of regression and classification tasks as well as dimension reduction techniques
and modeling tools. The underlying assumption of all PLS methods is that the
observed data is generated by a system or process which is driven by a small
number of latent (not directly observed or measured) variables. Projections of
the observed data to its latent structure by means of PLS was developed by
Herman Wold and coworkers [48, 49, 52].

PLS has received a great amount of attention in the field of chemomet-
rics. The algorithm has become a standard tool for processing a wide spectrum
of chemical data problems. The success of PLS in chemometrics resulted in a
lot of applications in other scientific areas including bioinformatics, food re-
search, medicine, pharmacology, social sciences, physiology–to name but a few
[28, 25, 53, 29, 18, 22].

This chapter introduces the main concepts of PLS and provides an overview
of its application to different data analysis problems. Our aim is to present a
concise introduction, that is, a valuable guide for anyone who is concerned with
data analysis.

In its general form PLS creates orthogonal score vectors (also called latent
vectors or components) by maximising the covariance between different sets of
variables. PLS dealing with two blocks of variables is considered in this chapter,
although the PLS extensions to model relations among a higher number of sets
exist [44, 46, 47, 48, 39]. PLS is similar to Canonical Correlation Analysis (CCA)
where latent vectors with maximal correlation are extracted [24]. There are dif-
ferent PLS techniques to extract latent vectors, and each of them gives rise to a
variant of PLS.

PLS can be naturally extended to regression problems. The predictor and
predicted (response) variables are each considered as a block of variables. PLS
then extracts the score vectors which serve as a new predictor representation
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and regresses the response variables on these new predictors. The natural asym-
metry between predictor and response variables is reflected in the way in which
score vectors are computed. This variant is known under the names of PLS1 (one
response variable) and PLS2 (at least two response variables). PLS regression
used to be overlooked by statisticians and is still considered rather an algorithm
than a rigorous statistical model [14]. Yet within the last years, interest in the
statistical properties of PLS has risen. PLS has been related to other regression
methods like Principal Component Regression (PCR) [26] and Ridge Regression
(RR) [16] and all these methods can be cast under a unifying approach called
continuum regression [40, 9]. The effectiveness of PLS has been studied theoret-
ically in terms of its variance [32] and its shrinkage properties [12, 21, 7]. The
performance of PLS is investigated in several simulation studies [11, 1].

PLS can also be applied to classification problems by encoding the class mem-
bership in an appropriate indicator matrix. There is a close connection of PLS
for classification to Fisher Discriminant Analysis (FDA) [4]. PLS can be applied
as a discrimination tool and dimension reduction method–similar to Principal
Component Analysis (PCA). After relevant latent vectors are extracted, an ap-
propriate classifier can be applied. The combination of PLS with Support Vector
Machines (SVM) has been studied in [35].

Finally, the powerful machinery of kernel-based learning can be applied to
PLS. Kernel methods are an elegant way of extending linear data analysis tools
to nonlinear problems [38].

2 Partial Least Squares

Consider the general setting of a linear PLS algorithm to model the relation be-
tween two data sets (blocks of variables). Denote by X ⊂ RN an N -dimensional
space of variables representing the first block and similarly by Y ⊂ RM a space
representing the second block of variables. PLS models the relations between
these two blocks by means of score vectors. After observing n data samples
from each block of variables, PLS decomposes the (n × N) matrix of zero-mean
variables X and the (n × M) matrix of zero-mean variables Y into the form

X = TPT + E
Y = UQT + F

(1)

where the T, U are (n×p) matrices of the p extracted score vectors (components,
latent vectors), the (N × p) matrix P and the (M × p) matrix Q represent
matrices of loadings and the (n × N) matrix E and the (n × M) matrix F are
the matrices of residuals. The PLS method, which in its classical form is based
on the nonlinear iterative partial least squares (NIPALS) algorithm [47], finds
weight vectors w, c such that

[cov(t,u)]2 = [cov(Xw,Yc)]2 = max|r|=|s|=1[cov(Xr,Ys)]2 (2)

where cov(t,u) = tT u/n denotes the sample covariance between the score vec-
tors t and u. The NIPALS algorithm starts with random initialisation of the
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Y-space score vector u and repeats a sequence of the following steps until
convergence.

1) w = XT u/(uT u) 4) c = YT t/(tT t)
2) ‖w‖ → 1 5) ‖c‖ → 1
3) t = Xw 6) u = Yc

Note that u = y if M = 1, that is, Y is a one-dimensional vector that we denote
by y. In this case the NIPALS procedure converges in a single iteration.

It can be shown that the weight vector w also corresponds to the first
eigenvector of the following eigenvalue problem [17]

XT YYT Xw = λw (3)

The X - and Y-space score vectors t and u are then given as

t = Xw and u = Yc (4)

where the weight vector c is define in steps 4 and 5 of NIPALS. Similarly, eigen-
value problems for the extraction of t, u or c estimates can be derived [17].
The user then solves for one of these eigenvalue problems and the other score or
weight vectors are readily computable using the relations defined in NIPALS.

2.1 Forms of PLS

PLS is an iterative process. After the extraction of the score vectors t, u the
matrices X and Y are deflated by subtracting their rank-one approximations
based on t and u. Different forms of deflation define several variants of PLS.

Using equations (1) the vectors of loadings p and q are computed as coeffi-
cients of regressing X on t and Y on u, respectively

p = XT t/(tT t) and q = YT u/(uT u)

PLS Mode A: The PLS Mode A is based on rank-one deflation of individual
block matrices using the corresponding score and loading vectors. In each
iteration of PLS Mode A the X and Y matrices are deflated

X = X − tpT and Y = Y − uqT

This approach was originally designed by Herman Wold [47] to model the
relations between the different sets (blocks) of data. In contrast to the PLS
regression approach, discussed next, the relation between the two blocks
is symmetric. As such this approach seems to be appropriate for modeling
existing relations between sets of variables in contrast to prediction purposes.
In this way PLS Mode A is similar to CCA. Wegelin [45] discusses and
compares properties of both methods. The connection between PLS and
CCA from the point of an optimisation criterion involved in each method is
discussed in Section 2.2.
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PLS1, PLS2: PLS1 (one of the block of data consists of a single variable) and
PLS2 (both blocks are multidimensional) are used as PLS regression meth-
ods. These variants of PLS are the most frequently used PLS approaches.
The relationship between X and Y is asymmetric. Two assumptions are
made: i) the score vectors {ti}p

i=1 are good predictors of Y; p denotes the
number of extracted score vectors–PLS iterations ii) a linear inner relation
between the scores vectors t and u exists; that is,

U = TD + H (5)

where D is the (p×p) diagonal matrix and H denotes the matrix of residuals.
The asymmetric assumption of the predictor–predicted variable(s) relation is
transformed into a deflation scheme where the predictor space, say X, score
vectors {ti}p

i=1 are good predictors of Y. The score vectors are then used to
deflate Y, that is, a component of the regression of Y on t is removed from
Y at each iteration of PLS

X = X − tpT and Y = Y − ttT Y/(tT t) = Y − tcT

where we consider not scaled to unit norm weight vectors c defined in step
4 of NIPALS. This deflation scheme guarantees mutual orthogonality of the
extracted score vectors {ti}p

i=1 [17]. Note that in PLS1 the deflation of y is
technically not needed during the iterations of PLS [17].
Singular values of the cross-product matrix XT Y correspond to the sample
covariance values [17]. Then the deflation scheme of extracting one compo-
nent at a time has also the following interesting property. The first singular
value of the deflated cross-product matrix XT Y at iteration i + 1 is greater
or equal than the second singular value of XT Y at iteration i [17]. This
result can be also applied to the relation of eigenvalues of (3) due to the fact
that (3) corresponds to the singular value decomposition of the transposed
cross-product matrix XT Y. In particular, the PLS1 and PLS2 algorithms
differ from the computation of all eigenvectors of (3) in one step.

PLS-SB: As outlined at the end of the previous paragraph the computation of
all eigenvectors of (3) at once would define another form of PLS. This com-
putation involves a sequence of implicit rank-one deflations of the overall
cross-product matrix. This form of PLS was used in [36] and in accordance
with [45] it is denoted as PLS-SB. In contrast to PLS1 and PLS2, the ex-
tracted score vectors {ti}p

i=1 are in general not mutually orthogonal.
SIMPLS: To avoid deflation steps at each iteration of PLS1 and PLS2, de

Jong [8] has introduced another form of PLS denoted SIMPLS. The SIMPLS
approach directly finds the weight vectors {w̃}p

i=1 which are applied to the
original not deflated matrix X. The criterion of the mutually orthogonal score
vectors {t̃}p

i=1 is kept. It has been shown that SIMPLS is equal to PLS1 but
differs from PLS2 when applied to the multidimensional matrix Y [8].
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2.2 PCA, CCA and PLS

There exists a variety of different projection methods to latent variables. Among
others widely used, PCA and CCA belong to this category. The connections
between PCA, CCA and PLS can be seen through the optimisation criterion
they use to define projection directions. PCA projects the original variables
onto a direction of maximal variance called principal direction. Following the
notation of (2), the optimisation criterion of PCA can be written as

max|r|=1[var(Xr)]

where var(t) = tT t/n denotes the sample variance. Similarly CCA finds the
direction of maximal correlation solving the following optimisation problem

max|r|=|s|=1[corr(Xr,Ys)]2

where [corr(t,u)]2 = [cov(t,u)]2/var(t)var(u) denotes the sample squared cor-
relation. It is easy to see that the PLS criterion (2)

max|r|=|s|=1[cov(Xr,Ys)]2 = max|r|=|s|=1var(Xr)[corr(Xr,Ys)]2var(Ys) (6)

represents a form of CCA where the criterion of maximal correlation is balanced
with the requirement to explain as much variance as possible in both X - and
Y-spaces. Note that in the case of a one-dimensional Y-space only the X -space
variance is involved.

The relation between CCA and PLS can be also seen through the concept of
canonical ridge analysis introduced in [41]. Consider the following optimisation
problem

max
|r|=|s|=1

cov(Xr,Ys)2

([1 − γX] var(Xr) + γX) ([1 − γY] var(Ys) + γY)

with 0 ≤ γX, γY ≤ 1 representing regularisation terms. The corresponding eigen-
value problem providing the solution to this optimisation criterion is given as

([1 − γX]XT X + γXI)−1XT Y([1 − γY]YT Y + γYI)−1YT Xw = λw (7)

where w represents a weight vector for the projection of the original X -space
data into a latent space.1 There are two cornerstone solutions of this eigenvalue
problem: i) for γX = 0, γY = 0 the solution of CCA is obtained [24] ii) for
γX = 1, γY = 1 the PLS eigenvalue problem (3) is recovered. By continuous
changing of γX, γY solutions lying between these two cornerstones are obtained.
In Figure 1 the w directions for two-class problem as found by PLS, CCA and
regularised CCA (γX = 0.99, γY = 0) are plotted.

Another interesting setting is γX = 1, γY = 0 which represents a form of
orthonormalised PLS where the Y-space data variance does not influence the
1 In the analogous way the eigenvalue problem for the projections of the Y-space data

can be formulated.
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Fig. 1. An example of the weight vector w directions as found by CCA (solid line),
PLS (dash-dotted line) and regularised CCA (dashed line) given by (7) with γX = 0.99
and γY = 0. Circle and cross samples represent two Gaussian distributed classes with
different sample means and covariances.

final PLS solution (similarly the X -space variance can be ignored by setting
γX = 0, γY = 1) [53]. Note that in the case of one-dimensional Y matrix and for
γX ∈ (0, 1) the ridge regression solution is obtained [41, 16]. Finally let us stress
that, in general, CCA is solved in a way similar to PLS-SB, that is, eigenvectors
and eigenvalues of (7) are extracted at once by an implicit deflation of the cross-
product matrix XT Y. This is in contrast to the PLS1 and PLS2 approaches
where different deflation scheme is considered.

3 PLS Regression

As mentioned in the previous section, PLS1 and PLS2 can be used to solve linear
regression problems. Combining assumption (5) of a linear relation between the
scores vectors t and u with the decomposition of the Y matrix, equation (1) can
be written as

Y = TDQT + (HQT + F)

This defines the equation
Y = TCT + F∗ (8)

where CT = DQT now denotes the (p×M) matrix of regression coefficients and
F∗ = HQT +F is the residual matrix. Equation (8) is simply the decomposition
of Y using ordinary least squares regression with orthogonal predictors T.

We now consider orthonormalised score vectors t, that is, TT T = I, and the
matrix C = YT T of the not scaled to length one weight vectors c. It is useful
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to redefine equation (8) in terms of the original predictors X. To do this, we use
the relationship [23]

T = XW(PT W)−1

where P is the matrix of loading vectors defined in (1). Plugging this relation
into (8), we yield

Y = XB + F∗

where B represents the matrix of regression coefficients

B = W(PT W)−1CT = XT U(TT XXT U)−1TT Y

For the last equality, the relations among T, U, W and P are used [23, 17, 33].
Note that different scalings of the individual score vectors t and u do not influ-
ence the B matrix. For training data the estimate of PLS regression is

Ŷ = XB = TTT Y = TCT

and for testing data we have

Ŷt = XtB = TtTT Y = TtCT

where Xt and Tt = XtXT U(TT XXT U)−1 represent the matrices of testing
data and score vectors, respectively.

3.1 Algebraic Interpretation of Linear Regression

In this paragraph, we only consider PLS1, that is, the output data y is a one-
dimensional vector. The linear regression model is usually subsumed in the
relation

y = Xb + e (9)

with b the unknown regression vector and e a vector of independent identically
distributed noise with var(e) = σ2. In what follows, we will make intensive use
of the singular value decomposition of X

X = VΣST (10)

with V and S orthonormal matrices and Σ a diagonal matrix that consists of
the singular values of X. The matrix Λ = Σ2 is diagonal with elements λi . Set

A ≡ XT X = SΛST and z ≡ XT y

The ordinary least squares (OLS) estimator b̂OLS is the solution of

arg min
b

‖y − Xb‖2

This problem is equivalent to computing the solution of the normal equations

Ab = z (11)
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Using the pseudoinverse of A−, it follows (recall (10)) that

b̂OLS = A−z =
rk(A)∑

i=1

vT
i y√
λi

si =
rk(A)∑

i=1

b̂i

where

b̂i =
vT

i y√
λi

si

is the component of b̂OLS along vi and rk(.) denotes the rank of a matrix.
A lot of linear regression estimators are approximate solutions of the equation

(11). The PCR estimator that regresses y on the first p principal components
v1, . . . ,vp is

b̂PCR =
p∑

i=1

b̂i

The RR estimator [41, 16] is of the form

b̂RR = (A + γI)−1z =
rk(A)∑

i=1

λi

λi + γ
b̂i

with γ > 0 the ridge parameter.
It can be shown that the PLS algorithm is equivalent to the conjugate gra-

dient method [15]. This is a procedure that iteratively computes approximate
solutions of (11) by minimising the quadratic function

1
2
bT Ab − zT b

along directions that are A-orthogonal. The approximate solution obtained after
p steps is equal to the PLS estimator obtained after p iterations.

The conjugate gradient algorithm is in turn closely related to the Lanczos
algorithm [19], a method for approximating eigenvalues. The space spanned by
the columns of

K = (z,Az, . . . ,Ap−1z)

is called the p-dimensional Krylov space of A and z. We denote this Krylov
space by K. In the Lanczos algorithm, an orthogonal basis

W = (w1, . . . ,wp) (12)

of K is computed. The linear map A restricted to K for an element k ∈ K
is defined as the orthogonal projection of Ak onto the space K. The map is
represented by the p × p matrix

L = WT AW

This matrix is tridiagonal. Its p eigenvector-eigenvalue pairs

(ri , μi) (13)
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are called Ritz pairs. They are the best approximation of the eigenpairs of A
given only the information that is encoded in K [30].

The weight vectors w in (2) of PLS1 are identical to the basis vectors in (12).
In particular, the weight vectors are a basis of the Krylov space and the PLS
estimator is the solution of the optimisation problem

arg min
b

‖y − Xb‖2

subject to b ∈ K

In this sense, PLS1 can be viewed as a regularised least squares fit.
A good references for the Lanczos method and the conjugate gradient method

is [30]. The connection to PLS is well-elaborated in [31].

3.2 Shrinkage Properties of PLS Regression

One possibility to evaluate the quality of an estimator b̂ for b is to determine
its Mean Squared Error (MSE), which is defined as

MSE(b̂) = E

[(
b̂ − b

)T (
b̂ − b

)]

=
(
E

[
b̂
]

− b
)T (

E
[
b̂
]

− b
)

+ E

[(
b̂ − E

[
b̂
])T (

b̂ − E
[
b̂
])]

This is the well-known bias-variance decomposition of MSE. The first part is the
squared bias and the second part is the variance term.

It is well known that the OLS estimator has no bias (if b ∈ range(A) ). The
variance term depends on the non-zero eigenvalues of A: if some eigenvalues are
very small, the variance of b̂OLS can be very high, which leads to a high MSE
value. Note that small eigenvalues λi of A correspond to principal directions vi

of X that have a low sample spread.
One possibility to decrease MSE is to modify the OLS estimator by shrinking

the directions of the OLS estimator that are responsible for a high variance. In
general, a shrinkage estimator for b is of the form

b̂shr =
rk(A)∑

i=1

f(λi)b̂i (14)

where f(.) is some real-valued function. The values f(λi) are called shrinkage
factors. Examples are PCR

f(λi) =
{

1 , i ≤ p
0 , i > p

and RR

f(λi) =
λi

λi + γ
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If the factors in (14) do not depend on y, that is, b̂shr is linear in y, any factor
f(λi) 	= 1 increases the bias of the i-th component. The variance of the i-th
component decreases for |f(λi)| < 1 and increases for |f(λi)| > 1 . The OLS
estimator is shrunk in the hope that the increase in bias is small compared to
the decrease in variance.

The PLS estimator is a shrinkage estimator as well. Its shrinkage factors are
closely related to the Ritz pairs (13). The shrinkage factors f(λi) that correspond
to the estimator b̂PLS after p iterations of PLS are [21, 31]

f (λi) = 1 −
p∏

j=1

(
1 − λi

μj

)

The shrinkage factors have some remarkable properties [7, 21]. Most importantly,
f(λi) > 1 can occur for certain combinations of i and p . Note however that the
PLS estimator is not linear in y. The factors f(λi) depend on the eigenvalues
(13) of the matrix L and L in turn depends, via z, on y. It is therefore not clear
in which way this shrinkage behaviour influences MSE of PLS1.
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Fig. 2. An illustration of the shrinkage behaviour of PLS1. The X matrix contains
eight variables. The eigenvalues of A ≡ XT X are enumerated in decreasing order,
λ1 ≥ λ2 ≥ . . . and the shrinkage factors f(λi) are plotted as a function of i. The
amount of absolute shrinkage |1 − f(λi)| is particularly prominent if p is small.

4 PLS Discrimination and Classification

PLS has been used for discrimination and classification purposes. The close
connection between FDA, CCA and PLS in the discrimination and classification
scenario is described in this section.
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Consider a set of n samples {xi ∈ X ⊂ RN}n
i=1 representing the data from

g classes (groups). Now define the (n × g − 1) class membership matrix Y to be

Y =

⎛

⎜⎜⎜⎝

1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2

...
...

. . . 1ng−1

0ng 0ng . . . 0ng

⎞

⎟⎟⎟⎠

where {ni}g
i=1 denotes the number of samples in each class,

∑g
i=1 ni = n and

0ni and 1ni are (ni × 1) vectors of all zeros and ones, respectively. Let

SX =
1

n − 1
XT X , SY =

1
n − 1

YT Y and SXY =
1

n − 1
XT Y

be the sample estimates of the covariance matrices ΣX and ΣY, respectively,
and the cross-product covariance matrix ΣXY. Again, the matrices X and Y
are considered to be zero-mean. Furthermore, let

H =
g∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T , E =
g∑

i=1

ni∑

j=1

(xj
i − x̄i)(x

j
i − x̄i)T

represent the among-classes and within-classes sums-of-squares, where xj
i repre-

sents an N -dimensional vector for the j-th sample in the i-th class and

x̄i =
1
ni

ni∑

j=1

xj
i and x̄ =

1
n

g∑

i=1

ni∑

j=1

xj
i

Fisher developed a discrimination method based on a linear projection of
the input data such that among-classes variance is maximised relative to the
within-classes variance. The directions onto which the input data are projected
are given by the eigenvectors a of the eigenvalue problem

E−1Ha = λa

In the case of discriminating multi-normally distributed classes with the same
covariance matrices, FDA finds the same discrimination directions as linear dis-
criminant analysis using Bayes theorem to estimate posterior class probabilities.
This is the method that provides the discrimination rule with minimal expected
misclassification error [24, 13].

The fact that the Fisher’s discrimination directions are identical to the direc-
tions given by CCA using a dummy matrix Y for group membership was first
recognised in [5]. The connections between PLS and CCA have been methodically
studied in [4]. Among other, the authors argue that the Y-space penalty var(Ys)
is not meaningful and suggested to remove it from (6) in the PLS discrimination
scenario. As mentioned in Section 2.2 this modification leads to a special case of
the previously proposed orthonormalised PLS method [53] using the indicator
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matrix Y. The eigenvalue problem (3) in the case of orthonormalised PLS is
transformed into

XT Y(YT Y)−1YT Xw = XT ỸỸT Xw = λw (15)

where
Ỹ = Y(YT Y)−1/2

represents a matrix of uncorrelated and normalised output variables. Using the
following relation [4, 35]

(n − 1)SXYS−1
Y ST

XY = H

the eigenvectors of (15) are equivalent to the eigensolutions of

Hw = λw (16)

Thus, this modified PLS method is based on eigensolutions of the among-classes
sum-of-squares matrix H which connects this approach to CCA or equivalently
to FDA.

Interestingly, in the case of two-class discrimination the direction of the first
orthonormalised PLS score vector t is identical with the first score vector found
by either the PLS1 or PLS-SB methods. This immediately follows from the
fact that YT Y is a number in this case. In this two-class scenario XT Y is of
a rank-one matrix and PLS-SB extracts only one score vector t. In contrast,
orthonormalised PLS can extract additional score vectors, up to the rank of X,
each being similar to directions computed with CCA or FDA on deflated feature
space matrices. Thus, PLS provide more principled dimensionality reduction in
comparison to PCA based on the criterion of maximum data variation in the
X -space alone.

In the case of multi-class discrimination the rank of the Y matrix is equal
to g − 1 which determines the maximum number of score vectors that may be
extracted by the orthonormalised PLS-SB method.2 Again, similar to the one-
dimensional output scenario the deflation of the Y matrix at each step can be
done using the score vectors t of PLS2. Consider this deflation scheme in the X -
and Y-spaces

Xd = X − tpT = (I − ttT /(tT t))X = PdX

Ỹd = PdỸ

where Pd = PT
d Pd represents a projection matrix. Using these deflated matrices

Xd and Ỹd the eigenproblem (15) can be written in the form

XT
d ỸỸT Xdw = λw

2 It is considered here that g ≤ N , otherwise the number of score vectors is given by
N .
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Thus, similar to the previous two-class discrimination the solution of this eigen-
problem can be interpreted as the solution of (16) using the among-classes sum-
of-squares matrix now computed on deflated matrix Xd.

A natural further step is to project the original, observed data onto the ob-
tained weight vector directions and to build a classifier using this new, projected
data representation–PLS score vectors. Support vector machines, logistic regres-
sion or other methods for classification can be applied on the extracted PLS
score vectors.

5 Nonlinear PLS

In many areas of research and industrial situations data can exhibit nonlinear
behaviour. Two major approaches to model nonlinear data relations by means
of PLS exist.

A) The first group of approaches is based on reformulating the considered
linear relation (5) between the score vectors t and u by a nonlinear model

u = g(t) + h = g(X,w) + h

where g(.) represents a continuous function modeling the existing nonlinear re-
lation. Again, h denotes a vector of residuals. Polynomial functions, smoothing
splines, artificial neural networks or radial basis function networks have been
used to model g(.) [51, 10, 50, 3].3 The assumption that the score vectors t and
u are linear projections of the original variables is kept. This leads to the neces-
sity of a linearisation of the nonlinear mapping g(.) by means of Taylor series
expansions and to the successive iterative update of the weight vectors w [51, 3].

B) The second approach to nonlinear PLS is based on a mapping of the orig-
inal data by means of a nonlinear function to a new representation (data space)
where linear PLS is applied. The recently developed theory of kernel-based learn-
ing has been also applied to PLS. The nonlinear kernel PLS methodology was
proposed for the modeling of relations between sets of observed variables, regres-
sion and classification problems [34, 35]. The idea of the kernel PLS approach
is based on the mapping of the original X -space data into a high-dimensional
feature space F corresponding to a reproducing kernel Hilbert space [2, 38]

x ∈ X → Φ(x) ∈ F

By applying the kernel trick the estimation of PLS in a feature space F reduces
to the use of linear algebra as simple as in linear PLS [34]. The kernel trick uses
the fact that a value of a dot product between two vectors in F can be evaluated
by the kernel function [2, 38]

k(x,y) = Φ(x)T Φ(y), ∀ x,y ∈ X
3 Note that the below described concept of kernel-based learning can also be used for

modeling nonlinear relation between t and u. An example would be a support vector
regression model for g(.) [38].
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Define the Gram matrix K of the cross dot products between all mapped input
data points, that is, K = ΦΦT , where Φ denotes the matrix of mapped X -space
data {Φ(xi) ∈ F}n

i=1. The kernel trick implies that the elements i, j of K are
equal to the values of the kernel function k(xi,xj). Now, consider a modified
version of the NIPALS algorithm where we merge steps 1 and 3 and we scale to
unit norm vectors t and u instead of the vectors w and c. We obtain the kernel
form of the NIPALS algorithm [34, 20]4

1) t = ΦΦT u = Ku 4) u = Yc
2) ‖t‖ → 1 5) ‖u‖ → 1
3) c = YT t

Note that steps 3 and 4 can be further merged which may become useful in
applications where an analogous kernel mapping of the Y-space is considered.
The kernel PLS approach has been proved to be competitive with the other
kernel classification and regression approaches like SVM, kernel RR or kernel
FDA [38, 37].
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Fig. 3. An example of kernel PLS regression. The generated function z(.) is shown as
a solid line. Plus markers represent noisy representation of z(.) used as training output
points in kernel PLS regression. Kernel PLS regression using the first one, four and
eight score vectors is shown as a dashed, dotted and dash-dotted line, respectively.

When both A) and B) approaches are compared it is difficult to define the
favourable methodology. While the kernel PLS approach is easily implementable,
computationally less demanding and capable to model difficult nonlinear rela-
tions, a loss of the interpretability of the results with respect to the original
4 In the case of the one-dimensional Y-space computationally more efficient kernel

PLS algorithms have been proposed in [35, 27].
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data limits its use in some applications. On the other hand it is not difficult
to construct data situations where the first approach of keeping latent variables
as linear projections of the original data may not be adequate. In practice a
researcher needs to decide about the adequacy of using a particular approach
based on the problem in hands and requirements like simplicity of the solution
and implementation or interpretation of the results.

In Figure 3 an example of kernel PLS regression is depicted. We generated
one hundred uniformly spaced samples in the range [0, 3.5] and computed the
corresponding values of the function [42]

z(x) = 4.26(exp (−x) − 4 exp (−2x) + 3 exp (−3x))

Additional one hundred Gaussian distributed samples with zero-mean and vari-
ance equal to 0.04 representing noise were generated and added to the com-
puted values. The values of noisy z(.) function were subsequently centered. The
Gaussian kernel function k(x,y) = exp(− ‖x−y‖2

h ) with the width h equal to 1.8
was used.

6 Conclusions

PLS has been proven to be a very powerful versatile data analytical tool applied
in many areas of research and industrial applications. Computational and im-
plementation simplicity of PLS is a strong aspect of the approach which favours
PLS to be used as a first step to understand the existing relations and to analyse
real world data. The PLS method projects original data onto a more compact
space of latent variables. Among many advantages of such an approach is the
ability to analyse the importance of individual observed variables potentially
leading to the deletion of unimportant variables. This mainly occurs in the case
of an experimental design where many insignificant terms are measured. In such
situations PLS can guide the practitioner into more compact experimental set-
tings with a significant cost reduction and without a high risk associated with
the “blind” variables deletion. Examples of this aspect of PLS are experiments
on finger movement detection and cognitive fatigue prediction where a signifi-
cant reduction of the EEG recording electrodes have been achieved without the
loss of classification accuracy of the considered PLS models [35, 43]. Further im-
portant aspect of PLS is the ability to visualise high-dimensional data through
the set of extracted latent variables. The diagnostic PLS tools based on score
and loadings plots allows to better understand data structure, observe existing
relations among data sets but also to detect outliers in the measured data.

Successful application of PLS on regression problems associated with many
real world data have also attracted attention of statisticians to this method.
Although PLS regression is still considered as a method or algorithm rather
than a rigorous statistical model, recent advances in understanding of shrinkage
properties of PLS regression helped to connect PLS regression with other, in
statistical community better understood, shrinkage regression methods like PCR
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or RR. Moreover, these studies have shown very competitive behaviour of PLS
regression in comparison to the other shrinkage regression methods. We believe
that further research will reveal additional aspects of PLS regression and will help
to better theoretically define structures of data and regression problems where
the use of PLS will become beneficial in comparison to the other methods.

Two major approaches of constructing nonlinear PLS have been mentioned.
Among other nonlinear versions of PLS, kernel PLS represents an elegant way
of dealing with nonlinear aspects of measured data. This method keeps compu-
tational and implementation simplicity of linear PLS while providing a powerful
modeling, regression, discrimination or classification tool. Kernel PLS approach
has been proven to be competitive with the other state-of-the-art kernel-based
regression and classification methods.

Connections between PCA, (regularised) CCA and PLS have been high-
lighted (see [6] for detailed comparison). Understanding of these connections
should help to design new algorithms by combining good properties of individ-
ual methods and thus resulting in more powerful machine learning tools.
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