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Abstract. In feature selection, classification accuracy typically needs to be esti-
mated in order to guide the search towards the useful subsets. It has earlier been
shown [1] that such estimates should not be used directly to determine the op-
timal subset size, or the benefits due to choosing the optimal set. The reason is
a phenomenon called overfitting, thanks to which these estimates tend to be bi-
ased. Previously, an outer loop of cross-validation has been suggested for fighting
this problem. However, this paper points out that a straightforward implementa-
tion of such an approach still gives biased estimates for the increase in accuracy
that could be obtained by selecting the best-performing subset. In addition, two
methods are suggested that are able to circumvent this problem and give virtually
unbiased results without adding almost any computational overhead.

1 Introduction

Feature selection is the art of choosing a small yet descriptive subset of useful features
from amongst a larger set of candidate features. There may be many reasons for do-
ing this: one might, for example, wish to gain a deeper understanding of the prediction
problem at hand, or simply to avoid the potentially costly measurement of all the fea-
tures. Whatever the aim, it makes sense to assume that one should be able to identify
the optimal feature subset size. Moreover, it is often desirable to have the possibility to
estimate the increase in accuracy due to choosing an optimally sized subset instead of
using all the candidate features.

2 Background

This section briefly describes some basic components required in a feature selection
process: the classifier architecture, the evaluation mechanism for a single subset, and
the search strategy for finding the useful subsets.

2.1 Classification

A plethora of approaches have been suggested for building automatic feature-based
classifiers [see, e.g., 2]. In the context of this paper, the choice of the classifier architec-
ture should be largely irrelevant. However, to verify the generality of the results, they
are computed using two very different methods: the 1 nearest neighbor (1NN) classifi-
cation rule [see, e.g., 3], which is quite popular in feature selection literature, and the
C4.5 decision tree building algorithm [4].
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2.2 Cross-Validation

In order to guide the search for the optimal subset, a mechanism for determining the
potential performance of a single subset is needed. This paper positions itself in the
context of the wrapper approach [5, 6], where the subsets are evaluated using actual
classifiers. A common choice is cross-validation (CV) [7], where the data available is
first split into a number of folds. Then, one fold at a time is designated as the validation
set, while the others are used for training. The validation set is classified using the
classifier that is trained with the corresponding training set. When the errors for the
different validation sets are counted up, an estimate for the classification performance
using a specific subset is obtained.

The special case when the number of folds is equal to the number samples is usually
called “leave-one-out cross-validation” (LOOCV).

Often, it is beneficial to retain the proportions of the different classes between all the
folds. If this is enforced, the CV process is called stratified. As stratification is known
to improve the accuracy of cross-validation [8], it is done in all the experiments of this
paper.

2.3 Search Algorithms

Out of the myriad of algorithms suggested for the order in which the feature subsets
should be evaluated, this paper experiments with two: Sequential Forward Selection, or
SFS [9], and Sequential Floating Forward Selection, SFFS [10]. Both start the search
with an empty subset, and, during one iteration, consider the insertion of each feature
that still remains excluded. Out of these, the one whose addition results in the largest
increase (or smallest decrease) in estimated performance is added to the current set. The
difference between the algorithms is that SFFS allows backtracking during the search:
after adding a feature, each feature currently selected is subjected to removal. The can-
didate most promising for deletion is pruned, if doing so yields a better performing
subset of the corresponding size than was found previously.1 In the experiments of this
paper, the search is carried on until all the candidate features have been included. This
way, the algorithms are able to propose a subset for each possible subset size.

2.4 Interpretation of the Results

Once the search algorithm together with the subset evaluation method has suggested
several subsets of different sizes, the practitioner obviously wants to know how these
subsets compare to each other: which subset size is the optimal one, and how much bet-
ter is the optimal subset of that size compared to the full set containing all the candidate
features? Answering these two questions is the essence of this paper.

3 The Problem

During the search process, the subset evaluation method, such as cross-validation, pro-
duces estimates that are used primarily to guide the search. However, these intermediate

1 The bug fix pointed out by Somol et al. [11] is utilized in this paper.
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Fig. 1. Observed classification accuracies for the subsets of different sizes found by running a
feature selection algorithm, as estimated with LOOCV during the search (solid line) and calcu-
lated for independent test data not seen during the search (dashed line). The data is from a single
run of the experiments summarized in Table 2.

results can also be stored for later use. Once the search has finished, one could then use
the same numbers to compare to each other the subsets of different sizes. An example
curve drawn based on such values is shown in Fig. 1 (the solid line).

Unfortunately, when a number of such scores due to cross-validation are compared
to each other to facilitate the identification of the best one, the estimate for the winner
of the comparison is no more an unbiased estimate for the accuracy of the winner. This
perhaps counterintuitive fact has been shown many times; from a pedagogical point of
view, one of the most successful explanations was given by Jensen and Cohen [12].

In the context of an algorithm like SFS or SFFS, the winner subset for each size
has been picked using the cross-validation values required to guide the search. This
selection process renders the CV estimate for the winner of each cardinality largely
useless for any later comparisons [1]. As a matter of fact, the accuracy obtained for new
data tends to behave rather differently, as is shown by the dashed line of Fig. 1.

4 Existing Solutions

This section describes two methods representative of the current state of the art in de-
termining the optimal subset size, and the performance of the best subset of that size.

4.1 Independent Test Set

It is straightforward to use an independent test set to evaluate the performances of the
newly found subsets, if such a set happens to be available. On the other hand, if one has
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access to more data, then one usually wants to append it to the previous dataset, in order
to maximally benefit from it. In Sect. 6 of this paper, independent test sets are used to
provide the ground truth, using which the approaches being tested can be compared.

4.2 Outer Loop of Cross-Validation

It has been mentioned before that an outer loop of cross-validation could be used to
determine the performance of the different subsets, and hence to facilitate the choice
of the optimal feature subset [1]. For example, this is what could happen: Using an
outer CV loop, a researcher obtains the properly cross-validated estimates for the per-
formance of each subset size. Then, the researcher compares the largest of these values
to the estimated performance of the full set, and finds an increase of several percentage
points in classification accuracy. This approach is detailed in Algorithm 1.

However, with dozens of candidate features, this method leads to overfitting on yet
another level. This is because — once again — the researcher is first determining the
maximum of a number of estimates, and then using that estimate.

The estimated performance for the best subset of size i found during iteration k can
be thought of as a random variable X

(k)
i , realizations of which are denoted by x

(k)
i in

Algorithm 1. The random variable representing the estimate for the performance of the
optimal subset (of the optimal size) is

X̂ = max
i

(X̄i) = max
i

(
1
K

K∑

k=1

X
(k)
i ).

1. Choose a feature selection algorithm, such as SFS or SFFS.
2. Divide all the data available into K folds.
3. for k := 1 to K, (The evaluation loop.)
3.1 Create a (training) set T (−k), which includes the samples of all the

folds, except those in the kth.
3.2 Using T (−k), perform a single run of the feature selection algorithm.

An inner loop of cross-validation may divide T (−k) further.
3.3 Train classifiers using T (−k) and the obtained subsets of different sizes.
3.4 Test these classifiers using the samples in the kth fold, and record the

performance. In the text, these estimates are referred to as x
(k)
i ,

i = 1, 2, . . . , D, where D is the total number of candidate variables.
end;

4. For each subset size, determine the average of the K estimates obtained in
step 3.4: x̄i = 1

K

�K
k=1 x

(k)
i .

5. Out of all the subset sizes, find the one which maximizes the average score:
d̂ = arg maxi(x̄i). This is the estimate for the optimal subset size.

6. The corresponding mean value, x̂ = maxi(x̄i), is the estimate for the
maximum performance that can be attained.

7. Perform a single run of the feature selection algorithm having all the data
available.

8. Choose the winner amongst the subsets having the size defined in step 5.

Algorithm 1. Determining the optimal subset size and the corresponding performance
using an outer loop of cross-validation
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A lengthy proof given by Jensen and Cohen [12, pp. 318–320] can be used almost
as such to show that if every X̄i is an unbiased estimate for the corresponding true
performance ψi of a classifier built using the selected feature subset of size i, and there
exists no subset size that is the optimal one in all the possible outcomes of the algorithm,
then X̂ = maxi(X̄i) is a positively biased estimator of any ψi. This, in turn, makes it a
positively biased estimator of the performance attainable with the best optimally sized
feature subset.

5 Cross-Indexing

To obtain a truly unbiased estimate, one shall not use any such (probabilistic) value that
was previously used to pick a certain model, or subset, from a large set of candidates.
This principle is reflected in the two algorithms — called cross-indexing A and B —
that this paper suggests for estimating the performance of the optimal feature subset.

Let us first discuss approach A, delineated in Algorithm 2. In step 4.1, averaged
estimates for each subset size are computed much like in Algorithm 1 (step 4) but sep-
arately for each fold k, always ignoring the results obtained during the kth iteration of
the evaluation loop. These estimates are then used in step 4.2 to determine the optimal
subset size d̂(−k). The corresponding performance estimate is obtained by recalling the
performance estimated during iteration k of the evaluation loop for the subset having
size d̂(−k) (step 4.3). In the end, the results for the k iterations are averaged to pro-
duce the final estimates (steps 5 and 6). Next, it is shown that the positive bias of this
approach, if any, is bounded by that of outer-loop CV.

1–3. Perform steps 1–3 of Algorithm 1, including the substeps.
4. for k := 1 to K, (The indexing loop.)
4.1 For each subset size, take the average of the K − 1 estimates obtained

for the other folds: x̄
(−k)
i = 1

K−1

��k−1
j=1 x

(j)
i +

�K
j=k+1 x

(j)
i

�
.

4.2 Find the subset size using which maximum performance is attained:

d̂(−k) = arg maxi

�
x̄

(−k)
i

�
.

4.3 Record the performance for the best subset of size d̂(−k) that was
obtained during the kth iteration: x

(k)
d̂(−k) .

4.4 For comparison purposes, you can also record the performance for the
full feature set on the kth iteration: x

(k)
D .

end;
5. Average all the K subset sizes obtained during the different executions of

step 4.2. This average is the estimate for the optimal subset size.
6. Average all the K performance estimates obtained in step 4.3. This average

is the estimate for the performance of the best subset having the size
discovered during step 5.

7–8. Perform steps 7–8 of Algorithm 1.

Algorithm 2. The cross-indexing A algorithm. Median or other statistical descriptors
could also be used instead of the average in steps 4.1, 5 and 6, if applicable.
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Proposition 1. The estimate x̂A provided by Algorithm 2 is not more optimistic than
the x̂ obtained using Algorithm 1.

Proof. The estimates provided by Algorithms 1 and 2 can be written as follows:

x̂ = max
i

(
1
K

K∑

k=1

x
(k)
i

)
=

1
K

K∑

k=1

x
(k)
d̂

, where

d̂ = arg max
i

(
1
K

K∑

�=1

x
(�)
i

)
= argmax

i

(
∑

�

x
(�)
i

)
, and

x̂A =
1
K

K∑

k=1

x
(k)
d̂(−k) , where

d̂(−k) = arg max
i

(
1

K − 1

(
k−1∑

�=1

x
(�)
i +

K∑

�=k+1

x
(�)
i

))
= argmax

i

⎛

⎝
∑

� �=k

x
(�)
i

⎞

⎠ .

Thus, it suffices to compare x
(k)
d̂

and x
(k)
d̂(−k) . By definitions of d̂ and d̂(−k):

∑

�

x
(�)
d̂

≥
∑

�

x
(�)
d̂(−k) and

∑

� �=k

x
(�)
d̂(−k) ≥

∑

� �=k

x
(�)
d̂

.

Consequently,

x
(k)
d̂

=
∑

� x
(�)
d̂

−
∑

� �=k x
(�)
d̂

≥
∑

� x
(�)
d̂(−k) −

∑
� �=k x

(�)
d̂(−k) = x

(k)
d̂(−k) . ��

It can be observed that if d̂(−k) = d̂ for all k, then the estimates provided are equal.

1–3. Perform steps 1–3 of Algorithm 1, including the substeps.
4. for k := 1 to K, (The indexing loop.)
4.1 Pick the subset size using which maximum performance was obtained

on the kth execution of step 3.4: d̂(k) = arg maxi

�
x

(k)
i

�
.

4.2 Record the performance for this very subset size on all the other
iterations except the kth.

4.3 Compute the average of the K − 1 estimates obtained in step 4.2:

x̃
(−k)
d̂(k) = 1

K−1

��k−1
�=1 x

(�)
d̂(k) +

�K
�=k+1 x

(�)
d̂(k)

�
.

4.4 For comparison purposes, you can also record the performance for the
full set on all the other K − 1 iterations.

end;
5. Average all the K subset sizes obtained during the different executions of

step 4.1. This average is the estimate for the optimal subset size.
6. Average all the K performance estimates obtained in step 4.3. This average

is the estimate for the performance of the best subset having the size
discovered during step 5.

7–8. Perform steps 7–8 of Algorithm 1.

Algorithm 3. The cross-indexing B algorithm. Again, the statistical measure computed
in steps 4.3, 5 and 6 need not be the average.
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On the other hand, in cross-indexing B outlined in Algorithm 3, the estimate number
k for the optimal subset size, d̂(k), is determined in step 4.1 using the estimates obtained
during the kth iteration of the evaluation loop. This estimate is then used to look up the
performances for the same subset size, but for the other iterations (step 4.3).

The cross-indexing algorithms described produce only a single value for both the
optimal subset size and the corresponding performance. However, those estimates that
undergo averaging in steps 5 and 6 of Algorithms 2 and 3 could also be used to de-
termine some kind of confidence intervals, or to assess the stability of the solution.
Unfortunately, such attempts are outside the scope of this paper.

6 Experiments

This section compares the following four methods for determining the optimal subset
size and for assessing the performance of the best subset having that size:

0. No outer loop of cross-validation at all,
1. Outer-loop CV (Algorithm 1),
2. Cross-indexing A (Algorithm 2), and
3. Cross-indexing B (Algorithm 3).

For each dataset, the optimal subset size is determined with every method. Also, the
increase in accuracy that can be obtained when the optimal subset of that size is chosen,
instead of the full set, is estimated. Then, a classifier is trained using the said optimal
subset, and that classifier is used to classify the held-out test data. Doing the same
with the full feature set and subtracting gives us the ground-truth improvement due to
selecting features. This value can then be compared to the improvement predicted by
the estimation approach.

The cardinality of the optimal subset as determined using method i is denoted with
d̂i, and this value when divided by the total number of candidate features (D) and
multiplied by 100% is signified by ηi. The estimated benefit due to choosing d̂i features,
i.e., the difference between the estimated accuracies using the optimal subset and the
full set, is signified by δ

(e)
i . On the other hand, the same difference when measured

utilizing the held-out test set is denoted using δ
(t)
i . To determine the bias of the different

approaches, we need to determine the difference between these two differences: Δi =
δ
(e)
i − δ

(t)
i .

The smaller the absolute value of Δi, the smaller the bias in determining the benefits
due to choosing the optimal subset found using the corresponding estimation method.
Thus, from the viewpoint of this paper, the best method is signified by the smallest
value of |Δi|.

To estimate the standard deviations of the said key figures, every experiment is
repeated 30 times with a different seed for the random number generator.

In the context of the 1NN classifier, the type of the inner cross-validation loop is
varied: namely, LOOCV and 5-fold CV are used. However, LOOCV gets computation-
ally too expensive with the C4.5 induction algorithm: therefore, such experiments are
not done. The outer CV or cross-indexing loop always uses 5 folds.
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6.1 Datasets

The datasets used in the experiments are summarized in Table 1. Each of them is pub-
licly available at the UCI Machine Learning Repository.2

Table 1. The datasets used in the experiments. The number of features in the set is denoted by
D. One f th of the samples are used during the search (see text). The classwise distribution of the
samples in the original set is shown in the next column, and the number of training samples used
(roughly the total number of samples divided by f ) is given in the last column, denoted by m.

dataset D f samples m

dermatology 33 2 20–112 (total 366) 184
ionosphere 34 2 126 and 225 176
mushroom 112 10 3916 and 4208 813
sonar 60 2 97 and 111 105
spectf 44 2 95 and 254 175
waveform 40 5 1653–1692 (total 5000) 1000
wdbc 29 2 212 and 357 284
wpbc 32 2 47 and 151 99

The mushroom dataset in the repository has 21 categorical features for which no
value is missing. In the experiments of this paper, 112 binary features are generated
from them using 1-of-N coding: a categorical feature having N possible values will
generate N binary features, such that the jth of these is assigned the value 1 if the
sample, according to this feature, belongs to the jth category, and 0 otherwise. The
mushroom set is chosen because it has previously expressed interesting behavior in
the context of feature selection [13].

Before doing anything, each dataset is divided into the set to be used during the
search, and the held-out independent test set. It is this division and all the subsequent
steps that are — for each combination being tested — repeated for 30 times. The split is
controlled using the parameter f (see Table 1): the dataset is first divided into f subsets,
of which one is chosen as the set to be used during the search while the other f − 1
subsets constitute the hold-out set. Note that this is not related to any of the different
levels of cross-validation: the purpose of the parameter f is just to make sure that the
training sets do not get prohibitively large in those cases where the dataset happens to
have a lot of samples. CV is then done during the search — potentially in two nested
loops — in order to be able to guide the selection towards the useful feature subsets,
and to estimate their benefits.

6.2 Results

For clarity, the figures introduced in the beginning of this section (d̂i, ηi, δ
(e)
i , δ

(t)
i and

Δi) are first shown in Table 2 for a single dataset using the 1NN classifier and the
SFS search algorithm. Then, more results are lined up: Table 3 contains the essential

2 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 2. Results obtained for the ionosphere dataset using the 1NN classifier and the SFS
algorithm. The different values of i refer to the different approaches: no outer loop of CV at all
(i = 0), outer-loop CV as in Algorithm 1 (i = 1), cross-indexing A (i = 2), and cross-indexing
B (i = 3). Smaller (absolute) value of Δi = δ

(e)
i − δ

(t)
i implies less observed bias, and thus a

better method. The ‘±’ signifies a single standard deviation.

inner CV i d̂i ηi (%) δ
(e)
i δ

(t)
i Δi

LOO 0 6 ± 4 19 ± 13 14 ± 3 2 ± 3 12 ± 4
1 9 ± 5 25 ± 15 5 ± 2 2 ± 2 3 ± 3
2 9 ± 5 25 ± 13 2 ± 3 2 ± 3 −1 ± 4
3 8 ± 3 23 ± 9 2 ± 3 2 ± 3 −0 ± 4

5-fold 0 7 ± 4 21 ± 11 11 ± 3 2 ± 3 9 ± 3
1 13 ± 9 39 ± 26 5 ± 3 1 ± 3 4 ± 4
2 11 ± 6 32 ± 16 2 ± 4 1 ± 3 0 ± 5
3 9 ± 4 26 ± 12 1 ± 3 2 ± 3 −0 ± 4

Table 3. Results like those in Table 2 but for all the datasets, as obtained using the SFS algo-
rithm and the 1NN classifier architecture. Again, a smaller absolute value of Δi suggests that the
estimation method is less biased, thus better.

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology LOO 52 ± 26 68 ± 24 68 ± 21 49 ± 15 4 ± 2 2 ± 2 0 ± 3 −0 ± 3

5-fold 53 ± 16 69 ± 22 73 ± 16 48 ± 11 4 ± 2 2 ± 2 1 ± 2 0 ± 3
ionosphere LOO 19 ± 13 25 ± 15 25 ± 13 23 ± 9 12 ± 4 3 ± 3 −1 ± 4 −0 ± 4

5-fold 21 ± 11 39 ± 26 32 ± 16 26 ± 12 9 ± 3 4 ± 4 0 ± 5 −0 ± 4
mushroom LOO 26 ± 20 69 ± 26 76 ± 21 30 ± 11 1 ± 1 0 ± 0 −0 ± 0 −1 ± 2

5-fold 13 ± 8 60 ± 24 57 ± 24 18 ± 8 1 ± 2 0 ± 0 −0 ± 0 −2 ± 4
sonar LOO 50 ± 18 66 ± 17 65 ± 16 53 ± 10 17 ± 7 5 ± 5 0 ± 6 −2 ± 7

5-fold 38 ± 16 61 ± 18 61 ± 12 46 ± 10 18 ± 6 4 ± 6 −2 ± 7 −2 ± 7
spectf LOO 32 ± 14 33 ± 23 37 ± 21 31 ± 12 18 ± 5 7 ± 6 3 ± 8 2 ± 6

5-fold 30 ± 19 36 ± 27 35 ± 20 32 ± 13 16 ± 3 8 ± 4 3 ± 6 2 ± 5
waveform LOO 52 ± 13 63 ± 17 63 ± 14 56 ± 9 6 ± 1 2 ± 2 1 ± 2 −0 ± 2

5-fold 46 ± 11 58 ± 17 60 ± 14 53 ± 11 5 ± 2 2 ± 2 1 ± 2 0 ± 2
wdbc LOO 35 ± 27 75 ± 28 78 ± 19 60 ± 15 4 ± 3 1 ± 2 0 ± 3 −0 ± 3

5-fold 44 ± 21 68 ± 26 67 ± 20 49 ± 15 5 ± 2 2 ± 3 0 ± 4 −0 ± 3
wpbc LOO 37 ± 30 77 ± 29 76 ± 22 56 ± 17 17 ± 11 6 ± 8 2 ± 10 0 ± 9

5-fold 27 ± 20 66 ± 32 62 ± 25 48 ± 13 19 ± 10 7 ± 9 2 ± 9 1 ± 9

information of Table 2, but for all the datasets. For brevity, only ηi and Δi are now
shown. Tables 4 and 5 report the results for the combinations C4.5/SFS and 1NN/SFFS,
respectively.

6.3 Discussion

Table 2 shows us directly that for the ionosphere dataset, the estimates provided by
method 0 — no outer loop of cross-validation at all — have a significant amount of
optimistic bias, which is not a new result [1]. As expected, the straightforward outer-
loop CV (approach 1) clearly lessens the problem, but does not nullify it. On the other
hand, it seems that both cross-indexing methods are able to make the bias effectively
vanish.
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Based on Table 3, it can be readily observed that also for the other datasets, the
bias incurred by cross-indexing (Δ2 or Δ3) is much smaller than that caused by the
other approaches (Δ0 and Δ1). This difference really does make a difference when we
want to estimate the degree of improvement (in the accuracy of a classifier) that can be
attained by running a feature selection algorithm.

The mushroom dataset deserves some special attention. While the outer-loop CV
and cross-indexing A are basically able to report perfectly unbiased accuracy results
for it, those methods fail to identify the fact that virtually error-free results can be
obtained with much less than half the number of features. Although the results due
to cross-indexing B are slightly biased to the negative direction, it is able to report a
much smaller optimal feature subset size, which already separates the classes extremely
well.

In general, it can be observed that the estimates given for the size of the optimal
subset are surprisingly close to each other for the outer-loop CV (method 1) and cross-
indexing A (method 2) — it is just that the cross-indexing approach gives a less bi-
ased estimate for the performance. On the other hand, it appears that cross-indexing
B (method 3) can identify equally performing subsets that, on the average, tend to be
somewhat smaller.

Finally, Tables 4 and 5 reveal that the observations made are not too dependent on
a particular choice of classifier architecture or subset selection strategy.

Table 4. Results calculated using the SFS strategy together with the C4.5 classifier

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology 5-fold 42 ± 19 66 ± 25 61 ± 22 37 ± 13 4 ± 3 2 ± 2 1 ± 2 −0 ± 3
ionosphere 5-fold 34 ± 21 62 ± 33 56 ± 28 34 ± 14 6 ± 3 2 ± 2 −1 ± 3 −1 ± 3
mushroom 5-fold 20 ± 14 40 ± 25 38 ± 23 18 ± 10 1 ± 0 0 ± 0 0 ± 0 −0 ± 0
sonar 5-fold 24 ± 15 29 ± 25 35 ± 20 27 ± 12 17 ± 8 6 ± 6 0 ± 9 0 ± 8
spectf 5-fold 35 ± 21 61 ± 32 57 ± 25 42 ± 14 13 ± 6 4 ± 5 −0 ± 4 −1 ± 5
waveform 5-fold 36 ± 17 52 ± 25 52 ± 19 41 ± 12 5 ± 2 2 ± 2 −0 ± 2 −0 ± 2
wdbc 5-fold 30 ± 17 44 ± 30 44 ± 26 27 ± 13 4 ± 3 2 ± 2 0 ± 2 −0 ± 2
wpbc 5-fold 42 ± 23 21 ± 21 22 ± 19 23 ± 13 9 ± 8 2 ± 7 0 ± 7 1 ± 8

Table 5. Results for the SFFS algorithm and the 1NN classifier

dataset inner CV η0 η1 η2 η3 Δ0 Δ1 Δ2 Δ3
dermatology LOO 34 ± 10 77 ± 25 72 ± 20 50 ± 11 6 ± 3 2 ± 2 1 ± 3 1 ± 3

5-fold 51 ± 20 74 ± 22 72 ± 18 48 ± 10 5 ± 4 2 ± 3 1 ± 3 −0 ± 3
ionosphere LOO 23 ± 11 26 ± 20 28 ± 18 23 ± 8 13 ± 5 3 ± 4 −1 ± 5 −1 ± 5

5-fold 21 ± 9 36 ± 25 34 ± 18 28 ± 12 9 ± 4 3 ± 3 −1 ± 4 −0 ± 3
mushroom LOO 7 ± 2 77 ± 27 67 ± 24 20 ± 9 4 ± 12 0 ± 0 −0 ± 0 −1 ± 1

5-fold 9 ± 6 60 ± 26 55 ± 23 20 ± 10 2 ± 7 0 ± 0 −0 ± 0 −2 ± 6
sonar LOO 26 ± 7 62 ± 26 65 ± 19 47 ± 15 21 ± 8 7 ± 7 2 ± 7 −0 ± 7

5-fold 39 ± 15 63 ± 21 59 ± 15 43 ± 10 20 ± 7 6 ± 6 −0 ± 6 −1 ± 5
spectf LOO 42 ± 13 43 ± 31 41 ± 25 33 ± 13 20 ± 6 7 ± 7 −0 ± 7 −0 ± 5

5-fold 34 ± 18 33 ± 26 36 ± 19 33 ± 12 16 ± 4 6 ± 5 1 ± 5 1 ± 5
waveform LOO 49 ± 9 55 ± 20 53 ± 13 50 ± 10 7 ± 2 2 ± 2 0 ± 2 0 ± 2

5-fold 49 ± 14 58 ± 17 58 ± 15 52 ± 9 6 ± 2 2 ± 2 0 ± 2 −1 ± 2
wdbc LOO 18 ± 7 75 ± 26 70 ± 21 47 ± 15 4 ± 3 1 ± 2 0 ± 2 −1 ± 2

5-fold 54 ± 20 73 ± 23 71 ± 17 46 ± 13 4 ± 3 1 ± 2 −1 ± 3 −1 ± 3
wpbc LOO 13 ± 6 64 ± 38 64 ± 31 50 ± 18 20 ± 9 7 ± 6 2 ± 7 1 ± 7

5-fold 37 ± 22 61 ± 31 57 ± 22 43 ± 14 21 ± 9 9 ± 8 2 ± 8 3 ± 8
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7 Summary

In feature selection, a practitioner typically needs to know the optimal feature subset
size for a given dataset, and how much choosing the optimal subset of that size increases
the performance.

Traditionally, cross-validation is used to give minimally biased results while using
the data available as effectively as possible. However, when cross-validation is done in
evaluating and comparing the models, an outer loop of cross-validation is needed for
assessing the winner model. Indeed, an outer loop has been suggested for measuring
the benefits due to feature selection.

In this paper, it is shown that a simple implementation of an outer cross-validation
loop still gives biased estimates for the accuracy of the optimal subset as compared
to the full set comprised of all the features. To tackle this problem, a new approach
called “cross-indexing” is introduced in the form of two algorithms. They require prac-
tically no extra computation, nevertheless are able to give superior, virtually unbiased
estimates.
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