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Abstract. We investigate a method to find local clusters in low dimensional sub-
spaces of high dimensional data, e.g. in high dimensional image descriptions. Us-
ing cluster centers instead of the full set of data will speed up the performance of
learning algorithms for object recognition, and might also improve performance
because overfitting is avoided. Using the Graz0O1 database, our method outper-
forms a current standard method for feature extraction from high dimensional
image representations.

1 Introduction

One of the key requirements to a modern Cognitive Vision System is a robust perfor-
mance upon changes in illumination, scale, pose etc. For this, modern feature extrac-
tion methods like Lowe’s Scale-Invariant-Feature-Transforms [[1] and Mikolajczyk’s
and Schmid’s Scale-Invariant-Harris-Laplace- [2]] and Affine-Invariant-Interest-Point-
Detectors [3] come to hand when learning objects or object categories [4}5]. Opelt
et al. [4] used AdaBoost [6,[7] to generate a combination of weak hypotheses, where
each weak hypothesis consists of a feature vector with a distance threshold. Since the
number of feature vectors is very large, the search for weak hypotheses becomes com-
putationally very expensive. To reduce the computational burden, we want to reduce
the number of candidates for weak hypotheses by clustering. This would reduce learn-
ing time significantly. Furthermore, this promises less overfitting and, eventually, more
accurate classifiers. Note that both, Opelt et al. [4] and Dance et al. [3]] use k-means for
that purpose.

Unfortunately, modern descriptors like Lowe’s SIFTs reside in high dimensional
space for which common metrics like the euclidean might be unsuitable [§]]. Therefore,
dimensionality reduction techniques such as PCA are commonly applied before cluster-
ing. Nevertheless, if the specific clusters reside in various subspaces such global reduc-
tion techniques may be inappropriate. Recently, projective clustering methods address
this problem by searching for local subspace clusters [9,/10]. Aggarwal et al. [9] deter-
mine the local subspaces through the smallest eigenvectors of each clusters covariance
matrix, whereat the user has to predefine the minimum number of subspace dimensions.
Bohm et al. [10] propose a density connected clustering algorithm, which searches for

* This work was presented in a preliminary version at the First Austrian Cognitive Vision Work-
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variances below a certain threshold along the attributes to identify subspaces within e-
neighborhoods of points. Using another parameter, they limit the number of admissible
subspace dimensions from above.

Unfortunately, the number of subspace dimensions is commonly unknown before-
hand. Furthermore, the metrics employed by Aggarwal ef al. [9] and Bohm et al. [10]
may deteriorate upon high dimensional subspaces. Therefore, we propose a fast pro-
jective clustering algorithm (FPC), which aims to find axis-parallel subspace-clusters
while determining the number of subspace dimensions automatically. Our approach is
to search for the interval of highest density along all coordinate axes recursively [Sec.
Dl. Since our actual goal is feature extraction for learning from high dimensional image
representations the evaluations are twofold. First, we compare our method to k-means
in an unsupervised setting using artificial data [Sec.[3.1]]. Then, we evaluate our method
within a boosting frame work, enabling us to directly compare our results to those of
Opelt et al. [4]] using k-means [Sec.[3.2].

2 The Clustering Algorithm

Assume that the features reside in IR™. Then the densest interval [a, b] along each co-
ordinate [ € {1,...,n} is calculated. (The details of this calculation are given in the
next section.) For the coordinate with the overall densest interval, all data points with
a corresponding coordinate in this interval are selected and processed by a recursive
application of the algorithm [App.[All. The algorithm terminates if no meaningful dense
intervals can be found. The final result of one iteration of the algorithm is a subspace
cluster defined by the hyper-rectangle of the recursively chosen coordinates and inter-
vals. When such a cluster is found, the data points in this cluster are removed and the
algorithm is restarted for the remaining data. The overall algorithm terminates if no
more clusters can be found.

2.1 Calculating the Densest Interval Along a Single Coordinate

Letx = (21 < ... < x,,) € IR be an ordered dataset with diameter » = max x —min x.
To calculate the densest interval we assume that the data are drawn from a probability
density function

1—
f@lab) =" T, L) (@), 4 . (1)
with unknown [a, b] and ¢, and the indicator function
[ 1,z €[a,b]
l[a,b] (.ﬁ) - { 0’ else } ()

Choosing the parameters which maximize the likelihood of the data we find the desired
interval. Optimizing the log-likelihood L L for ¢ we find

1- 5 ;
LL (x]a,b) = (m = &) - log (T_(bn_la)> +¢&-log (bfa> @
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with ¢ = [{z]a < x < b}|. Thus, it remains to select a and b such that LL (x|a, b) is
maximized. Thereby, we restrict £ as follows.

Viewing clustering as learning an indicator function in an unsupervised setting, we
consult the supervised case to infer a reasonable sample bound. Within the agnostic
learning framework [11L[12]] samples (x1,41), ..., (Xm, Ym ) are drawn randomly from a
joint distribution D over IR"™ x {1, ..., #classes}, and the learner’s goal is to output a
hypothesis & € H such that for another (x, ) the probability P(h(x) # y) is almost
that of the best h € H:

P [P (0 # ) —min P10 24) e 210 @

with IP the probability of drawing (X1,¥1), ..., (Xm, ym ). For this setting it has been
shown [[13] that one has to sample

m ~ 612 (VCdim(H) — log 6) 5)

data points. That is, even if labels were given, the bounds [a, b] of the interval remain
imprecise by
m-e=m-+\/(VCdim(H) —log6)/m ~ /m (6)

data points compared to the best interval possible. Therefore, it is reasonable to use
Smin S § S m — Smin (7)

with $,i, = 1/m, as a validation criterion for a solution [a, b].

This choice of s,,;, guarantees a linear runtime at a maximum level of granularity
when maximizing the Likelihood [Eq.[3]] using the following exhaustive search proce-
dure. Let

P = {9099 =" +2mi+1,1 <i<m,z; # 1'i+1}
U {min x, maxx} , (8

where x = (21 < ... < z,,) € Rand ¢; < ... < @)y € P, denote the ordered set of
possible interval bounds. Since an exhaustive search over @ would require O(m?) steps,
we use the following heuristic search (which might return a suboptimal interval). In a
first phase, we determine a coarse optimal solution by exhaustively searching among the
subset & C @ of bounds, that pairwise enclose the minimum number s,,;, of points.
Therefore, we denote R

P ={¢1 <..< P4t ®)

as the set of coarse bounds ¢ with

$1 = min ¢ = min(x),
Qéi = min {(p ‘ © > (ﬁi_l, #4,0 > #Qbi—l + Smin}a
#o =z < o}l
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That is, we start at the lowest possible bound and iteratively define a new coarse bound
after passing s,,;,, points. Note, that we allow for the last interval to contain less than
Smin data points. Using @, we get a coarse solution by exhaustive search

(@i, ¢;) = argmax LL(x | ¢ir, §;j) (10)
Pir <P,
Note, that under the initial assumption of ordered data this computation takes O(m).
Then, in the second phase, we refine the coarse solution at the granular level. Although
the bounds are imprecise according to Equation [6] we are interested in the empirical
maximum of the Likelihood [Eq.[3]] and, thus, maximize

(pi,pj) = argmax  LL(x| i, ¢j) (11)
(pirp50) € DPixD¥i

using

% ={p| @ic1 < p < Pit1} (12)
% ={p|@j-1 <P <Pj1}

as the set of possible bounds around the coarse bounds. Again, the computation takes
O(m) time. Note, that the likelihood for a bimodal distribution is also maximized for
(i, ¢;) enclosing the valley between the two modes. Thus, using

C Hzra<az<b} v

F(a,b,r,m) = b (13)
m —a

we select the densest interval (a, b) to

(a,b) = argmax F(a',b’,r,m) (14)
(a’,b")
with (a’,b") € {(minx, ¢;), (@i, ¥;), (p;, maxx)}. To further refine the selected in-
terval we rerun the algorithm on the data from it until no further valid subinterval [Eq.
[ can be selected. Consequently, at least s,,;, data points are removed within each
iteration, which yields a total run time of at most O(m?/?).

2.2 Processing High Dimensional Data

Assume the densest interval (a, b) along each coordinate has been calculated [Sec. 2]
and let A denote the set of all coordinates along which there exists a valid refinement
of the data [Eq. [Z]l. Thus, we determine the clusters C = {x : a; < x; < b;} and
C = X\ C by selecting that coordinate | € A which holds the densest interval among
all coordinates

| = argmax F'(ay, by, pr,m) (15)

reA

with p the diameter of the full data set. Then, we recurse upon the data in C by re-
calculating (a, b) and A until A = {}, i.e. there are no more valid coordinates along
which cluster C can be bounded. Consequently, C is stored, and the algorithm [App. Al
restarts upon the remaining data. Finally, the input data is partitioned into a set of sub-
space clusters, whereat each cluster denotes its constituting bounds in their particular
subspace.
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3 Evaluation

3.1 Artificial Data

In a first step, we have evaluated our approach on a artificial 25-dimensional dataset
containing k£ = 19 axis-parallel clusters C located in 2-dimensional subspaces. We build
the clusters by sampling an increasing number of points {100, 150, ..., 1000} from 25-
dimensional gaussians A/(0, o) with & = 1 except for 2 randomly chosen dimensions
with o = 0.1.Furthermore, we added 25% of uniformly distributed noise within the range
of the data. Let C denote the clustering obtained from a particular clustering method.

We evaluate the quality of a clustering obtained in terms of how well the known
clusters are covered. Particularly, we assume that every cluster C; belongs exactly to
one cluster C; and, thus, calculate the coverage

> Cri) N Gyl
J
p= -
> 1G;l
j
7(j) = argmax [C; N (of]

withi=1,..,k j=1,. kand7 = {1,... k}".

Unlike k-means, FPC produces a deterministic output upon a certain input. Hence,
we compare our clustering of the data to multiple rounds of k-means, each varying in k
and the seeds sampled from the data at random. Figure [Il shows that FPC outperforms
k-means.
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Fig. 1. Coverage of real clusters by the clustering found. Left: at zero noise. Right: at 25% noise
level.

3.2 Graz01 Database

Furthermore, we tested our method for image categorization using the Graz01 databasd]
using LPBoost [14] as learning method. Particularly, we used the 128-dimensional

! Available at http://www.emt.tugraz.at/~pinz/data/
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SIFTs extracted by Opelt er al. [4] from 300 images of the categories *bike” and "back-
ground’, and retained the SIFTs from 50 images per class for testing. Applying FPC on
the training set, we obtained 459 subspace clusters from about 400000 SIFTs. It turned
out that all clusters were bounded in at most 18 coordinates, indicating the typically

o o o o
> ~N ® ©

Positive Detection Rate
o
o

— FPC + LP-Boost
— - k-means + AdaBoost [4]
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False Detection Rate
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Fig. 2. ROC-Curve of our method compared to Opelt et al. [4]

Fig. 3. Detected Features. Upper row: The features with minimum distance to the three weak
hypotheses, which have the highest weight (within the ensemble) among all those that triggered
for the particular image. Classification is robust to the objects pose. Lower row: All features with
a distance below the threshold to one of the three weak hypotheses, which have the highest weight

(within the ensemble) among all those that triggered for the particular image.
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low subspace dimensionality observed. Similar to Opelt et al., we calculate the distance
matrix D**##mages of clusters to images before boosting, where each entry denotes the
minimum distance between a cluster’s center c; and the SIFTs from an image. Unlike
Opelt et al., we do not consider all SIFTs from an image during the calculation of the
distance matrix, but only those that fall into the particular cluster’s subspace bounds,
setting the distance to infinity if there are no such SIFTs.

Using D, LPBoost calls a weak learner within each boosting round to obtain a
optimal weak hypothesis with respect to the current boosting weights. Particularly, a
weak hypotheses is derived from a cluster by sorting the distances D; . to its center
and selecting an optimal threshold ¢; thereupon, such that the sum of the weighted
labels from those images with distance below 6; is maximized. See Opelt et al. [4] for
details. Using LPBoost [[14] we achieve an 86% ROC-equal error rate (with an area of
0.8968 below the curve) [Fig. 2l on the test set, which outperforms Opelt et al. [4]].
Furthermore, only 28 weak hypotheses, having weights greater zero in the ensemble,
contribute to the final hypothesis. Examination of the contributing weak hypotheses
showed that our feature extraction focuses on typical structures like bars, tyres, spokes
and wires. See figure 3] for some detected features. Particularly, the examples show that
classification is robust to variations of the objects pose. Though similar structures may
also be detected in the background of images from the positive class or the negative
class respectively, the final classification remains correct.

4 Discussion

We have presented a new method for feature extraction from high dimensional image
representations. The evaluations approve the viability of our work. Furthermore, gen-
erating weak hypotheses from out FPC is straightforward since each cluster denotes
thresholds in various subspaces of the data. The final ensemble is sparse and outper-
forms results from earlier work. Hence, overfitting is limited and generalisation perfor-
mance is improved. Therefore, feature extraction using FPC should be tried out on other
applications involving high dimensional data to check if the results translate.
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The Algorithm

Algorithm 1 - Fast Projective Clustering (FPC)
procedure fpc(C, smin)

% Input: data set C € IR™*"™, minimum support Smr,
% Output: clustering C

p

= max C — min C

while C is not empty do

repeat

[C, C] = addBounds(C, $:min, p)
until C is not refined
C=Ccu{c}
Cc=C

end while
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procedure selectDensestInterval(C, o, ¢;, ()
% Input: cluster C € IR™*", bounds (¢;, ¢;), coordinate ~
% Output: data C from densest interval with bounds (a, b), separated data C

r = max C; — min C;
D; x &5 = {(min Cy, ¢;), (v, ¢5), (p;, max Cy) }

(a,b) = argmax F(a',b,r,m)
(a’ b/ )ED; x B
c.c®@c

procedure addBounds(C, smin, p)
% Input: initial cluster C € IR™*", minimum support sm;n, diameter p of the data set
% Output: refined cluster C with new bounds (a, b) along coordinate [, separated data C

A={}
forl=1tondo
CcC' =C
valid = true
while valid do
[¢i, ;] = optimalBounds(C’, smin, [)
[C’,C', a,b] = selectDensestInterval(C’, ¢;, ;, 1)
valid = (|C'| > smin) A (|IC'| > Smin)

if valid then
A=AUl
a =a
b, =0b
end if
end while
end for
if A is not empty then
I = argmax F(ay, by, py,m)
l'eA
07 C (aia_bl) C

end if
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procedure optimalBounds(C, smin, [)
% Input: cluster C € IR™*", minimum support smqn, coordinate
% Output: optimal bounds ¢;, ¢; maximizing the Likelihood

x = sort(Cy)
r = max X — minx
if r = 0 then

©; = minx
pj = maxx
return
end if
b= {plp = W#,l <i<m,x; # Tit1} U {minx, maxx}
@ ={p1 < ... < §} with
Gi =min{p | @ > @i—1,#p > #Pi-1 + Smin},
#o = [{z < o}
(86, 85) = angmax LL(x | i, 8y7)
Pyt <P
2% ={p| i1 <o < it}
P77 ={p|@j-1 <o < @it}
(pi,5) = arg max LL(x | i, ¢jr)

(pirrpj1) € BPi XD
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