


Lecture Notes in Computer Science 3950
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Jörg P. Müller Franco Zambonelli (Eds.)

Agent-Oriented
Software
Engineering VI

6th International Workshop, AOSE 2005
Utrecht, The Netherlands, July 25, 2005
Revised and Invited Papers

13



Volume Editors

Jörg P. Müller
Technische Universität Clausthal
Institut für Informatik
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
E-mail: joerg.p.mueller.ext@siemens.com

Franco Zambonelli
University of Modena and Reggio Emilia
Facoltà di Ingegneria, Sede di Reggio Emilia
Dipartimento di Scienze e Metodi dell’Ingegneria
Via Allegri 13, 42100 Reggio Emilia, Italy
E-mail: franco.zambonelli@unimore.it

Library of Congress Control Number: 2006924852

CR Subject Classification (1998): D.2, I.2.11, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-34097-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34097-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11752660 06/3142 5 4 3 2 1 0



Preface

New technology developments, such as Ambient Intelligence, the Internet of
Things, the Grid, and Autonomic/Organic Computing, impose new requirements
on the engineering of software systems. Nowadays, software is to be based on
open architectures that continuously change and evolve to accommodate new
components and meet new requirements. Software must also operate on dif-
ferent platforms, without recompilation, and with minimal assumptions about
its operating environment and its users. Furthermore, software must be robust
and autonomous, capable of serving a user with a minimum of overhead and
interference.

Agent and multiagent concepts provide a number of interesting properties to
respond to these challenges. They offer higher level abstractions and mechanisms
which address issues such as knowledge representation and reasoning, communi-
cation, coordination, cooperation among heterogeneous and autonomous parties,
perception, commitments, goals, beliefs, and intentions all of which need concep-
tual modeling. The implementation of these concepts can lead to advanced func-
tionalities, e.g., in inference-based query answering, transaction control, adaptive
workflows, brokering and integration of disparate information sources, and auto-
mated communication processes. At the same time, successful research is being
performed to provide links between the modeling of agent systems and state-
of-the-art software modeling techniques and tools, such as the Model-Driven
ArchitectureTM, or the Unified Modeling Language.

Like its very successful predecessors of the years 2000 to 2004 (Lecture Notes
in Computer Science, Volume 1957, 2222, 2585, 2935, and 3382), the AOSE
2005 workshop sought to examine the credentials of agent-based approaches as a
software engineering paradigm, and to gain an insight into what agent-oriented
software engineering will look like, and what its benefits will be.

AOSE 2005 was hosted by the 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005) held in Utrecht, The
Netherlands, in July 2005. The workshop received 35 paper submissions. Af-
ter a round of reviews where each paper received at least three reviews from
independent reviewers, 13 papers were selected for regular presentation at the
workshop, plus seven additional papers for short presentation. The workshop
program included an invited talk, technical sessions in which the accepted pa-
pers were presented and discussed, and a closing plenary session. It congre-
gated more then 50 attendees among researchers, students and practitioners,
who contributed to the discussion of research problems related to the main top-
ics in AOSE. After the workshop, the authors of the accepted papers were asked
to review their papers based on both the reviewers’ comments and the out-
comes of the workshop discussion. Then, after a second round of reviews, 18
papers made it into this book, in which we are confident the readers will find a



VI Preface

comprehensive high-quality overview of the state of the art in agent-oriented
software engineering.

This book is organized into five sections, each dealing with various very im-
portant aspects of multiagent systems development: Modeling Tools, Analysis
and Validation Tools, Multiagent Systems Design, Implementation Tools, and
Experiences and Comparative Evaluations.

Section 1: Modeling Tools

The first section focuses on the issue of modeling multiagent systems, and in-
cludes three papers.

The first paper, titled Operational Modeling of Agent Autonomy, by Weiß
et al., focuses on the concept of autonomy, which is a central one in AOSE.
The authors correctly discuss that, while there has been considerable progress
in the theoretical aspects related to the autonomy concept, little has been done
so far into transforming autonomy into a practical software property. To this
end, the authors proposes ASL (Autonomy Specification Language) as a first
step in this direction. ASL helps modeling autonomy in terms of the degrees of
freedom left to the agents for the execution of their activities, and allows for the
precise identification of the activities to be carried on by a set of agents.

The starting point of the paper authored by Cheong and Winikoff and ti-
tled Hermes: Designing Goal-Oriented Interactions is that interactions between
agents are traditionally specified by using notations such as Petri Nets, AUML,
etc., which – being message-centric – hardly fit autonomous goal-oriented agents.
Also, since interaction protocols typically prescribe how interactions must be
carried out by agents, they may limit the flexibility of interactions and the
overall robustness of a multiagent system. Based on these assumptions, the au-
thors present a new goal-oriented approach to practically model interactions,
Hermes, which includes a methodology for designing goal-oriented interactions,
failure-handling mechanisms, and a process for mapping design artifacts into an
executable implementation.

The third paper, Modeling Social Aspects of Multiagent Systems: the AML
Approach, by Cervenka et al., outlines the need for any modeling tool to provide
suitable ways for representing the social aspects of multiagent systems, including
the social structure of a multiagent system, the social behavior driving the overall
dynamics of the system, and the social attitudes of the individuals in the system.
In this context, the authors propose a new Agent Modeling Language (AML) to
model social aspects. The paper specifically focuses on analyzing those aspects
of AML related to social structure modeling and to role modeling, and evaluates
the effectiveness of AML with the help of application examples.

Section 2: Analysis and Validation Tools

This section focuses on the important issue of analyzing and validating multia-
gent systems.

The starting point of the paper Requirements Elicitation for Agent-Based
Applications, authored by Fuentes Fernandez et al., is that the analysis of



Preface VII

requirements and, specifically, requirements elicitation is a key stage for the
development of complex multiagent systems. Given the need for proper tools
to support requirements elicitation, the authors propose a new tool based on
activity theory and social sciences, the Requirements Elicitation Guide. The
guide empowers teams devoted to developing multiagent systems with the nec-
essary knowledge and experience required to succesfully perform requirements
elicitation.

In their paper titled Formalization and Analysis of the Temporal Dynamics of
Conditioning, Bosse et al. outline that it is very important for AOSE techniques
and for AOSE analysis to be able to properly incorporate learning mechanisms
into agent systems. By focussing on the specific learning mechanism of classi-
cal conditioning, the authors point out that traditional modeling mechanisms
– based on dynamical systems theories – mismatch with the traditional way of
modeling software systems (and multiagent systems), typically based on logical
languages. Accordingly, the authors explore a new logical approach to model
classical conditioning, which may be more suitable for integration into current
AOSE techniques.

In the last paper of this section, titled Incorporating Committment Protocols
into Tropos, Mallya and Singh attempt synthetizing two trends in the engineer-
ing of agent systems. On the one hand, modern methodologies focus on the key
phases of agent development, but tend to miss properly modeling flexible inter-
actions. On the other hand, committment protocols are deeply studied to model
flexibly behaviors and interactions, but are not properly integrated into an en-
gineering framework. The proposal of the paper is thus that the analysis phase
of a multiagent system should incorporate committment protocols as a primary
concern, at the same level of goals and agents, and the authors show how this
can be done with regard to the Tropos methodology.

Section 3: Multiagent Systems Design

This section consists of four papers that investigate different aspects of the design
of multiagent systems.

The first paper, titled Zooming Multi-Agent Systems, by Molesini et al., pro-
poses a new technique for a multi-layered description and analysis of multiagent
systems called zooming, and describes how the SODA methodology for agent-
oriented software engineering can be extended to include a simple zooming mech-
anism. A case study concerning the management of a university course Internet
website is provided to demonstrate the applicability and potential benefits of the
new technique.

The second paper, authored by Hill et al., deals with Improving AOSE with an
Enriched Modeling Framework. The authors observe that existing agent-oriented
methodologies neglect (or, e.g., in the case of Tropos, only provide rudimentary
support for) the case of early requirements gathering and analysis. Their con-
tribution targets conceptual knowledge modeling to be used in early require-
ments engineering. The paper proposes a MAS design framework that provides
conceptual graphs as a modeling notation. Based on these, a transaction-based



VIII Preface

architecture is described which enables model verification during the require-
ments gathering phase. To allow their approach to leverage the capability of
other AOSE methodologies and agent development environments, the descrip-
tion of a mapping of a conceptual graph model to AUML is included in the
paper.

The third paper in this section, titled Dealing with Adaptive Multi-Agent Or-
ganizations in the Gaia Methodology, by Cernuzzi and Zambonelli, investigates
factors, parameters and requirements for designing multiagent systems with view
to adaptability. In particular, the paper analyzes the GAIA agent methodology
with regard to its suitability in supporting and facilitating changes in the organi-
zation of a multiagent system. By means of a conference management example,
the authors show how the above-mentioned factors and concepts can be taken
into account when modeling a MAS using Gaia. The authors compare other
methodologies with Gaia regarding their support for adaptation. They argue
that while older methodologies (such as Roadmap, Prometheus, or MaSE) re-
quire MAS organizations to be derived in a more or less implicit way from the
identification of roles and their interactions, the more recently proposed ap-
proaches (such as MASSIVE or Tropos) explicitly address the requirement of
design for change to some degree.

The last paper in this section addresses the problem of providing transforma-
tions from verifiable formal goal-based specifications of agents to implementation
models, so-called behavior automata. Simon and Flouret describe an approach
that is based on an agent design model called goal decomposition tree (GDT),
allowing designers to specify agent behaviors in a temporal logic formula (a sub-
set of TLA). A proof system is given to enable verification of agent behaviors
specified in GDT. The focus of the paper is the description of an implementa-
tion model that is based on automata, which can be automatically generated
from the verified GDT agent model. In this implementation model, the behavior
automaton of an agent is constructed by combining elementary automata using
so-called automata composition patterns. These patterns are associated with the
goal decomposition operators as specified in the GDT language.

Section 4: Implementation Tools

The papers in this section describe up-to-date research efforts on the develop-
ment of tools for developing agent and multiagent systems and applications.

In their paper titled An Approach to Dynamically Generated User-Specified
MAS, Jayaputera et al. present an approach for designing multiagent systems
relying on the concept of what they call missions. A mission is the description of
a goal plus associated (partial) plan on how to achieve the goal. Given a mission,
a set of agents (mobile or stationary) are created to work on the misison. The
authors claim that introducing this abstraction allows them to focus on the
application rather than on individual agents. Using the mission concept, the
authors describe and empirically evaluate the eHermes platform that creates the
(appropriate number of) agents required for a mission at run-time ‘on demand.’
The dynamic features of their approach provide an increased robustness of the



Preface IX

system if the environmental conditions change during execution, and the ability
to maintain state and data of the mission so that it can be suspended and
resumed at a later stage and at a different location.

The second paper in this section — Supporting the Development of Multi-
Agent Interactions via Roles — by Cabri et al. starts from the assumption that
the modeling of interactions between agents by roles can simplify the devel-
opment of multiagent systems. The authors introduce the BRAIN framework
for developing agent systems; the key elements of BRAIN are threefold: (i) a
semi-formal model of a role (defined as a set of capabilities and its expected
behavior); (ii) the XRole language, an XML-based notation for roles; and (iii)
interaction infrastructures building on the XRole notation and the role model.
The focus in this paper is on how roles in BRAIN can be employed in different
phases of applications development, covering analysis, design, and implementa-
tion, thus establishing a central repository of information usable throughout the
whole application development lifecycle. The concepts are illustrated by using
an application example.

The third paper, Automating Model Transformations in Agent-Oriented Mod-
eling, by Perini and Susi, advocates the usage of OMG’s Model-Driven Architec-
ture (MDATM) to provide a model-based approach for the analysis and design of
multiagent systems. In particular, the paper discusses the role of model transfor-
mations in agent-oriented software engineering. Using the Tropos methodology,
the paper discusses how MDA concepts can be applied to the different phases
of agent systems development. In this context, the authors describe a model-
to-model transformation from a Tropos plan decomposition model to a UML 2
activity diagram. Also, the paper describes a set of tools that the authors cre-
ated for supporting the use of the Tropos methodology according to the MDA
paradigm by re-engineering the TAOM Tropos modeler in the Eclipse platform.
The results of this are two Eclipse plug-ins, the TAOM4e model implementing
the Tropos meta-model, and the TAOM4e platform implementing the modeler
functions required for building and managing Tropos models.

A similar problem is dealt with by Garćıa-Ojeda et al., the authors of the
fourth paper in this section. In Paving the Way for Implementing Multiagent
Systems: Integrating Gaia with Agent-UML, they describe a MAS development
process that incrementally refines a design made using Gaia by applying agent-
oriented extensions of UML (in particular Agent-UML). The authors claim that
by combining Gaia with Agent-UML, a MAS design can be made more concrete.
Technically, this is achieved by mapping the core models of Gaia (Interaction
Model, Roles Model, Organizational Structure Model, Service Model, and Agent
Model) into the three layers of the agent interaction protocols as defined in
Agent-UML. Thus, it is possible to extend the representation of protocols and
interaction models, agents, and organizational structures in Gaia with the cor-
responding concepts in Agent-UML. The applicability and potential benefits of
the authors’ work are illustrated by using a sample scenario involving the design
of a conference management system.



X Preface

In the last paper in this section, titled Applying Multi-agent Concepts to
Dynamic Plug-in Architectures, Duvigneau et al. apply concepts of agent orien-
tation to the plug-in-based architecture which are currently being developed in
software engineering research. The work described in this paper aims at plug-in
frameworks like Eclipse or NetBeans. The main goal of this research is to pull
the design of plug-in-based applications up to a conceptual modeling level. The
authors use their MULAN architecture, to build a conceptual model of a plug-
in-based system. The core idea is to achieve extensibility by the idea of nested
platform agents and to support this concept by message-based horizontal and
vertical communication between the agents representing the components in the
system. Based on the conceptual model, a plug-in system using the Renew plat-
form is described, which enables dynamic configuration of the plug-in system.

Section 5: Experiences and Comparative Evaluations

In this last section, three papers are included that report interesting experiences
and evaluations of specific AOSE-related issues.

The paper Using the Analytic Hierarchy Process for Evaluating Multiagent
Systems Architecture Candidates, by Davidsson et al., starts from the consider-
ation that, although a number of different multiagent systems architectures are
being proposed and implemented, little has been done so far to systematically
evaluate them. In particular, the authors argue that – when developing a multi-
agent system – it is important to evaluate possible architecture candidates with
respect to their suitability to the specific application scenario. In this context,
the authors focus on the problem of load balancing in intelligent networks, and
they evaluate four different architectures that can be used to handle this task.
These architectures are then studied via simulations, and metrics measurements
are recorded and analyzed using the analytic hierarchy process, which is pro-
posed as a useful analysis tool for deciding which architecture candidate is the
most appropriate in different situations.

The paper Estimating Costs for Agent-Oriented Software, by Gomez-Sanz
et al., focuses on software economics and on the need to carefully evaluate the
costs involved in developing agent-oriented software systems. The authors cor-
rectly claim that there is a lack of shared experience in evaluating the costs
associated to the development of multiagent systems, and provide some results
related to this. Specifically, the authors exploit data collected from real agent-
based projects, and give hints for the application of existing software cost esti-
mation models – e.g., the well-assessed COCOMO model – and for what would
be appropriate metrics for agent-based software development. These results can
assist agent developers to elaborate tentative estimations of how much effort
they should dedicate to their projects and determine their costs.

The last paper of this section and of the book, Aspects in Agent-Oriented
Software Engineering: Lessons Learned, by Garcia et al., focuses on the issue
of modularity in multiagent systems. The paper shows that several concerns
in the development of multiagent systems cannot be represented in a modular
way, since they crosscut several system modules and do not easily fit into the



Preface XI

traditional abstractions of agent-oriented software engineering. Thus, the authors
argue that is is important to systematically verify whether emerging development
paradigms support improved modularization of the crosscutting concerns relative
to multiagent systems. The paper then reports some lessons learned based on
their experiences in using aspect-oriented methods and techniques to address
these problems. In the light of these lessons, the authors also discuss related
work in the area and are able to discuss a number of promising future research
directions.

We believe that this thoroughly prepared volume is of particular value to all
readers interested in key topics and the most recent developments in the very
exciting field of agent-oriented software engineering.

February 2006 Jörg P. Müller
Franco Zambonelli



Organization

Organizing Committee

Jörg P. Müller (Co-chair)
Clausthal University of Technology, Germany
Email: mueller@in.tu-clausthal.de

Franco Zambonelli (Co-chair)
Universitá di Modena e Reggio Emilia, Italy
Email: franco.zambonelli@unimo.it

Steering Committee

Paolo Ciancarini, University of Bologna, Italy
Gerhard Weiß, Technische Universität München, Germany
Michael Wooldridge, University of Liverpool, England

Program Committee

Federico Bergenti (Italy)
Carole Bernon (France)
Giacomo Cabri (Italy)
Paolo Ciancarini (Italy)
Massimo Cossentino (Italy)
Scott DeLoach (USA)
Bruce Edmonds (UK)
Alessandro Fabricio Garcia (Brazil)
Paolo Giorgini (Italy)
Marc-Philippe Huget (France)
Michael Huhns (USA)
Carlos Iglesias (Spain)
Matthias Jarke (Germany)
Catholijn Jonker (Netherlands)
Thomas Juan (Australia)

David Kinny (Australia)
Manuel Kolp (Canada)
Juergen Lind (Germany)
Sehl Mellouli (Canada)
Andrea Omicini (Italy)
Van Parunak (USA)
Anna Perini (Italy)
Michael Rovatsos (Germany)
Brian Henderson Sellers (Australia)
Onn Shehory (Israel)
Gerhard Weiß (Germany)
Michael Winikoff (Australia)
Mike Wooldridge (UK)



Table of Contents

Modeling Tools

Operational Modelling of Agent Autonomy: Theoretical Aspects and a
Formal Language

Gerhard Weiß, Felix Fischer, Matthias Nickles, Michael Rovatsos . . . . 1

Hermes: Designing Goal-Oriented Agent Interactions
Christopher Cheong, Michael Winikoff . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Modeling Social Aspects of Multi-Agent Systems: The AML Approach
Radovan Cervenka, Ivan Trencansky, Monique Calisti . . . . . . . . . . . . . . 28

Analysis and Validation Tools

Requirements Elicitation for Agent-Based Applications
Rubén Fuentes, Jorge J. Gómez-Sanz, Juan Pavón . . . . . . . . . . . . . . . . . 40

Formalisation and Analysis of the Temporal Dynamics of Conditioning
Tibor Bosse, Catholijn M. Jonker, Sander A. Los,
Leendert van der Torre, Jan Treur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Incorporating Commitment Protocols into Tropos
Ashok U. Mallya, Munindar P. Singh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Multiagent Systems Design

Zooming Multi-Agent Systems
Ambra Molesini, Andrea Omicini, Alessandro Ricci, Enrico Denti . . . . 81

Improving AOSE with an Enriched Modelling Framework
Richard Hill, Simon Polovina, Martin D. Beer . . . . . . . . . . . . . . . . . . . . . 94

Dealing with Adaptive Multi-agent Organizations in the Gaia
Methodology

Luca Cernuzzi, Franco Zambonelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Implementing Validated Agents Behaviours with Automata Based on
Goal Decomposition Trees

Gaële Simon, Marianne Flouret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



XVI Table of Contents

Implementation Tools

Dynamically Generated User-Specified MAS
Glenn Jayaputera, Arkady Zaslavsky, Seng Loke . . . . . . . . . . . . . . . . . . . 139

Supporting the Development of Multi-agent Interactions Via Roles
Giacomo Cabri, Luca Ferrari, Letizia Leonardi . . . . . . . . . . . . . . . . . . . . 154

Automating Model Transformations in Agent-Oriented Modelling
Anna Perini, Angelo Susi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Paving the Way for Implementing Multiagent Systems: Integrating
Gaia with Agent-UML

Juan C. Garćıa-Ojeda, Alvaro E. Arenas,
José de Jesús Pérez-Alcázar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Applying Multi-agent Concepts to Dynamic Plug-In Architectures
Lawrence Cabac, Michael Duvigneau, Daniel Moldt, Heiko Rölke . . . . . 190

Experiences and Comparative Evaluations

Using the Analytic Hierarchy Process for Evaluating Multi-Agent
System Architecture Candidates

Paul Davidsson, Stefan Johansson, Mikael Svahnberg . . . . . . . . . . . . . . . 205

Estimating Costs for Agent Oriented Software
Jorge J. Gómez-Sanz, Juan Pavón, Francisco Garijo . . . . . . . . . . . . . . . 218

Aspects in Agent-Oriented Software Engineering: Lessons Learned
Alessandro Garcia, Uirá Kulesza, Cláudio Sant’Anna,
Christina Chavez, Carlos J.P. de Lucena . . . . . . . . . . . . . . . . . . . . . . . . . 231

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



Operational Modelling of Agent Autonomy: Theoretical
Aspects and a Formal Language

Gerhard Weiß1, Felix Fischer1,2, Matthias Nickles1, and Michael Rovatsos3

1 Department of Informatics, Technical University of Munich, 85748 Garching, Germany
{weissg, nickles}@in.tum.de

2 Department of Informatics, University of Munich, 80538 Munich, Germany
fischerf@tcs.ifi.lmu.de

3 School of Informatics, The University of Edinburgh, Edinburgh EH8 9LE, United Kingdom
mrovatso@inf.ed.ac.uk

Abstract. Autonomy has always been conceived as one of the defining attributes
of intelligent agents. While the past years have seen considerable progress regard-
ing theoretical aspects of autonomy, and while autonomy has been identified as
an enabler for new computing paradigms such as grid computing, (web-)service-
oriented computing or ubiquitous computing, autonomy as a software property
is still miles away from implementation. Because of the legal responsibility of
designers or users for the actions of autonomous software, the implementation of
autonomy will require rigorous modelling and verification, so as to ensure max-
imum dependability. We take a first step in this direction by introducing a for-
mal language ASL (Autonomy Specification Language) that allows for a precise
specification of the activities to be carried out by a set of agents, the deontic con-
straints imposed on these activities, and the implications of activity execution on
particular constraints (i.e., constraint dynamics). Agent autonomy is implicit in
an ASL specification as the degrees of freedom left to the agents for the execution
of activities.

1 Introduction

Since the inception of distributed artificial intelligence, autonomy has always been con-
ceived as one of the defining attributes of intelligent agents. In the past years, particular
interest has been paid to the theoretical aspects of autonomy and related concepts (like
the control of and cooperation between agents), and considerable progress has been
made in formally defining these [10, 5]. In addition to that, the increasing complexity
of software in domains like e/m-commerce, telecommunications, logistics, knowledge
management, and simulation of social and economic processes on the one hand and
the identification of autonomy as an enabler for emerging information processing par-
adigms such as grid computing, (web-)service-oriented computing or ubiquitous com-
puting on the other have given rise to a more general interest in autonomy as a software
property. Nevertheless, software systems that tap the full potential of intelligent agents
and have autonomy as a real property1 rather than just a catchy label are still miles

1 This means decision and action choice for working and interacting towards a design objective
even under critical and unexpected circumstances and without substantial human support or
intervention.

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 G. Weiß et al.

away from implementation. The main reason for this is obvious: while (technically)
each piece of software can be given the autonomy to act on its own, it will always be
the designers or users who are responsible for its actions in a legal sense. Hence, the
only way towards the implementation of autonomy is via a systematic process of rig-
orous modelling and verification, so as to ensure maximum dependability of systems
that are given the permission to act autonomously. Without this dependability, it is un-
likely that autonomously acting agents will be broadly used in industrial, commercial
and scientific applications.

We respond to this challenge and take a first step by introducing a formal language
ASL (Autonomy Specification Language) that allows for a precise specification of the
activities to be carried out by a set of agents, the deontic constraints imposed on these
activities, and the implications of activity execution on particular constraints (i.e., con-
straint dynamics). Agent autonomy is implicit in an ASL specification as the degrees
of freedom left to the agents for the execution of activities, so that its type and degree
can be precisely tailored to the task at hand. ASL further allows for the automatic detec-
tion and handling of norm conflicts, such that conflicts can either be resolved at design
time or appropriate measures can be taken regarding their runtime settlement. What
distinguishes ASL from existing role- and norm-based models of agent interaction is
its operational character and its expressiveness and flexibility particularly w.r.t. agent
autonomy.

The remainder of this paper is structured as follows. Section 2 introduces ASL and
gives a formal definition of its syntax. Throughout this section, the expressiveness and
flexibility of ASL is illustrated in the context of an agent-based electronic trading plat-
form. Section 3 identifies different types of conflicts in an autonomy specification and
proposes strategies for their identification and resolution. Section 4 then discusses the
features of ASL, compares it to related work and points to some shortcomings and future
improvements.

2 The Autonomy Specification Language ASL

The basic view underlying ASL is that agents are embedded in a social frame that regu-
lates their behaviour. This social frame, henceforth called role space, is composed of a
set of roles which are available to the agents and through which they can try to achieve
individual and joint objectives. An agent may own several roles at the same time, and
the same role may be owned by several agents. In the context of this paper, roles serve
as a means for specifying desired behaviour and for achieving behavioural predictabil-
ity, but not to make sure that agents never exhibit unexpected and undesirable behaviour
(which would simply be impossible if autonomy is taken seriously). In particular, roles
may not fully specify or constrain the behaviour of potential owners, but leave room for
individuality (so that different agents may fill in the same role differently, put emphasis
on different aspects, etc.).

Formally, a role in ASL consists of a set of activities to which norms and sanctions
are attached. As the owner of a role, an agent is exposed to all the norms and sanc-
tions attached to the role-specific activities. ASL distinguishes between three different
types of norms (namely permissions, obligations, and interdictions) and two types of



Operational Modelling of Agent Autonomy 3

sanctions (reward and punishment). While norms correspond to behavioural expecta-
tions held by agents against each other in their capacities as role owners, sanctions
denote (potential) consequences of norm-conforming and norm-violating behaviour.
Hence, through norms and sanctions, a system designer can explicitly specify the lim-
its within which an agent is supposed to act autonomously, and how these limits are
enforced.

2.1 Notational Preliminaries

The syntax of ASL will be given as a set of production rules in extended Backus-Naur
form (more precisely, these rules resemble a context-free grammar G, and this grammar
generates the language L(G) of valid ASL specifications). For the sake of readability,
nonterminals (to be replaced) and ASL-specific keywords and special symbols (which
both are terminal symbols) are written in different fonts.

2.2 Basic Language Constructs

Role Spaces. The most general abstraction employed by ASL is that of a role space
composed of several roles to be played by the individual agents in their attempt to
achieve their goals. This is captured by the nonterminal role-space-spec2 and the
production rule

role-space-spec ::= role space role-space-id { role-spec+}

where role-space-id is an identifier3 composed of letters “L” and digits “D” and be-
ginning with a letter, i.e.,

role-space-id ::= L { L | D }∗

role-space-id (i.e. any result of its replacement) is referred to as a role space identi-
fier. The nonterminal role-spec, which allows for the specification of roles as sets of
activities, can be replaced according to the rule

role-spec ::= role role-id { activity-spec+}

where role-id is a role identifier and activity-spec is given by the rule

activity-spec ::= basic-activity-spec | activating-activity-spec |
deactivating-activity-spec | request-activity-spec

The four nonterminals on the right hand side of this rule, corresponding to the different
kinds of activities in ASL, are treated in section 2.3.

Example 1. Consider an agent-based electronic supply chain management system, for
which the system designers have identified five roles “European supplier”, “US sup-
plier”, “European assembly manager”,“US assembly manager”, and “member of the
board of directors”. In ASL, this role structure can be written as

2 Hence, role-space-spec is the starting symbol of the grammar G that generates ASL.
3 All the different kinds of identifiers used throughout this paper are assumed to be defined in

this way, individual identifiers are further assumed to be unique.



4 G. Weiß et al.

role space eSUPPLY
{ role EUROsupplier { . . . } role USsupplier { . . . }

role EUROamg { . . . } role USamg { . . . } role MBdir { . . . } }

where the “. . . ” remain to be filled with the appropriate activity specifications.

Variables. In ASL, variables can be specified explicitly according to the production rule

variable-spec ::= variable-id of type variable-type [ variable-range ]

where variable-id is an identifier and variable-type is a data type, i.e.,

variable-type ::= { nat | int | real | bool | char | string | identifier }

All types but identifier are standard primitive types known from various high-level pro-
gramming languages. The type identifier, which encompasses all legal identifiers and has
no operations defined on it, serves to enable a designer to effectively refer to specific
roles and activities (details on these follow below). Optionally, variable domains can
be restricted explicitly by giving possible (ranges of) values after the type in square
brackets (e.g. [1..100] or [EUROamg, USamg]).

Status Statements, Norms, and Sanctions. In ASL, each role is defined through a set
of characteristic activities. Attached to each activity of each role is at least one status
statement that specifies the norms and sanctions an agent playing the role is exposed
to with respect to this particular activity. ASL distinguishes three types of norms –
permission (indicated by the keyword p), obligation (o), and interdiction (i) to carry
out the activity – and two types of sanctions – reward (re) and punishment (pu) – that
apply in the case of norm conformance and norm deviation, respectively.

As we have already said at the beginning of section 2, it is unrealistic to assume that
agents as autonomous entities do always act in accordance with available norms (espe-
cially in open environments characterised by a changing population of heterogeneous,
self-interested agents). Instead, agents may ignore or violate norms, be it intentional
or not. ASL takes care of this fact by enabling designers to explicitly specify the con-
sequences of norm-conforming and norm-deviating behaviour in terms of positive and
negative sanctions (i.e., reward and punishment). In other words, norms alone do not
impose any limitations on possible agent behaviour (since this is impossible due to our
definition of autonomy), they rather work indirectly via the agent’s internal reasoning
about the attached sanctions, making certain behaviours (which may be undesirable
from the designer’s point of view) undesirable for the agent. Hence, it is the responsi-
bility of the system designer to devise a set of norms that prevent undesirable behaviour
and the appropriate sanctions to enforce these norms. In addition to that, norms can be
coupled to logical conditions that specify the circumstances under which they are valid
and apply.

Alternatively, the three types of norms (in combination with the sanctions attached
to them) can be viewed as different ways to specify the boundaries of agent autonomy:
while obligations and interdictions state which activities are outside an agent’s range of
behavioural choice and control, permissions state which activities are within. Putting
sanctions aside, an agent may, but need not execute a permitted activity – the execution



Operational Modelling of Agent Autonomy 5

is neither mandatory (as in the case of an obligation) nor forbidden (as in the case of an
interdiction). Whether or not an agent executes such an activity solely depends on his
own decision about how to pursue his goals.4

Returning to the ASL syntax, a designer can distinguish between two different types
of status statements (i.e. norm-sanction pairs) attached to an activity:

– independent status statements (keyword ind) an agent becomes subject to as a direct
consequence of entering the role to which the activity belongs; and

– dependent status statements (keyword dep) an agent as owner of the respective role
only becomes subject to if they are explicitly “activated” by another agent (through
the execution of special activating activities, details on which are given in sec-
tion 2.3).

Hence, dependent status statements allow for the specification of adjustable autonomy
[9], and the status statements attached to activating activities resemble a kind of “meta-
autonomy” (i.e. autonomy w.r.t. influencing others’ autonomy), and so on. Formally,
status statements are given by the following rule:

status-statement-spec ::= < { ind | dep role-id } > : norm-spec
[ + sanction-spec ]

The norm specification is defined as

norm-spec ::= norm < { p | o | i} > <condition>

where condition is a standard Boolean expression over the variables of the activity to
which the status statement is attached (evaluating to true or false) and denotes when the
norm is actually valid. The sanction specification is given by

sanction-spec ::= sanc < { re | pu } > <sanction-ref>

Details on sanction-ref will be given at the end of section 2.3, for now it shall suffice
to view sanction-ref as a (unique) identifier referring to a particular sanction. The
following examples shall illustrate the use of status statements.

Example 2. Consider a status statement <ind> : norm <p> < true> attached to an ac-
tivity Deliver of the role EUROsupplier (a complete specification of this activity will be
provided in example 3 in section 2.3). Accordingly, each agent acting as EUROsup-
plier is permitted (as indicated by p) to carry out this activity (i.e., to deliver material)
under any circumstances (as condition is true) and without any sanction coupled to
this permission. Being an independent status statement (ind), an agent becomes subject

4 In fact, for truly autonomous agents (which only judge norms by the personal consequences
of attached sanctions) the distinction between different types of norms does not increase the
expressiveness of ASL, since assigning both a positive and a negative sanction to each activity
would suffice to fully specify the range of behavioural choice. This is an interesting similarity
to deontic logic, where each of the operators can be defined via the respective other, and we
will return to this aspect in the following section in the context of requests.



6 G. Weiß et al.

to this permission automatically when entering the role EUROsupplier. Further assume
that the Deliver activity contains <dep EUROamg> : norm <o> < material = "steel"> + sanc

<pu> <ChargeFine(500)> as a second status statement. As indicated by “dep EUROamg”,
this status statement can be activated by agents acting as European assembly manager
(how this can be done is described in the following section). Through this activation,
a European supplier (more precisely, an agent owning the role EUROsupplier) becomes
obliged (o) to fulfil all requests for delivering steel (from now on, and no matter what
quantity of steel is requested). Moreover, this status statement says that a violation of
this obligation results in a punishment (pu) in the form of a $500 fine (as indicated by
“ChargeFine(500)”).

Assuming a Closed World. A well known assumption in AI (and the modelling realm
in general) is that of a closed world, stating that everything that cannot be shown to be
true is assumed to be false. ASL adopts this principle in that every activity not explic-
itly declared as being permitted, obligatory or interdicted (under certain conditions), is
implicitly assumed to be interdicted (under these conditions).5 In software engineering
terms, this corresponds to the least privileges and complete mediation design princi-
ples for secure software. The former principle states that users and programs should be
endowed with as few privileges as possible, and the latter states that only those activ-
ities – more specifically, those data accesses – being explicitly allowed should in fact
be executable. Obviously, implicit interdiction also requires an implicit sanction to be
effective, which we assume to be the “grounding” sanction described in the following
section.

2.3 Activity Specifications

Around the status statements defined in the previous section, we will now introduce the
ASL syntax for four different types of activities, namely basic, activating, deactivat-
ing and request. The nonterminal symbols corresponding to these different types are
basic-activity-spec, activating-activity-spec, deactivating-activity-spec,
and request-activity-spec, respectively.

Basic Activities. All activities that concern the handling of resources and events are
referred to as basic activities. Examples for resources to be handled are time, money,
or data, and examples for events are the access to a database, the delivery of goods,
the execution of a negotiation protocol, or the response to an environmental chance. In
ASL, basic activities are specified according to the production rule

basic-activity-spec ::= act activity-id (variable-id∗)
{ variable-spec∗;

status range status-statement-spec+ }

where activity-id is an identifier. The activity takes a (possibly empty) list of para-
meters and contains a specification of all these variables and any additional (e.g. global)

5 It should be noted that while practically there is no difference between implicit and explicit
interdictions, the latter can be used deliberatively – through the execution of activating activi-
ties – to “override” permissions and obligations.



Operational Modelling of Agent Autonomy 7

ones referred to by the activity specification. At the core of the activity specification is
a nonempty set of status statements, the activity’s status range.

Example 3. Consider the following basic activity specification as part of the role US-
supplier:

act Deliver (material, quantity)
{ material of type string["steel", "silver", "gold", "platinum"] ,

quantity of type nat[1 .. 1000];
status range
<ind> : norm <o> <quantity ≥ 100> + sanc <pu> <ChargeFine(500)>
<dep USamg> : norm <p> <quantity < 100>
<dep MBdir> : norm <i> <quantity > 50 and material = "silver"> +

sanc <pu> <WithdrawRole> }

According to the independent status statement of this activity, a US supplier must (o)
fulfil any delivery request with a quantity of at least 100. If this obligation is violated,
the responsible US supplier has to pay a fine (more precisely, the agent who violated
this norm in his capacity as US supplier). What’s implicit in this independent status
statement is that delivery of quantities below 100 is forbidden, but due to the first de-
pendent status statement a US assembly manager can permit a US supplier to obey such
requests (for any kind of material given in the variable specification). The second de-
pendent status statement says that a member of the board of directors (MBdir) can forbid
(i) a US supplier to fulfil requests for delivering more than 50 units of silver. An agent
is no longer allowed to act as US supplier if he violates this interdiction (indicated by
“WithdrawRole”).

Activating and Deactivating Activities. As we have already mentioned, ASL explic-
itly captures adjustable autonomy (i.e. autonomy that changes over time) and meta-
autonomy (i.e. autonomy w.r.t. influencing others’ autonomy) by means of so-called
activating and deactivating activities, which serve to activate and deactivate dependent
status statements and thus dynamically expose role owners to certain norms and sanc-
tions. The ASL syntax of activating activities is given by the rule

activating-activity-spec ::= act activity-id
activate activity-id of role-id
{ variable-spec∗;
status-range-spec ;
impact status-statement-spec+ }

The first activity-id is a unique identifier for the activating activity, while the second
activity-id and the role-id identify the activity being affected. The status state-
ments included in impact-spec are those statements of that activity that are activated
(i.e. the same that occur in the corresponding dependent status statement). Deactivating
activities (nonterminal deactivating-activity-spec) are specified analogously with
activate replaced by deactivate (the meaning of this should be clear).

Obviously, a sound ASL specification should include one corresponding activating
activity for each dependent status statement in order to ensure that each such statement
can be activated (and also a deactivating activity if it should be possible to deactivate it



8 G. Weiß et al.

afterwards). Compared to that, independent status statements are inherently active and
they concern agents immediately upon entering a role. Finally, it should be emphasised
that activating and deactivating activities apply at the role rather than the individual
agent level (i.e., a status statement can only be activated for all agents acting as owners
of a particular role).

Example 4. Consider the basic activity Deliver of a US supplier as defined in exam-
ple 3. According to the first dependent status statement of this activity, a US supplier
can be permitted by a US assembly manager to fulfil delivery requests under certain cir-
cumstances. Consequently, within the role USamg there should be an activating activity
corresponding to this “permissive” status statement. Assume that this activating activity
is given by the following specification:

act PermitDeliver
activate Deliver of USsupplier
{ EcoSituation of type string["poor", "medium", "excellent"] ;

status range
<ind> : norm <p> <true>
<dep MBdir> : norm <o> <EcoSituation = "poor"> + sanc <re> <EarnBonus(500)>
impact
<dep USamg> : norm <p> <quantity < 100> }

As desired, the impact part includes the first status statement (i.e., “<dep USamg> . . . ”)
of the Deliver activity of a US supplier, thus clearly identifying both the activity to be
affected and the effect of executing the activating activity (i.e., US assembly managers
are granted the permission to deliver less than 100 pieces of material). The respective
deactivating activity (for example called ForbidDeliver) will only differ by the keyword
activate replaced by deactivate and will have just the opposite effect (in this case revok-
ing the above permission). A pair of corresponding activating and deactivating activities
hence facilitates the exertion of full control over the adjustable autonomy inherent in
a dependent status statement. The semantics of the status range is the same across the
different activity types (basic, activating and deactivating). Hence, according to the in-
dependent status statement, a US assembly manager is permitted (p) to execute this
activating activity (hence to permit US suppliers to fulfil deliver requests with an or-
der volume lower than 100) without any restrictions (true). According to the dependent
status statement, a US assembly manager can be obliged (o) by a member of the board
of directors (MBdir) to carry out this activating activity, provided that the economic sit-
uation is rated as poor. By following this obligation, a US assembly manager earns a
bonus.

Request Activities. ASL allows a designer to explicitly specify requests for carrying
out activities through so-called request activities. Request activities may be viewed
as requests for behaving cooperatively by executing the requested activity. This not
only allows for modelling autonomy w.r.t. issuing requests, but also enables a precise
definition of the notion of “not executing an action a” often found in deontic frame-
works, namely as “not executing a (immediately) when requested”. The ASL syntax
of request activities is defined quite similar to that of (de)activating activities by the
rule



Operational Modelling of Agent Autonomy 9

request-activity-spec ::= act activity-id
request activity-id of role-id
{ variable-spec∗;
status-range-spec }

with nonterminals as defined above. Again, the first activity-id serves to identify the
request activity, while the second together with the role-id refers to the activity being
requested. Observe that the parameters are determined by the activity being requested
and need not be specified again. Possible restrictions on the parameters can be expressed
by means of the request activity’s status range.

Example 5. Assume that the following request activity specification forms part of the
role USamg:

act RequestDeliver
request Deliver of USsupplier
{ material of type string["steel", "silver", "gold", "platinum"] ,

quantity of type nat[1 .. 1000] ;
status range
<ind> : norm <p> <quantity ≤ 200>
<dep MBdir> : norm <i> <material = gold> + sanc <pu> <WithdrawRole> }

According to this, a US assembly manager (i.e., an agent in his capacity as a US as-
sembly manager) is permitted under certain conditions (as given in the status range) to
request US suppliers to deliver certain types of material (namely, steel, silver, gold and
platinum). The independent status statement says that a US assembly manager is per-
mitted to order up to 200 units of material. According to the dependent status statement,
once activated through a member of the board of directors, a US assembly manager is
interdicted to request the delivery of gold.

An important feature w.r.t. the expressiveness and flexibility of ASL is that activities of
any type can be subject to both (de)activating and request activities. In particular, this
means that ASL allows for the formulation of “crossed” and “self-referential” constructs
such as requests for requests, requests for disallowing certain activities (i.e. requests for
carrying out activating or deactivating activities) and so on.

2.4 Modelling Sanctions and Autonomy Dynamics

So far, we have not given a formal definition of the nonterminal sanction-ref intro-
duced on page 5 and have rather referred to sanctions by some abstract identifiers. By
means of request activities, we are now able to introduce a natural yet much more ex-
pressive model of sanctioning. This can be done by defining a basic activity for every
action that is to be executed as the result of a sanction (like paying a fine, for example),
which is obligatory for every role it is part of. However, the corresponding request activ-
ity (which is required to put this obligation into practise) may not normally be executed,
but is triggered automatically upon norm violation.6

6 More precisely, this resembles an executive authority that constantly monitors all active norms
and is allowed to execute the corresponding request activity – and does so – in case of a norm
violation.



10 G. Weiß et al.

For sanctions to be of any use in the presence of really autonomous agents, failure to
execute a sanctioning activity (which has become obligatory by the “triggered” request)
will again have to be sanctioned, until ultimately some grounding sanction is reached
(e.g. role withdrawal, as used in some of the above examples).7 To enable the use of
sanctioning activities in a status statement, we finally define

sanction-ref ::= activity-id(variable-id∗)

Example 6. Consider the following definition of a basic activity PayFine as part of the
role USsupplier. It takes the amount of the fine as a parameter and is grounded in role
withdrawal.

act PayFine (amount)
{ amount of type int ;

status range
<ind> : norm <o> <true> + sanc <pu> <WithdrawRole> }

The corresponding request activity (invoked automatically if USsupplier violates certain
norms) then forms part of the role specification for the executive authority:

act ChargeFine
request PayFine of USsupplier
{ status range
<ind> : norm <p> <true> }

Besides sanctioning, activities that are triggered automatically upon norm conformance
or violation can also be used for modelling a wide variety of autonomy dynamics like,
for example, alternatives in norms, reciprocal norms, or contrary-to-duty obligations.
For example, the obligation to do either X or Y can be modelled by means of deacti-
vating activities that remove the obligation for either of the two as soon the other one is
performed (i.e. as a reward). As an example for contrary-to-duties, consider a contract
according to which a seller is obliged to deliver some goods, and a buyer is obliged to
pay a certain price (not necessarily after the goods have been delivered). However, if
the buyer fails to pay for the goods, the seller must no longer deliver them (in addition
to the buyer being fined). This situation can be modelled by means of a deactivating ac-
tivity which impacts the seller’s obligation (to deliver) and is triggered as a punishment
for violating the obligation to pay. What is particularly interesting about this model of
a contract is that the buyer’s refusal to pay for the goods explicitly excuses the seller
from delivering. The formalisation of these two examples in ASL is left to the interested
reader as an exercise.

3 Autonomy-Induced Conflicts

Since ASL does not impose any limitations whatsoever on the different status state-
ments in an activity (e.g., regarding their number or kind), the corresponding norms

7 By this, we implicitly assume that (at least) this grounding sanction can always be enforced.
The existence of such a grounding sanction is crucial for retaining control over any system in
which autonomy is involved.



Operational Modelling of Agent Autonomy 11

may be inconsistent. To this end, we will now define three basic types of autonomy-
induced conflicts in terms of such inconsistencies and show how these can be detected
and resolved at design time.

It should be noted that in the context of this paper the term conflict is used to denote
conflicts between norms (as these, and possible other conflicts caused directly by them,
are the conflicts that can be treated on the level of an ASL specification). The (low-
level, design-time) conflict resolution strategies presented here do not address exactly
the same problems as the (high-level, runtime) ones usually investigated in the context
of agents, like negotiation, mediation, arbitration, etc. (see, e.g. [8, 13]). They should
hence be seen as a supplement (able to completely avoid certain high-level conflicts)
rather than an alternative.

3.1 Types of Conflicts

In the following, let

S1 = <status-type1> : norm <norm-type1> <condition1> . . .
S2 = <status-type2> : norm <norm-type2> <condition2> . . .

be two status statements that are part of the status range of an activity A. S1 and S2 are
then said to constitute a potential conflict if and only if

(i) S1 and S2 have one of the following three norm constellations:
• norm-type1 = o and norm-type2 = i (“OI conflict”)
• norm-type1 = p and norm-type2 = o (“PO conflict”)
• norm-type1 = p and norm-type2 = i (“PI conflict”) and

(ii) it can happen that condition1 and condition2 evaluate to true at the same time
(i.e., both S1 and S2 are applicable for a particular request).

A potential conflict of type OI turns into an actual conflict of this type, if both S1 and
S2 are activated and a request for executing A is available for which both S1 and S2
are applicable. As mentioned above, permissions imply decision choice on the part of
an agent, so the situation is somewhat different for conflicts of types PO and PI. A po-
tential conflict of type PO turns into an actual PO conflict if additionally the agent being
requested to execute A prefers to not execute A (i.e. to not fulfil the request, which is
in accordance with the permission S1) while at the same time being obliged to (S2).
Similarly, a potential conflict of type PI turns into an actual conflict of this type if addi-
tionally the requested agent prefers to execute A (i.e. to fulfil the request in accordance
with the permission S1) while at the same time being interdicted to do so (S2).

Example 7. First, consider the independent status statement and the second dependent
status statement of the Deliver activity specified in example 3 as part of the role USsup-
plier. Since the conditions of both evaluate to true for a request of at least 100 units of
silver, they constitute a potential OI conflict. This can also be understood as a conflict
between the roles USsupplier (as the independent status statement becomes active auto-
matically through entering this role) and MBdir. An example for a potential PO conflict
is given by the two status statements of the activating activity PermitDeliver given in
example 4, where both the condition of the independent status statement and that of the



12 G. Weiß et al.

dependent statement evaluate to true if EcoSituation = poor. This conflict can also be seen
as a conflict between the roles USamg (which includes the activity) and MBdir (through
which the dependent status statement can be activated). Finally, the two dependent sta-
tus statements of the Deliver basic activity constitute a potential PI conflict, as both are
activated through a request for delivering x units of silver where 51 < x < 100. This
may also be understood as a conflict between the roles USamg and MBdir, through which
the two status statements can be activated.

3.2 Conflict Detection

As only the status statements of a single activity may lead to conflicts in the above sense,
their detection at design time reduces to a pairwise comparison of status statements and
can be fully automatised by means of the following, rather simplistic, algorithm:

for each role R ∈ role-space-spec {
for each activity A ∈ R {
for each S1 ∈ status range of A {
for each S2 ∈ status range of A \ {S1} {
if (norm-type1 and norm-type2 are of type OI, PO or PI) {
test whether there is a variable assignment that satisfies

both condition1 and condition2 } } } }

For conditions encoded in propositional logic (or first order logic with finite do-
mains), the innermost tests are decidable, and at most n · m2 of the tests are required,
where n is the total number of activities for all roles and m is an upper bound for
the number of status statements included in the status range of a particular activity.
However, a single test may take time exponential in the number of variables shared by
condition1 and condition2.

3.3 Conflict Resolution

Given that all potential conflicts in an ASL specification can be identified, we will now
present three specific strategies for the resolution of such conflicts. All of them are based
on specifying at design time which of two (or more) conflicting norms will actually be
enforced.

– Norm ordering: define an order (a reflexive, antisymmetric, transitive relation) ≺N

on the three norms o, i and p, determining which of two norms overrules the other
in case of a conflict. This ordering can be partial (e.g., i ≺N o and p ≺N o) or total
(e.g., i ≺N o ≺N p).

– Role ordering: define a (total or partial) order ≺R on roles, determining which of
two roles involved in a conflict dominates the other. This strategy is often found in
human organisations (where the decisions of one role may be overruled by a supe-
rior), and it makes sense because, as we have seen above, a conflict between two
status statements can always be attributed to the roles to which the status statements
belong or by which they have been activated.

– Status statement ordering: impose an order ≺S on conflicting status statements.
Again, this order can be total (in this case meaning that all pairs of conflicting
status statements are ordered) or partial.



Operational Modelling of Agent Autonomy 13

These strategies differ significantly w.r.t. their granularity. For example, norm ordering
is rather unspecific, but fair in the sense that it is uniform across all roles. On the other
hand, status statement ordering allows for responding to conflicts in a direct and highly
specific manner, but at the risk of resulting in a very heterogeneous collection of rela-
tionships between norms. For instance, consider four status statements S1 to S4 with
norm-type1 = norm-type4 �= norm-type2 = norm-type3, where S1 is in conflict with
S2 and S3 is in conflict with S4. Irrespective of the individual norm types (but also in a
possibly counterintuitive way), these statements can be ordered according to S1 ≺S S2
and S3 ≺S S4. Role ordering lies somewhere in between the other two strategies, but
has the additional appeal of being the most “natural” approach.

Most importantly, both total norm ordering and total status statement ordering are
guaranteed to resolve all OI/PO/PI conflicts (while role ordering obviously doesn’t help
to resolve conflicts between one and the same role). The same effect can be achieved by
appropriately combining different partial orderings. Such a combination is appealing as
it allows for balancing the specificities of different conflict resolution strategies, but has
to be done carefully because of potential “meta-conflicts” between the strategies. For
example, norm ordering and status statement ordering may put certain status statements
into a different order. Such meta-conflicts can be resolved at design time by imposing
an order (i.e., a meta-strategy) on the strategies (or strategy types) themselves.

Example 8. Again consider the two dependent status statements included in the status
range of the basic activity Deliver defined in example 3. As described above, these state-
ments constitute a potential PI conflict, which can be resolved by imposing an order
on permissions and interdictions (i.e., p ≺N i or i ≺N p). Now assume that the first
dependent status statement (i.e., “<dep USamg> : norm <p> . . . ”) should “override” the
second one (i.e., “<dep MBdir> : norm <i> . . . ”), while in all other cases the decisions
of a member of the board of directors should overrule that of a US assembly manager.
This can be realised by imposing the desired order on the two status statements (i.e.,
“<dep USamg> . . . ” ≺S “<dep MBdir> . . . ”) and on the roles (i.e., MBdir ≺R USamg)
and by combining these two orderings according to the meta-strategy S ≺ R.

4 Discussion

After this extensive treatment of the ASL syntax, we will now summarise the essential
features of ASL, compare it to related work and point to some shortcomings that call
for further research.

Features of ASL. From the engineering point of view, ASL offers two main benefits.
First, it is a highly expressive language that enables designers to specify agent autonomy
at a very precise level. Consequences of both norm-conforming and norm-deviating be-
haviour can be captured by means of positive and negative sanctions. Instead of making
any assumptions about norm conformance or deviation, this exerts control on agents
via their internal reasoning without limiting their autonomy. In a way, ASL is neu-
tral w.r.t. autonomy (i.e. neither biased for nor against it). The fact that no assump-
tions whatsoever (e.g. mentalistic or based on social commitments) are made about the
type or internal structure of agents is also reflected in the fact that ASL focuses on the
role rather than the individual agent level. Context sensitivity of activities and norms



14 G. Weiß et al.

(and thus adjustable autonomy) can be captured by means of activating and deactivat-
ing activities, which may either be executed at will by other agents or follow implicitly
in case of conformance with or deviation from certain norms. Request activities can be
used to explicitly model cooperation and coordination between agents. Finally, nested
activity constructs of arbitrary complexity can be formalised in a natural way, such as
requests for requests or requests for activating activities. A second key feature of ASL
is that it allows for the detection and resolution of autonomy-induced conflicts already
at design time. To this end, different types of conflicts and different strategies for their
resolution have been identified. While this does not render high-level conflict resolution
techniques usually investigated in the context of agents, like negotiation, mediation or
arbitration (see, e.g. [8, 13]) unnecessary, it makes the most of what can already be done
a design time. To have at least a partial alternative to the high-level strategies is impor-
tant, because the former are not always applicable in real-world contexts (e.g., due to
limited communication bandwidth, knowledge, or time available to identify potential
compromises and put them into practice).

Related Work. There are several existing approaches for modelling the interaction
of autonomous agents, mainly in the area of electronic institutions and organisations.
[3] introduces an abstract, normative, role-based model for interactions between au-
tonomous agents within an organisation. This model uses a deontic temporal logic to
formalise contracts about agents’ capabilities and obligations. [12] presents a frame-
work for the normative specification of electronic organisations of autonomous agents at
different levels of abstraction. [11] uses a special deontic and action logic, with includes
“acting in a role” as first-order concept, to devise and reason about role-based models
of groups of autonomous agents. While both ASL and the above approaches (as well
as several others, e.g. [2, 4, 6, 14, 15]) use deontic concepts to specify (the boundaries
of) autonomous behaviour, there are three main differences. Firstly, ASL has been built
top-down for maximum expressiveness and flexibility, especially w.r.t. agent autonomy.
Secondly, it lends itself very well to an operational or procedural interpretation, which
is useful when an abstract specification is to be transformed into a concrete (i.e. imple-
mentable) agent system. Thirdly, ASL includes a notion of autonomy-induced conflict,
and allows for handling such conflicts and hence reducing the inherent contingency of
autonomous systems already at design time. There also exists a close relationship be-
tween ASL and policy specification languages, in particular the Ponder language [1].
Ponder is a declarative, strongly-typed, and object-oriented language for the specifica-
tion of security policies and for policy-based management of computer networks and
distributed systems [7]. It is fully implemented and supported by a number of tools.

Future Work. In this respect, part of our future research will be concerned with a
more detailed investigation of the fundamental relationship between agent autonomy
and security policies in general and the languages ASL and Ponder in particular. Unlike
Ponder, ASL as defined in this paper does not include the usual (object-oriented) con-
structs for role modelling (inheritance, composition, etc.) and assignment to individual
agents. While this does not limit the expressiveness of ASL, it would be rather cumber-
some to have certain activities (like the “sanctioning” activity PayFine) that are part of a
large number of roles.



Operational Modelling of Agent Autonomy 15

On the conceptual side, we see two main shortcomings of ASL in its current form.
First, it would be desirable to introduce explicit time and hence allow for the speci-
fication of deadlines as temporal constraints on norms (i.e. the time interval between
a request, the execution of the corresponding activity and the initiation of a possible
sanction) or other temporal aspects of autonomy (e.g. norms that are valid only at a
certain time). Second, giving a formal (e.g. possible worlds) semantics to ASL will pro-
vide a proper theoretical grounding and ultimately pave the way for model checking the
autonomy-related properties of a system. Our current research addresses these issues to
further improve the expressiveness of ASL and support the engineering of autonomy as
a property of dependable software systems.

References

1. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification language.
In Proceedings of the 2nd International Workshop on Policies for Distributed Systems and
Networks, volume 1995 of Lecture Notes in Computer Science, Bristol, UK, 2001. Springer.

2. F. Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7:69–79, 1999.
3. V. Dignum. A model for organizational interaction: based on agents, founded in logic. PhD

thesis, Utrecht University, The Netherlands, 2004.
4. M. Esteva. Eletronic institutions: from specification to development. PhD thesis, IIIA, Spain,

2003.
5. H. Hexmoor, C. Castelfranchi, and R. Falcone. Agent autonomy, volume 7 of Multiagent

Systems, Artificial Societies, and Simulated Organizations (MASA). Kluwer Academic Pub-
lishers, 2003.

6. F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constraining autonomy through norms. In
Proceedings of the First International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 2002.

7. E. Lupu and M. Sloman. Towards a role based framework for distributed systems manage-
ment. Journal of Network and Systems Management, 5(1):5–30, 1997.

8. H.-J. Müller and R. Dieng, editors. Computational conflicts. Conflict modeling for distributed
intelligent systems. Springer, Berlin, 2000.

9. D. Musliner and B. Pell. Agents with adjustable autonomy. Papers from the AAAI spring
symposium. Technical Report SS-99-06, AAAI Press, Menlo Park, CA, 1999.

10. M. Nickles, M. Rovatsos, and G. Weiß, editors. Agents and computational autonomy. Poten-
tial, risks, and solutions, volume 2969 (Hot Topics) of Lecture Notes in Artificial Intelligence,
Berlin, Germany, 2004. Springer.

11. O. Pacheco and J. Carmo. A role based model for the normative specification of organized
collective agency and agents interaction. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS), 6(2):125–184, 2003.

12. J. Salceda. The role of norms and electronic institutions in multi-agent systems applied to
complex domains. PhD thesis, Technical University of Catalonia, Spain, 2003.

13. C. Tessier, L. Chaudron, and H.-J. Müller, editors. Conflicting agents. Conflict management
in multiagent systems, volume 1 of Multiagent Systems, Artificial Societies, and Simulated
Organizations (MASA). Kluwer Academic Publishers, 2000.

14. H. Verhagen. Norm Autonomous Agents. PhD thesis, Department of System and Computer
Sciences, The Royal Institute of Technology and Stockholm University, 2000.

15. G. Weiß, M. Rovatsos, M. Nickles, and C. Meinl. Capturing agent autonomy in roles and
XML. In Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 105–112, 2003.



Hermes: Designing Goal-Oriented Agent Interactions

Christopher Cheong and Michael Winikoff

RMIT University, Melbourne, Australia
{chris, winikoff}@cs.rmit.edu.au

Abstract. Interactions between agents are traditionally specified as interaction
protocols using notations such as Petri nets, AUML, or finite state machines.
These protocols are a poor fit with autonomous proactive agents since protocols
are message-centric and do not support goals. Additionally, interaction protocols
prescribe how interactions are carried out by agents, thus limiting the flexibility
of the interactions. This also limits robustness, by reducing the available options
for recovering from failure. In this paper we propose a goal-oriented approach
to interaction. Since we aim at a useful and practical approach that can be used
by practising software engineers, a design methodology is an important part of
our solution. We present the Hermes approach which includes a methodology for
designing goal-based interactions, failure handling mechanisms, and a process
for mapping design artefacts to an executable implementation.

1 Introduction

It has been remarked that there is no such thing as a single agent system. The ability
of agents to interact with other agents is essential, and it is desirable for agent interac-
tions to be flexible and robust. Agent interactions are traditionally specified in terms of
interaction protocols, expressed in notations such as Agent-UML [1], Petri nets [2], or
finite state machines. However, these approaches are not well-suited to agents that are
autonomous and proactive. Interaction protocols are at a low level of abstraction and are
message-centric in nature since they are defined in terms of legal message sequences.

This results in a number of drawbacks for the agent paradigm. The primary disad-
vantages are that the protocols are mechanistic and restrict the autonomy of intelligent
agents. Since agents are autonomous and able to independently pursue goals and re-
cover from failures, their interactions should exploit, rather than limit, these character-
istics. Further disadvantages are that the flexibility and robustness of the interactions
are limited (as the degree of flexibility and robustness depend on the number of legal
message sequences); where flexibility refers to multiple ways to successfully achieve
an interaction and the ability to take shortcuts (i.e. by-passing already completed parts
of the interaction), and robustness is the ability to recover from and persevere through
failures in the interaction.

We propose the concept of goal-oriented interaction which is better suited to the
agent paradigm’s goal-oriented nature. Goal-oriented interactions are defined in terms
of the goals of the interaction (interaction goals) and temporal constraints. The inter-
acting agents determine how interaction goals are achieved and are restricted by the
temporal constraints placed on the interaction goals (IGs). Interactions between agents

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 16–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Hermes: Designing Goal-Oriented Agent Interactions 17

occur because the agents involved have certain goals to achieve, and the interactions are
a means of achieving the agents’ goals.

In traditional protocol designs, the interaction designer explicitly defines a number
of legal messages sequences in terms of messages and combining forms such as se-
quencing, alternatives, and loops. The Hermes design is different in that the interaction
designer does not explicitly define legal message sequences. Instead, the interaction is
described in terms of interaction goals, available actions, and constraints. The agents
then determine what legal message sequences (according to the constraints defined by
the interaction designer) are used for the interactions. As such, the message sequences
emerge from the interaction. This results in a greater degree of flexibility and robustness
since there are more legal sequences available than what an interaction designer could
have explicit defined.

We aim to devise a practical approach that can be used to develop flexible and robust
interactions in agent systems which specifically includes a design methodology and
execution mechanisms. Our approach is not particularly targeted towards open systems,
however, we have developed the work such that it is useable in open systems. We thus
introduce Hermes1, which is a domain independent methodology providing a systematic
approach for creating goal-oriented interactions and thus moves away from message-
centric protocols. Hermes covers the design (section 2), failure handling (section 3) and
implementation (section 4) aspects of the agent interaction development process.

2 Goal-Oriented Interaction Design

In this section, we explain the Hermes design process. To illustrate our work, we use an
e-commerce protocol based on the NetBill [3] protocol in which a Customer purchases
goods online from a Merchant. The NetBill protocol was chosen since a number of
other approaches to flexible interactions have used it [4, 5, 6], and by using the same
example it becomes easier to compare our approach to existing approaches.

Figure 1 provides an overview of the Hermes design process. The process is shown
as an incremental mini-waterfall model in which each step is derived from the previous
step. However, as is typical of design, the process is applied in an iterative fashion
where developing the design may suggest changes to previously developed aspects.
For example, identifying the actions (step 3) may suggest additional interaction goals
(step 2).

The Hermes design process encompasses not only designing the interaction, but also
designing the internals of the agents that participate in the interaction. In order to end up
with a complete design that can be implemented we must consider both the inter-agent
aspects, as well as internal (intra-agent) aspects.

The first step in the methodology involves the identification of roles and interac-
tion goals. The roles are defined in terms of the participants of the interactions and the
interaction goals can be seen as high level goals that need to be achieved for the interac-
tion to be successful. When identifying interaction goals, it is best to think broadly and

1 In Greek mythology, Hermes was an Olympian god who acted as the herald of the gods and
served as their messenger (http://www.pantheon.org).



18 C. Cheong and M. Winikoff

2.
Interaction Goal

 Hierarchy

1.
Role and 

Interaction Goal
Identification

3.
Action

Identification

4.
Action

Sequences

5.
Message

Identification

6.
Message

Definitions

Key
Final Design Artefact

Intermediate Design Artefact

Derives/Feedback

Crosscheck

Fig. 1. Hermes Methodology Overview Diagram

capture high level interaction goals. Note that interaction goals are goals of the interac-
tion, not of a particular agent.

The second step is the refinement and organisation of the interaction goals identified
in the previous step. Where possible, the interaction goals identified are broken down
into smaller sub-IGs and are organised in a hierarchy as in Figure 2. The hierarchy
should only have a single IG at its apex, which captures the overall goal of the entire
interaction.

For example, in our e-commerce protocol, the overall goal of the interaction is for
the Customer and Merchant to trade cash and goods, thus the top interaction goal is
Trade.

The Trade IG can be further broken down into two more concrete IGs, Agree and
Exchange. Those two IGs can then be broken down even further. Figure 2 shows the
interaction goal hierarchy for our protocol, in which the circles represent the interaction
goals and the plain lines denote decomposition (i.e. sub-goal relationships). For exam-
ple, the links between Trade and Agree, and those between Trade and Exchange denote
that the Trade interaction goal is composed of Agree and Exchange. For the Trade IG to
be successfully completed, its sub-IGs, Agree and Exchange, must also be successfully
completed. The interaction goal hierarchy is effectively a goal-tree, similar to those
used in agent-oriented methodologies such as MaSE [7] or Prometheus [8]. In develop-
ing the notations of Hermes we intentionally did not adopt the UML as a starting point.
We believe that by doing this we avoided developing notations that were biased by the
object-centred viewpoint of the UML.



Hermes: Designing Goal-Oriented Agent Interactions 19

Negotiate
Details

I:  
R: C, M

Negotiate
Price

I:  
R: C, M

Transfer
Goods

I: M
R: C, M

Send
Receipt

I: M
R: C, M

Payment
I: C

R: C, M

Agree
I:  

R: C, M

Exchange
I:  

R: C, M

Trade
I:  

R: C, M

Determine
Availability

I:  
R: C, M

Fig. 2. Interaction Goal (IG) Hierarchy Diagram

Once the IGs have been decomposed into smaller and more concrete interaction
goals, temporal dependencies (lines with arrowheads on Figure 2) are added. The tem-
poral dependencies allow the interaction designer to place constraints on the sequence
of the interaction. For example, the line with the arrowhead between Agree and Ex-
change implies that the Agree interaction goal must be (successfully) completed be-
fore the Exchange interaction goal can start. The particular design shown in Figure 2
is strongly constrained, however, alternative designs could, for instance, negotiate the
details and the price simultaneously.

As the interaction goals are identified and as the interaction goal hierarchy is being
laid out, the roles involved in the interaction are assigned to interaction goals. In this
particular example, it is quite obvious that there are two roles, Customer and Merchant,
and that both roles are involved in every goal of the interaction. In Figure 2, the roles
involved are shown in the circles as R: C, M, denoting that a particular interaction goal
involves the Customer and Merchant roles.

It is also necessary to identify an initiator for every goal of the interaction. The
initiator represents the role which initiates and is initially responsible for a particular
goal of the interaction. Identifying an initiator is necessary in order to ensure that when
an interaction goal is reached, at least one agent has the initiative and will begin in-
teracting in order to achieve the IG. Valid initiators are specified as one of the roles
involved in a particular IG (e.g. C or M) or as ↑ if it is an inherited role, i.e. the parent
interaction goal’s initiator. In Figure 2, the interaction initiator, whether it is the Mer-
chant, or Customer role, is always responsible for determining the availability of the
goods. By contrast, the Merchant role is always responsible for the TransferGoods and
SendReceipt IGs, no matter who the interaction initiator is.

The interaction goal hierarchy provides an overview of what goals need to be achie-
ved to complete the interaction. The next step is to determine what actions can be used
to achieve a particular (leaf) interaction goal, and what constraints hold between these
actions. It is here that we begin to consider the internal design of the agents. Note that



20 C. Cheong and M. Winikoff

there is no need to identify actions for non-leaf-level goals, since they are completed
when their sub-goals are completed (e.g. Agree is achieved when DetermineAvailability,
NegotiateDetails and NegotiatePrice are all achieved).

An action is a discrete step, taken by a single agent, towards achieving an interaction
goal. Actions that can be used to achieve (leaf) IGs are captured in Action Maps, such
as Figure 3, which is an action map for the NegotiatePrice IG. Action maps are divided
into “swim lanes”; one per role involved in the interaction goal. As there are two roles
involved in the NegotiatePrice IG, Figure 3 is divided into two swim lanes, one for the
Customer role and one for the Merchant role.

Customer Merchant

Rectify Price
Rejection

Terminate
Interaction Goal

Successfully

Consider
Price

Reject
Price

Accept
Price

Price
not

acceptable

Propose 
price 

acceptable

Propose
Price

Key

Final
Caused
Action

Caused
Action

Causality

Independent
Action

Final
Independent

Action

Fig. 3. Action Map

The key in Figure 3 illustrates four different action types, each of which has a differ-
ent meaning and use.

An Independent Action is one that can start independently from other actions, i.e.
it is not necessarily caused by another action, but it may be caused by another action.
Independent Actions are typically used as entry points into interaction goals and as such,
each action map should contain at least one Independent Action.

A Caused Action is one which cannot start independently and must be triggered by
another action.

A Final Caused Action is a Caused Action which terminates the interaction goal for
a particular role.

A Final Independent Action is an Independent Action which terminates the interac-
tion goal for a particular role. Final Independent Actions are typically used for roles
that only have one action which both starts and terminates an interaction goal.

Performing a final action (either Final Independent Action or Final Caused Action),
does not necessarily mean the interaction goal is successfully achieved, only that it is
completed. For example, the interaction designer may wish to end the NegotiatePrice
IG with failure when a price offer is rejected by the Merchant (but this is not the case
in Figure 3).



Hermes: Designing Goal-Oriented Agent Interactions 21

The causality arrows in figure 3, which can be inter-agent and intra-agent, are used to
specify temporal restrictions between the actions. Later in the design process, messages
are introduced to allow us to realise these constraints. For example, when the Customer
executes the ProposePrice action, this will cause the Merchant to perform the Consid-
erPrice action, which will trigger another action and so on until the interaction goal is
completed.

Where an action has causality links to more than one action the causality arrows
are intended to depict alternative possibilities. For example, in the case of the Consider-
Price action on Figure 3, it either triggers an AcceptPrice action or a RejectPrice action,
but not both. Which action is triggered will depend on certain conditions or states. For
such situations, labelling the causality arrows with the conditions or states is useful in
clarifying the causality path on the action map.

The next step in the design process is for the designer to develop Action sequence
diagrams by following specific traces from the action maps. Unlike the action maps,
which show all possible execution sequences, each action sequence diagram shows one
possible sequence of actions that can be carried out to achieve the interaction. Figure 4 is
an example of a partial action sequence diagram which shows how the NegotiateDetails
and NegotiatePrice goals could be achieved. Actions by particular roles are indicated
with the name of the action in a box on the agent’s lifeline. Which actions belong to
which interaction goal is shown by shading, with the name of the IG at the top-left side
of the shaded region.

The purpose of the action sequence diagrams is to check that the actions identified in
the action maps are sufficient to allow for a complete and successful interaction to take
place, and to ensure that specific interactions that are desired can be generated by the

Customer Merchant 

Negotiate Details 

Negotiate Price 

ProposeDetails 

ConsiderDetails 

AcceptDetails 

TerminateIG 

ProposePrice 

ConsiderPrice 

AcceptPrice 

TerminateIG 

Fig. 4. (Partial) Action Sequence Diagram



22 C. Cheong and M. Winikoff

Customer Merchant 

PROPOSE: blue Monitor

ACCEPT-PROPOSAL

Negotiate Details 

PROPOSE: price 100

ACCEPT-PROPOSAL

Negotiate Price 

ProposeDetails 

ConsiderDetails 

AcceptDetails 

TerminateIG 

ProposePrice 

ConsiderPrice 

AcceptPrice 

TerminateIG 

Fig. 5. (Partial) Action Message Diagram

interaction goal hierarchy and associated actions. Action sequence diagrams can also
be used to show typical interactions and possible failures.

Once the actions of the interactions have been identified and checked, the inter-agent
messages and their format must be determined. The messages are used to realise the
constraints of the action maps. Although Hermes provides guidelines to assist with
identifying the messages, details of the message format are typically specific to the
application and the implementation platform, and thus Hermes does not provide any
guidelines for developing the message format, nor any constraints on the message for-
mat: one could choose to use KQML, FIPA, SOAP, or the message types provided by
the implementation platform (for a non-open agent system).

A good starting point for identifying messages is to expand on the action sequence
diagrams by determining what messages are required between actions. Whenever an
action by one role is followed by an action of another role there needs to be a message
between the two roles (assuming that both actions are within the same interaction goal).
This results in action message diagrams, for example see Figure 5, which is derived
from Figure 4.

Note that when identifying messages, there is no need to have messages between the
interaction goals, because moving between IGs is done by the coordination plans (see
section 4).



Hermes: Designing Goal-Oriented Agent Interactions 23

3 Failure Handling

Successfully handling failure is an important part of enabling agent interactions to be
flexible and robust. There are two types of failures in the Hermes methodology: ac-
tion failure and interaction goal failure. An action failure is where an action does not
achieve its interaction goal. For example, offering a price may fail to achieve the goal
of agreeing on a price if the proposed price is rejected. An interaction goal failure is
where an interaction goal cannot be achieved. For example, if the price proposed is re-
jected but a better offer cannot be made then the goal of agreeing on a price cannot be
achieved.

An action failure can be recovered from by trying further actions (“action retry”).
For example, given the actions in Figure 3, suppose that the Customer performs Pro-
posePrice and the Merchant rejects the price (i.e. performs the RejectPrice action after
considering the price). This results in the Customer using the RectifyPriceRejection ac-
tion, which can be used to retry, for example by re-performing ProposePrice with a
different price.

Alternatively, an action failure can cause the interaction goal to fail. In this case, ei-
ther the interaction as a whole can be terminated, or the interaction can be rolled back
to a previous IG (discussed below). If an action failure is to be handled by failing the
interaction goal being pursued, then the appropriate action (e.g. RectifyPriceRejection)
needs to request a termination of the current IG, or a rollback to a previous IG, specify-
ing an earlier interaction goal as the rollback target.

Rollback is a failure recovery mechanism based on the idea that if previous inter-
action goals are re-achieved in a different manner, the failed interaction goal may be
successfully achieved. Consider an example in which the Customer and Merchant have
completed the NegotiateDetails interaction goal and have agreed on a product and its
details (refer to Figure 2). They proceed to the NegotiatePrice IG but cannot agree on
a price. One solution is to terminate the interaction, however, a better alternative is for
the Customer and Merchant to move back to the NegotiateDetails IG, re-negotiate the
details of the product and then proceed into the NegotiatePrice IG again with different
product details.

When and where an interaction can be terminated is domain and application specific,
and therefore it is up to the designer of the interaction to determine this. Similarly,
when and to where rollback is permitted is domain and application specific, and is
determined by the designer. The designer thus needs to indicate for each interaction
goal whether termination is permissible from that IG, whether rollback is permissible,
and if so, to which interaction goals it should be allowed to roll back to. For example, the
NegotiatePrice IG allows termination, and allows rollback to the DetermineAvailability
and NegotiateDetails IGs.

4 Implementing Goal-Oriented Interactions

We implement goal-oriented interactions by mapping the design artefacts to collections
of plans, to be used by an agent platform which supports goal-plan agents (e.g. JACK2,

2 http://www.agent-software.com/



24 C. Cheong and M. Winikoff

Jadex3, JAM4, and Jason5). In this section we briefly sketch how the design produced
by following the Hermes process is mapped to collections of plans. For more details on
this process, refer to [9].

There are three types of plans: Interface, Coordination, and Achievement plans. Co-
ordination plans are used for coordinating the agents through the interaction. They con-
tain coordination rules as defined by the temporal links and sub-goal relationships on
the IG-hierarchy diagram. Achievement plans are used to take steps towards achieving
an interaction goal (e.g. a ProposeDetails Achievement plan is a step towards achiev-
ing the NegotiateDetails IG). Interface plans (which are not part of the Hermean de-
sign process) are used to convert inter-agent messages into events and goal events for
internal agent processing. For example, when a Merchant receives a NegotiateDetails
message from a Customer. The message is handled by the Merchant’s HandlePro-
poseMessage Interface plan which converts the message to a proposeDetails goal event
and dispatches it.

Figure 6 depicts an overview of the different plan types required for goal-oriented
interactions and shows how they are inter-connected. The beliefset between the different
plan types is used to coordinate the agents through the different interaction goals.

Beliefset

Achievement
Plans

Coordination
Plans

Interface
PlansMessage

Message

Goal
Event

Goal
Event

Agent

Fig. 6. Implementation Overview

5 Results

The design for the NetBill interaction that we have presented has been implemented
by following the mapping of the previous section, and this implementation is able
to produce a range of interactions, including the following sample execution trace in
which a Merchant sells blue and yellow monitors at the minimum prices of $110 and
$100 respectively, and a Customer seeks to purchase a monitor at a maximum price of
$100 with the following colour preferences: red, blue, yellow, and green. It is obvious
that a successful interaction will result in the Merchant selling a yellow monitor to the

3 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
4 http://www.marcush.net/IRS/irs_downloads.html
5 http://jason.sourceforge.net/



Hermes: Designing Goal-Oriented Agent Interactions 25

Customer at $100. In this example, we demonstrate how this is achieved and explain
the advantages of using goal-oriented interactions and the Hermes methodology.

The first interaction goal to achieve is straight-forward (refer to Figure 2). The Cus-
tomer checks the availability of monitors with the Merchant. If monitors are available,
the interaction proceeds, otherwise it terminates. In this example, we assume that mon-
itors are available.

To achieve the next interaction goal, NegotiateDetails, the Customer proposes a red
monitor to the Merchant. However, as the Merchant only sells blue and yellow monitors,
it sends a rejection message. Upon receiving the rejection message, the Customer uses
the action retry failure recovery mechanism and proposes its second colour preference,
blue.

As the Merchant sells blue monitors, it sends an accept message and the interaction
proceeds to the NegotiatePrice IG. The Customer and Merchant then haggle for a while,
however, as the Merchant’s minimum price for blue monitors ($110) is higher than the
Customer’s maximum price ($100) an agreement cannot be reached, and the Merchant
sends a reject message. At this point, the current IG fails and the interaction cannot
proceed successfully unless the colour of the monitor can be altered. Thus, the Customer
uses the rollback failure recovery mechanism and proposes a rollback to the Negotiate-
Details IG. The Merchant rolls back to the proposed IG, sends an accept message to the
Customer, and the Customer also rolls back to the NegotiateDetails IG.

As the Customer knows that red and blue monitors have resulted in failure, it pro-
poses its next preference, yellow. The Merchant accepts the details and the Negotiate-
Details goal is achieved. Haggling then re-commences, but this time the Customer is
able to propose a price ($100) which the Merchant accepts. The interaction then con-
tinues with the Exchange IG.

6 Discussion

We have presented Hermes, a goal-oriented agent interaction methodology that in-
cludes a design process, failure recovery mechanisms and a mapping from design arte-
facts to an executable implementation. The goal-oriented approach to agent interactions
adds a greater degree of flexibility and robustness to interactions than message-centric
protocols. This is largely due to the emergent message sequences of goal-oriented
interactions.

The flexibility and robustness of the interaction are further increased by adding fail-
ure recovery mechanisms, which essentially increase the number of legal message se-
quences by allowing agents to retry particular actions (i.e. action retry) and (in certain
circumstances) to return to previous points in the interaction and re-perform parts of
the interaction to attain more desirable results (i.e. rollback). Therefore, our example
can be made even more flexible and robust by adding more actions and rollbacks, e.g.
more actions to achieve the TransferGoods and Payment IGs, and rollbacks from the
TransferGoods and Payment IGs.

There are also other approaches which achieve similar results by moving away from
message-centric protocols. These include approaches based on social commitments
[6, 5, 10], Kumar et al.’s landmark-based approach [11], and Hutchison and Winikoff’s
goal-plan approach [4].



26 C. Cheong and M. Winikoff

Approaches based on social commitments such as Yolum and Singh’s commitment
machines [6, 5] or the work of Flores and Kremer [10] capture the meanings of agents’
actions in terms of their effects on social commitments. A social commitment is made
from one agent to another and represents a condition which an agent will endeavour
to bring about for another agent6. Commitments are attained and manipulated through
inter-agent communicative acts. Therefore, in the course of interacting, agents create
and manipulate commitments. Although both approaches allow for complex interac-
tions which would be difficult to implement with message-centric protocols, their de-
sign aspects are not well defined. It is not obvious how to determine what commitments
are required for a given interaction.

In Kumar et al.’s work [11], it is argued that the states of affairs brought about by
a communicative act is more important than the communicative act itself. As such, the
focus of the work is on the states of affairs, which are represented as landmarks. Thus,
an interaction involves navigating through landmarks to reach a desired final state of
affairs. Their work is theoretical in nature, and requires significant expertise in modal
and temporal logics. Although an implementation (“STAPLE”) has been mentioned, no
details have been published beyond two posters [12, 13].

Hutchison and Winikoff’s approach [4], involves modelling protocols as goals and
plans. This involves determining the goals of the protocol and defining plans which are
able to achieve the goals. Their work can be seen as a predecessor to our work: it gives
neither a detailed design process, nor a mapping from design to implementation.

The Hermes design approach is incomplete in that it only covers interaction: other
aspects of design such as determining what agent types should exist, are not addressed.
As such, we have integrated Hermes with Prometheus [14], a complete agent-oriented
methodology.

Since some of the Hermean design diagrams appear to be similar to UML (e.g. Her-
mean action maps and UML activity diagrams), we will investigate to what extent Her-
mes can use the UML. Finally, as we aim for Hermes to be practical, tool support is an
important area for future work.

Hermes’ design methodology and notation will also require further refinement as we
undertake research into adapting Hermes to function with a wider range of interactions,
including those which involve many agents and many instances of a given role (such as
auctions, where there are N bidders).

Currently, the implementation sketched in section 4 assumes that the agents are im-
plemented using a goal-plan platform. One area for further work is to look at ways of
supporting a wider range of agent platforms.

Other, longer term, areas for future work include looking at the verification of goal-
oriented interactions, and an experimental evaluation of the approach.

Acknowledgements

We would like to acknowledge the support of Agent Oriented Software Pty. Ltd. and of
the Australian Research Council (ARC) under grant LP0453486.

6 Flores and Kremer define commitments as being to perform actions, rather than to bring about
conditions.



Hermes: Designing Goal-Oriented Agent Interactions 27

References

1. Huget, M.P., Odell, J.: Representing agent interaction protocols with agent UML. In:
Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering
(AOSE). (2004)

2. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer
Science. Springer-Verlag (1985) ISBN 0-387-13723-8.

3. Sirbu, M., Tygar, J.D.: NetBill: An Internet Commerce System Optimized for Network-
Delivered Services. IEEE Personal Communications 2 (1995) 34 – 39

4. Hutchison, J., Winikoff, M.: Flexibility and Robustness in Agent Interaction Protocols. In:
Workshop on Challenges in Open Agent Systems at the First International Joint Conference
on Autonomous Agents and Multi-Agents Systems. (2002)

5. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus: An approach
for specifying and executing protocols. Annals of Mathematics and Artificial Intelligence
(AMAI), Special Issue on Computational Logic in Multi-Agent Systems 42 (2004) 227–253

6. Yolum, P., Singh, M.P.: Flexible protocol specification and execution: Applying event calcu-
lus planning using commitments. In: Proceedings of the 1st Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS). (2002) 527–534

7. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering 11 (2001) 231–258

8. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John
Wiley and Sons (2004) ISBN 0-470-86120-7.

9. Cheong, C., Winikoff, M.: Hermes: Implementing goal-oriented agent interactions. In: Pro-
ceedings of the Third international Workshop on Programming Multi-Agent Systems (Pro-
MAS). (2005)

10. Flores, R.A., Kremer, R.C.: A principled modular approach to construct flexible conversation
protocols. In Tawfik, A., Goodwin, S., eds.: Advances in Artificial Intelligence, Springer-
Verlag, LNCS 3060 (2004) 1–15

11. Kumar, S., Huber, M.J., Cohen, P.R.: Representing and executing protocols as joint ac-
tions. In: Proceedings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Bologna, Italy, ACM Press (2002) 543 – 550

12. Kumar, S., Cohen, P.R., Huber, M.J.: Direct execution of team specifications in STAPLE.
In: Proceedings of the First International Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS 2002), ACM Press (2002) 567–568

13. Kumar, S., Cohen, P.R.: STAPLE: An agent programming language based on the joint in-
tention theory. In: Proceedings of the Third International Joint Conference on Autonomous
Agents & Multi-Agent Systems (AAMAS 2004), ACM Press (2004) 1390–1391

14. Cheong, C., Winikoff, M.: Improving flexibility and robustness in agent interactions: Ex-
tending Prometheus with Hermes. In Garcia, A., Choren, R., Lucena, C., Romanovsky, A.,
Holvoet, T., Giorgini, P., eds.: Software Engineering for Multi-Agent Systems IV. Lecture
Notes in Computer Science. Springer-Verlag (2005)



Modeling Social Aspects of Multi-Agent
Systems: The AML Approach

Radovan Cervenka, Ivan Trencansky, and Monique Calisti

Whitestein Technologies, Panenska 28, 811 03 Bratislava, Slovakia
Tel.: +421 (2) 5443-5502; Fax: +421 (2) 5443-5512

{rce, itr, mca}@whitestein.com
http://www.whitestein.com

Abstract. This paper presents modeling concepts and mechanisms of
the Agent Modeling Language (AML) to model social aspects of multi-
agent systems. The modeling of structural, behavioral as well as attitudi-
nal aspects of multi-agent systems from the social perspective is discussed
and demonstrated on examples.

1 Introduction

Multi-agent systems (MAS ) are generally perceived as systems comprised of a
number of autonomous agents situated in a common environment. Agents in
such systems are rarely isolated. More often they are required to interact with
each other so that the desired functionality and properties of the systems could
emerge. These features of MAS are not always derivable or representable solely
on the basis of properties and capabilities of their individual component agents,
but also arise from agents’ mutual relationships, interactions, coordination mech-
anisms, social attitudes (e.g. common or individual beliefs, goals, intentions, de-
sires, commitments), etc., which are commonly referred to as social aspects of
multi-agent systems. Social ability of agents is thus one of their most fundamen-
tal properties and therefore of central concern for the most of the MAS modeling
approaches.

From a social perspective, the following aspects are commonly considered in
MAS models:

– Social structure concerning mainly with the (1) identification of societies
(groups, organizations, institutions, etc.) which can evolve within the system,
(2) specification of their properties, (3) identification of comprised roles,
social entities that can participate in such societies, roles they can play, (4)
specification of the society structure (in terms of social relationships), etc.

– Social behavior covering such phenomena as (1) social dynamics, i.e. tem-
poral relationships and causality of social events (i.e. changes of the society
state) such as the formation/abolition of societies, the entrance/withdrawal
of an entity to/from a society, acquisition/disposal/change of a role played by
an entity, modification of properties of a society or its members, etc., (2) so-
cial interactions, i.e. how individuals and/or societies interact with others

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 28–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 29

in order to exchange information, coordinate their activities, etc., (3) social
activities, i.e. activities of single social entities or aggregate/emergent activ-
ities of societies which influence or are influenced by the state or behavior of
other members of the society or the society itself, and (4) norms, i.e. rules
or standards of behavior shared by members of a society.

– Social attitudes addressing the individual and/or common tendencies (usu-
ally expressed in terms of motivations, needs, wishes, intentions, goals, be-
liefs, commitments, etc.) to anything of a social value.

The purpose of this paper is to present the AML approach to modeling the
above-mentioned social aspects of MAS. The focus, however, due to limitation in
paper length, is on the structural aspects and role modeling. Details of modeling
behavior (used for modeling social behavior) and mental attitudes (used for
modeling social attitudes) will be described in forthcoming papers.

The rest of the paper is structured as follows: Section 2 presents a short
summary of other approaches to modeling social aspects of MAS. Section 3
provides a brief introduction to AML, Section 4 discusses modeling of social
structures, Section 5 modeling of social behavior, and Section 6 modeling of
social mental aspects in AML. The conclusions and future work directions are
drawn in Section 7.

2 Related Work

Most of the currently available agent-oriented modeling languages and method-
ologies consider social modeling as one of the crucial activities. The proposed
approaches, however, differ in the scope and supported modeling concepts.

Several approaches (e.g. Gaia [1, 2], MaSE [3]) model MAS societies in terms
of organizations (or groups) composed of a collection of roles related to one
another and participating in patterns of interactions with other roles. The agents
are then specified in terms of a set of roles they play. These approaches explicitly
assume that the inter-agent relationships and the abilities of agents do not change
at run-time, and that all the agents are explicitly designed to cooperatively
achieve common goals.

The later version of Gaia [2] extends the former one in order to better suit to
open MAS by introducing two new abstractions: (1) organizational rules (explicit
identification of relationships and constraints between roles and protocols) and
(2) organizational structures (explicit specification of organizations in terms of
their topology and control regime).

The notions of groups (agentified and non-agentified), roles, agents and agent
role assignments are the basic building blocks for defining agent societies in
AUML (see [4, 5, 6]). The concept of agent role assignment in AUML is not
considered to be static, but can change over time. For modeling changes in
role playing, AUML makes use of dynamic classification of agents according to
the roles which assignments to agents can change over time. For modeling social
interactions AUML provides an extended version of UML interactions (for details
see [6]).



30 R. Cervenka, I. Trencansky, and M. Calisti

AALAADIN [7] also defines a meta-model of multi-agent systems based on
the three main concepts of agents, groups, and roles. The groups in AALAADIN
can be dynamically created, and agents can dynamically enter or leave groups. To
model dynamics of organizations Organizational Sequence Diagrams (a variant
of UML Sequence Diagrams) are introduced.

To model social aspects of MAS, the TAO methodology (accompanied with
MAS-ML modeling language) [8] also uses concepts like agents, object and agent
roles, organizations, interactions, beliefs, goals, plans and actions in the com-
mon way. In addition to these the support for modeling the social dynamics
is also provided. In particular, TAO supports modeling of a dynamic orga-
nization and agent instance creation, processes concerned with agents enter-
ing/leaving organizations, and processes of commitments to (disposal of) played
roles.

AOR [9] differentiates between different types of manifestation of behavior
within a society of agents: particularly communicative and non-communicative
action events, commitments/claims (coupled with the corresponding types of ac-
tion events), and non-action events. Commitment and claim processing includes
their: creation, cancellation, waiving, delegation, assigning, and fulfilling.

However, none of the aforementioned modeling approaches covers the social
aspects, as identified in Sect. 1, completely. Our aim, thus, was to develop a
modeling language which overcomes deficiencies of existing languages and pro-
vides a rich set of constructs to model all the three social perspectives, i.e. social
structure (Sect. 4), social behavior (Sect. 5), and social attitudes (Sect. 6).

3 AML

The Agent Modeling Language (AML) [10, 11] is a visual modeling language
for specifying, modeling and documenting systems that incorporate concepts
drawn from the MAS theory. It is specified as a conservative extension of UML
2.0 1 [13]–called AML Metamodel and Notation–which augments UML with sev-
eral modeling concepts appropriate for capturing typical MAS concepts. Above
this, two UML profiles, in particular UML 1.* Profile for AML (based on UML 1.*)
and UML 2.0 Profile for AML (based on UML 2.0), are provided. These profiles
allow straightforward implementation of AML into existing UML 1.* and UML
2.0-based CASE tools respectively.

AML provides a consistent set of modeling constructs designed to capture
the various aspects of multi-agent systems, i.e. ontologies, MAS entities, social
aspects, behavior abstraction and decomposition, communicative interactions
and interaction protocols, services, observations and effecting interactions, men-
tal aspects used for modeling mental attitudes of autonomous entities, MAS
deployment, and agent mobility. Details about how AML modeling elements
can be used to model particular social aspects are described in following
sections.
1 A conservative extension of UML is a strict extension of UML which retains the

standard UML semantics in unaltered form [12].



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 31

4 Modeling Social Structure

For modeling structural aspects of agent societies, to some extent, modeling el-
ements of UML can be used. However, to allow building of more concise and
comprehensive models of MAS societies, AML offers several modeling elements
designated to explicitly represent various (MAS) society abstractions. In partic-
ular these are: social entities, entity roles, social relationships, play associations
and role properties.

4.1 Social Entities

Entities represent objects that can exist in the system independently of other
objects. AML defines the following entities: agents, resources, environments, and
organization units. Entities are usually modeled at the level of types (specialized
UML classes), but can also be modeled at the instance level by UML instance
specifications classified according to their corresponding types. All entities can
make use of modeling mechanisms inherited from UML class, i.e. they can own
features, participate in varied relationship types, be internally structured into
parts, own behaviors, etc. In addition to these, AML allows to specify also possi-
bility to own capabilities, perform speech act based interactions, provide and use
of services, own perceptors and effectors, play roles, be characterized in terms of
mental attitudes, etc.

Social entities are entities possessing social abilities. By social ability we
understand the ability to (1) participate in societies and social relationships,
(2) manifest social behavior, and (3) have social attitudes. Two of the above
mentioned entities, agents and organization units, are also social entities.

Agent type is a specialized UML class used to model the type of agents, i.e. self
contained entities that are capable of interactions, observations and autonomous
behavior within their environment.

Organization unit type is a specialized environment type2 used to model the
type of an organization unit. From an external perspective, organization units
represent coherent autonomous entities, the features and behavior of which are
both (1) emergent properties and behavior of all their constituents, their mutual
relationships, observations and interactions, and (2) the features and behavior of
organization units themselves. From an internal perspective, organization units
are types of environment that specify the social arrangements of entities in terms
of structures, interactions, roles, constraints, norms, etc.

Organization units are thus used to model societies (groups, organizations,
institutions, etc.). They are not considered to be static, i.e. their properties,
structure, behavior, social attitudes, comprised roles, participating entities and
their features, etc. can change over time (for details see Sect. 5).

Fig. 1 (a) shows an example of a class diagram depicting a generic organization
structure of a software development project. The project teams (ProjectBoard,
2 Environment type is an element used to model a specific aspect of a system’s in-

ner environment, i.e. the logical or physical surroundings of entities which provide
conditions under which the entities exist and function.



32 R. Cervenka, I. Trencansky, and M. Calisti

TechnicalTeam, AnalysisTeam, etc.) are modeled by means of organization unit
types, their social relationships by means of social associations (Sect. 4.2), and a
project role (ProjectManager) by means of the entity role type (Sect. 4.3).

Using the specified types, the internal structure of the organization unit
type SoftwareDevelopmentProject is modeled in Fig. 1 (b). It defines the parts
which represent comprised entity role (pm) and lower-level organization units
(pb, ana, imp, and tst). Connectors between them declare instances of the social
associations specified at the class level, and therefore use the same adornments
as the corresponding associations.

Fig. 1. Example of class-level organization structure model

4.2 Social Relationships

Social relationship is a particular type of connection existing between social
entities related to or having to deal with each other. Apart from other general-
purpose UML relationships applicable in social models (generalization, aggrega-
tion, association, etc.), AML defines a special type of property, called the social
property, used to model social relationships. It can be used either in the form
of an owned social attribute or as the end of a social association. Social prop-
erty, in addition to UML property, allows to specify the relationship’s social role
kind. AML supports two predefined kinds of social relationships, peer-to-peer
and superordinate-to-subordinate, and the analogous social role kinds: peer, su-
perordinate, and subordinate (for details see [10]). The set of supported social
role kinds can be extended as required (e.g. to model producer-consumer, com-
petitive, or cooperative relationships).

Fig. 1 (a) shows superordinate-to-subordinate social associations between
ProjectBoard (superordinate—shown as a filled triangle placed at the associa-
tion end) and ProjectManager (subordinate—shown as a hollow triangle placed
at the association end), and ProjectManager (superordinate) and TechnicalTeam
(subordinate). Particular technical teams are related by the peer-to-peer



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 33

relationships which is represented by the social association Cooperate attached
to the TechnicalTeam organization unit type (peer social property kind is shown
as a half-filled triangle placed at the end of association). Connectors repre-
senting instances of the previously defined social associations are depicted in
Fig. 1 (b).

4.3 Entity Roles

In AML, social roles (i.e. abstractions of features, behavior, attitudes, partici-
pation in interactions, and services required or provided to other roles or social
entities in a particular social situation) are modeled by entity role types. En-
tity roles types thus can be used to specify (1) social structures, (2) positions3,
and also (3) required structural, behavioral and attitudinal features of their con-
stituents.

Technically, entity role types are specialized UML classes which can own
capabilities, perform speech act based interactions, provide and use services,
own perceptors and effectors, be characterized in terms of mental attitudes,
etc. Each entity role type should be realized by a specific implementation pos-
sessed by a social entity type which can play it. An instance of the entity role
type is called entity role4. It represents the execution of behaviors, usage of
features and/or participation in interactions as defined by the particular en-
tity role type. A given entity role exists only while a behavioral entity instance
plays it.

The AML approach provides the possibility to model social roles at both the
class level (where the required types of features and behavior are defined) and
the instance level (where the concrete property values and behavior realization
of a particular role playing can be specified) explicitly.

4.4 Entity Role Playing

The ability of a social entity to play an entity role is modeled by special structural
feature called role property.

Role property is a specialized UML property used to specify that an instance
of its owner (an entity type) can play one or several entity roles of the entity role
type specified as the property’s type. An instance of a role property’s owner is
called the entity role player (or simply player). An instance of the role property’s
type represents the played entity role. The role property can be used either in
the form of a role attribute or as the member end of a play association.

One entity can at each time play several entity roles. These entity roles can
be of the same as well as of different types. The multiplicity defined for a role
property constraints the number of entity roles of given type, the particular
entity can play concurrently. Additional constraints which govern playing of
entity roles can be specified by UML constraints.
3 A position is a set of roles typically played by one agent [14]. Positions are in AML

explicitly modeled by means of composed entity roles types.
4 AML uses the term “entity role” to differentiate agent-related roles from the roles

defined by the UML 2.0, i.e. roles used for collaborations, parts, and associations.



34 R. Cervenka, I. Trencansky, and M. Calisti

The AML approach to mode role playing allows:

– Specification of the possibility to play particular entity roles by entities ex-
pressed at the class level, and the actual playing of entity roles by instances
expressed at the instance level.

– Separation of entity’s own features and behaviors from the features and
behaviors required for playing an entity role in a particular situation.

– Separation of a specification of the features, behavior, and attitudes required
(or expected) from a potential player of that entity role, from their actual
realization by actual players.

– Specification of the behavior related to role playing, e.g. role playing dy-
namics, life cycle of roles, reasoning about roles, etc. (for more details see
Sect. 5).

Fig. 2 shows an example of specifying entity role types (abstract ProjectMember
and all its concrete subclasses), their attributes, and social associations. The
possibility to play instances of concrete entity role types by agents of the type
Person, represented by the play associations is also depicted.

Fig. 3 shows the instantiation of the previously defined types in the model of
a system’s snapshot, where the agent Alan, of type Person, plays two entity roles
(testerAlan and analystAlan), and agent John, also of type Person, as the project
manager (entity role pmJohn) is Alan’s boss. This example also demonstrates the
ability of AML to explicitly specify slots and social links of entity roles played
under certain circumstances (specified for analystAlan).

Fig. 2. Example of entity roles types and play associations

Fig. 3. Example of the entity role instantiation and playing



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 35

5 Modeling Social Behavior

Social behavior is the behavior of a social entity (behavior of a single social entity,
or emergent behavior of a society) which influences or is influenced by the state
(social features, attitudes, etc.) or behavior of other social entities (members of
the society or the society itself). Social behavior thus covers social dynamics,
social interactions, and social activities.

This section briefly describes how AML extensions to UML behavioral models
can be used to model social behavior.

5.1 Social Dynamics

The central modeling mechanism for modeling social dynamics are state ma-
chines as the most appropriate mechanism for modeling state transitions in
reaction to events. Incorporation of AML specific actions into the UML state
machines allows explicit modeling of: the formation/abolition of societies, the
entrance/withdrawal of an entity to/from a society, acquisition/disposal/change
of a role by an entity, etc.

5.2 Social Interactions

To model social interactions, AML defines specialized modeling constructs for
modeling speech act based interactions, observations and effecting interactions.

The extensions toward modeling social interactions are twofold: generic and
communicative interaction specific. Generic extensions to UML interactions are
provided to in order to model interactions between groups of entities (using
multi-message and multi-lifeline), dynamic change of object’s attributes (to ex-
press changes in internal structure of organization units, social relationships,
or played entity roles, etc.) induced by interactions (using attribute change),
modeling of messages and signals not explicitly associated with an invocation
of corresponding methods and receptions (using decoupled message). Commu-
nicative interaction specific extensions comprise: modeling of speech-acts (using
communicative acts), speech act based interactions (by communicative interac-
tions, which are specialized UML interactions), and patterns of interactions (by
means of interaction protocols).

AML furthermore defines several constructs for modeling observations (i.e.
the ability of entities to observe features of other entities) and effecting inter-
actions (i.e. the ability of entities to manipulate, or modify the state of, other
entities). Observations are modeled as the ability of an entity to perceive the
state of (or to receive a signal from) an observed entity by means of perceptors.
Perceptor types are used to specify (by means of perceiving acts) the observa-
tions an owner of a perceptor of that type can make. The specification of which
entities can observe others, is modeled by a perceives dependency. Different as-
pects of effecting interactions are modeled analogously, by means of effectors,
effector types, effecting acts, and effects dependencies.

Fig. 4 shows an example of the communicative interaction in which the at-
tribute change element is used to model change of entity roles played by agents.



36 R. Cervenka, I. Trencansky, and M. Calisti

Fig. 4. Example of a social interaction with entity role changes

The diagram realize the scenario of replacing a project manager by another per-
son, as described by the scenario shown in Fig. 5. An agent worker1 is a manager
(modeled by its role property manager). After receiving a message resignRespon-
sibility from the project board (pb) it stops playing the role of project manager.
At the same time another person, worker2, takes the responsibility, as the result
of previously received message takeResponsibility sent by the project board, and
starts to play the role of the project manager (modeled by the manager property
of worker2).

5.3 Social Activities

For modeling social activities UML activities can be used. However, to allow
development of more concise and comprehensive models, AML offers several
additional modeling concepts and mechanisms.

To allow modeling of modification of social features (i.e. social relationships,
roles played, social attitudes), all of them are modeled as structural features of
entities. This allows to make use of some UML actions of manipulation with struc-
tural features, to model modification of social structures, reasoning about played
entity roles, access and reason about social attitudes, execute social behavior, etc.

Furthermore, AML defines specific actions to: create/play and dispose entity
roles, send and receive messages of social communicative interactions, percept
and effect other entities, commit to and decommit from goals, etc.

Fig. 5. Example of activity comprising the social actions inducing changes of entity
roles



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 37

Fig. 5 shows an example of the activity describing the scenario of replacement
the project manager by another person. The project board (organization unit
pb) decides about the replacement, and informs the current project manager
(entity role pm) together with a new potential project manager (agent poten-
tialPM) about the decision. The current project manager stops playing its role of
the project manager (expressed by the dispose role action Resign) and the new
project manager starts to play its new entity role (specified by the create role
action Become a new project manager creates a new entity role newPM).

6 Modeling Social Attitudes

For modeling types of social attitudes AML offers constructs of mental model-
ing, particularly: beliefs, goals, plans, and mental relationships (used to repre-
sent logical relationships between mental states such as means-ends, decompo-
sition, correlation, contribution, etc.). Social attitudes of entities are modeled
by means of special type of UML property called mental property. It can be
used either in the form of an owned mental attribute or as the end of a mental
association.

In general, two kinds of social attitudes can be recognized:

1. social attitudes shared by several entities within a society, e.g. common be-
liefs and goals, plans which include collaboration of several entities, etc.,
and

2. social attitudes of individual entities to anything of a social value, e.g. com-
mitment to perform a social action, beliefs in some facts about other entities.

Social mental models often contain explicitly modeled relationships between
mental states of different socialized entities. For instance cooperative entities
share their goals, trusted entities share their beliefs, superordinate entities dic-
tate their goals or form goals of subordinate entities, competitive entities have
goals in contradiction, etc. These situations can be explicitly expressed by mental
relationships.

Fig. 6 depicts a model excerpt showing social mental model of cooperating
organization unit types AnalysisTeam and ImplementationTeam. They share com-
mon goal SatisfyQualityCriteria and belief that “the produced/consumed analysis

Fig. 6. Example of individual and common goals and beliefs



38 R. Cervenka, I. Trencansky, and M. Calisti

is complete and consistent”. Apart from the common mental attitudes, the teams
have also specific purposes modeled as decidable goals, particularly the Analysis-
Team has the AnalyzeSystem and the ImplementaionTeam has the ImplementSys-
tem. Positive necessary contribution to the overall project’s goal to develop the
system (DevelopSystem) is also shown.

7 Conclusions and Further Work

Within the currently available agent-oriented modeling languages, AML provides
the most comprehensive set of mechanisms for modeling social aspects in MAS. It
covers the broadest range of all the three social perspectives, i.e. social structure
(Sect. 4), social behavior (Sect. 5), and social attitudes (Sect. 6).

This has been achieved (1) by the incorporation and unification of the most
significant concepts from the broadest possible set of existing multi-agent theo-
ries, abstract MAS models, modeling and specification languages, methodologies,
agent platforms and multi-agent driven applications, and (2) by the extension
of the above with new modeling concepts to account for aspects of multi-agent
systems thus far covered insufficiently, inappropriately or not at all.

Furthermore, AML assembles all these concepts into a unified, consistent
and easily extensible framework specified by the AML meta-model (covering ab-
stract syntax and semantics of the language) and notation (covering the concrete
syntax), and is specified as a conservative extension of UML 2.0.

AML has already been successfully applied as a language for modeling re-
quirements, analysis and design of applications in several research and com-
mercial software development projects. The applications were built in various
domains, e.g. planning of surgical operations, simulation of societies, and distrib-
uted network management systems. These projects tested AML under real-world
conditions and proved that it is a useful tool for modeling complex, concurrent,
distributed and intelligent systems.

Even if the current version of AML provides well-defined, sufficiently compre-
hensive and stable generic mechanisms for modeling social aspects, by exploiting
the UML extensibility mechanisms and flexible architecture of AML specifica-
tion, some language improvements and extensions are foreseen. It is also planned
to create technology-specific modeling frameworks (re-usable model libraries)
and AML extensions which will customize and extend the generic AML model-
ing constructs to enable modeling of specific architectural concepts of particular
(MAS) technologies.

References

1. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems 3 (2000) 285–312

2. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems:
The Gaia Methodology. ACM Trans. on Software Engineering and Methodology
12 (2003) 317–370



Modeling Social Aspects of Multi-Agent Systems: The AML Approach 39

3. DeLoach, S., Wood, M., Sparkman, C.H.: Multiagent Systems Engineering. Inter-
national Journal of Software Engineering and Knowledge Engineering 11 (2001)
231–258

4. Odell, J., Parunak, H., Fleischer, M.: The Role of Roles in Designing Effective
Agent Organizations. In Garcia, A., Lucena, C., Zambonelli, F., Omicini, A., Cas-
tro, J., eds.: Software Engineering for Large-Scale Multi-Agent Systems, Lecture
Notes on Computer Science volume 2603, Berlin, Springer (2003) 27–28

5. Odell, J., Parunak, H., Brueckner, S., Fleischer, M.: Temporal Aspects of Dynamic
Role Assignment. In Giorgini, P., Muller, G., Odell, J., eds.: Agent-Oriented Soft-
ware Engineering (AOSE) IV. LNCS 2935, Berlin, Springer-Verlag (2004)

6. Huget, M.: Agent UML Notation for Multiagent System Design. IEEE Internet
Computing 8 (2004) 63–71

7. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organi-
zations in multi-agent systems. In: 3rd Int. Conference on Multi-Agent Systems
(ICMAS’98), IEEE Computer Society (1998) 128–135

8. Silva, V., Lucena, C.: From a Conceptual Framework for Agents and Objects to a
Multi-Agent System Modeling Language. In: Autonomous Agents and Multi-Agent
Systems. Volume 9. Springer Science+Business Media B.V. (2004) 145–189

9. Wagner, G.: The Agent-Object-Relationship Meta-Model: Towards a Unified Con-
ceptual View of State and Behavior. Information Systems 28 (2003) 475–504

10. Cervenka, R., Trencansky, I.: Agent Modeling Language: Language Spec-
ification. Version 0.9. Technical report, Whitestein Technologies (2004)
URL: http://www.whitestein.com/pages/solutions/meth.html.

11. Cervenka, R., Trencansky, I., Calisti, M., Greenwood, D.: AML: Agent Modeling
Language. Toward Industry-Grade Agent-Based Modeling. In Odell, J., Giorgini,
P., Muller, J., eds.: Agent-Oriented Software Engineering V: 5th International
Workshop, AOSE 2004, Springer-Verlag (2005) 31

12. Turski, W., Maibaum, T.: The Specification of Computer Programs. Addison-
Wesley (1987)

13. OMG: Unified Modeling Language: Superstructure. Version 2.0. ptc/03-08-02
(2003)

14. Alencar, E., Castro, J., Cysneiros, G., Mylopoulos, J.: From Early Requirements
Modeled by the i* Technique to Later Requirements Modeled in Precise UML. In:
Anais do III Workshop em Engenharia de Requisitos, Rio de Janeiro, Brazil (2000)
92–109



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 40 – 53, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Requirements Elicitation for Agent-Based Applications 

Rubén Fuentes, Jorge J. Gómez-Sanz, and Juan Pavón 

Universidad Complutense Madrid, Dep. Sistemas Informáticos y Programación*, 
28040 Madrid, Spain 

{ruben, jjgomez, jpavon}@sip.ucm.es 
http://grasia.fdi.ucm.es 

Abstract. Requirements Elicitation for a software system is a key stage in a 
successful development. At the same time, it is one of the most challenging, 
because requirements have to consider the mutual influences between the 
envisioned system and the human context where it will work. These influences 
cover aspects such as organization, motivation, evolution, and cognition, taking 
place in a specific setting. The agent paradigm facilitates the analysis of these 
features because of its intentional and social nature. Nevertheless, determining 
the information that should be obtained and the way it should be modelled is 
not a trivial task. Developers are experts in software systems but they are not 
always familiarized with the concrete domain of those systems. The 
Requirements Elicitation Guide, a technique based on the Activity Theory from 
Social Sciences, can be applied to support developers in these issues. This guide 
empowers the development team with the experience of Social Sciences in 
these issues. This paper introduces the guide and shows its application in a case 
study about a web application. 

Keywords: Multi-Agent Systems Development, Activity Theory, Activity 
Checklist, Requirements Elicitation. 

1   Introduction 

The requirements of a software system are concerned with the high-level goals that 
the system has to accomplish, their operationalization through the specification of 
services and constraints, and the assignment of those responsibilities to actors such as 
humans, devices, or software [12]. The analysis of these elements involves the study 
of the human context in which the system will act [15]. Besides, this study is not an 
isolated initial stage of development, since most of modern software processes are 
iterative and incremental. That is why Requirements Elicitation (RE) demands new 
tools for the understanding of the human context and its combination with the 
information about the system, along the different iterations in the development cycle. 
This implies a new perspective with respect to traditional methods of Software 
Engineering [7, 15]. 

                                                           
* This work has been funded by the Spanish Council for Science and Technology under grant 

TIC2002-04516-C03-03. 



 Requirements Elicitation for Agent-Based Applications 41 

In the case of agent-oriented methodologies, the paradigm facilitates this 
integration with its conceptual framework. The same abstractions about societies of 
intentional actors that interact to solve problems can be applied to model both the 
system and its human environment in a uniform way [13, 6]. Successful examples of 
this approach are KAOS [2], i* [19], and Tropos [17]. Nevertheless, obtaining the 
information about these requirements is still a hard work, as it involves the study of 
intentional and organizational patterns about agents and the environment, which do 
not belong to the common expertise of software developers. The weaknesses of 
previous methodologies mainly lie in the processes and guides they use for this study 
in RE. For instance, both i* and Tropos use diagrams to capture the requirements of 
the system. Besides, Tropos includes formal techniques to support this task. However, 
the problem is that they rely on developers’ skills to determine what the relevant 
features of the system and its context are. KAOS further provides a meta-model that 
conducts the gathering, although this meta-model barely considers the social 
environment. Our aim is to overcome these limitations with guidelines and processes 
about the environment for RE in agent-oriented methodologies. 

Social Sciences [7] can provide theoretical, conceptual, and methodological 
support to collect these requirements, and to ease the understanding of those aspects 
related with people and their organizations. Our approach adopts the Activity 
Checklist (AC) [10] as the basis for requirements elicitation. The AC is an analytical 
tool of the Activity Theory (AT) [18, 14], which has been developed in the fields of 
Sociology and Psychology. The use of AT and its techniques with agent-oriented 
methodologies is feasible because they share a common intentional and social 
perspective of their objects of study. The AC has been already applied in the field of 
Human-Computer Interaction (HCI) where it is used to analyze the impact of new 
technologies in human activities [8, 9]. This tool reminds practitioners the information 
that should be considered when analyzing these interactions. Its hints take the form of 
questions in natural language. 

Despite of its advantages, the AC has to be adapted for its use in RE of agent-based 
applications. AT researchers conceived the AC for its use in social studies and it is 
centred on a very specific domain, HCI. In order to apply the AC in multi-agent 
systems (MAS) development, we need to undertake some changes about the focus and 
the level of detail in the information, or different formalisms to work with MAS 
specifications. The result is the Requirements Elicitation Guide (REG), which was 
firstly introduced in [5]. This guide is a tool to analyze the key intentional and social 
features of a MAS and its context, as the original AC makes with HCI. Here, the REG 
extends the AC to tackle with the specific problems of RE for MAS. 

The REG contains questions that arise from those in the AC. They represent the 
information that AT considers important to elicit about activities. The answers that 
customers and developers provide to REG questions are the requirements of the 
software system. Neither customers nor developers are experts in AT and they do not 
usually share a common background. Therefore, to facilitate the task of discussing 
and obtaining the information, the REG offers customized views of the information to 
each group. On one side, there are specific versions of the REG for given target 
domains, where customers are experts (this is further explained in section 4). On the 
other side, developers obtain descriptions of requirements in terms of their own agent-
oriented methodologies, in which they are experts (this is discussed in section 5). This 



42 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

multiple representation is possible thanks to the use of AT as a lingua franca for 
requirements. The questions have possible answers that are described as structural 
patterns with a UML based notation for AT concepts. These UML diagrams act as 
frames with slots that are filled up with users’ requirements. After that, an automated 
translation process adds those requirements to the original specifications of the MAS 
in the language of the particular agent-oriented methodology (see [4] for a detailed 
description of the translation). The translation uses mappings between AT and agent 
concepts. Besides RE and translation, answers to questions are the input for other AT 
based process, like the checking of social properties in the MAS [3]. 

The rest of the paper presents more details about the points of this introduction. 
Section 2 makes a brief overview of AT and the AC. Section 3 presents the REG and 
the structure for questions. Section 4 describes the process to develop versions of the 
REG for specific application domains. Section 5 shows how to use the REG with an 
agent-oriented methodology and section 6 illustrates this use for a case study about an 
e-bookstore. Finally, section 7 discusses the advantages and limitations of the 
approach from the results of our experimentation. 

2   Activity Theory and the Activity Checklist 

Activity Theory (AT) [18] is a philosophical, conceptual, and analytical framework to 
study human practices. Its fundamental unit of analysis is the activity, which reflects a 
process. The activity only has true meaning in its context, which is social and 
environmental, and along a temporal dimension. From the AT point of view, both the 
individual and the environment are interlinked and mutually influence each other. 

The context of the activity is called the activity system [11]. It includes concepts to 
describe both the individual and social levels of the activity. The individual level is 
focused on the subject. The subject is the active element that carries out the activity in 
order to satisfy some needs, his objectives. The objectives are satisfied by the outcome 
of the activity. This outcome is the result of transforming the object of the activity 
using tools. The social level is built around the concept of community. An activity can 
involve several subjects and each of them can play several roles and have multiple 
motives. The community is composed by those subjects who share the same object. 
Rules determine the norms coming from the society that apply to individuals. The 
division of labour establishes how the community is organized to transform the object. 

These concepts are illustrated with the case study of section 6 about a bookstore in 
a university (see Fig. 6 and Fig. 7). Bookstore employees, students, and teachers are 
the subjects of this problem and constitute a community. For instance, students try to 
buy their books at the best prices, what is one of their objectives. To achieve this goal 
they carry out different activities, like comparing offers of different bookstores. In 
these activities, they use tools as their knowledge about sources of information, 
newspapers, or Internet. The roles of subjects in the activity are established by the 
division of labour while the way of interacting in the society depends on the rules. 
The outcome of this activity is a choice about where to buy. 

The Activity Checklist (AC) [10] is built around these AT concepts and principles 
to elicit the knowledge that allows describing an activity system. It shows the 
contextual design space that represents the main features of the activity and its 



 Requirements Elicitation for Agent-Based Applications 43 

environment as specified by AT. This aim is accomplished through a hierarchical 
structure organized in areas, aspects, and questions. The areas are related with the 
generic spheres of concern about an activity. Each area has a description of its 
intended meaning and includes different views of a social activity, the aspects. 
Aspects describe parts of the environment as seen by users. Questions gather the 
information about their related aspects. With the answers to the questions, researchers 
can elicit users’ knowledge based on the theoretical basis of AT. This knowledge can 
be then translated to concrete properties of the system under study. Instances of areas, 
aspects, and questions of the AC are shown in Table 1. 

Table 1. Examples of areas, aspects, and questions from the Activity Checklist 

Areas Aspects Sample questions 
Means/ ends Alternative ways to attain 

target goals through lower-
level goals. 

Is there any functionality of the system that is 
not actually used? If yes, which actions were 
intended to be supported with this functionality? 
How do users perform these actions? 

Environment Role of existing technology in 
producing the outcomes of 
target actions. 

Is target technology integrated with other tools 
and materials? 

Self-monitoring and reflection 
through externalization. 

Is externally distributed knowledge easily 
accessible when necessary? 

Learning/ 
cognition/ 
articulation Possibilities for simulating 

target actions before their 
actual implementation. 

Does the system provide representations of 
user’s activities that can help in goal setting 
and self-evaluation? 
Are users’ attitudes toward the system 
becoming more or less positive? 

Development Anticipated changes of target 
actions after new technology 
is implemented. Are there negative or positive side-effects 

associated with the use of the system? 

As Table 1 shows, the AC is written in natural language and with many terms from 
Social Sciences. In addition, it does not provide hints about the way of asking the 
questions to common customers or representing users’ answers with AT concepts. 
Thus, its use by non-experts in AT is rather difficult. For this reason we have 
developed the Requirements Elicitation Guide (REG), which is characterized by being 
application domain specific and using agent-related concepts, what improves its 
usability in the development of agent-based applications. 

3   The Requirements Elicitation Guide 

The Requirements Elicitation Guide (REG) preserves the hierarchical structure of the 
AC that includes areas, aspects, and questions. However, to overcome the difficulties 
to apply the AC that were described in the previous section, the REG adopts a new 
structure to represent questions. This structure has to accomplish several purposes: 

• Departure point for discussion about requirements. The questions point out 
features of the system or its context to which the development team should pay 
attention. 



44 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

• Propose generic answers. A question has a related set of answers that represent 
possible requirements elicited by that question. 

• Source of information about requirements for the development process. The 
answers have to ease the recording of the knowledge they gather. This information 
should be available in a suitable format for automated processing to enable the use 
of software tools that avoid users’ overload. 

Identification of the question 
Textual description 

MAS AT Domain

Answer 
Textual description 

UML-AT description 

Examples = Text + UML-AT 

MAS AT Domain

MAS Domain

(More answers) 

AT

 

Fig. 1. Structure for questions of the Requirements Elicitation Guide 

The main components of the structure of questions appear in Fig. 1: 

• Identification of the question in the REG. It is an identifier of the form Question 
i.j.k. where i is the area, j is the aspect, and k is the question in the aspect. 

• Textual description. It explains the information about the MAS that the question 
tries to elicit, why it should be gathered, and how it can affect other requirements. 

• Answers. The question has related some possible generic answers to it and 
instantiated examples of those answers in previous projects. 

The structure contains different views for both the question and its answers 
according to their intended audience. There are descriptions for AT experts (i.e. AT), 
MAS developers (i.e. MAS), and customers (i.e. Domain). AT views are mainly used 
for building the REG. They explain the motivation of considering the question or 
answer for the REG from the point of view of social sciences. MAS and Domain 
views are used in the development of the REG to describe the knowledge of their 
corresponding experts and in the RE of a given project. 

The answers are a key element to collect the requirements related with the 
question. They complement the descriptions of the questions with further explanations 
about what information to elicit. Therefore, an answer has a textual form and a UML-
AT description to gather the information. 



 Requirements Elicitation for Agent-Based Applications 45 

UML-AT [3] is an extension of UML to describe MAS with AT concepts. It is 
specified as an UML profile [16] that defines the concepts and relationships already 
described in section 2. It considers as well additional elements to improve the 
expressiveness of the resulting language, such as contribution relationships between 
concepts (this is inspired by i* [19]). The full specification of UML-AT can be found 
at http://grasia.fdi.ucm.es/at/uml-at. 

The UML-AT diagrams satisfy several goals for RE. First, they disambiguate the 
textual explanation of answers with descriptions in a software design language. 
Second, they give hints to developers about how requirements, that is, the real 
answers to questions, can be represented in the design language. Third, it is a suitable 
representation to record information obtained in the elicitation. 

The UML-AT diagrams have slots for the name, type, and value of their elements 
and properties. These slots can contain fixed elements, which are inside double 
quotes, or variables. When a question is solved, one of its answers is fulfilled 
(maybe partially). Some variables in that answer are substituted with specific 
information. The instantiated UML-AT form represents new information for 
requirements in a design language. As these slots are shared between the UML-AT 
representation for domain experts and that for developers, they allow the exchange 
of information. Customers use them to provide the requirements for the remaining 
development process and developers to give feedback to customers about those 
requirements. 

 
 

Question 1.2.3 
Textual description 

MAS = Adding the new functionality to the system will cause some negative effect over the 
goals of actors in the environment? 
AT = Is there any inconvenient for the organization or groups in it about building the new 
component? 
Domain = If the software carries out the proposed task, will the interest of some people in 
the organization be harmed? 

Answer 
Textual description 

MAS = The new Task pursues the Goal of the Task. The context of the system includes the 
Organization, which pursues, among others, the Goal of the Organization. The satisfaction 
of the Goal of the Task will imply the presence of evidences that reduces the possibilities of 
satisfaction of the Goal of the Organization. 
AT = The Component is intended to satisfy the Goal of the Component. This objective is 
contradictory with the Goal of the Group, which represents a need of the community Group. 
Domain = The new Task tries to satisfy a goal detected in your organization Goal of the 
Task. However, it is possible that this goal can affect negatively to some members or groups 
in your organization. That is to say that those groups have their own objectives, like Goal of 
the Group, that cannot be satisfied (or be difficultly) at the same time the Goal of the Task. 

Fig. 2. Example of question of the Requirements Elicitation Guide in its basic version. Textual 
description of question and an answer. 



46 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

Answer 
UML-AT description 

MAS                    

AT                             

Domain                          

Bindings for diagrams 
Organization = Group, Goal of the Organization = Goal of the Group, 
Task = Component, Goal of the Task = Goal of the Component 

 
Examples 

Like the diagram in Fig. 8 and its explanation. 
 

Fig. 3. Example of question of the Requirements Elicitation Guide in its basic version. UML-
AT description of an answer and examples. 

Fig. 2 and Fig. 3 show a summarized example of a question from the basic version 
of the REG. The example just includes the introductions for the question, one of its 
answers, and its views; it omits the longer explanations of these elements. Because 
the basic version of the REG is for general MAS, the domain and MAS views are 
quite similar. These questions are applied in section 0 of this paper and in [5]. A full 
REG is described at http://grasia.fdi.ucm.es/at/reg. 



 Requirements Elicitation for Agent-Based Applications 47 

4   Creation of the REG for Specific Application Domains 

Once that there is a structure for the REG, developers use the process of Fig. 4 to 
create concrete REGs. Its product is a set of areas, aspects, and questions represented 
with the structure of Fig. 1 for the requirements elicitation of agent oriented 
applications in a specific domain. 

 

Fig. 4. Process to develop a domain specific Requirements Elicitation Guide 

The team that develops the REG for a given domain carries out iterations for 
different requirements (choice numbered as 1 in Fig. 4). These requirements can be 
proposed by any actor in the process and they represent information that, according to 
his field of experience, should be gathered. If the team agrees that the proposed 
requirement is important information for the system, they have to determine what 
area and aspect are adequate for the requirement (choice 2 in Fig. 4). In the case of 
areas, the team just chooses the best-suited for the information under study, while in 
the case of aspects they can select an existing one from the AC (task 4 in Fig. 4) or 
the REG, or create another in the REG (task 3 in Fig. 4). 



48 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

For the selected pair area-aspect, the team provides a set of questions that will be 
able to elicit the new requirement. In the case that the aspect already exists in the AC, 
the AC questions are imported into the REG. Initially, these AC questions only have 
their textual description from the AT point of view (task 12 in Fig. 4). If it is a 
completely new aspect, the experts have to write sketches of questions that point out 
to information related with the requirement (task 12 in Fig. 4). Anyway, for every 
question, experts discuss and propose the textual form of their views and answers. 
Those forms have to be understandable and meaningful in their field and be highly-
coupled, in the sense that they are different ways to ask the same information. If a 
question does not satisfy these conditions (choice 11 in Fig. 4), it should be removed 
from the REG (task 8 in Fig. 4) or modified (task 9 in Fig. 4). 

From the textual form of questions and their answers, the experts build the related 
UML-AT diagrams (task 10 in Fig. 4). The UML-AT form also has different views, 
for the domain expert and the developer. Experts not only consider the concepts and 
relationships that should appear in the diagrams, but also the slots to characterize and 
collect the information. The different UML-AT views of an answer share slots. In this 
way, when the customer or the developer adds some information, it appears in the 
other view and can be studied from that perspective. 

5   Using the REG for MAS Analysis 

The final process related with the REG is its use in a MAS software process by 
customers and developers. This process appears in Fig. 5. It works over the MAS 
specifications already translated to UML-AT with mappings between languages. 
When customers and developers consider that they have elicited the intended 
requirements, the modified specifications are translated to the language of the agent-
oriented methodology, again using mappings. 

In [3, 4] we introduce the mappings and how UML-AT and related tools can be 
adapted to specific agent-oriented methodologies. Basically, we consider mappings as 
correspondences between UML-AT and the languages used in particular agent-
oriented methodologies. Thanks to these mappings, developers do not need to learn a 
new specification language based on AT, because our tools [4] automatically translate 
specifications from UML-AT to the language of the concrete methodology. This 
translation is shown for INGENIAS and Tropos in [5]. 

The RE process itself begins with the selection of the question to answer (sub-task 
2 in task 3). The REG helps the team in this selection with its hierarchical structure. 
According to the searched information, customers and developers navigate the REG 
from the more generic information to the most specific, that is, from areas to aspects 
and from these to questions. After that, there is a discussion about the question. The 
explanations (sub-task 3 in task 3) show the meaning of the question and the answers 
and assist to understand the kind of proper information for those requirements. 
Besides, there are examples from other projects in the domain about answers for the 
question (sub-task 4 in task 3). When the team agrees the answer, they fill up the slots 
in the UML-AT form of one of the answers (sub-task 6 in task 3). The overall 
discussion is contextualized with existing specifications (sub-task 5 in task 3). So, for  
 



 Requirements Elicitation for Agent-Based Applications 49 

 

Fig. 5. Use of the Requirements Elicitation Guide in a project 

instance, customers can know what groups, restrictions, or devices are already in the 
specifications and use them for the slots of the current question. 

6   An Example of Application for an e-Bookstore 

To show the use of the REG for MAS in a specific domain, we have selected a case 
study based on Juul Møller Bokhandel A/S [1]. Juul Møller is a bookstore company 
that works with the Norwegian School of Management (NSM). The students of the 
NSM are its main customers. As a consequence of the uprising of bookstores based on 
e-commerce, Juul Møller wants to evolve its business model too. Its objective is to 
define a MAS for bookselling in Internet where its company, the NSM, teachers, and 
students work together and share interests. 

The current example begins with part of the MAS specifications already available1. 
They can be seen in Fig. 6 and Fig. 7 and are focused on the functionality that the 
MAS of Juul Møller gives to students when they want to compare its services with 
those of other bookstores in Internet. These tasks allow the students to know the 
availability of books or to compare prices. 

                                                           
1 The full specifications of the case study with INGENIAS are available at 

http://grasia.fdi.ucm.es/ingenias. Their translation to UML-AT is omitted for brevity. 



50 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

  

Fig. 6. Objectives of Juul Møller about its MAS 

 

Fig. 7. Workflows of inquiries about prices of other bookstores 

Fig. 4 illustrates that the main objective of the company Juul Møller is Sell More 
Books. This goal can be achieved by satisfying the goals Get New Customers or 
Increase Sales for Customer. 

Fig. 7 shows one of the workflows of the MAS. In order to get that students 
frequently visit its website, the MAS of Juul Møller provide several services. Among 
them, there is the possibility of comparing the prices of Juul Møller with those of 
popular bookstores in Internet (such as Amazon.com or Blackwell’s). The subjects “… 
Agent” are the agents in the MAS that act on behalf of the students and of the Sales 
Department in the Juul Møller bookstore. The Student’s Agent carries out the Begin 
Enquiry activity to provide the Information Request object about the books to be 
compared. The Sales Department Agent processes the object and generates the 
Answer to Request. Finally, the Student’s Agent receives and processes this object to 
obtain the comparison. 

The development team, which includes representatives from the Juul Møller 
bookstore, experts in e-commerce, and MAS developers, wants to know if these 
activities have influence over other objectives in the problem. Here, the team can use 



 Requirements Elicitation for Agent-Based Applications 51 

different aspects from the REG like “Criteria for success or failure of achieving 
goals”, “Tools and materials shared between several users”, or “Potential conflicts 
between objectives”. In this case, they choose other aspect, “Goals of the new 
component”, and the question “Is there any inconvenient for the organization or 
groups in it about building the new component?”. This belongs to the textual form of 
the question in the AT view. Fig. 8 shows the answer when the question is posed with 
the goal Give Support to Customers as opposed to the objectives of Juul Møller. 

 

Fig. 8. Question about the drawbacks of comparing prices with other bookstores. On the left 
original UML-AT form of the answer; on the right, fulfilled answer using equivalences [5]. 

Fig. 8 shows that some employees of Juul Møller are worried about the activities to 
increase the students’ visits. If their company is frequently worse in the comparatives, 
they will lose buyers. With this situation, it is evident that either the specifications are 
incomplete or this support that harms sales should be removed from the system. 

A possible starting point to solve the problem arising from Fig. 8 is to know who in 
Juul Møller proposes this service. There is an aspect “Actors in the new system” 
where we find the question “Who is interested in this service being provided to 
customers?”. Besides the Sales Department Agent that appears in Fig. 7, the answer to 
the new question tells the team that the Advertising Department Agent is also 
interested in that task. As agents are intentional entities, if this agent wants the task 
being executed is because it satisfies one of its objectives. To collect this information 
the team uses the aspect “Objectives to create the new component” that includes the 
question “Why does the actor/organization want to provide the service? Which are 
their objectives?”. The customers’ answer in this case is that they hope that the 
activity helps them to the Make Advertising objective, what will increase sales. 

Advertisements in the MAS have some limitations. The previous study of users’ 
behaviour considers that the website of Juul Møller should have a differentiated 
character from those of its competitors. Direct advertising (e.g. banners and popups) 
in websites annoys users. Thus, it will be better to make advertisements based on 
users’ preferences. The relationship of these objectives with the previous one of Make 
Advertising was gathered with the question “Do this action indirectly contribute to 
other objectives?”. The answers allow including in the specifications the relationships 
of positive contribution between the objectives Increase Sales for Customer and Make 
Advertising and between this and Know Customers’ Preferences. With the new 
information, Fig. 7 changes to add a new objective Know Customers’ Preferences to 
the activity Answer Inquiry. 



52 R. Fuentes, J.J. Gómez-Sanz, and J. Pavón 

7   Conclusions 

This paper shows the Requirements Elicitation Guide (REG) as a tool based on AT to 
gather requirements about the social environment of MAS. Its main advantages are: to 
have a memo of the intentional and social aspects that should be considered about 
system requirements, specially from an agent-oriented perspective; to provide 
guidelines that help on deciding where to continue with the elicitation when obvious 
requirements have been obtained; to have a tool applicable with most agent-oriented 
methodologies. 

The REG is a reminder of those social features that should be considered in MAS. 
The knowledge of the AT about the study of human organizations, complemented 
with that from the domain, provides a huge body of case studies that can be used as a 
source of expert knowledge. If there are doubts about whether or not the relevant 
intentional and social information about a MAS has been elicited, an overview of the 
REG can suggest new characteristics for introspection. Its hierarchical structure with 
areas, aspects, and questions allows navigating to those questions of the REG 
relevant for the information under scrutiny. 

The REG does not intend to build a new methodology for MAS development. It is 
a set of tools for support in existing methodologies. This elicitation process analyzes 
and specifies requirements with concepts close to those of MAS. The representation 
of questions with UML-AT allows translating the information about requirements to 
agent-oriented languages with correspondences among vocabularies. Its main 
limitation comes from the specification of the UML-AT representation of questions. 
This task is where the AT concepts have to be identified over the textual form of the 
answers to the question, and this textual form is ambiguous in essence. That is, this 
task heavily relies on the own interpretation of the people who do it. 

Finally, note that the application of the REG does not pretend to elicit every 
possible requirement of a MAS in every setting. It is a generic guide in the process of 
elicitation that needs customization for concrete domains, and can be complemented 
with other techniques of Requirements Engineering. 

References 

1. Andersen, E.: Juul Møller Bokhandel A/S. Case Study at http://www.espen.com/. 2001. 
2. Dardenne, A, van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition. 

Science of Computer Programming, 20, pp. 3-50. 1993. 
3. Fuentes, R., Gómez-Sanz, J.J., Pavón, J.: Activity Theory for the Analysis and Design of 

Multi-Agent Systems. In Proceedings of the 4th International Workshop on Agent Oriented 
Software Engineering (AOSE 2003), Melbourne, Australia, July 2003. Lecture Notes in 
Computer Science, 2935, pp. 110–122. Springer Verlag, 2003. 

4. Fuentes, R., Gómez-Sanz, J.J., Pavón, J.: Social Analysis of Multi-Agent Systems with 
Activity Theory. In Proceedings of CAEPIA 2003, San Sebastian, Spain, November 2003. 
Lecture Notes in Artificial Intelligence, 3040, pp. 526-535. Springer Verlag, 2004. 

5. Fuentes-Fernández, R.: Activity Theory for the Development of Multi-agent Systems. (in 
Spanish: Teoría de Actividad para el Desarrollo de Sistemas Multi-Agente). Ph. D. thesis, 
Dep. of Sistemas Informáticos y Programación, Univ. Complutense Madrid, Spain. 2004. 



 Requirements Elicitation for Agent-Based Applications 53 

6. Gómez-Sanz, J., Pavón, J.: Methodologies for Developing Multi-Agent Systems. Journal of 
Universal Computer Science, 10 (4), pp. 359-374. 2004. 

7. Goguen, J. A., Linde, C.: Techniques for requirements elicitation. In Proceedings of the 
1st IEEE International Symposium on Requirements Engineering (RE’93), San Diego, 
USA, January 1993, pp. 152-164. IEEE Computer Society Press, 1993. 

8. Gould, E., Verenikina, I., Hasan H.: Activity Theory as a Basis for the Design of Web 
Based System of Inquiry for World War 1 Data. In Proceedings of the 23rd IRIS 
Conference, Lingatan, Sweden, August 2000, pp. 761-770. 2000. 

9. Hedestig, U., Kaptelinin, V.: Re-contextualization of teaching and learning in 
videoconference-based environments: An empirical study. In Proceedings of CSCL 2002, 
Computer Support for Collaborative Learning: Foundations for a CSCL Community. 

10. Kaptelinin, V., Nardi, B. A., Macaulay, C.: The Activity Checklist: A tool for representing 
the “space” of context. Interactions, 6 (4), pp. 27-39. 1999. 

11. Kuutti, K.: Activity Theory as a potential framework for Human-computer interaction 
research. In B.A. Nardi, (ed.), context and consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA, USA: MIT press. 1996. 

12. van Lamsweerde, A., Willemet, L.: Inferring Declarative Requirements Specifications 
from Operational Scenarios. IEEE Transactions on Software Engineering, Special Issue 
on Scenario Management, December 1998. 

13. van Lamsweerde, A.: Requirements Engineering in the Year 00: A Research Perspective. 
In Proceedings of the 22nd International Conference on Software Engineering (ICSE-
2000), Limerick, Ireland, June 2000. ACM Press. 

14. Leontiev, A. N.: Activity, Consciousness, and Personality. Englewood Cliffs, NJ, USA: 
Prentice-Hall. 1978. 

15. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In Proceedings of 
the 22nd International Conference on Software Engineering (ICSE-2000), Limerick, 
Ireland, June 2000. 

16. OMG: Unified Modeling Language Specification. Version 1.5. 2003 http://www.omg.org 
17. Perini, A., Bresciani, P., Giunchiglia, F., Giorgini, P., Mylopoulos, J.: A Knowledge Level 

Software Engineering Methodology for Agent Oriented Programming. In Proceedings of 
the 5th International Conference on Autonomous Agents, Montreal, Canada, May 2001. 

18. Vygotsky, L. S.: Mind and Society. Cambridge MA, USA: Harvard University. 1978. 
19. Yu, E.: Strategic Modelling for Enterprise Integration. In Proceedings of the 14th World 

Congress of the International Federation of Automatic Control (IFAC'99), Beijing, China, 
July 1999. 



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 54 – 68, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Formalisation and Analysis of the 
Temporal Dynamics of Conditioning 

Tibor Bosse1, Catholijn M. Jonker2, Sander A. Los3,  
Leendert van der Torre4,5, and Jan Treur1 

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,  
De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands 

{tbosse, treur}@cs.vu.nl 
http://www.cs.vu.nl/~{tbosse, treur} 

2 Radboud Universiteit Nijmegen, 
Nijmegen Institute for Cognition and Information, 

Montessorilaan 3, 6525 HR Nijmegen, The Netherlands 
C.Jonker@nici.ru.nl 

http://www.nici.ru.nl/~catholj 
3 Vrije Universiteit Amsterdam, 

Department of Cognitive Psychology, 
Van der Boechorststraat 1, 1081 BT Amsterdam, The Netherlands  

sa.los@psy.vu.nl 
http://www.cs.vu.nl/~cogsci/cogpsy/sander 

4 Centrum voor Wiskunde en Informatica,  
Kruislaan 413, 1098 NL Amsterdam, The Netherlands 

torre@cwi.nl 
http://homepages.cwi.nl/~torre 

5 Delft University of Technology, 
Mekelweg 4, 2628 CD Delft, The Netherlands 

Abstract. In order to create adaptive Agent Systems with abilities matching 
those of their biological counterparts, a natural approach is to incorporate 
classical conditioning mechanisms into such systems. However, existing 
models for classical conditioning are usually based on differential equations. 
Since the design of Agent Systems is traditionally based on qualitative 
conceptual languages, these differential equations are often not directly 
appropriate to serve as an input for Agent System design. To deal with this 
problem, this paper explores a formal description and analysis of a conditioning 
process based on logical specification and analysis methods of dynamic 
properties of conditioning. Specific types of dynamic properties are global 
properties, describing properties of the process as a whole, or local properties, 
describing properties of basic steps in a conditioning process. If the latter type 
of properties are specified in an executable format, they provide a temporal 
declarative specification of a simulation model. Global properties can be 
checked automatically for simulated or other traces. Using these methods the 
properties of conditioning processes informally expressed by Los and Heuvel 
[8] have been formalised and verified against a specification of local properties 
based on Machado [9]’s mathematical model. 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 55 

1   Introduction 

Intelligent Agents often operate in dynamic and uncertain environments. Therefore, 
an important challenge for Agent-Oriented Software Engineering is to incorporate 
learning mechanisms into Agent Systems. A basic learning mechanism that can be 
found in many organisms is classical conditioning. Thus, in order to create Intelligent 
Agents Systems with abilities matching those of their biological counterparts, a 
natural approach is to build classical conditioning into such systems, e.g., [1]. 

However, in the literature classical conditioning is usually described and 
analysed informally. If formalisation is used, this is often based on mathematical 
models using differential equations, e.g., Dynamic Systems Theory [11]. In 
contrast, Agent-Based Systems traditionally make use of logical, conceptual 
languages, such as Golog [12] or 3APL [4]. Most of these languages are good for 
expressing qualitative relations, but less suitable to work with complex differential 
equations. Therefore, using mathematical models as a direct input for the design of 
Agent Systems is not trivial. 

To bridge the gap between the quantitative nature of existing conditioning 
models and the conceptual, logical type of languages typically used to design Agent 
Systems, this paper introduces a logical approach for the analysis and formalisation 
of conditioning processes that combines qualitative and quantitative concepts, cf. 
[6]. Using this approach, the dynamics of conditioning are analysed both at a local 
and at a global level. First a local perspective model for temporal conditioning in a 
high-level executable format is presented, based on the idea of local dynamic 
properties. This executable model can be compared to (and was inspired by) 
Machado [9]’s differential equation model. Some simulation traces are shown. 
Next, as part of a non-local perspective analysis, a number of relevant global 
dynamic properties of the conditioning process are identified and formalised. These 
dynamic properties were obtained by formalising the informally expressed 
properties to characterise temporal conditioning processes, as put forward by Los 
and Heuvel [8]. It has been automatically verified that (under reasonable 
conditions) these global dynamic properties are satisfied by the simulation traces. 
Thus, it is validated that the local dynamic properties can be used as requirements 
for the design of adaptive agents. This finding offers possibilities to extend existing 
methodologies for Agent-Oriented Software Engineering by including learning 
mechanisms as observed in nature. 

In Section 2, first some basic concepts of classical conditioning are introduced. 
Based on these concepts, Section 3 briefly describes Machado [9]’s mathematical 
model for conditioning. Next, Section 4 introduces our logical approach to modelling 
dynamic process, and Section 5 applies this approach to Machado’s model. Some 
resulting simulation trace that were generated on the basis of the logical model are 
shown in Section 6. In Section 7, a number of relevant global dynamic properties are 
described (cf. [8]), that are expected to hold for conditioning processes. In Section 8 
these global properties are automatically checked against the simulation model. 
Section 9 concludes the paper with a discussion. 



56 T. Bosse et al. 

2   Basic Concepts of Conditioning 

Research into conditioning is aimed at revealing the principles that govern associative 
learning. To this end, several experimental procedures have been developed. In 
classical conditioning, an organism is presented with an initially neutral conditioned 
stimulus (e.g., a bell) followed by an unconditioned stimulus (e.g., meat powder) that 
elicits an innate or learned unconditioned response in the organism (e.g., saliva 
production for a dog). After acquisition, the organism elicits an adaptive conditioned 
response (also saliva production in the example) when the conditioned stimulus is 
presented alone. In operant conditioning, the production of a certain operant response 
that is part to the volitional repertoire of an organism (e.g., bar pressing for a rat) is 
strengthened after repeated reinforcement (e.g., food presentation) contingent on the 
operant response. 

In their review, Gallistel and Gibbon [5] argued that these different forms of 
conditioning have a common foundation in the adaptive timing of the conditioned (or 
operant) response to the appearance of the unconditioned stimulus (or reinforcement). 
This feature is most apparent in an experimental procedure called trace conditioning, 
in which a blank interval (or 'trace') of a certain duration separates the conditioned 
and unconditioned stimulus (in classical conditioning) or subsequent reinforcement 
phases (in operant conditioning). In either case, the conditioned (or operant) response 
obtains its maximal strength, here called peak level, at a moment in time, called peak 
time, that closely corresponds to the moment the unconditioned stimulus (or 
reinforcement) occurs.  

For present purposes, we adopt the terminology of an experimental procedure that 
is often used to study adaptive timing and the possible role of conditioning in humans. 
In this procedure, a trial starts with the presentation of a warning stimulus (S1; 
comparable to a conditioned stimulus). After a blank interval, called the foreperiod 
(FP), an imperative stimulus (S2, comparable to an unconditioned stimulus) is 
presented to which the participant responds as fast as possible. The reaction time (RT) 
to S2 is used as an estimate of the conditioned state of preparation at the moment S2 
is presented. 

In this type of research, FP is usually varied at several discrete levels. That is, S2 
can be presented at several moments since the offset of S1, which are called critical 
moments. The moment that is used for the presentation of S2 on any given trial is 
called the imperative moment of that trial. In a pure block, the same FP is used across 
all trials of that block. That is, in a pure block there is one critical moment that 
corresponds to the imperative moment on each trial. In a mixed block, all levels of FP 
occur randomly across trials. That is, a mixed block has several critical moments, but 
on any specific trial, only one of the moments is the imperative moment. 

3   Modelling by Differential Equations 

Machado [9] presented a basic model of the dynamics of a conditioning process. The 
structure of this model, with an adjusted terminology as used by [7], is shown in 
Figure 1. The model posits a layer of timing nodes (Machado calls these behavioral 
states) and a single preparation node (called operant response by Machado). Each 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 57 

timing node is connected both to the next timing node and to the preparation node. 
The connection between each timing node and the preparation node (called 
associative link both by Machado and within the current paper) has an adjustable 
weight associated to it. Upon the presentation of a warning stimulus, a cascade of 
activation propagates through the timing nodes according to a regular pattern. Owing 
to this regularity, the timing nodes can be likened to an internal clock or pacemaker. 
At any moment, each timing node contributes to the activation of the preparation node 
in accordance with its activation and its corresponding weight. The activation of the 
preparation node reflects the subject’s preparatory state, and is as such related to 
reaction time for any given imperative moment. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Structure of Machado's conditioning model (adjusted from [9]) 

The weights reflect the state of conditioning, and are adjusted by learning rules, of 
which the main principles are as follows. First, during the foreperiod extinction takes 
place, which involves the decrease of weights in real time in proportion to the 
activation of their corresponding timing nodes. Second, after the presentation of the 
imperative stimulus a process of reinforcement takes over, which involves an increase 
of the weights in accordance with the current activation of their timing nodes, to 
preserve the importance of the imperative moment. In [9] the more detailed dynamics 
of the process are given by a mathematical model (based on linear differential 
equations), representing the (local) temporal relationships between the variables 
involved. For example, d/dt X(t,n) = λX(t,n-1) - λX(t,n) expresses how the activation level 
of the n-th timing node X(t+dt,n) at time point t+dt relates to this level X(t,n) at time 
point t and the activation level X(t,n-1) of the (n-1)-th timing node at time point t. 

4   Modelling by Dynamic Properties 

As discussed above, mathematical models based on differential equations can be used 
to model local temporal relationships within conditioning processes. However, 
conditioning processes can also be characterised by temporal relationships of a less 
local form. As an example, taken from [8], a dynamic property can be formulated 
expressing the monotonicity property that ‘the response level increases before the 
critical moment is reached and decreases after this moment’. This is a more global 
property, relating response levels at any two points in time before the critical moment 

S1 

Timing nodes with 
activation level X 

 
 

Associative links of 
variable weight W 

 
 

Preparation node 
 
 

Response strength R 



58 T. Bosse et al. 

(or after the critical moment). Therefore it is useful to explore formalisation 
techniques, as an alternative to differential equations, to express not only for local 
properties, but also for non-local properties. A second limitation of differential 
equations is that they are based on quantitative (calculational) relationships, whereas 
also non-quantitative aspects may play a role (for example, the monotonicity property 
mentioned above). This suggests that it may be useful to explore alternative 
formalisation techniques for dynamic properties of conditioning processes that allow 
one to express both quantitative and non-quantitative aspects.  

As already mentioned in the Introduction, the approach presented in this paper 
indeed uses alternative formalisation languages to express dynamic properties of 
conditioning processes, both for local and global properties and both for 
quantitative and non-quantitative aspects. To this end the Temporal Trace 
Language TTL is used as a tool. For a detailed introduction to this language, see 
[6]. For an example of a previous application to the simulation and analysis of 
cognitive processes, see [2]. In the next sections TTL will be used to describe 
dynamic properties of a conditioning process at different levels of aggregation. At 
the lowest level of aggregation, local dynamic properties are dynamic properties of 
the basic mechanisms of the conditioning process. Since these properties are 
executable, they can (and will) be used to create a simulation model of a 
conditioning process (comparable to and inspired by Machado’s model). At a higher 
level of aggregation, global dynamic properties, i.e., properties of the conditioning 
process as a whole, will be expressed (e.g., indicating how a certain pattern of 
behaviour has been changed by a conditioning process). These dynamic properties 
were obtained by formalising the informally expressed properties to characterise 
temporal conditioning processes, as put forward by Los and Heuvel [8]. In addition, 
it will be shown that the global properties are satisfied by the traces generated on 
the basis of the local properties. 

5   Local Dynamic Properties 

A selection of the local properties (LPs) we defined in order to describe the basic 
mechanisms of the conditioning process is presented below. A local property 
generally has the format α →→ β, indicating that α leads to β, after a certain (specified) 
delay. The concepts used within the dynamic properties (called state properties) are 
described in Table 1. 

As Machado [9]’s model was used as a source of inspiration, for some of the 
properties presented below the comparable differential equation within Machado's 
model is given as well. However, since Machado's mathematical approach differs at 
several points from the logical approach presented in this paper, there is not always a 
straightforward 1:1 mapping between both formalisations. For instance, state property 
X(n,u) within our TTL formalisation has a slightly different meaning than the 
corresponding term X(t,n) in Machado's differential equations. In the former, n stands 
for the timing node, u stands for the activation level, and X(n,u) stands for the fact that 
timing node n has activation level u. In the latter, t stands for a time point, n for the 
timing node, and X(t,n) as a whole for the activation level. 
 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 59 

Table 1. State Properties 

X(n,u) Timing node n has activation level u. In the current simulation, n ranges over 
the discrete domain [0,5]. Thus, our model consists of six timing nodes. The 
activation level u can take any continuous value in the domain [0,1]. 

W(n,v) Associative link n has weight v. Again, n ranges over the discrete domain [0,5]. 
The weight v can take any continuous value in the domain [0,1]. 

R(r) The preparation node has response strength r (a continuous value in the domain 
[0,1]). 

S1(s) Warning stimulus S1 occurs with strength s. Within our example, s only takes 
the values 0.0 and 1.0. However, the model could be extended by allowing any 
continuous value in-between. 

S2(s) Imperative stimulus S2 occurs with strength s. 
Xcopy(n,u) Timing node n had activation level u at the moment of the occurrence of the last 

imperative stimulus (S2). See dynamic property LP4 and LP6. 
instage(ext) The process is in a stage of extinction. This stage lasts from the occurrence of 

S1 until the occurrence of S2. 
instage(reinf) The process is in a stage of reinforcement. This stage starts with the occurrence 

of S2, and lasts during a predefined reinforcement period (e.g. 150 msec). 
instage(pers) The process is in a stage of persistence. This stage starts right after the 

reinforcement stage, and lasts until the next occurrence of S1. 

Using the concepts described in Table 1, the following local properties have been 
specified to describe the basic mechanisms of the conditioning process: 

LP1 Initialisation 
The first local property LP1 expresses the initialisation of the values for the timing nodes and 
the associative links. Formalisation (for n ranging over [0,5]):  

start →→  X(n, 0) ∧ W(n, 0) 

LP2 Activation of initial timing nodes 
Local property LP2 expresses the activation (and adaptation) of the 0th timing node. 
Immediately after the occurrence of the warning stimulus (S1), this state has full strength. After 
that, its value decreases until the next warning stimulus. Together with LP3, this property causes 
the spread of activation across the timing nodes. Here, λ > 0 is a rate parameter that controls the 
speed of this spread of activation, and step is a constant indicating the smallest time step in the 
simulation. For the simulation experiments presented in the next section, λ was set to 10 and 
step was set to 0.05. 

 X(0, u) ∧ S1(s) →→  X(0, u*(1-λ*step)+s) 

Comparable differential equation in Machado [9]’s model: 

 d/dt X(t,0) = -λX(t,0). 

LP3 Adaptation of timing nodes 
LP3 expresses the adaptation of the nth timing node (for n ranging over [1,5]), based on its own 
previous state and the previous state of the n-1th timing node. Together with LP2, this property 
causes the spread of activation across the timing nodes. Here, λ is a rate parameter that controls 
the speed of this spread of activation (see LP2). 

X(n, u1) ∧ X(n-1, u0) →→  X(n, u1+λ*(u0-u1)*step) 

Comparable differential equation in Machado [9]’s model: 

d/dt X(t,n) = λX(t,n-1) - λX(t,n). 



60 T. Bosse et al. 

LP4 Storage of timing nodes at moment of reinforcer 
LP4 is needed to store the value of the nth timing node at the moment of the occurrence of the 
imperative stimulus (S2). These values are used later on by property LP6. 

X(n, u) ∧ S2(1.0) →→  Xcopy(n, u) 

LP5 Extinction of associative links 
LP5 expresses the adaptation of the associative links during extinction, based on their own 
previous state and the previous state of the corresponding timing node. Here, α is a learning rate 
parameter. For the simulation experiments presented in the next section, the value 2 was chosen 
for α, inspired by [7]. This rather high value for α causes the model to adjust quickly to 
changing temporal regimes. 

instage(ext) ∧ X(n, u) ∧ W(n, v) →→  W(n, v*(1-α*u*step)) 

Comparable differential equation in Machado [9]’s model:  

d/dt W(t,n) = -αX(t,n)W(t,n) 

LP6 Reinforcement of associative links 
LP6 expresses the adaptation of the associative links during reinforcement, based on their own 
previous state and the previous state of Xcopy. Here, β is a learning rate parameter. For the 
simulation experiments presented in the next section, the value 2 was chosen for β, inspired by 
[7]. 

instage(reinf) ∧ Xcopy(n, u) ∧ W(n, v) →→  W(n, v*(1-β*u*step) + β*u*step) 

Comparable differential equation in Machado [9]’s model:  

d/dt W(t,n) = βX(T,n)[K-W(t,n)]. 

LP7 Persistence of associative links 
LP7 expresses the persistence of the associative links at the moments that there is neither 
extinction not reinforcement.  

instage(pers) ∧ W(n, v) →→  W(n, v) 

LP8 Response function 
LP8 calculates the response by adding the discriminative function of all states (i.e., their 
associative links * the degree of activation of the corresponding state).  

W(1, v1) ∧ W(2, v2) ∧ W(3, v3) ∧ W(4, v4) ∧ W(5, v5) ∧ X(1, u1) ∧ X(2, u2) ∧ X(3, u3) ∧ X(4, u4) ∧ X(5, u5) →→  
R(v1*u1 + v2*u2 + v3*u3 + v4*u4 + v5*u5) 

LP9 Initialisation of stage pers 
LP9 expresses that the initial stage of the process is pers. 

start →→ instage(pers) 

LP10 Transition to stage ext 
LP10 expresses that the process switches to stage ext when a warning stimulus occurs. 

S1(1.0) →→ instage(ext) 

LP11 Persistence of stage ext 
LP11 expresses that the process persists in stage ext as long as no imperative stimulus occurs. 

instage(ext) ∧ S2(0.0) →→ instage(ext) 

 
 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 61 

LP12 Transition to stage reinf and pers 
LP12 expresses that the process first switches to stage reinf for a while, and then to stage pers 

when an imperative stimulus occurs. Notice that LP12a and LP12b must have different timing 
parameters to make sure both stages do not occur simultaneously. 

S2(1.0) →→ instage(reinf)                   (LP12a) 
S2(1.0) →→ instage(pers)                   (LP12b) 

LP13 Persistence of stage pers 
LP13 expresses that the process persists in stage pers as long as no warning stimulus occurs. 

instage(pers) ∧ S1(0.0) →→ instage(pers) 

Note that the translation from differential equations to local properties in TTL is 
relatively easy to make. Assuming some experience with both kinds of modelling, a 
set of differential equations as given above can be translated within a couple of 
hours. 

6   Simulation Examples 

A software environment has been developed that generates simulation traces of the 
conditioning process, based on an input consisting of dynamic properties in formal 
format. A large number (about 20) of such traces have been generated, with different 
parameters for foreperiod (50, 100, 150, 200, 300, and 500 msec) and block type 
(pure blocks and mixed blocks), selected on the basis of [7]. An example of such a 
trace can be seen in Figure 2. Here, time is on the horizontal axis. Each time unit 
corresponds to 50 msec. The relevant concepts (S1, instage(ext), instage(pers) and R) are 
on the vertical axis. This trace is based on all local properties presented above. For 
almost all properties, the timing parameters (0,0,1,1) were used. Exceptions are the 
properties LP4, LP12a and LP12b. For these properties, the timing parameters were 
respectively (0,0,1,3), (0,0,1,3) and (3,3,1,1), where 3 corresponds to the reinforcement 
duration (i.e., 150 msec). 

 

Fig. 2.  Simulation trace of the dynamics during conditioning (pure block, FP=300 msec) 



62 T. Bosse et al. 

Figure 2 describes the dynamics during (not after) a conditioning process. To be 
specific, this trace describes the dynamics of a person that is subject to conditioning in 
a pure block with a foreperiod of 6 time units (i.e., 300 msec). As can be seen in the 
trace, the level of response-related activation increases on each trial. Initially, the 
subject is not prepared at all: at the moment of the imperative stimulus (S2), the level 
of response is 0. However, already after two trials a peak in response level has 
developed that coincides exactly with the imperative moment. 

Figure 3 describes the dynamics of the same pure block (with foreperiod of 300 
msec) after the conditioning has taken place. At this moment, the internal model has 
evolved in such a way that the subject is maximally prepared (response strength r > 
0.4) at the critical moment (i.e., after 300 msec), even without the actual occurrence 
of an imperative stimulus S2.  

 

Fig. 3.  Simulation trace of the dynamics after conditioning (pure block, FP=300 msec) 

 

Fig. 4. Simulation trace of the dynamics after conditioning (mixed block, FP=100 & 500 msec) 

In contrast to Figure 2 and 3 (describing the dynamics of a pure block), Figure 4 is 
an example of a trace where a mixed block is considered. As in Figure 3, this trace 
deals with a situation where the conditioning has already occurred, but this time, two 
types of foreperiod (FP=100 and FP=500 msec) have randomly been presented during 
the preceding trials. As a consequence, the curves that plot the response level have 
two peaks: one for each critical moment. The current trace shows two trials: one in 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 63 

which the imperative moment corresponds to the first critical moment, and one in 
which it corresponds to the second critical moment. 

As mentioned above, a number of similar experiments have been performed, with 
different parameters for foreperiod and block type. The results were consistent with 
the data produced by Machado. 

7 Analysis of Global Dynamic Properties 

In [8], the following properties of the overall conditioning process are put forward:  
 

 ‘Corresponding to each critical moment there is a state of conditioning, the adjustment of which is 
governed by learning rules of trace conditioning  (specified subsequently).’ 
(1) ‘The state of conditioning implicates an increase and decay of response-related activation as a critical 

moment is bypassed in time.’ 
(2) ‘the conditioned response takes more time to build up and decay and its corresponding asymptotic 

value is lower when its corresponding critical moment is more remote from the warning signal.’  
(3) ‘on any trial, the strength of the conditioned response corresponding to a critical moment is 

reinforced (i.e., increased toward its asymptote) if and only if that critical moment coincides with 
the imperative moment.’  

(4) ‘on any trial the strength of the conditioned response is extinguished (i.e., driven away from its 
asymptote) if and only if its corresponding critical moment occurs before the imperative moment, 
whereas it is left unaffected if its corresponding critical moment occurs later than the imperative  
moment.’  [8], p. 372. 

 

These properties have a rather informal and non-mathematical nature. Below it is 
shown how they can be formalised gradually.  Each property is presented first in a 
semi-formal notation, following by the formal (TTL) notation. 

GP1 has_global_hill_prep(γ,t1,t2,s1,a,u) 
The first global property GP1 is a formalisation of informal property (1) presented 
above. In semi-formal form, it describes the following: 
 

‘In trace γ, if at t1 a stimulus s1 starts, then the preparation level for action a will 
increase from t1 until t2 and decrease from t2 until t1 + u, under the assumption that no 
stimulus occurs too soon (within u time) after t1.’ 

In formal (TTL) notation this property looks as follows: 

∀t’, t”, s’, p’, p”, x, x’            
stimulus_starts_at(γ, t1, s1, x)  & 
¬ stimulus_starts_within(γ, t1, t1+u, s’, x’)  & 
has_preparation_level_at(γ, t’, p’, a)  & 
has_preparation_level_at(γ, t”, p”, a)    

  [t1 ≤ t’ < t” ≤ t2  &  t” ≤ t1 + u     p’ < p” ]  & 
      [t2 ≤ t’ < t” ≤ t1 + u                    p’ > p” ] 

GP2 pending_peak_versus_critical_moment(γ1,γ2,t1,t2,c1,c2) 
Global property GP2 is a formalisation of informal property (2). Its semi-formal 
description is as follows: 

‘If for trace γ2 at time t2 peak time c2 is more remote than peak time c1 for γ1 at time t1, 
then at t2 in γ2 the pending peak level is lower than the pending peak level at t1 in γ1.’ 

 



64 T. Bosse et al. 

The formalisation is as follows: 

∀s1, a, p1, p2 
has_pending_peak_level(γ1, t1, c1, p1, s1, a) & 
has_pending_peak_level(γ2, t2, c2, p2, s1, a) 

   [  c1 < c2     p1 > p2 ] 

GP3 dynamics_of_pending_preparation(γ,t1,t2,c,v,p,p’,s1,s2,a, d,ε) 
GP3 is a formalisation of both informal property (3) and (4) together. Its semi-formal 
description is as follows:  

‘If t1 < t2  
and at t1 the pending preparation level for time t1+v, action a, and stimuli s1 and s2 
is p,  
and at t2+d the pending preparation level for time t2+d+v, action a, and stimuli s1 and 
s2 is p’, 
and in trace γ at time t1 a stimulus s1 starts, 
and in trace γ at time t2 a stimulus s2 starts,  
and in trace γ the maximum peak level for a is pmax, 
and in trace γ the minimum preparation level for a is pmin, 

then:  
t2 ∈ [ t1+c-ε, t1+c+ε ]  iff  p’ > p   (reinforcement, given p<pmax) 
t2 > t1+c+ε     iff  p’ < p   (extinction, given that p > pmin) 
t2 < t1+c-ε     iff  p’ = p   (persistence)’ 

Here, parameter d refers to the time needed to process the events (d > 0), and c refers 
to a critical moment. The formalisation is as follows: 

dynamics_of_pending_preparation(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) ⇔ 
      reinforcement(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) & 
      extinction(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) & 
      persistence(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) 

reinforcement(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) ⇔ 
    ∀x1, x2, pmin, pmax 
     two_stimuli_occur(γ, t1, t2, c, v, p, p’, s1, s2, a, d) 
         [  p < pmax   [ t2 ∈ [ t1 + c - ε, t1 + c + ε ] ⇔   p’ > p ]] 

extinction(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) ⇔ 
    ∀ x1, x2, pmin, pmax 
     two_stimuli_occur(γ, t1, t2, c, v, p, p’, s1, s2, a, d) 
         [  p > pmin   [ t2 > t1 + c + ε  ⇔   p’ < p ]] 

persistence(γ, t1, t2, c, v, p, p’, s1, s2, a, d, ε) ⇔ 
    ∀ x1, x2, pmin, pmax 
     two_stimuli_occur(γ, t1, t2, c, v, p, p’, s1, s2, a, d) 
         [ t2 < t1 + c - ε  ⇔   p’ = p ] 

two_stimuli_occur(γ, t1, t2, c, v, p, p’, s1, s2, a, d) ⇔ 
    t1 < t2 & has_pending_preparation_level(γ, t1, t1+v, p, s1, s2, a) & 
    has_pending_preparation_level(γ, t2+d, t2+d+v, p’, s1, s2, a)  & 
    stimulus_starts_at(γ, t1, s1, x1)   & 
    stimulus_starts_at(γ, t2, s2, x2)  & 
    target_action_for(a, s2)   & 
    is_a_critical_moment(c)   & 
    maximum_peak_level(γ, pmax, a)  & 
    minimum_preparation_level(γ, pmin, a) 



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 65 

8   Checking Global Properties on Traces 

In addition to the software described in the Simulation section, other software has 
been developed that takes traces and formally specified properties as input and checks 
whether a property holds for a trace. Using automatic checks of this kind, the four 
formalised properties based on [8] have been checked against traces describing the 
dynamics after conditioning (like the ones depicted in Figure 3 and 4). This section 
discusses the results of these checks. 

GP1 has_global_hill_prep(γ,t1,t2,s1,a,u) 
This property turned out to hold for the generated traces, as long as reasonable values 
are chosen for the parameters. In particular, the parameters should meet the following 
conditions: 

• t1 = a time point when s1 occurs 
• t2 = t1 + duration of s1 + length of FP 
• u = iti (the intertrial interval during the preceding conditioning process) 

For example, the following property holds: has_global_hill_prep(γ1, 20, 27, s1, a, 20), 
where γ1 is the trace provided in Figure 3. Thus, for this trace the following holds: if 
at time point 20 a stimulus s1 starts, then the preparation level for action a increases 
from 20 until 27 and decreases from 27 until 40, under the assumption that no 
stimulus occurs between 20 and 40. 

GP2 pending_peak_versus_critical_moment(γ1,γ2,t1,t2,c1,c2) 
Checking property GP2 involves comparing two traces. Basically, it states that in 
traces where the foreperiod is longer, the level of response is lower. In order to check 
GP2, several traces have been generated that are similar to the trace in Figure 3,  
but each with a different foreperiod. For all combinations of traces, the property 
turned out to hold. To take an example, the following property holds: 
pending_peak_versus_critical_moment(γ1, γ2, 20, 20, 6, 7), where γ1 is the trace provided in 
Figure 3, and γ2 is a similar trace with FP=7. This means that, if for trace γ2 at time 20 
peak time 7 is more remote than peak time 6 for γ1 at time 20, then at 20 in γ2 the 
pending peak level is lower than the pending peak level at 20 in γ1. 

GP3 dynamics_of_pending_preparation(γ,t1,t2,c,v,p,p’,s1,s2,a, d,ε) 
Property GP3 combines property (3) and (4) as mentioned in the previous section. 
Basically, the property consists of three separate statements that relate the strength of 
the conditioned response (p) to the critical moment (t1+c) and the imperative moment 
(t2), by stating that: 

 GP3A. p increases iff t2 = t1+c 
 GP3B. p decreases iff t2 > t1+c 
 GP3C. p remains the same iff t2 < t1+c 

An example of this property with reasonable parameter values is: 
dynamics_of_pending_preparation(γ, 10, 12, 10, 10, p, p', s1, s2, a, 18, 0), where γ is the trace 
depicted in Figure 4. However, this property turned out not to hold. A close 
examination of Figure 4 will reveal the cause of this failure. This trace describes a 
mixed block with two types of foreperiod (FP=2 and FP=10). At time point 10, a 



66 T. Bosse et al. 

warning stimulus (S1) occurs. At this time point, the pending preparation level for the 
latest critical moment (time point 20) has a certain value. And since this critical 
moment occurs after the occurrence of S2 (the imperative moment: time point 12), the 
pending preparation level for the latest critical moment should remain the same, 
according to property GP3C above. However, in the trace in question this is not the 
case (see Figure 4: in the second curve the second peak is slightly lower than in the 
first curve). Hence, it may be concluded that property GP3C (sub-property persistence 
presented earlier) does not hold for the chosen parameters. Fortunately, an 
explanation of this finding can be found in a later section of [8], where the authors 
revise their original model as follows: 
 

 ‘According to the original model, extinction and reinforcement affect each state of conditioning in an all-
or-none way, thereby excluding a coupling between states of conditioning corresponding to adjacent critical 
moments. According to the revised model, extinction and reinforcement affect the states of conditioning 
more gradually across the time scale, resulting in a coupling between adjacent states.’ [8], p. 383. 
 

The revision of the model also implies a revision of property GP3. To be more 
specific, sub-property persistence can be changed into the following: 

t2 < t1 + c - ε  iff  p’ ∈ [ p - δ, p + δ ] 

Here, δ is a tolerance factor allowing a small deviation from the strength of the 
original response. After adapting GP3 accordingly, the property turned out to hold. 

9   Discussion 

To bridge the gap between the quantitative nature of existing conditioning models and 
the conceptual, logical type of languages typically used to design Agent Systems, in 
this paper a logical approach was introduced for the analysis and formalisation of 
conditioning processes that combines qualitative and quantitative concepts. Using this 
approach, the dynamics of conditioning have been analysed both at a local and at a 
global level. 

From a local perspective, a model for temporal conditioning in a high-level 
executable format was presented, based on the idea of local dynamic properties. This 
model can be compared to (and was inspired by) Machado [9]’s differential equation 
model, and has been used to generate a number of simulation traces. 

Next, as part of a non-local perspective analysis, a number of relevant global dynamic 
properties of the conditioning process have been identified and formalised. It has been 
confirmed, by means of formal verification, that the assumptions of the informal 
conditioning model proposed by Los and Heuvel [8] are global properties of the formal 
model developed by Machado [9], given certain restrictions of the parameter values, and 
given slight adaptations of the persistence rule given by GP3C. This is an important 
finding, because the global properties have proved to be highly useful in accounting for 
key findings in human timing, see [7], [8]. Thus, it was validated that the local dynamic 
properties can be used as requirements for the design of adaptive agents. As a result, 
existing methodologies for Agent-Oriented Software Engineering can be extended by 
including learning mechanisms as observed in nature. Currently, most research on 
reinforcement learning in Multi-Agent Systems concentrates only on the correctness  



 Formalisation and Analysis of the Temporal Dynamics of Conditioning 67 

of a response, not on its timing. By considering temporal aspects, the research presented 
in this paper is novel. 

One crucial finding the global properties can deal with effectively is the occurrence 
of sequential effects of FP. These effects entail that on any given trial, RT is longer 
when the FP of that trial is shorter than the FP of the preceding trial relative to when it 
is as long as or longer than the FP of the preceding trial. Stated differently, RT is 
longer when the imperative moment was bypassed during the FP on the preceding 
trial than when it was not bypassed during FP on the preceding trial, see, e.g., [8], 
[10]. This finding is well accounted for by the learning rules formulated as GP3. 
According to GP3B, the state of conditioning (p) associated with a critical moment is 
subject to extinction when a critical moment is bypassed during FP (i.e., t2 > t1 + c), 
which is neither the case for the imperative moment, where according to GP3A 
reinforcement occurs (i.e., t2 > t1 + c), nor for critical moment beyond the imperative 
moment, where the state of conditioning persists according to GP3C (i.e., t2 < t1 + c). 
Note that the adjustment of GP3C suggested by the present check of global properties 
does not compromise the effectiveness of these learning rules, because the tolerance 
factor δ is small relative to the extinction described by GP3B. 

In fact, the addition of the tolerance area δ to GP3C, might prove to be helpful in 
accounting for a more subtle effect in the extant literature. This concerns the finding 
that the FP-RT functions obtained in pure and mixed blocks cross over at the latest 
critical moment. Specifically, in pure blocks, the FP-RT function has been found to be 
upward sloping, given a minimal FP of about 250 – 300 msec. By contrast, in mixed 
blocks, the RT is slowest at the shortest critical moment (due to the influence of 
sequential effects described in the previous paragraph) and decreases as a negatively 
accelerating function of FP. At the latest critical moment the pure and mixed FP-RT 
functions come together, presumably because this moment is never bypassed during 
FP on the preceding trial, allowing the state of conditioning to approach its 
asymptotic value in either case. Sometimes, though, a cross-over of the two FP-RT 
functions is reported, which has been shown to be particularly pronounced in certain 
clinical populations, such as people diagnosed with schizophrenia (see [13] for a 
review). This finding may be related to the failure to confirm GP3C without the 
allowance of a tolerance area δ. Thus, it could be that, for certain parameter settings, 
the state of conditioning corresponding to the latest critical moment approaches its 
asymptotic value more closely when a shorter FP occurred on the preceding trial 
(which is often the case in mixed blocks) than when the same FP occurred on the 
preceding trial (as is always the case in pure blocks). 

Concerning related work, in [3] another formal model is described of the dynamics 
of conditioning processes, using a similar modelling approach. However, whilst the 
current paper focuses on human conditioning, the work presented in [3] focuses 
specifically on the conditioning mechanisms of the sea hare Aplysia, of which the 
neural mechanisms are much simpler and therefore better understood. As a 
consequence, that model describes the conditioning process at a neural level, whereas 
the model presented in the current paper is at a functional level. Another difference is 
that the current paper concentrates more on the temporal aspects of the conditioning. 

Since the results of our simulation model were found to be consistent with the 
model of [9], our model was implicitly compared with empirical work.  However, in 
future work, it will be compared explicitly with empirical data. Since the checking 



68 T. Bosse et al. 

software can take traces of different format as input, it will be possible to verify the 
global properties shown in Section 7 against experimental human conditioning traces. 

Acknowledgements 

This paper was improved thanks to some valuable comments of anonymous referees. 

References 

1. Balkenius, C. and Morén, J. (1999). Dynamics of a classical conditioning model. 
Autonomous Robots, 7, 41-56. 

2. Bosse, T., Delfos, M.F., Jonker, C.M., and Treur, J. (2003). Analysis of Adaptive 
Dynamical Systems for Eating Regulation Disorders. Proc. of the 25th Annual Conf. of the 
Cognitive Science Society, CogSci’03. Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

3. Bosse, T., Jonker, C.M., and Treur, J. (2005). Simulation of Conditioning Mechanisms in 
Agents. In: Balsa, J., Moniz, L., and Reis, L.P. (eds.), Proceedings of the Third Workshop 
on Multi-Agent Systems: Theory and Applications, MASTA'05. 

4. Dastani, M., Dignum, F., and Meyer, J-J.Ch. (2003). 3APL: A Programming Language for 
Cognitive Agents. ERCIM News, European Research Consortium for Informatics and 
Mathematics, Special issue on Cognitive Systems, No. 53. 

5. Gallistel, C.R. and Gibbon, J. (2000). Time, rate, and conditioning. Psychological Review, 
vol. 107, pp. 289-344. 

6. Jonker, C.M. and Treur, J. (2002). Compositional Verification of Multi-Agent Systems: a 
Formal Analysis of Pro-activeness and Reactiveness. International Journal of Cooperative 
Information Systems, vol. 11, pp. 51-92. 

7. Los, S.A., Knol, D.L., and Boers, R.M. (2001). The Foreperiod Effect Revisited: 
Conditioning as a Basis for Nonspecific Preparation. Acta Psychologica, 106, pp. 121-145. 

8. Los, S.A. and van den Heuvel, C.E. (2001). Intentional and Unintentional Contributions to 
Nonspecific Preparation During Reaction Time Foreperiods. Journal of Experimental 
Psychology: Human Perception and Performance, vol. 27, pp. 370-386. 

9. Machado, A. (1997). Learning the temporal Dynamics of Behaviour. Psychological 
Review, vol. 104, pp. 241-265. 

10. Niemi, P. and Naatanen, R. (1981). Foreperiod and Simple Reaction Time. Psychological 
Bulletin, vol 89, pp. 133-162. 

11. Port, R.F. and van Gelder, T.J. (1995). Mind as Motion: Explorations in the Dynamics of 
Cognition. MIT Press, Cambridge, Mass. 

12. Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and 
Implementing Dynamical Systems. MIT Press.  

13. Rist, F. and Cohen, R. (1991). Sequential effects in the reaction times of schizophrenics: 
crossover and modality shift effects. In E.R. Steinhauer, J.H. Gruzelier, & J. Zubin, 
Handbook of schizophrenia, vol. 5: Neuropsychology, psychophysiology and information 
processing (pp. 241-271). Amsterdam: Elsevier. 



Incorporating Commitment Protocols into Tropos

Ashok U. Mallya and Munindar P. Singh

Department of Computer Science, North Carolina State University,
Raleigh, NC 27695-7535, USA

{aumallya, singh}@ncsu.edu

Abstract. This paper synthesizes two trends in the engineering of agent-based
systems. One, modern agent-oriented methodologies deal with the key aspects of
softwaredevelopment includingrequirementsacquisition,architecture,anddesign,
but can benefit from a stronger treatment of flexible interactions. Two, commitment
protocols declaratively capture interactions among business partners, thus facilitat-
ing flexible behavior and a sophisticated notion of compliance. However, they lack
support for engineering concerns such as inducing the desired roles and selecting
the right protocols. This paper combines these two directions. For concreteness,
we choose the Tropos methodology, which is strong in its requirements analysis,
but our results can be ported to other agent-oriented methodologies.

Our approach is as follows. First, using Tropos, analyze requirements based
on dependencies between actors. Second, select top-level protocols based on the
actors’ hard goals, while respecting the logical boundaries of their interactions.
Third, select refined protocols based on the actors’ soft goals. Consequently, Tro-
pos provides a rigorous basis for modeling and composing protocols whereas the
protocols help produce perspicuous designs that respect the participants’ auton-
omy. We evaluate our approach using a large existing case.

1 Introduction

Tropos is an agent-based software methodology that uses the notions of goals, plans to
achieve goals, and dependencies among the goals and plans of agents [2]. The depen-
dencies help capture the relationships between the various stakeholders in the system
being engineered. Following i∗ [7], Tropos gives prominence to identifying stakehold-
ers and their goals early.

Commitment protocols model interactions among autonomous agents in terms of
their content rather than in terms of low-level message exchanges [6]. Commitment
protocols form building blocks for (and correspond to vertical slices of) flexible busi-
ness processes, each protocol ideally addressing a logically well-encapsulated interac-
tion for a specified purpose. For example, the purchase and shipping protocols would
have logically distinct purposes and involve distinct roles. Specific agents would play
suitable roles in different protocols to obtain a business process.

While both of the above approaches have strengths, they also have some limita-
tions where a synthesized approach would help. Tropos models dependencies among
stakeholders well and accommodates their evolution as the goals and plans of the stake-
holders are refined. The requirements serve as reminders and guards throughout the
development process. However, Tropos does not capture agent interaction requirements
in the early stages. Protocols are not identified until the penultimate (detailed design)

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 69–80, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



70 A.U. Mallya and M.P. Singh

stage whereas dependencies are defined early. Protocols evolve as the design progresses.
Tropos can benefit from an interaction model that allows interactions to be refined with
each successive stage of software development. On the other hand, the theory of com-
mitment protocols does not address how interaction protocols and the contexts of their
application can be identified in a multiagent system. Tropos can provide cues for identi-
fying protocols because it identifies actors, their goals, their plans to achieve goals and
dependencies.

CONTRIBUTIONS. Our work contributes to both Tropos and the theory of commitment
protocols. Through protocols, our approach gives interactions the same status as goals
in Tropos. Interactions among independent parties can be captured early and succes-
sively refined based on a theory of protocol subsumption. Because of its identification
of stakeholders and their goals, dependencies, and plans, Tropos provides a valuable
approach in which to identify and refine commitment protocols. We illustrate our ap-
proach via an example of a large software system that was developed using Tropos.

ORGANIZATION. The rest of this paper is organized as follows. Section 2 introduces
Tropos and our running example. Section 3 describes commitments, protocols, and al-
lied concepts. Section 4 lists important properties of dependencies, which are used to
develop the guidelines of our methodology for incorporating commitment protocols into
Tropos in Section 5. Section 6 compares our contributions to the literature and outlines
some directions for enhancement.

2 Background: Tropos by Example

Tropos uses the following key concepts:

– ACTOR: An actor models an entity that has goals or plays a part in the software
being developed. Actors are similar to agents or roles, in traditional terminology.

– RESOURCE: A physical entity or a piece of information.
– GOAL: A goal corresponds to an actor’s desire. Hardgoals are measurable, whereas

softgoals are subjective.
– PLAN: A plan is an abstract description of steps to be taken to achieve a goal.
– DEPENDENCY: An actor (depender) can depend on another (dependee) for acquir-

ing a resource, satisfying a goal, or executing a plan. The resource, goal, or plan is
the dependum. The reason for a dependency is a plan, goal, softgoal, or resource
(belonging to the depender) for which the depender depends on the dependee.

Tropos uses three methods, all from an actor’s perspective, for refining goals and iden-
tifying plans to achieve them.

– Means-end analysis identifies plans, resources, or goals (means) to satisfy a speci-
fied goal or plan (end). When a plan is the end, the means can be another plan or a
resource, but not a goal.

– AND-OR decomposition breaks up plans into subplans. AND requires all subplans;
OR requires one. Likewise for goals and subgoals.

– Contribution analysis identifies the positive and negative impact that a plan, a goal,
or a resource may have on the achievement of a goal.



Incorporating Commitment Protocols into Tropos 71

Table 1 summarizes the stages of Tropos and how they use the concepts of actor, goal,
plan, dependency, and capability.

Table 1. Tasks performed in modeling actors, dependencies, goals, plans, and capabilities in
different stages of Tropos. Within each stage, the different modeling techniques are not ordered.

1. Early Require-
ments

2. Late Require-
ments

3. Architectural
Design

4. Detailed Design

Actor Mod-
eling

Identify “top-
level” actors actors
or stakeholders in
domain.

Introduce system
as an actor called
system-actor.

Decompose
system-actor into
subactors. Identify
all dependencies.

Define agents to
model capabilities
of system-actor
and its subactors.

Goal Model-
ing

Refine goals using means-end
analysis, AND-OR decomposition,
and contribution analysis. Find
new dependencies.

Plan Model-
ing

Refine plans using the three plan
analysis methods analogous to
goal analysis.

Dependency
Modeling

Identify dependen-
cies between stake-
holders using goal
modeling.

Model depen-
dencies between
system-actor and
other actors.

Model depen-
dencies between
subactors of the
system-actor to
identify capabili-
ties.

Capability
Modeling

Identify capabil-
ities of subactors
required to handle
dependencies with
all others.

The eCulture Example
Tropos was used to develop the eCulture System for the Trentino provincial govern-
ment (called PAT) [2]. This system provides information about cultural services such
as museums to citizens and tourists.

EARLY REQUIREMENTS. Figure 1 identifies four stakeholders (top-level actors) in the
eCulture System: Citizen, PAT, Visitor, and Museum, along with their goals and depen-
dencies. The above actors have the goals get cultural info, increase Internet use, enjoy
visit, and provide cultural services, respectively, the last two being softgoals. Citizen
depends on PAT, taxes well spent being the reason for the dependency.

Next, the model of Figure 1 is refined via goal and plan analyses. During goal
analysis, each goal is either expanded into subgoals using AND-OR decomposition,
delegated to a new or existing actor, or accepted by an actor as its own. Tropos per-
forms goal and plan modeling for different actors using label propagation to check
that all the root goals, i.e., goals that the modeling began with, are accepted by some



72 A.U. Mallya and M.P. Singh

actor. Figure 2 shows the partial result of such a goal and plan analysis. The get cul-
tural info hardgoal, which is a root goal for the actor Citizen, is OR-decomposed into
two subgoals—visit cultural institutions and visit cultural web systems. Under means-
end analysis, the latter subgoal yields the plan visit eCulture as a means. This plan is
AND-decomposed into two subplans, namely, use eCulture and access Internet. The

Fig. 1. Actors identified in early requirements. Actors are circles, their scopes demarcated by
dotted ovals. Hardgoals are solid ovals; softgoals are clouds. Dependencies are lines with arrow-
heads at their center, going from the depender (or from the reason) to the dependee (or to the
dependum).

Fig. 2. Actor model after early requirements. Plans are hexagons; AND decompositions are ar-
rows with empty triangles as arrowheads, with an arc spanning over all the arrows; OR decom-
positions are similar, but without the spanning arc. Contributions are a + or a − next to an
arrowhead; means-end relationships are similar, but without the + or the −.



Incorporating Commitment Protocols into Tropos 73

softgoal taxes well-spent—the reason for Citizen’s dependency on PAT—is delegated to
PAT, which accepts it.

LATE REQUIREMENTS. During late requirements, the software system is introduced as
an actor, called the system-actor. Dependencies between existing actors (stakeholders)
and the system-actor are identified, and goal and plan analyses are performed. Figure 3
shows part of the actor model for PAT, Citizen, Museum, and the system-actor eCulture.
This figure also shows a part of the goal model for eCulture. For example, PAT depends
on eCulture for the softgoal usable eCulture and for the hardgoal provide eCultural ser-
vices, among others. Goal analysis performed on these goals from the point of view of
eCulture results in both goals being adopted by eCulture and decomposed as shown in
the goal diagram (within the dotted oval) in Figure 3.

Fig. 3. Partial actor and goal models showing dependencies of PAT, Citizen, and Museum on
the system-actor eCulture. Resources are rectangles.

ARCHITECTURAL DESIGN. During architectural design, eCulture is decomposed into
several subactors, including an actor Info Broker introduced to satisfy the goal provide
info. Goal and plan analyses are performed after identifying the dependencies between
the new subactors and the other actors.

3 Background: Commitments and Protocols

A commitment is a directed obligation from one agent to another, within a social con-
text. A commitment C(x, y, G, p) denotes that the agent x (debtor) is responsible to the



74 A.U. Mallya and M.P. Singh

agent y (creditor) for bringing about the condition p within a social context G. The con-
dition is expressed in a suitable formal language. Conditional commitments, denoted by
CC(x, y, G, p, q), mean that x is committed to y to bring about p if q holds. Convention-
ally, six commitment operations are defined. A commitment can be created, canceled,
or discharged. The creditor of a commitment can be released by the debtor. Further, the
creditor can cancel the commitment, usually based on a suitable compensation for the
cancellation.

Commitment protocols are driven by the creation and transformation of commit-
ments between their participants rather than by a rigid sequence of steps. Thus com-
mitment protocols are akin to goal-based interactions. Here, we summarize an existing
framework in which a subsumption hierarchy is defined over protocols such that a re-
fined protocol is subsumed by the protocol it refines.

A protocol allows a set of computations or runs. Each run is a sequence of states.
Each state is an assignment of truth values to a set of domain-specific and generic,
commitment-related propositions. Hence states are a snapshot of the universe of the
protocol. A run transitions from one state to the next based on the actions that the par-
ticipating agents take. Actions are substituted by messages passed between roles. States
are related by state-similarity functions, which define when two states are considered
similar to each other.

State-similarity helps compare runs to determine if one run subsumes another. A
run r1 (which is a sequence of states, say, 〈s0s1s2 . . . s|r1|〉) subsumes a run r2 under
a state-similarity function f if and only if r2 consists of states that are similar (under
f ) to states in r1 and corresponding states have the same relative order in each run. For
example, if f is identity-state similarity, meaning two states are similar if they have the
same labels, then r2 could be 〈s1s2〉.

Protocol subsumption is based on run subsumption. A protocol P1 subsumes a pro-
tocol P2 if and only if every run generated by P2 is subsumed by a run in P1. That
is, a protocol that specifies less subsumes a protocol that specifies its runs in more de-
tail. For example, consider an interaction in which Citizen acquires some information
from eCulture. A generic protocol for this interaction might state that the Citizen sends
a query and awaits a response. A refinement of this protocol might state that Citizen
must login, be authenticated, and will receive a response based on its credentials as
identified by eCulture. Both protocols enable the same top-level interaction, i.e., trans-
ferring information from eCulture to Citizen. A system designer can use either protocol,
possibly based on the context in which the system is deployed. Commitments help us
reason about similarities and differences among protocols, and provide, through def-
initions state-similarity functions, a basis for judging subsumption among protocols.
These concepts are discussed in greater detail elsewhere [5].

4 Dependencies in Tropos

We propose the use of commitment protocols in Tropos with actors as agents, and de-
pendencies between actors as the bases of application of these protocols. This section
describes intuitions about dependencies in Tropos that are used when developing and
applying protocols.



Incorporating Commitment Protocols into Tropos 75

In Tropos, a plan is a sequence of steps that an actor may take in order to achieve
a certain goal, and a goal is a state which the actor wants to bring about. Plans are
means to achieve goals. Plans are executed, goals are achieved, and resources are made
available. Nine types of dependencies can exist between actors in Tropos, since depen-
dums on the dependee’s side and reasons on the depender’s side can be either a plan, a
hardgoal, or a resource. These dependency types are shown in Figure 4, leading to the
following observation about the operational behavior of the dependencies.

Actor1
Actor2

Plan2

Goal2

Resource2

Plan1

Goal1

Resource1

depender dependee

dependumreason

d1

d2d3

d4 d5

d6

d7
d8

d9

Fig. 4. Types of dependencies in Tropos

Observation 1. The reason of a dependency cannot be executed to completion,
achieved, or made available till its dependum is executed (at least partially), achieved,
or made available.

This is based on the assumption that all dependencies are required for their reason
to succeed. For instance, a plan cannot be executed to completion if the goal that it
depends on is not achieved. Dependencies can be fulfilled multiple times. For example,
the dependency on the resource query result between the eCulture and the Museum is
fulfilled every time eCulture makes a query result available to the museum.

Observation 2. A dependency’s reason is an actor’s local view of an interaction
protocol.

For example, the access Internet plan of Citizen is the citizen’s view of the interaction it
has with PAT on the dependum Internet infrastructure available. If a dependency is one
of several dependencies realized by a single protocol, then that dependency is only part
of the actor’s view of that protocol.

Observation 3. Outgoing dependencies can be propagated up the hierarchy in AND-
decomposition trees.

Generally, outgoing dependencies from all non-root nodes of an AND tree can be prop-
agated to the root. In essence, a tree can be captured with just its root node as the reason
for all its outgoing dependencies. Consider PAT’s plan search by thematic area and its
AND decomposition tree, as in Figure 3. This plan is the reason for the dependency on
the resource query result, because synthesize results, a non-root node in the AND tree,
depends on query result. The outgoing dependency has therefore been propagated up
the tree.



76 A.U. Mallya and M.P. Singh

With means-end trees and OR-decomposition trees, since only one of the non-root
nodes need to be achieved, executed, or made available, the dependencies cannot always
be propagated to the root. Consider PAT’s plan find info sources in Figure 3. This plan is
part of the OR tree with the plan get info on thematic area as its root. find info sources has
a dependency on Museum for info about source. This dependency cannot be propagated
up to the root plan get info on thematic area because there is an alternative way—query
sources—of executing the root plan without involving any dependency.

Designers propagate dependencies down the hierarchy as part of Tropos, when goals
and plans are refined.

5 Protocols Based on Dependencies

This section provides guidelines for introducing protocols into Tropos using dependen-
cies among actors as the basis.

Guideline 1. A protocol is required between two actors if and only if at least one de-
pendency exists between them.

A single protocol might realize all associated dependencies between actors. This pro-
tocol would be coherent only if the dependencies were somehow related. For example,
both the dependencies between eCulture and Citizen shown in Figure 2 can be realized
by a single protocol since the dependencies are part of a coherent interaction in which
Citizen queries and receives information from eCulture. System designers can thus state
the relationships between dependencies in terms of interactions between actors.

Conversely, consider actors that have multiple, unrelated dependencies realized by
a single protocol. Such a protocol would not be the best design because it combines
independent interactions. OWL-P is a framework for describing, composing, and en-
acting protocols [3]. The composition makes use of a designer-specified profile, which
includes axioms specifying correspondences between roles, messages, and data in the
protocols being combined. As an example, consider Figure 5, which is a part of
Figure 3. Let the dependency between eCulture and Citizen on get cultural info be re-
alized by an information transfer protocol with two roles: information provider and
information consumer. Let the dependency on area specification form be realized by a
form filling protocol with two roles: form creator and form filler. These two protocols
can be combined by specifying in the composition profile that Citizen plays the roles in-
formation consumer and form filler, and eCulture plays the roles information provider
and form creator. The composition profile would also specify that the form data be
filled before the cultural information is provided. Under such a scheme, a protocol that
realizes unrelated dependencies between two actors would not have any composition
axioms other than the ones required to bind roles between the protocols. That is, pro-
tocols group related dependencies, defining interactions in coherent units rather than as
unrelated dependencies.

Guideline 2. Protocols cannot realize dependencies that have softgoals as dependums
or reasons.

Whereas softgoals can be used by designers to refine protocols, they cannot be realized
using protocols since the achievement of softgoals is not objectively verifiable.



Incorporating Commitment Protocols into Tropos 77

Fig. 5. Realizing dependencies using one protocol each. Actors play multiple roles.

Identifying Related Dependencies. Relationships between dependencies can be iden-
tified only by the system designer, based on expert knowledge about the stakeholders
and actors. However, additional information about potential relationships between de-
pendencies can be obtained from the structure of the AND-OR decomposition and the
means-end analysis. Detecting sets of related dependencies corresponds to identifying
and demarcating the scope of a protocol. Identifying relationships between dependen-
cies also indicates how a protocol should be designed. Here, we describe the guidelines
for identifying related dependencies and how they correspond to protocols.

Guideline 3. If the means for an end are reasons for dependencies, those means should
either be parts of local views of different runs of the same protocol or parts of local
views of different protocols that achieve the same interaction. This guideline applies to
OR decompositions as well.

The means for an end are possible ways to achieve or execute the end. If a plan or a
goal has many means, any one of them is a way for executing the plan or achieving
the goal. If means are reasons for dependencies, then they are an actor’s view of a
protocol. Therefore, multiple means for a common end provide different views of an
actor’s involvement in an interaction whose essence is the same: to achieve the end. As
an example, consider PAT’s goal search info, as shown in Figure 3. This goal can be
achieved by 4 means, search by geo area, search by time period, search by keywords,
and search by thematic area. All these means are different plans for PAT’s view of an
information-searching interaction with Citizen. Hence, all these means can be designed
as local views of different runs of an information-searching protocol or as local views
of runs of different protocols to search for information.

When a plan or a goal is OR decomposed, executing any one of the child plans
or satisfying any one of the child goals is sufficient to execute or satisfy the parent
plan or goal respectively. The same reasoning as applied to means-ends applies to OR
decompositions as well. The child plans or goals are equivalent to each other in what
they provide to the actor.



78 A.U. Mallya and M.P. Singh

Guideline 4. If the non-root elements of an AND decomposition are reasons for depen-
dencies, those elements should be parts of the local view of the same protocol.

Again, the reasoning is that in an AND-decomposition, all non-root elements must be
executed, achieved, or made available for the root to be executed or achieved.

Identifying 3-Party Protocols. A protocol is used to realize dependencies, and de-
pendencies in Tropos exist only between two parties. For realistic situations, however,
we need to be able to identify 3-party protocols or n-party protocols in general, where
n > 2. We first note that any n-party protocol can be viewed as a set of at most n(n−1)

2
2-party protocols with the appropriate composition profile. Therefore, we need an op-
erational definition of what constitutes a true n-party protocol. For the purposes of this
discussion, we define a true n-party protocol as a protocol which cannot be broken into
constituent protocols without any data dependency or temporal ordering among them.

Guideline 5. If the AND decomposition tree has dependencies, either incoming or out-
going, with two different actors, a 3-party protocol exists between them.

This guideline is based partly on Observations 1 and 2. Consider the dependencies
shown in Figure 6 for example. Actor A0 has an AND tree, shown partially to ignore un-
necessary detail. The root of this tree is plan p1, which has been AND decomposed. Ac-
tor A1 depends on plan p1 via the dependency d1. Further, there exist a non-root node p2
which depends on actor A2 via the dependency d2. From Observation 1, we know that
p1 will not be executed to completion until p2 is. Also, from Observation 2, we know
that p1 and p2 are local views of some interaction protocol. Therefore, we infer that
the protocol that realizes d1 depends on the protocol that realizes d2. Therefore, based
on our operational definition of a true n-party protocol, the model shown in Figure 6
warrants the use of a 3-party protocol. As a more realistic example, albeit a variation
of the above, consider the plan search by thematic area belonging to PAT in Figure 3.
This plan depends on Citizen, and has an AND descendant synthesize results, which
depends on Museum. Therefore, this plan cannot be executed to completion without the
help of both Citizen and Museum. Therefore, a 3-party protocol can be used here.

Guideline 6. If a resource belonging to one actor is the dependum for a dependency
with a second actor and a reason for a dependency with a third actor, a 3-party protocol
exists between the the actors.

For example, PAT depends on Citizen for the resource area specification form, as shown
in Figure 3. If Citizen depended on some actor other than PAT for this resource, then a

Fig. 6. Identifying 3-party protocols based on plan dependencies among 3 actors



Incorporating Commitment Protocols into Tropos 79

3-party protocol would be required because of the data-dependency between the proto-
cols realizing these dependencies.

Refining Protocols. We have shown how protocols can be applied in Tropos models.
An advantage of using commitment protocols in Tropos is that protocols can be re-
fined with successive stages of software development. We proposed a protocol-design
methodology based on hardgoals and the plans that achieve them. Refinement of these
protocols should be based on the softgoals of the participants. In this regard, softgoals
are analogous to the private policies of a protocol-participant. We intend to develop this
line of research in future work.

6 Discussion

This paper demonstrated how protocols can be introduced into an agent-based software
engineering methodology, Tropos. Tropos benefits from our approach, because (1) pro-
tocols capture the dynamic, or runtime behavior of the software system being developed
before the implementation stage in addition to the static dependencies between actors;
(2) protocols decouple the meaning of an interaction by treating them as entities in their
own right, which can be tailored to suit the needs of their participants and local policies
at runtime; (3) Treating protocols as coherent units captures realistic interactions among
autonomous entities. This is an advantage over a client-server model in which protocols
are part of the logic embedded in the server.

Likewise, we contribute to commitment protocols by describing guidelines for de-
signing them from requirements. Specifically, dependencies, means-end models, and
AND-OR decomposition models in Tropos provide points of reference for using proto-
cols between actors. Tropos provides the scope, i.e., boundaries, for the protocols.

Related Literature. Our work relates to software engineering and multiagent sys-
tems. Yu & Mylopolous explain the importance of identifying dependencies among
autonomous entities in organizational settings, e.g., for business processes [8]. They
describe how dependencies based on resources and goals can be used to re-engineer
business processes, since dependencies help answer “what-if?” and “why?” questions
about changes in business processes. Whereas Yu & Mylopolous describe how to intro-
duce a dependency model into an existing business processes, we describe how proto-
cols, which can be used to construct business processes, can be developed based on the
requirements.

Giorgini et al. present a rigorous analysis of goal decomposition in Tropos [4]. They
develop algorithms to identify contributions among goals and possible conflicts among
goals. This work would help our research in identifying valid refinements of protocols
based on goals.

Gaia, KAOS, MaSE, and SADDE are a few other important agent-oriented method-
ologies [1]. Tropos differs from these in including an early requirements stage.
Besides the early requirements gathering stage, Gaia differs from Tropos in that Gaia
describes roles in the software system being developed and identifies processes that
they are involved in as well as safety and liveness conditions for the processes [9]. Gaia
incorporates protocols under the interactions model and can be used with commitment



80 A.U. Mallya and M.P. Singh

protocols. However, the lack of a reasoning scheme based on early requirements—to
answer “why?” questions—limits the flexibility of Gaia’s protocols.

The work presented here is new. Whereas we have chosen Tropos for incorporating
a notion of interactions into the various stages of software design, we aim to study how
other agent-oriented engineering methodologies (which may not include a notion of
dependencies) can incorporate commitment protocols as a design abstraction.

Acknowledgment

We thank Amit Chopra, Nirmit Desai, and the anonymous reviewers for valuable com-
ments. This research was supported partly by the National Science Foundation under
its Digital Society and Technology Program in the Intelligent Information Systems Di-
vision under grant DST-0139037 and partly by the DARPA Information Exploitation
Office under contract F30603-00-C-0178.

References

1. Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors. Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Kluwer Academic, 2004.

2. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Guinchiglia, and John Mylopolous. Tro-
pos: An agent-oriented software development methodology. Journal of Autonomous Agents
and Multi-Agent Systems, 8(3):203–236, May 2004.

3. Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. Interaction protocols
as design abstractions for business processes. IEEE Transactions on Software Engineering,
31(12):1015–1027, 2005.

4. Paolo Giorgini, John Mylopolous, and Roberto Sebastiani. Goal-oriented requirements analy-
sis and reasoning in the tropos methodology. Engineering Application of Atrificial Intelligence
Journal, 18(2), 2005. To Appear.

5. Ashok U. Mallya and Munindar P. Singh. An algebra for commitment protocols. Journal of
Autonomous Agent and Multiagent Systems, 2006.

6. Munindar P. Singh, Amit K. Chopra, Nirmit V. Desai, and Ashok U. Mallya. Protocols for
processes: programming in the large for open systems (extended abstract). In OOPSLA ’04:
Companion to the 19th annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 120–123, New York, NY, USA, 2004. ACM
Press.

7. Eric Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, 1995.

8. Eric S. K. Yu and John Mylopoulos. An actor dependency model of organizational work: with
application to business process reengineering. In COOCS ’93: Proceedings of the conference
on Organizational computing systems, pages 258–268. ACM Press, 1993.

9. Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multiagent
systems: The Gaia methodology. ACM Transactions on Software Engineering Methodology,
12(3):317–370, 2003.



Zooming Multi-Agent Systems

Ambra Molesini1, Andrea Omicini2, Alessandro Ricci2, and Enrico Denti1

1 DEIS, Alma Mater Studiorum—Università di Bologna,
viale Risorgimento 2, 40136 Bologna, Italy

ambra.molesini@unibo.it, enrico.denti@unibo.it
2 DEIS, Alma Mater Studiorum—Università di Bologna a Cesena,

via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it, a.ricci@unibo.it

Abstract. Complex systems call for a hierarchical description. Analo-
gously, the engineering of non-trivial MASs (multiagent systems) requires
principles and mechanisms for a multi-layered description, which could
be used by MAS designers to provide different levels of abstraction over
MASs.

In this paper, we first advocate the need for zooming mechanisms, pro-
moting a coherent and consistent multi-layered view of agent systems.
After surveying the best-known AOSE methodologies, we focus on the
scaling mechanisms of the OPM process-oriented methodology. Then, by
adopting SODA as our reference, we show how an AOSE methodology
can be enhanced with simple yet expressive zooming mechanisms. Fi-
nally, we present a simple case study where the enhanced agent-oriented
methodology (SODA+zoom) is exploited and put to the test.

1 Zooming as a Principle in the Design of MASs

As advocated in [1], MASs (multiagent systems), once developed up to their
full potential, can be generally seen as representing a class of complex artificial
systems, wide and meaningful enough to legitimate, in principle, the application
to MASs of the general principles and laws governing complex systems. While
modelling complex systems and understanding their behaviour and dynamics is
the most relevant concern in many areas, such as economics, biology, or social
sciences, the complexity of construction is of paramount interest when dealing
with software systems—MASs in particular. Drawing results from heterogeneous
scientific areas, and bringing them to the MAS field, is then particularly mean-
ingful and promising when principles and ideas that are known to model and
describe complex systems in general are taken and shown to be applicable and
useful to build MASs—in other terms, become ideas and principles for agent-
oriented engineering processes and methodologies.

1.1 Hierarchies in Complex Systems

According of the theory of hierarchies [2], all biological systems are amenable
to be represented as organised on different layers, ranging from genes and cells

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 81–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



82 A. Molesini et al.

up to organisms, species and clades. Each level is essential to the general un-
derstanding of the system’s wholeness, and is autonomous with its own laws,
patterns and behaviour. At the same time, no level can be understood in iso-
lation independently of all the other levels, and the system as a whole can be
understood only through the understanding and representation of all its levels.

When generally ascribed to complex system, this sort of “hierarchy princi-
ple” might also be seen as a defining one: that is, a complex system is a system
requiring layers—independent but strongly correlated ones—in order to fully un-
derstand and reproduce its dynamics and behaviour. When brought to MASs, in
particular, this first suggests that MAS models, abstractions, patterns and tech-
nologies can be suitably categorised and compared using a layered description,
as shown in [1]. More simply and directly, when applied to the engineering of
MASs, the hierarchy principle suggests that agent-oriented processes and meth-
ods should support some forms of MAS layering, allowing engineers to design and
develop MAS along different levels of abstractions—a number of independent,
but strictly related, MAS layers.

Accordingly, one should expect that existing methodologies actually do sup-
port abstractions and processes for MAS layering. Quite interestingly, however,
current AOSE methodologies offer very little (if any) support for hierarchical
representation of MASs. So, in the following subsection we first survey the main
AOSE methodologies to look for some support for layered representation of MAS,
then we advocate the need of a simple layering mechanism (called here zoom-
ing) to be applied to any meaningful agent abstraction at any stage of the MAS
engineering process.

1.2 Zooming in AOSE Methodologies

Many methodologies exist in the literature aimed at the engineering of artificial
systems in terms of MASs. Some example are Gaia [3], MaSE [4], Tropos [5],
MESSAGE [6], Prometheus [7]. Although none of those methodologies provides
MAS engineers with an explicit layering mechanism, some of them exhibit some
implicit mechanisms that make it possible in some sense to analyse the system
at different levels of detail.

At the best of our knowledge, the most cited AOSE methodology, Gaia,
does not introduce any mechanism providing for MAS layering. In MaSE, in-
stead, two models allow MASs to be represented at different levels of abstraction:
the creating-agent-classes model should provide a high-level vision of the MAS
agents and of their main conversations; instead, the assembling-agent-classes
model “zooms” on the inner agent structure, and provides for a number of pre-
defined components, which may also have sub-architectures (with further sub-
components) of their own.

Tropos promotes a form of refinement across different stages of the MAS
analysis process, such as when the actor and dependency models built in the
early requirements phase are extended during the late requirements phase by
adding the system-to-be as another actor, along with its inter-dependencies with
social actors. Also MESSAGE use a refinement model in the analysis phase: the



Zooming Multi-Agent Systems 83

level 0 model gives an overall view of the system, its environment, and its global
functionality; next level 1 defines the structure and the behaviour of entities such
as organisation, agents, tasks, goals, domain entities; further levels (2, 3, . . . )
might be defined for pointing out specific aspects of the system dealing with func-
tional requirements, as well as non-functional requirements such as performance,
distribution, fault tolerance, security. In Prometheus, a progressive refinement
process is used which starts by describing agents internals in terms of capabili-
ties. The internal structure of each capability is then given, optionally using or
introducing further capabilities, which are refined in turn until all capabilities
have been defined: capabilities nesting is allowed, thus allowing for arbitrarily
many layers, in order to achieve an understandable complexity at each level.

The above forms of layering, however, are quite limited. First of all, they
enforce only a top-down, mono-directional form of zooming—so, refinement al-
lowed, abstraction not allowed. Then, they have ony a pre-fixed scope and struc-
ture, which limit in principle their flexibility and possibly their ability to fit the
many different MAS application scenarios. Mechanisms for zooming are then not
explicit, and no ontological support is currently provided by any of the available
AOSE methodologies to the best of our knowledge.

1.3 Zooming in OPM

It is quite curious to observe that a non-AOSE approach such as OPM (Ob-
ject Process Methodology [8]) directly supports zooming in several forms—even
though the word zooming is used there with a more specific meaning.

OPM in Short. OPM is an integrated approach to the study and development
of systems in general, and software systems in particular. Its basic premise is
that objects and processes are two types of equally important classes of things,
which together describe the function, structure and behaviour of systems in
a single framework in virtually any domain. OPM unifies the system lifecycle
stages—specification, design and implementation—within one frame of reference,
using a single diagramming tool—Object-Process Diagrams (OPDs)—and a cor-
responding subset of English, called Object-Process Language (OPL). Unlike
the object-oriented approach, behaviour in OPM is not necessarily encapsulated
within a particular class construct. Using stand-alone processes, one can model
a behaviour that involves several object classes and is integrated into the sys-
tem structure. Processes can be connected to the involved object classes through
procedural links, which are divided, according to their functionality, into three
groups: enabling links, transformation links, and control links.

At the core of our interest here, as far as layer mechanisms are concerned,
OPM adopts detail decomposition: rather then decomposing a system according
to its various aspects (as in UML [9]), decomposition is based on the system level
of abstraction. OPM built-in scaling (refinement/abstraction) mechanisms—
unfolding/folding, in-/out-zooming, expressing/suppressing—greatly help man-
age system complexity. Unfolding/folding is applied by default to objects for
detailing/hiding their structural components (parts, specialisations, features,



84 A. Molesini et al.

or instances). In-/out-zooming is applied by default to processes for detail-
ing/hiding their sub-process components and details of the process execution.
Expression/suppression provides for showing/hiding the states of an object class.

Despite the different names, all the OPM scaling mechanisms (which we often
collectively denote as zooming in this paper) allow engineers to work middle-out:
MAS engineers can choose to start at any arbitrary abstraction level, and then
achieve both the most detailed level and the most abstract level, along with the
entire spectrum of intermediate levels between these two extremes.

OPM/MAS Even in Shorter. So, no surprise that OPM was extended in
order to support concepts from the agent field. OPM/MAS [10] takes MAS
building-blocks from the Gaia methodology. The set of MAS building blocks is
divided into two groups: the first contains static, declarative building blocks,
while the second group contains building blocks with behavioural, dynamic na-
ture. The building blocks in the first group—which includes organisation, so-
ciety, platform, rule, role, user, protocol,belief, desire, fact, goal, intention, and
service—are modelled as OPM objects; the building blocks in the second group—
which includes agent, task, and messaging—are modelled using the process
concept.

OPM/MAS is indeed the first actual effort to introduce the zooming mecha-
nism into a methodology for modelling multi-agent systems. However, apart from
the obvious problems raising from the uneven mixture of the so-different OPM
and Gaia approaches, OPM zooming mechanisms appear too generic for Gaia-
derived agent abstractions, which were not conceived with zooming in mind.
For instance, in-zooming an agent according to OPM rules would generally lead
to another object, in general, or to another agent, more plausibly: no way that
an activity represented at a given abstraction level as an agent could become a
society of agents at the next, more refined level.

That is why in this paper we try the other way round: so, we do not start
from a non-agent methodology with good zooming mechanisms, and then “agen-
tify” it—the OPM/MAS approach. Instead, we take a simple, bare-bone AOSE
methodology (that is, SODA), and introduce mechanisms for layering and zoom-
ing, expressive and general enough to be applicable to any key abstraction—such
as roles, agents, societies, interaction rules.

Accordingly, in the next section we first introduce the basic concept of SODA.
Then, we introduce zooming in SODA, by discussing its general model and main
features. Last section is devoted to illustrating a simple case study, where SODA
and the new zooming mechanisms are put to the test.

2 Zooming SODA

In this section we discuss a possible approach to the introduction of a zoom-
ing mechanism in SODA (Societies in Open and Distributed Agent spaces),
an agent-oriented methodology for the analysis and design of agent-based
systems [11].



Zooming Multi-Agent Systems 85

2.1 SODA in Short

SODA is a methodology for the analysis and design of agent-based systems. As
an explicit choice, SODA concentrates on inter-agent issues, like the engineering
of societies and infrastructures for multi-agent system. Since this conceptually
covers all the interaction within an agent system, the design phase deeply relies
on the notion of coordination model [12]. In particular, coordination models and
languages are taken as the source of the abstractions and mechanisms for the
engineering of agent societies: social rules are designed as coordination laws and
embedded into coordination media, and the social infrastructure is built upon
the coordination system.

Analysis. The SODA analysis phase is based on three models—the role model,
the resource model, and the interaction model. Since analysing a system in SODA
amounts to defining some concepts and their relationships, an effective way to
express such models is via suitable relational tables. In particular:

– in the role model, first the application goals are modelled in terms of the
(individual and social) tasks to be achieved: each individual task is then as-
sociated to a role, while each social task is associated to a group. So, the role
model can be represented by defining a Role Table (Table 1) and a Group
Table (Table 2), respectively. In addition, since SODA associates interac-
tion protocols to roles and interaction rules to groups, one extra column is
added to such tables, to represent these associations. At a finer-grain level
of detail, however, each group, too, is associated to a set of roles—the so-
cial roles: correspondingly, further Role Tables can be introduced to express
these relationships—one (social) Role Table for each group. As a result, Role
Tables are exploited to express both the individual roles (one table) and the
social roles (as many tables as the groups are). Of course, the interaction
protocols associated to roles and the interaction rules associated to groups
are further detailed in the interaction model (Tables 4 and 5 below).

– in the resource model, the application environment is modelled in terms
of available services, associated to abstract resources. These are further
associated to a policy, intended as a set of access permissions associated
to a role or group. Table 3 expresses this relationship, also listing the

Table 1. Role Table

Role Task Interaction protocol
role name task name list of protocols

Table 2. Group Table

Group Social Task Interaction rules
group name social task name list of rules



86 A. Molesini et al.

Table 3. Resource Table

Resource Services Policy Interaction Protocols
resource name services name list of access permission list of protocol

interaction protocols associated to each resource (again, details about in-
teraction protocols and rules are provided in the interaction model—Tables
4 and 5).

– the interaction model is aimed at modelling the interaction among roles,
groups and resources: each interaction protocol is individually denoted, then
defined in terms of the information required / provided by roles and resources
(Table 4). Analogously, interaction rules govern interaction within groups
(Table 5).

Table 4. Interaction Protocols Table

Interaction protocol Information required Information provided
name of protocol

Table 5. Interaction Rules Table

Interaction rule Rule description
name of rule description

Design. The SODA design phase is based on three strictly related models, which
derive from the models defined in the analysis phase; in particular, the analysis
role model maps on the design agent model and society model, while the analysis
resource model maps on the design environment model. The analysis interaction
model, in its turn, generates the interaction protocols and coordination rules
referenced by the design models. So, more precisely:

– in the agent model, individual and social roles are mapped upon agent
classes: each agent class is then characterised by the task, the interaction
protocols associated to its role, and the resources that need be accessed,
with the corresponding set of permissions (Table 6). Again, the interaction
protocols referenced here are the same defined in the Table 4 of the analysis
phase.

– in the society model, groups are mapped onto agent societies (Table 7),
each organised around a coordination medium—the abstraction provided by
coordination model for coordination purposes—along with the corresponding
coordination rules; these are the design counterpart of the analysis interac-
tion rules defined in Table 5. Again, for each society, the required resources
should also be specified.



Zooming Multi-Agent Systems 87

Table 6. Agent Table

Agent Role Interaction protocol Resources Permissions
agent name role name list of protocols list of resources list of permissions

Table 7. Society Table

Society Group Coordination medium Resources Coordination rule
society name group name medium resources list of rules

– in the environment model, the resources identified in the analysis phase
(together with the corresponding policies) are mapped onto infrastructure
classes at the design phase, and are associated to topological abstractions.

We skip further details that are not relevant for this paper: interested readers
can refer to [11].

2.2 SODA+zoom

Following the principles sketched in Section 1, we introduce here a simple lay-
ering principle, called zooming, to the models defined in the analysis stage, in
particular with the specific aim of scaling with the complexity of tasks descrip-
tion. Along this line, also the models defined at the design stage become layered,
given their direct relation with the layers in the analysis phase.

Layering is a general principle for complex systems: correspondingly, zoom-
ing should be applicable as widely as possible. So, apart from zooming tasks,
SODA+zoom makes it possible to zoom roles, resources, interaction protocols
and interaction rules. For the same reason, zooming should affect all the differ-
ent phases of the engineering process. So, as just mentioned above, “zoomable”
abstractions in the analysis phase are matched by design abstractions that can
be zoomed as well—for instance, zooming a role in the analysis phase leads to
zooming the corresponding agent in design phase, and vice versa. For the sake
of simplicity, however, in the rest of this paper, we mostly focus on the applica-
tions of zooming to tasks and roles / agents, deferring the investigation on the
implications of the zooming mechanism in terms of the other SODA abstractions
to our next papers.

Each layer contains a description of the models (role, resource, interaction)
at a given level of abstraction, here represented using the previous tables. Each
layer is labelled with a number: as a convention, the uppermost layer is layer
0—which represents the most abstract view of the MAS. So, zooming a model at
layer L results in a model at either layer L+1 (in-zooming) or L-1 (out-zooming).

The first idea of the zooming principle may come from the basic intuition
that what can be described as a (non-trivial) individual task IT assigned to a
role R at the layer L, can also be zoomed into a social task ST assigned to a
group Gr at the layer L+1—possibly the simplest and most intuitive example of



88 A. Molesini et al.

in-zooming in SODA+zoom. In the tabular description, this means that an entry
of a Role Table at layer L can be exploded into an entry of the Group Table at
layer L+1, plus all the information concerning the new group—that is, a Role
Table describing the social roles of the new group, an Interaction Protocol Table
describing the interaction protocols of the social roles, and an Interaction Rule
Table describing the interaction rules of the group. The new group at the layer
L+1 possibly leads to the introduction of a new Resource Table, with resources
that are “visible” only at this level of abstraction, and are then not perceived
by roles / groups of the upper layers.

Dually, as in-zooming allows for more and more detailed views over the sys-
tems, out-zooming provides engineers with a mechanism for abstraction. For
example, a social task ST assigned to a group Gr at layer L could be abstracted
(out-zoomed) into an individual task IT assigned to an individual role R at (more
abstract) layer L-1, thus concealing the social roles of Gr. In this way, we allow
engineers to provide a more concise description of MASs, where the unnecessary
details that could hinder system understanding are abstracted away, and only
the main entities and their mutual relationships are actually accounted for. Also,
the availability of symmetric and uniform in-/out-zooming mechanisms promote
middle-out approaches to the engineering of MASs.

In order to track the relationships between two subsequent layers, a Zooming
Table is used. One column of the table contains the name of the abstraction at
layer L, while the other column reports the name of the corresponding zoomed
abstraction(s) at the subsequent layer L+1 (in-zooming) or L-1 (out-zooming).
For instance, when in-zooming a role R at layer L to a group Gr at layer L+1, the
first column will be labelled by L and contain the name R of the role in-zoomed,
whereas the second column will be labelled by L+1 and contain the name of the
corresponding group Gr. As natural, the same Zooming Table can be used to
represent the dual process of out-zooming group Gr to role R from layer L+1 to
layer L.

It is worth noting that the zooming mechanism includes a sort of consistency
rule such that if R is the role at layer L zoomed to group Gr at layer L+1, then (i)
the set IN(R) of the information required characterising the interaction protocol
of R must be a subset of the union of all the sets describing the information
required by the social roles SR of the group Gr; (ii) the set OUT(R) of the
information provided characterising the interaction protocol of R must be a
subset of the union of all the sets describing the information provided by the
social roles SR of the group Gr.

The zooming mechanism provided for the model at the analysis stage has a
direct consequence on the models and diagrams identified at the design stage.
For each layer defined at the analysis stage, in fact, there is a corresponding
layer at the design stage, matching the models described in SODA. As a result,
for instance, if agent class C in the design phase maps a role R at the layer L in
the analysis phase, and R is in-zoomed into the group Gr at the layer L+1, then
society S mapping group Gr should also result by in-zooming C in the design
phase—and vice versa for out-zooming.



Zooming Multi-Agent Systems 89

3 The Case Study

In order to exemplify SODA+zoom, we briefly discuss a case study, concerning
the management of an Internet web site of a university course through the use
of a MAS. For the sake of simplicity, we here focus on the analysis stage. System
requirements include the support for:

– authenticated login;
– publication of teaching material and exercises;
– download of teaching material and exercises;
– automatic exercise correction, intended as a check on (i) the format of the

submitted material, (ii) the material originality, (iii) the actual correction,
(iv) the test and (v) final assessment.

The analysis of the MAS is described in two layers.
At Layer 0 (Fig. 1) the role model is described by a Role Table with four

individual roles, a Group Table concerning the exercise Group, and a Role Table
describing the social roles of the exercise Group. The Resource Table (not shown
for the lack of space) contains two distinct resources, Login Manager and Data
Manager, the former providing login and registration services, the latter storage
service for exercises and student material. The interaction model is described
by the Interaction Protocols Table of the individual and social roles, and by the
Interaction Rules Table for the exercise Group.

Then, Layer 1 (Fig. 2) specifies the description of the structures obtained
by zooming the corrector role into a new group called correctorGroup, which
introduces some new social roles (described in the Role Table). The Interaction
Protocols Table details the protocols of the newly-introduced social roles, and
the Interaction Rules Table contains the rules of the correctorGroup group. In
this case, the Zooming Table that connects the two layers has simply one entry:

Layer 0 Layer 1
role: corrector group: correctorGroup

The two layers at the analysis stage are mapped onto two layers at the design
stage (not shown here for the lack of space). The effect of zooming applied in the
analysis concerns the introduction of a Society Table with a CorrectorSociety
entry at Layer 1 (which maps the correctorGroup at Layer 0 in the analysis
stage), zooming the CorrectorAgent entry in the Agent Table defined at Layer
0 (which maps the Corrector role on the analysis side).

4 Conclusion and Future Work

In this paper we argued that any methodology aimed at engineering complex
artificial systems should provide engineers with some layering principles, such as
zooming mechanisms, allowing for expressive and consistent multi-layer descrip-
tions of systems. Taking inspiration from the scaling mechanisms of OPM, we



90 A. Molesini et al.

Layer 0: Role Table
Role Task Interaction protocol

authenticate user login authenticate protocol
register insert student insert protocol
writer write material write protocol
reader read material read protocol

Layer 0: Group Table
Group Social task Social Roles Interaction rule
exercise exercise management compiler, exerReader, download rule, upload rule,

developer, corrector update profile rule

Layer 0: Social Role Table (exercise group)
Social role Task Interaction protocol
compiler write the text of new exercise compiler protocol

exerReader download new exercise exer-reader protocol
developer upload the developed exercise developer protocol
controller control the state of the exercise controller protocol
corrector correct and assess the exercise corrector protocol

Layer 0: Interaction Protocols Table
Interaction protocol Information required Information provided
authenticate protocol access permissions username and password

insert protocol username and password student’s profile
write protocol text of material
read protocol specific material

compiler protocol text of new exercise
exer-reader protocol specific exercise
developer protocol developed exercise
controller protocol state of the exercise
corrector protocol exercise assessment of exercise

. . . . . . . . .

Layer 0: Interaction Rules Table
Interaction rule Rule description
download rule download enabled only if at least one exercise is present
upload rule it should not be possible to deliver an exercise twice

update profile rule a student’s profile may be updated only
when the exercise is in state “assessmentOK”

Fig. 1. Tables at the Layer 0, in top-down order: the Role Table containing individual
roles, the Group Table with the exercise Group, the Role Table with the social roles
of the exercise Group, the Interaction Protocols Table (here describing roles only) and
the Interaction Rules Table



Zooming Multi-Agent Systems 91

Layer 1: Group Table
Group Social task Interaction rule

correctorGroup correct and evaluate the exercise format rule,
originality rule

correct rule
tester rule

evaluated rule

Layer 1: Social Role Table (correctorGroup group)
Social role Task Interaction Protocol

formatChecker check the format of delivered exercise format protocol
originalityChecker check that the students did not copy the exercise originality protocol

correctChecker correcting the delivered exercise correct protocol
tester testing the delivered exercise tester protocol

evaluator exercise assessment evaluated protocol

Layer 1: Interaction Protocols Table
Interaction protocol Information required Information provided

format protocol delivered exercise “formatOk” or nothing
originality protocol delivered exercise and “formatOk” “originalityOk” or nothing

correct protocol delivered exercise and “originalityOk” “correctOk” or nothing
tester protocol delivered exercise and “correctionOk” “testOk” or nothing

evaluated protocol delivered exercise and “testOk” “assessmentOk” or nothing

Layer 1: Interaction Rules Table
Interaction rule Rule description

format rule format check possible only if at least one exercise was delivered
originality rule originality check possible only if an exercise is in state “formatOk”

correct rule correction possible if at least an exercise is in state “originalityOk”
tester rule test possible only if at least one exercise is in state “correctOk”

evaluated rule assessment possible only if at least one exercise is in state “testOk”

Fig. 2. Tables at Layer 1, in top-down order: the Group Table with the correctorGroup
corresponding to the corrector role in Layer 0, the Role Table with the social roles of
the correctorGroup, the Interaction Protocols Table with the protocols of the social
roles, and the Interaction Rules Table with the rules of the correctorGroup

showed how an AOSE methodology like SODA can be enhanced with a simple
yet expressive zooming mechanism, and put it to the test by discussing a case
study.

In the literature, other object-oriented methodologies are defined that sup-
port some sort of layering: among these, the Booch method [13], EROOS [14]
and OSA [15]. Both Booch method and EROOS define iterative processes: phases
are often repeated, each time focusing on a more detailed level of abstraction.
While commonalities and differences with OPM were already stressed in Subsec-
tion 1.3, OSA is somehow similar to SODA+zoom in the uniform, bidirectional
application of its zooming mechanism, as “. . . High-Level Object Classes have



92 A. Molesini et al.

exploded and imploded views. An exploded view shows what a High-Level Ob-
ject Class contains, while the imploded view hides its contents . . . ”. However,
how OSA mechanism could provide for recursion (to allow for an unlimited num-
ber of abstraction layers), and how it could be generalised to be applicable to
anything else than Object Classes is frankly unclear from the available literature.
Two other approaches that may present some similarities with SODA+zoom are
CRC cards [16] and Use cases [9]. CRC cards may look similar in that their rep-
resentation recalls SODA’s table-based representation, and for the attribution of
tasks and responsibilities to roles. Use cases focus on user interaction with the
system, while SODA aim to capturing interaction in its most general acceptation.

Apart from testing our extended methodology in the large, future work will
be mostly devoted to understanding the full implications of zooming in terms
of the fundamental agent-oriented abstractions. In particular, we plan to fo-
cus on artefacts for MAS, and try to understand how features like linkability
and distribution can promote the use of zooming in the engineering of a MAS
environment.

References

1. Omicini, A., Zambonelli, F.: MAS as complex systems: A view on the role of
declarative approaches. In Leite, J.A., Omicini, A., Sterling, L., Torroni, P., eds.:
Declarative Agent Languages and Technologies. Volume 2990 of LNAI. Springer-
Verlag (2004) 1–17 1st International Workshop (DALT 2003), Melbourne, Aus-
tralia, 15 July 2003. Revised Selected and Invited Papers.

2. Grene, M.J.: Hierarchies in biology. American Scientist 75 (1987) 504–510
3. Wooldridge, M., Jennings, N.R., Kinny, D.: The GAIA methodology for agent-

oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3
(2000) 285–312

4. Wood, M.F., DeLoach, S.A.: An overview of the Multiagent Systems Engineering
methodology. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented Software
Engineering. LNCS, Springer (2001) 207–221 1st International Workshop (AOSE
2000), Limerick, Ireland, 10 giugno 2000. Revised Papers.

5. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems 8 (2004) 203–236

6. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavòn, J., Leal, F., Chainho, P.,
Kearney, P.E., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis us-
ing Message/UML. In Wooldridge, M.J., Weiss, G., Ciancarini, P., eds.: Agent-
Oriented Software Engineering II. Volume 2222 of LNCS., Springer (2002) 119–135
2nd International Workshop (AOSE 2001), Montreal, Canada, 29 May 2001. Re-
vised Papers and Invited Contributions.

7. Padgham, L., Winikof, M.: Prometheus: A methodology for developing intelligent
agents. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented Software
Engineering III. Volume 2585 of LNCS. Springer (2003) 174–185 3rd International
Workshop (AOSE 2002), Bologna, Italy, 15 luglio 2002. Revised Papers and Invited
Contributions.

8. Dori, D.: Object-Process Methodology: A Holostic System Paradigm. Springer
(2002)



Zooming Multi-Agent Systems 93

9. UML: Home page. (http://www.uml.org/)
10. Sturm, A., Dori, D., Shehory, O.: Single-model method for specifying multi-agent

systems. In Sandholm, T., Yokoo, M., eds.: 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2003), New York, NY,
USA, ACM Press (2003) 121–128

11. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. [17] 185–193

12. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In Jennings, N.R., Lespérance, Y., eds.: Intelligent Agents
VI. Agent Theories, Architectures, and Languages. Volume 1757 of LNAI. Springer
(2000) 250–259 6th International Workshop (ATAL’99), Orlando, FL, USA, 15–
17 July 1999. Proceedings.

13. Hamilton, J.A., Pooch, U.W.: A survey of object-oriented methodologies. In Engle,
Jr., C.B., ed.: TRI-Ada ’95: Ada’s role in global markets: solutions for a changing
complex world, New York, NY, USA, ACM Press (1995) 226–234

14. EROOS: Home page. (http://www.cs.kuleuven.ac.be/cwis/research/som/EROOS/)
15. OSA: Home page. (http://osm7.cs.byu.edu/OSA/tutorial.html)
16. Beck, K., Cunningham, W.: A laboratory for teaching object-oriented thinking.

SIGPLAN Notices 24 (1989) 1–6 Special Issue: Proceedings of the 1989 ACM Con-
ference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’89), New Orleans, LA, USA, 1–6 October 1989.

17. Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented Software Engineering. Vol-
ume 1957 of LNCS. Springer (2001)



Improving AOSE with an Enriched Modelling
Framework

Richard Hill, Simon Polovina, and Martin D. Beer

Web & Multi-Agents Research Group,
Faculty of Arts, Computing, Engineering & Sciences,

Sheffield Hallam University,
Sheffield, United Kingdom

{r.hill, s.polovina, m.beer}@shu.ac.uk

Abstract. We describe an approach to the development of a complex
social care system that defines specific steps along the path to MAS im-
plementation. In particular we explore the use of conceptual knowledge
modelling techniques by means of conceptual graphs and a transactions-
based architecture for model verification during requirements gathering,
together with a translation to AUML for design specification, and pro-
pose a rigorous framework to enrich and extend existing AOSE method-
ologies. The resulting output from Transaction Agent Modelling (TrAM)
can then be developed further using the agent development toolkit of
choice.

1 Introduction

Multi-Agent Systems (MAS) are proving a popular approach for the represen-
tation of complex computer systems. The many emerging approaches and tools
for Agent Oriented Software Engineering (AOSE) assist the generation of MAS
models, enabling the translation of specifications to program code, but there
still remains a gap between abstract initial requirements and MAS design spec-
ification. Abstract models are assembled and are iterated into a series of design
models using the Unified Modelling Language (UML) or more recently, Agent-
oriented UML (AUML) [1].

To prevent significant disparities between program code and the more ab-
stract models, AOSE methodologies such as Gaia [22], Prometheus [14], Zeus
[13] and MaSE [6] have emerged and attempt to provide a unifying development
framework. Except for Tropos [4] however, little work has been published that
encompasses the whole cycle from initial requirements capture through to im-
plementation of MAS. Tropos attempts to facilitate the modelling of systems
at the knowledge level and highlights the difficulties encountered by MAS de-
velopers, especially since notations such as UML force the conversion of knowl-
edge concepts into program code representations [4]. As a methodology Tropos
seeks to capture and specify ‘soft’ and ‘hard’ goals during an ‘Early Require-
ments’ capture stage, in order that the Belief-Desire-Intention (BDI) architec-
tural model [10] of agent implementation can be subsequently supported. Whilst

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 94–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Improving AOSE with an Enriched Modelling Framework 95

model-checking is provided through the vehicle of Formal Tropos [8], this is an
optional component and is not implicit within the MAS realisation process.

Extensions to the UML meta model such as AUML [1], have simplified the
design and specification of agent characteristics such as interaction protocols, yet
the process of gathering and specifying initial requirements is often limited to
the discipline and experience of the MAS designer, using established notations
such as UML’s use case diagrams [21].

This paper therefore describes an improved MAS design framework that
places a greater emphasis upon the initial requirements capture stage by supple-
menting the modelling process with Conceptual Graph notation [19]. Section 2
describes the proposed process before an exemplar case study in the Community
Healthcare domain is explained in Section 3. A MAS model is built and checked
to explicate the process in detail, illustrating the significance of the results.

2 Representing the Model

Our experience with AUML has led us to conclude that whilst this notation
permits models to be created at differing levels of abstraction, it is still possible
to produce models of a MAS that are mutually exclusive, requiring significant
design experience to refine the detailed model to a point where it achieves the
original goals. Some of the higher-order issues are often not explored sufficiently,
leading to a system design replicating inefficiencies that existed in the original
system. Whilst AUML offers use-case analysis as a high-level requirements gath-
ering notation, we propose that a notation be used to supplement the process
that permits the capture of qualitative topics, in order that the essential issues
within ‘the big picture’ are retained and explored.

2.1 Conceptual Graphs

Conceptual graphs (CGs) [20] are a means by which otherwise intricate logic
can be expressed in a more human readable form, whilst remaining rigorous in
their formalism and suitable for exchange between computer systems. They are
represented in both text (Linear Form) and graphical format (Display Form),
the latter assisting human comprehension during requirements gathering and
systems analysis. Using Display Form (DF), concepts and relations are repre-
sented by rectangles and ellipses respectively. Relations are linked to concepts by
arrows (arcs). The consideration of concepts facilitates the lucid representation
of qualitative problem domains [17].

2.2 Model Verification

UML provides robustness diagrams as a means of supporting the process of
model checking, by allowing system analysts to examine the collaborations with-
in a model before progressing to sequence models. However, it is possible to derive
sequence models directly from use cases as there is no verification discipline



96 R. Hill, S. Polovina, and M.D. Beer

enforced within the notation. We chose to represent the requirements capture
process at a much more abstract level, by considering a means by which a model
could incorporate verification. This would assist the whole process by:

– Enforcing a rigour upon the requirements capture stage, to elicit agents,
roles and ontological terms from a conceptual perspective.

– Providing a model check much earlier in the process, supporting the design
and deployment of robust MASs.

In a MAS trading environment, the goal-directed behaviour of an agent dictates
that success occurs when both parties have gained from their participation in a
transaction. In essence, the transaction describes a condition where both parties
have exchanged resources, resulting in a ‘balance’. Using the ‘Event Accounting’
model [9], Polovina [15] describes a robust means of modelling transactions.

All transactions comprise two Economic Events, denoted by *a and *b. The
transaction is complete when both Economic Events balance, which indicates
that *a always opposes *b, representing ‘debits’ and ‘credits’. Additionally there
are two related Economic Resources, *c and *d, each having independent source
and destination agents.

Figure 1 illustrates how CGs have been used to represent the transaction
model [15], using the Event Accounting model as a basis [9].

Fig. 1. Transaction model

After the initial requirements have been captured and modelled, further
analysis is conducted using AUML to generate the required programming speci-
fications. Therefore agent system specifications that incorporate an established,
robust transaction model can be developed.

CGs and the transaction model address the difficulties identified in Section 1
in the following ways:

1. The transactions approach makes model verification implicit as any missing
nodes (concepts or relations) render the model out of balance and thus unable
to satisfy both sides of the transaction.

2. The richness of conceptual graphs permits qualitative issues to be challenged
and documented, before refining further by drilling down for more detail.

Transaction

Inside_Agent: {*}

Outside_Agent: {*}

partpart Economic_Event: {*b}Economic_Event: {*a}

Economic_Resource: {*d}Economic_Resource: {*c}

source destination event_subjectevent_subject

destination source



Improving AOSE with an Enriched Modelling Framework 97

Qualitative reasoning is an important agent capability and the use of con-
ceptual graphs addresses this at the earliest opportunity within the design
life-cycle.

3. Roles are identified using the transaction model via the ‘inside’ and ‘outside’
agents.

4. Ontological terms are derived from the transaction model during the process
of capturing requirements. Again, the inherent balance check of the model en-
sures that terms are agreed upon before the model is complete. This process
ensures that debates about slot names are conducted sooner rather than
later, having the immediate benefit of specifying more of the system detail
before translation to AUML.

5. CGs are similar to AUML in that there are some obvious mappings from con-
cepts to agents. Our experiences with AUML illustrated that actors trans-
lated to agents, though further analysis work suggested that the actors could
be decomposed into several agents.

A combination of the requirement for a transactions-based model, and a
need to represent a deployment domain that is inherently complex, has led to the
development of a MAS design framework that embodies the notion of robustness,
whilst also representing the real-world scenario more faithfully, negating the need
to compromise the implementation unduly.

2.3 Transaction Agent Modelling (TrAM)

A successful requirements capture process should incorporate the following:

– A means of modelling the concepts in an abstract way, that facilitates the
consideration of qualitative issues.

– An ability to reveal more system requirements to supplement the obvious
actor-to-agent mappings.

– An explicit means of model-checking before detailed analysis and design
specification.

– Improved support for capturing domain terms, with less reliance upon do-
main experts.

This approach enforces a rigour upon the requirements capture stage that is
currently lacking from a range of AOSE design methodologies such as Gaia [22]
and Prometheus [14]. The process is described in [11], [12], [16], [18] and is as
follows:

1. Use Case Analysis - Requirements are gathered initially and represented as
use case models.

2. Model Concepts - The high level concepts are modelled and used to describe
the overall scenario.

3. Transform with Transaction Model and Generate Ontology of Types - The
high level model is transformed with the Transaction Model (TM)[19], which
ensures that a balance-check rigour is imposed upon the model, plus a rudi-
mentary hierarchy of ontological terms is generated.

4. Model Specific Scenarios - Specific instances of the system are modelled.



98 R. Hill, S. Polovina, and M.D. Beer

5. Inference with Queries and Validate - The model is tested by inferencing
queries to elicit rules for the ontology and refine representation.

6. Translate to Design Specification - The model is transformed into a design-
level specification such as AUML.

Use of the framework is now illustrated with the aid of a case study in the
community healthcare domain.

3 A Community Healthcare Case Study

To further illustrate this approach, we shall describe the modelling of a multi-
agent system for community healthcare management. Home based community
care delivery is an example of a complicated, multi-agency social care system
that is plagued with inefficiencies and logistical problems [2], [3]. Social care sys-
tems typically comprise a large number of autonomous functions and services,
each interacting and communicating with a variety of protocols. Unfortunately
the difficulties of representing such a system limit any improvements to an in-
dividual’s quality of life, which is contrary to what the system is attempting to
achieve. The first stage is to examine the use cases within the system.

3.1 Use Case Analysis

The scenario is represented at the highest level with a Conceptual Graph model
derived from the use cases. Figure 2 illustrates the healthcare scenario modelled
as a Conceptual Graph (CG).

Fig. 2. Conceptual Graph model of healthcare scenario from use Cases

– Older Person - An infirm, older person that chooses to continue to live in
their own home and request care support from the Local Authority.

– Local Authority - A localised representative body of the UK Government
that manages and administrates the delivery of healthcare services.

– Care Provider - A private organisation that delivers care services into the
Older Persons’ home environment on behalf of the Local Authority.

3.2 Model Concepts

A illustrated in Figure 2, the healthcare scenario concepts are modelled with
Conceptual Graphs (CG) [12], [16].

Older_Person

Care_Provider deliverer

Local_Authority

requester

Care

manager



Improving AOSE with an Enriched Modelling Framework 99

3.3 Transform with Transaction Model and Generate Ontology of
Types

As described in previous work [11], [12], [16], [18] the Transaction Model (TM)
is a useful means of introducing model-checking to the requirements gathering
process [19]: pp 110-111. This capture of requirements at the outset ensures
that the model-checking is not ‘bolted-on’ as an afterthought, as the models
are incomplete until both sides of a transaction ‘balance’. This has been shown
to lucidly represent qualitative transactions such as ‘quality of care received’
[16]. The specialisation of the generic TM CG of Figure 1 onto the community
healthcare scenario is illustrated by the CG in Figure 3. This specialisation serves
two fundamental objectives:

1. The concepts identified within the care scenario are represented as a trans-
action thus ‘economic events’ and ‘economic resources’ are balanced;

2. Each concept is classified in terms of type, therefore a hierarchy of types,
which is an important element of an ontology, is derived.

It is not clear from the outset (Figure 2) which party pays the bill for the care, or
who was the ‘source’ of the money. The UK Welfare System has three particular
scenarios:

1. The Local Authority pays for the care in full.
2. The Older Person pays for the care in full.
3. The Local Authority and the Older Person make ‘part payments’ that

amount to 100% of the care cost.

In order to satisfy the TM we therefore derive ‘Purchase Agent’ as the supertype
of ‘Local Authority’ and ‘Older Person’. Determining terms for the ontology is
an important step during the agent realisation process. Whilst it is feasible to de-
pend upon existing processes for the most part, the most significant contribution
of this stage is the implicit ‘balance check’ that immediately raises the devel-
oper’s awareness of the need for appropriate terminology. Figure 4 illustrates the
type hierarchy deduced from Figure 3.

Fig. 3. Healthcare scenario after application of TM

Transaction

Purchase_Agent

Care_Provider

partpart SaleRaise Debtor

CareMoney

source destination event_subjectevent_subject

destination source



100 R. Hill, S. Polovina, and M.D. Beer

Fig. 4. Type hierarchy after transformation with TM

3.4 Model Specific Scenarios

Once the generic model has been created, it is tested with some general rules.
We first explore the specific scenario whereby an Older Person has been assessed
and is deemed to be eligible to receive care at zero cost. In this particular case
(highlighted in Figure 5), we see that the ‘source’ of the money to pay for the
care is the Local Authority ‘Sheffield City Council (SCC)’, who also manage the
provision of the care. The care package is not delivered by the Local Authority
however; this is sold to them by private organisations, hence the need for a ‘Care
Provider’, in our case, ‘Meals on Wheels’. Since the Local Authority incurs the
cost of the care package, that is its destination. Note that each concept in this
figure now has a unique reference, denoting a specific instance. Conversely, the
scenario exists where the Older Person is deemed to have sufficient monetary
assets not to warrant a free package of care (Figure 6), where it can also be seen
that the care package is still managed by the Local Authority.

3.5 Inference with Queries and Validate

From the preceeding figures the general CG pattern (Figure 7) emerges. To
evaluate this scenario we examine the case where the Older Person’s ‘Assets’ are
deemed to be less than a particular threshold set by the Local Authority, who
would therefore be the destination of the care. Figure 8 shows this case. Fig-
ure 9 illustrates the alternate situation, depicted by ‘less-than-threshold’ asset
test being set in a negative context. Here the Older Person would be the care
and cost destination, as he or she is deemed to have assets that are not below
the threshold. The part-payment model in Figure 10 comprises Local Authority
and Older Person, plus the Purchase Agent derived earlier in Figure 9. How-
ever, Figure 10 does not allow joint parties to be the Purchase Agent. Therefore
we re-iterate the model further to support Figure 11. Here the Local Authority

subtype

Type: Inside Agent Type: Economic Resource

Type: Purchase Agent

Type: Local Authority

Transaction

Type: Sale Type: Raise Debtor Type: Outside Agent

Type: T

Type: Economic Event

subtype

Type: Older Person

Type: Care Provider Type: Care Type: Money

subtype

subtype

subtype

subtype



Improving AOSE with an Enriched Modelling Framework 101

Fig. 5. Local Authority (LA) pays for healthcare (Assets low)

Fig. 6. Older Person (OP) pays for healthcare (Assets NOT low)

Fig. 7. Emergent general CG pattern for this TM

Older_Person: Betty requester

manager

Local_Authority: SCC

Care_Provider: Meals on Wheels

partpart Sale: #2Raise_Debtor: #3

Care: #1Money: @£10,000

source destination event_subjectevent_subject

destination source

Transaction: #4

deliverer

Older_Person: Betty

requester

deliverer

managerLocal_Authority: SCC

Care_Provider: Meals on Wheels

partpart Sale: #2Raise_Debtor: #3

Care: #1Money: @£10,000

source destination event_subjectevent_subject

destination source

Transaction: #4

Local_Authority Older_PersonLocal_Authority Older_Person

Local_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCC

Purchase_Agent

Care_Provider

partpart SaleRaise_Debtor

CareMoney

Local_Authority Older_PersonLocal_Authority Older_Person

source destination event_subjectevent_subject

destination source

Transaction



102 R. Hill, S. Polovina, and M.D. Beer

Fig. 8. Older Person receives package of care at zero cost

Fig. 9. Older Person pays for care package in full

Fig. 10. Incomplete TM illustrating two purchasing parties awaiting association with
‘Purchase Agent’

and Older Person have a split liability that is variable depending upon an in-
dividual’s circumstances whilst ensuring that the total cost adds up to 100%.
The Older Person and Local Authority agents are no longer sub-types of the
Purchase Agent as originally illustrated, but are instead associated via ‘liability’
relations. Referring back to the hierarchy of types defined in Figure 4, we can now

Local_Authority destination Care

CareElderly_Person

total_value

Asset: {*}

£: @less-than-threshold

characteristic requester

Local_Authority destination CareLocal_Authority destination Care

CareElderly_Person

total_value

Asset: {*}

£: @less-than-threshold

characteristic requester

Local_Authority destination Care

Asset: {*}

£: @less-than-threshold

total_value

Older_Person destination Care

CareOlder_Person

Asset: {*}

characteristic requester

Asset: {*}

£: @less-than-threshold

total_value

Older_Person destination CareAsset: {*}

£: @less-than-threshold

total_value

Older_Person destination Care

CareOlder_Person

Asset: {*}

characteristic requester

Asset: {*}

£: @less-than-threshold

total_value

Older_Person destination Care

Local_Authority: SCC Older_Person: BettyLocal_Authority: SCC Older_Person: Betty

Local_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCC

Purchase_Agent: {*}

Care_Provider: Meals on Wheels

partpart Sale: #2Raise_Debtor: #3

Care: #1Money: @£10,000

Local_Authority: SCC Older_Person: BettyLocal_Authority: SCC Older_Person: Betty

source destination event_subjectevent_subject

destination source

Transaction: ?



Improving AOSE with an Enriched Modelling Framework 103

Fig. 11. Part-payment situation with shared liabilities

Fig. 12. Ontological component that is no longer valid

Fig. 13. New Ontology

create a rule to supplant the ontology for the model. Figure 12 thus depicts an
ontological component that is no longer valid, hence set in a negative context (or
Peirce cut [19]). Given the refinements discovered, the community care ontology
is updated in Figure 13 and the TM in Figure 14 to show the liability relation-
ship. The co-referent links are now valid thus the model can now be completed,
enabling all three of the payment scenarios to be accommodated in one model.

check_total

Local_Authority: SCCextent

extent

liability

Care: #1

liability

destination

Older_Person: Betty

Purchase_Agent: #5%: @100

%: @30

%: @70

Type: Older Person

subtype

Type: Outside Agent

subtype

Type: Local Authority

Type: Purchase Agent

Type: Older Person

subtype

Type: Outside Agent

subtype

Type: Local Authority

Type: Purchase Agent

Type: Inside Agent Type: Economic Resource

Type: Purchase Agent Type: Local Authority

Transaction

Type: Sale Type: Raise Debtor Type: Outside Agent

Type: T

Type: Economic Event

subtype

Type: Older Person

Type: Care Provider Type: Care Type: Money

subtype

subtype

subtype

subtype



104 R. Hill, S. Polovina, and M.D. Beer

3.6 Translate to Design Specification

Once the CG representations have been verified against the TM, it is then possi-
ble to perform a translation to a design specification. The ‘inside’ and ‘outside’
agents in the TM serve to provide direct mappings as follows:

– Inside Agent: Purchase Agent, with liabilities jointly satisfied by Local Authority
(SCC) and Older Person (‘Betty’)

– Outside Agent: Care Provider (‘Meals on Wheels’)

Further iterations and graph joins (omitted for brevity) would illustrate the
following additional agents (where LA represents Local Authority):

– Care Request Agent:

[Older_Person]

– Purchasing Agent:

[Local_Authority]->(sub-agent)->[LA_Procurement_Agent]

– Care Assessor Agent:

[Local_Authority->(sub-agent)->[LA_Social_Worker]

– Finance Agent:

[Local_Authority]->(sub-agent)->[LA_Finance_Assessor]

From these direct translations we can construct agent bodies, to which specific
sub-tasks can be assigned. Each of the behaviours is informed by the relations
specified within the TM. For instance, referring back to Figure 2 the key abstract
definition is that:

Management of Care is Local Authority.

Further analysis of the models results in the ‘manage’ role of the Local Authority
Agent through its sub-agents identified above being decomposed into:

Assess_care_needs;
Confirm_financial_eligibility;
Procure_care_package;
Manage_care_delivery.

The process of revealing the agent behaviours is informed and contextualised by
the business protocols that the TM has identified and the developer needs to
apply across the many agent protocols. For instance, the ‘Procure care package’
behaviour can be represented by the FIPA Iterated Contract Net protocol [7],
thus devolving the task of obtaining the cheapest care package available to that
protocol to which a given task may be best suited. This approach thus creates a
situation whereby the method of requirements capture concentrates on what the
MAS must deliver from the outset to implementation, assisting the developer in
determining the extent to which the solution is influenced by the business model.
Further refinement of the model with other methodologies is not precluded how-
ever, as the core transactional behaviours have now been established, verified
and available for inclusion as needed.



Improving AOSE with an Enriched Modelling Framework 105

Fig. 14. Refined model to accommodate part-payment scenario

4 Conclusions

Our approach has enabled the early elicitation of domain knowledge, and sub-
sequent ontology specification, whilst incorporating a robust transaction model
from the beginning. This has allowed representations of agent-managed trans-
actions to be assembled at a much faster rate, especially since we have greater
confidence that the underlying design is based upon a solid framework. The key
features of this approach are as follows:

1. CGs represent the problem in a more abstract way, and provide a foundation
for modelling the knowledge exchange within a system. The abstraction is
such that high-level, qualitative issues such as ‘quality of health care received’
are addressed, so it is feasible that the system is questioned from the point
of view of concepts, rather than relying on an individual’s prior experience.

2. CGs are similar to AUML in that there are some obvious mappings from
concepts to agents, however there are also subtleties that CGs appear to
reveal more consistently. The important point to note here is that the mod-
els are derived after considering issues at a much higher abstraction, thus
resulting in a somewhat different view at micro-level.

3. The inherent balance check of the model ensures that ontological terms are
agreed upon before the model is complete.

4. The transactions approach makes model verification implicit as any missing
nodes (concepts or relations) renders the model out of balance and thus
unable to satisfy both sides of the transaction.

The TrAM approach enriches the ‘early requirements’ stage of AOSE. Producing
conceptual graph models enables higher-order issues to be captured, scrutinised

liability

Purchase_Agent

Local_Authority

Purchase_Agent

liability

Older_Person

liability

Purchase_Agent

Local_Authority

Purchase_Agent

liability

Older_Person

Local_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCCLocal_Authority: SCC

Purchase_Agent

requesterOlder_Person

manager

liability

Purchase_Agent

Local_Authority

Purchase_Agent

liability

Older_Person

liability

Purchase_Agent

Local_Authority

Purchase_Agent

liability

Older_Person

deliverer

Local_Authority

Care_Provider

partpart SaleRaise_Debtor

CareMoney

source destination event_subjectevent_subject

destination source

Transaction



106 R. Hill, S. Polovina, and M.D. Beer

and considered in an abstract way. This compliments any use case analysis,
and promotes early discussion. The use of a particular graph, the Transaction
Model, means that these concepts can be evaluated in a way akin to transactional
analysis; the implications of ‘duty of care’, ‘debt to society’ and other high level
concepts typically would attract little interest as they are difficult to model and
even consider. The richness of conceptual graphs firstly allows these concepts to
be represented lucidly.

Secondly, the application of the TM enables opposing concepts to be rep-
resented. Often one side of the transaction is clearly evident, but the opposing
concept or concepts are not clear from the outset. The application of the TM
forces such hidden concepts to the fore, promoting discussion and consideration
from the outset.

Thirdly, the ensuing discussion results in the generation of the most suitable
term to represent each concept. This definition of lexicon assists the documen-
tation of an ontology, lessening the requirement for a domain expert. Indeed
the process steers the agent system designer so that at least the most pertinent
questions can be asked of the expert, rather than requiring the agent system
designers to be domain experts themselves.

Finally, the ability to logically prove the conceptual graphs, combined with
inferencing allows the models to be tested and validated much earlier in the agent
system design process. Current methodologies such as Tropos and Prometheus
go some way to address the issue of gathering requirements earlier, but the
method of attributing ‘hard’ and ‘soft’ goals is still abitrary, requiring a degree
of domain expertise. TrAM addresses this by allowing more abstract models to be
constructed initially; detail can always be added by further iterations, together
with the application of a TM pattern that forces analysis of opposing components
of the transaction. In summary we have described a framework for modelling
MASs that incorporates model checking to support the development of robust
systems. The use of CGs and the notion of transactions enriches the requirements
capture stage and serves as a precursor to existing AOSE methodologies that
require a design representation such as AUML as an input. We feel that this
would be a suitable ‘bolt-on’ discipline for the myriad of agent-oriented software
engineering methodologies that lack the necessary detail for successful MAS
requirements capture.

5 Further Work

We have now established a route from abstract requirements gathering through
to design specification that incorporates two significant events:

1. The high-level model is represented as CGs and then verified using a prcoess
of de-iteration and double negation upon the transactional model.

2. The resulting model is then translated into an AUML design specification.

Both of these processes have been conducted manually so far, and we are now
exploring the automation of inferencing for the model verification stage, and
translation from Conceptual Graph Interchange Format (CGIF) into AUML.



Improving AOSE with an Enriched Modelling Framework 107

Acknowledgements

This project is in receipt of an AgentCities Deployment Grant from the European
Union AgentCities.rtd Project (IST-2000-28385).

References

1. Bauer, B., Müller, J. P., and Odell, J., (2000), ‘Agent UML: A Formalism for Speci-
fying Multi-agent Software Systems’, in Agent-Oriented Software Engineering, vol.
1957, Ciancarini, P. and Wooldridge, M. J., Eds. Springer-Verlag, 2000, pp. 91-104.

2. Beer, M. D., Bench-Capon, T. J. M. and Sixsmith, A., (1999) ‘Some Issues in
Managing Dialogues between Information Agents’, In Proceedings of Database
and Expert Systems Applications ‘99, Lecture Notes in Computer Science 1677,
Springer, Berlin, 1999, pp. 521-530.

3. Beer, M. D, Huang, W., and Sixsmith, A. (2002), ‘Using Agents to Build a Prac-
tical Implementation of the INCA (Intelligent Community Alarm) System’, in L.
C. Jain, Z. Chen, & N. Ichalkaranje, ‘Intelligent Agents & their Applications’,
Springer, pp320-345.

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A., (2004)
‘TROPOS: An Agent-Oriented Software Development Methodology’, Journal of
Autonomous Agents and Multi-Agent Systems, vol. 8, pp. 203-236, 2004.

5. Dau F., Lecture Notes in Computer Science 2892: ‘The Logic System of Con-
cept Graphs with Negation: And Its Relationship to Predicate Logic’, Heidelberg:
Springer-Verlag, 2003

6. DeLoach, S., (1999) ‘Multi-Agent Systems Engineering: A Methodology and Lan-
guage for Designing Agent Systems’, citeseer.ist.psu.edu/deloach99multiagent.html

7. Foundation for Intelligent Physical Agents, ‘FIPA Iterated Contract
Net Interaction Protocol Specification’. Accessed: 2005, 11/21. 2000.
http://www.fipa.org/specs/fipa00030/PC00030D.html

8. Fuxman, A., Kazhamiakin, R., Pistore, M., and Roveri, M., (2003) ‘Formal Tro-
pos: language and semantics (Version 1.0)’. Accessed: 2005, 4th November. 2003.
http://www.dit.unitn.it/ ft/papers/ftsem03.pdf

9. Geerts, G., and McCarthy, W., ‘Database Accounting Systems’, in Information
Technology Perspectives in Accounting: and Integrated Approach, Eds. B. Williams
and B. J. Sproul, Chapman and Hall Publishers, 1991, pp. 159-183.

10. Georgeff, M. P., Pell, B., Pollack, M. E., Tambe, M., and Wooldridge, M., (1999)
‘The Belief-Desire-Intention Model of Agency’, in ATAL ’98: Proceedings of the
5th International Workshop on Intelligent Agents V, Agent Theories, Architectures,
and Languages, 1999, pp. 1-10.

11. Hill, R., Polovina, S., Beer, M. D., (2004) ‘Towards a Deployment Framework for
Agent-Managed Community Healthcare Transactions’, The Second Workshop on
Agents Applied in Health Care, 23-24 Aug 2004, Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, IOS Press, 13-21.

12. Hill, R., Polovina, S., Beer, M. D., (2005) ‘From concepts to agents: towards a
framework for multi-agent system modelling’, AAMAS ’05: Proceedings of the
fourth international joint conference on Autonomous agents and multiagent sys-
tems, AAMAS ’05, Utrecht, The Netherlands, ACM Press, pp1155-1156.

13. Nwana, H., Ndumu, D., Lee, L., and Collis, J., (1999) ‘ZEUS: A Tool-Kit for
Building Distributed Multi-Agent Systems’, Applied Artifical Intelligence Journal,
vol. 13, no. 1 pp129-186.



108 R. Hill, S. Polovina, and M.D. Beer

14. Padgham, L., Winikoff, M., (2002) ‘Prometheus: A Methodology for Developing
Intelligent Agents’, In: Proceedings of the Third International Workshop on Agent-
Oriented Software Engineering, at AAMAS 2002.

15. Polovina, S., ‘The Suitability of Conceptual Graphs in Strategic Management Ac-
countancy (PhD Thesis)’, 1993, Available at http://www.polovina.me.uk/phd

16. Polovina, S., Hill, R., Crowther, P., Beer, M. D., (2004) ‘Multi-Agent Community
Design in the Real, Transactional World: A Community Care Exemplar’, Concep-
tual Structures at Work: Contributions to ICCS 2004 (12th International Confer-
ence on Conceptual Structures), Pfeiffer, H., Wolff, K. E., Delugach, H. S., (Eds.),
Shaker Verlag (ISBN 3-8322-2950-7, ISSN 0945-0807), 69-82.

17. Polovina, S. and Heaton, J., (1992), ‘An Introduction to Conceptual Graphs’, AI
Expert, 7(5), May, 36-43.

18. Polovina, S., Hill, R., (2005), ‘Enhancing the Initial Requirements Capture of
Multi-Agent Systems through Conceptual Graphs’, Proceedings of 13th Interna-
tional Conference on Conceptual Structures (ICCS ’05): Conceptual Structures:
Common Semantics for Sharing Knowledge, July 18-22, 2005, Kassel, Germany,
Springer, 439-452.

19. Sowa, J. F., ‘Knowledge Representation: Logical, Philosophical and Computational
Foundations’, Brooks-Cole, 2000.

20. Sowa, J. F., ‘Conceptual Structures: Information Processing in Mind and Machine’,
Addison-Wesley, 1984.

21. OMG, ‘Unified Modeling Language Resource Page’, vol. 2004, http://www.uml.org/
22. Wooldridge, M., Jennings, N., Kinny, D.(2000), ‘The Gaia Methodology for Agent-

Oriented Analysis and Design’, In: Autonomous Agents and Multi-Agent Systems
3, pp. 285-312.



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 109 – 123, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dealing with Adaptive Multi-agent Organizations  
in the Gaia Methodology 

Luca Cernuzzi1,2 and Franco Zambonelli1  

1 Università di Modena e Reggio Emilia, DISMI, 
Via Allegri 13, Reggio Emilia, Italia 

{franco.zambonelli, cernuzzi.luca}@unimore.it 
2 Universidad Católica “Nuestra Señora de la Asunción”, 

DEI Campus Universitario, Asunción, Paraguay 

Abstract. Changes and adaptations are always necessary after the deployment of 
a multiagent system (MAS), as well as of any other type of software systems. 
Some of these changes may be simply perfective and have local impact only. 
However, adaptive changes to meet changed situations in the operational 
environment of the MAS may have global impact on the overall design. In this 
paper, we analyze the issue of continuous design change/adaptation in a MAS 
organization, and the specific problem of how to properly model/design a MAS so 
as to make it ready to adaptation. Following, the paper focuses on the Gaia 
methodology and analyzes – also with the help of an illustrative example – its 
suitability in supporting and facilitating adaptive changes in MASs organizations, 
and its advantages and limitations with this regard over a number of different 
agent-oriented methodologies.  

Keywords: Agent Oriented Methodologies, Design for Change, Adaptive 
Organizations, Methodologies Evaluation. 

1   Introduction and Motivation 

A great deal of efforts in the Agent-oriented Software Engineering (AOSE) area 
focuses on the definition of methodologies to guide the process of engineering 
complex software systems based on the multiagent systems (MAS) paradigm [6], 
[20]. AOSE methodologies, as they have been proposed so far, mainly try to suggest a 
clean and disciplined approach to analyze, design and develop MASs, using specific 
methods and techniques.  

However, very few of the AOSE methodologies proposed so far explicitly take into 
account the maintenance phase of the MAS, that is, all those engineering work that 
has to be performed on the MAS after its deployment. In general, maintenance of a 
software system is required for several reasons. Corrective maintenance aims at fixing 
those errors that unavoidably will show up after the deployment of the system itself, 
independently on how extensively it was tested. Perfective maintenance is required to 
improve the functionalities and the performances of the system, and also to better 
fulfill the original requirements. Adaptive maintenance aims at tuning the software 
systems accordingly to changes in either the requirements or in the environment 



110 L. Cernuzzi and F. Zambonelli 

(operational or social) in which the system operates. While corrective and perfective 
maintenance typically have local impact only (i.e., in the case of MASs, on the 
internal structure of agents and on the structure of some communication protocols), 
adaptive maintenance may have global impact on the overall design of systems (i.e., 
on the overall architecture/organization of MASs). 

Information systems studies outline that the phase of maintenance costs almost the 
60% [1], [10] of the entire cost of systems over their lifecycle. Although there are no 
specific studies of this kind already available for MASs, it is reasonable to assume 
that MASs too will experience a similar trend, and possibly even more exacerbated as 
far as adaptive maintenance is concerned. While agents and MASs are often claimed 
as a promising approach to deal with the dynamism of modern scenarios, i.e., to deal 
with dynamic and open interactions and to interact in a dynamic environment, current 
AOSE methodologies typically promote the definition of static architecture design for 
the overall organization of a MAS (i.e., for the roles to be played by the agents of a 
system and for the relations among these roles), and are not conceived to be ready for 
changes in the MAS organization after its deployment.  

From now to the moment in which we will be able to design and deploy – in a 
trustworthy and reliable way – fully autonomous and self-adaptive software systems, 
capable of re-organizing themselves to answer to changed conditions without any 
human intervention, we will probably have to wait several years. In the meantime, we 
may nevertheless need to better understand which the right directions to achieve this 
are, and we must provide engineers with suitable conceptual and practical tools to 
facilitate the adaptive maintenance of MASs. In other words, an AOSE methodology 
should not only facilitate the effective development of a MAS answering to specific 
requirements, but should also accompany designers through the entire software 
lifecycle and should facilitate developers work whenever adaptive software 
maintenance requires structural changes in the overall organization of a MAS. 

In this paper, we focus on the design for change issue and on the issue of 
continuous design change/adaptation. We analyze, also with the help of a simple yet 
representative application example, how a MAS may require frequent and unexpected 
re-structuring of its global organization to adapt to changed situations. In particular, 
the aim of the analysis is also to outline the characteristics that an AOSE 
methodologies should exhibit to support the modeling and the development of 
adaptive MASs. The presence of such characteristics can notably reduce maintenance 
costs and, in the future, can facilitate the integration of self-adaptive features in 
MASs.  

To ground the discussion, a specific attention is posed on the Gaia methodology 
[19], which exhibits some of the specific characteristics that make it somewhat more 
suitable than other methodologies to deal with adaptive changes. In particular, we 
show that Gaia facilitates engineers to face the likely changes that will appear in a 
MAS after its deployment, limiting the efforts required to re-model the evolving 
systems. 

The following of this paper is organized as follows. Section 2 explores the need for 
adaptive MAS organization. Section 3 discusses the aspects of the Gaia methodology 
that can promote a design for change perspective. Section 4 compares with other 
AOSE methodologies. Section 5 concludes. 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 111 

2   On the Need for Adaptive MAS  

MASs, as well as the great majority of modern software systems, are likely to be 
subject to a large number of adaptive changes during their life-cycle, some of which 
may affect the very structure of the system. 

In traditional software engineering discipline, special efforts have been devoted to 
the design for change issue, trying to anticipate the likely changes and adaptations 
that are frequently required to almost all software products after their deployments. 
However, those efforts have normally pointed out the anticipation of predictable 
changes that do not mainly influence the global design of the system under 
construction. Thus, it is yet an open issue how to undertake continuous design 
change/adaptation during the whole lifecycle of a system that may imply re-
structuring its global organization. And such an issue is expected to be particularly 
critical for MASs, which are often conceived to operate in very dynamic operational 
environments. 

Following in this section, we present the conference management system example 
(paradigmatic of a larger class of applications), illustrating how unexpected changes 
in the real-world organization forces important changes in the MAS organization, and 
discusses the requirements for an AOSE methodology to support adaptive MASs and  
the design-for-change perspective. 

2.1   The Conference Management System Example  

Let us consider an agent-based system for supporting the process of producing the 
technical program for an international conference. We assume the readers of this 
paper are mostly knowledgeable with this, but let us summarize in any case the key 
characteristics of this process. 

The process may be subdivided into three phases: 

− The submission phase: the program committee chair (PC Chair) and the organizer 
distribute the call for papers. The authors submit their papers. The papers are 
classified (according to specific criteria), a submission number is assigned to each 
paper and the authors are notified about that. 

− The review phase: the PC Chair distributes the papers among the PC Members 
which are in charge of providing reviews for those papers. The PC Chair collects 
back reviews, decides upon the acceptance/rejection of papers, and eventually 
notifies authors of the decision. Considering all the accepted papers, the PC Chair 
prepares the conference program. 

− The publishing phase: the authors of the accepted papers have to produce a revised 
version of their papers. The publisher has to collect these final versions and 
compose the proceedings. 

The process clearly involves three loosely interacting phases, each involving 
different actors, and naturally leads to conceiving one MAS for supporting the 
activities of each phases. There, personal agents will be naturally associated to the 
actors involved in the process (authors, PC Chair, PC Members, reviewers) to support 
their work. It is also natural that the roles played by each agent reflect the ones played 
by the associated actor in the conference organization. This may require agents to 
interact both directly with each other (according to patterns that will reflect the 



112 L. Cernuzzi and F. Zambonelli 

patterns of interactions in the real-world organizations), and indirectly (via exchanges 
of papers and review forms). 

This said, the process of designing a MAS to support the organization of a 
conference may at appear very simple and intuitive, as critical design choices (the 
types and roles of agents involved, the structure of the organizations and of inter-
agent interactions) naturally derive from the structure of the real-world organization. 

2.2   Unexpected Changes: A Real-World Example  

What the above discussion of the conference management example misses in 
identifying is that, for a conference, the overall structure of the real-world 
organization may dramatically vary from year to year. First, since the organizers 
involved change from year to year, some changes in the organization may be directly 
induced by them based on personal attitudes and opinions. Second, factor such as the 
hotness of the conference topics and the effectiveness of the conference advertising 
may dramatically affect the number of submitted papers. Thus, the need of changing 
the structure of the management process may be forced by the need of keeping it 
manageable. This is particularly true for the reviewing phase, which involves a large 
number of actors, with different duties and variously interacting with each other. 

To mention a real-world example, we can consider the biyearly ISAS/SCI 
conference series (ISAS Multiconference on Systemics Cybernetics and Informatics). 
ISAS/SCI started as a single mono-track conference in 1995 with 55 presented papers 
(the number of submitted papers being directly proportional to this). Then, the 
conference grew up very fast, to become a huge multi-conference and, in 2001, to 
reach a number of 1859 presented papers. As it can be seen from Table 1, such a 
pronounced growth has not occurred on a large time, and a dramatic growing is 
exhibited for any two consecutive editions. Personal acquaintances of the first author 
have confirmed that, although a continuous growth was indeed expected, no one in 
the organization would have expected such a dramatic trend of growth.  

Table 1. The Size of the ISAS/SCI Conference 

YEAR NUMBER OF PRESENTED PAPERS 
1995 55 
1997 248 
1999 754 
2001 1859 

Accordingly, to meet the increasing number of papers to deal with in the review 
process (as light as this can be, there is indeed some reviewing for papers in the 
conference), the ISAS/SCI conference had always to underwent serious and 
unexpected re-thinking of its organization. In 1995 it relied solely on a PC Chair and 
a limited group of PC Members for the review process, whose outcome were a single 
proceedings volume. In contrast, in 2001, there were a General PC Chair, Vice-Chairs 
for a large number of special-tracks (mini-conferences), each with their own PC, and 
hosting within a number of special-sessions, and were been published a total of 9 
proceedings volumes.  



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 113 

In addition to the above ones, adopted by ISAS/SCI, a number of additional 
organizational structures can be though (and are often applied) for different 
conferences’ sizes and characteristics. The PC Chair can partition papers among PC 
members which have in turn to recruit the necessary number of reviewers for their 
papers, or each PC member can be in charge of collecting a single review for papers. 
Reviewers can be asked to bid for papers, in a sort of “paper market” or can be 
dictated which papers to review. All of which can be organized into multi-level 
hierarchies on need.   

What we think is most interesting in the example of conference management, is 
that information about what the size of the conference will be (and thus about what 
the most proper organizational structure to adopt is) is generally available only a few 
days before the review process has to begin, that is when submitted papers gets 
incoming. This clearly forces a dramatically fast re-structuring in the organization 
(unless one wants to stick to an unsuitable organizational structure) and, in the case 
the process is supported by a MAS, requires an extremely fast adaptation of the MAS 
structure. These problems, to different extents, occur in all those software systems 
devoted to support processes in an increasingly dynamic economy.   

2.3   Requirements for Adaptive MAS and Design-for-Change  

In very general terms, adaptation is the result of a bi-directional relationship between 
a system (e.g., a MAS organization) and the environment in which it situates (e.g., the 
real-world organization and its operational environment): modifications in the real-
world organization or in the operational environment may imply modifications in the 
topological structure of MAS organization and in the control regime of its 
interactions.  

Different studies exist that analyze the organizational aspects of MASs and their 
possible structures [7], some of which paying specific attention to adaptive MASs 
structures [13], [9]. However, a few of these studies constructively propose software 
engineering solutions to deal with continuously adapting MASs organizations.  

Recently, several research efforts are being devoted to promote self-organization in 
complex software systems and, specifically, self-adaptive capabilities for multiagent 
systems [21]. These studies explore the possibility for complex MASs to either 
exploit adaptive self-organization phenomena or to promote self-inspect and self-
reorganization in order to preserve specific functional and non-functional 
characteristics despite contingencies in the operational environment. A number of 
algorithms and tools are becoming available, but the time for deployment of self-
adaptive software systems and MASs is far to come.  

In any case, it is worth outlining that, even if effective mechanisms of self-
adaptation were available, the problem of having a MAS properly capture not only 
internal needs of efficiency but also external needs of the stakeholders (e.g., the 
conference organizers in our example) is open. How can one MAS inspect and get 
feedbacks from the real-world organization to which it belongs to adapt accordingly? 
While waiting for self-adaptive MASs to come, an AOSE methodology should 
definitely promote a design-for-change perspective, enabling designer and developers 
to rapidly re-work the structure of a MAS to have it suit novel needs.  



114 L. Cernuzzi and F. Zambonelli 

To promote such a design-for-change perspective we need modularity and 
separation of concerns. In particular, when dealing with both the design and 
development of a MAS, one should clearly separate those aspects of the system that 
are intrinsic to the definition of the problem itself from those that, instead, derives 
from contingent choices based on the actual characteristics of the operational 
environment and/or the real-world organization. For example, in the conference 
management example, this means separating those functionalities and inter-
dependencies intrinsic in a process of reviewing (e.g. functionalities of PC Chair and 
of reviewers, and protocols for sending back review forms) from those that instead 
derives form a specific contingent choice (e.g., separating the role of PC Member 
from that of reviewer, and relying on paper bidding for assigning reviews). In that 
way, whenever unexpected changes occur, designers and developers are facilitated in 
identifying where to focus to restructure the MAS as needed without impacting on the 
whole system. 

3   Modeling Adaptive MASs with Gaia 

As far as we know, none of the currently available AOSE methodologies for MASs 
development explicitly accounts for a design-for-change perspective. Nevertheless, 
some of them already exhibit specific aspects which can at least promote a design for 
change. One of these, focus of this section, is the Gaia methodology [19]. 

3.1   Gaia in a Nutshell 

Gaia focuses on the use of organizational abstractions to drive the analysis and design 
of MASs. Gaia models both the macro (social) aspect and the micro (agent internals) 
aspect of a MAS, and devotes a specific effort to model the organizational structure 
and the organizational rules that govern the global behavior of the agents in the 
organization. What makes Gaia somewhat suitable for a design-for-change 
perspective is its clear separation between the analysis and the architectural design 
phases.  

The goal of the analysis phase in Gaia, covering the requirements in term of 
functions and activities, is to firstly identify which loosely couple sub-organizations 
possibly compose the whole systems and then, for each of these, produce four basic 
abstract models: (i) the environmental model, to capture the characteristics of the 
MAS operational environment; (ii) a preliminary roles model, to capture the key task-
oriented activities to be played in the MAS; (iii) a preliminary interactions model, to 
capture basic inter-dependencies between roles; and (iv) a set of organizational rules, 
expressing global constraints/directives that must underlie the MAS functioning.  

The above analysis models are used as input to the architectural design phase. In 
particular, the architectural design phase is in charge of defining the most proper 
organizational structure for the MAS, i.e., the topology of interactions in the MAS 
and the control regime of these interactions, which most effectively enables to fulfill 
the MAS goals. The definition of the organizational structure has to account for a 
variety of factors, including the need of somewhat reflecting the structure of the real-
world organization in the MAS structure, the characteristics of the environment and of 
the patterns of access to it, the need of simplifying the enactment of the organizational 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 115 

rules, the need to respect any identified non-functional requirement, as well as the 
obvious need to keep the design as simple as possible. Once the most appropriate 
organizational structure is defined, the roles and interactions models identified in the 
analysis phase (which were preliminary, in that they were not situated in any actual 
organizational structure) can be finalized, to account for all newly identified 
interactions and possibly for newly identified roles. 

Past the architectural design phase, the detailed design involves identifying: (i) an 
agent model, i.e., the set of agent classes in the MAS, implementing the identified 
roles, and the specific instances of these classes; and (ii) a services model, expressing 
services and interaction protocols to be provided within agent classes. The result of 
the design phase is assumed to be something that could be implemented in a 
technology neutral way. 

3.2   Factors Facilitating Adaptivity in Gaia 

As from the short description above, Gaia prescribes to clearly separate the analysis 
phase, in which the basic characteristics of the system-to-be are captured and 
organized, from the architectural design phase, where all the results of the analysis are 
put at work to identify the most suitable organizational structure. The above clear 
separation, together with the specific structuring of the analysis phase and of its 
models, are important factors to facilitate adaptive changes, according to what 
specified in Subsection 2.3.   

The result of the analysis phase in Gaia is very modular, clearly separating basic 
characteristics/functionalities of the systems, (i.e., the preliminary roles and 
interactions models) from characteristics of the operational environment (i.e., the 
environmental model) and from any additional constraints that the MAS will have to 
respect (i.e., the organizational rules). This implies that whenever contingencies calls 
for a re-thinking of some of the MAS specifications, the clear separation of concerns of 
the Gaia analysis models is likely to avoid global re-thinking of the whole analysis and, 
depending on the types of contingencies, promote a local tuning of a limited set of 
models. For instance, some functional changes in “how” a sub-task is expected to be 
achieved will impact on the preliminary role model only; some changes in the global 
constraints the MAS has to respect implies changes in the organizational rules only.  

The prescription to delay the identification of the organizational structure to the 
architectural design phase is also of paramount importance. In fact, more than the 
outcome of the analysis, it is the choice of a specific organizational structure that is 
more likely to be affected by contingencies. Besides properly structuring the 
functional requirements of the analysis phase, the choice of a specific organizational 
structure has to take into account and is affected by a number of non-functional 
requirements and by various characteristics of the operational environment and of the 
real-world organization. Thus, whenever contingencies call for adaptive changes in 
the MAS, it is very likely that these contingencies will call for a new organizational 
structure, which in Gaia can be selected without globally affecting the design.  

In fact, the analysis outcome of Gaia is a set of preliminary roles and interactions 
models that exhibit no dependencies on a specific organizational structure. In the 
architectural design phase, after having chosen a specific organizational structure, the 
roles and interaction models can be finalized. Consequently, it is possible in the final 



116 L. Cernuzzi and F. Zambonelli 

roles and interaction models to clearly identify those roles and interactions which are 
intrinsic of the systems (i.e., those already identified from the analysis) from those 
that, instead, derives from the adoption of a specific organizational structure. 
Accordingly, whenever contingencies call for a new organizational structure, the 
designer is clearly facilitated in determining what parts of the system requires some 
sort of re-design and what parts, instead, can be left unchanged.  

Thus, even if Gaia does not yet define any specific guidelines for adaptive 
maintenance, its structuring of the development process somewhat facilitates adaptive 
changes, and also enables an effective re-use of previous experiences and models. In 
fact, an expert designer can easily apply known organizational structures – possibly 
being supported by the availability of catalogues of organizational patterns – in the 
context of a particular system, so as to more easily chose and specify a specific 
organizational structure for a MAS-to-be, and – if this is the case – so as to easily re-
shape the organizational structure of an existing system that requires some adaptation. 

3.3   The Conference Management System in Gaia 

To better ground the discussion and exemplify, we now try to put these concepts at 
work in the conference management system example. So, we orderly describe the 
various phase of the process of analysis and design of such system in Gaia,   

Possible Sub-organizations 
As already stated, in the conference management example, three loosely coupled sub-
organizations can be clearly identified, independently of the conference size. The first 
is the organization responsible for the submission process, the second is the 
organization responsible for the review process, and the third is the organization 
responsible for the publication of the proceedings. There are agents/roles (with 
specific competences) that participate in some organizations and not in others, while 
others like the PC Chair are likely to participate in all sub-organizations. Therefore, 
these three processes can dealt with by analyzing them as three separated MASs. For 
space reasons, hereinafter we focus on the review process only, and discuss the 
impact of the conference size on the actual design and on design changes. 

Environmental Model 
In the review process application, the environmental model simply reduces to a virtual 
computational environment of PDF papers (possibly enriched with XML semantic 
descriptions) and txt review forms. Agents can use some kind of shared database to 
manage the submitted papers, the reviewers information and the reviewers forms. 

Preliminary Roles Model 
The analysis phase can clearly identify the tasks and the structure of the roles, 
independently of any contingent choice for the organizational structure, but based on the 
functional specifications only. Therefore, in the organization of the review process there 
exists a few clearly identifiable functional roles: the role in charge of selecting reviewers 
and assigning papers to them (ReviewCatcher), the role of filling review forms for 
assigned papers (Reviewer), the role in charge of collecting and ranking the reviews 
(ReviewCollector) and the role of finalizing the technical program (DoProgram). An 
example of role schema for the ReviewCatcher role is presented in Figure 1. 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 117 

Clearly, depending on the actual organizational structures chosen to fit the 
conference size, different actors (e.g., the PC Chair, the PC Members or External 
Reviewers) may be called to play such roles.  

Role Schema:  ReviewCatcher

Description:   
This role is in charge of selecting reviewers and distributing papers among them. 
Protocol and Activities: 
CheckPaperTopic, CheckRefereeExpertise,
CheckRefereeConstraints, AssignPaperReferee, 
ReceiveRefereeRefuse, UpdateDBSubmission, UpdateDBReferee

Permissions:
Reads  paper_submitted // in order to check the topic and authors 
               referee-data // in order to check the expertise and constraint (i.e. the referee 
                                                   is one of the authors, or belong to the same organization 
Changes   DB Submission // assigning a referee to the paper 
                 DB Referee // assigning the paper to the referee incrementing the number 
                                                  of assigned papers 

Responsibilities: 
Liveness:
     ReviewCatcher = (CheckPaperTopic.CheckRefereeExpertise.
                  CheckRefereeConstraints.AssignPaperReferee.
                  [ReceiveRefereeRefuse] UpdateDBSubmission.
                   UpdateDBReferee)

n

Safety:    

AssignPaperReferee =>Referee authors ^ Referee_organization authors_
organizations

paper: number_of_referees = 3
 

Fig. 1. The ReviewCatcher functional role schema 

Preliminary Protocols Model 
As for the preliminary roles model, some preliminary interaction protocols may be 
identified to apply whatever the conference size (e.g., a protocol involving 
ReviewCatcher roles and Reviewers roles for assigning papers to review). However, 
until the organizational structure is defined, some of the protocols may remain 
dangling (i.e., without clearly identified roles involved) or fully unidentified.  

Organizational Rules 
Organizational rules in the conference management systems may dictate constraints 
on who can review what papers (i.e., to one to review his/her own papers), and on 
how the review process should proceed (i.e., by having at least three reviews by three 
different reviewer for each paper). Some examples of organizational rules related to 
the review process have been presented in [19]. Again, such rules typically express 
constraints that are mostly independent from any specific internal definition of roles 



118 L. Cernuzzi and F. Zambonelli 

and that abstract from any specific organizational structure, i.e., the above rules must 
apply both for a small and for a large conference. 

Choice of the Organizational Structure 
Here comes the deal. The organizational structure is the aspect of the system that is more 
likely to be affected by the conference size (as already discussed in Subsection 2.2).  

Let us firstly assume that the conference organizers expect a limited number of 
submissions, and then decide to organize the review process around a simple 
hierarchy (see Figure 2).  

 
Fig. 2. The paper review organization structure for a small conference 

The PC Chair plays the ReviewCatcher role and distributes the papers among the 
PC Members, which simply acts playing the role of Reviewers. The PC-Members, 
eventually send back reviews to the PC Chair, which thus plays also the 
ReviewCollector role. Based on this, the preliminary roles identified in the analysis 
already suffice, and they can be simply organized (via properly completing the  
interactions model) into a hierarchy. 

Completion of Preliminary Roles and Protocols Models 
Once identified the organizational structure, the roles and protocol models can be 
finalized, by binding dangling references.  

Adoption of a Different Organizational Structure 
Now let us assume that the number of submissions is much higher than expected. At 
this point, the conference organizers may decide to adopt a different structure, i.e., a 
multilevel hierarchy, implying some change also in the underlying MAS supporting 
the process.  

The multilevel hierarchy could be organized as follows.  The PC Chair will have to 
play a new – previously not identified – role of ReviewPartitioner (see Figure 3), to 
partition papers “by areas” and distribute each partition to specifically appointed Vice 
Chairs, each in charge of handling papers in his/her area of competence. These Vice 
Chairs than have to act as ReviewCatcher for their assigned partitions, recruiting PC 
Members as Reviewers. Vice Chairs also play as ReviewCollector for their partition, 
and the same do the PC Chair for the whole set of reviews.  

Now, what should a designer do if forced to switch from the “small conference” 
design to the “large conference” design? Well, due to the modularity of Gaia models 
and the clear separation from analysis and architectural design phase, the designer can 

 
PC-Chair

PC-Member1 PC-Member2
 

PC-MemberN 
 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 119 

easily re-use all previously identified models of the analysis, re-applying them in the 
sub-hierarchies of Vice Chairs and PC Members, and introducing the new role of 
“ReviewPartitioner” to define the upper level of the hierarchy.  

Role Schema:  ReviewPartitioner

Description:   
This role is in charge of distributing papers among Vice-Chairs according to the area of 
competence. 
Protocol and Activities: 
CheckPaperTopic, CheckViceChairArea, AssignPaperViceChair, 
UpdateDBSubmission

Permissions:
Reads  paper_submitted // in order to check the topic and authors 
               Vice-Chair-data // in order to check the area 
Changes   DB Submission // assigning the paper to a Vice-Chair area 

Responsibilities: 
Liveness:
     ReviewPartitioner = (CheckPaperTopic.CheckViceChairArea.
                    AssignPaperViceChair.UpdateDBSubmission)

w

Safety:    

paper assigned to a ViceChairArea
 

Fig. 3. The new ReviewPartitioner role schema 

 
Fig. 4. The paper review organization structure for a large conference 

Detailed Design 
Clearly, the detailed design of agents and services is not particularly affected by the 
specific organizational structure, as far as the “intrinsic” roles and interactions are 
concerned (Figure 5 shows the Agent model related to the reviewing process for a 
multilevel hierarchy organization). As far as the additional roles and interactions 
introduced because of a specific organizational structure are involved (e.g., the 

Vice-Chair1

PC-Member1 PC-MemberN PC-MemberZ 

Vice-ChairN 

PC-MemberX 

PC Chair 



120 L. Cernuzzi and F. Zambonelli 

ReviewPartitioner role), these are very likely to be roles and interactions that recur 
over and over in the design of MAS organizations, thus making it possibly for 
designers to re-use from past experience of from catalogue of MAS organizational 
patters.  

 

Fig. 5. The Agent model for a large conference 

4   Other AOSE Methodologies  

The issue of continuous design change/adaptation in MASs organizations has been the 
subject of several studies [9], [13]. For instance, the approach proposed in [14] is 
concerned with the agents generation at run-time in response to changes in 
requirements or in the environment. However, the specific problem of how to 
properly analyze, design, and develop a MAS so as to make it ready to adaptation is 
definitely under-studied.  

Unlike Gaia, several other AOSE methodologies proposed in the literature simply 
miss in identifying a clear separation of the intrinsic aspects of a MAS (as identified 
in Gaia analysis) from the architectural aspects (i.e., the organizational structure in 
Gaia). For instance, methodologies such as Roadmap [15], Prometheus [17], MaSE 
[8], AOR [18], and DESIRE [2], simply consider the organizational structure to 
derive in an implicit way from the identification of roles/agents and of their 
interactions, without promoting any modularity and separation of concerns. 
Accordingly, even if these methodologies can “win” over Gaia for other aspects (cfr. 
[4]), they inherently introduce more problems in dealing with adaptive MAS. 

More recently proposed AOSE methodologies explicitly face the problem of 
structuring the organization of the MAS, in ways different from that of Gaia, but 
nevertheless somewhat enforcing some degree of modularity separation of concerns 
that make them more suitable for adaptive change.  

MASSIVE [16] focuses on organizational structures in terms of the society views 
and interaction views. The society view sees the MAS as a collection of agents 
structured according a particular organizational model. The interaction view is seen as 
a generalized form of conflict resolution, considering several generic form of 
interaction not limited to the traditional form of communication. The explicit 
definition of these views goes in the suggested directions of making the 
organizational aspects explicit, and can facilitate adaptive organizational changes. 

To capture the organizational perspective, Tropos [3], [12] includes actors 
diagrams for describing the network of social dependency relationships among actors 
(modeling an agent, a role or a set of roles), and rationale diagrams for analyzing and 
trying to fulfill the specified goals of the actors. Also in the architectural design 
phase, more systems actors are introduced and goals and tasks assigned to the systems 
are deeper specified in term of sub-goals and sub-tasks. As already stated, this clear 

Chair Agent Reviewer Agent 

Vice Chair PC Member  

1..N 

General Chair 

1  + 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 121 

focus of Tropos on the definition of the organizational structure is a key requirement 
for promoting adaptive organizational changes.  

Ingenias [12] proposes an approach which is nearest to that of Gaia in considering 
the organizational perspective. Moreover, it has the advantage of doing so according 
to a refinement approach. In the analysis-inception phase, organization models are 
produced to sketch how the MAS looks like (the MAS architecture). This result is 
refined in the analysis-elaboration phase to identify common goals of the agents and 
relevant tasks to be performed by each agents. In the design-elaboration phase 
workflows among the different agents are added to improve the organization model, 
and finally, in the design-construction phase social relationships of dependency (that 
clarify organization behavior) are defined. Again, we consider the Ingenias approach 
somewhat suitable in a design-for-change perspective. 

The Agent Modeling Language - AML approach devotes special attention to the 
social/organizational aspects [5] introducing different diagrams to capture the social  
structure, the social behavior and the social attitudes. However, AML more than a 
complete methodology is a modeling language: one of its main contributions is its 
powerful notation being specified as a conservative extension of UML 2.0.  

It is also important to highlight that most the methodologies (including Gaia) are 
concerned with the analysis and design processes only [4]; few are trying to cover the 
development and deployment of the system; less yet are concerned with the 
maintenance stage of the system. Thus, even when a methodology is more suitable for 
a design-for-change perspective, a specific attention to the maintenance process and 
the definition of proper guidelines for change and adaptation are lacking, which is a 
great limitation for modern methodologies.   

As a final point, it is also worth outlining that the dynamism of modern scenarios 
and need of nearly continuous adaptive changes makes the traditional “waterfall” 
software process model, upon which most methodologies (including Gaia) explicitly 
or implicitly rely, very unsuitable [4]. Evolutionary process models and, more 
specifically, agile extreme process models may better facilitate engineers in the 
adaptive design maintenance of a MAS system. However, current agile and extreme 
software process models focus on small- to medium-size projects, and are not yet 
ready to tackle the complexity of developing large-scale adaptive MAS. 

5   Conclusions and Future Work  

In this paper, we have discussed the issue of continuous design change/adaptation that 
may affect a MAS during its lifetime. We used the conference management system as 
a representative example of adaptive MAS, to show how changes may require re-
structuring the global organization of a MAS. Then, also with the help of the case 
study example, we have discusses how Gaia (i.e., the way in which Gaia models and 
organizes the identification of the organizational structure and of the rules governing 
the general behavior of the MAS) can to some extent facilitate engineers in tackling 
the likely changes that will appear in a MAS after its deployment. A comparison with 
other AOSE methodologies shows that other methodologies other than Gaia exhibit 
similar characteristics and are quite supportive of a design-for-change perspective.  



122 L. Cernuzzi and F. Zambonelli 

Our current research work is focused on proposing more specific guidelines and 
conceptual tools to support engineers with in the adaptive maintenance of a MAS 
system, as well as, for the same purposes, in integrating in Gaia a more iterative and 
agile software process [4]. An additional issue that we consider very important to 
study relates to adaptation at the implementation level, i.e., how does changes in the 
design reflect in the implementation and what different problems may arise at this 
level that we have still not identified? The final long-term goal of these is to 
eventually reach a point in which we will be able to develop and deploy MASs that 
are able to autonomously self-adapt their behavior and to re-structure their internal 
organization in response to contingencies.  

References 

1. Boehm, B.: Software Engineering Economics, Prentice-Hall, Englewood Cliffs (NJ) 
(1981) 

2. Brazier, F., Jonker, C., and Treur, J.: Principles of Component-Based Design of Intelligent 
Agents. Data and Knowledge Engineering, vol. 41, No. 2, (2002) 1-28 

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J.: A Knowledge 
Level Software Engineering Methodology for Agent Oriented Programming. In: 
Proceedings of the 5th International Conference on Autonomous Agents. ACM Press, 
Montreal (Canada), (2001) 648-655 

4. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process Models for Agent-based 
Development, Journal of Engineering Applications of Artificial Intelligence, Vol. 18, 
No.2, (2005) 205-222. 

5. Cervenka, R., Trencansky, I. and Calisti, M.: Modeling Social Aspects of Multi-Agent 
Systems: the AML Approach. In this volume. 

6. Ciancarini, P. And Wooldridge, M.: Agent-Oriented Software Engineering. Proceedings 
of the 1st International Workshop on Agent-Oriented Software Engineering, Springer 
Verlag, LNCS, Vol. 1957, (2001) 1-24 

7. Colman, A. and Han, J.: Organizational abstractions for adaptive systems, Technical 
Report No: SUTIT-TR2004.03/SUT.CeCSES-TR003, School of Information Technology, 
Swinburne University of Technology, June (2004)  

8. DeLoach, S., Wood, M. and Sparkman, C.: Multiagent Systems Engineering. International 
Journal of Software Engineering and Knowledge Engineering, vol. 11, No. 3, (2001)  
231-258  

9. Dignum, V., Sonenberg, L., and Dignum, F.: Dynamic Reorganization of Agent Societies, 
In Vouros, G. (Ed.), Proceedings of Workshop on Coordination in Emergent Agent 
Societies CEAS at ECAI 2004, Valencia, Spain, 22-27 September (2004) 

10. Ghezzi, C., Jazayeri, M., and Mandrioli, D.: Fundamentals of Software Engineering. 
Prentice Hall International, Upper Saddle River, NJ (USA) (1991) 

11. Giunchiglia, F., Mylopoulos, J. and Perini A.: The Tropos Software Development 
Methodology: Processes, Models and Diagrams. Proceedings of Agent-Oriented Software 
Engineering (AOSE-2002), July 2002, Bologna (Italy), (2002) 63-74 

12. Gómez-Sanz, J. and Pavón, J., 2003. Agent Oriented Software Engineering with 
INGENIAS. Proceedings of the 3rd Central and Eastern Europe Conference on Multiagent 
Systems, Springer Verlag, LNCS 2691, pp. 394-403 

13. Horling, B. and Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The 
Knowledge Engineering Review. 2005, to appear. 



 Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology 123 

14. Jayaputera, G., Zaslavsky, A. and Loke, S.: Approach to Dynamically Generated User-
Specified MAS. In this volume. 

15. Juan, T., Pearce, A. and Sterling, L.: ROADMAP: Extending the Gaia Methodology for 
Complex Open Systems. Proceeding of the First International Conference on Autonomous 
Agents and Multi-Agent Systems - AAMAS ’02, July 15-19, 2002, Bologna (Italy), 
(2002) 3-10 

16. Lind, J., 2001. Iterative Software Engineering for Multiagent Systems, the MASSIVE 
Method. Springer Verlag, New York, Secaucus, NJ, USA 

17. Padgham, L. and Winikoff, M.: Prometheus: A Methodology for Developing Intelligent 
Agents. Proceedings of the First International Conference on Autonomous Agents and 
Multi-Agent Systems - AAMAS ’02,  Third International Workshop on Agent-Oriented 
Software Engineering AOSE-2002,  July 15, 2002, Bologna (Italy), (2002) 135-146 

18. Wagner, G.: The Agent-Object-Relationship Metamodel: Towards a Unified View of 
State and Behavior. Information Systems, Vol. 28, No. 5, July, 2003, Elsevier, (2003) 
475-504 

19. Zambonelli, F., Wooldridge, M. and Jennings, N. R.: Developing Multiagent Systems: 
The Gaia Methodology. ACM Transaction on Software Engineering and Methodology, 
vol. 12, No. 3, (2003) 417-470 

20. Zambonelli, F. and Omicini, A.: Challenges and Research Directions in Agent-Oriented 
Software Engineering. Journal of  Autonomous Agents and Multiagent Systems, vol. 9, 
No. 3, Kluwer Academic Publishers, (2004) 253-283 

21. Zambonelli, F. et al.: Spray Computers: Explorations in Self-organization. Journal of  
Pervasive and Mobile Computing, vol. 1, No. 1, (2004) 1-20 



Implementing Validated Agents Behaviours with
Automata Based on Goal Decomposition Trees

Gaële Simon and Marianne Flouret

LIH, Université du Havre, 76058 Le Havre Cedex, France
Gaële.Simon@univ-lehavre.fr, Marianne.Flouret@univ-lehavre.fr

Abstract. In order to provide an effective tool allowing to implement
validated agents behaviours, this paper first presents a Goal Decompo-
sition Tree (GDT), a model to specify behaviours both in procedural
and declarative ways. A GDT allows the designer to verify the specified
behaviour. This model is then used to generate a behaviour automa-
ton using automata composition patterns associated to operators used
in the tree. This process allows to obtain a finite expression representing
all valid behaviours of agents of a MAS.

1 Introduction

The work presented in this paper takes place in a global approach whose goal
is to define a complete process to implement a validated MAS starting from a
problem specification. Indeed, our approach consists in the following steps:

– an agentification method [8] that helps to determine the set of agents which
must be used to solve a given problem;

– an agent design model, called Goal Decomposition Tree (GDT), to help to
specify a verifiable agent behaviour;

– a proof system [8, 12] to prove that the agent model specifies a behaviour
which satisfies the main goal of the agent;

– an implementation model (SPACE, [13]), based on automata, that can be
automatically generated from the verified agent model.

Then this paper only presents one of these steps, that is the building of agents
behaviour automata (from trees previously obtained).

As for MaSE methodology [6], our approach can be seen as a "formal transfor-
mation system". Indeed, in [4], such a system is defined as providing "automated
support to system development, giving the designer much more confidence that
the resulting system will operate correctly, despite its complexity". More pre-
cisely, "Since each transformation preserves correctness from one model to the
next, the developer has much more confidence that no inconsistencies or er-
rors occured during the design process". This is one of the main goals of our
approach. An important advantage of this kind of approach is that "Transfor-
mation systems also provide traceability from the system requirements through
the development process to the final executable code"([4]).

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 124–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Implementing Validated Agents Behaviours with Automata Based on GDTs 125

In order to be able to implement and validate an agent, its behaviour must
be clearly specified. In our proposition, this specification is based on a Goal
Decomposition Tree (GDT). This tree helps to describe how an agent can manage
its goals in order to satisfy its main goal. A GDT is a specification of a complex
temporal logic formula describing how the agent can be satisfied. The main
contribution of this model is to provide enough tools to make its proof possible.
An important aspect of a GDT is that it is also intended to be used to directly
generate the behaviour of the agent to which it is associated. Indeed, as explained
in [14], “the biggest role of goals in agents is thus not the ability to reason
about them but their motivational power of generating behaviour”. Moreover,
“A certain plan or behaviour is generated because of a goal”. It is exactly what a
GDT allows to express.

An other and complementary way to represent the intrinsic agents behav-
iours is the use of automata. Finite state automata are not only used in lan-
guage theory but also in various areas, such as systems and networks, or image
compression [5]. Agent behaviours have yet been represented by automata or
structures similar to automata. In [7], Ferber presents such structures, but in
our approach the language properties linked to automata are used, that is not
allowed for example by ATN. Moreover we also use operations on automata.
Indeed, one of the advantages of this formalism is the rational result it gives
and then the finite expression of an agent behaviour which corresponds to all
its possible successive operations. GDT and automata are two formalizations to
represent these behaviours and automata can be seen as interpreters of GDTs.
Lötzsch et al. used similar structures in [11] but their state machines do not
correspond to our automata as they do not code behaviours at the same level.
Moreover they do not provive all valide behaviours unlike GDT. The building
of our agents behaviour automata can be compared with tasks diagrams created
for each agent in MaSE conception step. But, in our model, an agent is repre-
sented by only one automaton when , in MaSE, there is an automaton for each
component of an agent. This implies that, in our model, agent communications
and actions are formalized with the same automaton. Indeed, communications
(or "conversations") can be seen as actions. Our automata are goal oriented
as they are built from GDTs, unlike MaSE in which components are linked to
tasks. In previous works, solutions to translate temporal formula into automata
in order to verify such formula by model-checking have been proposed [15]. As
a GDT is the expression of a complex temporal logic formula, these works may
be compared with our proposal. However, in these works, two hypotheses, are
considered : the world can be modelized by a finite-state automaton and formula
specify behaviours of closed systems, with no interaction with an environment.
None of this both hypotheses can be considered as true in our case.

Here, we present a direct translation from a GDT into an automaton. The
main advantage of this process is to obtain a validated implementation of the
agent behaviour. Moreover, as the automaton can be generated automatically,
the designer can only focus on the behaviour design. As a consequence, it avoids
the introduction of new errors at the implementation step. In [9], Kaelbling has



126 G. Simon and M. Flouret

proposed the GAPPS system, this formalism allows programmers to describe
how to achieve goals, but if it proves that the goals to achieve are well scheduled,
our model tries to show that the scheduled achievement of goals leads to their
parent goal achievement.

A way to generate (in fact to represent) automata and their combinations is
the use of matrices that we will present below.

During the execution of the MAS, automata also allow to keep up with
the behaviours of the associated agents at any time, and to know their past
behaviour. In fact, we directly have a trace of the tests and actions performed
by the agents.

The next section deals with the building of a GDT defining the behaviour of
an agent. The last part presents the generation of the behaviour automaton of
an agent using its GDT. We illustrate our work with a part of a prey-predator
case study (completely developped in [8]).

2 Decomposing Goals into Subgoals

2.1 Introduction

The main advantage of a GDT is to provide a declarative description of goals.
Several works have already pointed out the advantage to have a declarative
description of goals [17], [14]. Many multiagent models or systems are essentially
focused on procedural aspects of goals which is important in order to obtain
an executable agent. But the declarative aspect of goals is also very important.
Indeed, as it is said in [17], “by omitting the declarative aspect of goals, the
ability to reason about goals is lost. Without knowing what a goal is trying to
achieve, one can not check wether the goal has been achieved, check wether the
goal is impossible”. In [14], the authors say that declarative goals “provide for the
possibility to decouple plan execution and goal achievement”. A GDT is a partial
answer to these requirements : as it will be shown in next sections, a GDT allows
to describe both procedural and declarative aspects of goals management.

Nodes of a GDT correspond to goals the agent has to solve. As in [17], goals
are considered as states of the world the agent has to reach. Several kinds of
goals have been defined using three different criteria. This typology of goals is
usefull both for the verification of the consistency of the tree and to guide the
definition of the behaviour automaton. Inside the tree, a goal is decomposed into
subgoals using decomposition operators. In our vision, subgoals correspond to
sufficient conditions for the satisfaction of the parent goal. The method TAEMS
[16] does not use goals buts tasks. However subtasks used in TAEMS can be
directly compared to subgoals used in our work.

A decomposition operator encapsulates a set of mechanisms corresponding
to a typical goals management behaviour ([14], [17]). Each operator is specified
by different kinds of semantics:

– a goal decomposition semantics describing how a goal can be decomposed
into subgoals with this operator;



Implementing Validated Agents Behaviours with Automata Based on GDTs 127

– a semantics describing how to deduce the “type” of the parent goal knowing
the types of its subgoals;

– a semantics allowing to associate an automata composition pattern to each
operator. These patterns are used incrementally to obtain the complete au-
tomaton describing the agent behaviour. This semantics is described in Sec-
tion 3;

– a semantics allowing to associate a local proof schema and a context prop-
agation schema to each operator. These two kinds of schemas are used to
prove the agent behaviour (ie. to prove that its goals management behaviour
allows to satisfy its main goal). This semantics is not described in this paper.

The Section 2.2 defines the notion of goal as it is used in this work and describes
the typology of goals which has been defined. The Section 2.3 describes the set
of operators allowing to decompose a goal into subgoals inside the GDT. For
each operator, the two first semantics described before are given. Last but not
least, the Section 2.4 shows how a GDT can be built using the tools described
in the two previous sections.

2.2 Goals and Typology of Goals

In the context of a Goal Decomposition Tree, a goal is defined by a name and a
satisfaction condition. Satisfaction conditions allow to specify goals formally with
respect to the declarative requirements for goals described in the previous sec-
tion. A goal is considered to be solved if its satisfaction condition is logically true.
Satisfaction conditions are expressed using a temporal logic formalism which is
a subset of TLA [10]. Satisfaction conditions use variables which are supposed to
be properties maintained by the agent. Thus, specifying goals of an agent helps
also to define the set of properties of the agent and also variables defining the
view of the agent on its environment.

A typology of goals has been defined in order to distinguish more precisely
different ways to manage goals decomposition. In the context of a GDT, each
goal can be characterized by three criteria which can be combined independently.
These criteria are:

– the location of the goal in the tree: A goal associated to a leaf node is
called elementary goal. Other goals are called intermediate goals. Elementary
goals are not only defined by a name and a satisfaction condition but also by
a set of actions. The execution of these actions are supposed to solve the goal
ie to make its satisfaction condition true. They correspond to the procedural
aspect of goals described in the previous section. Intermediate goals are
specified by a name, a satisfaction condition and also a Local Decomposition
Tree (LDT). A LDT contains a root node corresponding to the intermediate
goal and a decomposition operator which creates as many branches (and
subgoals) as needed by the operator. It describes how the intermediate goal
can be decomposed into subgoals. The number and the order of subgoals to
be solved to satisfy the parent goal depends on the chosen operator (see next
section for more details).



128 G. Simon and M. Flouret

– the satisfiability mode: Necessarily Satisfiable Goals (NS) are goals such
that, once all what must be done to solve the goal has been executed, the
satisfaction condition of the goal is always true. Not Necessarily Satisfiable
goals (NNS) are complementary to the previous ones. It is the more prevalent
case. For this kind of goal, one can not be sure that the goal will be solved
after its actions or its decomposition (and the subgoals associated to this
decomposition) have been executed or satisfied. This kind allows to take
into account that some actions or some decompositions can only be used in
certain execution contexts.

– the laziness of the goal: For Lazy goals (L), their associated actions or
LDT is considered if and only if their satisfaction condition is false before.
On the contrary, for Not Lazy goals (NL), the associated set of actions or
LDT is always executed.

Each criterion has two possible values which implies that eight effective kinds
of goals can be used in the tree. The Figure 1 summarizes the graphical notations
which have been introduced for these criteria.

L

Lazy goal

NL

Not Lazy goal Not Necessarily Satisfiable goal Necessarily Satisfiable goal

Fig. 1. NS,NNS, lazy and not lazy goals

2.3 Decomposition Operators

In this section, available decomposition operators are described. For each opera-
tor, the two first semantics are given that is to say the decomposition semantics
and the goals types composition semantics. The goals types composition se-
mantics is based only on the satisfiability criterion of goals. The decomposition
semantics of each operator describes how many goals must be solved and in
which order to be able to satisfy the parent goal. It is important to notice that
the satisfaction of this decomposition implies the satisfaction of the parent goal.

Eight operators have been proposed:

– AND: it corresponds to the “logical” and operator.
– OR: it corresponds to the “logical” or operator.
– SEQAND: it is a sequential version of AND.
– SEQOR: it is a sequential version of SEQOR.
– SYNCSEQAND: it is a synchronised version of SEQAND (ie. the solving

process of the two subgoals can not be interrupted by an other agent).
– SYNQSEQOR: it is a synchronised version of SEQOR.
– CASE: it allows to decompose a goal into subgoals according to condi-

tions defined by logical expressions. These logical expressions use the same



Implementing Validated Agents Behaviours with Automata Based on GDTs 129

variables as satisfaction conditions. The decomposition semantics of this op-
erator states that the disjunction of the logical expressions corresponding
to the conditions must be true when the parent goal is decomposed. The
principle is that if a condition is true, the corresponding subgoal must be
solved.

– ITER: it allows to express a progress notion during the solving process of
a goal.

Only SEQAND and ITER operators are described below.

SEQAND Operator. This operator corresponds to a "sequential AND" oper-
ator. Indeed, the main difference with the AND operator is that the two subgoals
must be solved in the order specified by the operator. As far as the composition
semantics is concerned, the subgoals can be either NS or NNS. The parent goal
is NS only if its two subgoals are NS, it is NNS otherwise.

ITER Operator. This operator is an unary one. The main difference between
this operator and the others is that its behaviour depends on the satisfaction
condition of the parent goal. The decomposition semantics of this operator states
that the satisfaction condition of the subgoal must be true several times in order
the satisfaction condition of the parent goal to become true. This operator is
very important because it allows to take into account a progress notion inside
a goal solving process. In other words, each time the subgoal is satisfied, the
satisfaction of the parent goal must be closer. However, sometimes it is possible
that the subgoal can not be satisfied (because the context of the agent has
changed for example). In this case, the satisfaction degree of the parent goal
stays at the same level and the subgoal must be solved again. The important
characteristic of this operator is that the satisfaction level of the parent goal can
not regress after a satisfaction step of the subgoal, even if this step has failed.
The goals types composition semantics specifies that the subgoal can be either
necessarily satisfiable either not. However, the parent goal is always necessarily
satisfiable. Indeed, the behaviour of the operator implies that the solving process
of the subgoal stops when the satisfaction condition of the parent goal is true
which implies that this one is necessarily satisfiable.

2.4 The GDT Design Process

A Goal Decomposition Tree (GDT) specifies how each goal can be solved by an
agent. More precisely, the root node of the tree is associated to the main goal of
the agent, i.e. the one which is assigned to the agent during the agentification
step ([13], [18]). If this goal is solved by the agent, the agent is considered to be
satisfied from the multiagent system point of view. The tree describes how this
goal can be decomposed in order to be solved using a solution which must be the
most adapted to the agent context as possible. Each leaf of the tree corresponds
to an elementary goal. The other nodes are associated to intermediate goals
which are decomposed using decomposition operators presented in the previous



130 G. Simon and M. Flouret

section. Notice that the overall tree can be seen as a collection of local plans
allowing to solve each goal. A local plan corresponds to a Local Decomposition
Tree associated to a subgoal. The main difference with plans used in [1] is that,
in a GDT, they are organised hierarchically.

The building process of the GDT consists in 4 steps. In a first step, a tree must
be built by the designer, starting from the main goal of the agent using a top-
down process. This first step allows to introduce subgoals with their satisfaction
condition, elementary goals with their associated actions and also decomposition
operators. The designer must also decide for each goal if it is lazy or not. In
the second step of the GDT design process, the designer must decide for each
elementary goal if it is necessarily satisfiable or not. In a third step, the type of
each intermediate goal, as far as satisfiability is concerned, is computed using the
goals types composition semantics of each used decomposition operator. Unlike
the first step, this step is a down-top process. During this process, inconsistencies
or potential simplifications can be detected. In that case, the first step must be
executed again in order to modify the tree.

Once the three first steps have been achieved, a proof of the tree can be built
in a fourth step. The process used to achieve this proof is described in details in
[12], [8]. Again, this step can lead to detect inconsistencies in the tree based on
proof failures.

In a last step, the validated tree is used to build the behaviour automaton
of the agent which can then be implemented. This process is described in Sec-
tion 3. As explained before, the building of the tree leads also to the definition
of properties, variables and actions of the agent which are essential parts of an
agent model. As a consequence, the GDT and the associated design process can
be seen as a design tool for a validated agent model in the context of a MAS
design.

This model has been successfully applied to describe the behaviour of a preda-
tor agent in a prey/predator MAS [8] which allowed to prove this behaviour. The
Figure 2 shows a part of this GDT which describes the behaviour of the preda-
tor in order to reach a target cell chosen before. This target cell is supposed to
be reachable in one move by the predator. But this cell is not necessarily free.
Thats’ why the predator must eventually wait for this cell to be free. So, the
goal F is satisfied if the predator has effectively reached this target cell. The
goal I is satisfied if the predator has moved at a location which is nearer to the
target cell than its previous location. The goal J is satisfied if the target cell is
free (ie there is not any agent on this cell). The action associated to this goal
is to attack the agent located on the target cell. As this goal is a lazy one, this
action is performed only if there is an agent on the target cell. The goal K is
satisfied if the predator is on the target cell. The action associated to this goal
is a move of the predator on the target cell that’s why this goal is necessarily
satisfiable. This goal can be satisfied only if the goal J has been satisfied before.
As a synchronized operator has been used to link J and K, it is ensured that the
target cell is free when the goal K is solved.



Implementing Validated Agents Behaviours with Automata Based on GDTs 131

Iter

F
SCF

SCK
KJ

SCJ

I
SCI

NL

NL

     L NL
SyncSeqAnd

Fig. 2. Predator subtree

3 Implementing Agents Behaviour with Automata

In our approach, the agents behaviour implementation is based on string to string
automata (transducers) [3]. The next section shows that goals and decomposition
operators can be represented by string patterns.

3.1 Behaviour Automaton

As presented in Section 2.1, a semantics in terms of automata patterns is as-
sociated to each decomposition operator. Basic automata are also associated to
elementary goals, with specific properties according to their type. As far as in-
termediate goals are concerned, as they are decomposed into subgoals by decom-
position operators, their corresponding automata are obtained by an automata
combination, depending on the chosen operator and of automata previously built
for subgoals. This combination is specified by an automata composition pattern.
In fact, the building of the string automaton of an agent behaviour is obtained
by successive such operations. Notice that automata give here a "behaviour
schema" for agents but do not claim to define all elements of agents behaviour,
like interactions between agents or waiting for messages (but they can appear as
actions). Matrices, as presented below, can also be used to represent automata
compositions making more direct the building of the final automaton. Before we
present the elementary automata and their combination rules, let us recall the
definition of a string to string automaton. A string to string automaton is defined
by a 6-tuple (Σ, Z, Q, I, F, δ) such that: Σ is a finite input alphabet, Z is a finite
output alphabet, Q is the finite set of states, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states, δ : Q × Σ → Q × Z is the application associated
to transitions. Rational expressions are obtained from the elements of Σ or Z by
a finite number of combinations of rational laws as (∪, ·, ∗). The finite expression
of an agent behaviour [2] is in fact such a rational expression, with the following
equivalence as we work in a logical context: ∪ corresponds to the logical Or, ·
corresponds to our SeqAnd operator and ∗ represents the Iter operator. The
adaptation of string to string automata, to allow to describe the behaviour of



132 G. Simon and M. Flouret

an agent a, follows from a specific choice concerning the meaning of each state
and the labels associated to the transitions. They are defined as follows:

Σ is the finite set of logical satisfaction conditions sc, and their negation, of a;
Z is the finite set of possible actions of a(associated to elementary goals, de-

scribed in Section 2.2); no action is denoted 1),
Q represents the set of goals and subgoals of the agent, and two states ′+′ and

′−′ (success or failure) are added;
I = {i} is the starting state of the agent a;
F = {+, −}.

We can also use a linear representation of automata: matrices. Such a rep-
resentation of dimension n (the number of states) is a triplet (λ, μ, γ) where
λ ∈ {0, 1}1×n (for each state, 1 if it is an initial one, 0 otherwise) is a row
vector coding initial states, γ ∈ {0, 1}n×1 a column vector coding the output
(by 1 if a state is an output, 0 otherwise) and μ : Σ∗ → Zn×n a morphism of
monoids coding the transition actions between states for each condition of Σ,
with the matrix μ(sc). In fact, 0 is added to Z as absorbing action (neutralizing)
for matrices products. For our representations, there is only one initial state,
and possible output are the {+, −} states. Practically, for this representation,
we just have to add a numbering for all states. In the sequel we will consider
the initial state as the first one in our representation, and the "last" ones will
be {−} and {+}. A path of an automaton is a sequence of states p0, · · · , pn such
that ∀1 ≤ j ≤ n there exists aj ∈ Σ,z ∈ Z, (pj , z) ∈ δ(pj−1, aj). A successfull
path of an automaton is a path from an initial state p0 ∈ I to a final one pn ∈ F
with {pj}0≤j≤n ∈ Qn+1, n ≥ 1 and {aj}1≤j≤n ∈ Σn such that δ(pj , aj+1) for
0 ≤ j ≤ n exists. The language of the automaton is the labels set of successfull
paths (it corresponds to possible behaviours). With the matrix representation,
a successful path is w ∈ Σ∗ for which λμ(w)γ �= 0.

Here, the language which is considered is a set of logical combinations of for-
mulae of Σ. Moreover, each successfull path ending by the state + corresponds to
a traversal path of the Goal Decomposition Tree of the agent a. A valid behaviour
corresponds to a successfull path in the automaton ending by + which we call a
valid path. The actions of Z are considered to be associated to the states of the
automata, but it is equivalent to a representation with actions over edges, next
to logical conditions. Notice that, implicitly, in each state a test action is exe-
cuted to know wich logical condition is true in order to choose the corresponding
edge. Two finite results are obtained from this structure: firstly, the whole set of
possible combinations of logical conditions to satisfy the main goal of the agent,
and secondly - by reading in the states - the sequence of actions performed by
a, that is to say valid behaviours. In fact the automaton view gives a rational
formalization of the behaviour described by the Goal Decomposition Tree.

3.2 Automata Composition Patterns

The behaviour automaton of an agent is built by combinations of elementary
automata using automata composition patterns associated to decomposition op-
erators. The elementary automata corresponding to elementary goals (leaves of



Implementing Validated Agents Behaviours with Automata Based on GDTs 133

Ac

⎤
SC⎤

NNS and L goal

NNS and NL goal

SC +

−

SC

−
NS and NL goal

NS and L goal

SC

SC +

⎤

SC

+
SC

SC

SC +

⎤

Ac
Ac

AcSC

Fig. 3. Automata for all kinds of elementary goals

the tree) are defined below. Let a an agent and N an elementary node of its
GDT associated to a subgoal G. According to the goals typology defined in Sec-
tion 2.2, four elementary cases have to be distinguished: lazy (L) or not (NL),
and necessarily (NS) or not (NNS) satisfiable goals. The Figure 3 shows the
elementary automata associated to each case. We denote Ac the set of actions
associated to the goal. We can notice that the automaton of a necessarily satis-
fiable goal has only the state + as final state. Elementary linear representations
are associated to each case. For example, a lazy and not necessarily satisfiable
goal will be represented by

λ = (1, 0, 0, 0) γt = (0, 0, 0, 1) μ(sc) =

0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0

μ(¬sc) =

0 Ac 0 0
0 0 1 0
0 0 0 0
0 0 0 0

Starting from these automata, we now have to consider their composition
which depends on the operators used in the GDT. Let B1 and B2 be the au-
tomata of two subtrees. We give in Figures 4, 5, and 7 the composition patterns
associated to each operator. A composition pattern specifies how to combine
automata associated to subgoals or subtrees in order to produce the automaton
of the parent goal. The initial state of the resulting automaton is, as usual, rep-
resented by a simple circle with a small arrow which does not come from any
other state, and reaching it. Automata of B1 and B2 (elementary or not) are
represented with their initial, + and − states. When, by combination, an ini-
tial state is not initial anymore, it is drawn with a dotted circle. Dotted arrows
starting from an initial state represent new edges reaching states which were
already reached by edges coming from the dotted states (old initial states) and
with the same labels. Bold arrows represent all edges in the initial automata
coming from or reaching a state. When combined, the construction deletes the
crossed edges, new ones are added, with the same labels (in fact, the edges are
moved). Drawing states + and − in a square means that they are deleted in the
resulting automaton.



134 G. Simon and M. Flouret

SeqOr

x

x

x

x

+

−

+

−B2B1

+
B2B1

+

− −
Seqand

Fig. 4. SeqAnd and SeqOr operators composition patterns

Or

x

x

x
x

x

x

x

x
x

x

x
x

+

−

−
+

+ +

−

B1

B2

−
B2

B1−

+

−

+
B1

B2
+

−

+

−B2

B1

And

Fig. 5. And and Or operators composition patterns

−
x
x −

B1
+cond1

⎤cond1

B2
+

Fig. 6. Case operator composition pattern

For all patterns, it is important to precise that each automaton to combine
must have exactly one state + and one state −, this last state is added (with no
arrow) if it did not exist (in fact if it had been deleted by a previous combination).

All unreachable states (when all edges reaching them have been deleted)
are removed in the resulting automaton in order to have only one state + and
at most one state −. In the following figures describing composition patterns,
the parent node A is a non lazy goal, B1 and B2 are the subgoals. A choice
policy (at random,...) must be defined for the first test of the And and Or
operators. We have to notice that patterns of SyncSeqAnd and SyncSeqOr op-
erators are obviously respectively the same as those of the SeqAnd and SeqOr
ones.

For the Iter operator, we consider in the Figure 7 that A is the parent goal of
B1 and SCA is its satisfaction condition. The dashed edge represents a unique
and new transition. For the automaton of the Case operator (Figure 6) it is
supposed that, in the GDT, C is the parent goal, B1 and B2 are the two subgoals,
and cond1 is a Case condition.

When the parent goal corresponds to a lazy one, these patterns have to be
modified by the addition of one state and two edges, as described in Figure 8,



Implementing Validated Agents Behaviours with Automata Based on GDTs 135

B1
x
x

−
+ SCA

⎤ SCA

Fig. 7. Iter operator composition pattern

− x −
+

⎤sc

sc

B1 x B2+

⎤

sc

sc
B1 x B2

Lazy pattern
NNS pattern

Fig. 8. Lazy parent goal and Not necessarily satisfiable parent goal

whatever the operator x used in the figure is. When a parent goal is not necessar-
ily satisfiable, the pattern obtained for this goal must be modified as presented
in Figure 8.

We denote Idn,0
i the identity matrix of dimension n where the ith column

is null, Idn,1
i the unity matrix in which all rows have been nulled excepted the

ith, and T n×m
i,j the permutation matrix of n rows, m columns, which permutes

columns i and j. For the Seqand operation between two subgoals represented by
(λ1, μ1, γ1) of dimension n and (λ2, μ2, γ2) of dimension m, the resulting linear
composition is defined by (λ, μ, γ) of dimension n + m such that

λ = (1, 01×(n+m−1)) γt = (0(n+m−1)×1, 1)

and for each condition sc,

μ(sc) = μ1(sc)Idn,0
n Idn,0

n−1 μ1(sc)(Idn,1
n + Idn,1

n−1)T
n×m
1,n

0m×n μ2(sc)

Let notice that the order the lazy and not necessarily satisfiable patterns
have to be applied does not matter.

3.3 Case Study

Here we give a complete example showing how these patterns are used to obtain
the behaviour automaton from a subtree of the GDT we have built for the prey-
predator system [8] and presented in Figure 2. It shows that the labels of the
valid paths of the complete automaton and the logical expression specified by
the decomposition tree are equivalent. Figures 9, and 10 represents the automata
for goals J and K.



136 G. Simon and M. Flouret

SC J

SCJ
⎤ SCJ

+

−A J

SC J

⎤

Fig. 9. Automaton for (J, SCJ, 1, 0, 1, AJ)

K +A
SCK

Fig. 10. Automaton for (K, SCK, 1, 1, 0, AK)

SCI
SCJ

−⎤ SCJ ⎤ SCI

A J +SC J SCK

SC J

AK⎤

Fig. 11. Intermediate automaton

SCI
SCJ

⎤ SCJ

⎤ SCF

+

⎤ SCI

SCF
A J SC J

SC J

AK

SCK

⎤

Fig. 12. Final automaton

When composed with the SyncSeqAnd operator, using its composition pat-
tern (Figure 4), we obtain the automaton given in Figure 11. Starting from this
last automaton, using the Iter composition pattern, we obtain the final automa-
ton of Figure 12.

Notice that starting from elementary linear representations, and then by suc-
cessive applications of matrix products compositions corresponding to successive
operators, the result would give the linear representation of the automaton of
Figure 12.

We can now give the set of all possible behaviours of the agent whose GDT is
given in Figure 2. Let Y = (�SCJ ·SCJ ·SCK)∪ (SCJ ·SCK)∪ (�SCJ ·�SCJ ·
SCI), and let X = (�SCJ ·�SCJ ·�SCI)∗ · Y . Then the expression X · (�SCF ·



Implementing Validated Agents Behaviours with Automata Based on GDTs 137

X)∗ · SCF represents all possible successive tests of logical conditions made by
the agent associated to the goal F . It clearly ends with the value true for the
SCF logical condition (indeed, the goal F is a necessarily satisfiable one).

4 Conclusion

This paper presents parts of a global MAS design process which are focused
on tools to specify and implement validated agents behaviours. The behaviour
is specified by a verifiable GDT which can be automatically translated into an
automaton allowing to obtain a validated implementation of the agent. One of
the advantages of the automaton representation is the possible use of classical
rational operations. Minimization methods [3] can also be applied. Then, the
resulting automaton can be reduced, which allows to obtain, by reverse opera-
tion, a reduced GDT (if there were intermediate goals that could be eliminated).
Moreover, the behaviour expression obtained from these behaviour automaton
can be easily and directly used whatever the MAS development platform used
is. Last but not least, behaviour automata are goal oriented. This allows us to
keep, during program progress, information about the goals of the agents.

References

1. R.H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-agent
programs. In M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors, ProMAS,
2003.

2. P. Caron and M. Flouret. From Glushkov WFAs to rational expressions. In Pro-
ceeding of DLT’2003, volume 2710 of Lecture Notes in Computer Science, pages
373–385. Springer, 2003.

3. P. Caron and M. Flouret. Glushkov construction for series: The non commutative
case. Int. J. Comput. Math., 4(80):457–472, 2003.

4. Scott A. Deloach Clint H. Sparkman and Athie L. Self. Automated derivation of
complex agent architectures from analysis specifications. In AOSE’01,Montréal,
2001.

5. K. Culik and J. Kari. Image compression using weighted finite automata. In
G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, pages
599–616. Springer, 1997.

6. S.A. Deloach, M.F. Wood, and C.H. Sparkman. Multiagent systems engineer-
ing. International Journal of Software Engineering and Knowledge Engineering,
11(3):231–258, 2001.

7. J. Ferber. Les systèmes multi-agents. InterEditions, 1995.
8. D. Fournier M.Flouret G. Simon, B. Mermet. The provable Goal Decomposition

Tree: a behaviour model of an agent. Technical report, LIH - Univ. of Le Havre,
2005.

9. L. P. Kaelbling. Goals as parallel program specifications. In Proceedings, AAAI-
88,St Paul, MN, pages 60–65, 1988.

10. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 1994.



138 G. Simon and M. Flouret

11. H-D. Burkhard M. Lötzsch, J. Bach and M. Jüngel. Designing agent behavior with
the extensible agent behavior specification language XABSL. In Springer, editor,
Proceedings RoboCup 2003, 2004.

12. B. Mermet and D. Fournier. Variant extensions to prove MAS behaviours. In
Artificial Intelligence: Methods, Systems and Applications (AIMSA’04), 2004.

13. B. Mermet, G. Simon, D. Fournier, and M. Flouret. SPACE: A method to increase
tracability in MAS Development. In Programming Multi-agent systems, volume
3067. LNAI, 2004.

14. M.B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J.Ch. Meyer. Dynamics of
declarative goals in agent programming. In Proceedings of Declarative Agent Lan-
guages and Technologies (DALT’04), 2004.

15. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Symposium on Logics In Computer Science (LICS’86), pages 332–
344, 1986.

16. R. Vincent, B. Horling, and V. Lesser. An agent infrastructure to build and eval-
uate multi-agent systems: the java agent framework and multi-agent system simu-
lator. In Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, 2001.

17. M. Winikoff, L. Padham, J. Harland, and J. Thamgarajah. Declarative & proce-
dural goals in intelligent agent systems. In Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR2002),
2003.

18. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 139 – 153, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dynamically Generated User-Specified MAS 

Glenn Jayaputera, Arkady Zaslavsky, and Seng Loke 

School of Computer Science and Software Engineeing, 
Monash University, 

900 Dandenong Road, Caulfield East, Victoria 3145, Australia 
{Glenn.Jayaputera, Arkady.Zaslavsky, 
Seng.Loke}@infotech.monash.edu.au 

Abstract. This paper presents an innovative multi-agent system development 
approach called mission-based on-demand agent generation. This approach al-
lows agents to be dynamically composed at run-time and most importantly, 
only when needed. Such an approach is different from the conventional one, 
where agents are generally composed at design time. Our model of a mission  
allows the MAS to be suspended and resumed at later stage at the same or  
different location. We present the formal model of the mission, the strategy to 
execute the mission and the architecture of the prototype system called eHer-
mes. Finally, we report the experimental results that shows that eHermes han-
dles the load satisfactorily and performs the run-time optimization well. 

1   Introduction 

Researchers and developers realize that constructing multi-agent systems (including 
the individual agents and their coordination) is generally arduous. Many agent devel-
opment tools such as ZEUS [1], JADE [2] and PAUL [3] were developed to address 
such issues. While such tools have addressed the issues to some degree, we argue that 
they are only useful for agent developers because those tools require the users to have 
detailed knowledge about agent technology. For instance, ZEUS requires the users to 
have knowledge about ontology, role modeling and coordination model before they 
can start any development. 

In this paper we present an innovative approach which not only address such re-
quirements but also introduces a new paradigm in Multi-Agent System (MAS) devel-
opment and usage. Like any software system, MAS is created to address specific 
challenge. However, unlike in conventional software system, in MAS agent develop-
ers employ (multiple) agents as the key abstraction. Agents in MAS are specifically 
created to play certain roles. For instance, in a supply-chain application domain, there 
are some agents whose roles are to maintaining the stock level, to marketing the prod-
ucts, etc. When thinking at the level of individual agents, agent developers might need 
to very much focus on and fine-tune individual agents concerns (such as how each 
agent might communicate or cooperate with another, how it might negotiate or coor-
dinate, learn, etc.), instead of focusing on the task or problem level semantics (e.g., 
the business logic, etc.) for the application. While this might be needed at times, we 
propose a different approach which: 



140 G. Jayaputera, A. Zaslavsky, and S. Loke 

1. Adds a new level of abstraction; focusing on the purpose of the application rather 
than individual agents. 

2. Emphasizes on the automatic generation of agents (as oppose to explicitly pro-
gramming them). Our mission-based on-demand agent generation approach is 
analogous to a chief architect who concentrates on the overall design as opposed 
to  wondering about who is going to do the plumbing, how good they are and so 
on. For the architect, once the design is complete a builder will be called in to 
build the house, and is not concerned with subcontractors for brick layering, 
plumbing, painting, and so on. 

In our approach, given a mission, a set of agents are dynamically created at run-
time and when they are needed to execute a task(s), thereby alleviating the need to 
think in terms of individual agents’ details. Naturally, these agents are removed from 
the system once their service is no longer needed. The on-demand agent generation 
notion was first introduced in [4] while the mission concept was introduced in [5]. 
These new notions are the results of the following observations: 

1. Many agent systems require the designer to estimate the number of agents needed 
at the design time. While such strategy is acceptable for a small system, it might 
soon become apparent that flexibility is needed due to the unpredictable nature of 
the run-time environment and the complexity of the task. Without the flexibility 
there could be a situation where there are not enough agents of the right capability 
to perform the task or even too many agents. Having inadequate number of agents 
can cause delays in reaching the goal, whilst too many agents do not necessarily 
mean that the goal can be reached faster or better results can be obtained. To use a 
classical example, having 100 plumbers to fix a broken pipe might not be any 
faster or yield better result than using only two.  

2. Agents exist are to play specific roles, hence they are specialized to those roles 
throughout their life-cycle. Specialized means fixed in functionalities, and hence, 
when the problem domain changed then they cannot be used anymore. Further-
more, if we want to use those agents in a variant of the original problem domain 
then these agents need to be substantially modified and re-tested before they can 
be re-deployed. Such situation contradict to the spirit of component-based soft-
ware engineering because we suspect that across such problem domain variations 
there would be common semantics as such that the reuse of logic and functionality 
is likely. 

3. Specialized agents are acceptable only when the run-time condition is static or 
closely matched to the presumptions made at design time. However, when they 
are not, then this will force the execution to be aborted or failures to occur. For a 
simple illustration imagine a set of agents that were developed to operate on a 
SQL-based database have been deployed. However, if the database is changed 
then the whole monolithic MAS might need to be stopped and cannot the contin-
ued until the relevant agents are modified to accommodate this change. 

Based on the observations above, we propose the mission-based on-demand agent 
generation as an alternative approach to construct MAS. Our objectives are as  
follows: 



 Dynamically Generated User-Specified MAS 141 

1. To be able to generate (the appropriate number of) agents (of the right functional-
ity) when needed, given a description of the overall purpose of the application. 
Hence, depending on the complexity of the mission, the number of agents gener-
ated (and their functionality) is varied; complex mission might require more 
agents than simple ones. 

2. To minimize the chance of aborting the mission execution unnecessarily. If the 
environmental conditions have changed during execution and the available agents 
are not suitable, then the execution should not be completely aborted, rather con-
tinued by generating the appropriate agents to replace the unsuitable ones (i.e., 
when there is an error, we avoid returning to the full cycle of code, compile, test 
and deploy). Also, the plan should be modifiable at run-time. 

3. To be able to maintain the state and data of the mission so that it can be suspended 
and resumed at later stage as well as moved to different location at any time. Fur-
thermore, by maintaining the execution history; the planner can use such knowl-
edge in future planning. 

The rest of this paper is divided into the following sections. Section 2 presents the 
theoretical work on the mission in particular its formal definition and the optimization 
strategy the system uses at run-time. Section 3 illustrates the implementation of our 
prototype system called eHermes and discusses time complexity of mission execution. 
Section 4 shows the experimental results, demonstrating the feasibility of our ap-
proach. Finally the conclusion and future work is presented in Section 5. 

2   Mission: The Starting Point 

Agents are created because they are needed to perform some actions; hence they have 
a “mission” to do. As well as the on-demand agent generation concept, Mission is one 
of the corner-stones of our approach. A mission exists if there is a goal and optionally 
a (partial) plan on how to achieve the goal. Given a mission, a set of agents (mobile 
and/or stationary) are created to work on the mission. 

During the mission execution, the system monitors the number of tasks in hand and 
the number of available agents. Agents are created only when required and subse-
quently removed when they are not. This scalability is to ensure that there are no 
“jobless” agents in the system, either because of (i) lack of tasks to do, or (ii) waiting 
for a resource(s) to become available. The mission is modeled as a tuple of the form 

( , , , )M o P A Z= , where o is goal of the mission as in string, P is a set of plans, A is a 

set of mobile and/or stationary agents working on the mission and finally, Z is a set of 
mission states. 

Given a mission, the agents work to achieve the goal o based on the current plan p 
where p P∈ . Hence, p sets out the tasks that need to be executed. A task is defined 

as a tuple of the form ( , , , , )u n y s o , where: 

 u U∈ , where U is a set of unique IDs, 
 n N∈ , where N is a set of locations at which tasks are executed, 
 y Y∈ , where Y={primitive, compound} denotes the set of task types, 



142 G. Jayaputera, A. Zaslavsky, and S. Loke 

 s S∈ , where S={completed, pending, inprogress, failed, aborted, assigned} 
denotes the task status, 

 o O∈ , where O is a set of functions and/or logic calculations that must be per-
formed. 

From the definition above, there are two types of task, they are: primitive and com-
pound. The primitive type is used to indicate that the task is the lowest level of task 
and hence cannot be decomposed further. Primitive tasks are directly executable. The 
compound type is used to indicate that (i) the task is complex and comprises of sev-
eral compound and/or primitive sub-tasks, and (ii) the task may contain complex 
operational constructs. Each task has a status and this status represent the status of 
that task at any given point in time. For instance, the completed tag is used to indicate 
that the task has successfully executed, the pending tag indicates the task has not been 
executed and is waiting to be assigned to an agent, the inprogress tag indicates that 
the task is in the middle of execution, the failed tag indicates that the task has failed, 
the aborted tag indicates that the task has been aborted (but not failed) and finally the 
assigned tag indicates that the task has been allocated to an agent that is yet to start 
executing. Hence, as the tasks are executed their statuses are changed. 

 Tasks are interrelated to each other and they are represented by links. Links has 
two purposes, they are: (i) to convey the task decomposition structure information and 
(ii) to set the priori between the tasks (partial ordering). A link in a TDG is defined as 
a tuple of the form ( , , ) where , , ,i jt t q t T i j q Q+ +∈ ∈ ∈ ∈  and Q={includes, de-

pendson} is a set of link attributes. The includes attribute is used to capture the inclu-
sion relationship between tasks. The dependson attribute is used to describe the  
dependency between tasks. For instance, a tuple ( , , )a bt t dependson means that at  

depends on bt and hence bt  must be executed and completed first before at can start. 

This relationship dictates the dependencies between tasks in the plan and must be 
honored during execution. 

A plan is represented in a DAG-based structure called Task Decomposition Graph 
(TDG) which is formally defined as follows: 

Given a function :typef T Y→ which returns the type of a given task, a TDG is 

a pair ( , )TDG T L= where T is a non-empty set of tasks, L is a non-empty set 

of links and has the following properties: 
(i) ( , , ) ,   s.t.  ( )i j type it t q L f t primitive∀ ∈ ≠  

(ii) ( , , )  s.t. if  then ( )i j type it t q L q includes f t compound∀ ∈ = =  

(iii) ( , , )  s.t. if  ( )  then ( , , ')i j type j j kt t q L f t compound t t q L∀ ∈ = ∃ ∈  

where , , , , 'i j kt t t T q q Q∈ ∈  and , ,i j k +∈ . 

(1) 

The first property specifies that a primitive task cannot be a source node and hence 
primitive tasks are always at the leaf nodes. This property also specifies that a primi-
tive task cannot depend on any other tasks. The second property specifies that when 
the link is an includes link then the source node must be a compound task, hence it 



 Dynamically Generated User-Specified MAS 143 

indirectly specifies that a primitive task cannot be decomposed further. The third 
property specifies that a compound task cannot be at the leaf node. 

When a mission is executed, the system actually executes the current plan specified 
within the mission.  

Given a function :statusf T S→ which reports the status of a given task, a mis-

sion if said to be accomplished if all the tasks in the mission has been com-
pleted or aborted, and hence: 

 s.t. ( ) ( )status statust T f t completed f t aborted∀ ∈ = ∨ =  

(2) 

A TDG can be potentially large in size; hence it is necessary to avoid exhaustive 
graph searching each time the system tries to find the next batch of tasks to be carried 
out. To answer this challenge we put the following policies: 

 Only executes the primitive tasks. 
 Disallow dependencies between primitive tasks as imposed by the TDG’s 

property. 
 Convert a compound task into a primitive according to the following rule: 

A compound task ( , , , , )t u n Compound s o= can be converted into a 

primitive task if and only if all task t’s sub-tasks are completed or 
aborted, and hence: 

{( , , ) | }

( , , )  s.t. ( ) ( )
c j k j i

j k c status k status k

L t t q L t t

t t q L f t completed f t aborted

= ∈ =

∀ ∈ = ∨ =
 

(3) 

Run-time mission execution support is regarded as another key issue that must be 
address in order to increase the possibility to successfully carry out a mission. In our 
approach the supports provided include the mechanisms where data exchange can be 
carried out, the state and data of the mission are captured and maintained for later use 
and finally the mechanism to change the plan at run-time efficiently. 

When the tasks are executed, they may or may not produce results/output. Subse-
quently, these results may or may not be required by other agents. Acknowledging 
this condition, we design a placeholder for the agents to exchange data and call this 
placeholder Mission Data Space (MDS). The idea behind MDS is similar to that of 
JavaSpace™ except MDS is local to a mission. MDS is made local to a mission be-
cause: (i) MDS contains intermediate results and hence they should be exposed, (ii) 
localizing MDS means smaller size and hence easier to manage, and finally, (iii) secu-
rity concern, we cannot permit agents from other systems or missions looking at the 
MDS of another mission. MDS is formally defined as follows: 

Mission Data Space (MDS) is a set of tuples of the form ( , , )t su r t  where tu is a 

unique ID of task t T∈ , r R∈ and R is a set of results/output, and finally st is 

the timestamp at which r was produced. 

(4) 

Besides identifying the importance of having a space for the agents to exchange 
their data, we also recognize the significance of capturing and preserving the mission 



144 G. Jayaputera, A. Zaslavsky, and S. Loke 

execution history. In our concept, preserving the mission execution history means 
maintaining the state and data of the mission. Hence, the structure of the plan and the 
state and data of the tasks have to be captured. The benefits of capturing the execution 
history are: (i) the ability to suspend and resume the mission execution at the same or 
a different location, and (ii) execution history provides valuable knowledge for the 
mission planner to use in its learning process so that it can generate better plans in the 
future. The formal definition of the mission state is defined as follows 

Let { ', '', ''',...}E e e e= be the finite set of events that can trigger transitions and 

1 2{ , ,...}MS ms ms= be a set of mission states, then a mission execution ME is a 

sequence of interleaved mission states and events such that: 
' '' '''

1 2 3: ...e e eME ms ms ms⎯⎯→ ⎯⎯→ ⎯⎯→ . 

A mission state z Z∈  is a snapshot of the state and data of the mission, and is 
defined as a tuple of the form (p, mds, e, st ) where p P∈ is the current plan, 

mds MDS∈ is the snapshot of the MDS, e E∈ is the event that trigger the state 
transition, E={Suspend, Stop, Resume, Start, ChangePlan} and finally st  is the 

timestamp at which the mission state is generated. 

(5) 

It is important and crucial for a mission to have the ability to modify its plan at 
run-time. This is because the plan can be partially complete initially or only repre-
sents the best plan that a planner can produce at a point in time. There is no absolute 
guarantee in general that, at the point of creation, the plan can succeed when exe-
cuted. The success or failure of the plan can only be determined when it is executed. 
Providing alternative plans before run-time also does not necessarily solve the prob-
lem because there is a possibility that none of those plans can succeed. Furthermore, 
carrying those alternative plans can be impractical due the size of each plan can be 
quite big. Our approach to address this issue is to modify the plan dynamically at run-
time.  

Modifying a plan can be a complex task if the representation model itself is com-
plex. Hence it is important (for our purpose) to have a lightweight, simple and dy-
namic plan representation. Since TDG is a DAG, modifying it is a simple operation of 
adding and/or deleting nodes and/or links. The operation of modifying the TDG is 
formally specified as follows: 

Let T Lδ δΔ = ∪ be a set of tasks and nodes to be added/removed from the a 

plan p=(T,L), where Tδ is a non-empty set of tasks that need to be added/re-

moved from p and Lδ is a non-empty set of links that need to be 

added/removed from p. Then Δ  can be easily applied to p with the following 
operations 

( ) \ ( )

( ) \ ( )
T T

L L

T T

L L

δ δ
δ δ

∪ ∩
∪ ∩

 

(6) 

As previously mentioned, only primitive tasks are executed. Given a current plan 
p=(T,L), a group of primitive tasks is called stratum and is formally defined as: 

{ | ( ) ( ) }type statusST t T f t primitive f t pending= ∈ = ∧ =  (7) 



 Dynamically Generated User-Specified MAS 145 

A stratum is not the same as the leveling concept that can be found in general graph 
theory where the depth of a node is used as to determine its level. Figure 1 shows the 
difference between the level and stratum.  

 

Fig. 1. The difference between graph level and strata. The first stratum is 

1 { , , , , , , , }ST X Y T U V W S R= . Assuming that all the tasks in 1ST are completed, then the second 

stratum is 2 { , , }ST B E F= . Note that, task D was not included in 2ST because it depends on task E. 

The subsequent strata are: 3 4 5{ }, { }, { }ST D ST C ST A= = = .  

Tasks are not executed directly by the system but rather through a set of agents. 
Depending on the location at which the task must be executed, mobile/stationary 
agents are created accordingly. The easiest and perhaps a naive approach is to create 
an agent for each of the task in the TDG. However, such a simplistic approach is too 
expensive to be used because it represents the worst case scenario where the total 
number of agents created will be equal to T , the total number of tasks in the current 

plan. In search for a better alternative, we decided to add some intelligence to the 
agent that controls the execution of the mission so that it can determine the cost and 
benefit of creating agents. Equipped with this capability, the controlling agent will try 
to minimize the cost of executing the mission without compromising the goal of the 
mission itself. Let the cost for executing a task be the cost for creating an agent to 
carry out the task plus the cost for executing the task, defined as follows: 

( ) ( ( )) ( ( ))cost cost costf t f createAgent t f exec t= +  (8) 

Given a mission, then the cost for executing that mission can be easily defined as: 

| |

1
( ) , where 

T

cost i i
i

f t t T
=

∀ ∈  (9) 

A Critical Time (CT) of a mission is defined as the minimum amount of time re-
quired to complete the mission. Similarly the CT of a stratum is the minimum amount 
of time required to complete all the tasks in that stratum. We assume that the cost for 
executing a task is the same everywhere, ignoring the computing power and locality 
of the host. Hence, due to this assumption, the ( ( ))costf exec t of definition (7) above 

will become constant and thus ignored. This means that the cost of mission execution 
can be reduced by minimizing the number of agents generated. However, the reduc-
tion of the number of agents for a mission must be done adequately so that the  



146 G. Jayaputera, A. Zaslavsky, and S. Loke 

mission completion time is not affected for, otherwise, we will end up with the situa-
tion where the benefit is also reduced as we reduce cost. 

The tasks in a stratum are executed concurrently. Given ( )  where f t t T+
Θ = ∈ , a 

function that returns the elapsed time for task t execution, then the CT of stratum 

iST is max{ ( ) | , , }
iST j j iCT f t t ST i j +

Θ= ∈ ∈ . In other words, the CT of iST is the 

maximum amount of elapsed time of all the tasks in iST . The system executes the 

strata in a total order fashion, that is 1iST + cannot be started until iST has completed, 

therefore the agent reduction must be carried out at the strata level as well. The num-
ber of agents generated can be reduced by allocating as many tasks as possible to each 
individual agents providing that their elapsed time does not exceed the critical time of 
the relevant stratum, that is: 

1
( )  where , , ,

i

n

j ST i j i
j

f t CT n ST t ST i j +
Θ

=
≤ = ∈ ∈  (10) 

Optimizing task allocation to the agents is an off-line bin packing problem and 
hence finding the optimal solutions to this problem would be NP-Hard. However, 
there are a number of near optimal solutions have been proposed and one of the best 
ones is FFD (First-Fit Decreasing) [6]. Using FFD algorithm, the tasks in each stra-
tum are sorted in decreasing order according to their fΘ values. Hence, the task that 

needs the longest time to complete will be the first and the shortest will be last. The 
size of the bin is then the value of fΘ of the first task ( 1( )f tΘ ). The tasks from this 

stratum are then grouped into clusters where the sum of fΘ of each clusters is less 

than or equal to 1( )f tΘ . Given n as the total number of items to be bin-packed, FFD 

can be easily implemented in ( log )O n n time [6]. 

3   eHermes: The Generator  

eHermes is the prototype system that implements the concepts previously described. 
Its architecture is shown in Figure 2. Requests that are coming to the eHermes system 
are first handled by the mission generator. The mission generator is in charge of creat-
ing a mission object. This includes interpreting the request and converting it into a 
form that the mission planner can understand and finally wrapping the output from the 
planner into an object. The mission planner is the module which is in charge of gener-
ating the plan for a given request. Finding the best planning algorithm is beyond the 
scope of our project, however, we noted that a HTN-based planner [7] can accommo-
date such requirement. 

During planning, the planner checks for the existing plans in the mission reposi-
tory, and will utilize any similar plan if exists. The planner also uses domain knowl-
edge from the ontology in order to avoid misinterpretation of the request. Once the 
planner has completed its task, it sends the plan it has just created to the mission gen-
erator. Then, the mission generator constructs a mission object from this plan. At this 
point, it is said that the mission is ready to be carried out. 



 Dynamically Generated User-Specified MAS 147 

 

Fig. 2. eHermes Architecture. The Mission Generator, Mission Planner, Agent Generator and 
Elvin are the four main components of eHermes. 

The mission object is passed on to the agent generator, the module which in charge 
of generating agents on the fly. The first thing the agent generator would perform 
upon receiving the mission object is to create a special agent called the Mission Con-
trol Agent (MCA). The main task of the MCA is to manage the mission execution and 
liaise with the actor. The MCA keeps the actor up to date with the mission execution 
status all the time. The actor can control the state of the mission execution via the 
MCA. For instance, if the mission needs to be stopped, then the actor instructs the 
MCA to stop the execution. In fact, from the actor’s point of view, there is only a 
single agent (i.e. the MCA) works on the mission 

When executing the mission, the MCA executes the tasks specified in the TDG in 
the stratum by stratum fashion as explained previously. The MCA does not execute 
the task by itself, but rather relies on the assistance from a set of agents which are 
dynamically created. Tasks within each stratum are analyzed by the MCA. The cost 
and benefit of assigning them to an agent are calculated as specified according to rule 
(6) in the previous section. Once the task clustering is done, the task clusters are sent 
to the agent generator along with the specification of each agent which will be used to 
create those agents. During the construction, the agent generator uses the available 
agent component from the Agent Component Repository (ACR). Each of the agents 
created (including the MCA) has a unique ID (UID), which is sent back to the MCA. 
This UID is crucial because it is used for the communication between them. Once the 
agents are created, the MCA sends a command to them to start executing the task(s) 
that have been assigned. The MCA does not instruct nor control the agents where to 
go or what task to perform first but rather lets those agents use their ability to decide 
and make the move themselves. In many instances, the mobile agents are hopping 
from one location to another and execute the tasks at each location. During this execu-
tion, the agents keep in touch with the MCA about their activities and location. For 
instance, if one of the tasks has failed to execute the agent sends a message to the 
MCA which then will make a decision either to change that task to something else or 
inform the actor about the situation. If the mission needs to be modified then the sim-
ple set operations explained previously will be employed. 



148 G. Jayaputera, A. Zaslavsky, and S. Loke 

In eHermes, agents communicate via messages as opposed to having a speech act 
dialogue amongst them. This is designed in such away because we must take into 
account that some mobile agents are moving to and from wireless networks which are 
not so reliable for long data transmissions. Hence, a quick and reliable messaging 
service is required. eHermes uses Elvin [8] as the backbone to provide the messaging 
service. Elvin is a fast content based messaging system that can meet our require-
ments. All the worker agents send messages throughout their life cycle to the MCA. 
For instance, before they move, after their arrival, before task execution, after the task 
has completed or failed. At any time, the MCA knows which agent is performing 
what task(s). All the worker agents, regardless their mobility, have the same level of 
authority and hence it is not possible for any of them to request one to another to do 
anything. 

The MCA must be able to coordinate working agents, perform cost/benefit analysis 
and make decisions on when to create agents as quickly as possible and hence its 
algorithm must be efficient. Table 1 shows MCA’s algorithm.  

Table 1. The MCA algorithm 

 

Once created the MCA begins its activity by creating a stratum. In Table 1, [A] de-
notes a set of tasks in the current plan, [B] is a stratum and [C] is a set of task-
clusters. Lines 2-4 are used to create a stratum. Tasks that are primitive and pending 
are collected and put into [B]. If [B] is not empty, then the execution is continued by 
sorting the content of [B] using Quicksort, and then performs FFD bin-packing rou-
tine over the sorted [B]. The bin packing routine produces a set of task clusters which 
are then stored into [C]. From here on, the MCA calls createAgent() repeatedly to 
create an agent for each cluster. Once those agents are ready, they will be instructed to 
start the execution by executing the sendCommand(). The notation on the right hand 
column of the table denotes the time (T(n)) taken to execute the related line of codes, 

where n is the number of tasks in [A]. Constants ,ci i +∈ denote the costs for execut-
ing lines of code, e.g. c1, c2, c3, etc. Note, from lines 2-4, [ ] [ ]B A⊆ , and since m 



 Dynamically Generated User-Specified MAS 149 

denotes the number of tasks in [B] and n denotes the number of tasks in [A], then 
m n≤ . Using a similar explanation, we get [ ] [ ]C B⊆  and p m≤ . It should be noted 

that, in our implementation, we have a generic agent class which we simply load at 
run-time when createAgent() is called, hence the time complexity of lines 15 is sim-
ply c6p. Similar explanation goes to line 16. The total amount time to execute the 
algorithm in Table 1 is then: 

( ) 1 2 3 4 ( log ) ( log ) 5 6 7T n c n c n c n c O m m O m m c p c p c p= + + + + + + + +  

Since m n≤ and p m≤ , and in the worst scenario, p m= and m n= , hence p n= . 

Therefore, after removing the constants, insignificant values, and substituting m and p 
to n, the average complexity time of our algorithm is ( log )O n n . In the worst sce-

nario, Quicksort’s complexity time becomes 2( )O n , which also pushes our complex-

ity time to 2( )O n . 

Figure 3 shows a screenshot of the eHermes client. The top right-hand side window 
shows the TDG structure being executed. Compound tasks are represented by circle 
and primitive tasks are by rectangles. The color of these tasks represents their status 
visually. When status of a task is pending then it will be painted in white. The green 
color is to illustrate that the task has been completed successfully, yellow color to 
indicate that the task is being performed and finally red to represent that that task has 
failed. The top left-hand side window lists the tasks and links of the TDG. By clicking  
 

 

Fig. 3. The eHermes client screen snapshot. The square nodes represent the primitive tasks 
while the round nodes represent the compound tasks. The top left-hand side window shows the 
structural details of a mission. Clicking any of the items in this window will make the bottom 
left-hand window to display the details of that item.  Finally, the bottom right-hand side win-
dow shows the log of the mission execution. 



150 G. Jayaputera, A. Zaslavsky, and S. Loke 

any of these items make the bottom left-hand side window to change its contents 
because this window shows the details of any highlighted task or link. The last win-
dow, the bottom right-hand window, shows the log of all the activities. 

4   Experimental Results  

The results of the experiments that have been conducted are reported in this section. 
The experiments were carried out on Pentium™ based machines running Microsoft™ 
Windows XP. Each machine has 512Mbytes of RAM and is connected through a 
10/100 Mbps LAN with typical university loads. We use a Linux machine to host the 
Elvin message routing server and Grasshopper’s Region Registry. The Region Regis-
try is a directory service; it maintains the information of all the running agents. 

Figure 4a shows the average performance of the system when the depth of the 
TDG and the number of tasks in the TDG increase. We set up a test case where the 
number of tasks in each level of the TDG is equivalent to ln  where n is the number of 
child nodes each parent node have and l is the level number (counting from level 0 or 
the root). In this experiment, we use n=4 and l=0,...6. Hence, when l=6, the total 
number of tasks in the TDG is 5,461.  

In the first experiment, we test how eHermes handles the load when it is given mis-
sions with various kinds of plan complexity. The simple plan consists of only five 
tasks while the most complex one contains 5,461 tasks. In this test we turn off the 
optimization strategy, thus we assign one task per agent. We calculate the average 
execution time by dividing the mission elapsed time with the number of agents gener-
ated. The results are shown in Figure 4a. From this figure, the average execution time 
is 1.4 seconds when the number of agents is 5, 0.95 seconds when the number of 
agents is 21 and so on. The result of this experiment is encouraging, in that the aver-
age execution time is not exponentially increased when the number of agents is in-
creased. This shows that eHermes handles the agent generation load quite well. 

In the second experiment, we test the performance of the optimization concept we 
presented earlier. In this experiment, we are interested to study the actual performance 
of the concept with respect to the number of agents it can reduce and if the mission 
elapsed time is significantly affected by the reduction. In this experiment the same 
mission is run 18 times. In the first run, the MCA simply creates one agent per task 
since it does not have any knowledge about the elapsed time of each task. In the sub-
sequent runs, the MCA is able to predict the critical time of each task by averaging 
their previous elapsed times. Equipped with this knowledge, the MCA is able to per-
form the cost and benefit analysis each time it needs to create an agent. Figure 4b 
shows that in the first run there are 55 agents created. The number of agents is signifi-
cantly reduced in the subsequent runs. For instance, in the second run the number of 
agents created is 37, and 38 in the third run, etc. From these results, it can be con-
cluded that the optimization concept works well in reducing the number of agents 
needed to accomplish a mission. In this experiment, we have obtained as much as 
40% agent reduction (run number 14). The graph in Figure 4b also shows the trend 
that after a number of runs the agent count cannot be reduced anymore. 



 Dynamically Generated User-Specified MAS 151 

Average Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 21 85 341 1365 5461

Agent Count

T
im

e(
S

ec
)

Agent Reduction Count

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Run Number

A
g

en
t 

C
o

u
n

t

Mission Elapsed Time

79.5

80

80.5

81

81.5

82

82.5

83

83.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Run Number

E
la

p
se

d
 T

im
e 

(S
ec

)

 

Fig. 4. The graphs that show the experimental results. The average execution time is shown in 
(a) while (b) shows the result of the cost/benefit analysis being applied. 

While it has been demonstrated that the optimization concept can reduce the num-
ber of agents, we must also be ensured that the reduction does not affect the mission 
elapsed time significantly. Certainly it is not enviable to have a situation where the 
mission suddenly takes longer than anticipated although the cost to run it is cheaper. 
Therefore, for each of the run we conducted in this experiment, we also measured  
the elapsed time. The results are plotted as shown in Figure 4c. In the first run, where 
the optimization is not performed, it takes approximately 83 seconds to complete the 
mission. The graph in Figure 4c shows that the elapsed times of the subsequent runs 
are around the same as the first run. The best result obtained is on run number 14 
where with the number of agent is reduced by 40%, yet the elapsed time is the same 
as there is no reduction at all. This experiments shows that the Cost/Benefit approach 
used in the optimization concept works well. 

5   Conclusion and Future Work 

We have presented the approach to dynamically generating agents from a mission. 
The notion of on-demand agent generation, the formal model of the mission, the  
prototype tool and experimental results are presented. Different from the traditional 
approach to creating MASs; we emphasize the dynamic and on-demand agent genera-
tion at run-time. The benefits of our approach are: 



152 G. Jayaputera, A. Zaslavsky, and S. Loke 

1. Agents as determined by run-time needs of the mission. There is no need to pre-
sume the number or functionality of agents needed to perform a mission. 

2.  Integrated run-time adaptivity and robustness. Our approach does not only re-
duce the stress on system resources but also contributes toward the success of the 
mission by having the ability to substitute the incapable agent(s) with the capable 
one(s) dynamically at run-time. 

3. High level of abstraction in thinking about MAS. Our model of the mission pro-
vides separation between the goal that needs to be achieved and the apparatus/tool 
(i.e. the agents) to achieve the goal. The user of eHermes can think in terms of 
missions, and have it accomplished without being an agent expert. 

We have assumed that the planner can generate plans within a reasonable time. It is 
beyond the scope of this paper to find the best algorithm to do so. The MCA uses the 
cost/benefit analysis in establishing a tactical strategy to execute the plan. The MCA 
always tries to minimize the cost by reducing the number of agents created while 
ensuring that the reduction does not affect the mission’s elapsed time too much. Fu-
ture work includes: 

1. A new tactical strategy on agent removal. It has been identified that it is desirable 
for the system not to destroy any agents once they have completed their assign-
ment(s), rather to reuse them for different assignment(s). These agents will be 
given a new assignment(s) and skill-set(s) for them to complete the new assign-
ment(s). In addition, a research on the possibility not to replace the incapable 
agents but to dynamically load them with a new set of skills so they can complete 
the task(s) is needed. 

2. The size of the TDG can potentially be large and hence it might be necessary to 
split it into several smaller sub-TDGs. The MCA then clones itself and assigns 
each clone with the sub-TDG. Research must be conducted to determine when the 
main MCA should clone itself and create sub-TDGs. 

3. Using the average value of previous elapsed times is not too suitable to be used to 
estimate the critical time and hence other methods must be explored further. 

Acknowledgements 

Support from the ARC Linkage Grant LPO211384 and Microsoft Research Asia is 
thankfully acknowledged. 

References 

1. Nwana, H.S., et al. ZEUS: A Toolkit and Approach for Building Distributed Multi-Agent 
Systems. in 3rd International Conference on Autonomous Agents (Agents '99). 1999. Seattle, 
USA: ACM Press. 

2. Bellifemine, F., et al., JADE - A White Paper. TILAB EXP, 2003. 3(3): p. 6-19. 
3. Ehrler, L. and S. Cranefield. Executing Agent UML Diagrams. in 3rd International Joint 

Conference on Autonomous Agents & Multi Agent Systems. 2004. New York, USA: ACM 
Publishing. 



 Dynamically Generated User-Specified MAS 153 

4. Jayaputera, G.T., et al. Assembling Agents On-Demand for Pervasive Wireless Services. in 
2nd International Workshop on Wireless Information Services (WIS 2003). 2003. Angers-
France: ICEIS Press. 

5. Jayaputera, G.T., S.W. Loke, and A. Zaslavsky. Mission Impossible? Automatically Assem-
bling Agents from High-Level Task Descriptions. in The 2003 IEEE/WIC International  
Conference on Intelligent Agent Technology (IAT 2003). 2003. Halifax, Canada: IEEE 
Computer Society. 

6. Martello, S. and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. 
1990: John Wiley & Sons. 

7. Russell, S.J. and P. Norvig, Artificial Intelligence: A Modern Approach. 1995: Prentice 
Hall. 

8. Segall, B., et al. Content Based Routing with Elvin4. in Australian UNIX and Open Systems 
User Group Conference 2000 (AUUG 2000). 2000. Canberra Australia. 



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 154 – 166, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Supporting the Development of Multi-agent  
Interactions Via Roles 

Giacomo Cabri, Luca Ferrari, and Letizia Leonardi 

Dipartimento di Ingegneria dell’Informazione - Università di Modena e Reggio Emilia, 
Via Vignolese, 905 – 41100 Modena – Italy 

{cabri.giacomo, ferrari.luca, leonardi.letizia}@unimo.it 

Abstract. In the multi-agent scenario, interaction among agents is an issue that 
must be faced in an appropriate way. Modeling interactions by roles can 
simplify the development of the interactions in agent-based applications. The 
BRAIN framework proposes an interaction model based on roles, an XML 
notation to define roles, and interaction infrastructures based on the role model 
and notation. In this paper we explain how the BRAIN framework can be 
exploited in the different phases of the development of applications where 
agents play roles. The general advantage is that the development phases rely on 
the same information, adapted to different needs, granting coherence and 
continuity during the development. 

1   Introduction 

Multi-agent systems are gaining more and more ground in the development of 
complex applications [2]. The advent of agents raised the problem of dealing with 
interactions either in a cooperation or a competition way. In fact, one of the main 
features of agents is sociality, i.e., the capability of interacting with each other. This 
feature is exploited in Multi Agent Systems, where the main task is divided into small 
tasks, each one delegated to a single agent; agents belonging to the same application 
have to interact in order to carry out the main task [13]. Moreover, the diffusion of 
open systems, such as the Internet, has led to a scenario in which not only agents of 
the same application interact in a cooperative way, but also agents of different 
applications may interact in a competitive way, for example to use resources. The 
feature of mobility, which allows agents to change their execution environment, adds 
great flexibility at both conceptual and implementation levels, but also introduces 
peculiar issues in interaction that must be taken into account carefully [12]. 

Interactions are not an exclusive field of agent technology, and in fact, since the 
rising of distributed systems, interaction among entities has been an issue to be faced. 
Different approaches have been proposed, among which the most popular is message-
passing [11, 22]; it enables the exchange of messages among entities, and it is simple 
and suits a wide range of application requirements. Another interaction approach that 
is worth being mentioned is Linda [1], which is based on an uncoupled coordination 
model and relies on shared dataspaces. 

The above traditional approaches have been ported to the agent scenario [8], 
creating the “meeting point” abstractions [23], event-channels [3], and reactive tuple 



 Supporting the Development of Multi-agent Interactions Via Roles 155 

spaces [9]. Further approaches have been proposed, like the one adopted in Agentis 
[16], which models interactions in terms of services and tasks; such approach clearly 
points out the need of tailoring interactions on agent features.  

In fact, approaches to agent interactions usually derive from adaptations of 
traditional models related to distributed systems, so they do not fit all the 
characteristics of the new scenario. Moreover, it is important to provide developers 
with appropriate tools to represent interactions and the way they happen [20, 19]. 

Recognizing the limitations of the traditional approaches, we have proposed 
BRAIN, a framework to deal with agent interactions based on roles. There are 
different advantages in modeling interaction by roles. First, it enables the separation 
of concerns between the algorithmic issues and the interaction issues in developing 
agent-based applications. Second, it permits the reuse of solutions and experiences; in 
fact, roles are related to a context (i.e., an execution environment), and designers can 
exploit previously defined roles for the context their application belongs; therefore 
roles can be seen as a sort of design patterns [2]: a set of related roles along with the 
definition of the way they interact can be considered as a solution to a well-defined 
problem, and reused in different similar situations. Finally, roles can be exploited to 
easily build agent-oriented interfaces of Internet sites [10]: in fact, roles can be bound 
to a specific site implementation and agents can exploit services of such site by 
assuming its roles. 

The paper is organized as follows. Section 2 glances at the BRAIN framework, 
while section 3 explains how this framework can be exploited during the phases of the 
development process. Section 4 shows a simple example of application; section 5 
reports some related work; and finally section 6 concludes the paper. 

2   BRAIN 

The BRAIN (Behavioural Roles for Agent INteractions) framework [5, 6] is based on 
the concept of role and aims at covering the agent-based application development at 
different phases. To this purpose, it provides for a model of interactions that is based 
on roles, an XML-based notation to describe the roles, and interaction infrastructures 
supporting agents in the management of roles. Such infrastructures are based on the 
adopted model and rely on the defined XML notation (see Fig. 1).  

 

XML-based notation 

Role-based interaction model 

BRAIN framework

Interaction 
infrastructure  

(implementation A)

Interaction 
infrastructure  

(implementation B)
…

 

Fig. 1. The BRAIN framework 



156 G. Cabri, L. Ferrari, and L. Leonardi 

It is important to note that, since this framework is made by three layered levels, it 
can be easily adapted to different application scenarios and can evolve keeping a good 
modularity. For example, as shown in Fig. 1, BRAIN can support several interaction 
infrastructures, running under the same XML notation and role model. Moreover, 
thanks to its layered organization, the BRAIN framework is able to support the 
development of applications at all the main phases (i.e., analysis, design, 
implementation) and the runtime execution.  

2.1   Role Model 

In BRAIN, a role is defined as a set of capabilities and an expected behavior. The 
former is a set of actions that an agent playing such role can perform to achieve its 
task. The latter is a set of events that an agent is expected to manage in order to 
“behave” as requested by the role it plays. Interactions among agents are then 
represented by couples (action, event), which are dealt with by the underlying 
interaction system, part of the BRAIN infrastructure. Fig. 2 shows how an interaction 
between two agents occurs. This model of interactions is very simple and general, and 
well suits the main features of the agents: the actions can be seen as the concrete 
representation of agent proactiveness (i.e., the capability of carrying out their goals), 
while the events reify the agent reactivity (i.e., the capability of reacting to 
environment changes). 

 

Fig. 2. The Interaction model in BRAIN 

The role model proposed by BRAIN is flexible and dynamic, and in fact it must be 
noted that an agent is not tied to an unique role, but it can assume/release several roles 
during its entire life. Moreover, the same agent can play different roles at the same 
time, if it makes sense for the context/application it is running within. 

The fact that agents can assume and release roles at run-time enforces the dynamic 
behavior of the BRAIN role model, since it is not statically defined. This means that 
designers and developers are not forced to statically bind agents and roles, leaving to 
agents the capability to change their roles whenever it is needed. Of course, this 
requires that agents are smart enough to recognize and choose the most appropriate 
role for its current aim(s). The XML notation adopted by BRAIN can be very useful 
to select roles, leading to a semi-structured, easy to analyze, semantically based way 
to describe roles and their characteristics. 

The BRAIN role model states that an agent can be recognized by the role(s) it  
is playing, that means, it must be possible to identify an agent through the role it is 
playing. This is important due to two facts: (i) an agent can change the role it is playing 



 Supporting the Development of Multi-agent Interactions Via Roles 157 

dynamically, thus the agent/role mapping evolves and changes during the application 
life, (ii) since roles are used to model interactions, it is important that roles involved in 
the same interaction agree on the communication protocol, that means they must have 
been designed the one with regard to the others. 

Due to this characteristic of the BRAIN role model other agents can search for and 
discover an agent playing a specific role(s) and thus providing specific capabilities 
and services. 

2.2   XRole 

The main aim of XRole is to support the management of the interactions among 
agents, at the different phases of the development of agent-based applications. XRole 
adopts the model of role of BRAIN, based on actions and events (see Fig. 2), 
exploiting the XML language. 

XML, representing information in a tagged form, exhibits the well-appreciated 
feature of human-readability and platform-independence required for the Internet. 
This allows a high degree of interoperability and helps in dealing heterogeneous 
situations such as the ones of the Internet. In fact, the description of each role can be 
presented to people via an appropriate XSL sheet that transforms the information in a 
human-understandable document, for instance an HTML page with the needed pieces 
of information. This makes designers aware about the roles defined in a given context, 
and let them choose the representation of the information that better suits their 
requirements. In addition, programmers can exploit automatic tools to search for roles 
matching given keywords and which present the found results in a tailored way. A 
further advantage of XRole is that documents can be managed also by the agents 
themselves, which can be enabled to understand the content of XML documents and 
exploit or manipulate them without the need of the intervention of human people.  

In XRole, roles are defined by XML documents that respect a specific XML 
schema [5]. The XML Schema for roles presents three main parts that have to be 
specified in the definition of a role, following the above-described model: 

• The basic information. This part includes the pieces of information that are used to 
identify the role, and to specify a context for such role. Moreover, a high-level 
description and some keywords are supplied to let developers better understand the 
role functionalities. 

• The allowed actions. Each role defines which the allowed actions are, i.e. the 
actions needed to carry out a task related to such role. An action is characterized by 
a name and a high-level description that can be useful for developers.  

• The recognized events. These are events that the agent playing this role is expected 
to accept and manage. An event is characterized by a name and a high-level 
description that is useful to developers.  

Fig. 3 shows an example of an XRole document for a game player role (see 
section 4 for further details), a role assumed by an agent that wants to participate to a 
gaming session. The description of the role, included between the 
<GenericRoleDescription> tags, includes a few information about the role (basic 
information) such as a description, the role name, the keywords, etc. Following that, it 
is possible to note the description of the askKind action (tag <OperationDescription>), 



158 G. Cabri, L. Ferrari, and L. Leonardi 

which in particular allows the agent to ask to the game manager what kind of game is 
currently running. This operation will produce an incoming event (notifyKind), 
described in the <EventDescriptor> tags, that the agent should handle, since it represents 
the reply to the above question. 

<?xml version='1.0'?> 
<role xmlns="http://agentgroup.unimo.it/schema/BRAINSchema" 
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
   xsi:SchemaLocation="http://agentgroup.unimo.it/schema/BRAINSchema" > 
 <GenericRoleDescription> 
 <description>Game Player Role</description> 
 <roleName>player</roleName> 
 <!-- data useful to identify this role --> 
 <keyword>game</keyword> 
 <keyword>player</keyword> 
 <keyword>make moves</keyword> 
 <version>1</version> 
 <!--  an operation of this role --> 
 <OperationDescription> 
   <name>askKind</name> 
   <aim>get the kind of current game</aim> 
   <keyword>kind</keyword> 
   <keyword>request</keyword> 
  ... 
  <EventDescriptor> 
   <name>notifyKind</name> 
   <aim>Informs which kind of game is currently on</aim> 
   . . . 
   <ReceivingEvent>true</ReceivingEvent> 
  </EventDescriptor> 
 
    </OperationDescription> 
 <!--  other role actions/operations here --> 
 ... 
 <!--  an event that can be received even without an action --> 
 <EventDescriptor> 
  <name>requestMove</name> 
  <aim>Request the player to make a move</aim> 
  . . . 
  <ReceivingEvent>true</ReceivingEvent> 
 </EventDescriptor> 
 </GenericRoleDescription> 

Fig. 3. An example of a XRole document for the game player role 

It is important to note that, thanks to the XRole notation, a developer can easily 
understand what a role can do, and so how its assumption can be appropriate for the 
application context the agent is living in. Moreover, having a look at the 
<EventDescriptor> tag nested into an <OperationDescription>, it is possible to understand 
what consequences the execution of such operation will have on the surrounding 
environment and/or on other agents. 

As shown in Fig. 3, one or more events are not strictly tied to a role action, that 
means an event can be delivered even if none role action has been executed yet. This 
is the case, for example, of the requestMove event, delivered to the player agent to 



 Supporting the Development of Multi-agent Interactions Via Roles 159 

inform that it must make a move to continue the game; there is not a correspondent 
previous action in the player role that accepts this event as a reply. 

XRole documents can be used to construct role catalogues, that are collections of 
documents describing available roles, providing support for the choice of the right 
role to agents and their developers. Exploiting XRole to build role catalogues, grants 
advantages, such as the capability to use the same document to both describe the role 
and the operative use of it. Moreover, the advantage of exploiting the XML language 
is that this definition of role can be extended, to meet specific requirements that will 
arise in the future. 

2.3   Interaction Infrastructures 

BRAIN can adopt several interaction infrastructures, but they must rely on the XRole 
notation and must support the role model defined on the top of the BRAIN 
framework. These infrastructures can be developed using, for example, the Java 
language, that is a very exploited language in agent applications. Each interaction 
infrastructure must supply the interaction system that controls interactions and 
enforces local policies, such as allowing or denying interactions between agents 
playing given roles. Note that all policies applied to roles must be considered as 
additions to the programming language policy management, such as the Java security 
manager. This means that all policies applied into the BRAIN infrastructure can be 
applied in a separate way from the Java policy system, which can be kept enabled. 
Being able to change the interaction infrastructure allows BRAIN to adapt the role 
model depending on runtime constraints or parameters, choosing the most appropriate 
implementation for a specific scenario.  

Currently, there are two interaction infrastructures compliant with BRAIN, both 
written in Java: RoleSystem [10] and RoleX [5]. Due to space limitation, this section 
briefly introduces only the latter one, RoleX, since it is more dynamic and adaptable 
of the other one; interested readers can found more details in [10]. RoleX exploits a 
combination of Java bytecode manipulation and dynamic class loading techniques in 
order to provide a very dynamic infrastructure to support the BRAIN role model. 
Thanks to its implementation, RoleX enables agents to assume/use/release roles, in a 
dynamic way, letting them evolving and adapting to the application they are living 
into. Moreover, RoleX supports the role external visibility, that means an agent can 
discover the role(s) played by another agent by means of natural Java language 
operators, like the instanceof one. Moreover, RoleX provides role catalogues (i.e., 
databases), supports search for agents through their role(s) and allows human 
administrator to interact with the system through the GUI shown in Fig. 4. Thanks to 
such GUI, an administrator can load new roles in the catalogues, making them 
available for agents, or can mark some of them as incompatible, that means an agent 
cannot assume them at the same time, etc. 

All the above characteristics help developers dealing with the RoleX infrastructure, 
as well as they permit RoleX to support and to be compliant with the BRAIN role 
model described in section 2.1. 



160 G. Cabri, L. Ferrari, and L. Leonardi 

 

Fig. 4. The RoleX administrative GUI 

3   Development Phases in BRAIN 

In this section, we present the advantages that the BRAIN framework, and the XRole 
notation in particular, can provide in the three main phases of software development: 
analysis, design, implementation.  

Is important to note that all phases related to the roles definition are independent 
from those that regard the agents definition, since the design and development of roles 
and agents can be done in different time and by different developers, while the 
exploitation of roles from agents is made possible by the BRAIN implementation. 

3.1   Analysis 

First of all, conceiving roles as first-class entities helps analysts in identifying 
common behaviors of the application agents, confining them into well-defined entities 
and associating the same roles to different agents that have some common behavior. 
Even if this is an advantage gained by the general role approach, in BRAIN the 
concept of roles as first-class entities is emphasized, thus leading analysts to 
reasoning consequently. 

The BRAIN model helps analysts in identifying the requirements of roles. In fact, 
the model is based on actions and events, and analysts are required to find out which 
actions each (agent playing) role can perform, and which events each (agent playing) 
role must manage. More precisely, the proactive behavior of the agent is to be 
concretized into role actions, while the reactive behavior of the agent is to be 
translated into role events. 

During the analysis, developers can exploit the XRole notation to speed up this 
phase. In fact, since XRole defines a structure for roles, it suggests developers what 



 Supporting the Development of Multi-agent Interactions Via Roles 161 

information is required to describe a role, with particular regard to actions and events. 
This leads developers to reason about the application not only with regard to its roles, 
but taking into account which actions a role can perform and what events it must 
handle. For example, a developer in charge of developing a bidder role for an auction, 
can analyze the seller and auction roles (maybe provided by another developer) in 
order to make his role compatible and interoperable with the above two. Moreover, 
the availability of XRole documents about already realized roles can help developers 
to analyze the existing solutions and, maybe, to reuse some of them.  

3.2   Design 

Depending on the set of roles and related actions/events, designers can write each role 
definition. The role definition implies the formalization of the set of allowed actions 
and events that the role can handle, providing also description about the role itself. 
Through such description, designers can place each role in the right application 
scenario. 

In this phase, the exploitation of the XRole notation grants several advantages. First, 
being based on XML, XRole provides all advantages of this language, in terms of: 

• Interoperability: notations derived by XML can be used in different platforms 
and applications; 

• Manageability: there are different tools that helps in managing XML 
documents; 

• Automation: since XML is a semi-structured language, its documents can be 
manipulated in an automatic way; 

• Extensibility: XML documents can be extended depending on the application 
needs. 

Then, the same XRole documents can be translated into HTML documents to 
suggest functionalities of the involved entities; applying different XSL sheets, the 
same information can be represented in different ways, adapting it to the needs of the 
readers.  

As sketched before, a designer could decide to extend an existing role to produce a 
new role more suitable for its application. In this phase, advantages coming from the 
adoption of XML overtake the drawbacks of this language, such as the missing 
capability of dealing with inheritance [7]. 

3.3   Implementation 

In the implementation phase, the model defined during the analysis and formalized 
during the design must become “real” and concretely usable. This phase is strictly tied 
to the interaction infrastructure the roles will be used on, since their implementation 
depends on the rules imposed by the bottom layer of the BRAIN framework. As 
already stated, there are two available interaction infrastructures for BRAIN, 
RoleSystem [10] and RoleX [5], both written in Java, and that provides a set of 
classes and facilities to support the implementation of roles and their reuse across 
agent systems. Actually, both the above implementations are available for the 



162 G. Cabri, L. Ferrari, and L. Leonardi 

development and are respectively tied to the Jade [17] and Aglets [18] mobile agent 
platforms, even if it is quite simple to migrate them to other platforms. 

It must be noted that, even in this phase, XRole can support and speed up the 
development: the same XRole documents can be exploited to obtain the code of the 
roles, or at least a structure of code that can be completed by programmers. For 
instance, appropriate XLS sheets can translate XRole documents into Java interfaces 
and classes that implement the role properties. The fact that this can be performed 
automatically, grants a fast and coherent development. 

Thanks to both the facilities provided by the interaction infrastructures and the 
XRole notation, this phase can be successfully completed in a short time and without 
big efforts. 

4   An Application Example  

In this section, we briefly report a simple example related to the game world. In a 
game there are well-defined interactions, which occur in a given order, and follow the 
game-specific laws. Here we do not focus on a specific game, but we show roles and 
then the interactions of a generic game, which can be adapted to specific games by 
defining the appropriate laws.  

4.1   Analysis 

From the analysis we identify two roles in the applications: the player and the game 
manager. In each game, there is one manager and one or more players. 

The main capability of the player is to play, but there are some collateral 
capabilities that are related to knowing which is the kind of the game and to leaving 
the game. The expected behavior concerns mainly to receive information about the 
game. 

With regard to the manager role, the capabilities are related to notifying players 
about the game. On the other hand, a manager is expected to accept moves from the 
players, as well as reply to requests about the game situation. 

4.2   Design 

In the following, we report the actions and the events corresponding to the capabilities 
and the expected behaviors identified in the previous phase. These actions and events 
are coded into XRole documents like the one shown in Fig. 3. 

4.2.1   The Player Role 
Each agent that wants to participate to the game has to assume the role of player. The 
actions that can be performed by a player are: 

• askKind. This action is used to ask the manager what kind of game it manages. 
• reqPlay. The player requests the manager to play in the current game. 
• move. By this action, the player tells the manager the willing of making a move. 

The action must contain also the description of the move. 
• giveUp. It is used to notify the manager that the player leaves the current game. 



 Supporting the Development of Multi-agent Interactions Via Roles 163 

The main events that a player must deal with are: 

• notifyKind. By this event, the player is notified about the kind of the current game. 
This event is associated to a string that contains the actual game kind. 

• requestMove. The player is requested by the manager to make a move. 
• gameWon. The player is notified it is the winner of the game. 
• gameOver. The player is told by the manager that the game is over. 

4.2.2   The Manager Role 
Each game is ruled by an agent playing the role of manager. The main actions that 
can be performed by a manager are: 

• notifyKind. The manager notifies a player about the kind of the current game. 
• requestMove. The manager requests a player to make a move. 
• gameWon. The manager tells a player it has won the game. 
• gameOver. The manager tells a player that the game is over. 

The main events that a manager must deal with are: 

• askKind. The manager is notified that a player asks for the kind of game. 
• reqPlay. The manager is notified that a player has requested for playing. 
• move. The manager is notified about a move of a player. 

Note that the actions of the player usually correspond to the events handled by the 
manager, and vice versa. 

4.3   Implementation 

For the implementation, we have derived Java interfaces from the XRole documents 
defined in the previous phase. With regard to the example of the player role and its 
XRole document (see Fig. 3), the Java interface of its role will be like the one 
reported in Fig. 5.  

As shown in Fig. 5, the interface provides the method to request the kind of the 
game, and a couple of events. These static events are used to make possible for the 
agent/role to recognize all the notified events. 

public interface player extends GenericRoleInterface{ 
  // the askKind action  
  public void askKind(); 
  // the kind of recognized events 
  public static GenericEvent notifyKind; 
  public static GenericEvent requestMove; 
 ... 
} 

Fig. 5. An example of role Java interface derived by a XRole document 

5   Related Work 

Since there have been different approaches for agents based on roles, this section 
briefly reports those similar to the BRAIN approach; interested readers can find more 
details in [6]. 



164 G. Cabri, L. Ferrari, and L. Leonardi 

The Role/Interaction/Communicative Action (RICA) theory [21] aims to improve 
the FIPA systems [15] with support for social concepts. Similarly to BRAIN, the 
RICA theory defines a metamodel, that can be used as a language to define 
communicative entities (i.e., entities that can act in a social way, and thus can be 
aggregated into societies); its implementation is written in Java and it is called RICA-
J. RICA models the behavior of agents through roles, thus an agent is nothing more 
than a role player. Moreover, RICA strongly uses social concepts, thus for each 
standard concept, it is possible to find out the correspondent social one (e.g., roles can 
be specialized in social roles, actions in social actions, and so on). From this point of 
view, BRAIN is more general, without explicitly distinguishing between social and 
non-social entities, since this separation strictly depends on the application context 
and is quite subjective. 

AALAADIN [14] is a meta-model to define models of organizations. It is based on 
three core concepts: agent, group and role. Even if our approach is quite similar to the 
AALAADIN one, it differs for some reasons. First, we disregard the concept of 
group, while focusing on the interactions among agents and between agents and 
environments. Second, AALAADIN roles are tightly bound to the notion of agent, 
while our aim is to describe roles in a more independent way, both of applications and 
environments. Third, in AALAADIN, environments are mainly modeled by service 
agents, which is generally acceptable, but do not cover all real situations, where also 
agents that play roles of “pure clients” must be taken into account. 

The ROPE project [4] recognizes the importance of defining roles as first-class 
entities, which can be assumed dynamically by agents. It proposes an integrate 
environment, called ROPE (Role Oriented Programming Environment), which can be 
exploit to develop applications composed by several cooperating agents. Rather than 
defining an integrated but close environment, we aim at proposing an open 
methodology to define agent roles. We address interoperability and also the dynamic 
use of roles. Moreover, our definition of roles can be exploit also for interactions 
among agents that do not belong to the same application (i.e., are competitive); this is 
a relevant aspect in the design of applications for wide-open environments, such as 
the Internet. 

6   Conclusions and Future Work 

The BRAIN framework proposes a role-based model for agent interactions, an XML 
notation and interaction infrastructures. This paper has explained how the BRAIN 
framework, and in particular the XRole notation, can be exploited in the different 
phases of the development of applications composed of different agents that play 
roles to interact. 

We can state that the main advantage of using BRAIN is that the same information 
is used during the whole development process, granting coherence and continuity. 
The XRole notation, being based on the XML language, enables to present the same 
information in different ways, depending on the needs of people that read such 
information. Moreover, XRole documents can be manipulated by automatic tools for 
different purposes, and even understood by agents if needed. The chance of exploiting 
the information about roles at runtime well suits very dynamic environments. 



 Supporting the Development of Multi-agent Interactions Via Roles 165 

Currently we are investigating security models to be embedded in BRAIN and in 
particular in its interaction infrastructure RoleX; these models include trust and 
security. We are also refining the role model to make it more suitable to open and 
dynamic environments, supporting for example an assumption driven by prerequisites. 

The BRAIN framework and its interaction infrastructures are publicly available for 
download at the URL: http://www.agentgroup.ing.unimo.it/. 

Acknowledgements. Work supported by the Italian MIUR and CNR within the 
project "IS-MANET, Infrastructures for Mobile ad-hoc Networks", by the 
CASCADAS European Project, and by the project L.A.I.C.A. (Laboratorio di 
Ambient Intelligence per una Città Amica), funded by the Regione Emilia-Romagna, 
Italy, under the initiative 1.1 “Programma per la ricerca su prodotti e servizi 
innovativi” of the development project “Piano telematico regionale”. 

References 

1. S. Ahuja, N. Carriero, and D. Gelernter, “Linda and Friends”, IEEE Computer, Vol. 19, 
No. 8, pp. 26-34, August 1986. 

2. Y. Aridor, D. Lange, “Agent Design Pattern: Elements of Agent Application design”, 
International Conference on Autonomous Agents, ACM Press, 1998. 

3. J. Baumann, F. Hohl, K. Rothermel, M. Straßer, “Mole - Concepts of a Mobile Agent 
System”, The World Wide Web Journal, Vol. 1, No. 3, pp. 123-137, 1998. 

4. M. Becht, T. Gurzki, J. Klarmann, M. Muscholl, “ROPE: Role Oriented Programming 
Environment for Multiagent Systems”, The Fourth IFCIS Conference on Cooperative 
Information Systems (CoopIS'99), Edinburgh, Scotland, September 1999.  

5. G. Cabri, L. Ferrari, L. Leonardi, “The RoleX Environment for Multi-Agent 
Cooperation”, Eighth International Workshop CIA 2004 on Cooperative Information 
Agents, Erfurt, Germany, Lecture Notes in Artificial Intelligence N. 3191, September 
2004 

6. G. Cabri, L. Ferrari, L. Leonardi, “Agent Role-based Collaboration and Coordination: a 
Survey About Existing Approaches”, The 2004 IEEE Systems, Man and Cybernetics 
Conference, The Hague, The Netherlands, October 2004. 

7. G. Cabri, M. Iori, A. Salvarani, “Describing and Extending Classes with XMI: an 
Industrial Experience”, Software Evolution with UML and XML (Idea Group, Inc., 
Hershey-USA), Hongji Yang Editor, ISBN: 1-59140-462-2, 2005. 

8. G. Cabri, L. Leonardi, F. Zambonelli, “Mobile-Agent Coordination Models for Internet 
Applications”, IEEE Computer, Vol. 33, No. 2, pp. 82-89, February 2000. 

9. G. Cabri, L. Leonardi, F. Zambonelli, “MARS: a Programmable Coordination 
Architecture for Mobile Agents”, IEEE Internet Computing, Vol. 4, N. 4, pp. 26-35, July-
August 2000. 

10. G. Cabri, L. Leonardi, F. Zambonelli, “Role-based Interaction Infrastructures for Internet 
Agents”, IEICE Transactions on Information and Systems (Oxford University Press, 
Oxford-UK), Vol.E86-D, No.11, November 2003. 

11. R. G. Chandras, “Distributed Message Passing Operating Systems”, Operating Systems 
Review, Vol. 24, No. 1, pp. 7-17, 1990. 

12. P. Domel, A. Lingnau, O. Drobnik, “Mobile Agent Interaction in Heterogeneous 
Environment”, The 1st International Workshop on Mobile Agents, LNCS, Springer-Verlag 
(D), No. 1219, pp. 136-148, April 1997. 



166 G. Cabri, L. Ferrari, and L. Leonardi 

13. Amal El Fallah-Seghrouchni, Serge Haddad, Hamza Mazouzi, “Protocol Engineering for 
Multi-agent Interaction”, The 9th European Workshop on Modelling Autonomous Agents 
in a Multi-Agent World (MAAMAW '99), Valencia, Spain, June 1999. 

14. J. Ferber and O. Gutknecht, “AALAADIN: A meta-model for the analysis and design of 
organizations in multi-agent systems”, The Third International Conference on Multi-
Agent Systems (ICMAS), Cite des Sciences - La Villette, Paris, France, July 1998. 

15. The Foundation for Intelligent Physical Agents (FIPA) web site: www.fipa.org 
16. M. d’Inverno, D. Kinny, M. Luck, “Interaction Protocols in Agentis”,  The Third 

International Conference on Multi-Agent Systems (ICMAS), Cite des Sciences - La 
Villette, Paris, France, July 1998. 

17. The Jade Agent Development Framework official web stie: http://jade.tilab.com/ 
18. D. B. Lange, M. Oshima, “Programming and Deploying Java™ Mobile Agents with 

Aglets™”, Addison-Wesley, Reading (MA), 1998. 
19. Jürgen Lind, “Specifying Agent Interaction Protocols with Standard UML”, The 2nd 

International Workshop on Agent Oriented Software Engineering (AOSE), Montreal (C), 
May 2001. 

20. James Odell, H. Van Dyke Parunak, Bernhard Bauer, “Representing Agent Interaction 
Protocols in UML”, Agent Oriented Software Engineering, Paolo Ciancarini and Michael 
Wooldridge eds., Springer-Verlag, Berlin, pp. 121–140, 2001. 

21. Jean Manuel Serrano, Sascha Ossowski, “On the Impact of Agent Communicative 
Languages on the Implementation of Agent Systems”, Cooperative Information Agents 
VIII, M.Klush, S. Ossowski, V. Kashyap, R. Unland eds., Lecture Notes in Artificial 
Intelligence, ISSN 0302-9743, Springer, 2004 

22. D. W. Walker, “The Design of a Standard Message Passing Interface for Distributed 
Memory Concurrent Computers”, Parallel Computing Vol. 20, No. 4, pp. 657-673, 1994. 

23. J. White, “Mobile Agents”, in Software Agents, J. Bradshaw (Ed.), AAAI Press, pp. 437-
472, 1997. 



Automating Model Transformations in Agent-Oriented
Modelling

Anna Perini and Angelo Susi

ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
{perini, susi}@itc.it

Abstract. Current Agent-Oriented Software Engineering (AOSE) methodolo-
gies adopt a model-based approach for analysis and design, but, in order to be-
come of practical use, they should include it in a clear and customizable software
development process and provide CASE tools that support it.

In this regards, the Model-Driven Architecture (MDA) initiative of OMG is
providing useful concepts and techniques. The MDA ultimate objective is that
of improving quality and software maintainability by allowing for the reuse of
models and mappings between models. It offers standards and techniques for
model interoperability and for automating model transformations.

Our goal in this paper is to address the role of model transformations in AOSE
by discussing a practical example, with reference to the Tropos methodology.
In particular, we will focus on the automatic transformation of a Tropos plan
decomposition into a UML 2.0 activity diagram.

We will show how to use the transformation technique to automate model
mappings and describe how a CASE tool, based on a modular architecture, has
been extended to automate models transformations.

1 Introduction

Modeling techniques are largely used in Agent-Oriented Software Engineering (AOSE).
Current methodologies, like Gaia [24], PASSI [7], Prometheus [21], Adelfe [3], Tro-
pos [4], propose their own conceptual modeling language and a set of diagrams (or
views on the model) to support specific steps in the analysis and design of software. In
order to become of practical use the following issues need to be addressed.

First, a model-driven software development process should be clearly defined by
specifying the analysis and design steps, with their objectives, set of artifacts to be
produced, guidelines and techniques to be exploited to build them.

Second, CASE tools should be provided, at support of the different tasks in model
based design such as analysis and verification of models or automatic transformation
from one specification language to another, in a transparent and simple manner. These
latter aspects are at the core of the Model-Driven Architecture (MDA) initiative of
OMG [19].

The ultimate goal of MDA is that of improving the quality of software products
and of the development process, by allowing for the reuse of models and the mappings
between models. Basically, MDA proposes an approach to software development based
on modeling and on the automated mapping of source models to target models. Code

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 167–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



168 A. Perini and A. Susi

can be seen as a target model as well. So, there is a lot of effort in MDA to develop
model interoperability standards, as well as model-to-model transformation concepts
and techniques for their automation.

The MDA initiative refers mainly to Object Oriented software development and
proved to be effective in relevant application domain, such as web services (business
process integration) [18]. Recently, a few proposals to exploit MDA ideas and tech-
niques in Agent Oriented software engineering have been proposed [11, 15, 22].

We think that MDA standards and technological infrastructure are relevant to make
AO methodologies usable by practitioners. In particular, adopting MDA standards for
model interoperability and for model-to-model automatic transformation could, on one
side, support a flexible and customizable software development process, on the other
side, offer a complementary approach to the definition of a common metamodel1.

In this paper we focus on model transformation concepts and techniques in an AO
approach to software development, with reference to the Tropos methodology. In this
methodology the concept of transformation has been introduced also in previous work.
Here we will revise and discuss the role of automatic transformations in Tropos and
describe a tool that supports them.

The paper is structured as follows. Section 2 recalls transformation concepts and
techniques in MDA, previous work in Tropos and discuss the role of model transfor-
mations in Tropos. Section 3 and 4 present our approach, focusing on a particular type
of transformation in Tropos (i.e. synthesis), and present a CASE tool, that supports it.
Related works are discussed in Section 5. Finally, conclusion and future work are pre-
sented in Section 6.

2 MDA and Model Transformations in Tropos

The Tropos methodology [4] supports an agent-oriented approach to software devel-
opment organized in five major phases or disciplines2. They are: Early Requirements,
where a description of the application domain is produced; Late Requirements, in which
the system-to-be is introduced in the domain and its impact within the environment is
analyzed; Architectural Design where a representation of the internal architecture of the
system is given in terms of subcomponents of the system and relationships among them;
Detailed Design which focuses on the specification of agents capabilities and interac-
tion; Implementation, i.e. the production of code from the detailed design specification,
according to the established mapping between the implementation platform constructs
and the detailed design notions.

For the first three disciplines Tropos adopts a modeling language that allows to rep-
resent intentional and social concepts, such as actor and goal, plan, resource, and a set
of relationships between them, such as actor dependency, goal or plan decomposition,
means-end and contribution relationships. While for the detailed design discipline the
use of UML activity diagrams for the agent capabilities specification and of sequence

1 A currently ongoing effort pursued by the AOSE Technical Forum Group of AgentLink [2].
2 The term discipline is used according to the definition given in the Unified Process [14],

namely a set of activities to be performed in order to produce a particular set of artifacts.



Automating Model Transformations in Agent-Oriented Modelling 169

Fig. 1. An excerpt of the Tropos metamodel

diagrams for agent interactions specification have been proposed. In [4] a preliminary
mapping to the JACK multi-agent platform was defined and applied to a case-study.

Modeling in Tropos has been conceived as an incremental process where an initial
model is refined by adding new elements and properties by means of the analysis of
each actor goals and plans. A description of this process in terms of a non deterministic
concurrent algorithm has been given in [4]. Moreover, a first proposal to characterize it
in terms of an iterative application of simple transformations has been described in [5].

In the following we will revise the role of transformations in the Tropos methodol-
ogy in the light of the MDA framework. We will first recall the basic goals and concepts
of MDA, then discuss how they can be adopted in CASE tools for supporting Tropos.

MDA considers models as corporate assets which can evolve independently of the
relative code. Models can be partially reused or mixed with other models to generate a
new system [19]. Models can be specified from different views and can be represented
at different levels of abstractions.

Concerning model transformation, the basic idea proposed in MDA is that of defin-
ing the meta-models of source and target modeling languages according to a standard
and to define mapping and transformation mechanisms between meta-model elements.
The transformation of a source model into a target model will derive in a straightfor-
ward way from the transformation mechanisms defined at the meta-model level, since
the models are instances of the correspondent language metamodel.

The MDA’s meta-modeling standard is the Meta Object Facility (MOF) [16] which
defines a set of modeling construct that allow to manage meta-models interoperability.
For instance, it offers a standard mechanisms for automatically deriving a concrete syn-
tax based on XML DTDs and/or schemas known as XML Model Interchange (XMI).
An example of MOF compliant meta-model is illustrated in Figure 1 which depicts an
excerpt of the Tropos modeling language metamodel.



170 A. Perini and A. Susi

Fig. 2. Model Translation in MDA: an adaptation of the schema proposed in [18] to the Tropos
methodology. The model abstraction level increases from Platform Specific Model (PSM), rep-
resented by JACK code, to Platform Independent Model (PIM), represented by UML and Tropos
models.

A language for describing the generic transformation of any well formed model is
not yet available in a standard form. A first step in the standardization process has been
performed by OMG by issuing a request for proposal on Query/View/Transformation
(MOF QVT [12]) which should take into account requirements such as that of defining
a language for querying MOF models; giving a language for transformation definitions;
allowing for the creation of views of a model. Several techniques for model transforma-
tion have already been proposed.

The role of transformations in Tropos can be discussed referring to a classification
of QVT model transformations that have been proposed in [18], which uses the termi-
nology introduced by Visser for program transformation [23]. Language translation,
and language rephrasing are top level processes. Basically, in the former, a model is
transformed into a model of a different language, and in the latter, a model is changed,
in some way, into a same language model.

Figure 2 depicts the different translation processes in MDA, according to this clas-
sification. Migration is a type of translation in which a model is transformed to another
one, or to a language dialect, at the same level of abstraction. For instance, if we intend
to integrate Tropos architectural design with UML design we may need to migrate from
actor diagrams to package / class diagrams. Another example of this type of transfor-
mation occurs when we need to specify behavioral properties of a model by temporal
logic annotation (FT). An automatic transformation mechanism, from informal Tropos
to FT, has been built adopting a visitor-based approach, as described in [22]. Synthesis



Automating Model Transformations in Agent-Oriented Modelling 171

is a type of translation in which a model is transformed to another one at a lower level
of abstraction. This type of transformation in Tropos occurs when building the detail
design model from the architectural design model, that is when we need to add spec-
ification of agent capabilities and of agent interactions. In this paper we will focus on
this example considering, in particular how an actor (agent) plan decomposition can be
automatically translated into a capability diagram (UML 2.0 activity diagram). Reverse
engineering is the inverse transformation.

Rephrasing refers to different transformations that may occur when building and
refining a model; normalization consists in a transformation of a model by reducing
it to a sub-language; refactoring, concerns restructuring a model with the objective to
improve it; correction, i.e. fixing possible model errors; and adaptation of a model in
order to bring it up to date with new or modified requirements. The previously cited
work [5] on defining the modeling process in terms of an incremental application of
basic transformations was intended to support this type of transformation processes.
Moreover, a first proposal of applying graph transformation techniques to its automation
is described in [20].

We are currently interested in exploring the problem of transformation between two
modeling languages defined by different metamodels, and in particular in maintain-
ing the synchronization between the models. This is required in the Tropos methodol-
ogy when we deal with the transition from a Tropos Architectural Design model, to a
Detailed Design specification. Notice that the Architectural Design model is specified
according to the Tropos metamodel as defined in [4], while for the second (which in-
cludes UML activity diagram, sequence diagram) we aim at exploiting the UML 2.0
metamodel and at maintaining the traceability between the models.

3 Automating Tropos-to-UML Model Transformation: An
Example

Among the different approaches for model-to-model transformations that have been
recently proposed, we focused on two of them namely: the Graph Transformation
(GT) [13] and a Frame Logics [17]. In [20] we describe how to apply GT to Tropos
model rephrasing transformation. Briefly GT approach is based on set of rules that rep-
resents the status of a certain sub-graph of the models before and after the application
of the rule. In particular these rule’s sub-graphs can be related respectively to the source
and target metamodel. Some problem arises when we deal with GT specifications. In
fact this framework introduces non determinism in at least two phases: in order to apply
a rule we have first to choose it, and then we have to choose the sub-graph of the source
model in which the rule has to be applied. The result of the transformation strictly
depends on these choices. Some restrictions can be adopted in order to reduce this phe-
nomenon: the next rule to be applied can be chosen on the basis of the rules applied
before, or the application of the rules can be executed on the basis of a priority list. An-
other possible problem is the possibility to assure the termination of a sequence of rule
application. Also in this case some hypothesis can be made in order to limit the problem.

We are exploiting a Frame Logics based approach described in [6] to deal with
Metamodel transformation between the Tropos and the UML 2.0.



172 A. Perini and A. Susi

In particular this approach is based on the definition of some properties of the target
model in terms of the source model, avoiding the specification of the process used to
obtain the target, and it takes into account the mandatory requirements of the MOF
QVT consortium related to the Query/View/Transformation framework. In particular
the proposal defines a language for querying MOF-compliant models (or set of models)
and a subset of this language can be used to specify transformation of MOF-compliant
models. The transformations can be automated and views of models can be obtained via
transformations. This approach leads to a simpler semantic model, respect, for example,
to the GT techniques; this made easier the understanding of the transformation rule.
Moreover it does not need any hypothesis related to the ordering in which the rules
have to be applied or to the termination of the transformation.

The transformation language proposed in the approach consists of three major con-
cepts: pattern definitions, transformation rules, tracking relationships. Pattern defini-
tions are generated in order to identify structures that are used several times in a given
transformation. Transformation rules allow to specify the target configuration in terms
of the entities in the source configuration. Tracking relationships are used to associate
the target elements with the source elements that lead to their creation allowing to main-
tain the traceability between source and target model instances entities. Moreover the
work proposes a syntax for the rules composed by some clauses; some of them (e.g.
the Forall and Where) are used by the rule to recognize some pattern in the instance of
the source model, while other (e.g. Make and Set) are used to build the instance of the
target model.

We will show how we applied it in Tropos showing an example of transformation
from Tropos plan decomposition structure to a UML 2.0 Activity Diagrams.

A Tropos plan decomposition represents a graph describing a hierarchical relation-
ship between the root plan and the sub-plans. Let us consider the case of an AND plan
decomposition as the one represented in Figure 3 a).

B C

A

b)

Fig. 3. A Tropos plan decomposition diagram for a given Actor and the corresponding UML 2.0
activity diagram

The meaning of the decomposition is: the root Plan A can be decomposed in the
sub-plans Plan B and Plan C; both of them have to be executed in order to have the
root plan executed. This hierarchy identifies a set of possible plans composed by the
set of sub-plans. In particular nothing is specified about the order in which the set of
sub-plans have to be executed.



Automating Model Transformations in Agent-Oriented Modelling 173

TRANSFORMATION Tropos2UML: Tropos -> uml2

RULE PlanNoDec2Activity()
FORALL Plan c
WHERE NOT (c.booleanDecomposition=BooleanDecomposition)

AND NOT (c.boolDecLink=BooleanDecLink)
MAKE Action f, InitialNode Initial, Final Node Final, ControlFlow ToA, ControlFlow ToFin
SET f.name=”noDec”, ToA.source=Initial, ToA.target=f, ToFin.target=Final, ToFin.source=f;

CLASS ActionForPlanDec {
Plan pln;
Action act;};

RULE PlanDec2Action(c,a,join,fork)
FORALL Plan c
WHERE Root(c)
MAKE Action a, JoinNode join, ForkNode fork, InitialNode Initial,

FinalNode Final, ControlFlow initToA, ControlFlow AToFin,
ControlFlow AToFork, ControlFlow JoinToA

SET a.name=c.name, a.redefinedElement=join, a.redefinedElement=fork,
. . . . . .

LINKING ActionForPlanDec WITH act=a, pln=c;

RULE SubPlan(c,a,join,fork,d,b)
EXTENDS PlanDec2Action(c,a,join,fork)
FORALL Plan d
WHERE ActionForPlanDec LINKS pln=c

c=d.boolDecLink.BooleanDecomposition.rootPlan
MAKE Action b, ControlFlow ForkToB, ControlFlow bToJoin
SET b.name=d.name, a redefinedElement=b, ForkToB.name=”ForkToB”,

. . .

PATTERN Root(c)
WHERE c.booleanDecomposition.type=”and”;

Fig. 4. The transformation specification defined in the grammar described in [6]

The plans in the Tropos plan diagram are translated into action nodes in the UML
activity diagram; moreover from the structure of the plan decomposition it is possible
to derive a basic structure for the resulting activity diagram.

In particular the assumption is that the Plan A can be mapped into an activity node,
containing a structure composed by the activities corresponding to the plans B and C;
moreover in the example the assumption is that the two plans has to be executed in
parallel since no information is given about the sequence of the plans in the Tropos plan
diagram. Figure 3 b) shows the resulting activity diagram.

The transformation shown in Figure 4 is specified via a subset of the grammar de-
scribed in [6]. In the transformation definition it is possible to distinguish Rules and
Pattern used to specify in a declarative way the transformation. The RULE PlanN-
oDec2Activity is for the transformation of the plan decomposition leaves, not decom-
posed, to an activity in the UML activity diagram. The role is composed by clauses.
In the PlanNoDec2Activity rule, the clauses FORALL and WHERE retrieve the set
of plans that are not decomposed; the clauses MAKE and SET are in charge to build
the structure of the corresponding activity diagram, creating a new activity for every
retrieved plan, and the links to other activities and control flow components in the



174 A. Perini and A. Susi

diagram. The RULE PlanDec2Activity refers to decomposed plans and transforms them
into UML actions that can then be further decomposed in other actions and control
structures. In particular in our case fork and join control structures are added together
with the action derived from the hierarchy root plan A. The RULE SubPlan redefine the
rule for the decomposable actions in order to incrementally add new sub-actions in the
activity diagram.

In the example the directive PATTERN recognizes the kind of decomposition the
transformation has to face with; in this case the pattern recognizes the root of an “and”
decomposition, a typical structure in the Tropos plan decomposition diagram.

For the sake of clearness, we described the simplest case of a plan and-
decomposition structure. Typical cases require to deal with plan or-decomposition or
temporal relationships [22] between sub-plans as the one shown in Figure 5. In this
case a few additional rules can be defined within a limited effort.

B

C

A

b)

Fig. 5. A Tropos plan AND-decomposition diagram with temporal annotation for a given Actor
and the corresponding UML 2.0 activity diagram

As described above a relevant issue for us is the possibility of having the synchro-
nization between models and the reversibility of a transformation. The declarative trans-
formations approach shown in [6] partially supports synchronization and reversibility
in an automatic way. In general the reverse transformations has to be explicitly defined.

4 A CASE Tool

In this section we focus on the description of a set of tools for supporting the use of
the Tropos methodology according to the MDA perspective. This requires, first to adopt
MOF compliant modeling tools (i.e. whose respective modeling languages’ metamodels
are specified according to the MOF standard), second, to define model transformations
in terms of mapping between the metamodels of the source and the target specification
languages.

For instance, a CASE tool at support of the Tropos process discussed in the previous
section should allow the analyst to build a Tropos model (in our case a plan decomposi-
tion diagram) using a modeler which includes the Tropos metamodel. Part of the model
should be automatically translated into a UML model which should be editable by a
UML modeler (which includes the UML metamodel). Modifications performed on the
UML model should be automatically reflected into the Tropos model.



Automating Model Transformations in Agent-Oriented Modelling 175

Platform run-time

Workbench Workspace

EMF GEF

TAOM4E model TAOM4E platform

TAOM4E

Tefkat

Eclipse Core

Fig. 6. The architecture of TAOM4e

A Tropos modeler called TAOM compliant with MDA metamodel interoperability
standards has been described in [22]. The need of a higher flexible architecture which
allow to easily extend it induced us to consider the opportunity to re-engineering this
tool in the Eclipse Platform [1] that offers a flexible and (economically) convenient
solution to the problem of component integration. The Eclipse Platform is an open
source initiative that offers a “reusable and extensible framework for creating IDE-
oriented tools” [10]. New tools are integrated into the platform through plug-ins that
provide new functionalities to the environment. A plug-in is the smallest unit of function
in Eclipse. The Eclipse Platform itself is organized as a set of subsystems (implemented
in one or more plug-ins) built on the top of a small runtime engine, as depicted in
Figure 6. Plug-ins define extension points for adding behaviors to the platform, that is a
public declaration of the plug-in extensibility. More precisely, a “plug-in manifest” file
specifies the extensions it uses and the extension points it defines.

Figure 6 depicts the architecture of the new modeler (called TAOM4e) and of how it
has been extended with a model transformation plug-in. In particular, TAOM4e has been
built on top of two existing plug-ins. First, the Graphical Editing Framework (GEF)
plug-in3 that allows developers to create a rich graphical editor from an existing ap-
plication model. The functionality of the GEF plug-in helps covering one of the most
essential requirements of the modeler, that is supporting visual development of Tropos
model by providing some standard features like drag & drop, undo-redo, copy & paste
and other.

Second, the EMF plug-in4 which offers a modeling framework and code generation
facility for building tools and other applications based on a structured data model. From
a model specification described in XMI, EMF provides tools and runtime support to
produce a set of Java classes for the model. Most important of all, EMF provides the
foundation for interoperability with other EMF-based tools and applications.

The TAOM4e component consists of two plug-ins, as depicted in Figure 6, namely,
the TAOM4e model which implements the Tropos meta-model extending the EMF plug-
in and the TAOM4e platform which implement the modeler functions needed for build-
ing and managing a Tropos Model. It extends the GEF plug-in and the TAOM4e model
plug-in.

3 http://www.eclipse.org/gef/
4 http://www.eclipse.org/emf/



176 A. Perini and A. Susi

Fig. 7. A snapshot of the TAOM4e Graphic User Interface

The transformation plug-in we used is a model transformation engine called Tefkat5

that implements a subset of the requirements and of the transformation language de-
scribed in the DSTC proposal for MOF QVT as in [6]. The tool consists of a set of
Eclipse plug-ins based on EMF. Tefkat allow to specify transformations between meta-
models that are specified via an XMI compliant notation used by the EMF for the defi-
nition of metamodels. Moreover, due to the plug-in structure, Tefkat can easily interact
with other Eclipse plug-ins devoted to model definition and management.

5 Related Work

Several works related to Agent-Oriented Software Engineering dealt with the concept
of transformation as already pointed out in the first two sections [3, 7, 21]. In particular
in [5] a transformational approach to support the analyst during the Tropos software de-
velopment process has been proposed and in [20] Graph Transformation were applied
to support the analyst in choosing and/or validating possible model refinement actions.
A first proposal to use Graph Transformation in AOSE is given in [11] where this tech-
nique is adopted both to capture agent-specific aspects and to define a formal semantics
in the definition of an agent-oriented modeling technique. In [15] a work which applies
the MDA idea of transform a Platform Independent Model to a Platform Specific Model
is proposed; in that case the Platform Specific Model refers to the JACK platform.

More generally QVT proposals are of particular interest for our work. An interest-
ing classification of them can be found in [9]. Moreover interesting ideas on how to
apply the MDA framework to a specific domain is given in [18]. In this work automatic
transformations between source and target models are proposed in the case of busi-

5 Tefkat is part of Pegamento project of the DSTC in the University of Queensland
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/index.html



Automating Model Transformations in Agent-Oriented Modelling 177

ness process integration, when dealing with the complexity of large business processes
mapping from visual languages to code.

6 Conclusion and Future Work

In this paper we focused on the role of model transformations in an agent-oriented
software development by adopting concepts and techniques that are proposed in the
MDA initiative by OMG [19].

MDA offers a meta-modeling standard, the Meta Object Facility (MOF) [16],
which allows model and meta-model interoperability and is managing the standard-
ization process of model transformations which should be compliant with the so called
Query/View/Transformation (MOF QVT [12]) requirements. Several techniques have
been already proposed. Although MDA refers mainly to Object Oriented software de-
velopment its concepts and techniques may be adopted Agent Oriented software engi-
neering as well [8, 11, 15, 22].

In particular, in Section 2 we considered different types of model transformations
that can support software development in the Tropos methodology and revised how the
concept of transformations have been addressed in previous works. We think that most
of the considerations can be applied also to other AOSE methodologies.

We presented a (simple) practical example concerning the automatic transformation
of a Tropos plan decomposition into a UML 2.0 activity diagram (a transformation type
called synthesis in Section 2), by adopting a declarative transformation language pro-
posed in [6] and we pointed out critical issues such as model synchronization. This type
of transformation supports the transition between architectural design and detailed de-
sign in Tropos, but we may consider to adopt it also for supporting translation between
Tropos models and UML models referring to a same level abstraction (for instance dur-
ing architectural design).

We showed also how we are extending a CASE tool implemented in the ECLIPSE
platform which offers a highly modular and flexible architecture, to include automatic
model transformations.

References

1. ECLIPSE Platform Technical Overview, object technology international edition, July 2001.
http://www.eclipse.org.

2. C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci, and F. Zambonelli. A Study of Some
Multi-agent Meta-models. In Agent-Oriented Software Engineering V: 5th International
Workshop, AOSE 2004, volume 3382 of Lecture Notes in Computer Science, pages 62 – 77,
New York, USA, NY, July 2004.

3. C. Bernon, M. Gleizes, S. Peyruqueou, and G. Picard. ADELFE, a Methodology for Adaptive
Multi-Agent Systems Engineering. In Third International Workshop Engineering Societies
in the Agents World (ESAW-2002), Madrid, Spain, 2002.

4. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203–236, July 2004.



178 A. Perini and A. Susi

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Modeling early re-
quirements in Tropos: a transformation based approach. In M. Wooldridge, P. Ciancarini,
and G. Weiss, editors, Agent-Oriented Software Engineering II, volume 2222 of LNCS, pages
151–168. Springer-Verlag, 2001.

6. CBOP, DSTC, and IBM. MOF Query/Views/Transformations, 2nd Revised Submission.
Technical report, 2004.

7. M. Cossentino. Different perspectives in designing multi-agent systems. In Proc. of AGES
’02, Erfurt, Germany, 2002.

8. M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing Pattern Reuse
in the Design of Multi-agent Systems. In Agent Technologies, Infrastructures, Tools, and
Applications for E-Services 2002, pages 107 – 120, 2002.

9. K. Czarnecki and S. Halsen. Classification of Model Transformation Approaches. In OOP-
SLA’03 Worshop on Generative in Context of Model-Driven Architecture, 2003.

10. J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarty. The Java developers
guide to Eclipse. Addison-Wesley, 2004.

11. R. Depke, R. Heckel, and J. M. Küster. Agent-Oriented Modeling with Graph Transforma-
tion. In P. Ciancarini and M. Wooldridge, editors, AOSE, volume 1957 of Lecture Notes in
Computer Science, pages 150 – 120. Springer, 2001.

12. T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A review of OMG MOF 2.0 Query /
Views / Transformations Submissions and Recommendations towards the final Standar. In
MetaModelling for MDA Workshop, York, England, 2003.

13. S. Gyapay and D. Varró. Automatic Algorithm Generation for Visual Control Structure.
Technical report, Dept. of Measurement and Information System, Budapest University of
Technology and Economics, Hungary, 2000.

14. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1999.

15. G. B. Jayatilleke, L. Padgham, and M. Winikoff. Towards a Component-Based Development
Framework for Agents. In G. Lindemann, J. Denzinger, I. Timm, and R. Unland, editors,
Multiagent System Technologies, Proceedings of the Second German Conference, MATES
2004, number 3187 in LNAI, pages 183 – 197. Springer-Verlag, 2004.

16. S. R. Judson, R. B. France, and D. L. Carver. Specifying Model Transformations at the
Metamodel Level, 2004. http://www.omg.org.

17. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of ACM, 42(4):741 – 843, 1995.

18. J. Koehler, R. Hauser, S. Sendall, and M. Wahler. Declarative techniques for model-driven
business process integration. IBM Systems Journal, 44(1), 2005.

19. S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison-Wesley, 2004.
20. A. Novikau, A. Perini, and M. Pistore. Graph Rewriting for Agent Oriented Visual Modeling.

In In Proc. of the International Workshop on Graph Transformation and Visual Modeling
Techniques, in ETAPS 2004 Conference, Barcelona, Spain, 2004.

21. L. Padgham and M. Winikoff. Prometheus: a methodology for developing intelligent agents.
In AAMAS, pages 37–38, 2002.

22. A. Perini and A. Susi. Developing Tools for Agent-Oriented Visual Modeling. In G. Lin-
demann, J. Denzinger, I. Timm, and R. Unland, editors, Multiagent System Technologies,
Proceedings of the Second German Conference, MATES 2004, number 3187 in LNAI, pages
169–182. Springer-Verlag, 2004.

23. E. Visser. A survey of strategies in program transformation systems. Electr. Notes Theor.
Comput. Sci., 57, 2001.

24. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Methodology,
12(3):317 – 370, July 2003.



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 179 – 189, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Paving the Way for Implementing Multiagent Systems: 
Integrating Gaia with Agent-UML 

Juan C. García-Ojeda1, Alvaro E. Arenas2, and José de Jesús Pérez-Alcázar3 

1 Laboratorio de Cómputo Especializado, Universidad Autónoma de Bucaramanga, 
Calle 48 No 39-234, El Jardín. Bucaramanga, Santander - Colombia 

jgarciao@unab.edu.co 
2 CCLRC Rutherford Appleton Laboratory, 

Chilton-Didcot OX11 0QX, Oxfordshire - United Kingdom 
a.e.arenas@rl.ac.uk 

3 EACH, Universidade de São Paulo, 
Avenida Arlindo Bettio, 1000  - Hermelindo Matarazzo. São Paulo  - Brazil 

jperez@usp.br 

Abstract. This paper describes how to refine a Gaia design by applying agent-
oriented extensions of UML. First, we show how the Gaia Interaction model can 
be improved by applying the first two layers of the Agent Interaction Protocol 
(AIP) of AUML. Second, Gaia Agent and Service models are refined by apply-
ing the AIP’s third layer combined with Extended UML Class Diagrams.  Third, 
Gaia Organisational Structure is enriched by applying the Aalaadin model. The 
final aim of the whole process is to obtain a more concrete design closer to im-
plementation. We demonstrate how the refinement process can be applied to the 
development of an agent-based system for conference management. 

1   Introduction 

Several methodologies for developing MAS have been proposed in the literature, for 
instance [7, 8, 15, 18], but there is not a methodology that has secured industrial ac-
ceptance. It has been identified that one way of increasing industrial acceptance of a 
new technology is to present it as an incremental extension of known and trusted 
methods. This paper describes how to integrate Gaia [18], a methodology for develop-
ing MAS that is gaining acceptance within the agent community, with agent-oriented 
extensions of the standard de-facto UML. The outcome of the Gaia process is a semi-
formal, and somehow abstract, specification that could be implemented using agent-
based or object-oriented frameworks. However, the road toward implementation is a 
difficult one, and developers need guidelines in order to produce detailed designs 
close to implementation. This paper contributes to closing such gap by providing an 
approach to refine Gaia output by applying the Agent Interaction Protocol (AIP) of 
Agent-UML (AUML) [11, 12], taking into consideration agent-oriented extensions to 
UML class diagrams [2] and the representation of social structures in UML [14]. 
Section 2 gives an overview of our approach and of the technologies applied when 
integrating Gaia and UML. The core of the paper is section 3 that describes how to 
refine a Gaia design using AUML, Extended UML Class Diagrams (ECD) and the 



180 J.C. García-Ojeda, A.E. Arenas, and J. de Jesús Pérez-Alcázar 

Aalaadin model. Section 4 shows the usefulness of our approach by applying it to a 
case study. Finally, section 5 presents concluding remarks,  compares our work with 
other approaches ,and highlights future work. 

2   Overview 

To represent the integration between Gaia and AUML, 
we use the Software Process Engineering Metamodel 
(SPEM) [13], a specification adopted by the Object 
Management Group to describe software-development 
processes. Figure 1 lists some useful stereotypes de-
fined by SPEM to represent possible outcomes of a 
development process. For example, the element 
WorkProduct represents any artefact produced, con-
sumed or modified by a process like an UMLModel or 
Document; the Phase element represents the work 
performed in a process; the MASElement represent an 
element of a MAS model, such as a protocol or a role.  

The Gaia methodology uses an organisational view 
to construct MAS [18]. It starts with an analysis phase, 
which aims at organising the collected specifications 
and requirements of the system into the following: an 
environmental model, an abstract computational repre-
sentation of the environment in which the MAS will be 
situated; a preliminary role model, which identifies the 
basic skills required by the organisation; a preliminary 
interaction model -identifying the basic interactions 
required to accomplish the preliminary roles; and a set 
of organisational rules that the organisation should 
respect and enforce in its global behaviour. The next 
step in the methodology is the design phase, consisting 
of an architectural design and detailed design phases. The goal of the architectural 
design is to identify an efficient and reliable way to structure the MAS organisation, 
completing accordingly the preliminary roles and interactions models. The detailed 
design phase is responsible for eventually identifying the agent model and the ser-
vices model which, in turn, act as guidelines for the actual implementation of agents 
and their activities.  

Figure 2 shows the overall Gaia design phase in SPEM and our integration pro-
posal. Our approach is built on top of our previous work on integrating Gaia and 
AUML [1, 6], taking into consideration the new proposal of Gaia [18], the extended 
UML class diagram (ECD) for agents [2], and representation of organisational/social 
structures such as the Aalaadin Model[5] and its extension for UML [14].  

The AIP is composed by three layers: the first layer represents the overall protocol, 
defining communications patterns by means of aggregations concepts as packages and 
templates; the second layer represents the interactions among agents by means of 
sequence, collaboration, activities or statecharts diagrams; the third layer models the 

Fig. 1. SPEM notation 



 Paving the Way for Implementing Multiagent Systems 181 

internal process of 
an agent by means 
of activity or 
statecharts dia-
grams for repre-
sent such internal 
process. We have 
exploited the AIP 
in several ways: 
Gaia Interaction 
model is refined 
using the first 
layer of AIP; the 
Agent and Service 
models are refined 
in the third layer 
of AIP, using state 
machine for repre-
senting the inter-
nal behaviour of 
agents.  

The work of 
Bauer in [2] ex-
tends the traditional UML class diagrams in the context of agent-oriented develop-
ment. It defines a ECD as a class that includes: an agent head part, dealing with the 
goals, states, etc of an agent; an agent body, representing the pure actions of an agent; 
and a communicator part, representing the agent communication by means of com-
munication acts. We have exploited Bauer’s work by refining an agent into an ex-
tended UML agent class.  

An important abstraction in agent development is to model agent societies using 
concepts such as groups, roles and structures. Such an abstraction is the base of 
Aalaadin [5], a meta-model of artificial organisation by which one can build MAS 
with   different structures AUML such as market-like and hierarchical organisations. 
We have exploited UML extended Aalaadin model (EAM) [14] to represent the roles 
and organisational structure models. The next section explains in more detail the 
whole integration process between Gaia and UML. 

3   Refining Gaia with AUML 

Our process to refine Gaia with AUML follows a top-down approach, taking as input 
the Gaia models, which are then enriched by including AIP models. Following the 
AIP structure, the process is composed by three steps: Protocols and Interactions, 
Agents and Organisations. Each step takes as input a model or set of models obtained 
form Gaia’s design phase and produces AIP models. 

Fig. 2. Combining Gaia and AUML



182 J.C. García-Ojeda, A.E. Arenas, and J. de Jesús Pérez-Alcázar 

3.1   Representing Protocols and Modelling Interactions 

The Protocols step takes as input the interaction and agent models from Gaia design 
phase, combining them according to the AIP first layer in order to obtain a more  
refined protocols model, as shown in Figure 3. The first layer of AIP extends the 
notation used in UML (templates and packages) to represent in a concrete way the 
protocols (messages interchange) between agents. Gaia uses the interaction model to 
represent protocols, denoting interaction patterns between roles. This difference is 
solved by means of taking into account the role model and the agent to which it was 
associated in the agent model.  

 

Fig. 3. Relation between Protocols in Gaia and AUML (SPEM notation) 

The interaction between agents can be further refined using the second layer of 
AIP, which represents interaction between agents. This can be done in a similar way 
to the previous step, taking as input the Interaction, Roles and Agent models from 
Gaia’s design phase. 

3.2   Representing Agents 

Once the interactive part between roles and agents of the system is refined, we pro-
ceed to further refine the agents and the services they realise. In order to do so, we 
take as inputs the Roles, Agent and Service models from Gaia and combine them 
with the ECD. The ECD is composed of seven major sections. The first section is 
Agent Class Description and Roles, which associates roles to the agent classes, in a 
similar way as carried out in Gaia Agent model. The second section makes refer-
ence to the state description, dealing with all formal descriptions of a state, similar 
to the Liveness Properties in Gaia. The third section defines the actions that the 
agent or role must take (this could be active or reactive). In the fourth section, 
methods are defined. In the fifth section, capabilities of the role or agents are speci-
fied. The sixth section defines the restrictions to which the role will be subdued, 



 Paving the Way for Implementing Multiagent Systems 183 

similar to the safety properties of the roles schema in Gaia. The last section is one 
of the most important of the ECD from our point of view, since it allows us to 
model each one of the communication acts in which the role or agent intervenes. An 
important aspect when modelling this section is the Agent-Head-Automata that can 
be modelled with the most internal layer of the AIP model (representing internal 
agent processing). With  this, we can describe the incoming messages and its rela-
tion with the internal state of the agent, actions and the outgoing messages. It is 
worth noticing that these activities or internal processing derive from Gaia’s model 
of services.  

3.3   Representing the Organisational Structure 

As mentioned before, Gaia follows an organisational view for developing MAS. In 
this final phase, we propose to represent the organisational structure making use of 
the Aalaadin model [5] and others concepts associated to the representation of social 
structures [14]. In Figure 4, we can observe our model to represent the organisational 
structure for the specific case of Gaia. We have marked with a single line the three 
main concepts used by Aalaadin: agent, role and group. Within the Aalaadin model, 
an agent is seen as an active communicating entity; a group as is a set of agents; and a 
role is an abstract representation of an agent function. Following [9], a MAS consists 
of three main concepts: environment, agent-roles and interactions; the relation among 
these concepts has been strengthened by Parunak et al. [14] by integrating the envi-
ronment into the Aalaadin model. This extension is marked with a dotted line in Fig-
ure 4. Furthermore, we have added others elements to the model, such as the organisa-
tional rules, the abstract computational resources and the organisation. With 
 

 

Fig. 4. Organisational Structure Model 



184 J.C. García-Ojeda, A.E. Arenas, and J. de Jesús Pérez-Alcázar 

this model we can obtain a more concrete model to implement the organisational 
structure of the MAS, allowing in this way  to join together all the fundamental aspect 
treated by Gaia into a meta-model view. 

4   A Case Study: Refining a Conference Management System 

To illustrate our proposal of integration we have taken as case study the development 
of an agent-based system for conference management (This case study is borrowed 
from [18]). The proposed problem could be summarised as follows. During the sub-
mission phase, authors send papers; authors are then informed that their papers have 
been received and have been assigned a submission number. In the review phase, the 
program committee (PC) has to handle the review of the papers: contacting potential 
referees and asking them to review a number of papers. Eventually, reviews come in 
and are used to decide about the acceptance or rejection of the submission. In the final 
phase, authors need to be notified of these decisions and, in case of acceptance, must 
be asked to produce a revised version of their paper. The publisher has to collect these 
final versions and print the proceedings. 

4.1   Representing Protocols and Modelling Interactions 

Taking as example the ReceivePaper protocol ([18], p.348), we have represented that 
protocol in Figure 5. This protocol is initiated by the role PC-Chair who wants to 
know whether a potential evaluator of an article that has reached the organisation of 
the conference can evaluate it or not. In Figure 5, we have also modelled the Re-
ceivePaper protocol using the first layer proposed by the AIP (Overall Protocol). In 
that sense, we have associated the PC-Chair Role to a class of agents called PC-Chair; 
similarly, we can see that the role Reviewer is associated to a class of Reviewer agent. 
These annotations are useful in the implementation phase of MAS. For instance, by 
adding the exchange of messages between roles using the note FIPA-ACL, the im-
plementation of these models is closer to implementation than the simple interaction 
model proposed in Gaia.  

 

Fig. 5. Protocol Definition in Gaia and AUML (real notation) 



 Paving the Way for Implementing Multiagent Systems 185 

Figure 6 gives 
a view of the 
interactions in 
our case study. 
As it can be 
noted, the Au-
thor sends a 
request to the 
PC-Chair so that 
it evaluates his 
article; PC-Chair 
then proceeds to 
send the request 
to the possible 
Reviewers of the 
article for the 
revision (notice 
that given the 
rules of the or-
ganisation, PC-
Chair might send 
in a concurrent 
way to three 
potential Re-
viewers); if they 
accept, PC-Chair sends the document. The Reviewers then will proceed to evaluate 
the article and send to PC-Chair the corresponding evaluations. Once analysed, PC-
Chair will decide whether it accepts or rejects the article sent by an author. In the case 
the article is accepted, it sends the Author an acceptance message and informs him of 
the revised version he must submit. Once the Author delivers the revised version to 
PC-Chair, it will proceed to request the Publisher if he is available to print the pro-
ceedings; if he accepts, then PC-Chair will send a file with the articles accepted for 
publishing. 

4.2   Representing Agents 

Once the interactive part between roles and agents of the system is represented, we 
proceed to refine the Roles model (in our case, Reviewer Role, generated in [18], p. 
347) combined with the Service model associated to Reviewer agent (see Figure 7). In 
order to do so, we make use of the extended vision of Bauer’s Class Diagrams[2]. We 
have modelled each one of the main characteristics of the Reviewer role. As we men-
tioned in section 3, the extended vision of Bauer splits a conventional UML class 
diagram in seven major sections (see Figure 8). In the first section we associate the 
role to the agent class to which it belongs; in our case study the  Reviewer role be-
longs to the Reviewer agent class (Reviewer/Reviewer). In the second section we 
need to represent the state description, for that reason we make use of the expression 
REVIEWER=(ReceivePaper.ReviewPaper.SendReview)maximum_number (Reviewer role 

Fig. 6.  Representing the Interactions between Agents 



186 J.C. García-Ojeda, A.E. Arenas, and J. de Jesús Pérez-Alcázar 

liveness property). In the third 
section we define the actions 
that the agent or role must 
take; in our case, we can notice 
that Reviewer role has to per-
form the ReviewPaper activity 
which is only performed when 
PC-Chair requests the revision 
of a paper; then the action is 
defined as ReviewPaper (no-
tice that this action is the activ-
ity that was modelled in the 
Roles model) and its type is 
<<reactive>>. In the fourth 
section the methods are de-
fined; we have defined set-
FullPaper and fillFormReview, 
as methods that can be used by 
other roles or agents in execu-
tion time. In the fifth section 
the capabilities of the role are 
specified; we have defined 
three general features in our 
Reviewer role: (i)Capabilities: 
knowledge about the papers’ topic, (ii) Service Description: Receive Paper, Review 
paper and Send Review Forms (Notice that this feature is similar in the role schema 
proposed in Gaia in the protocol and activities section) and (iii) Supported Protocols: 
ReceivePaper and SendReview. In the sixth section we have defined two restrictions: 
one of social type and another of variable type, the first is related to the group to 
which the role or agent belongs, and the second to internal control of the role or agent. 
In the last section we have modelled all the internal agent processing. We can notice 
that the Reviewer role participates in two protocols called ReviewPaper and SendRe-
viewForm, likewise the types of message that it can transmit (Agree, Refuse and Re-
quest) and the ones that can receive (Request and Agree). An important aspect when 
modelling this section is the Agent-Head-Automata that can be modelled with the 
third layer of AIP. In our case, we have modelled the internal processing of the  
Reviewer role using an activities diagram, and the states by which the role transits 
together with the messages that it has to receive or send according to the states or 
activities to perform. It is worth noticing that these activities or internal processing 
derive from Gaia’s model of services.  

4.3   Representing the Organisational Structure 

As it can be noted in Figure 9, our MAS is formed by a central structure called group, 
which is composed by the Author, Pc-Chair, Reviewer and Publisher agents; besides 
the agents are related to the roles they can play (i.e. PC-Chair plays ReviewCatcher and 
ReviewCollector, see [18], p 358) and the environment where it exists. The model thus 

Fig. 7. Roles and Service Models Generated 



 Paving the Way for Implementing Multiagent Systems 187 

presented may be considered as a pattern in the modelling of the organizational struc-
ture of any MAS (taking into consideration the protocols and organisationals rules). 

 

Fig. 8. Extended View of an Agent Model 

 

Fig. 9. Representing the Organisational Structure of the MAS 

5   Conclusions and Future Work 

Gaia is an agent-oriented methodology gaining acceptance in the agent community. 
This paper has shown how to further refine a Gaia design with extensions to UML. 
The main motivation for this work is to obtain a more concrete design by applying 



188 J.C. García-Ojeda, A.E. Arenas, and J. de Jesús Pérez-Alcázar 

techniques of UML, a standard de-facto. The refinement process consists of three 
steps, taking as input the models generated in Gaia design phase (both Architectural 
and Detailed) In the first  step we refine the interaction model (from architectural 
design phase) making use of the first two layers of the AIP, in order to have a deeper 
view on the interaction among agents as well as their communication protocols. Next, 
we refine the roles and service model (from architectural and detailed design phase 
respectively) by means of the integration of the layer three of AIP and the extend 
Class Diagrams. Finally, the agent and structural organisational models are refined 
with the Aalaadin model, resulting in a detailed description of the agent organisation 
structure (integrating all the models generated in Gaia design phase).  

Several works have proposed extensions to Gaia. For instance, the ROADMAP[10] 
methodology extends Gaia by adding some models to capture the system require-
ments and to represent the environment, agent knowledge or social aspect of the 
MAS. In [1, 6], Arenas et al combine the three layers of the AIP with Gaia, showing 
how the first two layers of the AIP help in having a deeper view of the interaction 
among agents and their communication protocols, and the third layer results in a de-
tailed description of the internal process of each agent. In [3, 4], Cernuzzi et al. have 
proposed an integration of Gaia with AUML, focusing on how Gaia interaction model 
could be effectively combined with AUML (AIP’s first layer). In [3, 4], the authors 
mentioned that some aspects such as agent instantiation, message interactions, and 
agent interactivity have not been tackled by previous work. This remarks has inspired 
us to investigate the integration of AUML with the Aalaadin model and ECD.  

Summarising, the advantages of integrating Gaia with AUML using our approach 
are: (i) it adds to the methodology a modelling technique based on an standard de 
facto as UML, this fact could make Gaia more attractive to the industry; (ii) the inter-
action model proposed by Gaia is quite abstract, this can be improved by using the 
first and second layers of AIP; (iii) the combination of AIP’s third layer with  ECD 
results in a detailed description of the internal composition of each agent; including 
agent instantiation, state description, and  interaction description in one coherent 
block as an extension of the classical UML class diagram; (iv) finally, the inclusion of 
the Aalaadin model and its extensions allows us to have a better description of the 
organisational structures.  

As future work, we intend to develop a CASE-Tool for support the work presented 
here, integrating Gaia and UML features, with the aim to allow a stronger interaction 
between the industry and Gaia.  

References 

1. A. E. Arenas, J. C. García-Ojeda, and J. J. Pérez-Alcázar. On Combining Organizational 
Modelling and Graphical Languages for the Development of Multiagent Systems. Journal 
of Integrated Computer-Aided Engineering, 11(2):151–163, 2004. 

2. B. Bauer. UML Class Diagrams Revisited in the Context of Agent-Based Systems. In Pro-
ceedings of the Second International Workshop on Agent Oriented Software Engineering 
(AOSE’01), 101–118, 2001.  

3. L. Cernuzzi, T. Juan, L. Sterling, and F. Zambonelli. The Gaia Methodology: Basic Con-
cepts and Extensions. In Methodologies and Software Engineering for Agent Systems. 
Kluwer Academic Publisher, 2004. 



 Paving the Way for Implementing Multiagent Systems 189 

4. L. Cernuzzi and F. Zambonelli. Experiencing AUML in the Gaia Methodology. In Pro-
ceedings of the Sixth International Conference on Enterprise Information Systems 
(ICEIS’04), Kluwer Academic Publisher, 283–288, 2004.  

5. J. Ferber, and O. Gutknecht. A Meta-Model for the Analysis and Design of Organizations 
in Multiagent Systems, In Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS'98), IEEE Computer Society, 128-135, 1998. 

6. J. C. García-Ojeda, J.  J. Pérez-Alcázar, and A. E. Arenas. Appliying Gaia and AUML to 
the Selective Dissemination of Information on the Web. In Proceedings of the Fourth 
Iberoamerican Workshop on Multi-Agent Systems at IBERAMIA’02, 2002. 

7. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos and A. Perini. TROPOS: An 
Agent-Oriented Software Development Methodology. In Journal of Autonomous Agents 
and Multi-Agent Systems, Kluwer Academic Publishers, 8(3):203-236,2004. 

8. C. A. Iglesias, M. Garijo, J. C. Gonzalez, and J. R. Velasco. Analysis and Design of Mul-
tiagent Systems using MAS-CommonKADS. In Proceedings of the Fourth Workshop on 
Agents, Technologies, Architectures and Languages(ATAL’97), 313–327, 1997. 

9. N. R. Jennings. On Agent-Based Software Engineering. Artificial Intelligence, 
117(2):277–296, 2000. 

10. T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gaia Methodology for 
Complex Open Systems. In Proceedings of the First International Joint Conference on 
Autonomous Agents and Multi-Agent Systems (AAMAS’02), ACM, 3-10, 2002. 

11. J. Odell, V. D. Parunak, and B. Bauer. Extending UML for Agents. In G. Wagner. In Pro-
ceedings of the Second Workshop on Agent-Oriented Information Systems (AOIS’00), 
iCue Publishing, 3–17, 2000. 

12. J. Odell, V. D. Parunak, and B. Bauer. Representing Agent Interactions Protocols in UML. 
In Proceedings of the First International Workshop on Agent-Oriented Software Engineer-
ing (AOSE’01), Springer Verlag, 121–140, 2001. 

13. OMG. Software Process Engineering Metamodel Specification. (available at 
http://www.omg.org/cgi-bin/apps/doc?formal/05-01-06.pdf), January 2005. 

14. H. V. Parunak, and J. Odell. Representing Social Structures in UML. In Proceedings of 
the Second International Workshop on Agent-Oriented Software Engineering (AOSE’02), 
Springer Verlag, 1–16, 2002. 

15. J. Pavón, and J. Gómez-Sanz. Agent Oriented Software Engineering with INGENIAS. In 
Proceedings of the Third International Central and Eastern European Conference on 
Multi-Agent Systems (CEEMAS’03), Springer Verlag, 394-403, 2003. 

16. F. Zambonelli, N. Jennings, A. Omicini, and M. Wooldridge. Coordination of Internet 
Agents, In Agent-Oriented Software Engineering for Internet Applications. Springer-
Verlag, 2001. 

17. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organizational Abstractions for the 
Analysis and Design of Multi-Agent Systems In Agent-Oriented Software Engineering. 
Springer-Verlag, 2001. 

18. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems: The 
Gaia Methodology. ACM Transactions on Software Engineering and Methodology, 
12(3):317–370, 2003. 



Applying Multi-agent Concepts to
Dynamic Plug-In Architectures

Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI/

Abstract. In this work we present the basic concepts for a dynamic
plug-in-based software architecture using concepts from the Petri net-
based MAS framework Mulan. By transferring the concepts of agent-
orientation to a plug-in-based architecture we are able to design our
application and the plug-in-based system on an abstract level. More-
over, general problems that evolve from a highly dynamic and config-
urable architecture have been solved by basing the conceptual design on
multi-agent principles. In this paper we discuss the general properties of
extensible systems and the benefits that can be achieved when applying
the multi-agent view to their architecture.

In addition to the conceptual modeling of such architectures, we pro-
vide a practical example where the concept has been successfully applied
in the development of the latest release of Renew. Through the intro-
duction of the multi-agent concepts, the new architecture is now – at
runtime – dynamically extensible by registering plug-ins with the man-
agement system.

Keywords: Components, dynamic software architectures, high-level
Petri nets, modeling, Mulan, multi-agent systems, nets-within-nets,
plug-in architectures, reference nets, Renew.

1 Introduction

Today’s application software has to be adaptable, configurable and customizable
to fulfill the needs of the users. Many system developers approach this challenge
by introducing extensible systems as plug-in systems to extend or alter the func-
tionality of these applications. Some systems are augmented with simple plug-in
mechanisms, others reorganize the architecture of the application towards a sys-
tem that consists exclusively of plug-ins. While applications of the first category
usually resort to simple designs with extremely restrained possibilities of ex-
tending, the applications of the second category have to face many challenges to
assure consistency and interoperability of plug-in components.

Plug-in frameworks like those of Eclipse [5] or NetBeans [12] provide elab-
orated plug-in features in their practical environment. However, a conceptual
model of a plug-in is not discussed in this context.

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 190–204, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 191

By examining plug-in systems from the agent-oriented perspective, restric-
tions and problems of current systems can be discovered and attacked. Moreover,
by basing the architectures of plug-in systems on agent-oriented principles, the
designs of the application architectures adopt the advantages of multi-agent sys-
tems. These advantages are the handling of problems such as concurrency, con-
flicting functionality, service dependencies, locality and privacy, compatibility
and dynamic extensibility. Challenges of plug-in systems can then be addressed
in a more general way in Multi-agent systems. One of the foremost benefits is,
that the plug-in architecture becomes dynamically extensible i.e. functionality
can be altered, added or removed at runtime without the need to restart the
application. For example, Bergenti and Huhns discuss and formally define the
aspect of reusability when using agents as components in [1, pp. 19–32].

In this paper we benefit from the expressiveness of our Petri net based
model of multi-agent systems. Based on agent-oriented Petri nets [8] and the
FIPA-compliant MAS framework Capa (see [4]) we present a conceptual model
for plug-in based systems. The idea is to structure and improve such systems
using important concepts from the agent-oriented area, along with a visual
representation.

In the following Section 2 we give an introduction for the Petri net-based
multi-agent reference architecture Mulan. Mulan, the conceptual basis for
Capa, uses the formalism of reference nets, a high-level Petri net formalism
to handle concurrency, distributedness and localities. The focus lies on the con-
cepts in the MAS, which are used in the design of our concept model of a general
plug-in architecture. In Section 3 we present our agent-oriented concept model
for a dynamic plug-in architecture. After a short sketch of a specialized concept
model for a plug-in system in Section 4, we discuss in Section 5 the realization
of the concept model in Renew and discuss some pragmatic design decisions.

Note that the Petri net IDE Renew is portraited here in two different ways.
First, it is used to act as modeling tool and virtual engine for the abstract
and the functional Mulan models. Second, it is used as the application, which
architecture is examined and presented as a realization of the concept model of a
general plug-in architecture. A similar manifold object of discussion is the agent
platform Capa which is realized as a plug-in for Renew, but also used in the
development of the concept model.

2 Agent System Architecture

In this section we will introduce the agent system architecture Mulan together
with the Capa extension. Mulan is implemented using the reference net for-
malism (and Java) so we start with an overview on reference nets.

2.1 Reference Nets

Reference nets [9] are expressive high-level Petri nets that allow nets to be nested
within nets in dynamical structures (nets-within-nets [17]). In contrast to ordi-
nary Petri nets, where tokens are passive elements, tokens in nets-within-nets



192 L. Cabac et al.

are active elements, i.e. Petri nets. In general we distinguish between two differ-
ent kinds of token semantics: value semantics and reference semantics. In value
semantics tokens can be seen as direct representations of nets. This allows for
nested nets that are structured in a hierarchical order because nets can only be
located at one location. In reference semantics arbitrary structures of net-nesting
can be achieved because tokens represent references to nets. These structures can
be hierarchical, acyclic or even cyclic.

Reference nets may be modelled and executed using the Petri net-IDE Re-
new [10] (see Section 5).

Reference nets are object-oriented nets. Similar to objects in object-oriented
programming languages, where objects are instantiations of classes, net instances
are instantiations of net templates. Net templates define the structure and be-
havior of nets just like classes define the structure and methods of objects. While
the net instance has a marking that determines its status, the net template deter-
mines only the behavior and initial marking that is common to all net instances
of one type.

Communication between different nets (net instances) is possible via synchro-
nous channels. Synchronous channels resemble method calls in object-oriented
programming languages, but they are more powerful. They temporarily fuse two
(or more) transitions and allow the passing of arguments in either directions.
Furthermore, the enabledness of the channel is determined by all participating
transitions, not only by one caller.

2.2 The Multi-Agent System Mulan

Today, agents and multi-agent systems (MAS) are one of the most important
structuring concepts for complex software systems. By including attributes like
autonomy, cooperation, adaptability and mobility, agents go well beyond the
concept of objects and object-oriented software development.

The multi-agent system architecture Mulan [8] is based on the nets-within-
nets paradigm, which is used to describe the natural hierarchies in an agent
system. Mulan is implemented in reference nets using Renew [10]. Mulan
has the general structure as depicted in Figure 1: Each box describes one level

add
re pro

protocols

platforms

communication
     structure

p3

p2

p1

a

pi

kb

p

send msgreceive msg

in

external
communication

internal
communication

remove

agents

protocols in
conversations

knowledge base

outremove

p4

O
MO

Z
start

subcall

stop

process

out

in

agent platform agent protocolmulti agent system

Fig. 1. Agent system as nets-within-nets



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 193

of abstraction in terms of the net hierarchy. Each upper level net contains net
tokens, whose structures are made visible by the ZOOM lines.1 The figure shows
a simplified version of Mulan, since for example several inscriptions and all
synchronous channels are omitted. Nevertheless, Mulan is an executable model.
In Figure 1 each box can be seen as a specific view on the multi-agent system.

The Multi-Agent System View. The net in the far left of Figure 1 describes
an agent system, whose places contain agent platforms as tokens. The transitions
describe communication or mobility channels that build up the infrastructure.
The multi-agent system net shown in the figure is just an illustrating example,
the number of places and transitions or the interconnections have no further
meaning.

The Platform View. By zooming into the platform token on place p1, the
structure of a platform becomes visible, shown in the second box. The central
place agents hosts all agents that currently reside on this platform. Each plat-
form offers services to the agents, some of which are indicated in the figure.2
Agents can be created (transition add) or destroyed (transition remove). Agents
can communicate by message exchange. Two agents of the same platform can
communicate by the transition internal communication, which binds two agents,
the sender and the receiver, to pass one message over a synchronous channel.
Transition external communication only binds one agent, since the other agent
is bound on a second platform somewhere else in the agent system. Also mobil-
ity facilities are provided on a platform: agents can leave the platform (via the
transition new) or enter the platform (via the transition destroy).

In the diagram some details of the platform are hidden for the reason of
simplicity. An important feature that cannot be seen is that a platform may
itself act as an agent. By this means, arbitrary hierarchies of agents and platforms
are possible, in particular a platform is able to encapsulate its agents from the
outside world.

The Agent View. An agent is a message processing entity. It must be able
to receive messages, possibly process them and generate messages of its own.
Each agent consists of exactly one agent net that is its interface to the outside
world (third box in Figure 1) and an arbitrary number of protocols (last box)
defining its behavior. The agent may exchange messages with other agents via the
platform. This is done using the transitions receive message and send message.
These two transitions are the only interconnection of the agent to the rest of
the (multi-) agent system, so the agent is a strongly encapsulated entity. Please
note, that communication of agents is asynchronous even though synchronous
channels are utilized for this cause.

The central point of activity of such an agent is the selection of protocols
and therewith the commencement of conversations. The protocol selection can
1 This zooming into net tokens should not to be confused with place refinement.
2 Note that only mandatory services are mentioned here. A typical platform will offer

more and specialized services, for example implemented by special service agents.



194 L. Cabac et al.

basically be performed pro-actively (the agent itself starts a conversation) or re-
actively (protocol selection based on a conversation activated by another agent).
In the case of the pro-active protocol selection, the place knowledge base is the
main enabling condition, the protocols are a side condition.

The Interaction View. The activities of an agent are modeled as protocol
Petri nets (or short: protocols) – an example is given in the far right box of
the figure. The variety of protocols ranges from simple linear step-by-step plans
to complex dynamic workflows. Petri nets are well suited for the modeling of
procedures or process flows, which can be seen by their wide-spread use in the
area of (business) process modeling [18].

2.3 Agents as Platforms

As stated before, platforms in a full featured Mulan system may act like agents
and encapsulate the hosted agents. It is therefore no problem to implement e.g. a
holonic MAS using Mulan agents. The logical consequence of this approach is
to exclusively use these “platform agents” as agents in the MAS. Following this
idea leads to a dynamically reconfigurable MAS structure, i.e. a new hierarchy
level may be introduced at run-time simply by creating a new (platform) agent
and migrating other agents into it.

int. comm.

KB

add (re) add (pro)

ext.comm.
send msg

ext. comm.
receive msg.

remove

agents

Fig. 2. Agent as a platform

Figure 2 shows an agent that may serve as a platform for other agents. Instead
of protocol nets, agents serve as description of the platform agent’s behavior.
The internal agents are depicted in an abstract way. Each of them may be a
full-featured (platform) agent.

2.4 Capa

Capa (Concurrent Agent Platform Architecture) [4] is a partial re-implementa-
tion of the Mulan framework. Capa ensures the compatibility of the Mulan
framework to the FIPA specifications [6]. The internal structure of the agents
and the possibilities sketched above are not changed by Capa.

Part of the compliance to the FIPA specifications concerns the management
of an agent platform. In particular, an agent management system (AMS) and a



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 195

directory facilitator (DF) have to be provided. This is done by placing special
agents on each platform that offer the mandatory services. Additional services
may be offered by agents residing on the platform. Agents migrating to a plat-
form may offer new services previously lacking on this platform.

This migration idea may serve as a basis for the conceptualization of plug-in
architectures. This will be demonstrated in the next chapter.

3 Concept Model for a Dynamic Plug-In Architecture

A dynamic architecture is characterized by extensibility and adaptability. We
sketch some general concepts of plug-in systems and map these concepts to
agent-oriented concepts. In this work we conceive extensibility as a recursive
feature. We apply the idea of nested platform agents to our concept, which leads
to recursive extensibility. A system is extended by components, which again are
extended by plug-ins, which are (specialized) components. Finally, we show that
the recursive agent-oriented plug-in model is a full-fledged plug-in system that
allows for dynamic configuration. The realization of this concept in Renew 2.0
is described in Section 5.

3.1 Extensibility

To construct extensible systems it is useful to get a notion of what is meant by
extensibility. In software engineering, components have been introduced as units
of extensibility. Sametinger gives a definition of a component:

Definition 1. Component [13, p. 68]
Reusable software components are self-contained, clearly identifiable artifacts
that describe and/or perform specific functions and have clear interfaces, ap-
propriate documentation and a defined reuse status.

Likewise, extensibility in the agent-oriented view is a first-order concept. An
agent system is extended by creating or migrating agents onto a platform. These
agents provide additional functionality to all other agents in the system as long
as they exist within the system. Removing the agent subtracts its provided
functionality from the system.

Obviously we can map the concepts of components on the concepts of agents.
Agents are encapsulated (self-contained, clearly identifiable) artifacts. They have
the capability of action and reaction (specific functions). In FIPA-compliant
platforms, the service directory, communication languages and ontologies provide
clear interfaces and documentation. Mulan agents are composed of reusable
protocols.

The platform net in Figure 1 visualizes the idea of extensibility: Net tokens
that provide functionality – agents – can be put onto and removed from the
central place of this net. These primitive platform services provide the component
management of the software system. In the platform net of Figure 1 we are
able to say that the system is extensible on one level. This notion of one-level



196 L. Cabac et al.

extensibility [15] expresses the fact that new components can be introduced to the
system but these components can not be extended themselves. The possibility to
extend the components leads us to a notion for a recursively extensible system.

The extended agent model shown in Figure 2 already provides recursive ex-
tensibility. Every agent can serve as a platform for an arbitrary number of agents,
which can be platforms again. Components that recursively extend other com-
ponents are plug-ins. We take the following definition from Schumacher:

Definition 2. Plug-in [14, p. 34]
Plug-ins are components that change the behavior of one or more other compo-
nents in the system. This is done by using the provided interface of the compo-
nents.

Up to now, we have a hierarchical structure of the system. The extension relation
is strongly tree-structured. The use of reference semantics enables us to relax this
condition. With reference nets we would be able to create arbitrary structured
extension relations, e.g. acyclic graphs. This would also be desirable for a plug-in
system, however, as long as we regard the containment relation of agents within
agents as a physical relationship, one agent cannot be located at two platforms
at the same time. Nevertheless, the logical platform concept allows an agent to
be residing at multiple platforms. Von Lüde et. al. [16] stress the necessity of the
use of multiple memberships of agents in platforms from a sociological viewpoint
in analogy to the membership of humans in communities.

3.2 Communication Between Components

In a multi-agent system, communication between agents is always carried out
through messages. These are transported horizontally by the platforms – this is
a basic platform service. In addition, the nesting of agent platforms introduces
vertical message passing as depicted in Figure 2 (ext. comm.).

In fact, the communication services provided by each platform allow us to see
the functionality of all agents inside that platform as functionality of that plat-
form, including the management services of that platform and its children. Thus,
the distinction between management and functionality that we made earlier can
be dropped now.

One of the advantages of the component-orientation is the re-usability (cf. [13,
p. 68]). This means for instance that the functionality that is offered by the plug-
in can be utilized by all components that need this functionality. Therefore, a
component has to be able to address another component / plug-in. For this we
need the notion of services that are offered by components. Services have to
be published and made accessible for other components. The service directory
provided by the directory facilitator (DF) of FIPA-compliant platforms serves
that purpose. If the DF is modeled as an agent, we can provide its service at any
platform in the hierarchy. However, for a software system it is more practical to
have one global service directory. Therefore, we require a DF only at the top-level
platform. Likewise, we demand for our system that every component (agent) is a
direct member of the top level platform. Although this is an enormous restriction



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 197

of our general model it simplifies the management of the plug-in system. If each
extensible component declares its extension management interface as a public
accessible service, potential plug-ins can query the platform for that service and
register themselves directly.

We enforce a life cycle for all plug-ins within the platform. The communica-
tion protocols induced by the life cycle enables the plug-in/́ágent to participate
during migration by reacting to migration requests issued by third parties. Also
the exact time of extension registration and configuration is determined by the
life cycle.

The participation of a plug-in can be realized by simply adding a synchronous
channel request to the add and remove transitions of a platform. These channel
requests must be confirmed by the added / removed plug-ins. This ensures that
the services of a plug-in cannot be used by components before the plug-in has
been properly initialized.

It should be noted that each containment relationship is accompanied by its
own life cycle. In this view we can map the agent life cycle, as standardized by
the FIPA [7], onto the life cycle of the plug-in on the top-level platform. The life
cycles in each containing sub-level should be handled by interaction protocols,
defined by the extended component.

A multi-agent system already defines per definition an extensible system.
By mapping some of the multi-agents concepts back to the model of a plug-in
architecture we are able to design a system that offers extensibility as first-order
concept. In addition, an agent-based view also takes into account that extensible
systems have to deal with conflicts, concurrency, redundant functionality and
also missing functionality. We have shown in this section that a concept model
for a dynamic plug-in system architecture can be developed on the basis of
multi-agent principles. We have achieved a formalization of plug-in systems that
enables plug-ins to be loaded dynamically at runtime. In the following section
we demonstrate the feasibility of our concepts in a real-world example.

4 Specialized Plug-In Model

In [2], we explain how we model the Renew plug-in system using reference nets.
Although that model uses different notations and communication mechanisms,
it is rather similar to the one presented in the previous section. We refer to it
because it is more visual and helps to understand the agent based model. Also
there exists an executable version of the model that proves the feasability of our
concepts.

4.1 Reference Net Based Model of the Plug-In System

We start with a simple abstract reference net model of extensibility, as shown
in Figure 3. The upper grey colored elements of the net define the extension
management part of the system. The net shows the system as reference net in
which the central place acts as the container for extensions. Functionality is



198 L. Cabac et al.

add functionality remove functionality

provide functionality
by using functionality

provide
functionality

f

f

f

Fig. 3. Extensibility (from [2])

added to the system by a synchronous channel at the transition labeled add
functionality and then put on the central container place. Functionality is
removed by the transition labeled remove functionality.

The white transitions in the lower part are representatives for the available
domain-specific functionality of the system. Some of the functionality may incor-
porate the functionality provided by extensions that lie in the central container
place. All elements f that are extending the system are net instances again,
according to the nets-within-nets paradigm.

In the paper [2], we refine the abstract model further until we obtain exe-
cutable reference nets, thereby introducing all concepts explained in Section 3
like recursive extensibility, a service directory, a component lifecycle and a top-
level net called PluginManager. The refined model of a component is shown in
Figure 4.

p p

p

:funcA()

pmspms

:funcB()
p:func1()

:init(pms)

:funcC()
pms:getService("func2", p)

p:func2()

:getServices(sd)

sd

:add(p)
p p

Service
Descriptions

p p
:remove(p)p:configure() p:disconnect()

pms

:shutdown()

Fig. 4. Refined component model (from [2])

4.2 Mapping Between Both Models

A mapping between the agent-based model in this paper and the net model
in [2] is established easily. The agent platform of the Mulan model (see Fig-
ure 1) has obviously the same add and remove channels as the basic concept of
extensibility shown in Figure 3. The internal and external communication chan-
nels of the platform are not needed in the plug-in system because nested plug-
ins use vertical communication. To allow horizontal communication, the plug-in



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 199

manager provides the service directory where plug-ins can obtain direct refer-
ences to other plug-ins. In the agent system, these references are agent-identifiers
and reference-based horizontal communication is the normal case.

The agent net in Figure 2 is more generic than the component net, allowing
any message to enter and leave the agent, while the plug-in net only accepts other
plug-ins. The init and shutdown channels of the component net implement
the life-cycle of the plug-in inside the plug-in management system. In the FIPA
architecture, the life-cycle is implemented by message-based communication with
the AMS agent, adhering to standardized interaction protocols. Analogously, the
service lookup channels in the plug-in model are mapped onto message-based
communication with the DF agent.

In the reference net model of plug-ins, we use white transitions to indicate
domain-specific functionality of the plug-in. Such functionality is not directly
visible in the agent net of the agent model because a Mulan agent implements
such functionality by protocol nets on its lower layer.

The similarities between both models are not surprising given the fact that
we already thought of an agent-based design when we designed the reference net-
based model. It should be noted that the agent model of the plug-in system is
more generic and thus more flexible, while the reference net model is specialized
for the intended purpose. Therefore, the reference net model is more visual than
the agent model, the nets show more application-specific details that are hidden
in nested, dynamically changable protocols in the agent model.

Both models handle the same set of concepts and use similar means to acheive
the intended functionality. Besides the different notations and message passing
mechanisms, both models are the same. Both models are in fact agent-based
models. They use the key concepts of multi-agent system, namely encapsulation,
autonomy, cooperation, adaptability and mobility (although the latter is not
discussed extensively in this paper, plug-ins can surely move from one container
to another in our reference net model). But both models also restrict features
like autonomy at a certain level in order to obtain a predictable, well-organized
software system.

5 Renew Plug-In Architecture

We use our tool Renew for a case study where the plug-in concept is applied.
Renew (the Reference Net Workshop) is an open source IDE for Petri nets [10].
Its main functionality is provided by a simulation engine, which is accompanied
by a graphical editor for Petri nets. The transformation from graphical nets to
simulation code is realized as an abstract compiler interface so that the tool can
be extended to handle arbitrary Petri net formalisms. The tool is shipped with
a reference net compiler that provides the formalism sketched in Section 2.1.

The Renew tool has grown enormously since its first release in 1999, and
many application-specific extensions have been created in the meantime. These
extensions, like a workflow engine, an agent platform or an editor for UML
interaction diagrams, are themselves already grown to applications with their
own extensions. Up to Renew 1.6, all extensions were compiled into one large



200 L. Cabac et al.

application. Some sets of functionality could be selected by specifying a mode
at startup, but mode switching at runtime was not possible. However, a user
would normally not need all extensions at the same time, but possibly in arbi-
trary combinations. Altogether, Renew is very well suited as a case study for a
dynamic, recursive plug-in system.

The plug-in system along with the decomposed application has been released
as Renew 2.0 and presented from the user’s point of view in [11]. In this section
we want to show how the concepts developed in Section 3 are applied to the
Renew plug-in system. Please note that our concepts have been modeled with
the reference net formalism provided by Renew, so that we have a cyclic relation
between model and tool.

5.1 Functional Decomposition

From the user’s point of view, Renew comprises two main components: the
simulation engine and the graphical net editor. Already in the first release it has
been stated that Renew supports multiple formalisms, since new formalisms
could easily be added by implementing the appropriate compiler. Clearly it is
desirable to separate each formalism into its own plug-in.

Figure 5 shows some plug-ins of the current decomposition.3 At the bottom,
there are some unnamed class libraries that are used by many or all plug-ins.
Some of these libraries are integrated into the application as a plug-in of their
own, but they do not provide any extension interfaces. At the right there is the
main plug-in of Renew, the simulation engine.

The graphical editor comprises two plug-ins: JHotDraw and Gui. The Gui
plug-in enhances the JHotDraw application by Petri net specific figures and
control commands for the token game.

The management of formalisms is divided into two plug-ins, and an analogous
partitioning is suggested for each individual formalism as well as each other
extension to the simulation engine: One plug-in extends the simulation engine
and/or formalism management components. It provides the pure functionality
extension without graphical adornments, e.g. the formalism management, or
a compiler. The second component is a plug-in of the editor component and
provides additional menu entries, graphical representations of net structure and
tokens, formalism-specific tools, etc. to the user.

The two white plug-ins show the integration of the agent platform Capa into
the system. It extends the simulation engine to set up additional services when
a simulation is started. Capa is also a plug-in of the Gui plug-in, it adds some
menus and graphical adornments for agent nets. The NetComponents plug-in
extends the graphical editor by toolbars of commonly used net patterns. Such
a toolbar is defined by the MulanComponents plug-in, these patterns have been
presented in [3].
3 It has to be noted that the decomposition of an existing application with approxi-

mately 900 classes in 30 packages into several components is not unique and therefore
some functionalities might be reassigned between components in future releases. The
refactoring of Renew is still work-in-progress.



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 201

JHotDraw
Graph editor

Gui
Petri net support Formalism

Simulator

Editor extension

Common libraries, plug-in management system

FormalismGui
Formalism

choice menu

Management 
(and JavaNet formalism)

Net
Components

Engine

Legend:

uses functionality

is a plug-in of

division between
basic and graphic
components

Protocol net patterns
Capa

FIPA-compliant
agent platform

Mulan
Components

Fig. 5. Plug-ins and their dependencies as of Renew 2.0

5.2 Applied Concepts

The Renew plug-in system is implemented along the concepts developed in
Section 3. In the system there exists a PluginManager that acts like the platform
net shown in Figure 1. There is no distinction between components and plug-ins
because any component may also act as a plug-in to any other component.

Plug-ins can enter the system in two ways. At startup, a plug-in finder looks
at specific locations for pre-installed plug-ins, and during runtime plug-ins can be
loaded dynamically by supplying an URL to the plug-in loader. Analogously, all
plug-ins are unloaded when the system shuts down. The removal of components
can also be initiated at runtime through an unload command.

The maintenance of the service directory is automated: Each plug-in is ac-
companied by a description of its provided services, the PluginManager main-
tains the directory during the initialization and shutdown transitions.

Optionally, the PluginManager may enforce dependencies between plug-
ins. If a plug-in is also accompanied by a description of required services, the
PluginManager will not include it in the system unless the required services are
available. This mechanism delegates some commonly needed autonomous deci-
sions of the plug-in to the PluginManager to simplify the plug-in development
process. Likewise, the unloading of a plug-in is prohibited as long as another
plug-in requires a service provided by the plug-in to remove. Of course, this
dependency enforcement only works for static service requirements—but this is
exactly what a Java programmer needs to ensure the availability of required
class definitions.

Recursive extensibility (as introduced in Section 3.1) is included in the system
as a chain of component extensions. An example is the Capa plug-in, which



202 L. Cabac et al.

extends the Gui plug-in to enhance the graphical simulation feedback. The Gui
plug-in in turn extends the simulation engine component to monitor and control
the simulation. Since the Capa plug-in additionally extends the Simulator plug-
in to start up platform services along with the simulation, we also have an
example for the extension of multiple components by one plug-in.

We are able to use the refined nets as shown in Figure 4 as implementation,
if we use the Renew simulation engine as basic runtime environment. Since
the reference net based model is a simplified version of the agent based model
that has been developed in this paper, we have shown the executability of our
agent-based concept model.

The side condition that the plug-in system should not reduce the application’s
execution speed necessitated some pragmatic solutions. The concessions we made
are restricted to the Java implementation of the plug-in system, the precise and
concurrent Petri net semantics of the model in Sections 3 and 4 are not weakened.

6 Conclusion

Mulan is an expressive modeling framework, based on the reference net formal-
ism, that is capable of modeling dynamic system architectures. Models that are
built with Mulan agents can profit from the multi-agent architecture, which
among other benefits provide the ability to construct arbitrary and dynamic
structures. The agent/platform model allows to express extensibility and de-
pendency relationships of system components. Furthermore, the possibility to
concretize the model by refinement leading to a functional model is of great
advantage when designing, discussing, prototyping and (re-)designing a system.

The presented generic – reference net multi-agent based – concept model
for a dynamic architecture proves to be an approach that is both, sufficiently
abstract for expressive modeling and sufficiently concrete to be able to transfer it
to a real-world application. Moreover, it is the only modeling technique – to our
knowledge – that is able to represent a flexible, adaptable and dynamic design of
an application architecture. The level of abstractness is a benefit to the general
design decisions. The level of concreteness helps the architect and developer to
experiment and evaluate the model prior to the implementation.

The concept model comes with an explicit top-level net, the platform respec-
tively plug-in management system. Furthermore, the similarity of structures on
the top level and all other levels allows for the introduction of independent
service and extension management units on every level. Our model is capable
of describing a pluggable plug-in mechanism. Such a model is useful to merge
multiple systems with independent management architectures.

The Petri net IDE Renew has undergone major refactorings and this process
is still in progress. However, the preliminary results are promising. It is safe to
say that the decision to refactor the system was the right way to go. We achieved
a lean and flexible plug-in mechanism that permits arbitrarily nested plug-ins.

Beside just another plug-in mechanism with specific features that are very
valuable in the context of our research and development, a visual modeling con-
cept for plug-ins has been presented. In fact, currently well-established modeling



Applying Multi-agent Concepts to Dynamic Plug-In Architectures 203

techniques are highly elaborated and powerful but also oriented towards static
architecture design and very resistant against paradigm shifts. In order to im-
prove modern architecture design many dynamic aspects have to be included
as first-order concepts. Extensibility is one of them. Our model can cope with
extensibility because it roots as well in the multi-agent as in the nets-within-nets
paradigm.

We are looking forward to unleashing the full power of our architecture model
by supporting an interleaved multi-formalism simulation support. Thereby, sev-
eral advantages of different formalisms can be combined to the advantage of the
designed model.

References

1. Federico Bergenti, Marie Gleizes-Pierre, and Franco Zambonelli, editors. Method-
ologies and software engineering for agent systems: the agent-oriented software
engineering handbook. Multiagent systems, artificial societies, and simulated orga-
nizations. Kluwer Academic, Boston [u.a.], 2004.

2. Lawrence Cabac, Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Modeling
dynamic architectures using nets-within-nets. In Gianfranco Ciardo and Philippe
Darondeau, editors, Applications and Theory of Petri Nets 2005: 26th International
Conference, ICATPN 2005, Miami, USA, June 2005. Proceedings, volume 3536 of
LNCS, pages 148–167, Berlin, 2005. Springer Verlag.

3. Lawrence Cabac, Daniel Moldt, and Heiko Rölke. A proposal for structuring Petri
net-based agent interaction protocols. In W.M.P. van der Aalst and E. Best, editors,
Lecture Notes in Computer Science: 24th International Conference on Application
and Theory of Petri Nets, ICATPN 2003, Netherlands, Eindhoven, volume 2679,
pages 102–120, Berlin: Springer, June 2003.

4. M. Duvigneau, D. Moldt, and H. Rölke. Concurrent architecture for a multi-agent
platform. In Fausto Giunchiglia, James Odell, and Gerhard Weiß, editors, Third
International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002, Revised Papers
and Invited Contributions, volume 2585 of LNCS, Berlin, 2003. Springer Verlag.

5. Eclipse Homepage. http://www.eclipse.org, 2005.
6. FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org, October

2005.
7. Foundation for Intelligent Physical Agents. FIPA Agent Management Spec., 2005.
8. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling the structure and

behaviour of Petri net agents. In Proc. of 22nd International Conf. on Applications
and Theory of Petri Nets 2001 (ICATPN 2001) / J.-M. Colom, M. Koutny (Eds.),
Newcastle upon Tyne, UK, pages 224–242. Lecture Notes in Computer Science 2075,
edited by G. Goos, J. Hartmanis and J. van Leuwen, Springer, June 2001.

9. Olaf Kummer. Referenznetze. Logos-Verlag, Berlin, 2002.
10. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew – The Reference

Net Workshop. http://www.renew.de, October 2005. Release 2.0.
11. Olaf Kummer, Frank Wienberg, Michael Duvigneau, Jörn Schumacher, Michael

Köhler, Daniel Moldt, Heiko Rölke, and Rüdiger Valk. An extensible editor and
simulation engine for Petri nets: Renew. In Jordi Cortadella and Wolfgang Reisig,
editors, Applications and Theory of Petri Nets 2004: 25th International Conference,
ICATPN 2004, Bologna, Italy, June 2004. Proceedings, volume 3099 of LNCS,
pages 484–493, Berlin, 2004. Springer Verlag.



204 L. Cabac et al.

12. NetBeans Homepage. http://www.netbeans.com, 2005.
13. J. Sametinger. Software Engineering with Reusable Components. Springer Verlag,

Berlin, 1997.
14. Jörn Schumacher. Eine Plug-in-Architektur für Renew: Konzepte, Methoden, Um-

setzung. Diplomarbeit, University of Hamburg, Department of Computer Science,
October 2003.

15. Clemens Szyperski. Component software: beyond object-oriented programming.
ACM Press books. Addison-Wesley, 2. edition, 2002.

16. R. v. Lüde, D. Moldt, and R. Valk. Sozionik: Modellierung soziologischer Theorie,
volume 2 of Reihe: Wirtschaft – Arbeit – Technik. Lit-Verlag, Münster - Hamburg
- London, 2003.

17. Rüdiger Valk. Petri Nets as Token Objects - An Introduction to Elementary Object
Nets. In J. Desel and M. Silva, editors, 19th International Conference on Appli-
cation and Theory of Petri nets, Lisbon, Portugal, volume 1420 of LNCS, pages
1–25, Berlin, 1998. Springer Verlag.

18. Wil van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business Process
Management: Models, Techniques, and Empirical Studies, volume 1806 of LNCS.
Springer-Verlag Berlin, 2000.



Using the Analytic Hierarchy Process for Evaluating
Multi-Agent System Architecture Candidates

Paul Davidsson, Stefan Johansson, and Mikael Svahnberg

Department of Systems and Software Engineering,
Blekinge Institute of Technology,

Soft Center, 372 25 Ronneby, Sweden
{pdv, sja, msv}@bth.se

Abstract. Although much effort has been spent on suggesting and implementing
new architectures of Multi-Agent Systems (MAS), the evaluation and compari-
son of these has often been done in a rather ad-hoc fashion. We believe that the
time has come to start doing this in a more systematic way using established
methods. For instance, we argue that it is important to evaluate the architec-
ture candidates for a particular application according to several quality attributes
relevant to that application. The architecture that provides the most appropriate
balance between these attributes should then be selected. As a case study we
investigate the problem of load balancing and overload control of Intelligent Net-
works and present four MAS architectures that can be used to handle this task.
We instantiate each of these and define metrics for the selected quality attributes.
The instantiations are studied in simulation experiments and measurements of the
metrics are recorded. The measurements are then analyzed using the Analytic Hi-
erarchy Process, which is a basic approach to select the most suitable alternative
from a number of alternatives evaluated with respect to several criteria. We illus-
trate how such analyzes can be used for deciding which architecture candidate is
the most appropriate in different situations.

1 Introduction

Much effort has been spent on suggesting and implementing new architectures of Multi-
Agent Systems (MAS). However, less work has been done in studying how these archi-
tectures should be evaluated and compared. Most evaluations and comparisons have
been carried out in a quite unstructured way. For instance, when a (group of) research-
er(s) invents a new architecture and applies it to a particular domain and concludes
that it seems to be appropriate for this domain. Often this new architecture is not even
compared to any existing MAS architecture. Also, the selection between candidate ar-
chitectures for a particular application is typically done in a rather ad hoc fashion. We
believe that this area has now reached the level of maturity when it is appropriate to
compare and evaluate MAS architectures in a more systematic manner. We show how
an established method from Management Science can be used to achieve this, e.g., by
taking into account several quality attributes and weighting them according to the re-
quirements of the application at hand.

J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 205–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



206 P. Davidsson, S. Johansson, and M. Svahnberg

Of course, there is no single MAS architecture that is the most suitable for all appli-
cations. Since agent technology has shown to be successful for dynamic resource allo-
cation, e.g. power load management [19] and cellular phone bandwidth allocation [4],
we have chosen a concrete example of this domain for a case study. The purpose of
the case study is to show how the evaluation method can be applied, and the applica-
tion concerns load balancing and overload control in Intelligent Networks, a type of
telecommunication system.

The remainder of this article is organised as follows. In Section 2 we present the
proposed methodology for evaluating software candidates based on a selection of qual-
ity attributes. In Section 3 we present an illustration of the evaluation method. The
methodology is discussed in Section 4, and our results are concluded in Section 5.

2 Software Architecture Evaluation Methodology

Typically, an architecture constitutes a balance between different quality attributes, just
as different applications may require a specific balance or trade-off between quality
attributes. Hence, to select the most suitable architecture for a particular application re-
quire knowledge about relevant attributes and how different MAS architectures support
them.

It is probably impossible to find a MAS architecture that is optimal with respect to
all the attributes relevant for a certain application. Rather, there is typically a trade-
off between these attributes and different architectures balance this trade-off in various
ways. Different applications, on the other hand, often require different balancing of this
trade-off. Thus, in order to choose the right architecture for a particular application,
knowledge about relevant attributes and how different MAS architectures support them
is essential. We thus need a methodology that enables us to assess and compare different
quality attributes with each other, and then compare different architecture candidates
against this blend of quality attributes to assess which candidate that is the most suitable
for the application in question.

The Analytic Hierarchy Process (AHP) [14, 15] is a multi-criteria decision support
method from Management Science [1] that has previously been tried in various and sim-
ilar software engineering settings (e.g. [10, 11, 17, 18]). One of the cornerstones in AHP

is to evaluate a set of alternatives based on a particular blend of criteria, i.e. considering
a specific trade-off situation. The AHP can quantify subjective assessments through a
process of pair-wise comparisons or use data that is e.g. collected from a simulation.
Most uses of AHP focus on the subjective assessments, which are easy to understand and
relatively easy to use to gather data. In this article, however, we use the ability of AHP

to mix subjective assessments and measured data (Saaty uses the expression tangible
data [14, 15]. As we will see, this poses some additional challenges.

The AHP-based architecture evaluation methodology is based on a number of dif-
ferent steps, described below.

The first step in AHP is to set up a hierarchy of the criteria that are being evaluated.
This means that one criterion can be broken down into several sub-criteria, and the
evaluation of the different alternatives is done by weighing in all levels of this decision
support hierarchy. For example, the case study described in Section 3 uses the hierarchy



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 207

Most Appropriate
Architecture Style

Reactivity Load Balancing Fairness
Utilization of
Resources

Responsiveness
Communication

Overhead

0.350
Erlang

0.700
Erlang

0.950
Erlang

1.05
Erlang

1.50
Erlang

2.00
Erlang

0.350
Erlang

0.700
Erlang

0.950
Erlang

1.05
Erlang

1.50
Erlang

2.00
Erlang

0.350
Erlang

0.700
Erlang

0.950
Erlang

1.05
Erlang

1.50
Erlang

2.00
Erlang

Fig. 1. AHP Decision Support Hierarchy

outlined in Fig. 1. In this hierarchy, the top-level goal is Most Appropriate Architec-
tural Candidate. Below this top-node in the hierarchy the different evaluation criteria
are listed, in our case Reactivity, Load Balancing, Fairness, Utilization of Resources,
Responsiveness, and Communication Overhead. For three of these criteria a further spe-
cialization is necessary, namely the expected load of the target system. Hence, under
the criteria Utilization of Resources, Responsiveness, and Communication Overhead,
we add as criteria different levels of offered loads, i.e. 0.350, 0.700, 0.950, 1.05, 1.50,
and 2.00 Erlang1.

The second step is to prioritize the criteria in accordance with how desired they are
for the system. This prioritization is done both for the different loads and the aforemen-
tioned quality attributes, and can be done using e.g. the pair-wise comparison process
provided in the AHP method or by means of any other prioritization method. For future
use, we also at this stage make sure that the priorities on a particular level in the decision
tree are normalized so that they sum up to one.

The third step is to use this decision support hierarchy in conjunction with the dif-
ferent alternatives (the candidate architectures in the particular domain) as follows. For
each of the leaf nodes in the decision support hierarchy we compare each of the candi-
date architectures (described in Section 3) with the other candidate architectures. This
can be done by using a pair-wise comparison process or by providing measured data. In
this study, we use data measured from a simulation (further described below).

When using measured data, it is not advisable to compare different measured data
sets with each other directly, since AHP uses data on a ratio scale (compare e.g. the
ratio between 1001 and 1010, and between 101 and 110). Hence we need to add a
sub-step to ensure that different measurements are comparable. This sub-step consists
of calculating the so called Z-score, Zv , of the measurements v ∈ V . Z-score ensures
that the values are normalized to be distributed around zero [7]. We then ”move” these
values so that the smallest value is zero, and then divide all values with the sum of the
values. Ultimately, the values for a particular measurement are thus normalized so that
their total sum

∑
i∈V Normi = 1. This process enables us to take data using any unit

1 1.0 Erlang correspond to 100% load.



208 P. Davidsson, S. Johansson, and M. Svahnberg

of measurement for each criterion and still compare the candidate architectures over a
number of different criteria. The equations are thus:

Zv = v−μx

σx
where μx and σx are the average value and the

standard deviation of x ∈ V respectively

Mv = Zv + | mini∈V Zi|
Normv = Mv

i∈V Mi

In the fourth and final step the obtained normalized values for the candidate ar-
chitectures are multiplied with the normalized priorities for each level in the decision
support hierarchy (i.e. the quality attributes and the desired offered load). The results
of these multiplications are summed for each candidate architectural style. These sums
represent the suitability of each alternative in relation to the other alternatives. It is thus
not absolute numbers but a ratio compared to the other alternatives that is obtained.

3 Case Study: Load Balancing in Intelligent Networks

One important area in which the dynamic resource allocation problem is present is
telecommunications. The Intelligent Network (IN) concept was developed in order to
enable operators of telecommunication networks to create and maintain new types of
services [12]. Two important entities of an IN are the Service Switching Points (SSPs)
and the Service Control Points (SCPs). The SSPs continuously receive requests of ser-
vices which they cannot serve without the help of the SCPs where all service software
resides. Thus, the SCPs are providers and the SSPs are customers. The SSPs and SCPs
communicate via a signaling network.

It is assumed that a small part of the available bandwidth of this network is reserved
for the resource allocation, i.e., the communication overhead caused by agent commu-
nication (and transportation). It is assumed that all SCPs support the same set of service
classes and that all service requests can be directed by a SSP to any SCP.

3.1 Multi-Agent System Architectures

Common for the four architectures are the use of three different types of agents: quan-
tifiers, allocators, and distributors [2]. A quantifier acts on behalf of a provider of the
resources, an allocator acts on behalf of a customer, and a distributor decides the alloca-
tion of some (or even all) available resources. Although these three types of agents have
similar roles in all the four multi-agent system architectures, the actual implementa-
tion may be rather different (in particular this holds for the distributors). The reason, of
course, is that different system architectures may put different demands on the agents.

The Centralized Auction Architecture. The Centralized Auction (CA) architecture is
an example of a synchronous, centralized architecture. Arvidsson et al. [2] suggested an
approach where the resource allocation is carried out by means of tokens (cf. market-
based control [5]). Each token represents a service request and is consumed when the



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 209

request is accepted by a provider. The three types of agents have the following func-
tionality:

– The quantifiers try to sell the amount of tokens that corresponds to the load that the
provider is able to serve between two auctions.

– The allocators try to buy the amount of tokens corresponding to the resources they
predict their customers will receive during the time to the next auction.

– The distributor receives bids from the quantifiers corresponding the available ca-
pacity at their providers (and the prices), and bids from the allocators with the
expected needs for resources. The distributor then carries out the auction so that the
common good is maximized and sends messages about the result to the involved
agents.

An allocator maintains a pool of tokens for each provider and type of resource. Each
time the allocator feeds a provider with a request for a particular type of resource, one
token is removed from the associated pool. If all pools associated with a particular re-
source type are empty, the customer cannot accept more requests. The pools are refilled
at the auctions that take place at fixed time intervals. In order to avoid spending all
tokens immediately during high loads (which would lead to excessive delays caused
by long queues at the providers), percentage thinning is used so that the probability of
buying a certain type of resource is never higher than the number of remaining tokens
over the number of expected needs during the reminder of the interval. For more details
we refer to Arvidsson et al. [2].

The Hierarchical Auction-Based Architecture. One possible implementation of a
distributed, synchronous system is the hierarchical auction (HA) architecture [19]. The
idea is to partition the set of allocators and to use one distributor for aggregating bids
and holding auctions for each partition. These distributors then connect to higher order
distributors in a hierarchical manner until the total demand can be matched against the
amount of available resources offered by the quantifiers.

The Centralized Leaky Bucket Architecture. The centralized asynchronous archi-
tecture chosen is based upon an asynchronous approach called Leaky bucket [3].

The basic idea is that each provider is equipped with a Leaky bucket that feeds re-
quests to the provider at an even and optimal rate. This is done by inserting the incoming
requests from the customers in a queue in the Leaky bucket. These requests are then de-
queued at a rate corresponding to the maximum capacity of that provider. If the queue
is full, the requests are rejected. To get a centralized architecture, the centralized leaky
bucket (CLB) [9] is introduced, in which there is just one central distributor, common
for all allocators and quantifiers.

The allocators send all requests to this distributor, a common leaky bucket for queu-
ing the requests. It also has a router that continuously dequeues requests at a rate corre-
sponding to the total capacity of the providers and then forwards the requests evenly to
the providers in proportion to their capacity. If the bucket is full, the request is returned
to the allocator where it is rejected.

The Mobile Broker Architecture. As an example of a distributed, asynchronous sys-
tem, a mobile broker (MB) architecture [9] is selected. In this architecture, the distrib-



210 P. Davidsson, S. Johansson, and M. Svahnberg

utors are implemented as mobile brokers (one for each provider) that sequentially visit
each (or a subset) of the allocators offering the resources currently available at the cor-
responding provider.

The allocator then requests the resources it needs for the moment (or rather, predicts
it will need in the near future). If possible, the broker gives this amount of resources to
the allocator. Otherwise, it gives as much as is currently available at the provider.

However, there are two problems with this naive approach:

– If an allocator demands all the available resources, the broker will give them to that
allocator. Thus, the broker will not be able to hand out any more resources for a
while, which would not be fair.

– If the overall load is low or moderate, the allocators are given just as much resources
as they demand. However, if an allocator need slightly more resources than it asked
for (predicted), it will have to turn down requests, even though the provider has lots
of surplus capacity.

In order to solve these problems, a broker mechanism is used that strive to give out all
the available resources and give each allocator resources in proportion to their part of
the total current demand (of the allocators in the route). For the details of this approach
we refer to Johansson et al. [9].

If an allocator is visited by several brokers it may be that some of the brokers’
SCPs are carrying a higher load than the others. To deal with this problem an additional
balancing function is used, making the allocators try to move load from those SCPs with
higher load to those with lower load. The allocator calculates the load of a broker from
the quotient between what it asked for and what is was given by the broker.

3.2 Metrics

It is possible to evaluate MAS architecture candidates with respect to several differ-
ent quality attributes [6]. Some of these attributes are domain independent and some
are specific for each set of applications, e.g., performance-related attributes. We have
identified the following important performance-related attributes to dynamic resource
allocation (together with the metrics collected for each of the quality attributes):

– Reactivity is measured by how fast the MAS is able to re-allocate the available SCP

processing time when there are sudden changes of offered loads by the SSPs. We
measure the number of time steps it takes in the simulation between the rise in
requested load from 0.35 Erlang to 0.70 Erlang and the time step when the offered
load meets the requested load again.

– Load balancing is measured by the standard deviation between the carried load of
the SCPs. We measure the average of the standard deviations for 500 time units.

– Fairness is measured by the standard deviation of accepted calls divided by the
generated calls between the SSPs, i.e., the acceptance rates. The acceptance rates
are measured for all SSPs and the standard deviation of these rates sssp is calculated.
1 − sssp is then finally our fairness measure.

– The utilization of resources is measured by how close the carried load is to the
target load, or offered load if the offered load is less than the target load. SCP load



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 211

levels should be as close to the target load (e.g., 0.9 Erlang, corresponding to 90%
of its capacity) as possible but not exceed it. If an overload situation is approaching,
the SSPs should throttle new requests. This is measured by taking the actual average
carried load of the system.

– Responsiveness is measured by the time it takes for the SSPs to get response from
an SCP.

– Communication overhead is measured by the bandwidth (in terms of number of
messages per time unit) necessary for the MAS to perform the reallocation.

In addition, there are a number of more general software architecture quality at-
tributes [13] that could be addressed, e.g. Robustness and Modifiability. Although these
softer quality factors are important when building real systems, we choose not to in-
clude them in this evaluation, since they are difficult to measure in quantitative terms. It
is, however, possible to mix subjective pair-wise assessments for these quality attributes
with measured data for the aforelisted quality attributes.

3.3 Experimental Setup and Results

The four concrete architectures have been evaluated in simulations consisting of 8 SCPs
and 32 SSPs. Here we use refined data from a large series of simulation experiments
that provides estimations of the performance measures of the architecture candidates.
Complete descriptions of the simulation results can be found in Johansson et al. [9]
where all the technical details of the experiments are thoroughly described. Considering
the limited space available, and as the aim here is to explain the use of an AHP-based
architecture evaluation methodology, we leave out most of the technical details.

We have now constructed a decision support hierarchy (Fig. 1) and defined metrics
for the quality attributes (Section3.2). We have also defined a set of architecture candi-
dates (Section 3.1) to evaluate. We are thus ready to move on with steps two, three and
four of the architecture evaluation methodology.

For step two, we assign priorities to the quality attributes. In this illustration, we
include two different priorities (Table 1) in order to show how changes in priorities
may change the results. It should be noted that these are examples of priorities (just
as the resource allocation in IN is an example of a domain) and as such they are of
course of limited interest in a general meaning. The actual priorities should be set for
the specific system considered. These two cases corresponds to one scenario where the
(potential) system bottleneck lies in the communication network (Pc) and one where

Table 1. Priorities of the various properties in the case of a restricted communication (Pc) and
limited resources (Pu)

Property Reactivity Load Balancing Fairness Utilization Responsiveness Comm.

Priority Pc 0.10 0.10 0.10 0.10 0.10 0.50

Priority Pu 0.20 0.20 0.10 0.30 0.20 0



212 P. Davidsson, S. Johansson, and M. Svahnberg

Table 2. Weights of the six different levels of loads

Load l 0.35 0.70 0.95 1.05 1.50 2.0

Weight wl 0.10 0.15 0.25 0.25 0.15 0.10

Table 3. The raw data v and the z-score normalization, Normv , of each of the properties of the
four architectures

Raw values Normv

CA HA CLB MB CA HA CLB MB

Reactivity 12.12 12.12 2.02 4.04 0 0 0.5556 0.4444

Load Bal. 0.04937 0.04888 0.03539 0.2111 0.3237 0.3247 0.3517 0

Fairness 0.98243 0.98052 1 0.99260 0.1280 0 0.4958 0.3762

U
ti

li
za

ti
on

of
re

so
ur

ce
s 0.35 0.3484 0.3492 0.3507 0.3500 0 0.1709 0.4904 0.3387

0.70 0.6993 0.6922 0.7000 0.6902 0.4368 0.0957 0.4675 0

0.95 0.8575 0.8372 0.9005 0.8324 0.2562 0.0488 0.6950 0

1.05 0.8598 0.8544 0.8997 0.8503 0.1500 0.0650 0.7850 0

1.50 0.8760 0.8664 0.8998 0.8829 0.1608 0 0.5617 0.2775

2.0 0.8948 0.8666 0.9003 0.8980 0.3021 0 0.3615 0.3364

R
es

po
ns

iv
en

es
s

0.35 0.006403 0.006330 0.006409 0.006482 0.2614 0.2409 0.4977 0

0.70 0.01010 0.00979 0.00847 0.01150 0.2283 0.2784 0.4933 0

0.95 0.01886 0.01510 0.1604 0.02775 0.3374 0.3463 0 0.3162

1.05 0.01849 0.01680 0.1627 0.03251 0.3431 0.3471 0 0.3097

1.50 0.01882 0.01857 0.1636 0.06193 0.3698 0.3705 0 0.2597

2.0 0.02257 0.01839 0.1637 0.07656 0.3778 0.3890 0 0.2332

C
om

m
un

ic
at

io
n

ov
er

he
ad 0.35 72 80 1010 85 0.3358 0.3330 0 0.3312

0.70 72 80 2020 85 0.3345 0.3332 0 0.3323

0.95 72 80 2740 85 0.3342 0.3332 0 0.3326

1.05 72 80 3029 85 0.3341 0.3332 0 0.3327

1.50 72 80 4328 85 0.3339 0.3333 0 0.3329

2.0 72 80 5771 85 0.3337 0.3333 0 0.3330



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 213

Table 4. Results of the AHP given the two priorities Pc and Pu

Pc Pu

MB 0.281 CLB 0.439

CA 0.267 CA 0.209

HA 0.238 MB 0.203

CLB 0.214 HA 0.150

the resources (the SCPs) are the limiting factor (Pu). In the first case it is important
to keep communication overhead at a low level, whereas in the second case it is not.
Instead, utilization of the resources is prioritized. For three of the attributes (Utilization
of resources, Responsiveness, and Communication overhead) we also need to weigh
in the desired offered load, using the example values presented in Table 2. We use the
same desired offered load in both example cases.

In step three we compare the architecture candidates with each other. In our case,
this consists of collecting the metrics discussed ealier. These data are used to populate
table 3. In this table, we see each of the architecture candidates as one column (un-
der ”raw values”), and the metrics gathered for each of the quality attributes and each
architecture candidate. This data is then normalized as described in Section 2. During
this normalization we also take into account that for many metrics a low value is more
desirable than a high value. We do this by multiplying the normalized Zv score with
−1 before shifting and re-normalizing the values. The raw values are inverted for all
quality attributes except Fairness and Utilization of resources.

The fourth step is to calculate which of the architecture candidates that best meet
the desired blend of quality attributes. For each of the two cases we take the product
of the priorities of the quality attributes and desired load, and multiply this with the
corresponding normalized value, Normv , for each candidate architectural style. The
result of this is then summed for each candidate architectural style, and presented in
Table 4. As can be seen, in the first case Pc, with restricted communication abilities,
the MB architecture is the most suitable, followed by CA, HA and CLB. In the sec-
ond case Pu, with restricted computing resources, the CLB architecture is more than
twice as good as its nearest competitors CA and MB, and almost three times as good
as HA.

4 Discussion

Naturally, there are limitations to the proposed evaluation method. Firstly, it only eval-
uates the potential of different architecture candidates. A good implementation may
achieve this potential, and a bad implementation may not reach the potential at all.
When developing a software system, the potential of the chosen architecture is one im-
portant influence of the resulting system, but there are others. For example, familiarity
with a particular architectural style, development organization, and coding standards
may also influence the final result.



214 P. Davidsson, S. Johansson, and M. Svahnberg

Secondly, which architecture candidate the evaluation framework proposes is stron-
gly dependent on the priorities of the quality attributes and the desired load that is fed
into the framework. Hence, care must be taken when prioritizing the needs of the system
so that the priorities are in fact truly representing the needs for the target system.

Thirdly, the quantitative suggestion that the framework produces should be seen as
one input among many to the decision process. Other inputs may include e.g. previous
experiences or intuition.

In this study we implement the candidate architectures for a particular application
domain and instrument the AHP decision support hierarchy with measurements gathered
from this simulation. A potential shortcoming of this approach is that we are using
simulated data and therefore may get simulated results. However, this is often the best
we can do, as it may be very expensive, and sometimes even impossible, to actually fully
implement all the candidate architectures and measure the performance of the deployed
system. Although we use simulated data, we argue that the suggested approach is a step
forward compared to the ad hoc and subjective choice between candidate architectures
that is currently often the case.

To gather empirical data from simulation experiments is possible for some quality
attributes that have easily defined metrics. However, there are many quality attributes
that are not as easily measured. For example, in Section 3.2 we list the attributes Robust-
ness and Modifiability as being of interest in a MAS setting. For these quality attributes
a possible extension of the evaluation method outlined in this article would be to make
use of AHP’s ability to deal with a mixture of tangible data and subjective judgments
(successfully used in other studies, e.g. [18]).

An interesting question concerns whether is it possible to draw any more general
conclusions from the type experiments presented here on concrete MAS architectures
in a concrete domain. An obvious possibility is generalization though abstraction. If we
start with the domain, it can be argued that we have studied an instance of a class of
application domain, namely dynamic resource allocation. Basically, this class of prob-
lems concerns allocation of resources between a number of customers, given a number
of providers. The dynamics of the problem lie in that the needs of the customers, as well
as the amount of resources made available by the providers, vary over time. The needs
and available resources not only vary on an individual level, but also the total needs
and available resources within the system may vary over time. Moreover, the resources
cannot be buffered, i.e., they have to be consumed immediately, and the cost of commu-
nication (and transportation of resources) between any customer-provider pair is equal.
However, we cannot draw the conclusion that the studied MAS architectures will per-
form in the same way as in our experiments in all instances of this more general class
of problem domains. But it give us the opportunity to formulate qualified hypotheses
concerning their performance that can be used to make more informed decisions when
selecting MAS architectures for other instances of dynamic resource allocation.

Concerning generalization with respect to architectures, we argue that it is useful
to study classes of MAS architectures, corresponding to architectural styles [16]. These
may describe abstractions of software entities of varying abstraction levels such as en-
terprise architectures, system architectures, subsystem architectures, or the architecture
within a particular component.



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 215

Table 5. The four different multi-agent system architectures classified in terms of architectural
style

centralized distributed

synchronous Centralized auctions (CA) Hierarchical auctions (HA)

asynchronous Centralized leaky bucket (CLB) Mobile brokers (MB)

We have focused on a particular abstraction level were it is possible to charac-
terize MAS architectural styles according to two properties: the type of control used
(from fully centralized to fully distributed), and the type of coordination (synchronous
vs. asynchronous). Thus, we may say that we have compared four MAS architectural
styles for dynamic resource allocation: centralized synchronous architectures, central-
ized asynchronous architectures, distributed synchronous architectures, and distributed
asynchronous architectures. (See Table 5.) The issue of evaluating MAS architectural
styles is further elaborated in [8].

5 Conclusions and Future Work

We have described an approach based on AHP for multi-criteria evaluation of differ-
ent MAS architecture candidates. It was applied to in an experimental study of imple-
mentations of four architecture candidates for load balancing and overload control in
Intelligent Networks.

Previous work indicated that asynchronous architectures react faster than synchro-
nous, and that centralized asynchronous architectures better utilize the available re-
sources, although having larger delays and consume more bandwidth when the load is
high [9]. With the proposed use of AHP, however, we are not only able to test hypothesis
as the ones we just described. We are also able to:

– Quantify the differences in goodness of the candidate architectures according to the
desired balance between quality attributes.

– Weight the different scenarios continuously.
– Easily add new instrumentations to increase the granularity of the evaluation.
– Easily add new architectures to evaluate.
– Easily add new evaluation criteria.

The results of the case study are, not very surprisingly, that different architectures
excel in different dimensions. The choice of MAS architecture for a particular applica-
tion should hence be based on a trade-off between the dimensions (e.g. the involved
quality attributes) that is optimal for that application. We believe that if the systematic
approach suggested here is widely adopted, such choices can be more informed than is
currently the practice. Our plans for future work include:

– Further experimental validation of the approach by applying it to other domains.
– Further develop the application of the AHP method in MAS settings, e.g. to include

qualitative measures of factors such as robustness and maintainability.



216 P. Davidsson, S. Johansson, and M. Svahnberg

– Investigating to what extent the implementations of the individual agents influence
system performance.

– Further development of the concept of architectural styles for characterizing MAS.

Acknowledgements

The authors would like to thank the Swedish Knowledge Foundation and Blekinge In-
stitute of Technology for funding this work.

References

1. D. R. Anderson, D. J. Sweeney, and T. A. Williams. An Introduction to Management Science:
Quantitative Approaches to Decision Making. South Western College Publishing, Cincinnati
Ohio, 2000.

2. A. Arvidsson, B. Jennings, L. Angelin, and M. Svensson. On the use of agent technology
for IN load control. In Proceedings of the 16th International Teletraffic Congress. Elsevier
Science, 1999.

3. A. Berger. Comparison of call gapping and percent blocking for overload control in distrib-
uted switching systems and telecommunication networks. IEEE Trans. Commun., 39:574–
580, 1991.

4. E. Bodanese and L. Cuthbert. An intelligent channel allocation scheme for mobile networks:
An application of agent technology. In Proceedings of the 2nd International Conference on
Intelligent Agent Technology, pages 322–333. World Scientific Press, 2001.

5. S. Clearwater, editor. Market-Based Control: Some early lessons. World Scientific, 1996.
6. P. Clements, R. Kazman, and M. Klein. Evaluating Software Architectures. Addison Wesley,

2002.
7. P. R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge MA,

1995.
8. P. Davidsson, S. Johansson, and M. Svahnberg. Characterization and evaluation of multi-

agent system architectural styles. In Software Engineering for Multi-Agent Systems IV, Lec-
ture Notes in Computer Science. Springer Verlag, 2006. To appear.

9. S. Johansson, P. Davidsson, and M. Kristell. Four architectures for dynamic resource alloca-
tion. In A. Karmouch, T. Magedanz, and J. Delgado, editors, Mobile Agents for Telecommu-
nication Applications, volume 2521 of LNAI, pages 239–248. Springer Verlag, 2002.

10. J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements. IEEE Soft-
ware, 14(5):67–74, 1997.

11. J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for prioritizing software
requirements. Information and Software Technology, 39(14-15):938–947, 1998.

12. T. Magedanz and R. Popescu-Zeletin. Intelligent Networks. International Thomson Com-
puter Press, 1996.

13. J. McCall. Encyclopedia of Software Engineering, chapter Quality Factors, pages 959–969.
John Wiley & Sons Inc., 1994.

14. T. L. Saaty. The Analytic Hierarchy Process. McGraw Hill, Inc., New York NY, 1980.
15. T. L. Saaty and L. G. Vargas. Models, Methods, Concepts & Applications of the Analytic

Hierarchy Process. Kluwer Academic Publisher, Dordrecht the Netherlands, 2001.
16. M. Shaw and D. Garlan. Software Architecture - Perspectives on an Emergin Discipline.

Prentice Hall, Upper Saddle River NJ, 1996.



Using the Analytic Hierarchy Process for Evaluating MAS Architecture Candidates 217

17. M. Shepperd, S. Barker, and M. Aylett. The analytic hierarchy process and almost dataless
prediction. In R. J. Kuster, A. Cowderoy, F. Heemstra, and E. P. van Veenendaal, editors,
Project Control for Software Quality - Proceedings of ESCOM-SCOPE 99, Maastricht the
Netherlands, 1999. Shaker Publishing BV.

18. M. Svahnberg. An industrial study on building consensus around software architectures and
quality attributes. Journal of Information and Software Technology, 46(12):805–818, 2004.

19. F. Ygge. Market-Oriented Programming and its Application to Power Load Management.
PhD thesis, Lund University, Sweden, 1998.



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 218 – 230, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Estimating Costs for Agent Oriented Software* 

Jorge J. Gómez-Sanz1, Juan Pavón1, and Francisco Garijo2 

1 Universidad Complutense Madrid, Dep. Sistemas Informáticos y Programación, 
28040 Madrid, Spain 

{jjgomez, jpavon}@sip.ucm.es 
http://grasia.fdi.ucm.es 

2 Telefónica I+D, Emilio Vargas 6, 28043 Madrid, Spain  
fgarijo@tid.es 

Abstract. Despite the progress in agent oriented software engineering, there is 
still a long way before achieving maturity. Among others, there is a lack of 
shared experience in evaluating the cost when developing software using the 
agent paradigm. This paper provides some results on this issue. It collects data 
from real agent based projects and gives hints for the application of existing 
software cost estimation models and what would be appropriate metrics for an 
agent based software development. 

1   Introduction 

When trying to convince industry of the benefits of the agent approach, so far, most 
arguments have been of the type agents are X and objects do not, hence agents are 
better, where X can be one or many of the following: autonomous, intelligent, 
adaptive, social, etc. To proof these arguments, we build applications that demonstrate 
agent capabilities, though their size and complexity, in most cases, does not go 
beyond toy examples. 

Building complex agent oriented applications will serve as proof of concept for us, 
researchers in the area, and may draw attention from industry, but we wonder whether 
this is enough to convince. Our opinion is that we still need to answer an important 
question: how much does it cost to build a concrete application with an agent-
oriented approach? This information is fundamental in order to integrate agent 
technology into industrial software engineering practices. There is no exact answer to 
this question, though.  

Conventional software engineering has faced a similar problem and has invested an 
important effort in studying methods to foresee how much it would cost to build a 
software system. This estimation is made, initially, knowing in advance what this 
system should do and without coding anything at all. Such studies are generally 
referred as software economics. There are well-known prediction models such as 
COCOMO and COCOMO II, or Putnam [2]. These models take the experience on 
previous developments to predict the cost of similar developments. With this 

                                                           
* This work has been funded in part by the Spanish Council for Science and Technology under 

grant TIC2002-04516-C03-03. 



 Estimating Costs for Agent Oriented Software 219 

experience, software managers can build estimations of cost, taking into account 
variables like average expertise of programmers, complexity of the problem, source 
lines of code, precedentness, and many more. 

In order to do the same with agent oriented applications we need: 

1. Source code of agent oriented applications to make measurements. Known 
applications of agents do not usually make public their code, so it is difficult 
to get a collection of applications to base on. 

2. Adaptation of software engineering methods. Conventional metrics consider 
some aspects, like encapsulation or complexity of interfaces, which are 
different from how we understand an agent oriented development, where 
learning features or problem solving methods attract more attention. This 
means that estimations of the effort may not be accurate for our domain.  

In this paper we mainly address these two issues. To get measurements on the costs 
of developing a multi-agent system, we contribute with our experience in three 
European research projects where we have developed multi-agent systems of 
reasonable size. With respect the definition of metrics for agent oriented software, we 
consider a list of agent features that are implemented into these projects and integrate 
them into a well-known estimation model, COCOMO II [1]. To evaluate the resulting 
costs in terms of development time and human resources, we have used three tools: 
Eclipse Metrics Plugin [5], CodeCount [4], and USC COCOMO II v2000 program [9] 
(v1999 gives slightly different results). More information about the experiments can 
be found at http://grasia.fdi.ucm.es/gschool. 

These results can assist agent developers to elaborate tentative estimations of how 
much effort they should dedicate to their projects and, with this data, determine their 
costs. To evaluate our results, we have used the knowledge of how much did it really 
cost against how much our estimation says it should cost.  

The rest of the paper is structured as follows. The next section introduces the 
projects we have participated into, which are going to be the base for this study. This 
is followed by some basic concepts about cost estimation. Then, we introduce our cost 
indicators, adapted for agent-oriented developments. Afterwards, we present a 
summary of the costs we have faced so far. This serves as starting point for some cost 
estimations in the next section, and the base for obtaining metrics for agent related 
concepts. Finally, we present some discussion on the results and the conclusions we 
draw from these. 

2   Domain Problem 

As source of knowledge, we consider three European research projects. Their nature 
is not exactly the same as industrial projects, since budget and time cannot be 
modified and it is not expected that the products of the project are finally 
commercialised (therefore, maintenance costs are not normally assumed). But our role 
here was similar to a consulting company, since we had to implement the system with 
time and budget constraints, and deliver a product with some quality requirements. 
Moreover, though the first two are more research oriented, the third had closer  
 



220 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

resemblance to an industrial project. In all of them, the outcome of the project was an 
application that had to be used in a real environment with real end users. The first two 
had as purpose demonstrating the maturity of agent technology. Therefore, the quality 
of the result was not as important as the proof of concept. To give an accurate idea of 
each project, we describe briefly the purpose of each one, and provide some 
references to publications of relevant results: 

• Eurescom P815. Communications Management Process Integration Using 
Software Agents (1999-2000) [7]. This project was concerned with the use of 
agents to improve workflow management applications. Our part in the project was 
the specification and implementation of agents that assisted users in the 
management of a proprietary Intelligent Network Service Creation Environment. 
The main issues in this system were interface agents interacting with users and 
interoperability with an existing system. We finally implemented two types of 
agents: the personal manager agent (PMA), for assistance to a project manager, and 
the personal developer agent (PDA), for developers in a project. A BDI 
architecture was considered for agent control, which was implemented with Java 
and JESS (Java Expert System Shell). Agent communications with other agents or 
with the existing system was based on CORBA. Code for P815 is available at 
http://www.eurescom.de/public/projects/P800-series/P815 (IN SCE Case Study 
prototype). 

• Eurescom P907. MESSAGE: Methodology for Engineering Systems of Software 
AGEnts (2000-2002) [3]. The main result of this project was the definition of the 
MESSAGE/UML methodology. To test MESSAGE/UML, we developed a Travel 
Assistant service. In this implementation, there were three types of agents: a 
Personal Assistant that represents the user in the system, an Information Finder 
agent with the responsibility of looking for information sources related with 
airports, and the InfoAENA agent that wrapped an airport information source. The 
service implemented in this case study was the notification of flights incidences. 
User-Personal Assistant interaction was web based and implemented with servlets. 
Servlets communicated user’s orders to the Personal Assistant through Java RMI. 
Inter-agent communication was implemented with JADE. The behaviour of the 
Personal Agent was BDI based, whereas the other agents were reactive. Code for 
P907 is available at http://www.eurescom.de/~public-webspace/P900-series/P907 
(implementation of the UPA4T case study). 

• PSI3. Personalized Service Integration Using Software Agents (2001-2003) [6]. 
This was an IST project where we implemented an agent based collaborative 
information filtering system. The system tried to form virtual communities of users 
where every registered user received only interesting information. Each user was 
represented in the system by an agent that knew user's current interests and learned 
new ones. We named these agents Personal Agents. They got together into one or 
many virtual communities, represented with a Community Agent. The challenge 
here was to evolve communities' topics, managed by Community Agents, as user 
interests were shifting, and how Personal Agents could learn new topics from the 
user. Also, whether Community Agents and Personal Agents together could 
prevent unwanted behaviours like information spam. This system is more complex 



 Estimating Costs for Agent Oriented Software 221 

than the previous. It was made with an undetermined number of agents (we tested 
the system with up to three hundred heavy agents) and was rather scalable (new 
computers could be added to increase the number of agents registered). Agents 
were implemented with CORBA communications and a JESS control. This time it 
was not a BDI control, but a more conventional session oriented control. 

These three projects make together an excellent data repository to extract 
conclusions upon. Their size is beyond toy applications since the average of time per 
project was more than a year involving at least two developers at the same time. 
Readers interested in knowing more about these projects can consult suggested links 
or http://grasia.fdi.ucm.es, where we have grouped together links to demos and more 
information. 

3   Basic Concepts About Project Management and Metrics in 
COCOMO II 

Estimation of how much a software project will cost is commonly measured in terms 
of size, human resources and time. The estimation model we use, COCOMO II [1], 
starts expressing the size of the application in different ways: 

• Source Lines of Code (SLOC). A line of code refers to the smallest piece of code a 
programmer can produce. However, there are some elements that are not a SLOC, 
like a breakline character, a comment, or a compiler directive. There is a list of 
conditions elaborated by the Software Engineering Institute that is implemented 
into CodeCount [4].  

• Unadjusted Function Points (UFP). They represent the amount of functionality in 
a software project and a set of individual project factors. They can be used at the 
beginning of a project when no source code is available yet to determine what the 
expected size of the system is. UFP are usually translated into SLOC. COCOMO II 
counts the ways an application communicates with the user or environment by 
categorizing into: External input (EI), External output (EO), Internal Logical File 
(ILF), External Interfaces File (EIF), or External Inquiry (EQ). Each instance of 
these function types is then classified by complexity level. The complexity level 
determines a set of weights, which are applied to their corresponding function 
counts to determine the UFP value. 

• Application Point (AP). An application point is another way of expressing the 
functionality to implement. An application point can be a screen of the application, 
a report or a 3GL component. There is some ongoing work on this topic in 
COCOMO II, though, so far, there are not enough projects measured this way. 

COCOMO II uses several formulas where these factors are weighted with the 
experience obtained in previous developments. To these variables, each estimation 
model adds additional elements to be considered: degree of reuse, automatically 
generated lines of code, experience of the staff involved, complexity of the 
development, existence of previous similar developments, etc.  



222 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

4   Agent Specific Implementation Elements 

In COCOMO II, a main element that affects the final cost is the estimated size of the 
development expressed in SLOC or UFP. These elements do not work properly for 
predicting the cost of an agent-oriented application, as we will see in the next section. 
Nevertheless, accounting only SLOC associated to key agent specific indicators lead 
to better cost estimations. There were many candidates for indicators, but we mention 
here those we found more relevant for the developments we were involved into. 

In the projects under consideration in this study, we have used regularly some 
agent-oriented features: 

• A BDI control. Using BDI means that there are goals and that these goals are to be 
satisfied by tasks. To make it work, there must be information structures that 
interrelate different goals and that describe what to do on goal failure or 
satisfaction conditions. Besides, there has to be some management infrastructure to 
deal with decisions referring to which goal to focus at the moment and how to do 
so.  

• Session based control. Agents should have infrastructures to handle conversations 
(that is, instances of protocols) with other agents or human users. A common way 
to do this in the telecommunications domain is the session management scheme. 
There is a session manager responsible of creating, destroying, and monitoring 
ongoing sessions (conversations). Sessions can be used also to model reactive 
behaviours in communications and they are usually implemented as state 
machines. 

• Perception of the environment. Defining proper system boundaries is one of the 
first tasks when designing a system. With agents, system boundaries are 
determined by the allocation of agent sensors. Sensors produce information that is 
later processed by agents.  

• Abstract Communications. In our projects we did not stick to a concrete 
middleware technology, since the agent interaction concept is technology 
independent. To abstract from the different technologies, agents were built over a 
resource layer, which was responsible of implementing technology specific 
communication artefacts, and offering upwards a homogeneous interface. 

To gather information about these aspects, we have defined several variables: 

• Sociability. We try to estimate how social an agent is. We measure this aspect as 
the count of interaction specific elements such as: 

 Interactions. Being one interaction, for instance, the capability of an agent to 
engage into one conversation with another agent. Usually, we identify the 
number of interactions with the number of protocols that an agent is able to 
understand and follow. 

 Messages. This gives an idea of the complexity of the conversations used by 
the agent. By message, we mean a prototype of information that it is intended 
to be exchanged along a conversation. Messages sent within loops, for 
instance, would not count as many messages, since each message would have 
the same format with subtly different data. 



 Estimating Costs for Agent Oriented Software 223 

• Behaviour. Taking into account that agents can contain either reactive or 
deliberative behaviours, we tried to select elements that would be shared by most 
implementations: 

 Task. This element informs of the capabilities of an agent. If, in the agent 
architecture, the task is a method or a procedure, then we would count the 
number of such methods. In general, it is more probable to find tasks 
identified with isolated structures, such as modules, scripts, or classes. 

 Rules. Most agents implement their control with rules. Here we would count 
general rules directly, without taking care of the purpose of the rule.  

 Goal Management rules. These would be rules whose responsibility is to 
control the lifecycle of goals in the agent. These rules tell what to do when the 
goal has been achieved or when it has failed. They also may tell which goal to 
focus on next. Of course, they make sense when the control of the agent is 
goal oriented. 

 State Machines. It is another classic way of implementing agent control. By 
counting the number of different state machines and the states they consider, 
we have an initial idea of the complexity of the behaviour of the agent. 

• Information. Here, we try to know how the agent perceives the world, and how he 
manages to take decisions.  

 Mental entities. This counter is related with cognitive agents having a mental 
state. By counting mental entities, we obtain an integrated numeric 
representation of how the agent represents its environment and how precise is 
the control of the agent. This serves also as a generalization of the counting of 
events and goals, which are more specific measures that may not be applied in 
concrete representations. 

 Events. It refers to the perception of the agent. We assume that whatever 
information that is perceived from the environment takes the form of events, 
once the agent start processing it. Here, depending on the paradigm, we may 
find events implemented as predicates in a knowledge base, specialised 
classes, or, perhaps, only as strings. 

 Goals. Goals are special mental entities that are dedicated to control purposes 
in most cognitive agents. Counting them gives an estimation of how complex 
is the control of a cognitive agent. 

Developers are expected to elaborate descriptions of their systems and count the 
elements mentioned before. With this data, the developer can apply the COCOMO II 
model as section 6 indicates in order to obtain the manpower and the expected time 
for a given project. 

5   Some Numbers 

We have inspected the three projects (P815, P907, and PSI3) in two ways. First with a 
conventional tool, the Eclipse metrics module [5], and then, manually, inspecting the 
resulting code. Since we are facing projects of different nature, we had to differentiate  
 



224 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

Table 1. Statistical data about the implementation of projects P815, P907, and PSI3. Data 
extracted from project sources excluding generated files such as RMI/CORBA skeletons or 
stubs. Tools for obtaining the data were CodeCount and Eclipse Plugin Metrics. The account of 
declarative parts is omitted here but mentioned on Table 2. The programming language was 
JAVA in all cases. 

 P815 P907 PSI3 
Number of classes 482 172 130 
Number of packages 45 31 23 
Average methods per class 5.17 4.09 5.3 
SLOC Logical lines 15843 5393 9862 
SLOC Physical lines 20009 7007 13102 

Table 2. Statistical data common to all projects. Data refer to elements commonly associated 
with agents whose control is expressed with rules. 

 P815 P907 PSI3 
Total number of Interactions with other agents 3 5 4 
Total number of messages interchanged 15 19 11 
Total number of events considered 61 10 10 
Total number of rules 198 48 39 
Total number of tasks 71 9 39 
Total number of state machines applied 5 10 8 
Total number of states in every state machine 13 46 37 

Table 3. Statistical data about BDI behaviour. Some elements were duplicated into each agent. 
The numbers here are obtained after eliminating duplicates. 

 P815 P907 
Total number of types of mental entities 
(F=Facts, G=Goals, E=Events) 

8F+135G+61E= 
204 

3F+29G+10E= 
42 

Total number of Goals 135 29 
Rules dedicated to management of mental 
entities 

190 46 

Events 61 10 

between conventional statistics, related with the object oriented implementation, and 
agent statistics, related with agent oriented topics, as reviewed in the previous section. 
These data will be used in the next section to evaluate COCOMO II models and check 
their results.  

These data were used to adjust the different variables and make them fit with the 
actual costs of the project. As readers can see, P815 and PSI3 are more complex than 
P907. The main reason is that P907 had less effort allocated for development than the 
other two. P907 main goal was producing the MESSAGE methodology and not a 
prototype of an agent system. 



 Estimating Costs for Agent Oriented Software 225 

6   Applying Estimation Models 

The application of COCOMO II Early Design Development model is configured with 
the following considerations: 

• Each project is structured as a single module representing the whole system. This 
module has a size in SLOC determined by the logical SLOC row in Table 1.  

• Time for each project is strictly limited by the time assigned in the respective 
project plan. To weight the effort, we adjusted the man power invested in order to 
have a more realistic view of what effort it required. 

• We do not take into account maintenance effort since project prototypes did not 
have to be maintained. Also, for the sake of simplicity, we assume a waterfall 
development process. 

• We use scale factors shown in Table 4, though Effort Adjustment Factor (EAF) is 
modified to fit each project concrete domain problem and experience, see Table 
5. Values are extracted from the tables presented in the COCOMO II software 
modelling manual [9]. We encourage reading this manual since it illustrates the 
ratings of some sections which may not seem logical. Values from Table 5, for 
instance, are obtained by adding the values of, at least, two other factors and 
applying a conversion table. 

Table 4. Scale factors applied to each project 

 P815 P907 PSI3 
Precedentness Nominal High High 
Development Flexibility High High Nominal 
Architecture/ Risk resolution Extra High Extra High Nominal 
Team Cohesion Hi Very High Very High 
Process Maturity Low Nominal Nominal 

In Table 4, Precedentness grows as we gain experience in the development. 
Flexibility was high in P815 and P907 projects since the prototypes were made only 
by our team. In PSI3 there was a considerable integration effort and this implied 
defining strict interfaces and integration tasks. Architecture and risk factors were 
under control in P815 and P907, since no functionality was considered hard to be 
solved. Therefore, we chose an extra high. In PSI3 there was an uncertainty about a 
part of the project that depended on document classifiers, so we labelled this time as 
nominal the value. Team cohesion was high at the beginning, and very high at the 
end, as the development team gained knowledge and confidence. Process maturity 
refers to the Capability Maturity Model questionnaire, and, at the beginning, we were 
in the Level 1 which is equivalent to Low at the beginning, and Nominal in the others, 
since we were able to repeat the development process. 

Several factors that contribute to adjust effort values are indicated in Table 5. 
RCPX depends on the size of the data managed, the reliability associated to the 
system, and the kind of operations it makes. P815 made interpolation operations, had 
several protocols implemented, and managed a data base of project tasks of 
moderated size. This means for us a High value overall. P907 performed simple  
 



226 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

Table 5. Effort Adjustment Factor (EAF) applied to each project  

 P815 P907 PSI3 
Product Reliability and Complexity (RCPX) High Nominal Very High 
Reusability (RUSE) Very High Very High Nominal 
Platform Difficulty (PDIF) High Very High High 
Personnel Capability (PERS) Nominal Nominal Nominal 
Personnel Experience (PREX) Low Nominal High 
Facilities (FCIL) Nominal High High 
Required Development Schedule (SCED) Nominal Nominal Nominal 

operations, had also many protocols between different agents, and the data handled 
referred to airplanes and departures, what makes an overall of nominal. PSI3 had to 
perform complex operations to classify documents and learn user interests, the 
interactions where also many, and the database size was the largest since we handled 
part of the Reuters news collection.  

RUSE measures the effort in building reusable components. In P815 the effort was 
very high as in P907, since we produced goal management facilities, communication 
facilities, and the agent architecture. In PSI3 the effort was nominal since there was 
interest in obtaining reusable components, but it was not a primary goal.  

PDIF combines consumption of time during execution, platform volatility, and 
main storage constraints. In all projects, platforms were rather stable, with changes 
between 6 months and 12 months. Only PSI3 had some time execution constraint, in 
order to share the processor with other applications. P815 consumed around 50% of 
CPU and P907 around 95%. Percentage of use of storage resources in all projects was 
very low but all of existing resources were dedicated to the developed applications.  

PERS measures the skills of analysts and programmers and their continuity in the 
company. The core of the development team along the three projects was rather 
stable, with some particular contributions for P907 and PSI3, so we consider that this 
factor can be considered in the nominal category. 

PREX refers to the experience in the application, languages/tools, and platform 
experience. With respect the platform, P815 used CORBA and JESS. The first was 
rather well known, but the second was not so. P907 had similar problem. We used 
JADE for the first time, and ILOG JRules for the first time as well. PSI3 used again 
CORBA, which we knew, JESS, now well known, and Rainbow (a text mining 
library), which was completely new for us. All developments used JAVA and CASE 
tools for modelling, in which we had more than three years of experience. With 
respect to the application, P815 was our first agent system, P907 the second, and PSI3 
the third, apart of some academic projects.  

FCIL combines the use of software tools and multi-siteness, that is, if members of 
the project were working remotely and, if so, in what degree. In P815, we used IDEs 
for development and CASE tools for modelling, but independently. In P907 and PSI3 
we tried to integrate more, but still had to reach maturity. With respect multi-siteness, 
P815 was performed within the same city, where as PSI3 and P907 were in the same 
building with occasional meetings with companies.  

SCED measures acceleration of the project in order to eliminate risks. In all 
projects there was none. This is expressed as a nominal value. 



 Estimating Costs for Agent Oriented Software 227 

 

Fig. 1. Snapshot of the P815 project estimation obtained from COCOMO II 2000 

With this configuration, and using the estimation tool, we found out that effort in 
projects P907 and P815 had been overestimated in more than 500%. In the case of 
PSI3, there was a depreciation of the effort close to 10% (Table 7), which is not a bad 
result. These values only tell us that agent-oriented developments are different from 
conventional developments, and that the effort is not invested into the elements that 
the standard COCOMO II considers. Hence, the estimation should study only those 
elements related with the construction of the agent, discarding the other ones as non 
relevant.  

As an experiment, we selected a set of concepts from the list presented in section 4, 
and measured their implementation cost in SLOC, as Table 6 shows. We recalculated 
the cost for all projects and obtained the column B in Table 7, as illustrated in Fig. 2. 
The results were better with P907 and P815, but not with PSI3. Besides, we wanted to 
have an estimation of the cost of implementing each one of the concepts from 
section 4. That is the reason why we tried another experiment. 

Our next step was obtaining an equivalence of average SLOC per task, state 
machine, event, and so on. We omitted interactions on purpose because they usually 
appear as state machines. Also, we omitted messages and states considered by 
machines, since in the projects we study, there is some redundancy due to 
dependencies among the number of states and the number of messages. 

With results from Table 6 we recalculate again the models, applying this time the 
values from Average SLOC per item multiplied by the number of events, state 
machines, and so on, of each project. As a consequence, we obtain the data presented 
in Table 7 column C. As it can be seen with values in column B and C, the results are 
more accurate that those of column A, which correspond to the COCOMO II applied 
directly over the total SLOC, the one shown in Table 1.  

With the new estimation parameters, we got worse results for project PSI3. This 
could be explained because of the management and debugging facilities that we had 
to implement in order to deal with scalability, and that we removed in order to make 
this study. If we consider that code as tasks to be executed by the system, the new 
estimation is better 19.5 PM and 9 months, but not as good as the one generated by 
pure COCOMO II. As we will comment in the next section, this could be a proof that 
we still need more knowledge from more agent oriented developments.  



228 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

However, with this information, we can get an estimation of an agent based project 
only knowing its initial specification in terms of events, tasks, goals, state machines 
(or interactions), and expected rules. The interest of this information is that it can be 
known in analysis time, and it is present in most agent oriented developments. 

Table 6. Equivalence of each element into SLOC. Data obtained from the source code of the 
projects. We isolated the parts of the code that had to do with each item and applied CodeCount 
when items were codified in Java, and a simple line count, with the unix command wc -l, when 
it was a expert system shell. 

Element  SLOC P815 SLOC P907 SLOC PSI3 Average 
SLOC 

Average SLOC 
per item 

Event 443 86 172 233.66 11.02 
Rule 2130 923 1047 1366.66 18.94 
Goal 1581 110  845.5 7.75 
Task 793 520 303 627 76.17 
State machines  142 691 1048 233.66 11.02 

Table 7. Comparison of values obtained with pure COCOMO II (A), pure COCOMO II with 
the data obtained from Table 6 (B), and COCOMO II using average SLOC count per item (C). 
(B) and (C) where calculated with nominal values in EAF. PM stands for Personnel Month, and 
represents the effort of one programmer in one month. Column A is obtained from the most 
likely estimation. Real months refers to the length of the project according to signed contracts. 
Real PM refers to all the people who participated into each project. 

Project Real cost 
PM/months 

(A) 
PM/months 

(B) 
PM/months 

(C) 
PM/months 

P907 6 / 5 34.4 / 10.6 7.2 / 6 6.8 / 6.6 
P815 18 / 9 135.6 / 16.7 16.3 / 8.7 25 / 9 
PSI3 69 / 18 63.7 / 13.4 7.6 / 6.8 7.3 / 6.7 

 

Fig. 2. P815 estimation using only elements chosen from Table 6 and data from SLOC p815 
column. All EAF values are set to nominal. 



 Estimating Costs for Agent Oriented Software 229 

7   Evaluating the Results 

Software estimation is not an exact science. Obtaining more accurate estimations is a 
matter of choosing the best indicators for a problem domain and choosing the 
adequate estimation model and values for the terms involved in the equations of 
software economics. COCOMO II was not completely explored. Therefore this paper 
should be understood as preliminary work that could be improved.  

One of our decisions was applying an early design model, a model we could 
associate with the initial stages of an agent-oriented development. Indeed, an 
immediate improvement could be applying a Post Architecture COCOMO II model, 
which considers more parameters than those we have chosen. But, again, we wanted 
to include our experience to provide some prediction at the analysis stage for the 
development of a multi-agent system. Also, another improvement could be using 
application points instead of the SLOC approach we took. Though the theory behind 
application points indicates that they could be a better estimate than UFPs and 
SLOCs, we thought that SLOCs were a more feasible integration point for agent 
concepts.  

With the values we have obtained, it is possible for us to foresee the cost in man 
power and lines of code by using only an agent based specification. However, the data 
collected is not enough yet for accurate estimations. We still need to gather data from 
more projects in order to have a database of costs associated to each project and 
obtain more accurate measures. With COCOMO II is possible to obtain more accurate 
estimations by means of recalibration of the scale factors it considers (the different 
weight associated to each variable in the effort and schedule formulae). Hence, the 
more data about projects exist, the better we can foresee the cost of new multi-agent 
systems. 

However, increasing the amount of data is a hard goal to achieve, since it implies 
either a common effort in sharing the results of the projects we, agent researchers, 
have been involved into, or promoting the development of multi-agent systems and 
making its implementation public. So far, this effort has been quite limited. 

Some readers may argue that these results are not applicable to any agent-oriented 
developments. This is true in part. Developments with conventional software 
engineering can be as diverse as those based on agents. We can find very different 
system architectures and technologies in each one, and, yet, COCOMO II holds. 
There are not exact measures, but error is usually within 20% of the real cost, which 
may be considered as a good estimation. Whether the same estimations work the same 
for agents is something to be proven beyond any doubt, and, in that sense, this paper 
is a first step.  

8   Conclusions 

The goal of this paper is to establish some alternatives that facilitate the transition 
from agent research experience in the development of prototypes to common software 
engineering practices. In concrete, we have addressed the cost estimation problem, an 
issue that has not been studied in depth in our area, yet. 



230 J.J. Gómez-Sanz, J. Pavón, and F. Garijo 

Our contribution to the agent community in this issue starts with statistical data 
about three projects where we have been involved, an estimation of SLOC required 
for each element present in our implementations, and its inclusion into a COCOMO II 
model. 

There is much work to do, still. As we pointed out before, we need more data and 
further experimentation with COCOMO II models, to identify more concrete agent 
features that influence the development. Also, we need to perform similar studies to 
this one but centred in the area of Rapid Application Development, since our main 
line of research in the INGENIAS methodology [8] deals with automatic code 
generation from specifications. Also, we need to identify the influence of the reuse of 
code from previous developments and existing libraries. 

In the near future, the adapted COCOMO II for agents will be implemented as a 
module of the INGENIAS Development Kit, so that agent researchers can estimate in 
analysis/design time how much effort an agent oriented development may take. 

Interested readers can check and download the data used to elaborate this paper at 
http://grasia.fdi.ucm.es/gschool. 

References 

1. Boehm, B.W., Sullivan, K.J.: Software Cost Estimation with COCOMO II. Prentice Hall 
(2000) 

2. Boehm, B.W., Sullivan, K.J.: Software economics: a roadmap. In: Proceedings of the 
Conference on The future of Software Engineering. ACM Press (2000) 319-343 

3. Caire G., Evans R. Massonet P., Coulier W., Garijo F.J., Gomez J., Pavón J., Leal F., 
Chainho P., Kearney P.E., Stark J.: Agent Oriented Analysis using MESSAGE/UML. In: 
The Second International Workshop on Agent-Oriented Software Engineering (AOSE 
2001). Lecture Notes in Computer Science, Vol. 2222, Springer-Verlag (2002) 119-135 

4. CodeCount. http://sunset.usc.edu/research/CODECOUNT/index.html 
5. Eclipse Metrics Plugin. http://metrics.sourceforge.net 
6. Gómez-Sanz, J., Pavón, J., Díaz Carrasco, A.: The PSI3 Agent Recommender System. 

International Conference on Web Engineering (ICWE 2003). Lecture Notes in Computer 
Science, Vol. 2722. Springer-Verlag (2003) 30-39 

7. Gómez-Sanz, J., Pavón, J., Garijo, F.: Intelligent Interface Agents Behaviour Modelling. 
MICAI 2000: Advances in Artificial Intelligence. Lecture Notes in Computer Science, Vol. 
1793. Springer Verlag (2001) 598-609 

8. Pavón J., Gómez-Sanz J. and Fuentes, R. The INGENIAS Methodology and Tools. In 
Henderson-Sellers, B. and Giorgini, P. (editors),  Agent-Oriented Methodologies. Idea 
Group Publishing, 2005, chapter IX, 236-276 

9. USC COCOMOII application v2000. Available only from the support CDROM of 1. V 
1999 available from http://sunset.usc.edu/available_tools/index.html 



J.P. Müller and F. Zambonelli (Eds.): AOSE 2005, LNCS 3950, pp. 231 – 247, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Aspects in Agent-Oriented Software Engineering: 
Lessons Learned 

Alessandro Garcia1, Uirá Kulesza2, Cláudio Sant’Anna2, Christina Chavez3,  
and Carlos J.P. de Lucena2 

1 Lancaster University, Computing Department, InfoLab 21, 
Lancaster - United Kingdom 

a.garcia@lancaster.ac.uk 
2 PUC-Rio, Computer Science Department, LES, 

Rio de Janeiro - Brazil 
{uira, claudio, lucena}@les.inf.puc-rio.br 

3 Federal University of Bahia (UFBA), Computer Science Department, 
Salvador - Brazil 

flach@im.ufba.br 

Abstract. Several concerns in the development of multi-agent systems (MASs) 
cannot be represented in a modular fashion. In general, they inherently affect 
several system modules and cannot be explicitly captured based on existing 
software engineering abstractions. These crosscutting concerns encompass 
internal agent properties and systemic properties, such as learning, code 
mobility, error handling, and context-awareness. In this context, it is important 
to systematically verify whether emerging development paradigms support 
improved modularization of the crosscutting concerns relative to MASs. This 
paper reports some lessons learned based on our experience in using aspect-
oriented techniques and methods to address these problems. In the light of these 
lessons, related work and a set of future research directions are also discussed. 

1   Introduction 

Software engineering of large multi-agent systems (MASs) involves a number of 
concerns, including autonomy, roles, learning, mobility, error handling, fault 
tolerance, and context-awareness. The modeling, design, and implementation of many 
of these concerns are challenging because they are inherently crosscutting as the 
system complexity increases. In other words, these concerns crosscut several agent 
actions and plans, which implement the agents’ basic functionality and other agent 
concerns. Several system quality attributes, such as reusability and maintainability, 
depend largely on the ability of software engineering techniques and methods to 
support the explicit separation of MAS concerns throughout the design and 
implementation stages. 

Existing modeling languages [8, 20] and design and implementation approaches [6, 
9, 11, 20] are not able to provide explicit support for the separation of crosscutting 
MAS-related concerns. In this context, it is important to systematically verify whether 
emerging development paradigms support improved modularization of the 



232 A. Garcia et al. 

crosscutting concerns relative to MASs. Aspect-oriented software development 
(AOSD) [12] is a promising paradigm to promote improved separation of concerns, 
leading to the production of software systems that are easier to maintain and reuse. 
AOSD is centered on the aspect notion as an abstraction aimed to modularize 
crosscutting concerns throughout the software lifecycle. Hence, aspect-oriented 
approaches are candidates to address the crosscutting property of some concerns in 
multi-agent systems. However, up to now AOSD research has focused on trivial or 
well-known crosscutting concerns, such as logging, tracing, distribution, and 
persistence. There are very few reported experiences involving aspects in the MAS 
domain. For example, Kendall et al focus on the use of aspects for enabling improved 
modularization of agent roles [10]. 

There is a pressing need for understanding the interplay between agent-oriented 
software engineering (AOSE) and AOSD. This paper reports some lessons learned 
based on our experience in applying both aspect-oriented techniques and methods to 
the construction of MASs. We have developed and applied aspect-oriented 
approaches to specify [22], architect [21], design [6], and implement [23] multi-agent 
systems. We have also conducted some qualitative [7] and quantitative [24] empirical 
studies. Our lessons learned are related to four different inter-related dimensions of 
software engineering, which are captured in the following research questions: 

(i) What are the main motivations to use AOSD techniques for MAS 
development? 

(ii) What are the MAS-related concerns which were well modularized (or not) 
with aspects according to our experimental settings? 

(iii) What are the limitations of existing aspect-oriented techniques, methods 
and tools to address crosscutting concerns in MASs?  

(iv) What are some future directions that naturally emerged from the practical 
exploration of AOSD in the context of MASs? 

The lessons learned presented here provide a clear understanding of important 
strengths and weaknesses of the investigated aspect-oriented approaches as well as 
their compatibility and divergences. The results are important sources towards a 
potential integration of AOSD and AOSE. They are also useful for engineers of 
realistic MASs who need to model, design and implement their systems in the 
presence of crosscutting concerns. The conclusions may also be of interest to agent-
oriented methodologists since they may decide to incorporate solutions for problems 
detected in our experiences directly as part of their methodologies.  

The remainder of this paper is organized as follows. Section 2 presents some typical 
examples of crosscutting concerns in MASs. Section 3 introduces relevant AOSD 
terminology and overviews our aspect-oriented approach to support the modularization 
of MASs. Section 4 presents the lessons learned. Section 5 discusses related work. 
Section 6 includes some concluding remarks and directions for future work. 

2   Crosscutting Concerns in MASs 

Several authors have identified that some agent properties are often crosscutting, such as 
mobility [25], interaction [23, 24], learning [26], autonomy [27, 28], and collaboration 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 233 

[10, 25]. Some empirical studies confirm their findings [7, 15, 24]. This section presents 
some examples of crosscutting concerns in MAS development. A concern is some part 
of a MAS that we want to treat as a single conceptual unit. Concerns are modularized 
throughout software development using different abstractions provided by techniques, 
methods, and tools. 

Fig. 1 shows a partial representation of a multi-agent system, which was modeled 
with an agent-oriented extension to UML (based on stereotypes), and implemented 
using the Java programming language. The modeled system is a multi-agent 
application that supports the management of the reviewing process for research 
conferences [23]. This system will be herein referred to as Expert Committee (EC). In 
this system development, the JADE platform was also used to support inter-agent 
collaborations and agent mobility. Machine learning techniques were designed and 
implemented to address the learning-related requirements of this application. Role 
modeling was used to structure the collaborative capabilities of the agents. Each set of 
classes, surrounded by a gray rectangle, has the main purpose of modularizing a 
specific agent concern, namely interaction, environment, basic concerns, learning, and 
collaboration. This MAS includes other MAS concerns, such as mobility and error 
handling, which are not represented in the figure for simplicity purposes. 

Agent

Observable

addLC()
removeLC()
notifyLC()

LMS

processInformation()
getLR()
…

Learning
Component

Role

collaboratingAgents
collaborationProtocol
getName()
addAgent()
removeAgent()
…

Chair

papers
learningComponents
submissionDeadline
reviewDeadline
addLC()
removeLC()
notifyLC()
distributeProposal()
...

Reviewer

JADEAgent

getName()
moveAgent()
beforeMove()

UserAgent

researchInterests
publications
reviews
learningComponents
addPCparticipation()
addLC()
removeLC()
notifyLC()
…

Plan

goal
agent
…
clone()
execute ()
…

CVUpdatePlan

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
updateCV()
...

JudgementPlan Judgement
ReceptionPlan

learningRate
processInformation()
…

TD-Learning

processInformation()
getTD()
getReward()
setReward()
…

Strategy
pattern

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
evaluateResponse()
...

– learning-specific members
– methods with some learning code

learning-specific classes

C
o

lla
b

o
ra

ti
o

n

Learning

Basic
Concerns

public Result judgeProposal(...) { 
...
lc.processInformation();
...

}

Interaction

Observer
pattern

Environment

... ...

Agenda

addAppointment()
…

PersistentCV

addResearchKW()
addPublication()
addAward()
addConference()
…

DSInterface

getUserAnswer()
getAnswerTime()
… public void addPublication(...){ 

...
sensor.senseEvent();
...

}

Effector Sensor

receive()
senseEvent()
...

send()
...

– interaction-specific members
– methods with some interaction code

interaction-specific classes

RevisionProposal

paper
deadlines
currentPaperInterest
proposalEvaluation
isAccepted()
…
getPaperInterest()
getEvaluation()
…

goals
plans
sensors
effectors
addAgent()
sendMsg()
receiveMsg()
…

Legend:

chairName
papersToReview
learningComponents
setChair()
addLC()
removeLC()
notifyLC()
returnJudgement()
…

learningComponents
addLC()
removeLC()
notifyLC()
execute ()
judgeProposal()
emitJudgement()
...

 

Fig. 1. Crosscutting Agent Concerns 



234 A. Garcia et al. 

Note that, for example, the learning concern crosscuts several agent actions and 
plans implementing other agent concerns; it has a huge impact on the basic agent 
structure and the collaboration design. Although part of the learning concern is 
localized in the classes of the Strategy and Observer patterns, learning-specific code 
replicates and spreads across several class hierarchies of a software agent. Several 
participants have to implement the observation mechanism and the gathering 
information and, as a consequence, have learning code in them. Some classes also 
have learning-specific knowledge. For example, the attributes currentPaperInterest 
and proposalEvaluation are elements which were introduced to the class 
RevisionProposal only due to learning purposes.  

As a result, adding or removing the learning code from system modules requires 
invasive changes in those classes. Note that even if we try to refactor the design 
solution presented in Fig. 1, we cannot find a more modular solution. This problem 
happens because learning is a crosscutting concern independently of the system 
decomposition used [30]. Fig. 1 also illustrates similar problems for the interaction 
concern, which is usually crosscutting. 

3   Modularizing Multi-Agent Systems with Aspects 

This section presents relevant terminology of AOSD (Section 3.1), overviews our 
aspect-oriented approach to deal with crosscutting concerns in MAS development 
(Section 3.2), and illustrates the modularization of the learning concern based on our 
approach (Section 3.3).  

3.1   Aspect-Oriented Software Development 

Aspect-oriented software development (AOSD) [12] has been proposed as a 
technique for improving separation of concerns in software construction and support 
improved reusability and maintainability. Aspect-oriented (AO) techniques are not 
restricted to the object paradigm [12], but it has been their main focus up to now. The 
central idea is that while underlying abstractions of existing paradigm (such as object-
orientation, component-orientation, and agent-orientation) are extremely useful, they 
are inherently unable to modularize all concerns of interest in complex systems. Thus, 
the goal of the AO techniques is to deal with crosscutting concerns, by providing 
abstractions that make it possible to separate and compose them to produce the overall 
system. Crosscutting concerns are defined as system concerns that crosscut 
conventional system modules (such as objects, components, and agents) in the system 
development.  

Aspects are modular units of crosscutting concerns that are associated with a set of 
classes (for example). Obliviousness and quantification [32] are often considered as 
fundamental properties of aspectual modules. Central to the process of composing 
aspects and classes is the concept of join points, the elements that specify how classes 
and aspects are related. Join points are well-defined points in the structure and 
dynamic execution of a system. Examples of join points are method calls, method 
executions, and field sets and reads. An aspect defines sets of join points and advice. 
Advice is a special method-like construct attached to join points. Weaver is the 
mechanism responsible for composing the classes and aspects. 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 235 

AspectJ [13] is a practical aspect-oriented extension to the Java programming 
language. AspectJ supports the definition of aspects, advices, join points, and 
pointcuts. Pointcuts are collections of join points and are used in advice definitions. 
AspectJ also supports inter-type declarations that either specify new members 
(attributes or methods) to the classes to which the aspect is attached, or change the 
inheritance relationship between classes. Nowadays there are several AO techniques 
[44, 45] to support the separation of crosscutting concerns beyond programming. 
However, such techniques are rarely dedicated to AOSE; the existing AOSD 
approaches have been limited to addess crosscutting concerns in the object-oriented 
and component-oriented paradigms. 

3.2   Aspect-Oriented Modeling, Design and Implementation of MASs  

The basic idea of our approach is the use of aspect-oriented abstractions to enable 
improved separation of crosscutting concerns in the software engineering artifacts 
associated with MASs. Aspects are used as unifying abstractions to capture the agent 
concerns that are hard to modularize with both existing agent-oriented high-level 
notations and object-oriented design and implementation techniques. These aspects 
are supported from high-level specifications and architecture design to the detailed 
design and implementation. The goal is to obtain untangled software artifacts and 
promote enhanced reuse and evolvability in MAS development. The proposed 
approach is independent of MAS implementation frameworks, such as JADE [1] and 
ZEUS [14].  

Our approach supports MAS developers with four main elements. The first element 
of our approach is a domain-specific language (DSL) [22], called Agent-DSL, that 
supports the high-level modeling of the MAS at hand. Agent-DSL supports the 
modeling of fundamental abstractions in AOSE, such as agents, plans, actions, and 
goals, as well as the modeling of crosscutting agent-related features as separate 
modules, i.e. aspects. Aspects are used to explicitly capture concerns like mobility, 
learning, roles, and adaptation.   

The second element of our approach is an aspect-oriented software architecture 
[21] for structuring the basic internal modules of a software agent. Since the agents 
have been specified using our DSL, the internal architecture of each agent type in the 
system needs to be defined. As the system specification is refined, new crosscutting 
concerns manifest and must be modularized at the architectural stage. Our 
architecture provides a set of constraints to support the modularization of crosscutting 
agent-related concerns as architectural aspects. This aspectual agent architecture is 
flexible to support different compositions of agent concerns for heterogeneous agent 
types [21]. In addition, our approach provides a set of guidelines [6, 31] to refine the 
specification of aspectual agent architectures in terms of detailed design. 

The third element is a language of design patterns that provides solutions for the 
detailed design of crosscutting MAS-related concerns, such as mobility [29], learning 
[30], roles [36], interaction [37], autonomy [23], and adaptation [23].  The patterns 
can be directly mapped into implementation elements. The proposed design patterns 
have been implemented in AspectJ. In this context, the fourth element of our approach 
is an implementation framework [23, 22], called AspectT, which materializes those 
design patterns in AspectJ and provides support for the implementation of the 



236 A. Garcia et al. 

crosscutting MAS concerns with a set reusable classes and aspects. Finally, we have a 
set of prototype tools [22] to support the DSL-based modeling of the multi-agent 
system and the partial code generation of this system based on those provided models.   

3.3   An Example  

This section illustrates how the use of our aspect-oriented approach supports the 
modularization of the learning concern (Section 2). Due to space limitations, in this 
work, we focus on the detailed design of the learning concern. A more detailed 
description for the other MAS concerns and other development stages, the reader 
should refer to the publications described in Section 3.2. In fact, the full description of 
our approach is outside the scope of this paper. Fig. 2 illustrates the design 
aspectization of the learning property in the EC system (Section 2).  

The design notation in Fig. 2 is based on an aspect-oriented modeling language [2]. 
This language extends UML with notations for representing aspects. The notations 
provide a detailed description of the aspect elements. In this modeling language, an 
aspect is represented by a diamond; it is composed of internal structure and 
crosscutting interfaces. The internal structure declares the internal attributes and 
methods. A crosscutting interface specifies when and how the aspect affects one or 
more classes [2]. Each crosscutting interface is presented using the rectangle symbol 
with compartments, as indicated in Fig. 2. A crosscutting interface is composed of 
advices and inter-type declarations (Section 3.1)  The notation uses a dashed arrow to 
represent the crosscutting relationship, which relates one aspect to affected classes 
and/or aspects. Such classes and aspects affected by the learning aspects are 
represented in gray. 

Fig. 2 shows that learning aspects encapsulate the entire implementation of the 
learning concern, including the learning-specific knowledge and the information 
gathering. The aspectual modules separate the learning protocol from the modules 
with the purpose of implementing other agent concerns, including: (i) classes 
representing the agent types (e.g. UserAgent class), (ii) classes implementing agent 
actions and plans (e.g. JudgementPlan class), and (iii) other aspects, such as the 
Reviewer aspect.. 

The Learning aspects connect the execution points (join points) on different agent 
classes with the corresponding learning components, making it transparent to the 
agent’s basic functionality the particularities of the learning algorithms in use. These 
aspects are able to crosscut join points in the dynamics of other agent modules in 
order to enhance those modules with learning-specific behavior, from where learning 
algorithms are invoked. These points include the change of a knowledge element, 
execution of actions on plans, roles, and agent types, or still some thrown exceptions. 
The aspects gather information at those well-defined join points which is relevant for 
learning purposes, without impacting the internal design of other agent modules. 

Auxiliary classes are used to implement different learning techniques. The learning 
process in the EC system is indirect because the agent will build its knowledge 
through the results of the inter-agent negotiations. Machine learning is used to address 
the knowledge acquisition. Distinct learning techniques are used in the EC system: 
Temporal Difference Learning (TD-Learning) [23] and Least Mean Squares (LMS) 
[23]. LMS  is used by the reviewer role in order to learn the user preferences in the 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 237 

subjects he/she likes to review. TD-Learning is used in the context of the user agent 
type to learn about some general user preferences in terms of research topics. Note 
that the scattering and tangling relative to the learning concern presented in Fig. 1 is 
overcome in the aspect-oriented solution (Fig. 2). 

init()
learn()
getResponse()
...

Reviewer
Learning

Reviewer

LMS

processInformation()
getTD()
getReward()
setReward()
…

paperInterest
evaluation
...

getInterest()
...

Learning
KnowledgeRevisionProposal

reviewer
paper
deadlines
isAccepted()
getReviewer()
getPaper()
…

<< crosscutting
interface >>

events_()

Information
Gathering

<< crosscutting
interface >>

Information
Gathering

<< crosscutting
interface >>

init()
learn()
adaptKnowledge()
...

Learning

init()
learn()
getResponse()
...

UserAgent
Learning TDLearning

processInformation()
getTD()
getReward()
setReward()
…UserAgent

JudgementPlan

execute()
judgeProposal()
...

Learning
Component

learningRate
processInformation()
...

*

events_()

Learning

Legend:

class

aspect

crosscutting
relationship

learning
subaspects

advice

inter-type
declarations

 

Fig. 2. The Detailed Design of the Learning Aspects 

4   Lessons Learned  

We discuss below important benefits and pitfalls in using AO techniques for the 
development of MASs. Our lessons learned are related to four different inter-related 
dimensions of software engineering, which are presented in the following subsections. 

4.1   Motivation for AOSD in MAS Development 

The main motivation for using AOSD techniques is the increasing complexity of 
today’s agent-based applications. The advent of novel and innovative networking 
technologies makes it necessary for software systems to incorporate and deal with an 
ever greater variety of agent-specific concerns such as mobility, adaptation, and 
learning. Underlying all of these special purpose concerns is the basic concern 
responsible for the basic functionality of the system. According to our experience [4, 
23, 24], the agent properties are typically overlapping and crosscut the agent’s basic 



238 A. Garcia et al. 

functionality. The basic functionalities of agents already are quite complicated, and so 
agent properties should be designed separately from the agents’ basic behaviors [31]. 

With MASs growing in size and complexity, the separation of their concerns 
throughout the different development phases is crucial to MAS engineers. Separation 
of crosscutting concerns is an important principle in software engineering to achieve 
improved reusability and maintainability of complex systems. The lack of 
modularization of crosscutting concerns raises a number of problems: 

• Designing intertwined behaviors is hard and complex since all concerns have to 
be dealt with at the same time and at the same level. Agent-oriented modeling 
languages and OO programming languages provide no adequate abstractions for 
separation of crosscutting concerns in the modeling and implementation levels. 

• Intertwined behaviors are hard to understand because of a lack of abstraction. 
• Intertwined behaviors are both hard to maintain and reuse because the concerns 

are strongly amalgamated. 
• Intertwined behaviors give rise to inheritance anomalies due to the strong 

connection of the different agent concerns. It becomes impossible to change a 
method’s implementation or an intertwined special concern in a subclass without 
changing both. 

4.2   Separable and Inseparable MAS Concerns 

Separable Concerns. According to our experience, there was a number of crosscutting 
MAS-specific concerns which aspect-oriented abstractions succeeded to cope with 
their modularization. This was often the case for mobility, learning, roles, and 
autonomy concerns. For these agent properties, the design and implementation have 
shown expressive improvements in terms of separation of concerns. This observation 
provides evidence of the effectiveness of AO abstractions for segregating crosscutting 
structures.  

The use of aspects in these cases was also useful to reduce the coupling between 
the design modules for these concerns and increase their cohesion, since the aspect-
oriented mechisms enabled the modularization of all the behaviours relative to these 
agent concerns. We have captured a common characteristic of these aspects: they 
exhibit a high connection between the internal elements of these aspects, i.e. a high 
interaction between internal aspect attributes, methods, inter-type declarations and 
advices, which is fundamental to improve their cohesion and minimize the system 
coupling. 

Aspects Emerging in the Software Lifecycle. Many agent properties in a MAS will 
likely not be designed from scratch as aspects. Rather, many crosscutting concerns 
will emerge as a MAS evolves. An assessment framework based on a metrics suite 
[17], for instance, could help the detection of crosscutting concerns in the MAS at 
hand. Capturing such agent concerns as aspects sometimes also requires restructuring 
of the classes and methods implementing the agents’ basic functionality and other 
agent aspects to expose suitable join points (Section 4.3). 

Inseparable Concerns. There were also some crosscutting concerns, which aspect-
oriented solutions failed to improve their modularization. For example, the Interaction 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 239 

aspects do not modularize the message assembling from different plans or roles; the 
message needs to be prepared within a method on plan classes or on role aspects 
because its assembling is very coupled to the role or plan context of the respective 
agent. One solution would be to separate the message assembling with aspects, but it 
would result in higher complexity.  

The design of the adaptation concern, for example, also sounds to be natural in the 
OO fashion, and it does not seem reasonable or even possible to isolate the adaptation 
behavior into aspects. The AO design of the adaptation aspects somewhat improved 
the concern locality, but the differences in terms of coupling and cohesion are not 
significant. In fact, an additional interesting observation in our studies is that 
sometimes the crosscutting MAS concerns can be expressed separately as aspects, but 
it remains non-trivial to specify how these separate aspects should be recombined into 
a simple manner. A lot of effort is required to compose the participant classes and the 
aspects that modularize the agent concern. Hence, there are some cases where the 
separation of the agent-related concerns leads to more complex solutions. 

Inter-aspect Relationships. Many aspects are orthogonal and interact with each other. 
For example, code mobility affects not only the agent kernel, but also other important 
agent concerns such as roles, interaction, and learning. Since the mobility concern is 
related to these concerns, the presence of sophisticated composition mechanisms is 
important to specify the relationships between the mobility aspects and these other 
agent aspects.  

Complex Structure for Simple Agents. We have often found that the choice between 
using aspects or not depends highly on the complexity of the crosscutting concern in 
the specific agent-oriented application at hand. For example, we have decided to use 
aspects for modularizing the autonomy property of software agents in a reactive 
MAS. However, some simple reactive agents do not require thread control, react 
only to few events, make very simple decisions, and do not have proactive behavior. 
In this case, the autonomy code tends to be localized in fewer methods. The use of 
aspects in this specific situation can increase rather than decrease the agent design’s 
complexity. 

Overlapping Concerns. There were some concerns that have shown themselves as 
overlapping. For example, adaptation and learning are a classical example of 
overlapping concerns. The implementation of the learning aspects includes the same 
behaviors already implemented by the adaptation aspects. In order to avoid code 
duplication, we have exposed this common behavior as part of the interface of the 
adaptation aspects so that the learning aspects can access them. 

Aspects as ‘Glue’ between Agents’ Basic Concerns and MAS Frameworks. Several of 
our agent aspects at the detailed design level achieved a common structure: the aspect 
behavior forms the glue between the OO structure implementing the agents’ basic 
functionality and the specific MAS frameworks used to support some concerns. For 
instance, the Learning aspects [30] work as a glue between the hierarchy of agent 
types and the hierarchy of modules implementing the learning strategies. This design 
structure is beneficial because it allows to express the agent’s basic functionality in its 
own object structure and to use an aspect to inject that agent property into the basic  
 



240 A. Garcia et al. 

functionality in a way that is transparent. In our case studies, the same design solution 
was also applied to glue the basic agent structure and the mobility frameworks and 
platforms. 

Incremental Process vs. Iterative Process. During our case studies [7, 23, 24], we 
have tried to “incrementally” deal with agent concerns at the specification (using 
Agent-DSL mentioned in Section 3.2), architectural, design and implementation 
stages. We have found that, as the MASs increases in complexity, the boundary 
between increments is not as transparent as expected. For example, the design and 
implementation of the mobility aspects required the creation of new pointcuts in the 
interaction aspects previously defined. In this way, we mostly had to follow an 
iterative process rather than an incremental approach in order to specify and 
implement the aspect-oriented agent architectures. 

Mastering Aspects Complexity. In the design and implementation of the agent aspects, 
we have observed that it is easier to build an aspect-oriented system when the 
interface between aspects and classes is narrow and unidirectional. Unidirectional 
means that the aspect code refers to the classes but not vice versa, although many AO 
solutions do not follow this constraint. In fact, central to the quality achieved in our 
MAS is the notion of structuring crosscutting concerns separately from the “primary” 
agent concerns, using aspects that cannot be referenced back by the objects. Narrow 
means that the aspect code has a well-defined effect on particular points in the code.   

4.3   Limitations of Existing Aspect-Oriented Techniques to MAS Development 

Inter-aspect Conflicts. As mentioned previously, we have used AspectJ to implement 
the agent aspects. The modularization of some agent concerns with AspectJ caused 
aspectual conflicts. For example, roles were implemented as AspectJ aspects in our 
case studies. Each role aspect introduces the role behavior to the respective classes that 
represent the agents playing that role. This behavior introduction was implemented as 
AspectJ inter-type declarations. However, some of the roles encompassed similar 
structural and behavioral elements due to their very nature. Hence, this property of 
roles imposed conflicts in their AspectJ implementations. As an agent can play more 
than a role, those attributes and methods had to be renamed and changed so that two or 
more conflicting role aspects could be added to the same agent class. 

Lack of Obliviousness. As mentioned previously, capturing agent concerns as aspects 
sometimes required restructuring of the classes and methods implementing the agents’ 
basic functionality and other aspects to expose suitable join points. For instance, we 
have extracted code from existing methods of a plan class into a new method to 
expose a method-level join point so that a role aspect could intercept it. In these 
cases, the aspect obliviousness is not complete, although many AOSD researchers 
(e.g. [32]) argue that obliviousness is a fundamental property of AOSD. In this 
context, intimacy has been defined as the additional effort required to prepare the 
classes and methods for the incorporation of aspects into the system [32].  

Repetitive and Time-Consuming Definitions. We have modularized the interaction 
concern (Section 3.3) as aspects using both Agent-DSL and AspectJ. As part of the 
aspectization process of the interaction concern at the implementation level, all the 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 241 

message senders of the system must be specified in the pointcut inside the Interaction 
aspects. This might indeed be repetitive and tedious, suggesting that AspectJ, the 
language used in our studies, should have more powerful metaprogramming 
constructs. However, this is not an unsolvable problem because code-generation tools 
can assist MAS engineers in this development step (Section 4.4). In addition, we can 
establish a naming convention and use wildcards supported by most aspect-oriented 
languages. The initial implementation of our case studies used naming conventions. 

Naming Conflicts. The use of AspectJ and existing MAS frameworks/platforms to 
implement the aspect-oriented agent architectures have led to some design 
mismatches. For example, we have used JADE to support code mobility in our case 
studies. The JADE architecture imposes on the application developers the extension 
of the jade.Agent class to make the application agents (or specific roles) mobile. This 
abstract class provides a number of mobility services, such as a method getName() 
which is responsible for generating an unique name for the mobile agent instances in 
a distributed context. However, we have previously defined a Agent class in the agent 
architectures that implement the agents’ basic services, such as a method getName() 
with a different purpose. As we have used AspectJ aspects to implement the mobility 
concern, we used inter-type declarations to specify this extension in the aspects and 
inject the implementation of the jade.Agent class in the Agent class in our application. 
This architectural mismatch caused by the AspectJ mechanism required the renaming 
of this method and changes in the respective callers. 

Implementation Limitations. In addition, some AspectJ restrictions complicated the 
materialization of some architectural and design solutions. For example, each agent 
instance must often have its own mobility aspect. As a consequence, mobility aspects 
must be instantiated per Agent instance (or Role instance). The current version of 
AspectJ supports the specification of per-object aspects. We could describe the 
instantiation of the Mobility aspect using the perthis mechanism, such as: 

public abstract aspect Mobility perthis(Agent) {…} 

However, the use of perthis restricts the scope of the aspect. When one AspectJ 
aspect is declared to be singleton or static, its scope is the whole system and the 
aspect can crosscut all system classes. Per-object aspects can only crosscut the object 
with which it is associated. Since the mobility protocol crosscuts several classes, not 
only the Agent class or the Role class, the perthis clause cannot be used in this 
context. As a result, we have to declare mobility aspects as singletons and introduce 
the methods and attributes to the Agent and Role classes. The use of inter-type 
declarations complicates the design of the Mobility aspect since it requires the agent 
or role instance to be exposed as a parameter in each advice of the Mobility aspect. 

4.4   Research Directions 

Need for Improved Traceability. According to our experience, there is a need for 
handling aspects in a uniform way throughout the different development stages. In our 
approach, agent aspects were represented as first-class elements in the system 
specification (using the Agent-DSL), in the detailed design and in the implementation 
level (using AspectJ). However, we missed some support for describing the agent 



242 A. Garcia et al. 

aspects in intermediary modeling languages, such as agent-oriented design languages 
in order to support a better traceability between the software artifacts. 

Code Generation. The definition of some agent aspects involves some time-
consuming tasks, such as extensive description of pointcuts. Tools should be 
developed to maximize the automatic generation of the pointcuts and overcome this 
time-consuming task. We are improving a generative approach [22] that supports the 
code generation of the agent aspects. The idea is to support our methodology (Section 
3.2) with an additional number of tools and wizards that automate the code generation 
in AspectJ. 

Aspects in Agent-Oriented Modeling. According to the experience of this research, 
there are some crosscutting concerns even at the agent-oriented modeling level, such 
as coordination, exception handling, and context awareness. In addition, many of the 
agent properties, such as those ones discussed in this paper, have a broadly-scoped 
effect in agent-oriented design models; they affect a consistent number of goals and 
actions representing other MAS concerns, and often also have implications over 
different agent-oriented modeling views. Our work has been more concerned with an 
architectural and design approach. There is a need to extend existing AOSE meta-
models (e.g. TAO [33]) and agent-oriented modeling languages (e.g. Gaia [19]) with 
aspect-oriented abstractions to support the representation of crosscutting concerns in 
agent-oriented models. 

Integration with Another Development Methods. With the growing and dissemination 
of the use of agent technology in the development of software systems, it is also 
important to adapt current methods of agent-oriented software engineering to be 
integrated with existing development methods. In this sense, we have particular 
interest in how we can integrate our approach with other Web modeling and design 
methods, such as, OOHDM [34] and WebML [35], in order to introduce software 
agents in web-based information systems.  

5   Related Work 

Dealing with several crosscutting agent concerns, such as mobility and learning, has 
been recognized as a serious problem that has not received enough attention [15, 25]. 
However, research in agent-oriented software engineering has concentrated on high-
level methodologies and modeling languages [20], without giving enough attention to 
the role of aspects in the context of AOSE. In addition, implementation frameworks 
[1, 14] provide object-oriented APIs for MAS development, without providing 
guidelines for the modularization of crosscutting agent concerns.  

Some researchers have recognized these problems for some single agent concerns, 
such as roles [26] and mobility [25], and have proposed techniques for dealing with 
these concerns. However, such techniques are for separating only these individual 
concerns. In addition, most of them are focused only on the implementation stage and 
do not provide explicit support for the separation of crosscutting concerns at early 
development stages. 

Pace et al [15] have developed the Smartweaver approach. Their approach provides 
assistance for the development of MAS applications by means of integration of agent-



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 243 

oriented and aspect-oriented frameworks. It consists of two components: (i) Bubble 
[42] – an agent-oriented framework used to the implementation of reactive agents; 
and (ii) Aspect-Moderator [39] – an AO framework that supports the coordination 
between functional components and aspects. Aspect-Moderator is used to capture 
typical crosscutting concerns, such as concurrency, logging, and event handling. The 
Smartweaver approach addresses the incorporation of aspects in agent models. 
However, the code generation is limited and it does not support essential agent 
concerns, including autonomy, interaction, and adaptation. 

Amor et al [40] investigate how the gap between agent-oriented methodologies and 
implementation frameworks can be addressed. They analyze how this process can be 
automated in a way that is independent from the methodology and the framework 
adopted. The authors use the concepts, models, and mechanisms defined in the Model 
Driven Architecture (MDA) specification [41] to provide a mapping between 
abstractions in agent-oriented methodologies and elements in implementation 
frameworks. Malaca, a platform-neutral agent architecture proposed by the authors, is 
used as an intermediate representation to simplify this task of mapping. The Malaca 
architecture specifies separately the agent functionality from the concerns related with 
the agent platform adopted, such as, agent interaction, and distribution/codification of 
FIPA ACL messages. Although these concerns are not implemented using any aspect-
oriented language, this separated specification enables the reuse of the agent 
functionality and the dynamic reconfiguration of the agent behavior. There is a strong 
connection between these concerns in Malaca architecture and the Interaction and 
Role aspects in our aspect-oriented software architecture.  

Cossentino et al [38] have proposed PASSI (Process for Agent Societies 
Specification and Implementation), a methodology to specify, design and implement 
MASs. This methodology proposes the organization of the MAS development process 
in different phases from the requirements specification through to system deployment. 
Each phase focuses on the definition or refinement of a system model. Many PASSI 
models are adaptations of UML standard models, such as use-case, class, and activity 
diagrams, which incorporate agent-oriented abstractions. The use of class diagrams in 
the design of MASs brings the facility to generate the skeletons of many classes of the 
system. The authors have also explored the reuse of recurring agent design patterns to 
improve the quantity and quality of code generated. However, the PASSI approach 
does not support the systematic modularization and generation of code relative to 
crosscutting agent concerns. 

Tropos provides to some extent abstractions for expressing crosscutting concerns 
[42]. However, the focus is on the representation of inter-goal influences in the early 
and late requirements development phases. It provides a very-high level set of 
abstractions (goals and soft-goals), which allow the description of positive and 
negative contributions between goals representing functional and non-functional 
MAS properties. Soft goals can be viewed as MAS aspects at the requirements level. 
Although the goal models could be refined in late development stages, Tropos does 
not provide a complete modularization framework to design and implementation 
stages as supported in our approach. As pointed out in Section 2, crosscutting 
relationships naturally emerge in several development stages beyond inter-goal 
relationships. In fact, we believe our agent-oriented design framework is 
complementary to the Tropos notations.  



244 A. Garcia et al. 

Another approach that shows interesting aspect-oriented ideas incorporated in a 
modeling language is [43]. This approach focuses on representing the system-to-be 
according to several different perspectives; each one of them promoting an abstract 
representation of the system. Nevertheless, it only sketches the characteristics of an 
autonomy perspective for MAS specification. In addition, it does not address a 
comprehensive concern-independent framework for modularizing crosscutting 
structure and behavior in agent-oriented software development. 

6   Conclusions and Ongoing Work 

Aspect-oriented software development is gaining wide attention both in research 
environments and in industry. AOSD is a promising paradigm to promote improved 
separation of concerns, leading to the production of software systems that are easier to 
maintain and reuse. The separation of MAS concerns is essential to software 
engineers since they may decide to extend and modify such concerns as the system 
evolves. Hence it is important to systematically verify whether emerging development 
paradigms support improved modularization of the crosscutting concerns relative to 
MASs. More generally speaking, there is a need for understanding the relationships 
between aspect- and agent-oriented abstractions. 

This paper has presented some lessons learned with the use of aspect-oriented 
techniques and methods to develop some multi-agent systems. This paper 
complements our previous work on empirical studies [7, 23, 24] by focusing on more 
generic software engineering questions. Our aspect-oriented approach has been 
evaluated using representative systems from different domains. An initial quantitative 
study [24] has provided evidences of the benefits of the aspect-oriented approach. 
Although experimental studies are time-consuming, it is necessary to replicate this 
study with a variety of agent applications and with different heterogeneity facets. 
These replicated studies would build an improved body of knowledge about the 
interplay among aspects and MAS concerns. For example, it would be desirable to 
conduct quantitative studies with the application of AI techniques in a large-scale 
fashion in order to understand how the aspect-oriented approach scales in this context.  

Acknowledgements. This work has been supported by European Commission grant 
IST-2-004349: European Network of Excellence on Aspect-Oriented Software 
Development (AOSD-Europe), 2004-2008. This work has also been supported by 
CNPq under grant No. 140252/2003-7 for Uirá and grant No. 140214/04-6 for 
Cláudio. The authors were also supported by the ESSMA Project under grant 
552068/02-0. 

References 

1. Bellifemine, F., Poggi, A., Rimassi, G. “JADE: A FIPA-Compliant agent framework”. 
Proc. Practical Applications of Intelligent Agents and Multi-Agents, April 1999, pp. 97-
108. 

2. Chavez, C., Lucena, C. “Design Support for Aspect-oriented Software Development”. 
Doctoral Symposium at OOPSLA’2001, Tampa Bay, USA, October 2001, pp. 14-18. 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 245 

3. Finin, T. et al. “KQML as an Agent Communication Language”, Proc. of the 3rd Intl. 
Conference on Information and Knowledge Management, ACM Press, 1994, pp. 456-463. 

4. FIPA Specifications. “FIPA ACL Message Structure Specification”. http://www.fipa.org/ 
specs/fipa00061/ 

5. Gamma, E. et al. “Design Patterns: Elements of Reusable Object-Oriented Software”. 
Addison-Wesley, Reading, 1995. 

6. Garcia, A., Lucena, C., Cowan, D. “Agents in Object-Oriented Software Engineering”. 
Software: Practice and Experience, Elsevier, April 2004.  

7. Garcia, A., Silva,V., Chavez, C., Lucena, C. “Engineering Multi-Agent Systems with 
Aspects and Patterns”. Journal of the Brazilian Computer Society, July 2002, v. 8, no. 1, 
pp. 57-72. 

8. Iglesias, C. et al. “A Survey of Agent-Oriented Methodologies”, Proceedings of the 
ATAL-98, Paris, France, July 1998, pp. 317-330. 

9. Jennings, N., Wooldridge, M. “Agent-Oriented Software Engineering”. In: J. Bradshaw 
(Ed). “Handbook of Agent Technology”. AAAI/MIT Press, 2000. 

10. Kendall, E. “Role Model Designs and Implementations with Aspect-oriented 
Programming”. OOPSLA 1999, pp. 353-369. 

11. Kendall, E et al. “A Framework for Agent Systems”, In: Fayad, M. et al (Eds), 
“Implementing Applications Frameworks: Object Oriented Frameworks at Work”. John 
Wiley & Sons, 1999. 

12. Kiczales, G. et al. “Aspect-Oriented Programming”. European Conference on Object-
Oriented Programming (ECOOP), LNCS (1241), Springer-Verlag, Finland., June 1997. 

13. Kiczales, G. et al. “Getting Started with AspectJ”. Communication of the ACM, vol. 44, 
no. 10, October 2001, pp. 59-65 

14. Nwana, H., Ndumu, D., Lee, L. “ZEUS: An advanced Toolkit for Engineering Distributed 
Multi-Agent Systems”, Proceedings of PAAM’98, 1998, pp. 377-391. 

15. Pace, A., Trilnik, F., Campo, M. “Assisting the Development of Aspect-based MAS using 
the SmartWeaver Approach”. In: Garcia, A. et al (Eds). “Software Engineering for Large-
Scale Multi-Agent Systems”. Springer-Verlag, LNCS 2603, April 2003. 

16. Rashid, A. “A Hybrid Approach to Separation of Concerns: The Story of SADES”. 
Proceedings of the Reflection 2001, LNCS 2192, pp. 231-249. 

17. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa, A. “On the Reuse and 
Maintenance of Aspect-Oriented Software: An Assessment Framework”. Proc. of the 
XVII Brazilian Symposium on Software Engineering, Manaus, Brazil, October 2003, pp. 
19-34. 

18. Sycara, K., Paolucci, M., Velsen, M., Giampapa J. “The RETSINA MAS Infrastructure.” 
Journal of Autonomous Agents and Multi-Agent Systems, v. 7, n. 1/2, July/September 
2003. 

19. Wooldridge, M., Jennings, N., Kinny, D. “The Gaia Methodology for Agent-Oriented 
Analysis and Design”. Journal of Autonomous Agents and MAS, 3:3, 2000, pp. 285-312. 

20. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (Eds.). “Methodologies and Software 
Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook”. 
Springer, 2004. 

21. Garcia, A., Lucena, C. “Taming Heterogeneous Agent Architectures with Aspects”. 
Communications of the ACM, March 2005. (submitted) 

22. Kulesza, U., Garcia, A., Lucena, C. “A Generative Approach for Multi-Agent System 
Development”. "Software Engineering for Multi-Agent Systems III", Springer, LNCS 
3390, December 2004, pp. 52-69. 



246 A. Garcia et al. 

23. Garcia, A. From Objects to Agents: An Aspect-Oriented Approach. PhD Thesis, 
Computer Science Department, PUC-Rio, Brazil, April 2004. 

24. Garcia, A et al. Separation of Concerns in Multi-Agent Systems: An Empirical Study. In: 
"Software Engineering for Multi-Agent Systems II". Springer, LNCS 2940, February 
2004. 

25. Ubayashi, N., Tamai, T. “Separation of Concerns in Mobile Agent Applications”. Proc. of 
the 3rd Conference Reflection 2001, LNCS 2192, Kyoto, September 2001, pp. 89-109. 

26. D'Hondt, M., Gybels, K., Jonckers, V. ”Seamless Integration of Rule-Based Knowledge 
and Object-Oriented Functionality with Linguistic Symbiosis”. Proceedings of the 19th 
Annual ACM Symposium on Applied Computing (SAC 2004), Nicosia, Cyprus, March 
2004. 

27. Guessoum, Z., Briot, J. From Active Objects to Autonomous Agents. IEEE Concurrency, 
Special Series on Actors and Agents, Vol. 7, N. 3, 1999, pp. 68-76. 

28. Amandi, A., Price, A. Building Object-Agents from a Software Meta-Architecture. In: 
Advances in Artificial Intelligence, LNAI, vol. 1515, Springer-Verlag, 1998. 

29. Garcia, A.  et al. “The Mobility Aspect Pattern”. Proc. of the 4th Latin-American 
Conference on Pattern Languages of Programming, SugarLoafPLoP'04. August, 2004, 
Fortaleza, Brazil. 

30. Garcia, A. et al. “The Learning Aspect Pattern”. Proc. of the 11th Conference on Pattern 
Languages of Programs (PLoP2004), September 2004, Monticello, USA. 

31. Garcia, A., Kulesza, U., Lucena, C. “Aspectizing Multi-Agent Systems: From 
Architecture to Implementation.” "Software Engineering for Multi-Agent Systems III". 
Springer-Verlag, LNCS 3390, December 2004, pp. 121-143. 

32. Filman, R. “What Is Aspect-Oriented Programming, Revisited”. Proceedings of the 
Workshop on Advanced Separation of Concerns at ECOOP’01, June 2001. 

33. Silva, V. et al. “Taming Agents and Objects in Software Engineering”. In: “Software 
Engineering for Large-Scale Multi-Agent Systems", Springer, LNCS 2603, March 2003. 

34. Ceri, S., Fraternali, P. “Web Modeling Language (WebML): A Modeling Language for 
Designing Web Sites”. Proc. of the 9th. Intl. World Wide Web Conference, 2000, pp  
137-157. 

35. Schwabe, D., Rossi, G. “An Object-Oriented Approach to Web-based Application 
Design”. Theory and Practice of Object Systems, v. 4, pp.207-225, October, 1998. 

36. Garcia, A., Chavez, C., Kulesza, U., Lucena, C. “The Role Aspect Pattern”. Proc. of the 
10th European Conf. on Pattern Languages of Programs (EuroPLoP’05), July 2005, Irsee, 
Germany.  

37. Garcia, A., Kulesza, U., Chavez, C., Lucena, C. The Interaction Aspect Pattern. Proc. of 
the 10th European Conf. Pattern Languages of Programs (EuroPLoP), July 2005, Irsee, 
Germany..  

38. Cossentino, M., Potts, M. “A CASE Tool Supported Methodology for the Design of 
MASs.” Proc.. of the Intl. Conf. on Soft. Eng. Research and Practice (SERP'02), Las 
Vegas, June 2002.  

39. Constantinides, C., Bader, A., Elrad, T., Fayad, M. “Designing an Aspect-Oriented 
Framework”. ACM Computing Surveys, 32:41, 2000. 

40. Amor, M., Fuentes, L., Vallecillo, A. “Bridging the Gap Between Agent-Oriented Design 
and Implementation Using MDA”. Proceedings of 5th International Workshop on Agent-
Oriented Software Engineering, AOSE 2004, Springer, LNCS 3382, July 2004, pp.  
93-108. 

41. OMG. “Model Driven Architecture - A Technical Perspective”. Object Management 
Group, OMG Document ab/2001-01-01, 2001. Available from www.omg.org. 



 Aspects in Agent-Oriented Software Engineering: Lessons Learned 247 

42. Castro, J., Kolp, M., Mylopoulos, J. “Towards Requirements-Driven Information Systems 
Engineering: the Tropos Project”. Information Systems 27(6), 2002, p. 365–389. 

43. Cossentino, M., Zambonelli, F. “Agent Design from the Autonomy Perspective”. LNCS 
2969) Springer, p. 140-150, 2004. 

44. Filman, R. et al. “Aspect-Oriented Software Development”. Addison-Wesley, 2005. 
45. Chitchyan, R. et al. “Survey of Aspect-Oriented Analysis and Design”. AOSD-Europe 

Project Deliverable No: AOSD-Europe-ULANC-9. www.aosd-europe.net 



Author Index

Arenas, Alvaro E. 179

Beer, Martin D. 94
Bosse, Tibor 54

Cabac, Lawrence 190
Cabri, Giacomo 154
Calisti, Monique 28
Cernuzzi, Luca 109
Cervenka, Radovan 28
Chavez, Christina 231
Cheong, Christopher 16

Davidsson, Paul 205
de Jesús Pérez-Alcázar, José 179
de Lucena, Carlos J.P. 231
Denti, Enrico 81
Duvigneau, Michael 190

Ferrari, Luca 154
Fischer, Felix 1
Flouret, Marianne 124
Fuentes, Rubén 40

Garcia, Alessandro 231
Garćıa-Ojeda, Juan C. 179
Garijo, Francisco 218
Gómez-Sanz, Jorge J. 40, 218

Hill, Richard 94

Jayaputera, Glenn 139
Johansson, Stefan 205
Jonker, Catholijn M. 54

Kulesza, Uirá 231

Leonardi, Letizia 154
Loke, Seng 139
Los, Sander A. 54

Mallya, Ashok U. 69
Moldt, Daniel 190
Molesini, Ambra 81

Nickles, Matthias 1

Omicini, Andrea 81

Pavón, Juan 40, 218
Perini, Anna 167
Polovina, Simon 94

Ricci, Alessandro 81
Rölke, Heiko 190
Rovatsos, Michael 1

Sant’Anna, Cláudio 231
Simon, Gaële 124
Singh, Munindar P. 69
Susi, Angelo 167
Svahnberg, Mikael 205

Trencansky, Ivan 28
Treur, Jan 54

van der Torre, Leendert 54

Weiß, Gerhard 1
Winikoff, Michael 16

Zambonelli, Franco 109
Zaslavsky, Arkady 139


	Frontmatter
	Modeling Tools
	Operational Modelling of Agent Autonomy: Theoretical Aspects and a Formal Language
	Hermes: Designing Goal-Oriented Agent Interactions
	Modeling Social Aspects of Multi-Agent Systems: The AML Approach

	Analysis and Validation Tools
	Requirements Elicitation for Agent-Based Applications
	Formalisation and Analysis of the Temporal Dynamics of Conditioning
	Incorporating Commitment Protocols into Tropos

	Multiagent Systems Design
	Zooming Multi-Agent Systems
	Improving AOSE with an Enriched Modelling Framework
	Dealing with Adaptive Multi-agent Organizations in the Gaia Methodology
	Implementing Validated Agents Behaviours with Automata Based on Goal Decomposition Trees

	Implementation Tools
	Dynamically Generated User-Specified MAS
	Supporting the Development of Multi-agent Interactions Via Roles
	Automating Model Transformations in Agent-Oriented Modelling
	Paving the Way for Implementing Multiagent Systems: Integrating Gaia with Agent-UML
	Applying Multi-agent Concepts to Dynamic Plug-In Architectures

	Experiences and Comparative Evaluations
	Using the Analytic Hierarchy Process for Evaluating Multi-Agent System Architecture Candidates
	Estimating Costs for Agent Oriented Software
	Aspects in Agent-Oriented Software Engineering: Lessons Learned

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




