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Abstract. We address parallel jobs scheduling problem for computa-
tional GRID systems. We concentrate on two-level hierarchy scheduling:
at the first level broker allocates computational jobs to parallel comput-
ers. At the second level each computer generates schedules of the par-
allel jobs assigned to it by its own local scheduler. Selection, allocation
strategies, and efficiency of proposed hierarchical scheduling algorithms
are discussed.

1 Introduction

Recently, parallel computers and clusters have been deployed to support compu-
tation-intensive applications and become part of so called computational grids
(C-GRIDs) or metacomputers [10, 8]. Such C-GRIDs are emerging as a new para-
digm for solving large-scale problems in science, engineering, and commerce [15].
They comprise heterogeneous nodes (typically, clusters and parallel supercom-
puters) with a variety of computational resources. The efficiency of scheduling
policies is crucial to C-GRID performance. The job scheduling solutions for a sin-
gle parallel computer significantly differs from scheduling solution in such a grid.
The scheduling problem becomes more complicated because many computers of
different sizes are involved with different local scheduling policies [11, 12, 13, 14].
One possible solution is to consider two-level scheduling schemes: at the first
level jobs are allocated to parallel computers by a GRID resource broker and
then local schedulers are used at each computer. Typically, the broker is respon-
sible for resource discovery, resource selection, and job assignment to ensure that
the user requirements and resource owner objectives are met. The broker acts
as a mediator between users and resources using middleware services. It is re-
sponsible for presenting the grid to the user as a single, unified resource. One of
the broker’s major responsibilities is to provide centralized access to distributed
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resources. This simplifies the use of the computational GRID aggregating avail-
able computational resources, and collecting information on the current state of
these resources.

In this paper, we discuss several scheduling policies for two level hierarchy:
at the first level the broker allocates computational jobs to C-GRID node ac-
cording to some selection criteria taking parameters of jobs and computers into
consideration. At the second level, each node generates schedules by its own lo-
cal scheduler. We present scheduling strategies based on combination of some
selection strategies and scheduling algorithms. We limit our consideration to the
scenario where jobs are submitted to the broker from a decentralized environ-
ment of other brokers, and can be processed into the same batch. The main
objective of the paper is to compare different scheduling strategies and estimate
their efficiency. In Section 2, we present a brief overview on two level hierarchy
scheduling strategies, and compare their the worst case behavior in Section 3,
followed by concluding remarks in Section 4.

2 Scheduling Strategies

2.1 Model

Let we have n jobs J1, J2, ..., Jn, and m uniform C-GRID nodes N1, N2, ..., Nm,
characterized by M = [m1, m2, ..., mm], where mi is the number of identical
processors of the node Ni. We assume that there is no inter-communications
between jobs, that they can be executed at any time, in any order, and on any
node.

Each job is described by 2-tuple (sj , p
j
sj

), where sj is a job size that is referred
to as the job’s degree of parallelism or number of processors required for Jj , pj

sj

is the execution time of job Jj on sj processors. The job work also called job area
is Wj = pj

sj
· sj . Each job can be executed at a single node, so the maximum size

of a job is less than or equal to the maximum number of processors in a node.
This means that system resources are not crossed, and co-allocation problem
is not considered. All strategies are analyzed according to their approximation
ratio. Let Copt(I) and CA(I) denote makespans of an optimal schedule and of
a strategy A for a problem instance I, respectively. The approximation ratio
of the strategy A is defined as ρA = supI CA(I)/Copt(I), and we call A an ρ
approximation algorithm.

In this paper, we restrict our analysis to the scheduling systems where all jobs
are given at time 0 and are processed into the same batch. This means that a set
of available ready jobs is executed up to the completion of the last one. All jobs
which arrive in the system during this time will be processed in the next batch.
A relation between this scheme and the scheme where jobs arrived over time,
either at their release time, according to the precedence constraints, or released
by different users is known and studied for different scheduling strategies. Using
results [6] the performance guarantee of strategies which allows release times is
2-competitive of the batch style algorithms.



776 A. Tchernykh et al.

2.2 Two Level Hierarchy Scheduling

The scheduling consists of two parts: selection of a parallel node for a job and
then local scheduling at this node.

Selection Strategies. We consider the following scenario. On the first stage,
to select a node for the job execution the broker analyzes the job request, and
current C-GRID resources’ characteristics, such as a load (number of jobs in
each local queue), parallel load (sum of jobs’ sizes or jobs’ tasks), work (sum of
jobs work), etc. The parameters of the jobs already assigned to nodes and known
by the broker are used only. All nodes are considered in non decreasing order of
their sizes mi, m1 ≤ m2 ≤ · · · ≤ mm. Let first(Jj) be the minimum i such that
mi ≥ sj. Let last(Jj) be the maximum i such that mi ≥ sj . If last(Jj) = m we
denote the set of nodes Ni, i = first(Jj), ..., last(Jj) as the set of available nodes

M-avail. If last(Jj) is the minimum r such that
r∑

i=first(Jj)
mi ≥ 1

2

m∑

i=first(Jj)
mi,

we denote the set of nodes Ni, i = first(Jj), ..., last(Jj) as the set of admissible
nodes M-admis. The broker selects node for a job request using the following
strategies:

– Min-Load (ML) strategy takes the node with the lowest load per processor
(number of jobs over number of processors in the node).

– Min-Parallel-Load (MPL) strategy takes the node with the lowest parallel
load per processor (the sum of job sizes over number of processors in the
node).

– Min-Lower-Bound (MLB) strategy chooses the node with the least possible
lower bound of completion time of previously assigned jobs, that is the node
with the lowest work per processor. Instead of the actual execution time of
a job that is an offline parameter, the value provided by the user at job
submission, or estimated execution time is used.

– Min-Completion-Time (MCT). In contrast to MLB, the earliest possible
completion time is determined based on a partial schedule of already as-
signed jobs [9, 7]. For instance, Moab [3] can estimate the completion time
of all jobs in the local queue because jobs and reservations possess a start
time and a wallclock limit.

Local Scheduling Algorithms. We address the space sharing scheduling prob-
lem, hence scheduling can be viewed as a problem of jobs packing into strips of
different width. In such geometric model each job corresponds to a rectangle of
width sj and height pj

sj
. One known strategy for packing is the Bottom-Left(BL).

Each rectangle is slid as far as possible to the bottom and then as far as possible
to the left [16]. It is known that for some problems BL can not find constant
approximation to the optimal packing, but a successful approach is to apply
BL to the rectangles ordered by decreasing sizes that is referred as Bottom Left
Decreasing(BLD) or Larger Size First(LSF). In this paper we use LSF for local
scheduling.
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3 Analysis

The LSF has been shown to be a 3-approximation [2]. Some results about asymp-
totic performance ratio of different strategies for this problem and improvements
are presented in [1, 4, 5].

Below we will consider LSF for local scheduling and the following se-
lection strategies: Min-Load(ML), Min-Load-admissible(ML-a), Min-Parallel-
Load(MPL), Min-Parallel-Load-admissible(MPL-a), Min-Lower-Bound(MLB),
Min-Lower-Bound-admissible(MLB-a), Min-Completion-Time(MCT), and Min-
Completion-Time-admissible(MCT-a).

3.1 (ML, ML-a, MPL, MPL-a)-LSF

The simple example below shows that ML, ML-a, MPL, MPL-a selection strate-
gies combined with LSF cannot guarantee constant approximation in the worst
case. It is sufficient to consider m nodes of width 1 and the following list of
jobs: m − 1 jobs J1, then J2, then m − 1 jobs J1, etc., where J1 = (1, ε),
J2 = (1, E). Suppose n = rm, where r ∈ IN. Note that C(ML,MPL)−LSF = rE

and Copt ≤ � (m−1)r
m �ε + � r

m�E. If E/ε → ∞, m → ∞, and r → ∞ then
ρ(ML,MPL)−LSF → ∞.

3.2 MCT-LSF

In the following two theorems we prove that constant approximation for MCT-
LSF strategy is not guaranteed and that MCT-a-LSF is a 10 approximation
algorithm.

Theorem 1. For a set of grid nodes with identical processors and for a set of
rigid jobs the constant approximation for MCT-LSF strategy is not guaranteed
(in the worst case).

Proof. Let us consider grid nodes and jobs that are divided into groups according
to their sizes. Let there are k + 1 groups of nodes and k + 1 sets of jobs. The
number of nodes in group i is equal Mi = 2i for 0 ≤ i ≤ k. The number of jobs
in a set i is equal ni = (i+1) ·2i. The size of the nodes in group i is equal to the
job size in the set i, si = mi = 2k−i. The execution time (height) of jobs in the
set i is pi = 1

i+1 . Since pinisi/Mimi = 1
i+1 (i + 1)2i/2i = 1, obviously Copt = 1.

However, nisi = 2k−i(i + 1) · 2i = (i + 1) · 2k =
i∑

j=0
Mjmj =

i∑

j=0
2j2k−j . Hence,

any set of jobs may completely fill one layer of available nodes, and if jobs come

in increasing order of their sizes CMCT−LST =
k∑

j=0

1
j+1 ∼ lnk that means that

the ratio CMCT−LSF/Copt may be arbitrary large. 
�

3.3 MCT-a-LSF

Theorem 2. For any list of rigid jobs and any set of grid nodes with identical
processors the MCT-a-LSF is a 10 approximation algorithm.
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Proof. Let the maximum completion time is achieved at the kth node, Ja be the
job that has been received last from the broker by this node, and f = first(Ja),
l = last(Ja). Let Yf , . . . , Yl be the sets of jobs that were allocated on the nodes
f, . . . , l (admissible for Ja), just before getting the job Ja. Because the job was
sent to the kth node, then the completion time of the node Ci + pa ≥ Ck +
pa ≥ CMCT−a−LSF ∀i = f, ..., l. Let in the node Nk the job with maximum
completion time be Jc. Over all jobs with maximum completion time the job
with largest processing time is chosen. Let tc be the time when this job has
started the execution, and let rc = tc − pa. We have tc + pc ≥ CMCT−a−LSF,
rc + pa + pc ≥ CMCT−a−LSF

l∑

i=f

mirc + pa ·
l∑

i=f

mi +
l∑

i=f

mip
c ≥ CMCT−a−LSF ·

l∑

i=f

mi (1)

Before the time tc the kth node is filled at least half (the property of the
BLD algorithm) [2], hence Wk ≥ 1

2 · mk · rc.
Let Jb be the job which requires minimal number of processors among the

jobs allocated on nodes f, ..., l, and let f0 = first(Jb). Then all jobs allocated on
nodes f, ..., l cannot be allocated on nodes Ni with i < f0. Since Jb is allocated

on one of the nodes f, ..., l then last(Jb) ≥ f ⇒
f−1∑

i=f0

mi ≤ 1
2

m∑

i=f0

mi ⇒
m∑

i=f

mi ≥

1
2

m∑

i=f0

mi. Since l = last(Ja), then
l∑

i=f

mi ≥ 1
2

m∑

i=f

mi and

m∑

i=f0

mi ≤ 2
m∑

i=f

mi ≤ 4
l∑

i=f

mi (2)

Thus, Copt ·
m∑

i=f0

mi ≥ S(
l⋃

i=f

Wi) ≥ 1
2

l∑

i=f

miri, where S(
l⋃

i=f

Wi) denote the sum

of jobs’ areas allocated at nodes f, . . . , l. By (2)

l∑

i=f

miri ≤ 2 · Copt ·
m∑

i=f0

mi ≤ 8 · Copt ·
l∑

i=f

mi (3)

The inequalities Copt ≥ pj, ∀j, (1) and (3) imply

8 · Copt ·
l∑

i=f

mi + pa ·
l∑

i=f

mi +
l∑

i=f

mip
i ≥ CMCT−a−LSF ·

l∑

i=f

mi,

8Copt ·
l∑

i=f

mi + pa ·
l∑

i=f

mi + Copt ·
l∑

i=f

mi ≥ CMCT−a−LSF ·
l∑

i=f

mi,

8Copt + pa + Copt ≥ CMCT−a−LSF, 8Copt + Copt + Copt ≥ CMCT−a−LSF,

and, finally CMCT−a−LSF ≤ 10 · Copt 
�
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3.4 MLB-LSF

Theorem 3. For a set of grid nodes with identical processors, and for a set of
rigid jobs the constant approximation for MLB-LSF strategy is not guarantied
(in the worst case).

The proof is similar to the proof of Theorem 1, so we omit it here.

3.5 MLB-a-LSF

The strategy is similar to MLB-LSF with only one difference: only admissible
nodes are considered for the selection. Selecting admissible nodes prevents nar-
row jobs filling wide nodes causing wide jobs waiting for execution. It also allows
us to find a constant approximation for the algorithm.

Theorem 4. For any list of rigid jobs and any set of grid nodes with identical
processors the MLB-a-LSF is a 10 approximation algorithm.

Proof. Let the maximum completion time be at the kth node when algorithm
terminates. Let the job Ja be the last job with the execution time pa that was
added to this node, and f=first(Ja), l=last(Ja). Let Yf , . . . , Yl be the sets of jobs
that had been already allocated at nodes Nf , . . . , Nl admissible for Ja before
adding Ja, and let Wi be the total area of all jobs of Yi, (i = f, . . . , l). Since Ja

was added to the kth node of width mk, Wk

mk
≤ Wi

mi
, ∀i = f, . . . , l. Therefore,

l∑

i=f

Wi =
l∑

i=f

Wi

mi
mi ≥

l∑

i=f

Wk

mk
mi =

Wk

mk

l∑

i=f

mi (4)

Let in packing by the LSF (BLD) algorithm, the set of rectangles corre-
sponding to jobs allocated at the kth strip be Yk

⋃
{Ja}, JT be a job with

maximum completion time, and tT be the time when this job has started the
execution, hence CMLB−a−LSF = tT + pT , where pT is the processing time of
JT , and CMLB−a−LSF is the completion time of the MLB-a-LSF algorithm. Let
rk = tT − pa. Then

CMLB−a−LSF = rk + pT + pa (5)

By the property of the LSF(BLD) algorithm [2]

Wk ≥ 1
2
mkrk ⇒ rk ≤ 2Wk

mk
. (6)

Let Jb be the job having the smallest size among rectangles that packed at
strips and let f0 = first(Jb). Hence any of the rectangles packed at Nf , . . . , Nl

cannot be packed at a strip with number < f0. As far as Jb is packed at one of the

strips f, . . . , l, last(Jb) ≥ f ⇒
f−1∑

i=f0

mi ≤ 1
2

m∑

i=f0

mi ⇒
m∑

i=f

mi ≥ 1
2

m∑

i=f0

mi. Since

l = last(Ja) and
l∑

i=f

mi ≥ 1
2

m∑

i=f

mi, we obtain
m∑

i=f0

mi ≤ 2
m∑

i=f

mi ≤ 4
l∑

i=f

mi.
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Then, clearly Copt

m∑

i=f0

mi ≥
l∑

i=f

Wi. Substituting (4) in this formula, we have

Copt

m∑

i=f0

mi ≥ Wk

mk

l∑

i=f

mi ≥ 1
4

Wk

mk

m∑

i=f0

mi. Taking into account (6) we obtain

rk ≤ 2Wk

mk
≤ 8Copt (7)

As far as Copt ≥ pj , ∀j, (5) and (7) imply 8Copt + Copt + Copt ≥ CMLB−a−LSF
and, CMLB−a−LSF ≤ 10 · Copt. 
�

4 Concluding Remarks

In this paper, we discuss approaches and present solutions to multiprocessor
job scheduling in computational Grid hierarchical environment that includes a
resource broker and a set of clusters or parallel computers. The selection and
allocation strategies are discussed. We show that our strategies provide efficient
job management with constant approximation guarantee despite they are based
on relatively simple schemes. The comparison of MLB-a-LSF and MCT-a-LSF
strategies shows that MLB-a-LSF has the same worst case bound as MCT-
a-LSF, however the MCT selection strategy is based on a partial schedule of
already scheduled jobs and requires more computational effort than MLB strat-
egy that based only on the job parameters from the list of assigned job. With
MLB-a-LSF the broker can select appropriate node without feedback about the
schedule from the node. The results are not meant to be complete, but give
an overview on the methodology and some interesting relations. These results
motivate finding approximation bounds of other two level hierarchy scheduling
strategies. Another interesting question is how fuzzy execution time affects the
efficiency. It seems important also to study moldable (or malleable) jobs hierar-
chical scheduling when the number of processors for a job is not given explicitly
by a user but can be chosen by a broker or a local scheduler. Simulations are
planned to evaluate proposed strategies considering real and synthetic workload
models.
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