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Dąbrowskiego 73, 42-200 Częstochowa, Poland
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Preface

This volume comprises the proceedings of the 6th International Conference on
Parallel Processing and Applied Mathematics - PPAM 2005, which was held
in Poznań, the industrial, academic and cultural center in the western part of
Poland, during September 11–14, 2005. It was organized by the Department of
Computer and Information Sciences of the Częstochowa University of Technol-
ogy, with the help of Poznań Supercomputing and Networking Center. The main
organizer was Roman Wyrzykowski.
PPAM is a biennial conference organized since 1994. Five previous events

have been held in different places in Poland. The proceedings of the last two
conferences were published by Springer in the Lecture Notes in Computer Science
series (Nałęczów, 2001, vol.2328; Częstochowa, 2003, vol.3019).
The PPAM conferences have become an international forum for exchanging

ideas between researchers involved in parallel and distributed computing, includ-
ing theory and applications, as well as applied and computational mathematics.
The focus of PPAM 2005 was on grid computing. The main idea behind this de-
cision was to foster communication and cooperation between the grid application
users, application developers and grid middleware developers, to identify the key
application requirements and scenarios on the grid, to gather information about
tools and toolkits, and to broaden the grid community by encouraging new users
to take advantage of grid technologies.
This meeting gathered around 200 participants from 33 countries. A strict

refereeing process resulted in acceptance of 130 contributed presentations, while
approximately 38% of the submissions were rejected. It is worth mentioning
that the conference was visited by both the research community and industry
representatives.
Regular tracks of the conference covered important fields of parallel/dist-

ributed/grid computing and applied mathematics such as:

– Parallel and distributed architectures
– Parallel and distributed non-numerical algorithms
– Performance analysis, prediction and optimization
– Grid programming
– Tools and environments for clusters and grids
– Numerical and non-numerical applications of parallel/distributed/grid com-
puting
– Evolutionary computing
– Parallel data mining
– Parallel numerics
– Mathematical and computing methods



VI Preface

The plenary and invited talks were presented by:

– Ben Bennett from Intel (USA)
– Jack Dongarra from the University of Tennessee and Oak Ridge National
Laboratory (USA)
– Geoffrey Fox from Indiana University (USA)
– Jacek Gondzio from the University of Edinburgh, Scotland (UK)
– Rich L. Graham from Los Alamos National Laboratory (USA)
– Kate Keahey from Argonne National Laboratory (USA)
– Eric Kronstadt from IBM T.J. Watson Research Center (USA)
– Bolesław Szymański from Rensselaer Polytechnic Institute (USA)
– Ziga Turk from the University of Ljubljana (Slovenia)
– Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Important and integral parts of the PPAM 2005 conference were the work-
shops:

– The Second Grid Application and Middleware Workshop - GAMW 2005
organized by Ewa Deelman from the USC Information Sciences Institute
(USA) and Norbert Meyer from the Poznań Supercomputing and Networking
Center (Poland)
– The Second Grid Resource Management Workshop - GRMW 2005 orga-
nized by Jarek Nabrzyski from the Poznań Supercomputing and Networking
Center (Poland) and Ramin Yahyapour from the University of Dortmund
(Germany)
– Workshop on Large Scale Computations on Grids organized by Przemys-
law Stpiczyński from Marie Curie-Skłodowska University in Lublin (Poland),
Dana Petcu from the Western University of Timisoara(Romania), andMarcin
Paprzycki from SWPS in Warsaw (Poland)
– Workshop on Scheduling for Parallel Computing organized by Maciej Droz-
dowski from the Poznań University of Technology (Poland)
– Workshop on Language-Based Parallel Programming Models organized by
Ami Marowka from the Hebrew University (Israel)
– Workshop on Dependability of the Distributed Systems organized by Jan
Kwiatkowski and Piotr Karwaczyński from the Wroclaw University of Tech-
nology (Poland)
– Workshop on HPC Linear Algebra Libraries for Computers with Multilevel
Memories organized by Jerzy Waśniewski from the Technical University of
Denmark (Denmark)
– Workshop on Parallel Bio-Computing organized by David A. Bader from the
Georgia Institute of Technology in Atlanta (USA) and Denis Trystram from
ID-IMAG in Grenoble (France)

The PPAM 2005 meeting began with four half-day tutorials:

– Using CLUSTERIX: National Cluster of Linux Systems, by the CLUS-
TERIX Team from Czestochowa University of Technology, Poznań Super-
computing and Networking Center, Gdańsk University of Technology, and
Białystok Technical University (Poland)
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– Enterprise GRID Solutions: Eliminating Isolated Technology Islands with
InfiniBand, by CISCO
– Scientific Programming for Heterogeneous Systems, by Alexey Lastovetsky
from the University College Dublin (Ireland) and Alexey Kalinov from the
Institute for System Programming in Moscow (Russia)
– Upgrading Cluster Performance with InfiniBand and the Intel MPI Library,
by Tom Lehmann from Intel (USA)

The organizers are indebted to the PPAM 2005 sponsors, whose support was
vital to the success of the conference. The main sponsor was Intel Corporation.
The other sponsors were: IBM Corporation, Optimus S.A., Cisco Systems, and
APC Corporation. We thank all members of the International Program Com-
mittee, Workshop Program Comittees and additional reviewers for their dili-
gent work in refereeing the submitted papers. Finally, we thank all of the local
organizers from the Częstochowa University of Technology and Poznań Super-
computing and Networking Center, who helped us run the event very smoothly.
We are especially indebted to Grażyna Kołakowska, Urszula Kroczewska, Kon-
rad Karczewski, Jarosław Żola, from the Częstochowa University of Technol-
ogy, and Maciej Stroiński, Sławomir Niwiński from Poznań Supercomputing and
Networking Center.
We hope that this volume will be useful to you. We would like to invite

everyone who reads it to the next conference, PPAM 2007, which will be held
on the Baltic Coast in Gdańsk/Sopot (Poland) on September 9-12, 2007
(http://ppam.pcz.pl).

February 2006 Roman Wyrzykowski
Jack Dongarra
Norbert Meyer
Jerzy Waśniewski
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José Luis Vázquez-Poletti, E. Huedo, Rubén S. Montero,
Ignacio M. Llorente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831



XX Table of Contents

Workshop on Scheduling for Parallel Computing

Load Balancing Strategies in a Web Computing Environment
Olaf Bonorden, Joachim Gehweiler,
Friedhelm Meyer auf der Heide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

Multi-installment Divisible Load Processing in Heterogeneous Systems
with Limited Memory

Maciej Drozdowski, Marcin Lawenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Chromatic Scheduling of 1- and 2-Processor UET Tasks on Dedicated
Machines with Availability Constraints

Krzysztof Giaro, Marek Kubale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Task Scheduling for Look–Ahead Reconfigurable Systems in Presence
of Conditional Branches

Eryk Laskowski, Marek Tudruj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863

Scheduling Task Graphs for Execution in Dynamic SMP Clusters with
Bounded Number of Resources

Lukasz Masko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871

Scheduling Moldable Tasks for Dynamic SMP Clusters in SoC
Technology

Lukasz Masko, Pierre–Francois Dutot, Gregory Mounie,
Denis Trystram, Marek Tudruj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879

Model Driven Scheduling Framework for Multiprocessor SoC Design
Ashish Meena, Pierre Boulet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

Asymmetric Scheduling and Load Balancing for Real-Time on Linux
SMP
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José R. Herrero, Juan J. Navarro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058

Measuring the Scalability of Heterogeneous Parallel Systems
Alexey Kalinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066

A Variable Group Block Distribution Strategy for Dense Factorizations
on Networks of Heterogeneous Computers

Alexey Lastovetsky, Ravi Reddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1074

Minimizing Associativity Conflicts in Morton Layout
Jeyarajan Thiyagalingam, Olav Beckmann,
Paul H.J. Kelly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082



Table of Contents XXIII

Workshop on Parallel Bio-computing

A Parallel Algorithm for Solving the Reversal Median Problem
Matthias Bernt, Daniel Merkle, Martin Middendorf . . . . . . . . . . . . . . . . 1089

The Parallel Genetic Algorithm for Designing DNA Randomizations in
a Combinatorial Protein Experiment
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Piotrowo 3a, 60-965 Poznań, Poland

Abstract. Sequential consistency is one of the strongest consistency
models for replicated shared data. The performance of a system sup-
porting this model is rather low, so weaker models are used to improve
the efficiency. However, the construction of application for weaker models
is more complicated. The idea of this approach is to provide the data to
the application along with the consistency model to which they conform.
This allows the application to decide about the quality of accessed data.

1 Introduction

Sequential consistency [1] is one of the strongest consistency models for repli-
cated shared data. It guarantees the correctness of any concurrent algorithm
designed for a shared memory multiprocessor. However, the performance of a
distributed system supporting sequential consistency is rather low, because ad-
ditional synchronisation is required when the data is accessed to ensure that
the changes are observed in the same order on each replica. An approach of
this kind is called pessimistic replication [2] in contrast to optimistic replication,
which allows for weaker consistency models [3, 4, 5, 6], resulting in faster update
of replicas, thereby improving the performance.

In the case of weaker models sequential consistency is usually considered to
be a correctness criterion in the sense that an execution under a weaker model is
correct if it is equivalent to the execution under sequential consistency. To ensure
the equivalence some restrictions on memory access are imposed, e.g. data-race
freedom or concurrent-writes freedom for causal consistency [6]. However, this
equivalence is not the necessary condition for the program correctness. Thus, the
question is what consistency conditions must be met to ensure that the data are
appropriate from the viewpoint of application requirements.

The idea of this approach is to provide the data to the application as soon
as possible along with the consistency model to which they conform. In other
words, the system keeps as many different versions of a given object as the
number of different states resulting from various consistency models. This way
an application process can flexibly decide about the quality of accessed data,
balancing between efficiency and transparency.
� This work was supported in part by the State Committee for Scientific Research
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2 Consistency Models

The system consists of a set of n sequential processes P = {p1, p2, . . . , pn} inter-
acting via a set of m shared read/write objects X = {x1, x2, . . . , xm}. A process
can issue two kinds of operations: reads and writes. A write operation issued
by pi is denoted as wi(x)v, where x ∈ X is the object and v is the value to be
written. Similarly, ri(x)v denotes a read operations that returns a value v.

Each process observes the operations in the system in some total order called
view. As the processes are sequential, the view must satisfy a condition called
legality, which states that a read operation cannot return an overwritten value.

Definition 1 (Legal view). Let O be a set of operations in a DSM system,
and � is a total order relation. Legal view is the set O ordered by the relation
�, if the following condition is satisfied1:

∀
w(x)v,r(x)v∈O

[
w(x)v � r(x)v ∧ � ∃

o(x)u∈O

(u �= v ∧ w(x)v � o(x)u � r(x)v)

]

Depending on the consistency model, legal views satisfy additional conditions,
based on a local order relation, a process order relation, or a causal order relation.
The relations concern the order of issue. Local order for a process pi, denoted PO

⇁i,
is the order in which operations are issued by pi. Process order PO

⇁=
⋃

1≤i≤n
PO
⇁i.

Causal order, denoted CO
⇁, is defined as the transitive closure of process order

and read-from order, which states that ∀
x∈X

w(x)v CO
⇁ r(x)v.

In the definitions of consistency models, it is assumed that there is a legal
view for each process, which comprises the set of all write operations and the
operations issued by this process. Let OW denote the set of all write operations
in the system, OR denote the set of all read operations in the system, and Oi

denote the set of operations issued by pi. In general, the view for each process
may be different, so for pi it is denoted �i, and it determines the order of
operations from the set OW ∪ Oi. In the case of sequential consistency [1], the
views preserve process order, and all write operations appear in the same order in
the view for each process. Causal consistency [6] guarantees only the preservation
of causal order, and Pipelined RAM (PRAM) [3] yet less — process order. Cache
consistency [4, 5] holds the same order of write operations on a given object
in each view. Processor consistency [4, 5] joins the properties offered by cache
consistency and PRAM consistency. Local consistency means that the operations
of a given process appear in the issue order only in its own view.

3 Supporting Multiple Consistency Models

The coexistence of multiple consistency models in the execution of a parallel pro-
gram raises the problem of consistency specification. Consistency requirements
can be specified along with the object definition or at the issue of operation
(i.e. when a given object is accessed). In the case of read/write objects the
1 For the sake of simplicity it is assumed that each operation writes a unique value.
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consistency requirement can concern read or write operations. In hybrid con-
sistency [7] both read and write operations can be labelled as weak or strong.
Strong operations force synchronisation that ensures total order of these opera-
tions. Mixed consistency [8] requires read operations to be labelled, but allows
for two models only: PRAM consistency and causal consistency. Complex consis-
tency [9] supports sequential consistency, causal consistency, PRAM consistency,
processor consistency and cache consistency. The model is specified with write
operations, which allows some optimisation in message ordering.

This approach is oriented at making the changes available as soon as possi-
ble under the conditions defined by consistency models. The weaker consistency
model the sooner the changes are available. To this end, different versions of
each object are maintained, where each version corresponds to one model from
local consistency to sequential consistency, including PRAM, cache, processor,
and causal consistency. Consequently, there is a separate view for each version,
denoted as

lc�,
pm
�,

ce�,
pc
�,

cs�,
sq
�, respectively. Every modification of a shared

object (write operation) appears in each consistency version. Therefore, the con-
sistency model is specified at a read operation. For the sake of formal definition,
the set of read operations issued by pi is separated into subsets corresponding
to the consistency models in which the operations are issued, and denoted OR

lc

i ,
OR

pm

i , OR
ce

i , OR
pc

i , OR
cs

i , OR
sq

i , respectively.

Definition 2 (Multi-version consistency).

(a) ∀
w1,w2∈OW

(
∀

1≤i≤n
w1

sq
�i w2 ∨ ∀

1≤i≤n
w2

sq
�i w1

)
(b) ∀

x∈X
∀

w1,w2∈OW |{x}

(
∀

1≤i≤n
w1

pc�i w2 ∨ ∀
1≤i≤n

w2
pc�i w1

)
(c) ∀

x∈X
∀

w1,w2∈OW |{x}

(
∀

1≤i≤n
w1

ce�i w2 ∨ ∀
1≤i≤n

w2
ce�i w1

)
(d) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
sq
i

(
o1 CO

⇁ o2⇒ o1
sq
�i o2

)
(e) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
cs
i

(
o1 CO

⇁ o2⇒ o1
cs�i o2

)
(f) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
pm
i

(
o1 PO

⇁ o2⇒ o1
pm
�i o2

)
(g) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
pc
i

(
o1 PO

⇁ o2⇒ o1
pc
�i o2

)
(h) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
ce
i

(
o1 PO

⇁i o2⇒ o1
ce�i o2

)
(i) ∀

1≤i≤n
∀

o1,o2∈OW∪OR
lc
i

(
o1 PO

⇁i o2⇒ o1
lc�i o2

)

4 Coherence Protocol

To maintain consistency the processes exchange update messages. The update
messages are sent to other processes as a result of a write operation. After an
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update message is received, it is buffered and referenced in a number of queues
before it is applied (i.e. made available). It can also be referenced as the update
message that defines the current value of an object in a given consistency version.
In other words, the most recent update message suitable to each consistency
version of a given object is referenced to provide the current value and other
data (e.g. time stamp) when a read request is issued by an application process.

The implementation of the models that require total order of some write oper-
ations — i.e. sequential consistency, processor consistency, and cache consistency
— is based on global numbers. The assignment of these numbers is simplified by
the assumption that there is a function getNextNum to generate a consecutive
global number for any write operation, and a function getNextNumX to gen-
erate consecutive global numbers for write operations on individual objects. To
preserve the dependencies between consistency models the numbers for sequen-
tial updates (generated by getNextNum) must respect causal order, thereby
process order, and also the order of operations on individual objects. Besides,
each update message is stamped with the virtual time of issue represented by a
vector of write numbers that have potential influence on the current state of the
sending process. It allows detecting local order and causal order.

The structure of the update message comprises the following attributes: oid
— the object identifier, value — the new value to be written, globalWriteNum
— a global unique number of a write operation, globalWriteNumX — a global
unique number of a write operation on the given object, timeStamp[1..n] —
vector clock representing the logical time of issue (the value of issueNum of the
issuing process), sid — the identifier of the sender. For the update messages to
be applied in a correct order the protocol maintains a number of data, organised
into structures within name spaces corresponding to the consistency models:

Sequential consistency (seq): writeNum — the number of write operations
applied (made available) as sequential so far, inQueue — a buffer of UPDATE
messages to be applied in the sequentially consistent version;

Causal consistency (caus): procWriteNum[1..n] — the array of numbers of
write operations by individual processes applied as causal so far, inQueue
— a buffer of UPDATE messages to be applied in the causal version;

PRAM consistency (pram): procWriteNum[1..n] — the array of numbers of
write operations by individual processes applied as PRAM so far, inQueue
— a buffer of UPDATE messages to be applied in the PRAM version;

Processor consistency (proc): procWriteNum[1..n] — the array of numbers
of write operations issued by individual processes applied as processor con-
sistent so far, inQueue — a buffer of UPDATE messages to be applied in
the processor version;

Cache consistency (cache): inQueue — a buffer of UPDATE messages to be
applied in the cache consistent version;

Local consistency (loc): no control data are required.

Besides, the following global data structures are used: issueNum[1..n] — the
array of numbers of write operations by individual processes causally preceding
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Algorithm 1. Update of consistency version
Function Update <model> (u) return Boolean

2: if consistency conditions for <model> are satisfied then
localCopy[u.oid].<model> ← u

4: update control data
return True

6: else return False
end if

Table 1. Update condition

model update condition (line 2 in Alg. 1)
PRAM pram.procWriteNum[u.sid] ← pram.procWriteNum[u.sid] + 1
causal u.timeStamp[u.sid] = caus.procWriteNum[u.sid] + 1∧

∀
1≤k≤n,k �=u.sid

u.timeStamp[k] ≤ caus.procWriteNum[k]

cache u.globalWriteNumX = localCopy[u.oid].cache.globalWriteNumX + 1
proc. u.globalWriteNumX = localCopy[u.oid].proc.globalWriteNumX + 1∧

u.timeStamp[u.sid] = proc.procWriteNum[u.sid] + 1
seq. u.globalWriteNum = seq.writeNum + 1

Table 2. Control data update

model update operation (line 4 in Alg. 1)
PRAM pram.procWriteNum[u.sid] ← pram.procWriteNum[u.sid] + 1
causal caus.procWriteNum[u.sid] ← caus.procWriteNum[u.sid] + 1
cache nothing
proc. proc.procWriteNum[u.sid] ← proc.procWriteNum[u.sid] + 1
seq. seq.writeNum ← seq.writeNum + 1

all reads issued so far, lastWriteNum — the global number of last write oper-
ation issued by the process itself, lastWriteNumX [1..m] — the array of global
numbers of write operations on individual objects issued by the process itself,
localCopy[1..m] — the array of local copies (replicas) of individual objects.

The decision about the application of an UPDATE message depends on the
consistency model, according to the template in Alg. 1. Update conditions are
assembled in Tab. 1. Thus, after an UPDATE message is received (Alg. 2) it is
applied in the locally consistent version (line 2). Then the message is tried to be
applied in PRAM and cache consistent version (lines 3 and 9). If the conditions
are met, the control data are appropriately updated (Tab. 2), and the stronger
models are checked. If the application is unsuccessful, the message is enqueued.
Queues are checked to retry applying the messages after some UPDATE in the
corresponding version is applied. This is carried out as shown in Alg. 3 for PRAM
consistency. The functions for other consistency models are analogous. A detailed
description of the protocol is given in [10].
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Algorithm 2. UPDATE message handler
on receipt of UPDATE message u

2: localCopy[u.oid].loc ← u \* local consistency *\
pramupd ← UpdatePRAM(u)

4: if pramupd then TryPRAM
caus.queue ← caus.queue ∪ {u}

6: TryCaus
else pram.queue ← pram.queue ∪ {u}

8: end if
cacheupd ← UpdateCache(u)

10: if cacheupd then TryCache
proc.queue ← proc.queue ∪ {u}

12: else cache.queue ← cache.queue ∪ {u}
end if

14: if pramupd ∨ cacheupd then procupd ← TryProc
if procupd then TrySeq

16: end if
end if

Algorithm 3. PRAM queue handler
Function TryPRAM return Boolean

2: retv ← False
repeat

4: applied ← False \* in case the queue is empty *\
for all u ∈ pram.queue do applied ← UpdatePRAM(u)

6: if applied then pram.queue ← pram.queue \ {u}
caus.queue ← caus.queue ∪ {u}

8: retv ← True
end if

10: end for
until ¬applied

12: return retv

Table 3. Synchronisation conditions

model synchronisation condition (line 2 in Alg. 5)
cache localCopy[oid].cache.globalWriteNumX ≥ lastWriteNumX[oid]
proc. localCopy[oid].proc.globalWriteNumX ≥ lastWriteNumX[oid]
seq. seq.writeNum ≥ lastWriteNum
others True

Application Program Interface consists of a write procedure (Alg. 4) and read
functions suitable for the consistency models (Alg. 5). Cache consistency, proces-
sor consistency and sequential consistency require the same order of some write
operations. This means that an update message sent by a given process must be
appropriately ordered with other update messages before the subsequent result
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Algorithm 4. Write operation
Procedure Write(oid, value)

2: lastWriteNum ← getNextNum
lastWriteNumX[oid] ← getNextNumX(oid)

4: issueNum[i] ← issueNum[i] + 1
u ← UPDATE(oid, value, lastWriteNum, lastWriteNumX[oid], issueNum, i)

6: localCopy[u.oid].loc ← u
UpdatePRAM(u)

8: UpdateCaus(u)
cache.queue ← cache.queue ∪ {u}

10: TryCache
send UPDATE message u to all others

Algorithm 5. Read operation template
Function Read <model> (oid)

2: wait until synchronisation condition
∀

1≤k≤n
issueNum[k] ← max(issueNum[k], localCopy[oid].loc.timeStamp[k])

4: return localCopy[oid].<model>.value

is available to the sending process itself. This, in turn, requires the completion of
either the write operation sending the update message or the next read operation
to be synchronised with the event of delivery. For the purpose of this implemen-
tation, a fast write protocol makes sense, because it requires the synchronisation
at a read operation (Tab. 3). The own locally consistent version, PRAM consis-
tent version and causal version are updated immediately (lines 6–8 in Alg. 4).
Consequently, no synchronisation is needed when these versions are read — the
synchronisation condition is true.

5 Conclusions

This paper presents an approach to supporting multiple consistency models of
replicas in one system. It supports the most common general access consis-
tency models: sequential consistency, causal consistency, Pipelined RAM con-
sistency, local consistency, processor consistency, and cache consistency. The
decision about the expected consistency properties is postponed to the latest
possible moment — when shared objects are to be read. This provides flexibility
in the trade-off between the quality of replica and efficiency of access. Thus, the
consistency model can be considered as a Quality of Service aspect of replication.

The coherence protocol for this model is based on the idea of maintaining
multiple versions (corresponding to different consistency models) of each shared
object. As compared to an update protocol for sequential consistency, the over-
head results mainly from maintaining multiple queues of waiting update mes-
sages instead of one queue. In other words, the protocol makes available the
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updates that are normally hidden in the buffer. As for the objects themselves
there is no overhead, because the update messages must be buffered in any case.

The presented approach is suitable for the systems, in which the consistency
requirements are not known in advance, e.g. some open systems like grids, In-
ternet services and so on. If the cooperation between processes can be predicted
at the design, it is better to use an approach optimised to the cooperation,
e.g. hybrid consistency [7], complex consistency [9], or synchronised consistency
models, e.g. weak [11], release [12, 13], entry [14], or scope consistency [15].
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Abstract. This paper describes a checkpointing mechanism destined for
Distributed Shared Memory (DSM) systems with speculative prefetch-
ing. Speculation is a general technique involving prediction of the fu-
ture of a computation, namely accesses to shared objects unavailable
on the accessing node (read faults). Thanks to such predictions objects
can be fetched before the actual access operation is performed, result-
ing, at least potentially, in considerable performance improvement. The
proposed mechanism is based on independent checkpointing integrated
with a coherence protocol for a given consistency model introducing little
overhead. It ensures the consistency of checkpoints, allowing fast recovery
from failures.

1 Introduction

Modern Distributed Shared Memory (DSM) systems reveal increasing demands
of efficiency, reliability and robustness. System developers tend to deliver fast
systems which would allow to efficiently parallelize distributed processes. Unfor-
tunately, failures of some system nodes can cause process crashes resulting in a
loss of results of the processing and requiring to restart the computation from
the beginning. One of major techniques used to prevent such restarts is check-
pointing. Checkpointing consists in periodically saving of the processing state (a
checkpoint) in order to restore the saved state in case of a further failure. Then,
the computation is restarted from the restored checkpoint. Only the checkpoints
which represent a consistent global state of the system can be used (the state of
a DSM system is usually identified with the content of the memory).

There are two major approaches to checkpointing: coordinated (synchronous)
and independent (asynchronous). Coordinated checkpointing requires expensive
synchronization between all (or a part) of the distributed processes in order
to ensure the consistency of the saved states. The significant overhead of this
approach makes it impractical unless the checkpoint synchronization is corre-
lated with synchronization operations of a coherence protocol ([4]). On the other
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hand, the independent checkpointing does not involve interprocess synchroniza-
tion but, in general, does not guarantee the consistency. After a failure occurs, a
consistent checkpoint must be found among all saved checkpoints, therefore the
recovery takes much more time and may require much more recomputation. A
variant of the independent checkpoint – communication induced checkpointing
(or dependency induced checkpointing), offers simple creation of consistent check-
points, storing a new checkpoint each time a recovery dependency is created (e.g.
interprocess communication), but its overhead is too prohibitive for general dis-
tributed applications. However, this approach has been successfully applied in
DMS systems in strict correlation with memory coherence protocols. This cor-
relation allows to reduce the number of actual dependencies and to significantly
limit the checkpointing overhead ([2],[10]).

Speculation, on the other hand, is a technique which promises to increase
the speed of DSM operations and reduce the gap between DSM systems and
message-passing systems. The speculation may involve speculative pushes of
shared objects to processing nodes before they would actually demand access
[11], prefetching of the shared objects with anticipation that application process
would need those objects ([1],[8],[12]) or self invalidation of shared objects to
reduce the frequency of "3-hop-misses" ([6],[7]) among other techniques.

The speculation techniques may be argued to be special form of machine
learning; it’s however a restricted and limited form of learning. The specula-
tion methods are required to be very fast, while they do not necessary have to
make correct predictions, as the cost of mistakes is usually considered negligible.
Therefore the existing well-known machine learning algorithms are usually not
applicable in the DSM.

This paper is organized as follows. Section 2 presents a formal definition of the
system model and speculation operations. In Section 3 we propose the conception
of a checkpointing mechanism destined for DSM systems with speculation and
discuss the proposition. Concluding remarks and future work are proposed in
Section 4.

2 DSM System Model

A DSM system is an asynchronous distributed system composed of a finite set of
sequential processes P1, P2, ..., Pn that can access a finite set O of shared objects.
Each Pi is executed on a DSM node ni composed of a local processor and a
volatile local memory used to store shared objects accessed by Pi. Each object
consists of several values (object members) and object methods which read and
modify object members (here we adopt the object-oriented approach; however,
our work is also applicable to variable-based or page-based shared memory). The
concatenation of the values of all members of object x ∈ O is referred to as object
value of x. We consider here read-write objects, i.e. each method of x has been
classified either as read-only (if it does not change the value of x, and, in case
of nested method invocation, all invoked methods are also read-only) or read-
and-modify (otherwise). Read access ri(x) to object x is issued when process Pi
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invokes a read-only method of object x. Write access wi(x) to object x is issued
when process Pi invokes any other method of x. Each write access results in a
new object value of x. By ri(x)v we denote that the read operation returns value
v of x, and by wi(x)v that the write operation stores value v to x. For the sake
of simplicity of the presentation we assume that each write access to an object
writes a unique value.

To increase the efficiency of DSM, objects are replicated on distinct hosts,
allowing concurrent access to the same data. A consistent state of DSM objects
replicated on distinct nodes is maintained by a coherence protocol and depends
on the assumed consistency model. Usually, one replica of every object is dis-
tinguished as the master replica. The process holding master replica of object
x is called x’s owner. A common approach is to enable the owner an exclusive
write access to the object. However, when no write access to x is performed,
the object can have several replicas simultaneously accessible only for reading
(shared replicas). The speculation introduces special part of the system, called
the predictor, which is responsible for predicting future actions of the processes
(e.g. future read and write accesses) and according reactions.

As a result of a read access issued to an object unavailable locally, the object is
fetched from its owner and brought to the requester. Using speculation, however,
an object may be fetched from its owner also as a result of a prediction before
the actual read access (i.e. prefetched). By pi(x) we will distinguish a prefetch
operation of object x resulting from prediction made at process Pi.

Dependency of operations is a relation arising between wi(x)v and any subse-
quent rj(x)v, i.e. when process Pj uses (reads) a value written previously by Pi.
Local dependency reflects the order of operations performed by the same single
process.

3 Speculation and Checkpointing

According to our knowledge, the impact of speculation on the checkpointing has
not been investigated until now. While it seems impossible (or at least, improb-
able) that properly implemented speculation may danger the consistency of the
system and correctness of the checkpointing algorithms, ignoring the existence
of speculation in distributed shared memory system may severely damage speed
of both making checkpoints and system recovery because it could create false,
non-existing dependencies between nodes, as we will try to show.

We will focus on problems resulting from using prefetching techniques, but
our approach should be easily adaptable to other speculation methods. In such
techniques a special part of the system, called predictor, is responsible for antic-
ipating the possible future read faults and preventing them by fetching respec-
tive objects in advance. The prediction may be incorrect in the sense that the
process will never actually access the fetched object. Nevertheless, using specu-
lation techniques such as the popular two level predictor MSP ([5]) turns out to
increase the efficiency of most DSM applications. Moreover, since the predictor
fetches objects using the underlying coherence protocol, it never violates the
consistency of the memory.
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Fig. 1. Scenario without speculation. Real dependency between P1 and P2.
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Fig. 2. Scenario with speculation. No dependency between P1 and P2.

Let us now consider the hypothetical execution shown in Fig. 1. There is a
dependency between processes P1 and P2, since P2 fetches the value modified
by P1. To ensure the consistency in case of a subsequent failure of process P1,
the system forces P1 to take a checkpoint of the previously modified object x
(it may be necessary to save also some other objects in the same checkpoint, in
order to preserve local dependency of modifications performed by P1; this is not
shown in the figure).

However, the situation may significantly change with use of speculation.
In the scenario presented in Fig. 2 the predictor assumes that the application
process P2 will read the value modified by P1, so it fetches the object ahead into
the local memory of P2, to avoid a further read-fault. Performing that fetch, the
system forces process P1 to take a checkpoint, as in previous example. However,
the prediction eventually turns out to be false and P2 does not actually access
x. Therefore, no real dependency was created and checkpoint was unnecessary.
Unfortunately, P1 was unable to determine that the fetch resulted from a false
prediction, even if that fetch operation has been known to be speculative.

The problems presented above are summarized as follows:
Access to objects (fetches) may result from speculation made by predictor

and therefore (in case of false prediction) may not result in real dependency;
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Even when an access is marked as speculative, process has no way of deter-
mining whether true dependency between processes will ever be created, since
it cannot determine whether the prediction is correct (otherwise, it wouldn’t be
called speculation).

A possible solution is introduction of a new replica state and decoupling of
access requests for objects into two phases: prefetch and confirmation (Fig. 3).
A similar idea of coherence decoupling has been proposed in [3]. A speculative
prefetch operation is explicitly distinguished from a coherence operation of a
read access. The prefetched object replica is set into state PREFETCHED on
the requesting node, and PRESEND on the owner. Further read access per-
formed on the requesting node requires to merely ask for acknowledgement of
accessing the object (message CONFIRM). On reception of this message the
owner takes a checkpoint of the object, if necessary (e.g. the checkpoint could
been taken already before reception of CONFIRM request as a result of some
operations issued in the meantime by other processes), and answers with a
permission message (ACK).

Please note that ACK message does not contain the value the requested
object (since this value has been formerly prefetched and is available for the
requesting node). Therefore the overhead of the confirmation operation is in
general lower than a read-fault.

If the master replica of the considered object has been modified after a
prefetch but before the corresponding confirmation it is up to the coherence
protocol to decide about the acknowledgement (reading outdated values may be
disallowed depending on the consistency model). Also the coherency protocol
may involve invalidation of a prefetched object before the confirmation. This
invalidation will be performed for prefetched objects exactly as for all object
fetched by nonspeculative operations. Therefore, there is no difference between
those two types of operations from the point of view of the coherence (thus,
only minor modifications of coherence protocols will be necessary). The only
significant difference concerns the checkpointing operations.

Our approach avoids unnecessary taking of checkpoints after a prefetch (when
no real dependency is created). The checkpoint is postponed until an actual



14 A. Danilecki, A. Kobusińska, and M. Szychowiak

dependency is revealed on the confirmation request). To reduce the checkpoint
overhead many checkpointing protocols perform a consolidated checkpoint of an
entire group of objects (burst checkpoint [2]). It is possible to include also the
prefetched objects in such a burst checkpoint. This allows to further reduce the
checkpointing overhead, since the prefetched object may already be checkpointed
at the moment of confirmation and no additional checkpoint will be required. In
such a situation, there will be no checkpoint overhead perceived by the application
neither on prefetch, nor on actual read access to the prefetched object.

Finally, let us consider a recovery situation presented in Fig. 4. After the value
of x has been checkpointed it is modified again, to 2. Process P2 prefetches the
modified value of x from P1. Then, P1 fails and recovers, restoring the check-
pointed value x = 1. Please note that the following confirmation cannot be
granted, as it concerns a value of x that became inconsistent after the recovery.
The simplest solution could be to invalidate all replicas of x prefetched by other
processes. This Invalidation can be performed on recovery of the owner.
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Fig. 4. Possible coherence problems with node failures
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The state diagram for replica of object x at process Pi is presented in Fig. 5.
The assumed consistency model is sequential consistency [9]. The superscript
indexes at the diagram denote that: 1operation requires a checkpoint, 2 operation
requires a confirmation.

4 Conclusions

This paper describes an approach to checkpointing shared objects with use of
speculation. We recognize the false dependencies and unnecessary checkpoints
related to speculation operations on the shared objects. We propose the oper-
ation decoupling which allows to decrease the frequency of checkpoints. More-
over, we describe additional mechanisms reducing the checkpointing overhead
and indispensable modifications of the coherency operations after a failure and
recovery.

There are at least three directions in which our approach could be studied
and extended. First, to consider the implementation of proposed technique with
using concrete coherence model and checkpointing algorithm. Second, to seek
the optimizations for increasing positive effects of speculation. Third, to find a
way to resolve issues with restarting processes.

Intuitively, there may be many possible optimizations which could be applied
to the proposed checkpointing technique. Since our approach is very general, the
implementation for a specific coherence model may exploit distinct features of
underlying protocols. An obvious optimization might allow to use the prefetched
object even before arrival of the permission.

In our approach, if object owner refuses to confirm the prefetch, the prefetched
object is invalidated. Another optimization might fetch the current value of the
object with ACK message sent back to the requester.

In many typical scientific applications there are program loops which pro-
duce strictly defined sequence of requests. Commonly employed in such cases is
grouping the objects accessed in the loop into blocks, fetching (or prefetching)
them together. Access to the first object from such group may signal that the
program loop started again and other objects from this group will also be fetched
subsequently. Therefore, it appears useful to confirm the whole group on access
to the first object.

Requiring the object owner to deny all confirmation request after the failure
may seem to be too harsh. A different solution would allow the object owner to
refuse confirmation only for objects prefetched before crash, and acknowledge
objects prefetched after the recovery.
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Abstract. We discuss the inter-process communication in software dis-
tributed shared memory (S-DSM) systems. Some S-DSM systems, such
as TreadMarks and JIAJIA, adopt the user datagram protocol (UDP)
which does not provide the reliable communication between the com-
putation nodes. To detect a communication error and recover from it,
therefore, an acknowledgment is used for every message transmission
in the middleware layer. In this paper, first, we show that an acknowl-
edgment is not necessarily required for each message transmission in
the middleware layer. Second, a method to reduce the acknowledgment
overhead for a page request is proposed. We implemented the proposed
method in our S-DSM system Mocha. The performance of the method
was measured with several benchmark programs on both a PC cluster
and an SMP cluster.

1 Introduction

As an environment for parallel computation, cluster systems using general-
purpose personal computers (PC clusters) are becoming popular. Because a PC
cluster has no shared memory, the message passing model is used to develop ap-
plications in many cases. On the other hand, the shared memory is an attractive
programming model for parallel computers. Software distributed shared memory
(S-DSM) has been proposed to realize virtual shared memory on a PC cluster as
the middleware layer software. Since the idea of S-DSM was proposed[1], several
systems[2, 3, 4] have been implemented.

Some S-DSM systems, such as TreadMarks and JIAJIA, adopt the user data-
gram protocol (UDP) which does not provide reliable communication between
the nodes. To detect a communication error and recover from it, therefore, an ac-
knowledgment (ACK) is used for every message transmission in the middleware
layer.

This paper discusses a technique to improve the S-DSM performance. Since
the S-DSM system using UDP does not always need an acknowledgment for every
message transmission, we propose a method of reducing the acknowledgment
overhead. By implementing the proposed method on an S-DSM Mocha[5], we
verify its effectiveness.
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2 Omission of Acknowledgment Messages

Figure 1(a) shows how three messages, Msg-1, Msg-2, and Msg-3, are sent from
node 1 to node 2. This is an example of conventional S-DSM communication.
When the messages are received, node 2 on the receiving side immediately returns
acknowledgment (ACK) messages ACK-1, ACK-2, and ACK-3 respectively.

Figure 1(b) shows a communication without acknowledgment. If all trans-
mitted messages are received without error, the acknowledgment costs can be
reduced as shown in (b). Omitting all acknowledgment messages means reducing
the general send-receive message count in half. This is expected to enhance the
communication performance, especially in applications with frequent messages.
In the UDP communication, however, an error occurs by a certain frequency. In
the example of communication errors shown in Figure 1 (c) and (d), Msg-2 does
not reach the destination node in (c), and the arriving order of Msg-2 and Msg-
3 cannot be guaranteed in (d). Despite of these communication errors, S-DSM
systems should be constructed to operate correctly.

Fig. 1. S-DSM communication with and without acknowledgment

Fig. 2. Communication in a client-server model [6]

As shown in Figure 1(b), this paper is aimed at improving S-DSM perfor-
mance by omitting acknowledgment messages. Note that the idea of the acknowl-
edgment omission is not novel. For example, reference [6] discusses a technique of
omitting acknowledgments in a client-server model. Figure 2 is the communica-
tion used in this discussion. An acknowledgment for the request can be omitted
by using a reply message as its acknowledgment. Also an acknowledgment for
the reply shown as the broken line in Figure 2(b) can be omitted depending on
the properties of the reply. In this study, the concept of the acknowledgment
omission in a client-server model is applied for the field of S-DSM.
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3 Proposal of Acknowledgment Omission

3.1 Mocha: Yet Another S-DSM System

Mocha is an S-DSM system being constructed with two design philosophies:
(1) It achieves good performance especially for a PC cluster of many computa-
tion nodes. (2) It offers an S-DSM system easy to use as a parallel processing
environment.

Mocha Version 0.2 used for evaluation in this paper is a home based S-DSM,
where each page is specified to a node by a user. Mocha is implemented to re-
alize a simple and scalable S-DSM system by rewriting the JIAJIA with scope
consistency[7]. The followings are points of the code simplification in order to
increase readability: (1) JIAJIA’s complicated functions for such as home migra-
tion and load balancing are removed. (2) Function interfaces are reorganized to
make optimization of the source code. (3) The current version of Mocha supports
Linux operating system only.

Fig. 3. The behavior of a page request with and without acknowledgment

3.2 Acknowledgment Omission for Page Request

Figure 3(a) shows the behavior of a page request. Suppose that node 1 requires
a page and node 2 has the page. Node 1 calls the getpage function with the ref-
erenced memory address as a argument. The getpage function creates a GETP
message corresponding to the page request and transmits it to node 2. On re-
ceiving this message, node 2 returns an acknowledgment (ACK) message as
a reply. To meet the page request, node 2 then calls the getpserver function.
This function packs the necessary page information in a GETPGRANT mes-
sage and sends it to node 1. On receiving the GETPGRANT message, node
1 calls the corresponding getpgrantserver function. This function stores the re-
ceived page information in an appropriate memory area and resets the global
variable to terminate the getpage function. The getpage function waits in a
busy wait state for the page to arrive. When GETPGRANT arrives, the get-
page function exits from the busy wait state and continues the application
processing.

The getpage function sends a GETP message and waits in a busy wait state.
In this kind of page request processing flow, we propose the method of omitting
acknowledgment.
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1 void getpage(address_t addr){
2 getpwait=1;
3 generate_message(OP_GETP, addr);
4 send_message();
5 while(getpwait); /** busy wait **/
6 }

Fig. 4. The pseudo-code of the original getpage(the acknowledgment is not omitted)

1 void getpage(address_t addr){
2 getpwait=1;
3 for(i=0; i<GETPAGE_MAX_RETRY; i++){
4 generate_message(OP_GETP, addr);
5 send_message();
6 while(not_timeout() && getpwait); /** busy wait **/
7 if(getpwait==0) break;
8 }
9 }

Fig. 5. The pseudo-code of the getpage to be implemented in the proposed method

The exit of the getpage function from the busy wait state guarantees that
no communication errors occurred in the two messages of GETP and GETP-
GRANT. If the function did not receive the GETPGRANT message within the
timeout limit in the busy wait state, a communication error might have oc-
curred. In this case, the GETP message is sent again and the system waits for
the GETPGRANT message. The system should be designed to have no prob-
lems, even if the same message of GETP or GETPGRANT arrives several times.
Using the GETPGRANT as an acknowledgment of GETP, acknowledgment of
GETP or GETPGRANT can be omitted as shown in Figure 3(b).

Figure 4 shows the pseudo-code of the original getpage for which the ac-
knowledgment is not omitted. Line 2 sets the global variable getpwait, Line 3
generates a page request message, and Line 4 transmits the generated message.
When a message corresponding to the request arrives, the received page is stored
appropriately and the global variable getpwait is reset. This finishes the while
loop in Line 5 and terminates the page request function getpage.

Figure 5 is the pseudo-code of the function getpage to be implemented in
the proposed method. The while-loop in Line 6 finishes when the global variable
getpwait has been reset or a timeout event has occurred. If the variable getpwait
equals to zero in Line 7, the getpage is terminated because the requested page
is assumed to have been received. Otherwise, the for-loop from Line 3 transmits
the page request message again.

4 Evaluation

For the evaluation, we use a 32-node PC cluster. Every node is connected with
a 48-port gigabit Ethernet switch (HP ProCurve Switch 3400cl-48). Each node
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is an SMP (symmetric multi-processor) type computer with two processors of
Intel Pentium 4 Xeon (2.8 GHz) and 1 GB memory. The system software of
the cluster is SCore 5.6.1 by PC Cluster Consortium[8] constructed on RedHat
Linux 7.3. The execution time of each benchmark program is calculated by the
arithmetic mean of five measurements.

As the benchmark programs, we use LU (parallel dense blocked LU factor-
ization, no pivoting), N-queens[9], SOR (Red-Black Successive Over-Relaxation)
and MM (Matrix Multiply). The object code is generated using GCC version
2.96 with O2 optimization option. As a parameter of LU, the matrix size of
1024×1024 (double precision), and the block size of 8 is used. The elapsed time
of the sequential version is 267 second. As a parameter of N-queens, the prob-
lem size N=17 and the task allocation size of 8 is used. The elapsed time of
the sequential version is 55.0 second. As a parameter of SOR, the matrix size of
M=4096 and N=4096, iterations=400 is used. The elapsed time of the sequential
version is 98.1 second. As a parameter of MM, the matrix size of 1280×1280 is
used. The element of the matrix is double precision. The elapsed time of the
sequential version is 9.14 second.

4.1 Performance Comparison on a PC Cluster

The data shown in this section was obtained on the configuration of a PC cluster.
One process is assigned to one node. Figure 6 summarizes the results with the
number of nodes on the x-axis and the speedup on the y-axis. The speedup is
normalized by the elapsed time of JIAJIA single node. There are results for
JIAJIA Version 2.2, TreadMarks Version 1.0.3.3 (in Figure 6(c) and (c) only),

Fig. 6. The performance comparison of the S-DSM systems
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and Mocha using the proposed method of omitting the acknowledgment (Mocha)
and not omitting the acknowledgment (Mocha base).

The LU benchmark result is shown in Figure 6(a). The almost optimal
speedup is achieved by increasing the number of nodes in every S-DSM system
since the traffic in LU is small compared with the calculation.

The N-queens benchmark result is shown in Figure 6(b). The speedup on
the 16-node configuration is 11.0 for JIAJIA and 11.7 for Mocha. The mocha is
6% faster than the JIAJIA on the 16-node configuration. In the case of 32-node
configuration, the performance of every S-DSM system drops extremely because
of the lock and unlock contention.

The SOR benchmark result is shown in Figure 6(c). The speedup on the
32-node configuration is 15.5 for JIAJIA and 20.4 for Mocha. The Mocha is
31% faster than the JIAJIA on the 32-node configuration. Some parameters
of Mocha are set up so that its performance may become the optimal on the
32-node configuration. Therefore, TreadMarks shows the best speedup on the
configurations of less than 32-node.

The MM benchmark result is shown in Figure 6(d). In MM execution, the
message GETP and GETPGRANT account for most of the elapsed time of
all communications. Therefore, the proposed method of reducing the overhead
for the page request produces remarkable effects. The conventional systems,
JIAJIA, TreadMarks and Mocha base, do not show performance improvement
where the configuration of more than 8 nodes. Even on the 16-node and 32-node
configurations, however, Mocha using the proposed method keeps performance
improvement. Mocha achieves the speedup of 6.68 on the 32-node configuration.
Compared with the 16-node Mocha base, the 16-node Mocha achieves a speedup
as large as 58%.

Table 1 summarizes the number of errors (the sum of the communication
errors at all nodes) for page request by the S-DSM system Mocha, which uses
the proposed method. The data is calculated by the arithmetic mean of five
measurements. From Table 1, we see that the frequency of errors is very low.

From the evaluation results in this section, the following conclusion can be
obtained. Mocha using the proposed method achieves high performance in all
benchmark programs except for SOR on small node configurations. Especially
in a benchmark of high page transfer frequency, such as MM, Mocha achieves a
drastic speedup as much as 58% on the 16-node configuration, compared with
the conventional communication method of not omitting the acknowledgment.

Table 1. The average number of communication errors on Mocha for page request.
Our SMP cluster is used as a PC cluster. One process is assigned to each node.

benchmark 2-node 4-node 8-node 16-node 32-node
N-queens 0.00 0.00 0.40 1.40 1.80
LU 0.00 0.00 0.40 1.80 4.00
SOR 0.00 0.00 0.20 0.80 1.20
MM 0.00 0.00 0.00 1.60 6.20
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4.2 Performance Comparison of a PC Cluster and an SMP Cluster

This section discusses the performance comparison of a PC cluster (running
one process per each node) and an SMP cluster (running two process per each
node) assuming the same number of processors are used. Note that the processes
running on the same node do not share the memory space.

Figure 7 summarizes the results with the number of processors on the x-axis
and the speedup on the y-axis. The speedup is normalized by the elapsed time
of JIAJIA single node. There are results for Mocha running one process on a
node (Mocha-PC) and Mocha running two processes on a node (Mocha-SMP).
The acknowledgments omission is used in both configurations.

The LU benchmark result is shown in Figure 7(a). The performance of
Mocha-PC and Mocha-SMP is almost the same since the traffic in LU is small
compared with the calculation. The N-queens benchmark result is shown in Fig-
ure 7(b). The performance of Mocha-SMP drops compared to Mocha-PC caused
by the resource sharing (main memory and network interface) on Mocha-SMP.
The speedup of Mocha-SMP is 88% of Mocha-PC on the 16-CPU configuration.
The SOR and MM benchmark result is shown in Figure 7(c) and (d) respectively.
Like the N-queens result, the speedup of Mocha-SMP is lower than Mocha-PC.
In SOR, the speedup of Mocha-SMP is 66% of Mocha-PC on the 32-CPU config-
uration. In MM, the speedup of Mocha-SMP is 82% of Mocha-PC on the 32-CPU
configuration.

The Figure 8 is drawn with the same data of Figure 7(c) but with a different
x-axis, the number of nodes. Enabling the SMP improve the performance using
the same number of node if a S-DSM system provides the scalable speedup. But
the best performance is obtained by the Mocha-PC of 32-node configuration.

Fig. 7. The performance comparison of a PC cluster and an SMP cluster



24 K. Kise et al.

Fig. 8. The effect of SMP. Benchmark is SOR. Mocha-SMP has no data for 32-node
configuration because Mocha supports 32 processes at large.

From the evaluation results in this section, the following conclusion can be
obtained. Mocha-PC achieves higher performance in all benchmark programs
than Mocha-SMP using the same number of processors. For example, Mocha-
SMP running SOR could attain only 66% performance of Mocha-PC on the
32-CPU configuration.

4.3 Discussion

In general, the message receiving side checks a sequential number on a message.
If the number is different from the expected value, a communication error is de-
tected and error recovery is attempted. This simple error detection method, using
a sequential number, may cause a great discrepancy between the error occur-
rence time and the error detection time and thus makes error recovery difficult.
Another method is to transmit one acknowledgment message for n messages re-
ceived. By increasing the value of n, most of the acknowledgment overhead can
be eliminated. Even when this method is used, however, it is difficult to solve
the problem of the great discrepancy between the error occurrence time and the
error detection time. As a result of studying these candidates, we selected and
proposed the method comparatively effective and easy to implement.

5 Conclusions

This paper discussed a technique to improve the S-DSM performance. Since the
S-DSM system using the UDP does not always need an acknowledgment for every
message transmission, we proposed a method of reducing the acknowledgment
overhead for a page request and discussed its implementation.

We implemented the proposed method on our S-DSM system Mocha. The
performance was measured with several benchmark programs. From the evalu-
ation results as a PC cluster, the following conclusion can be obtained. Mocha
using the proposed method achieves high performance in all benchmark pro-
grams except for SOR on small node configurations. Especially in a benchmark
of high page transfer frequency, such as MM, Mocha achieves a drastic speedup
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as much as 58% on the 16-node configuration, compared with the conventional
communication method of not omitting the acknowledgment. From the compar-
ison of a PC cluster and an SMP cluster, we showed that Mocha-PC achieves
higher performance in all benchmark programs than Mocha-SMP using the same
number of processors.
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Abstract. This document presents a new method for implementing crit-
ical sections in the shared memory parallel architectures such as mul-
tithreaded multiprocessors integrated on a die. The method bases on
Shared Explicit Cache System (SHECS) implemented in the multiproces-
sor. The document presents the concept of system architecture equipped
with SHECS, the algorithm to implement operating system or appli-
cation level locking service, and the results obtained with the method
simulation on the network processor Intel1 IXP2800.

1 Introduction

The Multicore Shared Memory Parallel Architectures are becoming very popular
thanks to mass availability of the multicore SMP (symmetric multi-processors)
systems such as multicore IA (Intel Architecture) processors and multicore spe-
cialized RISC systems such as the IXA (Intel Exchange Architecture) network
processors. The level of parallelism in such systems is enhanced by the hardware
threading technologies such as simultaneous multithreading (SMT) and switch-
on-event multithreading (SoEMT), respectively. Efficient use of shared resources
is always connected with the need of a critical section implementation. Multicore
and multiprocessors systems have the ability to rely on specific hardware support
and capabilities to synchronize the particular processor cores within the die or
the integrated platform. Hardware techniques for critical sections are available
in the network processors and they are very efficient, but not always universal
[1]. Software techniques are still available for the SMP systems and for cases
when the hardware support isn’t flexible.

Thus, there is a need for a flexible hardware method that would address the
perspectives of multithreaded multiprocessors systems. This document presents
such a new method based on the use of SHECS being an additional, manageable,
explicit cache system. It is derived from the Folding method [2].
1 Intel is a registered trademark of Intel Corporation in the United States and other

countries.
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1.1 Folding Method in Network Processors

The Folding method was introduced in the network processors Intel IXP2000 [3]
as a universal method for programming software critical section for the threads
of a single microengine (that is a RISC processor). The method uses the micro-
engine’s internal local memory and CAM (content addressable memory) lookup
engine that comprises an internal explicit cache system managed with software.

Folding caches the read data to be modified. It manages with the following
critical section scenario that firstly reads a resource, then modifies it, and finally
writes back the modified data. The read resource is stored within this system and
considered locked if its use counter is greater than 0. Folding may occasionally
lost the order of threads entering the critical section, because in case of finding
locked entry the algorithm repeats the entering. This order lost means that the
critical section may be starving for some threads, as they have no luck and
they always repeat entering. Extending the Folding method onto a number of
processors is not an easy task and also starving critical sections aren’t useful in
the general purpose parallel systems.

All these issues are solved in the SHECS-based method. It bases on the new
explicit cache memory system architecture that eliminates the Folding’s limi-
tations and disadvantages. Thus, the SHECS-based method is more universal,
flexible, and may have more applications.

1.2 Cache Coherency

The Parallel Shared Memory Architectures built with using general purpose
processors with internal caches may have implemented a mechanism for enforc-
ing the coherence of internal caches. Hardware solutions for this problem are
presented in [4][5], while software algorithms are discussed in [6][7]. Generally
there are two approaches: implicit methods that hide the problem for the system
user or software, and explicit methods assuming that the system user or software
is aware of the problem, treats cache as a normal shared resource and solves it
with cache-locking [8][9] or other locking method. The introduced method ad-
dresses the problem in the similar way as explicit methods. It assumes explicit
locking with integrated data transfers of the most recent cached data value and
additionally it copes with hardware threading.

2 The Concept of SHECS-Based Critical Sections

2.1 SHECS Architecture

SHECS consists of CAM banks controller, a number of CAM banks and some
shared fast SRAM memory for caching2. Fig. 1 shows that SHECS should
be connected in a similar way as shared memory to the parallel processors
P1-PN. The key assumption is providing a number of CAM banks that can
2 The concept of Shared Explicit Cache System is patent pending in the U.S. patent

office.
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Fig. 1. SHECS in a shared memory parallel architecture

work together or separately. Every CAM bank is a functionally complete unit
comprising entries tag and lock latches, lookup-locks FIFO queue and configura-
tion for associated region of the cache memory. Every operation on the explicit
cache system should have associated the mask that determines which banks are
associated to the operation (single bit in the mask controls (enables/disables)
one CAM bank). From the high level point of view the masking capability allows
coupling a number of independent CAM banks into a single CAM. Such a single
CAM should also have a consistent old tag removing policy - least recently used
tag should be removed upon adding a new tag within all the banks enabled with
a particular mask. This requirement is realized with the CAM banks controller
logic. Because the SHECS method is hardware-based the way of enforcing co-
herency of critical sections is hardware signaling. The signal arrival wakes up a
virtual or hardware thread that normally waits on that signal for the completion
of CAM-lookup-lock operation.

2.2 SHECS Functionality

A functionally complete SHECS provides the following operations within the
specified banks:

– CAM lookup with data locking and integrated reading
– CAM entry unlocking
– CAM entry’s cache reading and writing with entry unlocking
– CAM banks managing (clearing the bank, adding, deleting tag, etc.)

Every CAM bank may have associated a line of cache memory to store data
to be locked and modified. Because, the memory is a part of the explicit cache
memory system, the reading of such a memory line may be integrated with suc-
cessful CAM lookup operation. If processors P1-PN have a support for reading
data bursts directly into the registers (such as network processors) this data
may be used at once. Another way to use CAM lookup with integrated data
transportation is to store data bursts within the processors’ local caches.
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SHECS may handle some number of pending simultaneous CAM-lookup-
locks. This limitation is connected with the depth L of the FIFO queue storing
pending lookup-locks. Such a FIFO is implemented in the each CAM bank.
This depth may be exceeded if a parallel application performs more than L
simultaneous CAM-lookup-locks for the same tag value. In that case the CAM-
lookup-lock requests are rejected with the result indicating locking fullness. In
the other words the locking is not starving as long as the number of requesting
task is lower and equal to the depth L. It should be calculated with the following
formula:

L = N ∗K ∗ C (1)

where: N - the number of processors; K - the number of hardware threads in
each processor; C - depth redundancy constant >= 1.

The value of depth L implemented according to formula (1) manages with
all synchronization problems that use maximally all available parallel resources.
However if a program tries to be executed with higher level of parallelism than
available parallel resources (in the other words the program have more virtual
threads or processes than there is hardware threads in the parallel systemt mul-
tiplied with constant C), then the locking implemented with using SHECS may
be starving for some virtual threads.

2.3 Implementing SHECS-Based Full-Locking Critical Sections

Full-locking technique (described well in [10]) assumes that every element that
must be used or modified coherently may be locked independently for a certain
time. Because the explicit cache system has hardware limitations such as limited
number of CAM entries and limited number of pending locks for a particular
CAM bank (due to the limited depth L), the implementation of full-locking
critical sections should combine the explicit cache system functionality and some
Operating System mechanismism to queue rejected SHECS requests. Otherwise,
if only using the hardware technique, the parallel program decomposition should
allow starving, that may happen if the program has more threads or processes
than the depth L that want to coherently use the same resource. A non-starving
implementation is depicted in Fig. 2. It assumes some Operating System support
for starving avoidance and bases on the following facts:

– The critical data, that is stored in SHECS, is considered locked if the lock
bit is set for the relevant CAM entry tag

– Otherwise if the lock bit is clear, it is considered unlocked and may be reused
(it stores the most recently critical data)

– If the critical data is not stored in SHECS it is unlocked

From the funtional point of view the results of section entering are:

– bypass - critical data has been stored unlocked in SHECS and after locking
it is transfered to a new critical section owner

– locked-bypass - critical data has been stored locked in SHECS and after lock
release it is transfered to a new critical section owner
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Fig. 2. The SHECS’s algorithm for full-locking critical sections (gray elements mark
hardware processing)

– reload - critical data has not been stored in SHECS and the entry’s ownership
is granterd to a new critical section owner

– locked-reload - all SHECS’s entries has been used and after freeing one of
them its ownership is granted to a new critical section owner

3 Simulation on Network Processor

3.1 Simulation Method

The full-locking approach was implemented and simulated. The simulation en-
vironment was the Developer Workbench 4.2 for Intel’s IXA Network Proces-
sors. Two microengines were serving two SHECS banks with capacity of 32
cacheable entries in total. This was possible thanks to the fact that the mi-
croengines are equipped with local CAM and local memory. The parallel appli-
cation, that was searching and modifying a binary tree, was executed on four
microengines.

Every thread in the application performs in parallel a random search for a
key in a binary tree and then modifies the node data. The binary tree had 129
nodes with keys from 0 to 128. To compare the results, two methods of coherent
modification was implemented:

– Program 1 SHECS-based critical sections being between
shecs_lookup_lock() and shecs_write_unlock() primitives.

– Program 2 Spin-locks-based critical sections (starving) being between
lock_node() and unlock_node() primitives.
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Program 1 Modifying nodes of binary tree with using SHECS-based critical sections

while (no_loops--) {/* do in parallel*/
key = PSEUDO_RANDOM_NUM mod 128;
result = shecs_lookup_lock(/*in*/key,/*out*/index,/*out*/node);
if (result == LOOKUP_BYPASS)

get node_addr from node;
else //result == ENTRY_RESERVED

search_tag_in_bintree(/*in*/key,/*out*/node,/*out*/node_addr);
modify node;
shecs_write_unlock(/*in*/key,/*in*/node_addr,/*in*/index,/*in*/node)

}

Program 2 Modifying nodes of binary tree with using spin-lock-based critical sections

while (no_loops--) {/* do in parallel */
key = PSEUDO_RANDOM_NUM mod 128;
search_tag_in_bintree(/*in*/key,/*out*/node,/*out*/node_addr);
lock_node(node_addr); // spin lock test_and_incr
modify node; write node to memory;
unlock_node(/*in*/node_addr);//spin lock decr

}

3.2 Simulation Results

The results prove the SHECS’s ability to maximize parallel processing perfor-
mance thanks to the explicit searching for keys combined with transportation
of the most recent value of critical data. Particularly, Fig. 3 shows that with
SHECS-based critical section parallel program still remains scalable with the
number of parallel resources while the scalability for spin-lock based critical
sections has finished.

Fig. 3. Speedups vs. the number of parallel threads for Program 1 and Program 2
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Fig. 4. Performance comparison between Program 1 and Program 2

Fig. 5. The distribution of the SHECS lookup-with-lock results for Program 1

4 Final Remarks

SHECS enables achieving the best possible performance gain for data-driven
parallelism in the Shared Memory Parallel Architectures thanks to managing
with critical sections at hardware speed. SHECS may be also used to speed-up
data searching algorithms, thanks to providing explicit associative searching for
keys in the designated CAM banks. Thus, the parallel algorithms, that search and
modify shared dynamic data structures, can benefit from both SHECS features
critical section synchronization with caching data and associative searching. Such
a feature combination is a very powerful proposition for the shared memory
architectures. SHECS increases the real parallelism in such systems and also
proposes critical sections support for managing the cache coherence problems.

The only disadvantage of SHECS is the cost - it is an additional, manageable
cache system. The content addressable memories (CAMs) (the key ingredient
of SHECS) are still pricy and they aren’t used in the general purpose systems.
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However, the Moore’s Law constantly decreases the cost of silicon circuits and it
may cause that in the feasible future SHECS will be implemented and will offer
performance gain in the parallel multicore systems integrated on a die.
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Abstract. This paper evaluates new architectural solutions for data
communication in shared memory parallel systems. These solutions en-
able creation of run-time reconfigurable processor clusters with very ef-
ficient inter-processor data exchange. It makes that data brought in the
data cache of a processor, which enters a cluster, can be transparently
intercepted by many processors in the cluster. Direct communication
between processor caches is possible, which eliminates standard data
transactions. The system provides simultaneous connections of proces-
sors with many memory modules that further increases the potential
for parallel inter-cluster data exchange. System on chip technology is ap-
plied. Special program macro-data flow graphs enable proper structuring
of program execution control, including specification of parallel execu-
tion, data cache operations, switching processors between clusters and
multiple parallel reads of data on the fly. Simulation results from sym-
bolic execution of graphs of fine grain numerical algorithms illustrate
high efficiency and suitability of the proposed architecture for massively
parallel fine-grain numerical computations.

1 Introduction

This paper discusses fine-grain parallel numerical computations in a new cluster-
based shared memory system architecture. The basic feature of the proposed
architecture consists in dynamically reconfigurable shared memory processor
(SMP) clusters which can adjust to computational and communication require-
ments of application programs. It provides features of dynamically reconfigurable
embedded systems whose structure is adjusted to program needs accordingly to
a pre-compiled strategy based on program analysis.

A new method for data exchange has been proposed, which consists in trans-
ferring data in data caches of processors that are dynamically switched between
SMP clusters [6, 7, 8]. This method converts data transmissions through memory
and some global network, by dynamic cluster reconfiguration with data trans-
fers performed directly between data caches. With this method, multiple parallel
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reads of data by many processors to their data caches take place (reads on the
fly, similar to cache injection [5]) while a processor writes data from its cache to
the cluster memory. Reads on the fly combined with processor switching, called
“communication on the fly”, provide a very fast way for data exchange between
processor clusters.

Processor data cache functionality is another specific feature of the proposed
architecture. A task can be executed in a processor only if all data required
for its execution are loaded to the processor’s data cache. It defines a data
cache-controlled macro-data flow program execution paradigm. Due to such data
caching strategy, data reloading and thrashing in processor caches are eliminated
during computations. In this respect, the proposed strategy provides incompa-
rably better behavior than other caching solutions like cache pre-fetching, data-
forwarding and cache injection [3, 4, 5].

Comparing earlier versions of this architecture [7], the assumption of Systems
on Chip (SoC) technology [1, 2] brings modularity at the program structure and
system levels. The dynamic clusters are now implemented inside SoC modules
connected by a global network. It puts limits on cluster size but at the same
time eliminates excessive signal propagation time. Systems on chip technology
will soon provide parallel systems including thousands of processors [2]. Such sys-
tems, supported by adequate communication solutions, can increase efficiency for
fine-grain parallel programs. Another novelty of the new version is multiple access
to the data caches from the memory side. It increases efficiency, especially for fine
grain computations, since simultaneous data transactions “cache-memory” are
possible in one processor, including parallel operand pre-fetching/result storing
and communication on the fly.

The proposed architectural solutions have been verified by simulation exper-
iments performed using a special graph representation. Execution of very fine
grain matrix multiplication with recursive data decomposition was simulated
using a graph simulator written in C. It enabled simple modification of compu-
tation and communication grain down to a very fine level. Unpublished simula-
tion results from execution of program graphs in the proposed architecture and
NUMA systems are presented. They show efficiency of the proposed architecture
for massive fine grain parallel computations.

The paper is composed of 3 parts. In the first part, the features of the as-
sumed executive system architecture are presented. In the second part, the pro-
gram graph representation used for parallel program design and estimations are
outlined. In the third part, results of simulation experiments are presented.

2 Dynamic SMP Clusters Based on SoC Technology

Fig. 1a presents the general structure of the proposed system. Based on pro-
cessors P and shared memory modules M, dynamic clusters can be created at
program run-time using local data exchange networks. The processors, memory
modules and networks are embedded in system on chip modules interconnected
by a global data network. Fig. 1b presents architectural structure of a SoC
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a) b)

Fig. 1. General system structure a) and internal structure of the SoC module b)

module. It includes a number of processors (Pi), a set of instruction memory
modules, a set of data memory modules (Mj), a set of separate data and in-
struction caches and a set of local cluster networks to which processors (i.e.
their data caches) can be connected. Each processor is equipped with many
data cache modules, which provide multi-ported access to/from memory mod-
ules. Therefore, a processor can belong to many clusters at a time. This feature
strongly improves data communication efficiency. All memory modules are also
connected to the External Memory Access Network, which can be a crossbar
switch.

To control communication in clusters: data pre-fetch, write, reads on the fly
(similar to cache injection), processor switching between clusters, communica-
tion on the fly operations can be used. A read on the fly consists in parallel
capturing of data, which are being written on a local cluster network by a pro-
cessor. Synchronization of reading processors with the writing one is provided.
Processor switching between clusters consists in connecting a processor to a new
cluster (i.e. its local network). A processor switched to a cluster can bring in its
cache data, which are useful for the cluster. When the processor writes data to
cluster memory, processors in the target cluster can read data on the fly. The
synergy of processor switching with reads on the fly is called communication
on the fly. Tasks in programs are so built that they do not require data cache
reloading during their execution. All data have to be pre-fetched to processor’s
data cache before a task begins. Current task results are sent to the cluster
memory module only after task completes. This program execution paradigm is
called cache-controlled macro data-flow principle. It completely prevents data
cache thrashing. When data produced by a task are to be modified by other
parallel tasks, new target addresses are used. Such single assignment rule avoids
cache consistency problem.



Dynamic SMP Clusters in SoC Technology 37

A program in a processor can contain memory write or read requests and
synchronized read on the fly requests. The requests are serviced in processors
by Communication Request Controllers (CRCs) using separate request queues.
Each memory module has an arbiter, which co-ordinates memory requests is-
sued by CRCs. Writes have higher priority than reads and short transactions
have higher priorities than longer ones. Reads on the fly are similar to cache
injection. They consist in reading data on the fly from a memory module bus
whose address lines are snooped by a special address snooping unit. Read on
the fly requests are stored in the address snooping tables. Exact synchroniza-
tion of states of the process that writes with reading processes is necessary in
the proposed architecture. Special inter-processor synchronization hardware has
to be included in the system to enable parallel execution of many synchroniza-
tion operations. More details on the architecture of the system can be found
in [6, 7, 8].

3 Extended Macro-data-flow Graphs of Programs

An extended macro data flow graph representation (EMDFG) is used to specify
programs for this architecture. New kinds of nodes are: memory module bus
arbiter nodes (CA), the global data network arbiter node (GA), read nodes (R)
from memory modules to processor’s data caches, write nodes (W) from data
caches to memory modules, processor switch nodes (Mi) and barriers (Bi). A
program has to be structured into sections, which are executed by dynamic SMP
clusters i.e. fixed subsets of processors connected to the some shared memory
modules. It can be done automatically at compile time by program graph analysis
or manually by directives of a programmer.

Fig. 2a shows an exemplary graph representation of a read on the fly. A barrier
synchronizes all the involved processors. It conditions the write from the data
cache to the cluster memory module. Reads on the fly can be done if all involved

a) b)

Fig. 2. Reads on the fly a) and communication on the fly b)
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processors have introduced the memory read requests to the address snooping
table. Then, the processors can snoop the data on the memory bus and read (all
or their portions) to their data caches. In tasks assigned to the same processor
data can be transferred through data caches.

Fig. 2b represents communication on the fly. A crossed rectangle represents
switching of processor P1 from the cluster of the memory module M0 to the new
processor cluster. It is labeled with the target memory module identifier M1.
Communication on the fly between clusters is introduced into program graph
sub-graphs, which show features of data communication “one-to-many”. Unifica-
tion of sections can be introduced in the program sub-graphs, which show “many-
to-one” data communication features. An automatic program graph scheduler
for the proposed architectural features is under design [9].

4 Experimental Results

We will examine speedup and program execution efficiency in the proposed ar-
chitecture, especially for fine-grained programs. Square matrix multiplication
A×B = C, based on parallel recursive decomposition of matrices into quarters
is an example where we can easily modify the parallel computation grain. At
the 1st recursion level we have 8 multiplications (Mi) of quarters of A, B and
4 additions (Adj) of resulting quarters to produce quarters of C. At the 2nd

recursion level, each input matrix quarter is further divided into 4 quarters and
multiply nodes are replaced by entire graphs from the 1st recursion level. At
each recursion level, sub-matrices resulting from multiplication are divided into
half-matrices — left and right, which are then added in parallel. Due to these
assumptions, addition and communication times are reduced by a factor of two.

The complete algorithm graph of matrix multiplication at the 1st recursion
level contains 4 isolated elementary subgraphs as a subgraph of a graph shown
in Fig. 3a denoted by an oval rectangle. At the 2nd recursion level the graph
contains 16 isolated elementary subgraphs, that are shown in Fig. 3a. To these
subgraphs we apply the technique of processor switching between clusters and
reads on the fly. The transformed elementary sub-graph at the 2nd recursion
level from Fig. 3a, for the system where one processor can be connected to two
memory modules at a time (dual-ported data cache is used), is shown in Fig. 3b.
The sub-graph has been structured to use of 4 processors and 8 memory modules
that are a basis for dynamically reconfigurable processor clusters (see program
sections in ovals).

Each elementary sub-graph has been structured to the use of 4 processors (P1,
P2, P3, P4) and 8 memory modules (M1, M1x, M2, M2x, M3, M3x, M4, M4x) that
are a basis for dynamically reconfigurable processor clusters. In the beginning,
each processor is connected to two memory modules (clusters) to read data for
multiplication. After multiplication, processors P1, P2 and P3, P4 are switched
to opposite clusters (organized around M2, M1, and M4, M3) to bring in their
caches results for further computations of other processors in these clusters.
Processor switching takes place also after first additions. The dynamic SMP
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a) b)

Fig. 3. Initial a) and structured b) elementary EMDFG at 2nd recursion level

clusters organized at the 2nd recursion level during execution of the middle part
of elementary sub-graphs are composed of 2 processors. Each processor belongs
to two clusters at a time. There are no standard data reads in the graph, except
for initial data reads and final writes. All data exchange is done by reads on
the fly, communication on the fly or data transfers through caches. It eliminates
global exchange network transactions — only writes remain.

We present below comparative study of results of simulated symbolic exe-
cution of the discussed matrix multiplication algorithm graphs in the proposed
architecture with different included features. The basic parameters were the ma-
trix size (1024 - 64) and the recursion level (1 - 4). SoC modules are built for
16 processors which co-operate with 32 memory modules. We have further com-
pared execution in our architecture with execution in the equivalent idealistic
NUMA architecture, where programs were built according to the cache con-
trolled macro-data flow paradigm with a single assignment strategy applied for
writing shared data (no cache coherence protocols).

Two values of relations between computation speed of processors / commu-
nication speed i.e. the memory bus were examined: 6:1, 3:1 (see Table 1). The
relation 6:1 is equivalent to 2.4 GFLOPS processors connected with data memory
modules via 400 MHz busses. For this relation, the assumed operation execution
times were: 1 unit for floating point 8-byte scalar addition and multiplication,
6 units for transmission of a 8-byte scalar between data cache and memory.
The costs of barrier execution, processor switching and memory bus arbitration
were assumed 1 unit. For the relation 3:1, the equivalent transmission cost was
assumed to be 3 units. For matrix size 1024 at the 4th recursion level proces-
sors were executing multiplication of matrices 64x64. For speed relation 6:1 the
speedup was about 3770 from 4096 processors with the efficiency of 0.92. Our ar-
chitecture was 1.08 times faster than idealistic NUMA without cache coherence
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Table 1. Experimental results for various matrix sizes and computation to communi-
cation speed relations
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matrix size: 1024
0 1024 1 1 1.0 1.00 1.00 1.0 1.00 1.00
1 512 1 8 7.9 0.99 1.01 8.0 1.00 1.00
2 256 4 64 62.9 0.98 1.02 63.4 0.99 1.01
3 128 16 512 491.9 0.96 1.04 501.7 0.98 1.02
4 64 256 4096 3766.5 0.92 1.08 3923.8 0.96 1.04

matrix size: 64
0 64 1 1 1.0 1.00 1.04 1.0 1.00 1.02
1 32 1 8 7.4 0.92 1.12 7.7 0.96 1.06
2 16 4 64 50.8 0.79 1.24 56.3 0.88 1.14
3 8 16 512 315.6 0.62 1.39 383.6 0.75 1.24
4 4 256 4096 1650.2 0.40 1.48 2187.8 0.53 1.29

protocol. This result is a lower bound of improvement. The comparison to the
real NUMA with data cache swapping and time consuming coherence protocols
would be incomparably worse since in a standard NUMA system programs would
be executed with cache swapping and coherence protocols. If 64x64 matrix mul-
tiplication would be further recursively decomposed according to our method,
we obtain 7.4 speedup from 8 processors (with excellent efficiency 0.92), 50.8
speedup from 64 processors (with very good efficiency 0.79), 315.6 speedup from
512 processors (with acceptable efficiency 0.62) and 1650.2 speedup from 4096
processors (with efficiency of 0.40) at the consecutive recursion levels. We can
accept the granularity of 8x8 multiplication in each processor with the efficiency
of 0.62 as the lowest limit. It gives 1.39 times better speedup than the idealistic
NUMA. Smaller computation grain (4x4) gives the efficiency below 0.5, although
the speedup in this case is over 1.48 times better than for the idealistic NUMA.

We can approximate efficiency of multiplication of 1024x1024 matrices at
further recursion levels, assuming that larger SoC modules will be used that will
enable avoiding global communications also at higher recursion levels. With such
assumption, all the elementary isolated subgraphs at higher recursion levels will
be implemented entirely inside SoC modules. The elementary subgraphs (the
requested SoC size) at the n-th recursion level is executed by 2n processors. So,
at the 5-th recursion level the SoC module has to contain 32 processors and 64
memory modules. For multiplication of 1024x1024 matrices based on elementary
32x32 matrix multiplication in each processor, we should use a structure of 1024
(32-processor) SoCs with 32768 processors. It gives the approximate speedup of
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27721 at the efficiency level of 0.84 with the improvement of 1.21 over idealistic
NUMA. The use of 16x16 elementary matrix multiplication in each processor for
the 1024x1024 problem gives the speedup of 191227 with the efficiency of 0.73
in a hierarchical structure of 4096 (64-processor) SoCs with 262144 processors -
1.34 times better than idealistic NUMA.

In the experiments described above, high communication improvement due
to application of communication on the fly, was neutralized by a relatively large
memory access latency comparing computation speed. This relation defines the
acceptable lowest computation grain level for a given parallel program (problem
size) in respect to the obtained efficiency (per processor). We checked how the
situation would improve, if we doubled the memory speed.

Simulation results for the computation speed/memory speed relation equal to
3:1 are shown in Table 1. In the 1024x 1024 multiplication at the 4th recursion
level (64x64 elementary matrix multiplication) we obtain the speedup of 3924 out
of 4096 processors with the efficiency of 0.96. It is 1.04 times better than for the
idealistic NUMA. For the 64x64 matrix multiplication, the implementation based
on 32x32 elementary multiplication gives speedup of 7.7 with the efficiency of
0.96. 16x16 elementary multiplication gives in this case much improved speedup
of 56.3 out of 64 processors with efficiency 0.88 (1.14 times better than for
NUMA). 8x8 and 4x4 elementary multiplications are still good with the efficiency
of 0.75 and 0.53.

The use of 32x32 elementary multiplication for the execution of the 1024x1024
multiplication gives now the approximate speedup at the level of 30017. This
gives excellent efficiency of 0.91 out of 1024 (32-processor) SoCs with 32768
processors. With 16x16 elementary multiplication we obtain the upper bound of
speedup of 220870 with the efficiency of 0.84 from 16384 (64-processor SoCs).

5 Conclusions

New architecture of a system based on dynamic shared memory processor clus-
ters with a new approach to inter-cluster communication has been discussed in
the paper.

Simulation experiments were performed for matrix multiplication with recur-
sive data decomposition with the use of a program graphs execution simulator.
The experiments have shown that execution based on communication on the fly
gives better results than execution in idealized standard NUMA architecture. It
implies superiority of our architecture over real NUMA with data swapping and
coherence protocols. In the studied example, all communication through global
data network could be transformed into processor switching with data and local
communication inside clusters.

Program execution speedup was sensitive to relations between processor speed
and memory latency, which has defined the acceptable level of applied fine grain
parallelism. Computation grain based 32x32 multiplications performed sequen-
tially in parallel processors gives excellent parallel execution efficiency of 0.96
and 0.92 for speed relations 3:1 and 6:1. The grain of 16x16 matrix multipli-



42 M. Tudruj and L. Masko

cations was giving very good speedup with the efficiency of 0.88 and 0.79 for
speed relations 3:1 and 6:1, respectively. Also the grain determined by 8x8 was
acceptable giving the efficiency above 0.5 (0,75 and 0.53 for speedup relation of
3:1 and 6:1, respectively). 4x4 multiplication grain was giving efficiency above
0.5 only for the 3:1 speed relation.

The experiments confirmed suitability of the proposed architecture for fine-
grained typical parallel numerical computations also for large problem sizes. That
confirms high potential of contribution of the proposed solutions to the design
of massively parallel systems for large scale intensive numerical computations.
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Abstract. A parallel simulated annealing algorithm to solve the vehi-
cle routing problem with time windows is considered. The objective is
to investigate how the frequency of co-operation of parallel simulated
annealing processes influences the quality of solutions to the problem.
The quality of a solution is measured by its proximity to the optimum
solution.

Keywords: Parallel simulated annealing, frequency of co-operation of
parallel processes, vehicle routing problem with time windows, bicriterion
optimization.

1 Introduction

The vehicle routing problem with time windows (VRPTW) consists in estab-
lishing a set of routes beginning and ending at a depot which serves a set of
customers. For the purpose of delivery (or pick up) there is a fleet of vehicles.
The set of routes which solves the problem visits each customer exactly once,
ensures that the service at any customer begins within the time window and
preserves the vehicle capacity constraints. In addition, the set of routes should
minimize, firstly, the number of vehicles used, and secondly, the total distance
traveled by the vehicles.

In this work a parallel simulated annealing algorithm to solve the VRPTW is
considered. The objective is to investigate how the frequency of co-operation of
parallel simulated annealing processes influences the quality of solutions to the
problem. The quality of a solution is measured by its proximity to the optimum
solution.

The results of this work extend our previous results reported in [3, 4]. Par-
allel simulated annealing to solve the VRPTW is applied by Arbelaitz et al.
[1]. Onbaşoğlu and Özdamar present the applications of parallel simulated an-
nealing algorithms in various global optimization problems [5]. The methods of
parallelization of simulated annealing are discussed by Azencott [2].

In section 2 the VRPTW is formulated. Section 3 describes the parallel simu-
lated annealing algorithm. Section 4 discusses the experimental results. Section 5
concludes the work.
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2 Problem Formulation

The VRPTW is formulated as follows. There is a central depot of cargo and n
customers (nodes) located at the specified distances from the depot. The loca-
tions of the depot (i = 0) and the customers (i = 1, 2, . . . , n), and the shortest
distances di,j and the corresponding travel times ti,j between any two locations i
and j are given. The cargo have to be delivered to (or picked up from) each cus-
tomer i according to the delivery demand qi by a fleet of K vehicles. Each vehicle
serves a subset of customers on the route which begins and ends at the depot.
The vehicles have the same capacity Q. The total sum of demands of customers
served by a vehicle on a route cannot exceed Q. For each customer a service time
window [ei, fi] and a service time hi are defined. ei and fi determine, respec-
tively, the earliest and the latest time for start servicing. The customer i is served
by a single vehicle exactly once, within the time window [ei, fi]. The vehicle can
arrive at the customer before the time window, but in such a case it has to wait
until time ei when the service can begin. The latest time for arrival of the vehicle
at customer i is fi. The time window is also defined for the depot, [e0, f0], and
it determines the time slot in which all deliveries should be effected. The aim is
to find the set of routes which guarantees the delivery of cargo to all customers
and satisfies the time window and vehicle capacity constraints. Furthermore, the
size of the set equal to the number of vehicles needed (primary goal) and the
total travel distance (secondary goal) should be minimized. The VRPTW is a
NP-hard bicriterion optimization problem in which the optimization criteria are
hierarchical. More formally, there are three types of decision variables in the
problem. The first decision variable, xi,j,k, i, j ∈ {0, 1, . . . , n}, k ∈ {1, 2, . . . , K},
i �= j, is 1 if vehicle k travels from customer i to j, and 0 otherwise. The second
decision variable, ti, denotes the time when a vehicle arrives at customer i, and
the third decision variable, bi, denotes the waiting time at that customer. The
aim is to:

minimize K, and then (1)

minimize
∑n

i=0
∑n

j=0,j �=i

∑K
k=1 di,jxi,j,k, (2)

subject to the following constraints:

K∑
k=1

n∑
j=1

xi,j,k = K, for i = 0, (3)

n∑
j=1

xi,j,k =
n∑

j=1

xj,i,k = 1, for i = 0 and k ∈ {1, 2, . . . , K}, (4)

K∑
k=1

n∑
j=0,j �=i

xi,j,k =
K∑

k=1

n∑
i=0,i�=j

xi,j,k = 1, for i, j ∈ {1, 2, . . . , n}, (5)
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n∑
i=1

qi

n∑
j=0,j �=i

xi,j,k ≤ Q, for k ∈ {1, 2. . . . , K} (6)

K∑
k=1

n∑
i=0,i�=j

xi,j,k(ti + bi + hi + ti,j) ≤ tj , for j ∈ {1, 2, . . . , n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1, 2, . . . , n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there
are K routes beginning at the depot. Eq. (4) expresses that every route starts
and ends at the depot. Eq. (5) assures that every customer is visited only once
by a single vehicle. Eq. (6) defines the capacity constraints. Eqs. (7)–(8) concern
the time windows. Altogether, eqs. (3)–(8) define the feasible solutions to the
VRPTW.

3 Parallel Simulated Annealing

The parallel simulated annealing algorithm, which we call the algorithm of co-
operating searches (CS), comprises p processes, P1, P2, . . . , Pp. Each of them
generates its own annealing chain divided into two phases (Fig. 1). Each phase
consists of some number of cooling stages, and each cooling stage consists of
some number of annealing steps. The main goal of phase 1 is minimizing the
number of routes of the solution, whereas phase 2 minimizes the total length of
these routes. However in phases 1 and 2 both the number of routes and the total
length of routes can be reduced. On every annealing step a neighbor solution
is determined by moving one or more customers among the routes (line 13 in
Fig. 1). Generally, in simulated annealing the neighbor solutions of lower costs
obtained in this way are always accepted. The solutions of higher costs are ac-
cepted with the probability e−δ/Ti where Ti, i = 0, 1, . . . , imax, is a parameter
called a temperature of annealing, which falls from some initial value T0 accord-
ing to the formula Ti+1 = βTi, where β (β < 1) is a constant and δ denotes an
increase of the solution cost. A sequence of steps for which the temperature of
annealing remains constant is called a cooling stage. The cost of solution s in
phase 1 of our algorithm is computed as cost1(s) = c1N + c2D + c3(r1 − r̄) and
in phase 2 as cost2(s) = c1N + c2D, where N is the number of routes in solution
s (equal to the number of vehicles needed), D is the total travel distance of the
routes, r1 is the number of customers in a route which is tried to be removed, r̄ is
an average number of customers in all routes, and c1, c2, c3 are some constants.
Since the basic criterion of optimization is the number of routes, it is assumed
that c1 � c2.

In the parallel algorithm the processes co-operate with each other every ω
annealing step of phase 2 passing their best solutions found so far (Fig. 2). The
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1 Create the initial solution by making use of some heuristics;
2 old solution := initial solution; best solution := initial solution;
3 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
4 T := T0,f ; {initial temperature of annealing}
5 repeat {a cooling stage}
6 for i := 1 to L do
7 annealing stepf (old solution, best solution);
8 end for;
9 T := βf · T ; {temperature reduction}
10 until af cooling stages are executed;

{end of phase f}
11 end for;

12 procedure annealing stepf (old solution, best solution);
13 Create new solution as a neighbor to old solution

(the way this step is executed depends on f);
14 δ := costf (new solution)−costf (old solution);
15 Generate random x uniformly in the range (0, 1);
16 if (δ < 0) or (x < e−δ/T ) then
17 old solution := new solution;
18 if costf (new solution) < costf (best solution) then
19 best solution := new solution;
20 end if;
21 end if;
22 end annealing stepf ;

Fig. 1. Phase 1 and 2 of annealing chain

X0 →

X
(0)
1 → X

(ω)
1 → X

(2ω)
1 → • • → X

(umω)
1

↓ ↓ ↓
X

(0)
2 → X

(ω)
2 → X

(2ω)
2 → • • → X

(umω)
2

↓ ↓ ↓
• • • • • •
• • • • • •

X
(0)
p−1 → X

(ω)
p−1 → X

(2ω)
p−1 → • • → X

(umω)
p−1

↓ ↓ ↓
X

(0)
p → X

(ω)
p → X

(2ω)
p → • • → X

(umω)
p

→ Xb

Fig. 2. Scheme of processes co-operation (X0 – initial solution; Xb – best solution
among the processes)

chain for the first process is completely independent. The chain for the second
process is updated at steps uω, u = 1, 2, . . . , um, to the better solution between
the best solution found by the first process so far, and the realization of the last
step of simulated annealing of the second process. Similarly, the third process
chooses as the next point in its chain the better solution between its own and
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the one obtained from the second process. This means that the best solution
found by process Pl is piped for further enhancement to processes Pl+1 . . . Pp.

The temperature of annealing decreases in phase 2 according to the for-
mula Ti+1 = β2Ti for i = 0, 1, 2, . . . , a2, where a2 is the number of cool-
ing stages. In this work we investigate two cases in establishing the points
of process co-operation with respect to temperature drops. In the first case
processes co-operate frequently during each of temperature plateaus, ω = L/v,
where v = {50, 40, 20, 10, 5, 2}. In the second case, of rare co-operation, the
processes interact at the end of each cooling stage, ω = L, or there are several
temperature drops before co-operation takes place, ω = vL, v = {2, 3}.

4 Experimental Results

The parallel CS algorithm was serialized and implemented using C language and
the following values of parameters: c1 = 40000, c2 = 1, c3 = 50, L = 100000,
50000, 33320 and 25000, a1 = 40, a2 = 100, β1 = 0.95, β2 = 0.98. The initial
temperature of annealing, T0,f , was computed at the beginning of each annealing
phase in such a way that the probability of worsening the solution cost by Δ in
the first annealing step, e−Δ/T0,f , was equal to some predefined constant (in our
case 0.01).

The computational experiments were carried out on the R101, R108 and R112
test instances of the test set by Solomon (http://w.cba.neu.edu /~msolomon
/problems.htm) which consists of 56 problem instances. In Table 1 the experi-
mental results for the CS algorithm are shown. A single experiment consisted in
creation an initial solution, X0, to the VRPTW by making use of some heuris-
tics. Then this solution was improved in a chain of simulated annealing steps
executed by a given number of parallel processes. In order to ensure that the
processes explore the parts of the space search of roughly the same size, we de-
creased the length of annealing chains while the number of processes grew up.
For the numbers of processes p = 5, 10, 15 and 20, the numbers of annealing
steps were set to L = 100000, 50000, 33320 and 25000, respectively. The columns
of Table 1 contain: p – number of processes, ω – interval of co-operation of par-
allel processes, wm – number of solutions with the minimum number of routes
(e.g. 19 for the R101 test instance), H – number of hits into the best solution
found (e.g. 〈19, 1650.79864〉 for the R101 test instance, where 19 is the number
of routes and 1650.79864 the total distance of these routes; the best result for
this test reported in the literature equals 〈19, 1645.79〉), ȳ – mean value of total
distances for solutions with the minimum number of routes (since total distances
of routes are minimized, the lower value of ȳ the better), s – standard deviation
of total distances, z – value of test statistics. It can be seen from Table 1 (column
R101) that all values of wm are equal 500 in 500 experiments, what means that
the R101 test instance is very easy to solve with respect to finding solutions with
the minimum number of routes. The numbers of hits into the best solution, H ,
are larger for higher frequencies of processes co-operation. To support statisti-
cally the hypothesis that higher frequency of co-operation give better results, we
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Table 1. Experimental results for R101, R108 and R112 test instances (values in each
row were computed in 500 experiments)

R101 R108 R112
p ω wm H ȳ s z p ω wm H ȳ s z p ω wm H ȳ s z1

5 L/50 500 7 1652.8 1.3 13.6 5 L/50 466 0 971.7 6.7 2.0 5 L/50 27 1 1009.7 14.4 −
10 L/50 500 63 1651.8 1.1 21.5 10 L/50 467 0 972.0 7.1 2.4 10 L/50 27 0 1008.6 14.3 −
15 L/50 500 118 1651.6 1.0 21.6 15 L/50 459 1 972.6 7.4 1.1 15 L/50 28 0 1007.6 9.9 −
20 L/50 500 163 1651.5 1.1 20.6 20 L/50 442 0 972.9 8.1 0.6 20 L/50 30 0 1012.5 9.0 −
5 L/40 500 14 1652.8 1.3 12.5 5 L/40 472 0 971.7 6.5 2.0 5 L/40 28 0 1006.9 12.2 0.8

10 L/40 500 54 1651.9 1.1 20.3 10 L/40 456 1 972.2 7.6 1.9 10 L/40 26 0 1008.1 12.4 0.1
15 L/40 500 111 1651.5 0.9 22.7 15 L/40 455 0 972.6 7.7 1.0 15 L/40 38 0 1011.7 12.7 -1.5
20 L/40 500 131 1651.5 1.0 20.3 20 L/40 440 0 972.8 7.7 0.7 20 L/40 34 0 1013.8 12.0 -0.5
5 L/20 500 13 1652.8 1.3 13.6 5 L/20 470 1 971.9 6.7 1.5 5 L/20 26 0 1006.2 11.7 1.0

10 L/20 500 39 1652.0 1.1 19.3 10 L/20 479 3 971.8 6.3 3.1 10 L/20 35 0 1011.9 13.2 -0.9
15 L/20 500 80 1651.7 1.2 17.9 15 L/20 449 3 972.2 7.2 2.0 15 L/20 28 0 1007.6 13.3 0.0
20 L/20 500 116 1651.5 1.0 21.1 20 L/20 441 0 972.5 7.8 1.3 20 L/20 19 0 1010.3 13.9 0.6
5 L/10 500 10 1652.8 1.3 13.3 5 L/10 475 3 971.7 6.0 2.2 5 L/10 25 0 1008.3 10.8 0.4

10 L/10 500 42 1652.0 1.1 18.3 10 L/10 463 1 971.7 6.9 3.1 10 L/10 31 0 1010.2 12.9 -0.4
15 L/10 500 59 1651.7 1.0 19.2 15 L/10 462 0 972.0 7.2 2.3 15 L/10 37 0 1009.5 9.9 -0.8
20 L/10 500 94 1651.6 1.0 20.2 20 L/10 445 2 973.3 8.3 -0.3 20 L/10 34 0 1009.2 10.2 1.4
5 L/5 500 10 1652.9 1.3 11.9 5 L/5 473 0 972.4 6.7 0.4 5 L/5 23 0 1008.9 11.7 0.2

10 L/5 500 32 1652.1 1.2 17.0 10 L/5 475 0 972.0 6.8 2.4 10 L/5 25 0 1007.2 11.3 0.4
15 L/5 500 64 1651.8 1.1 17.7 15 L/5 459 1 973.2 8.3 -0.1 15 L/5 24 0 1010.0 13.1 -0.8
20 L/5 500 93 1651.8 1.2 15.8 20 L/5 457 0 973.1 8.6 0.1 20 L/5 37 0 1004.0 11.2 3.4
5 L/2 500 6 1652.9 1.2 12.1 5 L/2 470 0 971.9 6.6 1.7 5 L/2 21 0 1005.4 9.9 1.2

10 L/2 500 15 1652.2 1.1 16.3 10 L/2 467 1 971.6 6.9 3.3 10 L/2 23 0 1006.9 10.6 0.5
15 L/2 500 31 1652.0 1.1 15.3 15 L/2 468 0 972.1 7.9 2.0 15 L/2 18 0 1005.8 11.5 0.6
20 L/2 500 61 1651.9 1.3 13.7 20 L/2 477 0 972.1 7.8 2.2 20 L/2 28 0 1007.8 11.6 1.7
5 L 500 3 1653.5 1.3 4.6 5 L 472 1 972.7 7.0 -0.2 5 L 35 1 1006.6 12.2 0.9

10 L 500 5 1653.1 1.3 5.1 10 L 466 3 972.3 7.4 1.7 10 L 22 0 1002.3 10.8 1.8
15 L 500 5 1652.8 1.2 5.3 15 L 455 3 972.4 7.3 1.6 15 L 28 2 1004.4 14.2 1.0
20 L 500 6 1652.6 1.3 5.7 20 L 466 0 972.9 7.6 0.5 20 L 30 0 1005.8 11.3 2.6
5 2L 500 0 1653.6 1.3 4.3 5 2L 463 3 972.4 6.7 0.3 5 2L 29 0 1001.6 12.7 2.2

10 2L 500 4 1653.1 1.3 4.8 10 2L 463 1 973.0 7.4 0.2 10 2L 21 0 1005.8 13.9 0.7
15 2L 500 2 1652.8 1.3 4.3 15 2L 471 0 972.5 7.4 1.3 15 2L 30 0 1005.2 12.6 0.8
20 2L 500 8 1652.7 1.3 5.5 20 2L 461 2 973.2 7.8 0.0 20 2L 25 0 1006.0 10.3 2.5
5 3L 500 0 1653.9 1.4 − 5 3L 457 3 972.6 6.5 − 5 3L 38 0 1006.4 11.8 1.0

10 3L 500 0 1653.5 1.3 − 10 3L 465 1 973.1 6.9 − 10 3L 25 0 1007.5 13.1 0.3
15 3L 500 5 1653.2 1.4 − 15 3L 452 0 973.1 7.8 − 15 3L 25 0 1003.3 12.1 1.4
20 3L 500 5 1653.1 1.4 − 20 3L 446 2 973.2 7.1 − 20 3L 25 1 1004.3 13.2 2.7

use the mean values, ȳ, and standard deviations, s. Let us test the hypothesis
H0 : μA ≤ μB versus the alternative hypothesis Ha : μA > μB, where μA denotes
(for a given number of processes p) the mean value of the population of the total
routes distances for the experiment with ω = 3L, and μB the mean values of
populations for the experiments with ω = L/v, v ∈ { 1

2 , 1, 2, 5, 10, 20, 40, 50}. In
all cases for which hypothesis H0 is rejected we can claim that the intervals of
co-operation ω = L/v, v ∈ { 1

2 , 1, 2, 5, 10, 20, 40, 50}, give superior solutions with
respect to proximity to the optima as compared to the interval ω = 3L. Using
the test statistics: Z = (ȳA − ȳB)/

√
s2

A/n1 + s2
B/n2 we reject hypothesis H0 at
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the α = 0.01 significance level, if Z > Z0.01 = 2.33. The calculated values of the
test statistics are given in column z of Table 1 (R101). The values of z for this
test instance indicate that the higher frequency of co-operation of processes the
better quality of solutions.

The results for the R108 test instance show that this test is more difficult
to solve than the previous one. The values of wm lie between 440 and 477, and
the numbers of hits into the best solution (equal to the best solution reported in
the literature, 〈9, 960.87528〉) are significantly smaller than those for the R101
test instance. In terms of frequency of co-operation of processes, the values of
z imply — although not so clearly as for the R101 test instance — that more
desirable are higher frequencies of co-operation. For example, for p = 10 the
values of z belong to the range 2.4 ... 3.3 for frequencies between L/20 and L/2,
what suggests that these frequencies give solutions of the best quality.

The results in Table 1 prove that the R112 test instance is the hardest to
solve among the tests we investigated. Merely less than 40 solutions among 500
had the minimum number of routes (cf. wm column), and in 18000 experiments
the best solution known in the literature, 〈9, 982.13919〉, was hit only 5 times
(cf. H column). For this test instance the smallest values of ȳ were obtained for a
low frequency of processes co-operation. Therefore here we assume that μA and
μB (from hypotheses H0 and Ha) denote the mean value of the population of the
total routes distances for the experiment with ω = L/50, and the mean values of
populations for the experiments with ω = L/v, v ∈ { 1

3 , 1
2 , 1, 2, 5, 10, 20, 40},

respectively. The values of the modified test statistics, given in column z1,
show that for achieving solutions of good quality, low frequencies of processes
co-operation should be used.

5 Conclusions

Simulated annealing processes can co-operate with various frequency. One may
hypothesize that in order to get good results the frequencies of processes co-
operation are to be high. It turned out however that high frequencies of
co-operation have their advantages and disadvantages. On the one hand, if the
processes exchange their best solutions very frequently, the probability for im-
proving the quality of the final solution increases. But on the other hand, the
higher frequency of co-operation the shorter Markov chains within which
the processes explore the search space freely. It follows from the theory and
practice of simulated annealing that in general longer Markov chains are more
desirable. Our experiments shown that for more difficult1 tests, like R112, better
results were obtained when the frequency of processes co-operation was low, i.e.

1 We measure the difficulty of a test instance by two probabilities: Pr1 — probability
that after execution of the algorithm, a solution with the minimum number of routes
is found, and Pr2 — probability that a total length of routes of that solution is not
worse than by 1% with respect to the shortest length achieved. In our experiments
these probabilities for the R112 test instance were 0.08 and 0.12, respectively, and
for the R101 test — 1.0 and 1.0.
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when the processes executed longer annealing chains. For easier tests, like R101
and R108, higher frequencies of co-operation proved advantageous.
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Abstract. The notion of Group communication has long been intro-
duced as a core service of distributed systems. More recently, this notion
appeared with a somewhat different meaning in the field of mobile ad hoc
systems. In this context, we study the group membership problem. After
specifying the basic safety properties of such groups and a maximality
criterion based on cliques, we propose a group membership algorithm.
Lastly, with respect to this criterion, we compare our algorithm with
two group membership algorithms for ad hoc environments. Moreover,
a formal description in TLA+ has been programmed and verified by
model-checking for small networks.

1 Introduction

The notion of Group communication has long been introduced as a core service
of distributed systems [1]. More recently, this notion appeared with a somewhat
different meaning in the field of mobile ad hoc systems. We introduce group
communication protocols in the classical setting. Then, we present the features of
mobile ad hoc systems that motivate the design of new definitions and protocols
for group communication.

Group Communication Protocols. Group communication services have emerged
from two domains : asynchronous distributed systems for fault-tolerant purposes
[1, 3, 6] and (distributed) multi-agent systems (MAS) for agent coordination pur-
poses [8]. They have been extensively studied from a formal as well as from a
practical standpoint, in the field of distributed computing systems [3] in which:

– the number of connected nodes can be sizeable, but (typically) is not huge.
– the connection of a node to the system remains relatively stable (which does

not rule out unexpected failures or disconnections).

In this setting, the group communication service appears as a fundamental
service, which allows to multicast messages to a set of nodes (or group members),
in order to build (more easily) fault-tolerant distributed systems, or to manage
the consistency of the group members’ interactions, at the application level.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 51–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Group communication is based on the definition of groups, i.e. sets of nodes.
Messages sent to a group are dispatched to each member of the group. Such a
group communication layer is particularly relevant and useful for fault tolerance
based on the replication of services or data, or for some classes of applications,
such as groupware. Its implementation rests on two basic services:

– a group membership service, which maintains a list of current group mem-
bers, or, more precisely, a representation (a view) of this list for each group
member. The main problem is to ensure the coherence of each member’s
view. Changes in the group composition, due to members leaving, or fail-
ing, or to new members joining, can be taken into account by the notion of
primary view, which defines consistency rules for group evolution [4].

– a reliable multicast service which delivers messages to each group member.
This level allows to schedule message delivery, depending on the application
level requirements in terms of cost and consistency.

Group Communication Protocols in Mobile Ad Hoc Systems. Pervasive comput-
ing, which has received an increasing attention during the last decade, brings
quite a different setting for distributed systems and applications:

– The ability for any node to join (or quit) the system anywhere, at any time, a
priori rules out asymetrical (centralized) protocols in the vein of client/server
patterns.

– Scalability becomes a key factor, due to the potentially huge and highly
transient set of nodes that make up the system.

– Whereas the design of classical group communication protocols relies on
point-to-point communication, local broadcast is a natural and often appro-
priate communication pattern in pervasive computing environments.

– In the same way as networks, groups are not a priori defined. They are rather
built up “on the fly”, in an ad hoc manner, depending on the requirements
and availability of interacting sites at a given time, in a given area.

– Lastly, requirements on autonomy and resource consumption lead to favor
robustness and locality, to the detriment of determinism and synchronism,
which meets up with the stress layed on scalability.

Thus differences appear on the one hand, in the purpose of groups : in clas-
sical group communication systems, the main goal is to determine whether sites
belong to a given (unique) group, whilst in the setting of pervasive computing
systems, the main issue is to build groups (which may be partitioned) out of
neighboring nodes, and, on the other hand, in the way groups evolve : in the
classical setting, view updates are incremental and no periodic installation of
new views occurs “from scratch”.

The notion of group has thus been revisited, in the light of these new con-
straints, by several recent systems. Our proposal comes within this scope. It is
based on the analysis of two existing proposals [2, 8], coming from different, but
complementary, fields and concerns, as regards the group communication service,
namely mobile ad hoc networks, and (embedded) multi-agent systems. Further-
more, we specify the properties of our protocol in the TLA+ formal framework
[5], in order to assess and compare this protocol to existing ones.
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2 Group Membership Properties in Ad Hoc Networks

In ad hoc networks, nodes and links continuously appear and disappear. In such
a context, group members must exhibit a high connectivity to meet robustness
and fault tolerance criteria. The most robust groups of processes of a given size
are those that correspond to cliques in the underlying interconnection topology
of the network.

Fig. 1. Partitions in cliques

A clique of a graph is any complete sub-
graph [7]. Figure 1 illustrates partitions in
cliques of a graph. Several maximality cri-
teria have been defined on cliques. With
respect to the group membership problem,
the left partition is better than the right

one: groups have more members (i.e. the partition has less cliques). However, two
cliques cannot be merged to form a bigger clique. We choose this non-extendible
property as a maximality criterion.

Cliques can be used to specify the basic properties of groups. Each grouped
process must eventually obtain an installed view that contains the members
of its current clique. Group membership algorithms should aim at computing
partitions of maximal cliques to assign a view to each node. A partition insures
that each process belongs exactly to one group and (maximal) cliques provide
the most robust groups.

A formal statement of these properties is given by the following definitions:
we consider a set of nodes Node, the vertices of the network graph. This graph
is specified as a set of pairs of nodes and installed views are subsets of Node.

Graph ⊆ Node ×Node Views ∈ [Node → subset Node]

Communication properties in ad hoc networks lead to consider specific graphs.
More precisely, we assume that a node can send messages to itself and that if a
node p can communicate with q, then q can communicate with p. Therefore the
graphs we consider for ad hoc networks are reflexive and symmetric:

AdHocGraph Δ= Graph ∪{〈p, p〉 : p ∈ Node} ∪ {〈q, p〉 : 〈p, q〉 ∈ Graph}

In the remainder of this section, we assume the installed views are non
empty sets. Views must verify consistency properties: an installed view of node
p always contains p, views are cliques and views are disjoint sets.

View safety

∀p ∈ Node : p ∈ View [p]
∀p ∈ Node : View [p] × View [p] ⊆ AdHocGraph
∀p, q ∈ Node : (View [p] = View [q ]) ∨ (View [p] ∩ View [q ] = ∅)
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First, we specify a local minimal requirement for a group membership service.
Views with only one member (singleton set) should be avoided: for any couple
(p, q) of nodes, if their installed views are eventually reduced to a singleton set,
these nodes must not be neighbors. In other words, if a node eventually belongs
to a singleton set, its neighbors belong to non singleton cliques.

∀p, q ∈ Node : View [p] = {p} ∧ View [q] = {q} ⇒ 〈p, q〉 /∈ AdHocGraph

A stronger property specifies a maximal criterion : a view cannot be extended
with an other distinct view.

∀p, q ∈ Node : (View [p] ×View [q] ⊆ AdHocGraph) ⇒ View [p] = View [q]

A restricted form of this property implies that a singleton view cannot extend
an existing view.

When all nodes have obtained an installed view, a final requirement states
that all views are a covering of the graph :

⋃
p ∈ Node View [p] = Node

From their mutually exclusive property, it follows that the set of views
{View [p] : p ∈ Node} is a partition of Node.

3 Group Membership Algorithm

The group membership algorithm aims at building non extendible cliques. Each
node has the same behaviour. Starting from a singleton state, a node performs
successive steps bounded by a timeout to reach a final grouped state. Figure 2
illustrates this sequence of phases. Such a sequence starts according to a classical
approach in distributed algorithms, namely, a diffusing computation. At least one
node performs a first local broadcast of a message (possibly after a timeout).
Other nodes enter the phase when they receive this message and propagate the
current phase by broascasting the same message type.

This sequence of phases is performed by a node until it enters the grouped
state. A node remains in a group for a while and repeats the group membership
protocol. The lifetime of a group is assumed to be much longer than the time
required to build a group. This periodic behavior allows to adapt to the dynamic
nature of the network.

During the Discovering phase, a node acquires the list of its one-hop neigh-
bors. Then, each node broadcasts this list during the Publishing phase. When a

Fig. 2. Phases of the algorithm



Maximal Group Membership in Ad Hoc Networks 55

node has received all the lists of its neighbors, it has a complete knowledge of
its neighborhood at a 2-hops distance. With this knowledge, each node either
decides to wait an inclusion request from an other node or to compute a clique
and broadcast this view to target members. This decision relies upon a total
priority order defined on nodes. A node evaluates a new view if and only if its
priority is greater than all its 2-hops neighbors.

Fig. 3. Neighborhoods

Figure 3 illustrates a node with its neigh-
bors and 2-hops neighborhood. Node priority
is assumed to be equal to their identity. This
node of maximal priority will decide to build
a view including either the nodes {8,10,15} or
the nodes {7,11,15}. The clique {6,15} could
also be considered, but larger cliques should
be preferred.

The main idea for choosing the maximum
over the 2-hops neighborhood is that the same
node cannot be twice chosen to be a member
of two distinct views. If the same node could
be selected by two other nodes, then the distance between these two nodes should
be at most 2. It follows that the node will be selected by at most one of them
since the priority of a node that selects a view is greater than the priority of any
other node at distance 2.

Properties of such algorithms can only be specified under stability assumptions
on the underlying network during a bounded period. Henceforth, we assume that
the underlying network connections are stable from the beginning of the proto-
col until all nodes are grouped. However, if this stability condition does not hold,
the algorithm still guarantees the three view safety properties (See section 2), but
cannot guarantee any longer the maximality property (non extendible property).

3.1 State Transition Graph

Figure 4 describes the state transitions of a node. A transition is performed
when a message is received or a timeout occurs. During a phase, specific message
type(s) can be broadcast (!m) and/or received (?m).

Fig. 4. State transition graph
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There are three message types containing the sender’s identity: discovery,
neighbors and inclusion. A neighbors message also contains its sender neighbors
and an inclusion message contains the resulting view.

Each node maintains the following local variables: its current state, a set of
neighbors, the neighborhood of each of its neighbors and a view defined when
the node is grouped.

3.2 Message Handling

For a singleton node, the reception of a first discovery message or a timeout T0
occurrence triggers a transition toward the Discovering state and a broadcast
of a discovery message toward reachable nodes. The sending node is recorded
as a new neighbor and the current state remains or becomes Discovering. The
discovery process is propagated by broadcasting a discovery message. If the
node is already in the Discovering state, the same actions are performed but the
state remains unchanged.

In the Discovering or Publishing state, if a node receives a neighbors mes-
sage, its neighborhood is updated with the content of the message, namely the
neighbors of the sending node.

In the Expecting or Publishing state, if a node receives an inclusionmessage,
it accepts the content of the message as its current view and becomes grouped.

3.3 Timeout Handling

When a timeout occurs, according to the current state of the node, a transition
is performed. We assume the propagation time of a message to be the dominant
duration. Timeout choice rests upon the following constraints:

– Timeout T0: must be long enough to mask the asynchronous timing of phases
among nodes ; nodes acquire a weak synchronous behavior after the Discov-
ering phase and remain at most shifted from one phase.

– Timeout T1: in the Discovering state, a node has to broadcast its identity and
receive its neighbors. As neighbors broadcast their identity as soon as they
receive a discovery message, T1 must be at least longer than 2 broadcasts
(plus enough time for local processing) ;

– Timeout T2: same constraints as T1 in so far as the nodes have the same
behavior with respect to the neighbors messages.

– Timeout T3: in the Expecting state, a node has at most to wait for the choice
of a view and its broadcast. Therefore, T3 must be longer than this duration.

From the Singleton state, a timeout occurrence triggers a transition toward
the Discovering state and a local broadcast of a discoverymessage that contains
the sending node name.

From the Discovering state, a timeout occurrence triggers a transition to-
ward the Publishing state and a local broadcast of a neighbors message which
contains the current neighbors list of the sending node.
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From the Publishing state, a timeout occurrence either leads to evaluate a
new view if the current node has the maximal priority over its 2-hops neighbor-
hood and to enter the Grouped state or to wait for an inclusion message in the
Expecting state.

From the Expecting state, when a timeout occurs, the node returns into the
Singleton state.

Number of Messages. In the best case, the network itself is a clique, and one
iteration of the protocol is enough to build a group with all the nodes; if N is the
number of nodes, it needs N broadcasts (discovery message) + N broadcasts
(neighbors message) + 1 broadcast (inclusion message).

In the worst case, the network is linear and nodes are placed according to their
priority (that is, nodes 1 and 2 are connected, nodes 2 and 3 are connected,. . . ).
Then, each iteration builds only one group with the two highest priority nodes.
Then N /2 iterations and O(N 2) broadcasts are required.

4 Related Algorithms

With respect to the general group membership problem, our study is mainly
concerned by group construction algorithms in partitionable networks [9]. In
this section, we first make some general remarks about group construction al-
gorithms used in partitionable networks, then, we present the main features of
two algorithms: the first one is used in the context of ad hoc networks [2], while
the second is used in the context of multi-agent systems [8].

Views are close to the underlying network topology. A view is a connected
component: it contains processes that can be reached (through one or several
hops) from each other. However, this definition is usually strengthened: a view
contains processes that can reach each other in one hop, i.e., a view is a clique of
the underlying network. Moreover, initially, either a node knows its immediate
neighbors or has to discover them through a broadcasting primitive.

The algorithm of [2], the starting point of our study, concerns group man-
agement in mobile ad hoc networks. Although, the algorithm is also concerned
by security aspects as well as by application level aspects, we discuss here group
membership aspects only. First, in order to take into account the dynamic topol-
ogy of ad hoc networks and the resource consumption constraints of mobile ap-
plications group maintenance is periodic. Periodically, during a discovery phase,
a node builds dynamically its neighbors set. Once a node knows its neighbours1,
it sends to one of them (the maximal one) its set of neighbours. Then, nodes
which have received some sets of neighbors may choose to build a connected view.
This algorithm cannot avoid extendible views. However, it has good properties
with respect to the number of messages and the minimization of energy.

The algorithm of [8] concerns also group membership. This algorithm is based
upon the construction of a common knowledge amongst neighboring nodes. Each
node broadcasts the list of its neighbors which is assumed to be initially known.

1 Timeouts are used for bounding the discovery period.
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Then, each node gathers the neighborhood of its neighbors. Once this common
knowledge is built, the following stages differ from our algorithm, as this knowl-
edge is used to define views through a consensus: in the last stage of a loop
iteration, the participants have to agree on a common view. In order to avoid
cycles, clique choices have to be restricted over iterations and the algorithm tol-
erates extendible cliques to ensure the convergence of the loop. This algorithm
is more concerned by the complexity issues for computing cliques: basically, it
uses pre-specified thresholds over the size of cliques.

5 Conclusion

In this paper, we have been mainly concerned by group membership protocols
in ad hoc networks. After specifying its basic safety properties and a maximality
criterion about the installed views, we have proposed a group membership al-
gorithm. Lastly, with respect to this criterion, we have compared our algorithm
with two group membership algorithms. We have also specified the properties
of the algorithm as well as its description in the TLA+ formalism. Currently,
we have performed model-checking experiments with the TLC tool [5]. On small
size graphs (6 nodes), we have been able to automatically check the correctness
of our algorithm. We are now working on its formal correctness (any number of
nodes) through theorem proving techniques.
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Abstract. In this paper we present a solution called Materialized Ag-
gregate List designed for the storing and processing of long aggregate
lists. An aggregate list contains aggregates, calculated from the data
stored in the database. In our approach, once created, the aggregates
are materialized for further use. The list structure contains a table di-
vided into pages. We present three different multi-thread page-filling al-
gorithms used when the list is browsed. The Materialized Aggregate List
can be applied as a component of a node on every aggregation level in in-
dexing structures, such as, an aR-tree. We present test results estimating
an efficiency of the proposed solution.

1 Introduction

Query evaluation time in relational data warehouse implementations can be im-
proved by applying proper indexing and materialization techniques. View mate-
rialization consists of first processing and then storing partial aggregates, which
later allows the query evaluation cost to be minimized, performed with respect
to a given load and disk space limitation [8]. In [1, 4] materialization is charac-
terized by workload and disk space limitation. Indices can be created on every
materialized view. In order to reduce problem complexity, materialization and
indexing are often applied separately. For a given space limitation the optimal
indexing schema is chosen after defining the set of views to be materialized [2].
In [5] the authors proposed a set of heuristic criteria for choosing the views and
indices for data warehouses. They also addressed the problem of space balancing
but did not formulate any useful conclusions. [7] presents a comparative evalua-
tion of benefits resulting from applying views materialization and data indexing
in data warehouses focusing on query properties. Next, a heuristic evaluation
method was proposed for a given workload and global disk space limitation. We
are working in the field of spatial data warehousing. Our system (Distributed
Spatial Data Warehouse – DSDW) presented in [3] is a data warehouse gath-
ering and processing huge amounts of telemetric information generated by the
telemetric system of integrated meter readings. The readings of water, gas and
energy meters are sent via radio through the collection nodes to the telemetric
server. A single reading sent from a meter to the server contains a timestamp, a
meter identifier, and the reading values. Periodically the extraction system loads
the data to the database of our warehouse.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 59–66, 2006.
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In our current research we are trying to find the weakest points of our solu-
tion. After different test series (with variations of aggregation periods, numbers
of telemetric objects etc.) we found that the most crucial problem is to create
and manage long aggregate lists. The aggregate list is a list of meter reading
values aggregated according to appropriate time windows. A time window is the
amount of time in which we want to investigate the utility consumption. The
aggregator is comprised of the timestamp and aggregated values.

When we want to analyze utility consumption we have to investigate con-
sumption history. That is when the aggregate lists are useful.

2 Motivation

In the system presented in [3] aggregate lists are used in the indexing structure,
aggregation tree, that is a modification of an aR-Tree [6]. Every index node
encompasses some part of the region where the meters are located and has
as many aggregate lists as types of meters featured in its region. If there are
several meters of the same type, the aggregate lists of the meters are merged
(aggregated) into one list of the parent node.

The aggregate lists are stored in the main computer memory. Memory over-
flow problems may occur when one wants to analyze long aggregation periods
for many utilities meters. If we take into consideration the fact that the me-
ter readings should be analyzed every thirty minutes, simple calculations reveal
that the aggregate list grows very quickly with the extension of an aggregation
period. For instance, for single energy meter an aggregate list for one year has
365 · 48 = 17520 elements. In order to prevent memory overflows we designed a
memory managing algorithm applied in the system presented in [3]. The mecha-
nism defines a memory limit when the system starts. The limit is always checked
before some new aggregate list is created. If upon being loaded a new list threat-
ens to exceed a limit, the mechanism searches for a less frequently read node in
the indexing structure and removes its aggregate lists from the memory, provid-
ing space for the new lists. The mechanism performs well when system uptime is
not long. The creation and removal of aggregate list produces memory fragmen-
tation that results in memory overflow errors, even though the memory limit had
not been exceeded. Hence we decided to apply a new approach to storing and
processing aggregate lists with no length limitations. We named our solution a
Materialized Aggregate List (MAL).

The main idea of the proposed solution is to provide a user with a simple
interface based on the standard Java list mechanism – a set of two functions:
hasNext() and next() which permits the convenient browsing of the list contents.
Our main goal was to create a list that could be used as a tool for mining data
from the database as well as a component of indexing structure nodes.

3 MAL Details

Our main intention when designing the MAL was to build a solution free of
memory overflows which would allow aggregate list handling with no length
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limitations. We want to apply this solution in an indexing structure, such as aR-
tree. In indexing structure the MAL can be used as a node component in both
the lowest level nodes (tree leaves) for retrieving aggregates from the database
and in nodes on higher aggregation levels for retrieving aggregates from child
nodes. We applied the following approach: every list iterator uses a table divided
into pages (the division is purely conventional). When an iterator is created some
of the pages are filled with aggregators (which pages and how many is defined
by the applied page-filling algorithm, see description below). Applying a multi-
thread approach allows filling pages while the list is being browsed. The solution
also uses an aggregates materialization mechanism that strongly speeds up the
aggregates retrieval. The configuration aspects concern the following: the number
of pages, the size of a single page, the number of available database connections
and the applied page-filling algorithm.

The actual list operation begins when a new iterator is created (iterator()
function call). The iterator gets a table from the table pool (see description
below) and two values are calculated:

– border date. The border date is used for identifying page and managing the
materialized data. The border date is calculated by repeatedly adding to
the install date (defined in category block of the configuration file) a width
of aggregation window multiplied by the size of the table page. The border
date is equal to the timestamp of the first aggregator in the page.

– starting index. In the case that starting date given as a parameter in the
iterator() function call is different from the calculated border date, the it-
erator index is adjusted so that a the first next() function call returns the
aggregator with the timestamp nearest to the given starting date.

Consider the following: we have the install date 2004-01-01 00:00:00, an aggre-
gation window width of 30 minutes and page size of 240. So, as can be easily
calculated, on one page we have aggregates from five days (48 aggregates from
one day, 240

48 = 5). Next we create an iterator with the starting date 2004-01-
15 13:03:45. The calculated border date will be 2004-01-11 00:00:00, starting
index 218 and the first returned aggregator will have the timestamp 2004-01-
15 13:30:00 and will contain the medium consumption between 13:00:00 and
13:30:00.

3.1 Page-Filling Algorithms

As a new iterator is constructed some of its table pages are filled with aggre-
gators. Which pages and how many of them depends on the used page-filling
algorithm. Each page is filled by a separate thread. The threads operate accord-
ing to the following steps:

1. Check whether some other thread filling a page with an identical border date
is currently running. If yes, register in the set of waiting threads and wait.

2. Get a database connection from the connection pool (see description below).
3. Check if the required aggregates were previously calculated and materialized.

If yes, restore the data and go to 5.
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4. Fill the page with aggregates. Materialize the page.
5. Release the database connection and browse the set of waiting threads for

threads with the specified border date. Transfer the data and notify them.

In the subsections below we present three different page-filling algorithms used
for retrieving aggregates from the database.

Algorithm SPARE. Two first pages of the table are filled when a new iterator
is being created and the SPARE algorithm is used as a page-filling algorithm.
Then, during the list browsing, the algorithm checks in the next() function if
the current page (let’s mark it n) is exhausted. If the last aggregator from the n
page was retrieved, the algorithm calls the page-filling function to fill the n + 2
page while the main thread retrieves the aggregates from the n + 1 page. One
page is always kept as a “reserve”, being a spare page.

This algorithm brings almost no overhead – only one page is filled in advance.
If the page size is set appropriately so that the page-filling and page-consuming
times are similar, the usage of this algorithm should result in fluent and efficient
list browsing.

Algorithm RENEW. When the RENEW algorithm is used, all the pages are
filled during creation of the new iterator. Then, as the aggregates are retrieved
from the page, the algorithm checks if the retrieved aggregator is the last from
the current page (let’s mark it n). If the condition is true, the algorithm calls
the page-filling function to refill the n page while the main thread explores the
n + 1 page. Each time a page is exhausted it is refilled (renewed) immediately.

One may want to use this algorithm when the page consuming time is very
short (for instance the aggregators are used only for drawing a chart) and the list
browsing should be fast. On the other hand, all the pages are kept valid all the
time, so there is a significant overhead; if the user wants to browse the aggregates
from a short time period but the MAL is configured so that the iterators have
many big pages – all the pages are filled but the user does not use all of the
created aggregates.

Algorithm TRIGG. During new iterator creation by means of the TRIGG
algorithm, only the first page is filled. When during n page browsing the one
before last aggregator is retrieved from the page the TRIGG algorithm calls
the page-filling function to fill the n + 1 page. No pages are filled in advance.
Retrieving the next to last aggregator from the n page triggers filling the n + 1
page. The usage of this algorithm brings no overhead. Only the necessary pages
are filled. But if the page consumption time is short the list-browsing thread
may be frequently stopped because the required page is not completely filled.

3.2 MAL in Indexing Structure

The idea of the page-filling algorithm in the MAL running as a component of a
higher-level node is the same as in the TRIGG algorithm for the database iter-
ator. The difference is in aggregates creating because the aggregates are created
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using aggregates of lower-level nodes. The creation process can be divided into
two phases. In the first phase the aggregates of the lower-level nodes are cre-
ated. This operation consists of creating the aggregates and materialization. The
aggregates in the list of the higher-level node are created through merging the
aggregates of the lower-level nodes in the second phase. The second phase uses
the materialized data created in the first phase and its execution takes less than
10% of the whole time required for creating the aggregates of the higher-level
node.

3.3 Resource Pools

In our solution we use a concept of a resource pool. We use two pools: database
connection pool and MAL iterator table pool. The first pool stores available
database connections and its idea is well-known from J2EE applications. The
second pool is configured to store MAL iterator tables. Thanks to such approach
we are able to easily control the amount of memory consumed by the system
(configuring the pool we decide how many tables it will contain at maximum)
and the number of concurrently running threads (if no table is available in the
pool a new iterator will not start its page-filling threads until some other iterator
returns a table to the pool). In figure 1 we present a simple schema of resource
pool operation.

 Resource pool   

getResource() request
resource 
available 

YES 
Application  

resource pool response 
containing the resource 

can create 

wait for returned 
resource  

create new 
resource  

return  
resource  

YES

NO 

NO 

 

Fig. 1. Schema of a resource pool operation

3.4 Materialization

In the presented operation of the page-filling function, points (3) and (4) mention
a concept of materialization. We introduced the materialization mechanism in
the DSDW system presented in [3] and the tests revealed the mechanism extreme
efficiency. The idea is to store once calculated aggregators as binary data in the
database, using the BLOB table column. In the current approach we use a table
with three columns storing the following values: the object identifier (telemetric
object or indexing structure node), page border date and aggregators in binary
form. The page materialization mechanism operates identically for each page-
filling algorithm. The MAL can automatically process new data added by the
extraction process. If some page was materialized but it is not complete, then
the page-filling thread starts retrieving aggregates from the point where the data
was not available.
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4 Test Results

This section contains a description of the tests performed with the current im-
plementation of the presented solution. All the tests were executed on a machine
equipped with Pentium IV 2.8 GHz and 512 MB RAM. The software environ-
ment was Windows XP Professional, Java Sun 1.5 and Oracle 9i. The tests were
performed for the three page-filling algorithms for the database iterator and
for the index iterator. The aggregates were created for 3, 6, 9, and 12 months.
The aggregates were created with a time window of 30 minutes. The created
aggregates were not used in the test program; the program only sequentially
browsed the list. Aggregates browsing was performed twice: during the first run
the list has no access to the materialized data, and during the second run a
full set of materialized data was available. We tested the MAL for the following
parameters:

– page size: 48 (1 day), 240 (5 days), 336 (7 days), 672 (14 days), 1008 (21
days), 1488 (31 days – 1 month), 2976 ( 62 days – 2 months),

– page number: 2÷ 10,

We set no limit to the number of database connections. The number of tables
available in the table pool was limited to 1 because increasing this number
brought no benefit. Our goal was to find the best combination of the MAL
parameters: the page-filling algorithm, number of pages and size of a single
page. The choice criterion consisted of two aspects: the efficiency measured as
a time of completing the list-browsing task and memory complexity (amount of
the memory consumed by the iterator table).

4.1 Page Size and Page Number

We first analyze the results of completing the list-browsing task during the first
run (no materialized data available) focusing on the influence of the page num-
ber and the size of a single page. We investigated the relations between these
parameters for all three algorithms, and we can state that in all the cases their
influence is very similar; graphs of the relations are very convergent.

The list browsing times for small pages are very diverse. For the presented
results the times for a page of size 48 vary from 30 to 160 seconds depending
on the amount of pages. MAL operation for a page of size 240 is much more
stable; the differences resulting from the different number of pages do not exceed
25 seconds. For all tested cases we can notice that the page number does not
strongly influence MAL time efficiency. The bigger page size the smaller the
page number influence. Hence we can conclude that the best MAL configuration
concerning the page number and size is a combination of a small number of pages
4 ÷ 6 and page size, with which the list operates stably. For the presented case
the best choice seems be the page size of 672.

4.2 Page-Filling Algorithm

After choosing the optimal page parameters, we compared the time efficiency
of the page-filling algorithms when applied in a theoretical indexing structure.
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Fig. 2. Comparison of the page-filling algorithms

The structure consisted of one parent node and 10 ÷ 20 child nodes; the query
concerned parent aggregates but obviously resulted in creating the aggregates of
all the child nodes. Figure 2 shows a graph comparing efficiency of the algorithms
applied in the child nodes for browsing the list of aggregates for 3, 6, 8 and 12
months. The lists were configured to use 6 pages, each of size 672. In the graph we
observe that SPARE and TRIGG algorithms show similar efficiency. Along with
extending the aggregation period the operation time increases; for the TRIGG
algorithm the increase is purely linear. The RENEW algorithm shows worse
efficiency, especially for long aggregation periods of 6 and 12 months. Reason
for that is the significantly higher overhead when compared to the other two
algorithms.

Therefore, to summarize the parameters selection we can state that the MAL
works efficiently for the following configuration: the TRIGG or SPARE algo-
rithm, number of pages 4 ÷ 6, size of a single page 672, with no limit to the
number of available database connections and with one iterator table available
in the pool.

4.3 Materialization

The aspect last investigated was materialization influence on system efficiency.
The results interpretation reveals that materialization strongly improves system
efficiency. In every tested combination of page size and page number parameters
the benefit of materialization is very similar, and upon analyzing the results, we
state that using the materialized data the list operates from 5 to 8 times faster
than when no materialized is used. A similar situation is observed for all the
page-filling algorithms.

5 Conclusions

In this paper we presented the Materialized Aggregate List (MAL). The MAL
is a data structure for storing long aggregate lists. The list can be applied as a
component of indexing structure nodes in indexes like an aR-Tree. The aggre-
gators stored in the list can be retrieved from both the database and from other
levels of an indexing structure. In our solution we applied the idea of aggregates
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materialization. The materialization has a very strong, positive influence on list
efficiency.

The data warehouse structure described in [3] applies distributed processing.
We suppose that in this aspect introducing the MAL to our system will bring
benefits in efficiency. The current approach to sending complete aggregate lists as
a partial result from a server to a client results in high, single client module load.
When we divide the server response into MAL pages, the data transfer and the
overall system operation will presumably be more fluent. Implementation and
testing of those theoretical assumptions are our future plans.
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Abstract. In this paper a new parallel algorithm is presented for gener-
ation of all exactly m–block partitions of n–element set. The basic build-
ing blocks of the algorithm are an associative generator of combinations
and a complex parallel counter. Consecutive objects are generated in lex-
icographic order, with O(1) time per object. The algorithm can be used
for generation of all partitions within the given range of the parameter
m, where 1 ≤ m1 ≤ m ≤ m2 ≤ n.

1 Introduction

The first known algorithm for generating (n,m)–partitions, 1 ≤ m ≤ n, i.e. par-
titions of n–element set into at least n non–empty blocks — published in 1963
— is due to Hutchinson [7]. In the following years a number of sequential algo-
rithms was developed [3, 5, 10, 21]. An increasing interest in parallel computation
systems resulted also in development of many parallel algorithms for generation
of combinatorial objects. Parallel solutions to the partition generation prob-
lem were published for various models of computations [4, 12, 13, 14, 16, 22]. The
structure of the set of partitions was investigated and new ranking/unranking
techniques were developed satisfying various requirements [24].

In associative generator of exactly m–block partitions of n–element set de-
scribed in this paper consecutive objects are generated in lexicographic order,
with O(1) time per object. The basic building blocks of the algorithm are an
associative generator of combinations and a specialized complex parallel counter.

The associative hardware generator of combinations and combinations with
repetitions is described in [15], where consecutive objects are generated in lexico-
graphic order, with O(1) time per object, in two different representations. Com-
plex parallel counter with programmable capacity and some additional
features provides generation of the assigned code in constant time.

The rest of the paper is organized as follows. The next section introduces
combinatorial objects representations. Section 3 describes models of computa-
tions used throughout this paper. In the next section a combination generation
algorithm is shown. An associative algorithm for generation of exactly m–block
partitions is presented in section 5. Section 6 contains concluding remarks.
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2 Representation of Combinatorial Objects

Let us introduce basic notions used throughout this paper.
The index set will be denoted by I. If I = 1, . . . , v it will be denoted by Iv.
Let < Ai >i∈Iv denote an indexed family of sets Ai = A, where:

A ={1, . . . , n}, 1 ≤ v, n. Any mapping f which ”chooses” one element from
each set A1, . . . , Av is called a choice function of the family < Ai >i∈Iv [20].

Any mapping f which ”chooses” one element from a subset A′ ⊂ {A1, . . . , Av}
is called a partial choice function of the family < A′

i >i∈I , I ⊂ Iv.
With additional restrictions we can model by choice functions various classes

of combinatorial objects [8, 9, 11, 12, 13].
If a suplementary conditions: ai < aj , for i < j, and i, j ∈ Ik, k≤n, are satisfied

then any choice function κ =< ai >i∈Ik
, that belongs to the indexed family <

Ai >i∈In , is called increasing choice function of this family. Set of all increasing
choice functions κ is a representation of the set of all (n,k)-combinations of the
set A. In the conventional representation of combinations we deal in fact with
indexed sets Ci = {i, . . . ,n-k+i} ⊂ Ai, i ∈ Ik. The number of all choice functions
κ is

(
n
k

)
.

If a suplementary conditions: ai ≤ aj , for i < j, and i, j ∈ Ik, are sat-
isfied then any choice function λ =< ai >i∈Ik

, that belongs to the indexed
family < Ai >i∈Ik

, is called nondecreasing choice function of this family.
Set of all nondecreasing choice functions λ is a representation of the set of
all (n,k)-combinations with repetitions of the set A. In the conventional rep-
resentation of combinations with repetitions we deal in fact with indexed sets
Di = {1, . . . ,n-k+1} ⊂ Ai. The number of all choice functions λ is

(
n+k−1

k

)
.

Parallel algorithm COMBGEN for generation of choice functions λ and κ
with O(1) time per object presented in section 4 is described in [15].

If a suplementary conditions: a1 = 1 and ai ∈ {1, ..., max[a1, . . . , ai−1] + 1},
for 2 ≤ i ≤ n, and i ∈ In, is satisfied then any choice function ρ =< ai >i∈In

that belongs to the indexed family < Ai >i∈In , is called a partitioning choice
function of this family. Sets of all partitioning choice functions are represen-
tations of the set of all m-block partitions of the set A, 1 ≤ m ≤ n. In
the Hutchinson’s representation of partitions we deal in fact with indexed sets
Ri = {1, ... , i} ⊂ Ai. The number of all choice functions ρ is the Bell number
B(n). Parallel algorithm PARTGEN for generation of choice functions ρ with
O(1) time per object is described in [14].

Let κe =< ai >i∈Ik
, k ≤ n, be an increasing choice function of the indexed

family < Ci >i∈In with a1 = 1. The number of all choice functions κe is
((n−1)
(k−1)

)
.

Any choice function ρe =< ai >i∈In that belongs to indexed family
< Ri >i∈In= < Ra1 , .., Ri1, .., Ra2 , .., Ri2, .., Ri(k−1), .., Rak

, .., Rik, .., Rn >,
where:

Rai = i, for i ∈ Ik,
Ri1 = {1}, for a1 < i1 < a2,
Ri2 = {1, 2}, for a2 < i2 < a3,
. . .
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Ri(k−1) = {1, . . . , k − 1}, for ak−1 < i(k − 1) < ak,
Rik = {1, . . . , k}, for ak < ik < n,

is called anexactly k-block partitioning choice function of this family.
Partial choice functions ρij are defined for indexed families

< Raj+1, . . . , Raj+1−1 >, if 1 ≤ j ≤ k − 1, and < Raj+1, . . . , Rn >, if j = k.
Any concatenation of partial choice functions ρij , 1 ≤ j ≤ k, is called a

partial choice function αe.
The number of choice functions ρe for the given choice function κe matches

the number of all its partial choice function αe, i.e.
∏k

i=1 i(ai+1−ai−1), assuming
that ak+1 = n + 1.

The lexicographically ordered set of all choice functions ρe for all lexicograph-
ically ordered choice functions κe correspond one–to–one to the lexicographically
ordered set of all choice functions ρ. The number of all choice functions ρe for all
choice functions κe is the Stirling number S(n,k) and corresponds to the number
of all exactly k–block partitions of n–element set.

Let us introduce now the lexicographic order on the set of all choice functions
of the family < Ai >i∈I .

For given choice functions δ =< d1, . . . , dk > and γ =< g1, . . . , gk >, we say
that δ is less then γ according to the increasing lexicographic order, if and only
if there exists i ∈ {1, . . . ,k}, satisfying di < gi, and dj = gj, for every j < i.

3 Model of Computations

The basic model of computations of choice functions κe consists of single mem-
ory cell S and associative memory block A of size n, with memory cells lineary
ordered, and containing respective order numbers as their address keys. Cell S
and cells in block A are considered to be elementary processors. As most parallel
algorithms, the generation algorithms presented in this paper require an inter-
processor communication pattern. In particular, we need a single source proces-
sor (cell S) to sent identical data to a subset of destination processors (cells) in
the block A. This sort of communication is called one–to–subset broadcast.

All processors of the block A and processor S are connected to a bus which is
used for data transmission. In order to perform one–to–subset broadcast opera-
tion (i.e. to determine destination processors) the memory cells have to execute

1

n
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A[n]

A

converter
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data
busaddress

range A

S

O
U
T
P
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Fig. 1. Basic model of associative computations
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associative range matching in processor block A. Only one one–to–subset broad-
cast is performed at a time.

Generation of choice functions αe is performed in a complex parallel counter
model that is built of n parallel counters with variable capacity. Each choice
function κe computed in the associative model is used for setting exactly k
counter positions while all corresponding choice functions αe are generated on
the remaining (n-k) positions (positions of κe are skipped by counter carries).
Due to space limitations other details of the model will be omitted here.

The algorithms for parallel generation of κe and ρe sequences in lexicographic
order are presented in sections 4 and 5.

4 The Combination Generation Algorithm

Construction of the presented algorithm is based on the observation that de-
spite of applying different approaches to the generation task various generation
algorithms for given class of objects reveal a common control structure.

In this paper we assume that the control structure of (n,k)–combinations is
the structure of (n-k+1,k)–combinations with repetitions. The properties of the
sequence of combinations with repetitions as nondecreasing choice functions λ
are a key factor of our parallelization method. Therefore the sequence of choice
functions λ has been chosen as a basic control sequence for the generation.

The presented algorithm uses consequently a uniform one-to-subset broadcast
operations described in section 3. In order to produce control sequences the
algorithm operates on the set of associative memory locations A and single
memory cell S. The range of the subset of destination cells in set A is determined
in parallel by associative compare range operation which requires O(1) time. In
the algorithm COMBGEN the procedure OUTPUT performs a conversion which
is required to produce from the control sequence in table A the output sequence.
A pseudocode of the parallel algorithm COMBGEN for generating combinations
is presented in Fig.2.

Exemplary sequences generated by the algorithm, for n=6, k=3, are depicted
in Table 1. In tables S and A transformations of the control sequence are shown.
The bold font in these columns points out the source and the destination mem-
ory cells in all one-to-subset broadcasts between S and A. Exemplary output
sequences λ and κ are shown in tables A and K, respectively.

Table 1. Sequences generated by algorithms COMBGEN (n=6, k=3)

No. IND S A=L K No. IND S A K No. IND S A K
1 1 1 1 1 1 1 2 3 8 2 3 1 3 3 1 4 5 15 3 4 2 3 4 2 4 6
2 3 2 1 1 2 1 2 4 9 3 4 1 3 4 1 4 6 16 2 4 2 4 4 2 5 6
3 3 3 1 1 3 1 2 5 10 2 4 1 4 4 1 5 6 17 1 3 3 3 3 3 4 5
4 3 4 1 1 4 1 2 6 11 1 2 2 2 2 2 3 4 18 3 4 3 3 4 3 4 6
5 2 2 1 2 2 1 3 4 12 3 3 2 2 3 2 3 5 19 2 4 3 4 4 3 5 6
6 3 3 1 2 3 1 3 5 13 3 4 2 2 4 2 3 6 20 1 4 4 4 4 4 5 6
7 3 4 1 2 4 1 3 6 14 2 3 2 3 3 2 4 5 0
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Input : n – size of the set, k – size of the subsets.
Output: Table K with the consecutive choice functions κ.
Method: In table S future values of A subsequences are computed and stored in
advance. Computations begin with S=1. Then, the first function λ in the table A is
obtained (steps 1-2), and next value of S is determined (step 3). In step 4 the first output
is produced. Next, consecutive values A and S are produced and output sequences are
computed (step 5). Computations run until the last c.f. is generated, i.e. IND=0.

/1-3 initialization phase/
1. MAX:=n-k+1; IND:=1; S:=1;
2. ONE2SUBSET(S,A,IND,k);
3. S:= A[IND]+1;
4. do in parallel

4.1. OUTPUT;
4.2. IND:=k;

5. while IND>0 do
5.1. ONE2SUBSET(S,A,IND,k);
5.2. do in parallel

5.2.1. OUTPUT;
5.2.2. if A[IND]<MAX then

5.2.2.1. S:= A[IND]+1;
5.2.2.2. IND:=k;
else
5.2.2.3. IND:=IND-1;
5.2.2.4. S:=A[IND]+1;

ONE2SUBSET(ONE,SET,LEFT,RIGHT)
/one-to-subset broadcast/
1. for I:=LEFT to RIGHT do in parallel

SET[I]:=ONE;

OUTPUT /conversion and output/
case of object
K: for I:=1 to k do in parallel K[I]:=A[I]+I-1;
output K;

Fig. 2. The algorithm COMBGEN

A constant delay between objects is provided by execution of conditional
step 5.2.2 in constant time. If constant delay is not essential further speedup
may be achieved through a hardware implemention if, for IND=k, all one-to-one
broadcasts are replaced by increment operations.

Theorem 1. Algorithm COMBGEN generates, in the conventional representa-
tion, all (n,k)–combinations, 1 ≤ k ≤ n, in the lexicographic order with constant
time per combination in an associative model with at most n+1 processors, each
of constant size. Thus, the algorithm COMBGEN is optimal.
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5 The Partition Generation Algorithm

In this paper we assume that the control structure for (n,m)–partitions consists
of the structure of the set of (n,k)–combinations with a1 = 1 whose elements
represent positions of initial elements of m=k partition blocks in Hutchinson
representation and, in general, the structure of the set of choice functions rep-
resenting elements of the remaining partition blocks. The pseudocode of the
parallel algorithm M-PARTGEN for generating exactly m–block set partitions
in the Hutchinson’s representation is shown in Fig.3.

Exemplary sequences generated by the algorithm M-PARTGEN, for n=6,
m=3, are depicted in Table 2.

Input : n — size of the set, m — the number of partition blocks.
Output: Table R with the consecutive choice functions ρe.
Method: For each c.f. κe generated by algorithm COMBGEN in lexicographic order
compute all partial choice functions αe and generate in table R all partitioning choice
functions ρe in Hutchinson representation and in lexicographic order.

/1-2 initialization phase/
1. k:=m;
2. R[1]:=1;
/3 generation of all choice functions ρe/

3. for i:= 1 to n−1
k−1 do

3.1. for j:= 2 to n do in parallel R[j]:= 1;
3.2. generate next κe using COMBGEN(n-1,k-1,K);
3.3. for j:= 1 to (k-1) do in parallel R[K[j]+1]:= j+1;
3.4. repeat

3.4.1. generate the next partial choice function αe on the (n–k) positions
of the table R in the complex parallel counter model;

3.4.2. output table R with the next choice function ρe

until all partial choice functions αe for the given κe are generated;

Fig. 3. The algorithm M-PARTGEN

Table 2. Sequences generated by algorithm M-PARTGEN (n=6, m=3)

No. R No. R No. R
1 1 1 1 1 2 3 11 1 1 2 1 3 1 34 1 2 1 1 3 1
2 1 1 1 2 1 3 ... . . . ... . . .
3 1 1 1 2 2 3 16 1 1 2 2 3 3 45 1 2 2 2 3 3
4 1 1 1 2 3 1 17 1 1 2 3 1 1 46 1 2 1 3 1 1
... . . . ... . . . ... . . .
6 1 1 1 2 3 3 25 1 1 2 3 3 3 63 1 2 2 3 3 3
7 1 1 2 1 1 3 26 1 2 1 1 1 3 64 1 2 3 1 1 1
... . . . ... . . . ... . . .
10 1 1 2 2 2 3 33 1 2 2 2 2 3 90 1 2 3 3 3 3
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Theorem 2. Algorithm M-PARTGEN generates, in Hutchinson’s representa-
tion, all exactly m–block partitions of n-element set in the lexicographic order
with O(1) time per partition in an associative model extended by complex paral-
lel counter model, both with O(n) hardware complexity.

6 Concluding Remarks

A new O(1) algorithm for the generation of exactly m–block partitions has been
described in this paper. The algorithm can be used for generation of all partitions
within the given range of the parameter m, where 1 ≤ m1 ≤ m ≤ m2 ≤ n.

The algorithm provides the parallelization of computations at the level of
single combinatorial object. However, it can be used in adaptive partition gen-
eration too, enabling further parallelization on the set of objects level. In this
case standard unranking techniques for partitions may be applied with a little
effort for programming a number of generators working in parallel [24]. Splitting
the generation task in adaptive generation algorithm is much easier to accom-
plish in associative model then in linear array model, since in the latest model
it is necessary to know states of all registers involved in computations and mes-
sage passing in each of n systolic processors in order to program one partition
generator [2, 22].
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Abstract. In the self-stabilizing model each node has only local infor-
mation about the system. Regardless of the initial state, the system must
achieve a desirable global state. We discuss the construction of a solution
to the spanning tree problem in this model. To our knowledge we give the
first self-stabilizing algorithm working in a polynomial number of moves,
without any fairness assumptions. Additionally we show that this ap-
proach can be applied under a distributed daemon. We briefly discuss
implementation aspects of the proposed algorithm and its application in
broadcast routing and in distributed computing.

1 Introduction

A distributed system consists of nodes that are pairwise connected by communi-
cation channels. Each node maintains variables which determine its local state.
The global state of the system is the union of all local states. Such a model is
seen to be a good abstraction for real objects such as peer-to-peer networks.

The system is constructed in such a way as to guarantee that it works cor-
rectly, i.e. persists in a legitimate state, even though some perturbations can
bring it to an illegitimate state. It is desirable that it returns to a legitimate
state without any external intervention. Self-stabilization, a concept introduced
by Dijkstra [4] in 1974, can be thought of as a technique for designing such
resilient systems. A self-stabilizing system is one which is able to achieve a le-
gitimate global state starting from any possible global state.

A distributed system can be modeled by a connected graph G = (V, E),
where vertex set V corresponds to system nodes and the set of edges E denotes
communication links between them. A vertex can change its local state by mak-
ing a move. The algorithm for each vertex v is given as a set of rules of the form
if p(v) then A, where p(v) is a predicate over local states of v and its neighbors,
and A is an action changing a local state of v (a move of v). A vertex v becomes
active when p(v) is true, otherwise v is stable. The execution of the algorithm is
controlled by a scheduler which allows some non-empty subset of active vertices
to perform a simultaneous move defined by the rules for the respective nodes;
this is referred to as a single action. If all vertices in a graph are stable, we
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say that the system is stable. In order to measure the time complexity of self-
stabilizing algorithms we often use the number of moves or, more commonly in
synchronized systems, the number of rounds.

Finding a spanning tree in such a system can be the basis of many complex
distributed protocols like broadcasting, token circulation or code assignment.
Predictably, many publications on the subject have appeared in recent years.
A self-stabilizing algorithm for a BFS spanning tree in a semi-uniform system
with a central daemon under read/write atomicity was described in [6]. Afek,
Kutten and Yung in [1] gave a similar algorithm but for a uniform network,
which stabilizes in O(n2) asynchronous rounds. Another algorithm was given by
Arora and Gouda in [3] as a part of a more complex algorithm. In this paper
authors assumed unique identifiers for vertices and a bound on the graph size
known to all nodes. A very simple algorithm was presented by Huang and Chan
in [8]. Yet another, which also needs a bound on n known to all vertices, was
invented by Sur and Srimani in [10].

Later on, many other papers appeared on the subject, describing various ap-
proaches, considering time effectiveness [2], memory requirements [5, 9] or com-
munication costs. But, to the best of our knowledge, no algorithm working in a
polynomial number of moves without any assumptions on scheduler fairness has
ever before been described in literature, even for the case when the scheduler
selects exactly one of the active nodes at a time to make a move. We give a
general solution to the considered problem for arbitrary schedulers.

2 An Algorithm for Finding a Spanning Tree in
O(n diam(G)) Moves

Let G = (V, E) be a system graph, where vertex set V corresponds to system
nodes and the set of edges E denotes communication links between them. By
n = |V | and m = |E| we denote the number of vertices and the number of edges,
respectively. In addition, let N(v) = {u : (u, v) ∈ E} be the open neighborhood
of v, and let deg(v) = |N(v)| be the degree of v. A spanning tree T = (V, E′) of
G = (V, E) is a subgraph of G consisting of the same set of nodes V , but only
a subset E′ ⊆ E of edges such that there exists exactly one path between every
pair of nodes in T . To ensure the existence of a spanning tree, graph G must be
connected, so in this paper we restrict our considerations to connected graphs
only.

In our first approach we provide a simple semi-uniform algorithm, in which
each node has only one local variable f , a non-negative integer. Semi-uniformity
means that exactly one of the nodes, called a root, needs to be distinguished. We
will denote it by r. The interpretation of state variable f is as follows. Consider
node v and let us choose u such that f(u) = minw∈N(v) f(w) and u is the first1

1 To be able to say “first” we must assume that the neighbors are somehow ordered.
This is not a strong assumption as long as a node is able to distinguish between its
neighbors. For example, if the neighbors of v are stored in the form of a list, the
order can be given according to the list sequence.
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vertex among the neighbors of v with such a property. If f(u) < f(v) then we
say that u is the parent of v. For the distinguished vertex f(r) is permanently
equal to 0.

We now proceed to show an algorithm which will guarantee that the parent
of each vertex (with the exception of the root) is uniquely defined, thus implying
an ordering of the vertices equivalent to a spanning tree.

Algorithm 1:

R: if v �= r ∧ f(v) ≤ minu∈N(v) f(u)
then f(v) = maxu∈N(v) f(u) + 1

Let T = (V, ET ) be an arbitrary spanning tree of G. Consider an edge e =
{u, v} ∈ ET , where vertex u is closer to root r in tree T than vertex v, dT (u, r) <
dT (v, r) (dT (u, v) is the length of path [u, v]T ). We will call edge e correctly
directed if f(u) < f(v). When analyzing Algorithm 1 it is useful to bear in mind
the following observation.

Corollary 1. If for a given state of the system running Algorithm 1 there exists
a spanning tree T such that all its edges are correctly directed, then the system
is stable.

Theorem 2. Algorithm 1 stabilizes in O(n diam(G)) moves.

Proof. We now select an arbitrary spanning tree T of G and define the following
function:

ST (v) =
∑

(w,w′)∈E([r,v]T )

max{f(w)− f(w′), 0} (1)

Intuitively, ST (v) can be thought of as the number of edges lying on the path
[r, v]T which are correctly directed. Obviously:

0 ≤ ST (v) ≤ dT (r, v) (2)

Let us consider the effect of a parallel action of a set of vertices X = {x1, . . . , xk}
⊂ V on the values ST (v). As the root r cannot make any move, thus r �∈ X . With-
out loss of generality we can assume that the subgraph H of G induced by X is
connected, since otherwise the same actions can be performed by the scheduler in
several successive actions, without any time gain. The structure of Algorithm 1
implies that before the action, for all i we have f(xi) ≤ minu∈N(x) f(u), and
consequently f(xi) = f(xj) for all i, j. Consider an arbitrary connected com-
ponent P of the forest T ∩H . The change of values of f within component P
affects which edges of T are correctly directed. Notice that this operation does
not affect the edges of T \ P . Let eP be the edge connecting P with the compo-
nent of T \ P containing root r. Before the action, no edge of P was correctly
directed, and edge eP was not correctly directed either. After the action, edge
eP is correctly directed. Taking into account the fact that for any vertex v ∈ V
the value ST (v) depends only on which edges of the path [r, v]T are correctly
directed, we immediately obtain that the value ST (x) increases by at least 1 for
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every vertex x ∈ P , and does not decrease for any other vertex of T . Since this
reasoning can be repeated for all other connected components of T ∩ H , it is
evident that the value ST (x) increases by at least 1 for every vertex which is
making a move, and does not decrease for any other vertex.

Thus, by inequality (2) and Corollary 1 we obtain that a vertex v may make at
most dT (r, v) moves while the algorithm is stabilizing. Since the above reasoning
holds for any tree T , it is also correct for the BFS spanning tree TB of graph G
rooted at vertex r. The following inequality is true for any vertex v: dTB (r, v) ≤
diam(G). All vertices become stable after making at most diam(G) moves each,
which completes the proof. �

Theorem 3. Algorithm 1 finds a spanning tree.

Proof. Suppose that the system is stable, so each node is stable. Hence accord-
ing to our definition of the parenthood relation every vertex except root r has a
unique parent node (otherwise, such a vertex would have a locally minimal value
and rule R would be active for it). By including all edges {u, v} such that v is a
parent of u we obtain graph T , a subgraph of G = (V, E). It is easy to observe
that r is a vertex of T , thus T has n vertices and n−1 edges. Moreover, by defini-
tion of parenthood, T may not contain any cycles, so T is a spanning tree of G. �

The algorithm given above is extremely simple and fast. However, at this point
we can observe certain inconveniences. First, we cannot give an upper bound on
the value of f(v) and secondly, we do not provide sufficient local state information
to allow a vertex to recognize its child nodes in the tree (only its parent). The
former problem is addressed in detail in Section 4. The latter may be easily solved
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by adding a simple rule to Algorithm 1, which has no effect on its polynomial
pessimistic stabilization time.

2.1 Example

In Figure 1 each of the pictures illustrates the states of the vertices in successive
moves. The root vertex r is distinguished by a bold circle and active vertices
are marked with double circles. The state value f of each vertex is given inside
the circle, while the value ST , used in the proof of theorem 2, is marked close to
the circle. An exemplary chosen spanning tree T is denoted by bold lines, while
additional arcs show the parenthood relation between vertices. A small pointer
indicates the vertices to perform the next action. Symbols P and ep have the
same meaning as in the proof. The algorithm computes a spanning tree in three
actions, and the result is visible (in the form of the parenthood relation) in
Figure 1(d).

3 Fault Containment for Limited Perturbations

In practical applications of spanning tree construction it is often desirable for
the stabilization time of the algorithm to be dependent on the severity of the
faults which appeared in the system, i.e. a minor perturbation ought to result in
quicker stabilization. This notion is referred to as fault-containing spanning tree
construction, and was studied in the round-based model by Ghosh, Gupta and
Pemmaraju [7]. We say that the system starts in a k-faulty state if the initial
state can be transformed into a state representing some valid spanning tree of
G (rooted at r) by changing local vertex states of not more than k vertices.

Algorithm 1 proves extremely stable when considered from the point of view
of fault containment.

Property 4. If the system starts in a k-faulty state, then Algorithm 1 stabilizes
in O(kn) moves.

Proof. The proof is based on a similar method as that applied in the proof of
Theorem 2. Suppose that the system starts in a k-faulty state with tree T used
as the reference solution. It suffices to notice that the introduction of a single
fault results in a change of values ST (v) by no more than 1 for all vertices.
Consequently, in a k-faulty state the initial value of ST (v) is never smaller than
the final value of ST (v) by more than k. Since every move of a vertex increases
its current value ST (v) by at least 1, no vertex will ever move more than k
times while Algorithm 1 is stabilizing. Of course, the solution obtained by the
algorithm need not be the same as the reference tree T . �

Finally, it is interesting to observe the way in which Algorithm 1 builds its
spanning tree. At every stage of execution, each vertex of the graph is capable
of indicating its direct parent or stating that in the current arrangement it has
no parent (at the end of the process the only vertex left without a parent is the
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root r). This feature is of some importance in networking applications, since it
guarantees that at every stage of execution the temporary solution is a directed
spanning forest, and is always acyclic.

4 Memory Usage for Local States

The local state of Algorithm 1 consists of one local variable f and one implied
pointer, indicating the parent of the vertex. The values f(v) are non-negative
in the initial state and increase throughout the operation of the algorithm. It
is easy to show that if their initial value is polynomial with respect to n, then
their final value is also polynomial with respect to n. Indeed, let Ft denote the
maximum of f(v) taken over all vertices, for the state of the system after exactly
t actions. Initially, Ft = F0 and with every action Ft increases by at most 1. Since
by Theorem 2 the algorithm stabilizes after f actions, for some f ≤ n diam(G),
the final value Ff fulfills the inequality Ff ≤ F0 + n2.

However, in practical applications it is often useful to give up the classical
model of a local state understood as a memory cell of dynamically expandable
size, and assume that the size of the local state is limited by physical storage
constraints. In order to achieve this, we propose the following modification of
Algorithm 1, in which the local state variable f(v) is understood as a memory
cell capable of storing any integer from the range [0, N ], for some known constant
value N ≥ n. The only exception is the local state of the root, as the value f(r)
is always fixed and equal to 0 (as in the case of Algorithm 1).

Algorithm 2:

R: if v �= r ∧ f(v) ≤ minu∈N(v) f(u) ∧maxu∈N(v) f(u) < N
then f(v) = maxu∈N(v) f(u) + 1

R1: if v �= r ∧ f(v) > maxu∈N(v) : f(u)<f(v)(f(u) + 1)
then f(v) = maxu∈N(v) : f(u)<f(v)(f(u) + 1)

Theorem 5. Algorithm 2 stabilizes in O(Nn diam(G))moves and uses O(log N)
storage space per vertex.

Proof. The O(log N) storage space required by the algorithm is an obvious con-
sequence of the structure of the local state. We will concentrate on proving the
bound on the number of moves required by the algorithm.

Rule R of Algorithm 2 is a copy of rule R of Algorithm 1, with the constraint
that the rule will only activate provided the resultant value f(v) does not exceed
the imposed upper bound N . Rule R1 reduces the value f(v) for the active vertex
v to the smallest possible value which does not make any correctly directed edge
in graph G (with respect to any spanning tree) lose its correct direction (consult
the proof of Theorem 2), even if such a rule is executed in parallel with rule R
on other vertices.

It suffices to show that before the algorithm stabilizes rule R activates in at
most n diam(G) moves, and rule R1 activates in at most O(Nn diam(G)) moves.
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The first part of the statement is true by Theorem 2, since the bound on the
number of activations of rule R is only dependent on the correct directions of
edges in some spanning tree (proof of Theorem 2), and the number of such moves
made by a single vertex is bounded by diam(G). To prove the second part of
the statement, we consider the sum Σt of values f(v) taken over all vertices, in
the state of the system after exactly t actions. The change of value Σt from Σ0
in the first considered state to Σf in the last considered state is the result of
the total change ΔΣR caused by moves using rule R and the total change ΔΣR1

caused by activations of rule R1, i.e.:

Σf = Σ0 + ΔΣR + ΔΣR1 (3)

Since at every stage of the algorithm all values f(v) are bounded (0 ≤ f(v) ≤ N),
we have 0 ≤ Σ0 ≤ Nn and 0 ≤ Σf ≤ Nn. A single move using rule R increases
Σt by not more than N , and the number of activations of rule R is bounded by
n diam(G), hence 0 ≤ ΔΣR ≤ Nn diam(G). From (3) and the above observations
we have:

|ΔΣR1| ≤ |Σf |+ |Σ0|+ |ΔΣR| ≤ Nn(diam(G) + 2) ∈ O(Nn diam(G)) (4)

By studying rule R1 it is easy to observe that any activation of this rule strictly
decreases the value Σ, and consequently the number of activations of this rule
does not exceed |ΔΣR1|. By applying (4) we obtain the desired bound on the
number of moves. �

Theorem 6. Algorithm 2 finds a spanning tree.

Proof. By studying the proof of Theorem 3, we observe that rule R is inactive
for all vertices in one of two cases: (1) the current state is already stable, or
(2) there is a vertex v with all edges directed towards it which has a neighbor
u such that f(u) = N . It suffices to prove that the latter case is not a final
state of Algorithm 2. The proof proceeds by contradiction. Suppose that rule
R1 is also inactive for all vertices. This means that for any vertex w we either
have f(w) = 0, or there exists a neighbor x of w such that f(w) = f(x) + 1.
Consequently, for any vertex w the inequality f(w) < n holds, a contradiction
with f(u) = N ≥ n. �

It is interesting to study the effect of the chosen bound N on the performance
of Algorithm 2. If N is polynomial with respect to n, N ∈ O(poly(n)), then the
memory required for storing a local state is O(log n), and the number of moves
made by Algorithm 2 is O(poly(n)). In particular, if N is a constant-factor bound
on the value of n, i.e. N ∈ O(n), then the number of moves of Algorithm 2 may
be written as O(n2 diam(G)). On the other hand, it has to be remembered that
the value N needs to be stored in all vertices, and consequently selecting a value
too close to n may decrease the scalability of the system.
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5 Final Remarks

When considering the model of self-stabilization without fairness guarantees,
the spanning tree algorithm presented in this paper has numerous and profound
implications.

First of all, the presented algorithm may be easily and efficiently applied in
a broadcasting protocol for a distributed network. In such a network, broadcast
packets may only be routed along edges of some spanning tree (to avoid infinite
transmission loops) and the spanning tree may need to be dynamically recreated
in case of temporary malfunction without the intervention of a central agent. A
spanning tree suitable for such a protocol can be constructed using an algorithm
based on Algorithm 2 with one additional rule (allowing a vertex to know not
only its parent, but also its children), whose polynomial stabilization time is
immediately evident.

Moreover, the existence of the discussed algorithm shows that it is possible
to use an algorithm stabilizing in a polynomial number of moves to determine a
structure defined by a global property in the graph, but using only local neighbor-
hood information. Such an approach opens up new possibilities for polynomial-
time self-stabilizing distributed computing without fairness assumptions when
solving problems related to code assignment.
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Abstract. B*-tree is an improved variant of well known B-tree data
structure which has extensive applications in data storage and retrieval
systems including parallel database systems. In this paper, we present
an algorithm for deleting keys of B*-tree concurrently in the case that
the number of to-be-deleted keys is more than a half of the total keys in
the tree. The proposed algorithm can be implemented on CREW PRAM
model in optimal O(log2n+BlogBn) time with the total processors equal
to the keys to be deleted. n is the total number of keys in B*-tree and
B is equal to half of the keys in an internal node containing maximum
keys. It counts as an improvement upon the previous comparable known
algorithms by a reduction of factor B in the (log2n)-term of the time
complexity.

1 Introduction

B*-tree is one kind of balanced search trees and an improved variant of B-tree
[3] according to Knuth [10]. It has been extensively employed in standard index-
based systems such as Disk Database Systems and also recent Parallel Database
Systems. Although the B-tree structure is mainly concerned with storage and
retrieval in secondary memory resident databases, there exists a variant which
is well suited for the main memory called cache-conscious B+-tree [7,16].

The height of B*-tree is O(log Un) and dictionary operations i.e. search, in-
sertion and deletion are performed in O(U logUn) time in sequential computation
model, where n equals the number of keys in B*-tree and U is the minimum
degree of B*-tree.

Many sequential [1,2,4,5,13,17] parallel and concurrent [6,9,12,14,18,19,20]
analysis and computational algorithms and data structures on B-tree and its
variants like B*-tree have been studied. Since synchronous and asynchronous
environments differ from each other, the methods and techniques developed in
one of them can not be used in the other one and vice versa. Our algorithm is
developed for synchronous environment but in a different case of parallel dele-
tion compared to the previous related proposed algorithms, so that makes the

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 83–91, 2006.
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thorough and accurate comparison irrelevant in the general case. The algorithm
is based on rebuilding the modified B*-tree after deletion rather than rectifying
the old B*-tree. Previous results in similar variants of B-trees on different mod-
els and environments can also be studied [8,14,18]. For general B-trees, Higham
and Schenk [8] achieved optimal O(log2s + BlogBn) time for search, optimal
O(B(log2s + logBn)) time for insertion and O(B2(logBs + logBn)) time for
deletion with s processors on the EREW PRAM, where s is the number of
keys for the concurrent dictionary operations. It should be noted that the time
complexity attained for the deletion algorithm is by a factor B slower than the
optimality computed theoretically. Later, Heejin Park et al. [14] presented an
optimal parallel deletion algorithm on B-trees that runs in O(B(log2s + logBn))
time with s processors on the EREW PRAM. Both of the algorithms proposed
in [8] and [14] adopt pipelining to achieve improved time complexities.

In this paper, we present a new parallel deletion algorithm for B*-tree that
runs in optimal O(log2n + BlogBn) time with s processors on the CREW PRAM
model. n is the total number of keys in B*-tree, B is equal to half of the keys
in an internal node containing maximum keys and s is equal to the number of
keys to be deleted.

The rest of this paper is organized as follows. In section 2, the B*-tree defini-
tion is stated and we also describe terms and facts that are used throughout the
algorithm. In section 3, we present our parallel deletion algorithm. We conclude
in section 4.

2 Preliminaries

A B*-tree of maximum degree m ≥ 3 is a rooted tree which must satisfy the
following properties according to Knuth [10]. The properties are similar to B-tree
with the distinction that the B*-tree will guarantee every node except for the
root will be two-thirds full instead of the conventional half in B-trees. For the
sake of similarity with B-tree, we have adopted parameter B in our algorithm
which is equal to �(m + 1)/2� . The construction of such a tree will also follow
two full nodes combination divided into three approximately equal-sized nodes
scheme, in order to satisfy the restriction which defines the miminum number of
keys in a node.

1. Every node except the root has at most m children.
2. Every node except for the root and the leaves (external nodes) has at least

(2m− 1)/3 children.
3. The root has at least 2 and at most 2 ∗ �(2m− 2)/3�+1 children.
4. All leaves appear on the same level.
5. A nonleaf node with k children contains k -1 keys.

We consider the following data structure for each node of B*-tree. All nodes
use an array for storing their keys, only leaves are linked together. For each key,
the array contains a data element and a bit to indicate marked / unmarked
keys. It means that we can perform a linear traversal of leaves without using
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their parents. Besides, we need an extra array CopyOfKeys to keep a copy of
each key inserted to the tree. The array also contains the data element and a
bit to indicate marked / unmarked keys similar to the structure of nodes in the
B*-tree. The extra array must be built while creating the B*-tree. If we perform
inorder traversal of B*-tree, the successor of key x, denoted by successor(x), is
the key which we visit right after x. The node of key x, denoted by node(x),
locates the node where x is placed in. Variable Px.index is used to indicate the
rank of the processor associated with the key x.

3 Deletion

Our deletion algorithm consists of five major stages. We first present a concise
pseudocode and then describe each stage in details and for some non-trivial
stages we will demonstrate time complexity analysis.

Algorithm Outline

1. Search for s keys and mark the found keys.
2. A copy of each unmarked key x in an internal node will be added to the

beginning of node(successor(x)).
3. Compute parallel prefix sum for the keys in B*-tree leaves.
4. Perform a kind of packing algorithm on all marked / unmarked keys in B*-

tree leaves in order to separate the two classes of marked and unmarked
keys.

5. Reconstruct B*-tree from the remaining (unmarked) keys of the previous
stage.

Stage 1: In this stage, s predetermined keys that must be deleted will be searched
for and marked synchronously. We use CREW PRAM model, therefore the keys
can be found concurrently straight and simple. Fig. 1(a) shows an example of B*-
tree of maximum degree 6 storing 52 keys. Fig. 1(b) shows the B*-tree with the
set of keys 1, 8, 10, 19, 20, 25, 26, 34, 40, 44, 57, 109, 120, 122, and 150 marked
to be deleted. Since the CREW1 model is exploited which allows us concurrent
reads without memory access conflicts, a processor finds its corresponding key
in O(BlogBn). Each processor in the worst case must traverse the height of the
B*-tree that is equal to O(logBn) and pursue a sequential search in a candidate
node containing at most 2B−1 keys which is a linear function with respect to B.

Marked keys are indicated by underlines with light color in Fig. 1(b). Note
that the links connecting the leaves of the B*-tree are not depicted in the figure
for the sake of simplicity.

Stage 2: We assign n/2 processors to array CopyOfKeys according to Px.index.
Each processor reads key x from array CopyOfKeys and finds it in B*-tree. Each
processor Px in an internal node whose key x is unmarked, finds the successor(x)

1 For this stage on EREW model, we suggest using the parallel search algorithm
proposed by Higham and Schenk [8].
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Fig. 1. Example of (a) B*-tree with m=6 (b) B*-tree after stage 1 of the algorithm

and adds a copy of key x to the beginning of the node(successor(x)). It’s easy to
find out that no more than exactly one processor attempts to push a key in front
of keys contained in a specific leaf node. In other words, if x1 is not equal to x2
then node(successor(x1)) won’t be equal to node(successor(x2)) either. After
this step, the same processors read from array CopyOfKeys[Px.index + (n/2)]
again. A similar procedure is repeated once more for these new assigned keys. At
this point there is no unmarked key left unprocessed in the internal nodes and
a copy of each unmarked key resides in a leaf node. Assigning each element of
the array CopyOfKeys to a processor Px is performed in O(1) because of using
Px.index as a location indicator to assign keys in the array to the processors
and finding the keys in B*-tree takes O(BlogBn) time. It takes O(logBn) time
to find successor(x) [14]. Therefore this stage is totally performed in O(BlogBn)
time. Afterward, we make a copy of all keys residing in leaves to a temporary
array called Temp for subsequent processing.

(a)
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Fig. 2. (a) The contents of array Temp after stage 2 (b) stage 4 performance of deletion
algorithm (PackedArray)
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Fig. 2(a) shows this stage performance on the B*-tree of Fig. 1(b) which
copies each unmarked key in an internal node to the beginning of its successor
node. For example key 22 goes in front of key 23; key 39 goes in front of key 40
and so on.

Stage 3: In this stage we perform a parallel prefix [11] sum on marked / unmarked
bits for each key xi in the array Temp in order to accomplish the next stage that is
packing the array Temp. The packing procedure separates the class of unmarked
keys from the marked one and accumulates the unmarked keys at the beginning
of the array Temp. A marked bit of key xi denotes a 1 and an unmarked bit
denotes a 0. The parallel prefix sum algorithm on the marked / unmarked bits
acts as follows.

1. Each processor Pi such that 0 ≤ i ≤ (p− 1) computes
n/p−1∑

j=0
xj .bit.

2. For l = 0 to �logp�-1 do in parallel Pi and Pi+2l exchange total sums T1 and
T2 and both replace their total sum T with T1 + T2 and Pi+2l also keeps a
copy of T1. (T1 is the local sum of the bit elements of Pi’s partition and T2
is the local sum of the bit elements of Pi+2l ’s partition in array Temp).

3. Each processor Pi computes the total sum of all stored values and adds it
to each partial sum.

This stage can be performed in O(n/p + log p) time and we have more than n/2
processors, thus the time complexity is O(log n). Note that the general parallel
prefix algorithm presented can be run on EREW, as no need for CR or CW is
arisen. More details can be found in a report presented by Qui and Akl [15].

Stage 4: In this stage we consider a problem that results in global rearrangement
of keys. The problem consists of taking an input data set (array Temp), in which
a subset of the items are marked and rearranging the keys so that all of the
marked items succeed all of the unmarked items. Each key in the array Temp
has an associated bit that is initially set to 1 for marked and 0 for unmarked
keys. Note that this problem is equivalent to sorting a set of 0s and 1s into
nondecreasing order.

The problem is solved using a parallel prefix sum to determine the rank of
each 0 with respect to all 0s and the rank of each 1 with respect to all 1s. In
fact we need not to compute the ranks for keys with a flag bit set to 1 because
they are already keys to be removed from the B*-tree. If array PPS contains
the parallel prefix sum on marked / unmarked bits for each key xi in the array
Temp, we can pack the unmarked keys to another array PackedArray with the
following rule:

For each Pi such that 0 ≤ i ≤ (s− 1) and Temp[i]’s bit is set to 0, copy the
key in Temp[i] to PackedArray[i−PPSi] otherwise do nothing (The processors
responsible for marked keys will be idle). The same operation will be repeated
for the remaining keys in the array Temp if needed.

So this stage needs constant time due to availability of more than n/2 proces-
sors. Note that the resulting array PackedArray is sorted because the keys in
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the leaves were sorted before this stage and the packing algorithm preserves the
order of the keys. Fig. 2(b) shows the result of the packing algorithm on the keys
in the leaves of the B*-tree depicted in Fig. 2(a).

Stage 5: After performing the previous stage, we are left with the array PackedAr-
ray of unmarked keys which is sorted. We assign a processor to each element in
the array (we discard extra processors if such processors exist). Each processor
Pi that is assigned to a key xi in the array PackedArray participates in a par-
allel prefix sum operation similar to the procedure described in the stage 3 of
the algorithm. This action is performed because we need to compute the total
number of the keys in the array to make a new B*-tree.

If all the processors perform the sum operation on a dedicated memory lo-
cation filled with the value of 1 then the last processor holds a resulting value
equal to the number of all the participants i.e. the number of all the remained
unmarked keys. The same time complexity analysis of stage 3 holds here. There-
fore this action is performed in O(log n). We now give a brief description of the
algorithm which builds the new B*-tree (reconstruction) and then we give an
accurate pseudocode to show how it works.

In this stage we set off to build the new B*-tree from the unmarked keys by
means of the PackedArray. This reconstruction is performed in a bottom-up
fashion from the leaves to the root of the B*-tree with the structure explained
in section 2. Although we attempt to build the B*-tree nodes in each step as full
as possible, but there may exist such nodes that violate the minimum keys rule.
After the completion of each iteration of this algorithm, one level of the B*-tree
is built and linked to the upper level of the B*-tree. For constructing the nodes
as much full as possible, partition boundaries (the keys that go up to the upper
level) are located at 2B distance intervals. There is an exception to this case;
the last two partitions should be dealt with in a different manner according to
the minimum keys rule.

We must check to see whether or not the minimum keys rule is violated for
the last partition. If the number of elements in the PackedArray is divisible
by the maximum keys contained in a B*-tree node (2B − 1) then the last two
partitions need not to be manipulated, otherwise we compute the remainder of
the division which is an integer called Remain. The decision how to revise the last
two partitions depends on the value of Remain. If Remain is between 1/3(2B−1)
and 2/3(2B − 1), only the lower (left) boundary of the last partition should go
back 1/3(2B − 1) in order to prevent the violation of minimum keys rule in the
last partition. If Remain is between 0 and 1/3(2B − 1), the lower boundary of
the last partition should go back 2/3(2B − 1) and the lower boundary of the
partition right before the last one should go back 1/3(2B − 1).

This revision should guarantee all the partitions i.e. B*-tree nodes conform
to the minimum keys rule. During the promotion process of boundary keys to the
upper level, they store their children addresses. This is necessary for organizing
the links in each iteration of the algorithm. This way the B*-tree can be recon-
structed in a recursive manner. If the number of elements in the PackedArray
is less than or equal to 2∗�(4B−1)/3�+1 then the algorithm is stopped because
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we have reached the root and no further promotion of keys is required. Here is
a detailed pseudocode of the described reconstruction phase.

Considerations:

– Px.index is equal to the index of each element x in the array PackedArray.
– M [i ] is a specified memory location in the shared memory.
– Remain is the number of keys in the last partition of the PackedArray.
– A′ is a temporary array which stores the keys that get promoted to the upper

level.

Outline :

1. All processors compute the PPS for a value of 1 and the final result is
written to M [i]

2. If M [i] ≤ 2 ∗ �(4B − 1)/3� then go to 10
3. All processors read M [i] and store the value to their local variable v
4. All processors compute v/(2B − 1) and store the result to v
5. All processors initialize their local variable IsPartition to Px.index mod

(2B − 1)
6. For all processors that IsPartition = 0

(a) Compute NumberOfPartition← Px.index/(2B − 1).
(b) Compute TotalNumberPartition← �M [i]/(2B − 1)�
(c) If NumberOfPartition < TotalNumberPartition− 1 then

i. Write key to A′[NumberOfPartition]
(d) Else

i. Initialize local variable Remain to (M [i]−TotalNumberPartition∗
(2B − 1))

ii. If 1/3(2B − 1) ≤ Remain < 2/3(2B − 1)
A. If NumberOfPartition = TotalNumberPartition−1 write the

key to A′[NumberOfPartition]
B. For all processors that are involved in this step, if Px.index =

TotalNumberPartition ∗ (2B − 1)− 1/3(2B− 1), the processor
pushes its variable x back to the end of array A′.

iii. Else if 0 < Remain < 1/3(2B − 1)
A. For all processors that are involved in this step, if Px.index =

TotalNumberPartition ∗ (2B − 1)− 1/3(2B− 1), the processor
pushes its varable x to A′[TotalNumberPartition].
Or if Px.index = (TotalNumberPartition − 1) ∗ (2B − 1) −
2/3(2B − 1), the processor pushes its varable x to A′[Total
NumberPartition− 1]

iv. Else write key to A′[NumberOfPartition]
7. For all processors in array A′, Px.index ← NumberOfPartition.

PackedArray replaces A′.
8. P1 sets M [i]← TotalNumberPartition
9. Go to step 2

10. End
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48 51 53 672 5 9 39 41 46 74 78 79 88 144 124 130 13817 22 23 24 90 93 95 101

(a)

23 51 88 114

PackedArray :

A ' :

90 93 95 10153 67 74 78 7924 39 41 46 482 5 9 17 22

23 51 88 114

(b)

124 130 138

Fig. 3. (a),(b) Stage 5 of the deletion algorithm for rebuilding a new B*-tree

The final stage of the algorithm is performed in O (log2n + logBn) time
and makes a new B*-tree from scratch in a bottom up style from leaves to the
root. It starts by making leaves then makes their parents and it repeats until
the root is reached. Each processor which transfers its key to the parent’s node
links the key’s pointer to its children nodes. Fig. 3(a) and (b) illustrate the steps
of rebuilding the B*-tree. For deleting less than a half of all keys in B*-tree, we
suggest a variant optimal algorithm proposed by H. Park, K. Park and Y. Cho
[14]. Eventually, the following theorem is reached.

Theorem 1. Concurrent deletion of more than a half of unsorted keys in a B*-
tree of maximum degree m ≥ 3 with the total of n keys can be done in optimal
O(log2n + B logBn) time on the CREW PRAM with s processors where s is
equal to the number of to-be-deleted keys and B is equal to half of the keys in an
internal node containing maximum keys.

4 Conclusion

We have proposed a new parallel algorithm on CREW PRAM that deletes large
number of keys in a B*-tree. It takes O(log2n + BlogBn) time with s processors,
where n is the total number of keys in B*-tree, B equals to half of the keys in
an internal node containing maximum keys and s is the number of unsorted keys
to be deleted, which is at least half of the total keys in the B*-tree. Our proposed
algorithm shows a reduction of factor B in the (log2n)-term of the time complexity
compared to the deletion algorithm presented in [14]. The algorithm presented
here outperforms the previous ones due to the huge cost of refinement associated
with them when the number of to-be-deleted keys in the B*-tree is large.
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Abstract. The paper presents a new distributed Multilevel Ant Stig-
mergy Algorithm (MASA) for minimizing the power losses in an electric
motor by optimizing the independent geometrical parameters of the ro-
tor and the stator. The efficiency of the algorithm, in sequential form,
to solve that particular optimization problem has already been shown in
literature. However, even if this method offers good quality of solution, it
still needs considerable computational time. With distributed implemen-
tation of the MASA the computation time is drastically decreased (from
one day to few hours) without any noticeable loss in solution quality.

1 Introduction

Multi-parameter optimization is the process of finding the point in the parameter
space P = {p1, p2, . . . , pD} where a cost function f(P ) is minimized according
to the feasible set of parameters pi, i = 1, 2, . . . , D, that satisfy the constraints.
Very often this cost function contains information about the problem target and
the constraints that the solution has to meet (constrained optimization). These
constraints define the region of the design space where the solution has to be
comprised – called the feasibility region. Optimizing a multi-parameter function
is usually a continuous problem.

There is no universal optimization algorithm to solve such an optimization
problems. Many of the problems arising in real-life applications are NP-hard.
Hence, one usually solves large instances with the use of approximate methods
that return near-optimal solutions in a relatively short time. Algorithms of this
type are called heuristics. The upgrade of a heuristic is a metaheuristic [1]: a set
of algorithmic concepts that can be used to define a heuristic method applicable
to a wider set of different problems. A particularly successful metaheuristic based
on stigmergy is observed in colonies of real ants [2]. Stigmergy is a method of
communication in decentralized systems in which the individual parts of the
system communicate with one another by modifying their local environment.
It was first observed in nature as a class of mechanisms that mediate animal-
animal interactions (e.g., ant trails, termite nest-building, ant corpse-gathering).
The term stigmergy (from the Greek στιγμα = sting, and εργoς = work) was
originally defined by the French biologist Pierre-Paul Grassé in his pioneering
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studies on the reconstruction of termite nests [4]. He defined it as: “Stimulation
of workers by the performance they have achieved.” Ants communicate with
one another by laying down pheromones along their trails, so an ant colony is a
stigmergic system.

An ant-colony metaheuristic is normally used for solving discrete, combina-
torial optimization problems, but in this paper we will show a successful imple-
mentation on a numerical, multi-parameter optimization problem that is often
solved by algorithms for continuous optimization. Because of the nature of the
ant-based algorithms we first had to discretize the continuous, multi-parameter
problem and translate it into graph representation.

The rest of the paper is organized as follows. The Ant Stigmergy Algorithm
is defined in Section 2. In Section 3, the multilevel approach is explained. We
round up with the Distributed Multilevel Ant Stigmergy Algorithm is described
in Section 4, followed by application of the algorithm to the electric motor design
in Section 5. Finally, we conclude the paper in Section 6.

2 The Ant Stigmergy Algorithm

In this section, we introduce the basic concept and major issues pertaining to
ant stigmergy algorithm. First, we translate the multi-parameter problem into
a directed graph and then use some sort of optimization technique to find the
cheapest path in the constructed graph; this path consists of the values of the
optimized parameters. In our case, we use an optimization algorithm, the routes
of which can be found in the ant-colony optimization (ACO) method [3]. The
so-called Ant Stigmergy Algorithm (ASA) consists of two main phases: (a) ini-
tialization and (b) optimization (see Fig. 1).

graph = Initialization(parameters)
GraphInitialization(initial pheromone amount)
while not ending condition do

for all ants in colony do
path = FindPath(probability rule)
Evaluate(path)

end for
UpdatePheromone(all found paths vertices)
DaemonAction(best path)
EvaporatePheromone(all vertices)

end while

Fig. 1. The pseudocode of the Ant Stigmergy Algorithm

(a) Initialization consists of translation the parameters of the problem into a
search graph. This way we translate the multi-parameter problem into a prob-
lem of finding the cheapest path. For each parameter pd, d = 1, . . . , D, parameter
value v〈d,i〉, i = 1, . . . , nd, nd = |pd|, represents one vertex in a search graph, and
each vertex is connected to all the vertices that belong to the next parameter
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pd+1. Once we have translated the multi-parameter problem into one of find-
ing the cheapest path, we can deploy the initial pheromone values on all the
vertices.

(b) Optimization consists of finding the cheapest path. We have a number of
ants that all simultaneously start from the start vertex. The probability with
which they choose the next vertex depends on the amount of pheromone on the
vertices. The ants use a probability rule to determine which vertex will be chosen
next. The ants repeat this action until they get to the ending vertex. Now we
evaluate the gathered parameter values of each ant (that can be found on its
path). Then each ant returns to the start vertex and on the way it deposits
pheromones on the vertices according to the evaluation result: the better the
result the more pheromone is deposited on the vertices, and vice versa. After all
the ants return to the start vertex we do a so-called daemon action; this consists
of depositing some additional pheromones on what is currently the best path,
and also a smaller amount on a neighboring path. Afterwards, the pheromones
are evaporated on all vertices, i.e., the amount of pheromones is decreased by
some predetermined percentage on each vertex. The whole procedure is repeated
until some ending condition is met.

3 Multilevel Approach

We considered the multilevel approach and its potential to aid the solution of
optimization problems. The multilevel approach is a simple one, which at its
most basic involves recursive coarsening to create a hierarchy of approximations
to the original problem. An initial solution is found (sometimes for the original
problem, sometimes at the coarsest level) and then iteratively refined at each
level. As a general solution strategy the multilevel procedure has been in use
for many years and has been applied to many problem areas [9]. The multilevel
approach consists of two main phases: (a) coarsening and (b) refinement.

(a) Coarsening is done by merging two or more neighboring vertices into one
vertex; this is done in L iterations (we call them levels � = 1, 2, . . . , L). Let us
consider coarsening from level � to level � + 1 at a distance d: V �

d
coars−→ V �+1

d .
Here V �

d = {v�
〈d,1〉, . . . , v

�
〈d,n�

d〉
} is a set of vertices at level � and distance d

of the search graph G, where 1 ≤ d ≤ D. If n1
d is the number of vertices at

a starting level of coarsening and distance d, then for every level � the equa-
tion n�+1

d = �n�
d

s�
d

� is true, where s�
d is number of vertices at level �, which

merge into one vertex at level � + 1. So what we do is we divide V �
d into

n�+1
d subsets, where V �

d =
⋃n�+1

d

k=1V �
〈d,k〉, ∀i, j ∈ {1, . . . , n�+1

d } ∧ i �= j : V �
〈d,i〉 ∩

V �
〈d,j〉=∅. Each subset is defined as follows: V �

〈d,1〉 = {v�
〈d,1〉, . . . , v

�
〈d,s�

d
〉}, V

�
〈d,2〉 =

{v�
〈d,s�

d+1〉, . . . , v
�
〈d,2s�

d〉
}, . . . , V �

〈d,n�+1
d 〉 = {v�

〈d,(n�+1
d −1)s�

d+1〉, . . . , v
�
〈d,n�

d〉
}.
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Set V �+1
d = {v�+1

〈d,1〉, . . . , v
�+1
〈d,n�+1

d 〉} is a set of vertices at distance d at level �+1,

where v�+1
〈d,k〉 ∈ V �

〈d,k〉 is selected on some predetermined principle. For example,
random pick, the most left/right/centered vertex in the subset, etc. The outline
of the Coarsening() pseudo code is as follows:

for k = 1 to n�+1
d do v�+1

〈d,k〉 = SelectOneVertex(V �
〈d,k〉)

(b) Refinement: Because of the simplicity of the coarsening, the refinement itself
is trivial. Let us consider refinement from level l to level l − 1 at distance d:
V �

d

refin−→ V �−1
d . The outline of the Refinement() pseudo code is as follows:

for k = 1 to n�
d do

for each v�−1
〈d,i〉 ∈ V �−1

〈d,k〉 do v�−1
〈d,i〉 = v�

〈d,k〉
end for

Now, we merge the ASA and multilevel approach into one. This method is
called the Multilevel Ant Stigmergy Algorithm (MASA) (see Fig. 2).

graph = Initialization(parameters)
for � = 1 to L do

Coarsening(graph[�])
end for
GraphInitialization(initial pheromone amount)
for � = L downto 1 do

while not current level ending condition do
for all ants in colony do

path = FindPath(probability rule)
Evaluate(path)

end for
UpdatePheromone(all found paths vertices)
DaemonAction(best path)
EvaporatePheromone(all vertices)

end while
Refinement(graph[�])

end for

Fig. 2. The pseudocode of the Multilevel Ant Stigmergy Algorithm

4 Distributed Algorithm

Like many other metaheuristic approaches, the MASA admits direct paralleliza-
tion schemes and parallelism can be exploited at one or more scales [8]. In
our implementation, we decide on the largest scale where entire searches can
be performed concurrently. Such implementation, called parallel interacting ant
colonies [7], is based on the well-known server/client approach. Non-distributed
MASA approach presented in previous section base on single ant colony. But in
distributed approach, we split this colony into N sub-colonies, where N repre-
sents number of processors. Each sub-colony searches for a solution according to
the following algorithm:
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Server: StartAllClients()
while not ending condition do

if ReceivedEvaluatedPaths(client) then
BroadcastPaths(all other clients)

end if
end while
StopAllClients()

Client: graph = Initialization(parameters)
for � = 1 to L do

Coarsening(graph[�])
end for
GraphInitialization(initial pheromone amount)
for � = L downto 1 do

while not current level ending condition do
for all ants in sub-colony do

path = FindPath(probability rule)
Evaluate(path)

end for
SendEvaluatedPathsToServer(all ants)
ReceivePathsFromServer(from all other clients)
UpdatePheromone(all found and received paths vertices)
DaemonAction(best path)
EvaporatePheromone(all vertices)

end while
Refinement(graph[�])

end for

Fig. 3. The pseudocode of the Distributed Multilevel Ant Stigmergy Algorithm

This algorithm is similar to the MASA in previous section, except that at
given iterations, an exchange of information between the sub-colonies occurs.
With the use of SendEvaluatedPathsToServer() function the paths with update
pheromone amount is send to server which then with the use of BroadcastPaths()
function broadcasts this information to all other clients (sub-colonies). The up-
date pheromone amount is determined by Evaluate() function. On the other hand,
the information (paths with updated pheromone amount) is gathered from other
sub-colonies with the use of ReceivePathsFromServer() function. The last difference
is in the UpdatePheromone() function. Here the pheromone is not deposited only
on found paths but also on a received ones.

5 The Case Study

In a conventional design procedure for an electric motor the initial estimation
for the geometry of the rotor and the stator is made by an experienced engi-
neer. The suitability of this geometry is then usually analyzed by means of a
numerical simulation of the electromagnetic field. The manual procedure is re-
peated until the satisfied evaluation results are obtained. The advantage of this
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approach is that with their experience the engineers can significantly influence
the progress of the design process and react intelligently to any noticeable elec-
tromagnetic response with proper geometry redesign. However, this conventional
design approach can be upgraded with stochastic optimization techniques which,
in connection with reliable numerical simulators, allow for highly automated de-
sign process where the need for an experienced engineer to navigate the process
is significantly reduced. Actually this is multi-parameter optimization. The use-
fulness and efficiency of the ant-based metaheuristic, in sequential form, to solve
the problem of minimizing the losses in an electric motor has already been shown
in our previous work [5]. The average solution obtained with the algorithm is
25% better than a solution recently found using a genetic approach [6].

The efficiency of an electric motor is defined as the ratio of the output power
to the input power and depends on various power losses. They include copper
losses, iron losses, and additional losses, such as brush losses, and losses due to
ventilation and friction, but the last three losses are not significantly affected
by the geometry of the rotor and the stator. The optimization task is to find
the geometry parameter values that would generate the rotor and the stator
geometry with minimum power losses.

There are several invariable and variable parameters that define the rotor and
the stator geometry [6]. Invariable parameters are fixed; they cannot be altered,
either for technical reasons (e.g., the air gap) or because of the physical con-
straints on the motor (e.g., the radius of the rotor’s shaft). Variable parameters
do not have predefined optimum values. Some variable parameters are mutually
independent and without any constraints. Others are dependent, either on some
invariable parameters or on mutually independent ones. In our case, 10 mutually
independent variable parameters defining the rotor and the stator geometry are
subject to optimization. The optimization task is to find the geometry parame-
ter values that would generate the rotor and the stator geometry with minimum
power losses.

To evaluate settings of the rotor and the stator geometry parameters with
respect to the resulting power losses, we used the ANSYS finite-element method
simulation package. The evaluation of a single solution is time consuming task.
For example, evaluation through ANSYS simulation on an AMD OpteronTM 1.8
GHz computer takes approximately one minute. To find an acceptable solution
a few thousand evaluations are needed. These two facts alone motivated us in
implementation of distributed MASA.

The computer platform used to perform the experiments was 8-node cluster
connected via Giga-bit switch, each node consisted of two AMD OpteronTM 1.8
GHz processors and 2 GB of RAM.

In the experiments, the stopping criterion for the MASA was given by the
number of solutions to be evaluated. It was set to 2240 evaluations per run
and this value was chosen considering the computational complexity of the
optimization procedure. Other algorithm parameters were set as follows. The
MASA operated with seven levels, at each level all ants in sub-colony climbs
down the graph 20 times (“level ending condition”). Total number of ants in all
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Table 1. An optimized electric motor by the distributed MASA (power losses [W])

Number of processors N
1 2 4 8

Best 120.63 122.26 122.86 129.30
Worst 128.71 129.74 138.46 136.47
Mean ± Std 124.45 ± 2.33 125.28 ± 2.83 129.36 ± 4.85 133.34 ± 3.18

sub-colonies is 16, while the number of ants in each sub-colony depends on the
number of processors: eight ants for N = 2, four for N = 4, and two for N = 8.
For each distribution (N = 1, 2, 4 or 8), we ran our algorithm 10 times where
we compared solution quality and computational time.

In Table 1 we can see that the MASA optimizes electric motor design with
power losses in range from 120.63 W to 138.46 W. Even the worst found solution
is still much better that the one found by an expert designer (177.9 W) and it
is used in production. More detailed examination of Table 1 reveals a slight
degradation of solution quality with increasing number of processors. The main
reason for this is in huge percent (approx. 99.98%) of infeasible solutions in
the search space and in fact that the evaluation of feasible solution is 60 times
more time consuming than the evaluation of infeasible solution. Let us consider
example with one and eight processors. In the first case (N = 1) 16 ants climb
down simultaneously while in the second one (N = 8) two ants climb down
simultaneously in each processors. If in the first case only one ant finds a feasible
solution, the rest of 15 ants waits for this ant to finish solution evaluation and
do not search for new feasible solutions. But already in the next climb down
all 16 ants use this newly acquired information(gathered from the ant from
previous climb down). So, 15 searches for feasible solution were done without
this information at the most. Now, let us take into account the second case.
If again only one ant finds a feasible solution then just the ant on the same
processor waits, but all the rest of the ants (14) search for new feasible solutions
undisturbed. Here it is possible that none of 14 ants do not use this information.
For example, if in the first climb down of the current level one ant finds a feasible
solution it takes approx. 60 seconds to evaluate it. In the mean time on all the
other processors the climb downs continue and if none of the ants find a feasible
solution all of the predetermined number of evaluations per level is used without
the use of knowledge gathered by the evaluation of the solution of the first ant.
This scenario can not happen in the first case (where N = 1) where 15 searches
were lost at the most.

Table 2. Computation time in [min]

Number of processors N
1 2 4 8

Best 1295 623 254 113
Worst 1552 811 396 198
Mean ± Std 1481 ± 81 702 ± 61 332 ± 40 182 ± 11
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In Table 2 we see that speed-up is greater than N , which only confirms our
statement from previous paragraph that number of infeasible solutions increases
with the number of processors.

6 Conclusion

In this paper we presented a new distributed multilevel ant stigmergy algorithm
for minimizing the power losses in an electric motor by optimizing the indepen-
dent geometrical parameters of the rotor and the stator. We have showed that
with distributed computing we can drastically decrease the computation time
(from one day to few hours) without any noticeable loss in solution quality.
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Abstract. One of the most important collective communication pat-
terns for scientific applications is the many to many, also called complete
exchange. Although efficient All-to-All algorithms have been studied for
specific networks, general solutions like those found in well known MPI
distributions are strongly influenced by the congestion of network re-
sources. In this paper we present our approach to model the performance
of the All-to-All collective operation. Our approach consists in identifying
a contention factor that characterises the network environment, and us-
ing it to augment a contention-free communication model. This approach
allows an accurate prediction of the performance of the All-to-All oper-
ation over different network environments with a small cost. Indeed, we
demonstrate the accuracy of our approach by presenting our experiments
with three different network environments, Fast Ethernet, Giga Ethernet
and Myrinet.

1 Introduction

One of the most important collective communication patterns for scientific ap-
plications is the many to many (also called complete exchange [1]), in which
each process holds P different data items that should be distributed among the
P processes, including itself. An important example of this communication pat-
tern is the All-to-All collective operation, where all messages have the same size
m. The All-to-All operation is frequently used for matrix transposition, two-
dimensional Fourier Transform, conversion between storage schemes (remapping
of arrays in HPF compilers), shuffle permutation, N body problems and matrix-
vector multiplication.

Although efficient All-to-All algorithms have been studied for specific net-
works structures like meshes, hypercubes, tori and circuit-switched butterflies,
general solutions like those found in well-known MPI distributions rely on direct
point-to-point communication among the processes. Because all communications
are started simultaneously, the overall communication time of the MPI_AlltoAll
operation is strongly influenced by the congestion of network resources.

� Supported by grant BEX 1364/00-6 from CAPES - Brazil.
�� This project is supported by CNRS, INPG, INRIA and UJF.
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Consequently, the performance modelling of the All-to-All operation is not a
simple task. Indeed, most existing performance models are unable to reflect the
impact of network contention, while others are too complex to be used in real
situations.

In this paper we present a new approach to model the performance of the
All-to-All collective operation. Our strategy consists in identifying a contention
factor that characterises the network environment, and using it to augment a
contention-free performance model. This approach allows the prediction of the
performance of the All-to-All operation with efficiency and reduced cost. Indeed,
to demonstrate our approach, we present the results we obtained with three
different network environments, Fast Ethernet, Giga Ethernet and Myrinet.

The rest of this paper is organised as follows: Section 2 presents the defi-
nitions and the test environment we will consider along this paper. Section 3
presents a survey of performance modelling under communication contention.
Section 4 presents our approach to model the performance of the All-to-All op-
eration, validating it against experimental data. Finally, Section 5 presents our
conclusions as well as the future directions of our work.

2 Performance Models and System Definitions

There are several performance models adequate to represent message-passing
parallel programs, most of them based on delay [2], BSP [3] or LogP [4]. Although
these last two performance models are equivalent in most circumstances [5],
LogP is slightly more adapted to our problem as it includes the notion of finite
network capacity, which is especially useful to reflect the network contention.
Hence, in this paper we model collective communications using the parameterised
LogP model (pLogP) [6], an extension of the LogP performance model that can
accurately handle both small and large messages with a low complexity.

All along this paper we use g(m), os(m) and or(m) to respectively repre-
sent the communication gap, the send and the receive overheads of a message of
size m, L as the communication latency between two nodes, and P as the num-
ber of nodes involved in the operation. The pLogP parameters used to feed our
models were obtained with the MPI LogP Benchmark tool [7], and are presented
in Figure 1.

The experiments were conducted on the icluster-21 cluster at the INRIA
Rhône-Alpes computing centre and on the IDPOT2 cluster at the ID-IMAG
Laboratory. The icluster-2 contains 104 Bi-Itanium2 machines (900MHz, 3GB,
Red Hat AS 3.0 with kernel 2.4.21smp) interconnected by a switched Fast Eth-
ernet and a Myrinet network. The IDPOT cluster contains 48 Bi-Xeon machines
(2.5GHz, 1.5GB, Debian with kernel 2.4.26smp) interconnected by a Giga Eth-
ernet network. The experiments used LAM-MPI 7.0.4 and consisted on 100 mea-
sures for each set of parameters (message size, number of processes), from which
the average values are considered in this paper.
1 http://i-cluster2.inrialpes.fr/
2 http://idpot.imag.fr/ or http://frontal38.imag.fr
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Fig. 1. pLogP parameters for the icluster-2 and IDPOT networks

3 Modelling the All-to-All Operation

In the All-to-All operation, every process holds m × P data items that should
be equally distributed among the P processes, including itself. Because gen-
eral implementations of the All-to-All collective communication rely on direct
point-to-point communication among the processes, the network can easily be-
come saturated, and by consequence, degrade the communication performance.
Indeed, Chun and Wang [8] demonstrated, that the overall execution time of in-
tensive exchange collective communications are strongly dominated by the net-
work contention and congestive packet losses, two aspects that are very difficult
to quantify. As a result, a major challenge on modelling the communication
performance of the All-to-All operation is to represent the impact of network
contention.

Unfortunately, most communication models like those presented by [1] are
simple extensions of the one-to-many communication pattern (e.g. the Scatter
operation, where a single process sends different messages of size m to each other
process). By consequence, such models do not take into account the influence of
the network contention, and therefore, are not accurate enough to predict the
performances of an All-to-All operation.

Indeed, the development of contention-aware communication models is rel-
atively recent, as shown by Grove [9]. For instance, one of the first models
that considered the effects of resource contention was presented by Adve [10].
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This model considers that the total execution time of a parallel program is the
sum of four components, namely:

T = tcomputation + tcommunication + tresource−contention + tsynchronisation

While conceptually simple, this model was non-trivial in practice because of
the non-deterministic nature of resource contention, and because of the difficulty
to estimate average synchronisation delays.

In fact, the non-deterministic behaviour of the network contention is a major
obstacle to modelling communication performance. A proposal to circumvent
this limitation was introduced by Clement et al. [11], which suggested a way to
account contention in shared networks such as non-switched Ethernet consisting
in a contention factor γ that augments the linear communication model T:

T = l +
bγ

W

where l is the link latency, b is the message size and W is the bandwidth of
the link, and γ is equal to the number of processes. A restriction on this model
is that it assumes that all processes communicate simultaneously, which is only
true for a few collective communication patterns. Anyway, in the cases where
this assumption holds, they found that this simple contention model greatly
enhanced the accuracy of their predictions for essentially zero extra effort.

The principle of a contention factor is complemented by the work of Labarta
et al. [12], that tried to approximate the behaviour of the network contention by
considering that if there are m messages ready to transit, and only b available
buses, then the messages are serialised in

⌈
m
b

⌉
communication waves.

Most recently, some works on contention-aware performance models have
been published. LoGPC [13] is an extension of the LogP model that tries to de-
termine the impact of network contention through the analysis of k -ary n-cubes.
Unfortunately, the complexity of this analysis makes too hard the application of
such model in practical situations.

Another approach was presented by Chun [8], in which the contention is
considered as a component of the communication latency, and by consequence,
their model uses different latency values according to the message size. Although
easier to use than LoGPC, the model from Tam does not take into account the
number of communicating processes, which is clearly related to the occurrence
of network contention.

4 A Different Approach

Similarly to Clement et al. [11], we assume that the contention is sufficiently
linear to be modelled. Our approach, however, consists on identifying theoretical
performance bounds for the All-to-All operation and deriving a contention factor
that fits our predictions with pre-existent experimental results. We consider that
the network contention depends mostly on the physical characteristics of the
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network (network cards, links, switches), and consequently, the ratio between the
theoretical bounds and the practical results represents a “contention signature”
of the network. Once identified the signature of a network, it can be used in
further experiments to predict the communication performance.

In the case of the All-to-All operation, we explore the limitations of the 1-port
communication model. For instance, although a process can only send a message
to a process each time, the 1-port model allows a process to simultaneously send
a message to one process and receive a message from another one. Hence, in a
contention-free situation, a process would be able to access the network interface
as soon as the precedent send operation returned (while the receive operation
runs simultaneously in the background). In terms of pLogP parameters, this
means that a contention-free process needs only g time units to simultaneously
send a message to a process and receive a message from another one.

At the other hand, processes subjected to network contention may not be
able to send and receive messages simultaneously. Due to the congestion of net-
work resources, a process may not be able to overlap send and receive, and
therefore, can be forced to serialise its communications. In pLogP terms, such
processes need g time units to send each message, plus or time units to receive
a message.

By consequence, a Contention-Free situation represents the capability to
overlap send and receive operations with no extra cost, while in a Contention
situation the processes need to serialise their transmissions due to the network
contention. Thus, we model the All-to-All operation using these two situations as
represented on Table 1. It worth noting that in real situations the performances
of the All-to-All operation may exceed the predictions for the Contention case,
as there are other factors that can influence the communications besides the
physical environment. Even though, by defining a network signature based on
the theoretical bounds, we are able to quantify the network contention effects
regardless the sources of contention.

Table 1. Theoretical performance bounds for the All-to-All operation

Communication Models
Under Contention (P − 1) × g(m) + (P − 1) × or(m) + L

Contention-free (P − 1) × g(m) + L

4.1 Practical Results

To illustrate our approach to predict the performance of the All-to-All operation
in an environment subjected to network contention, we use a Direct Exchange
(DE) algorithm similar to the current MPI_AlltoAll implementation from both
LAM 7.0.4 and MPICH 1.2.5. In this algorithm, all nodes start to communicate
simultaneously, but the contact list of each node is rotated to avoid overloading
a single process each “round”.

We present in Figure 2 an example with the measured performance for the DE
algorithm as well as the predicted performance bounds. It can be observed that
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Fig. 2. Theoretical bounds and performance predictions

the completion time for the DE algorithm usually differs from the Contention-
free case in a non-negligible amount, which clearly indicates the presence of
network contention.

Next, we determine a contention factor γ between the predicted Contention-
free and Contention performances such that the predictions fit the performance
of the All-to-All operation. This contention factor γ is constant and depends only
on the network characteristics (the network signature), whilst the Contention-
free and Contention bounds depend on the number of processes and on the
message size. In some cases, a supplementary factor δ, dependent on the number
of processes P, may be necessary to represent additional costs like, for example,
the overhead of message segmentation, buffer overflow or residual synchronisa-
tion delays. Hence, a performance model for the All-to-All operation can be
defined by:

T = Free + (Contention− Free) × γ + (P − 1)× δ

= (P − 1)× g(m) + L + (P − 1)× or(m) × γ + (P − 1)× δ

= (P − 1)× (g(m) + or(m) × γ + δ) + L

Taking as basis the data from Figure 2, a contention factor γ that fits those
performances is γ = 1

10 for the Fast Ethernet network, γ = 9
2 For the Giga Ether-

net network and γ = 3
2 for the Myrinet network. In the case of Fast Ethernet and

Giga Ethernet networks we need a supplementary δP for messages larger than
2kB, mostly due to reception buffers overflow. Hence, we approximate the be-
haviour of Fast Ethernet networks with δP = 7ms∗P while Giga Ethernet needs
δP = 9ms ∗ P . Using these contention factor values as the network signatures
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Fig. 3. Performance predictions for the All-to-All operation

of our clusters, we could accurately predict the performance of the All-to-All
operation for a wide range of processes with no extra cost. Therefore, Figure 3
presents a comparison between our predictions and the measured performances
for the All-to-All operation with both Fast Ethernet, Giga Ethernet and Myrinet
networks.

It also worth noting the instabilities observed in the case of the Fast Ethernet
network when dealing with small messages and a large number of processes. We
believe that these instabilities are due to a problem with the TCP implementa-
tion on Linux, as previously discussed in a precedent work [14].

5 Conclusions and Future Work

In this paper we present a new approach to model the performance of the All-
to-All collective operation that is both simple and precise. Our method consists
on identifying a contention factor that characterises the network environment,
and using it to augment a contention-free performance model. This approach
allows the prediction of the performance of the All-to-All operation over different
network environments, with accuracy and reduced cost. Indeed, to demonstrate
our approach, we present the results we obtained with three different network
environments, Fast Ethernet, Giga Ethernet and Myrinet.

We intend to pursue our experiments on communication modelling using the
GRID50003 facility, investigating the behaviour of collective communications
with a larger number of machines and with other network environments such
3 http://www.grid5000.org
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as InfiniBand, and more specifically to the complete exchange operations, to
automate the definition of γ and δ for a given network. We are also interested
in the study of contention effects in the domain of small messages, subjected to
important performance variations as represented by the δ factor itself.
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Abstract. In this paper we present an approach to building a monitor-
ing environment which underlies performance visualization for distrib-
uted applications. Our focus is to make the J-OCM monitoring system
and the TAU-Paravis performance visualization system to collaborate.
J-OCM, based on the J-OMIS interface, provides services for on-line
monitoring of distributed Java applications. The system uses J-OCM to
supply monitoring data on the distributed application, whereas TAU-
Paravis provides advanced visualization of performance data. We man-
aged to integrate J-OCM into TAU/Paravis by developing additional
software providing access to the monitor and transformation of raw
monitor data into performance data which is presented with 3-D charts.
At the end we present an extension, which introduces Web Service
monitoring into the integrated environment.

Keywords: performance visualization, monitoring tools, OMIS, TAU,
web service.

1 Introduction

The ability to monitor the execution of a distributed application and to measure
its performance is a key issue in designing and deploying such applications [1].
A standard approach assumes a kind of pre-execution instrumentation of the
source code. During execution the instrumented code generates monitoring in-
formation which are stored and presented to the user either in semi-on-line or
off-line mode. Such an approach has many limitations: it requires often source
recompilation, does not work with applications that execute very long, does not
allow to control the execution of the application. As a result, there is a distinct
need for performance analysis systems that can perform on-the-fly monitoring
and allow for application control and interaction at run-time. In this paper we
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present our approach to building a monitoring environment and also the way
of extending it to support the monitoring of Web Services which become an
increasingly popular technology of distributed programming.

Our approach is based on the integration of J-OCM [2], a flexible monitoring
system into the TAU-Paravis visualization package [3]. Up to now there were no
tools which used J-OCM for performance analysis, so it was impossible to fully
use this on-line monitoring system for performance analysis. We use J-OCM to
supply on-the-fly monitoring data from a distributed application, while TAU-
Paravis provides advanced visualization of performance data. As J-OCM and
TAU-Paravis use different data models, our work is aimed at the development
of additional packages to make them cooperate.

The paper is organized as follows: Section 2 introduces the main features
of J-OCM. Next, Section 3 gives some details on SCIRun and TAU. Section 4
presents the concept and structure of the integrated monitoring environment.
Next, Section 5 explains a way of extending the environment to support Web
Services monitoring, followed by the features of 3-D performance visualization
in Section 6. Then we give a short overview of related work. Finally, we sum up
the work done and show some plans for further research.

2 J-OCM Monitoring System

J-OCM is a monitoring system for Java applications, compliant with the OMIS
specification [4] extended by a support for Java, in form of the J-OMIS exten-
sion [5]. The idea of OMIS (On-line Monitoring Interface Specification) is to
separate the functionality of a monitoring system from monitoring tools. The
OMIS specification defines an interface that is an intermediate layer between
them. The communication is based on the request-reply mechanism realized as
a set of services while the processing of events uses the event-action paradigm.
OMIS enables convenient access to performance objects like classes, methods,
threads, or web services; they are identified by tokens. All performance object
types, observable by the monitor, form an objects hierarchy. The OMIS concept
allows multiple monitoring-based tools like profilers, debuggers, etc. to use a
single monitoring system at the same time.

The J-OMIS specification, which underlies J-OCM, extends OMIS to match
the monitoring of Java applications. It introduces new, specific for Java types
of objects and services, to form an object hierarchy relevant to Java. It also
divides the new object hierarchy into two kinds of objects – execution ones:
nodes, JVMs, threads, and application ones: interfaces, classes, objects, meth-
ods. Each object has its own set of services divided to three groups: information
services - to provide information about objects, manipulation services - to al-
low to change objects’ states, and event services to trigger some actions when
matching events occur. Event services are used by tools to program the monitor-
ing system for getting specific data from a monitored application or manipulating
it. J-OCM (see Fig. 1) is implemented as an extension to the OCM monitoring
system [6].
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Fig. 1. Architecture of J-OCM

Recently, J-OCM was extended to enable the monitoring of web-service based
applications written in Java. Some modifications have been introduced to the
J-OMIS interface specification. The extension provides means for accessing web
services and forwarding web-service specific events.

3 SCIRun and TAU

Within our work we are integrating J-OCM with TAU-Paravis visualization
package. Paravis, which is a part of the TAU(Tuning And Analysis Utilities)
monitoring environment , is developed at the University of Oregon in Eugene
[7, 8]. Paravis introduces advanced 3-D visualization into TAU.

TAU-Paravis is built within SCIRun, a powerful Problem Solving Environ-
ment [9]. It is developed at the University of Utah, as an open source software.
SCIRun can be used widely for solving various scientific problems. It consists of
the modules that allow to perform complicated computations, data transforma-
tions, and provide advanced visualization. An application built within SCIRun is
composed from the modules which can be connected one to another through pipes
carrying data. A module usually gets input data, performs some computations
on it and sends the results to another module. Through various configurations of
modules the user can solve many complicated scientific problems.

The concept of providing monitoring data by J-OCM to a tool required ad-
ditional software to be written. We had to develop a new package in SCIRun
to make TAU/Paravis work with J-OCM. The new set of modules is responsi-
ble for: programming the J-OCM monitoring system, receiving the events from
it, selecting a performance object to be monitored, controlling the execution of
application, and processing the data which are passed to TAU-Paravis.
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4 Design of Monitoring Environment

The new monitoring environment can be divided into two parts: a monitor-
ing subsystem and an SCIRun compliant tool. The tool is responsible for the
programming monitoring activities, handling monitor events, measuring and vi-
sualizing. The tool runs inside SCIRun and consists of several packages. Its most
important components are the TAU package and JOCM package. We focused
on the second one. The JOCM package contains several SCIRun modules, data
types and ports definitions. They provide access to the monitor and produce
a TAU compatible data structure on the output. The structure is a 3-D ma-
trix. Having passed such matrices TAU can be used to provide matrix specific
operations on the data.

Fig. 2 presents an overview of the system architecture. J-OCM and SCIRun
are two separate systems which communicate using the J-OMIS interface.
SCIRun access modules execute J-OCM specific services and handle responses
and events. In principle, it is possible to use any monitoring system other than
J-OCM, which complies to the J-OMIS interface. A monitoring system can be
developed or evolve separately without influencing the whole environment.

Fig. 2. System architecture

In the JOCM package we define the following kinds of objects which can be
monitored: Node (physical machine), JVM (Java Virtual Machine), Class (Java
class), Method (class method), and Thread (Java thread)

Each performance object has its representation within J-OCM in form of
token. Objects form a hierarchy with nodes on the top and methods and threads
at the bottom. Each performance object is associated with a specific SCIRun
access module. The monitoring environment can be easily configured by placing
modules and connecting them according to the objects hierarchy. Each access
module can be attached to one or more J-OCM tokens. It is possible to attach
multiple modules to the same token.

The access modules perform monitor programming, but they also handle
events from J-OCM. The module on top of the hierarchy receives all event
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notifications and passes them down until the event comes to the module which is
intended to handle it. Each access module has also a performance output which
can be connected to some measurement module’s input port.

The second category of modules contains measurement modules. They are
responsible for building measurements from monitoring events and gathering
measurement results. Measurements are connected to some metrics. We have
defined the following metrics:

– method execution time (aggregate or momentary, inclusive or exclusive, in
context of a thread)

– thread status over time
– garbage collector activity (execution time, released memory size)

The “method execution time” can be aggregated at the class level. In this
case, the “class execution time” is a sum of all class methods execution times.
The monitoring of thread status provides important information about the ac-
tivity of a thread. This information can be useful in solving the issues of thread
synchronization.

The measurement modules gather performance data and transform it into 3-
D matrix structures. These can be passed to TAU modules which perform some
additional transformations like aggregation or scaling. The results are being used
to produce 3-D charts which are finally rendered by an SCIRun built-in rendering
module.

The functionality of the system is much broader that performance visualiza-
tion only. It can also take control over an application execution. Now this ability
is limited to threads only. The user can make use of this feature to change a
thread status during the execution, without modifying source code.

5 Web Services Monitoring

The Web Services approach to building distributed applications is getting more
and more popular. The advantages of using web-based components are very
difficult to overestimate. Such components have well-defined interfaces and can
be easily accessed. An issue when using Web Services is their performance, due
to the use of XML-based communication protocols.

Debugging and optimizing a single Web service is quite an easy task. Prob-
lems occur when Web services start to interact while forming a working web
application. In this case the ability to do performance analysis is extremely im-
portant. It is still very difficult to find a complete solution for the performance
monitoring and visualization of web services.

Following the extension done to J-OCM, we have developed additional mod-
ules for accessing the new types of performance objects. These modules are:

– Web Service access module
– Web Service’s port access module
– Port’s operation access module
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The Web Service access module can be connected to the Node access module.
In this way the new modules extend the existing modules hierarchy (it is related
to the extended J-OCM tokens hierarchy).

We have defined relevant metrics:

– Resources usage (CPU, memory)
– Communication (throughput, latency, reply time)
– Requests (frequency, SOAP message processing time, message size )
– Run-time specific (operation execution time)

These metrics define the new measurements which require new modules for
gathering the measurement results. The important thing is that the output of
these modules is still TAU’s 3D matrix. As a result the visualization engine is
invariant to changes.

Within this concept, a very important part of the work are extensions to the
monitoring system. J-OCM must be able to manage a web service’s distribution
which differs from that on a cluster of nodes supported by J-OCM. Since nodes
can be grouped into sites, the monitoring system architecture must comprise
Service Managers above Local Monitors. Service Managers are managed by Ser-
vice Distribution Unit instead of the Node Distribution Unit as it was in the
cluster-oriented version of J-OCM.

6 Performance Visualization

The advantages of 3-D visualization over 2-D are obvious. 3-D charts are much
more readable and can provide more information at the same time. One of the
most important advantages of TAU is the ability to perform such visualization
in real time. The user is enabled to see what performance problems occur during
an application’s execution. The user is enabled to access various performance

X

Y
Z

Fig. 3. Summarized message parsing time (X-time; Y-web services; Z-measured value)
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data on different objects at the same time. In this case it is much easier to figure
out dependencies between performance phenomena (e.g. bottlenecks).

In Fig. 3 we show an example performance visualization session of several
similar web services (“Hello world”). The monitoring environment is configured
to measure the SOAP messages parsing time. Each “Hello world” Web service is
located on a different physical machine. The client application randomly sends
requests to the Web services. With the tool we can observe the dynamics of
increase in the aggregate parsing time over the execution.

7 Related Work

There are a large number of monitoring tools for Java distributed programs.
Commercial tools like AmberPoint Express1 for .NET platform or open source
ones like Apache jMeter2 for Java provide for the user a lot of useful features.
They support advanced visualization and can point at application bottlenecks.
However, each of them runs as a client application. They test Web Services by
sending requests and counting the response time or number of fails. They can
also inspect SOAP packages. However, an issue is that they do not allow the
user to get insight into what really happens inside the Web Service.

Our goal is to overcome this constraint and to provide that our approach can
point at the part of the Web Service (initialization, request processing, operation
invocation or response) responsible for the performance problem. Moreover, the
system under discussion supplies more advanced visualization and can be easily
extended by new functionality.

8 Conclusion

Performance visualization is important for several reasons. Efficient application
programming requires efficient techniques for performance analysis and visual-
ization. When dealing with distributed systems the need in such a functionality
is even stronger.

It is still difficult to find comprehensive open source solutions for performance
monitoring, analysis and visualization of web services. Most of available tools are
limited to the SOAP messages analysis. Our approach is to attach the monitoring
tool to the Web service container and obtain from it needed monitoring data.

The system under discussion is open source and offers a functionality required
in case of the monitoring of distributed Java applications and also web services
implemented in Java. It uses a powerful scientific visualization environment -
SCIRun which is widely used due to it’s open architecture. As a result, the
system’s functionality can be easily extended by adding new modules.

As any monitoring system, J-OCM induces some overhead into the monitored
application performance, due to the local agents which may do dynamical in-
strumentation of the monitored application. In other cases, agents use the JVM
1 [http://www.amberpoint.com/solutions/express.shtml]
2 [http://jakarta.apache.org/jmeter]
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built-it Tool Interface which influences the performance to a small extent. The
results of overhead measurements will be presented in the final version of the
paper. As well we will provide the results of scalability research.

One of the important issues of the whole environment we will work on in
further research is to optimize the resources usage needed by SCIRun (mem-
ory, CPUs, efficient graphics accelerator), which is crucial in large distributed
applications.

The web page of the monitoring environment is being worked on.
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Abstract. In the paper two problems of scheduling time-dependent jobs
on parallel machines are considered. In both problems the processing
time of each job is described by a linear function of the starting time of
the job. The criterion of optimality of a schedule is either the total com-
pletion time or the total machine load. First, an equivalence of these two
problems is proved. Next, several properties of the problems are shown.
Finally, two heuristic algorithms based on the steepest descent search
are proposed and results of their experimental evaluation are reported.

Keywords: deteriorating jobs, parallel machine scheduling, total com-
pletion time, total machine load; heuristic algorithms, steepest descent
search.

1 Introduction

We consider the following two scheduling problems. A set J = {J1, J2, . . . , Jn}
of time-dependent jobs, which are simultaneously available at time t0 = 1, is to
be processed on a set M = {M1, M2, . . . , Mm} of identical parallel machines.
Jobs are independent and job preemption is not allowed, i.e. once the processing
of a job is started, it cannot be interrupted until it is entirely completed.

In the first problem the actual processing time pi of job Ji, 1 ≤ i ≤ n, is a
proportional function of the starting time t of the job, pi = αit, where αi > 0 is
a positive deterioration rate of the job and t ≥ t0. The objective is to minimize
the total completion time,

∑
Ci, of jobs from the set J.

In the second problem the actual job processing time is a linear function of
time, pi = 1 + αit, where αi > 0 for 1 ≤ i ≤ n. The objective is to minimize the
total machine load,

∑
C

(k)
max =

∑m
k=1
∑nk

i=0
∏i

j=1(1 + αk
nk−j+1), where nk is the

number of jobs assigned to machine Mk and αk
j is the deterioration rate of the

j-th job assigned to machine Mk, 1 ≤ k ≤ m, 1 ≤ j ≤ nk and
∑m

k=1 nk = n.
Using the α|β|γ notation, [4], these problems can be denoted in short as

Pm|pj = αjt|
∑

Cj and Pm|pj = 1 + αjt|
∑

C
(k)
max, respectively.
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2 Previous Research

In time-dependent scheduling we deal with proportional job processing times,
when the processing time of each job is described by proportional function of the
starting time of the job, [8]. Nowe we review complexity results from the area.

Mosheiov [8] proved that problem 1|pj = αjt|ψ is polynomially solvable, if
the optimality criterion ψ ∈ {Cmax,

∑
Cj}. Chen [2] and Kononov [7] proved

that problem P2|pj = αjt|
∑

Cj is ordinarily NP-hard. Mosheiov [9] proved
that the problem with the total machine load criterion, P2|pj = αjt|

∑
C

(k)
max, is

ordinarily NP-hard. Kononov [7] and Mosheiov [9, 10] proved several other results
concerning scheduling proportionally deteriorating jobs on dedicated machines.

The second group of results concerns lower bounds on the value of Cmax,∑
C

(k)
max or

∑
Cj criterion. Let F �(J) denote a lower bound on the value of

criterion F for job set J. For problem P2|pj = αjt|
∑

Cj , Chen [2] established

the following lower bound:
∑

C�
j (J) ≥ 2

∑k
i=1

√∏2i+r
j=1 aj , where aj = 1 + αj

for 1 ≤ j ≤ n, all aj ’s are ordered nondecreasingly, r = 0 if n = 2k and r = 1
if n = 2k + 1 for some k. For the problem with arbitrary number of machines
and with the total machine load criterion, Pm|pj = αjt|

∑
C

(k)
max, Mosheiov [9]

suggested the lower bound in the form of
∑

C
(k)�
max (J) ≥ m m

√∏n
j=1 aj . Chen’s

lower bound has been tightened by Jeng and Lin [6], who have shown that for
problem Pm|pj = αjt|

∑
Cj , k = � n

m� and r = n−km there holds the inequality

∑
C�

j (J) ≥ LB1 = m

k∑
i=1

m

√√√√im+r∏
j=1

aj +
r∑

j=1

aj . (1)

The reader is referred to reviews by Alidaee and Womer [1] and Cheng et
al [3] for more details on time-dependent scheduling.

3 Equivalence of Problems Pm|pj = αjt|
∑

Cj and
Pm|pj = 1 + αjt|

∑
C(k)

max

We now prove the equivalence of the two problems and some of their properties.

Property 1. In an optimal schedule for problem Pm|pj = αjt|
∑

Cj jobs assigned
to a machine are arranged in the nondecreasing order of deterioration rates and
scheduled without idle times.

Proof. Assume that σ is an optimal schedule in which jobs assigned to a ma-
chine are not in a nondecreasing order of deterioration rates αi, 1 ≤ i ≤ n. By
changing the order into a nondecreasing order, we obtain a schedule σ′ such that∑

Cj(σ′) ≤
∑

Cj(σ), since in an optimal schedule for a single machine jobs have
to be in nondecreasing order of αi’s, [8]. Changing, if necessary, the order of jobs
on other machines, we obtain such an optimal schedule that on each machine
jobs are arranged in nondecreasing order of αi’s. Since any idle time increases
job completion times, the optimal schedule cannot contain idle times. ��



118 S. Gawiejnowicz, W. Kurc, and L. Pankowska

Theorem 1. Let σi = (αi
1, α

i
2, . . . , α

i
ni

) and σ̄i = (αi
ni

, αi
ni−1, . . . , α

i
1) denote a

sequence of jobs assigned to machine Mi and the sequence reversed to σi, re-
spectively, where αi

j denotes deterioration rate of job Jj assigned to machine
Mi, 1 ≤ j ≤ ni, 1 ≤ i ≤ m and

∑m
i=1 ni = n. Then for every schedule

σ = (σ1, σ2, . . . , σm) for problem Pm|pj = αjt|
∑

Cj there exists a correspond-
ing schedule σ̄ = (σ̄1, σ̄2, . . . , σ̄m) for problem Pm|pj = 1 + αjt|

∑
C

(k)
max and

for every schedule σ̄ for problem Pm|pj = 1 + αjt|
∑

C
(k)
max there exists a cor-

responding schedule σ for problem Pm|pj = αjt|
∑

Cj such that
∑

Cj(σ) =∑
C

(k)
max(σ̄)−m, provided that both these schedules start at time t0 = 1.

Proof. (Sufficiency) Assume that t0 = 1 and let σ = (σ1, σ2, . . . , σm) be a sched-
ule for problem Pm|pj = αjt|

∑
Cj , where σi = (αi

1, α
i
2, . . . , α

i
ni

), 1 ≤ i ≤ m.

Then we have
∑

Cj(σ) =
∑m

k=1
∑nk

i=1
∏i

j=1 ak
j =

∑m
k=1
∑nk

i=0
∏i

j=1 ak
j − m =∑m

k=1
∑nk

i=0
∏i

j=1 bk
nk−j+1−m =

∑
C

(k)
max(σ̄)−m, where ak

j = 1+αk
j , bk

nk−j+1 =
ak

j and σ̄i = (αi
nk

, αi
nk−1, . . . , α

i
1) = (bi

1, b
i
2, . . . , b

i
nk

).
The proof for necessity can be done in an analogous way. ��

Property 2. A schedule σ� is optimal for problem Pm|pj = αjt|
∑

Cj if and only
if the schedule σ̄� is optimal for problem Pm|pj = 1 + αjt|

∑
C

(k)
max. Moreover,∑

Cj(σ�) =
∑

C
(k)
max(σ̄�)−m.

Proof. Let σ� be an optimal schedule for problem Pm|pj = αjt|
∑

Cj and let
σ̄� denote the schedule obtained from σ� by reversing the order of jobs on each
machine. First, note that equality

∑
Cj(σ�) =

∑
C

(k)
max(σ̄�)−m must hold, since

Theorem 1 concerns any schedule, the optimal one in particular.
Assume now that σ̄� is not optimal for problem Pm|pj = 1 + αjt|

∑
C

(k)
max.

Hence there must exist a schedule τ such that
∑

C
(k)
max(τ) <

∑
C

(k)
max(σ̄�) =∑

Cj(σ�) + m. On the other hand,
∑

C
(k)
max(τ) =

∑
Cj(τ̄ ) + m. Hence we have

that
∑

Cj(τ̄ ) <
∑

Cj(σ�). This, however, is impossible since σ� is optimal with
respect to

∑
Cj criterion. A contradiction. ��

Throughout the paper the problems for which the equivalence described in
Theorem 1 holds, will be called equivalent problems.

Property 3. Problems 1|pj = αjt|
∑

Cj and 1|pj = 1 + αjt|Cmax are equivalent.

Proof. Let m = 1. Then, by definition of the total machine load, we have∑
C

(k)
max =

m∑
k=1

Cmax ≡ Cmax. Applying Theorem 1, the result follows. ��

Property 4. In optimal schedule for problem Pm|pj = 1 + αjt|
∑

C
(k)
max, jobs

assigned to a machine are arranged in a nonincreasing order of deterioration
rates and scheduled without idle times.

Proof. By Property 2, in any optimal schedule for Pm|pj = 1+αjt|
∑

C
(k)
max jobs

are scheduled in the reversed order, comparing to the order of jobs in the optimal
schedule for Pm|pj = αjt|

∑
Cj . Applying Property 1, the result follows. ��
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Property 5. The optimal value
∑

C
(k)�
max of the total machine load for problem

Pm|pj = 1+αjt|
∑

C
(k)
max is no less than LB2 = m

∑k
i=1

m

√∏im+r
j=1 aj+

∑r
j=1 aj+

m, if t0 = 1, k = � n
m� and r = n− km.

Proof. Let τ be any schedule for problem Pm|pj = 1 + αjt|
∑

C
(k)
max. Then

by Theorem 1 and formula (1) for schedule τ̄ we have LB1 ≤
∑

Cj(τ̄ ) =∑
C

(k)
max(τ) − m. Hence, for any schedule τ there holds inequality LB1 + m =

LB2 ≤
∑

C
(k)
max(τ). ��

Theorem 2. If t0 = 1, problem Pm|pj = 1 + αjt|
∑

C
(k)
max is NP-hard in the

ordinary sense, even if m = 2.

Proof. First, note that any instance of problem P2|pj = αjt|
∑

Cj is an instance
of problem P2|pj = 1 + αjt|

∑
C

(k)
max, too. Second, by Theorem 1, if t0 = 1 then

problem P2|pj = αjt|
∑

Cj is equivalent to problem P2|pj = 1 + αjt|
∑

C
(k)
max.

This means that for each schedule σ for the first problem there exists a schedule
σ̄ for the second problem such that

∑
Cj(σ) =

∑
C

(k)
max(σ̄)−m and vice versa.

Thus, since problem P2|pj = αjt|
∑

Cj is NP-hard in the ordinary sense ([2, 7]),
problem P2|pj = 1 + αjt|

∑
C

(k)
max is NP-hard in the ordinary sense as well. ��

4 The Modified Steepest Descent Search Heuristics

In the section we formulate two heuristics based on the steepest descent search.

4.1 Previously Known Heuristic Algorithms

For problem 1|pj = αjt|
∑

Cj Mosheiov, [8], proposed the SGR (Smallest Growth
Rate first) rule that sequences the jobs in a nondecreasing order of deterioration
rates and leads to the minimum total completion time. This algorithm has been
also proposed by Mosheiov [9] for the two-machine case, P2|pj = αjt|

∑
Cj .

ALGORITHM SGR

Input: sequence a = (a1, a2, . . . , an), where aj = 1 + αj for 1 ≤ j ≤ n
Output: sub-optimal schedule σ = (σ1, σ2)
Step 1: Re-index jobs in nonincreasing order of aj ; set tM1 = tM2 = t0;
Step 2: Let k be the index of job with the smallest index. If tM1 ≤ tM2 , then

assign job Jk to machine M1 and set tM1 = (1 + αk)tM1 ; else assign job Jk to
machine M2 and set tM2 = (1 + αk)tM2 . Continue until all jobs are assigned.

For the total machine load problem, Pm|pj = αjt|
∑

C
(k)
max, Mosheiov [9]

proposed the LDR (Largest Deterioration Rate first) heuristic. He also proved
that if n→∞, then the performance ratio of the LDR heuristic is bounded and
is asymptotically close to one. For problem Pm|pj = αjt|

∑
Cj , Jeng and Lin [6]
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proposed the heuristic RLDR (Reverse LDR), adopted from LDR (in fact, the
LDR algorithm is composed of the first two steps of the RLDR algorithm).

ALGORITHM RLDR

Input: sequence a = (a1, a2, . . . , an), where aj = 1 + αj for 1 ≤ j ≤ n
Output: sub-optimal schedule σ = (σ1, σ2, . . . , σm)

Step 1: Re-index jobs in nonincreasing order of aj ;
Step 2: Assign, one at a time, jobs J1, J2, . . . , Jn to the machine with the

smallest completion time;
Step 3: Reverse the job sequence on each machine, i.e. put the jobs in

nondecreasing order of aj .

Note that all algorithms mentioned above have O(n log n) time complexity,
since the most time-consuming step is the re-indexing of jobs. Computational
experiments have also shown (see Jeng and Lin [6] for details) that the RLDR
algorithm gives better results than the SGR algorithm.

4.2 Auxiliary Result

Now we pass to the result which will allow us to formulate a new polynomial-time
heuristic algorithm for the problems under consideration. (We omit the proof.)

Let jobs J1,p, J2,p, . . . , Jnp,p with deterioration rates a1, a2, . . . , anp be sched-
uled on machine Mp, 1 ≤ p ≤ m, and let jobs J1,q, J2,q, . . . , Jnq,q with deteriora-
tion rates b1, b2, . . . , bnq be scheduled on machine Mq, 1 ≤ q ≤ m, q �= p.

Theorem 3. Consider schedule σ for problem Pm|pj = αjt|
∑

Cj and schedule
τ obtained by moving job Jk,q from machine Mq and inserting it after job Jr,p on
machine Mp, 1 ≤ p, q ≤ m, p �= q, 0 ≤ r ≤ np, 1 ≤ k ≤ nq. Then the difference
between total completion time of σ and total completion time of τ is equal to

Δ1(σ, τ) =
∑

Cj(σ)−
∑

Cj(τ) =

⎛
⎝1 + (bk − 1)

nq∑
j=k

j∏
i=k+1

bi

⎞
⎠ k−1∏

i=1

bi (2)

−

⎛
⎝1 + (bk − 1)

np∑
j=r

j∏
i=r+1

ai

⎞
⎠ r∏

i=1

ai.

From Theorem 3 it follows that the necessary condition for optimality of a
schedule σ� is satisfying inequality Δ1(σ�, τ) ≤ 0 for any τ �= σ�.

4.3 Algorithm MSD1

Recall that the steepest descent search in each iteration evaluates all moves
which can be done from the neighbourhood of the currently best solution and
chooses the one which minimizes the criterion function.
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Let Jai denote the job corresponding to deterioration rate ai. Let variables
σ0, σbest and σlast denote the starting schedule, the last best and the last but one
best schedule, respectively, and let variable τ denote the best schedule in set S of
solutions constructed at some iteration of the algorithm. The proposed algorithm
MSD1 (Modified Steepest Descent search) can be formulated as follows (note
that for simplicity we use an indentation for denoting complex instructions).

ALGORITHM MSD1

Input: sequence a = (a1, a2, . . . , an), where aj = 1 + αj for 1 ≤ j ≤ n
Output: sub-optimal schedule σbest = (σ1

best, σ
2
best, . . . , σ

m
best)

Step 1: { Construction of the starting schedule σ0}
Arrange all jobs in nonincreasing order of ai;
Assign m− 1 jobs with greatest ai to machines M2, M3, . . . , Mm;
Assign remaining n−m jobs to machine M1;
σbest := σ0;

repeat
σlast := σbest;
Step 2: { Construction of set S of current solutions }
S := ∅;
for jobs assigned to machine M1 do

Choose a job Jai ;
for M in M2, M3, . . . , Mm do

Construct schedule σ′ by moving job Jai to machine M;
S := S ∪ σ′;

Step 3: { Selection of the best schedule in S}
Choose from S the schedule τ = arg max{Δ1(σlast, σ

′) : σ′ ∈ S};
if (Δ1(σlast, τ) > 0) then σbest := τ ;

until (Δ1(σbest, σlast) = 0).

The time complexity of the MSD1 algorithm depends on the number of
iterations of repeat-until loop, which is O(nm), and the cost of checking the
condition Δ1(σ, τ) > 0 from formula (2) for σ = σlast and τ = σ′. Since this latter
cost is O(n), the overall time complexity of the algorithm is O(n2m) ≡ O(n2)
for fixed m.

4.4 Algorithm MSD2

Assume that a schedule is given. Then we can improve this schedule by successive
moving of jobs between machines in order to find such an assignment of jobs
which gives the smaller total completion time than the initial one.

Introduce some notation which we will use. Let τ = σ(Ji ↔ Jk) denote
schedule σ in which jobs Ji and Jk have been mutually replaced. Let ind(σ, Ji)
denote the index of a machine to which job Ji has been assigned in schedule σ. Let
Δ2(σ, τ) denote the difference

∑
Cj(σ) −

∑
Cj(τ). Then the MSD1 algorithm

using the above idea of iterative improvement can be formulated as follows.
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ALGORITHM MSD2

Input: sequence a = (a1, a2, . . . , an), where aj = 1 + αj for 1 ≤ j ≤ n
Output: sub-optimal schedule σbest = (σ1

best, σ
2
best, . . . , σ

m
best)

Step 1: { Construction of the starting schedule σ0}
σ0 := MSD1(a); k := 0; σbest := σ0;

Step 2: { Iterative improvement of the present schedule }
repeat
k := k + 1; σlast := σbest;
for i := n downto 2 do

for k := i− 1 downto 1 do
if (ind(σlast, Ji) �= ind(σlast, Jk)) then τ := σlast(Ji ↔ Jk);
if (Δ2(σlast, τ) > 0) then σbest := τ ;

until ((Δ2(σbest, σlast) = 0) or (k > n)).

The time complexity of the MSD2 algorithm is O(n3), since in the worst
case we have to check n times O(n2) possibilities of a mutual change of two jobs.

5 The Computational Experiment Results

In order to evaluate the quality of schedules generated by algorithms RLDR,
MSD1 and MSD2 we conducted a computational experiment for m = 3 machines.
The rates ai were generated randomly. The results are presented in Table 1 and
Table 2. Each value in these tables is an average of results for 10 instances.

Columns RLDR∗, MSD∗1 and MSD∗2 include the average relative error of the total
completion time for algorithms RLDR, MSD1 and MSD2, respectively, calculated
with respect to the optimal value of the total completion time,

∑
Cj . Columns

RLDR◦, MSD◦1 and MSD◦2 include the average relative error of the total comple-
tion time for algorithms RLDR, MSD1 and MSD2, respectively, calculated with
respect to lower bound (1) of

∑
Cj .

Table 1 and Table 2 show that MSD2 is better than RLDR for ai ∈
(2, 99), while for ai ∈ (1, 2) algorithms MSD2 and RLDR are comparable. The

Table 1. Results of Computational Experiment for ai ∈ (2, 99)

n RLDR∗ RLDR◦ MSD∗
1 MSD◦

1 MSD∗
2 MSD◦

2

6 0.0 0.186729 0.167711 0.374054 0.0 0.186729
8 0.267105 0.639685 0.167173 0.493273 0.0 0.293706

10 0.366406 0.384822 0.121466 0.127353 0.016173 0.031644
12 0.116080 0.115118 0.459128 0.444614 0.003993 0.014459
14 - 0.476927 - 0.206961 - 0.090330
16 - 0.354809 - 0.237446 - 0.012126
18 - 0.052520 - 0.344081 - 0.054585
20 - 0.475177 - 0.161075 - 0.031898
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Table 2. Results of Computational Experiment for ai ∈ (1, 2)

n RLDR∗ RLDR◦ MSD∗
1 MSD◦

1 MSD∗
2 MSD◦

2

5 0.0 0.003121 0.0 0.003121 0.0 0.003121
6 0.0 0.002508 0.000693 0.003204 0.0 0.002508
8 0.001603 0.005034 0.004348 0.007798 0.0 0.003425

10 0.001520 0.002659 0.014319 0.015473 0.000026 0.001163
12 0.001170 0.001809 0.020410 0.021059 0.003459 0.004098
14 - 0.002801 - 0.025815 - 0.005598
16 - 0.002348 - 0.031094 - 0.001261
18 - 0.001272 - 0.044117 - 0.013159
20 - 0.003101 - 0.049956 - 0.004320

quality of schedules generated by algorithm MSD1, in comparison to RLDR al-
gorithm, is an open question and it needs further experiments. Notice also that
by Theorem 1 algorithms proposed for Pm|pj = αjt|

∑
Cj problem can be used

for Pm|pj = 1 + αjt|
∑

C
(k)
max problem, too. Finally, it seems that MSD2 is a

promising alternative for such metaheuristics as simulated annealing (see Hindi
and Mhlanga [5]) which are more time-consuming and hard to implement.
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Abstract. In this paper we present our work on the the parallelization
of a matrix multiplication code based on the hypermatrix data structure.
We have used OpenMP for the parallelization. We have added OpenMP
directives to a few loops and experimented with several features avail-
able with OpenMP in the Intel Fortran Compiler: scheduling algorithms,
chunk sizes and nested parallelism. We found that the load imbalance
introduced by the hypermatrix structure could not be solved by any of
those OpenMP features.

1 Introduction

We have used a Hypermatrix data structure [1, 2] in sequential linear algebra
codes. We could obtain efficient implementations in both sparse and dense codes.
Now, we are interested in the parallelization of our dense codes. This data struc-
ture, however, presents difficulties when work has to be distributed amongst
several processors. Namely, the difficulty to balance the load evenly. In this pa-
per we present the work we have done to produce a hypermatrix multiplication
based on OpenMP directives. We wanted to know whether some of the features
available in OpenMP could surmount the intrinsic difficulties of parallel codes
based on the Hypermatrix data structure. We have chosen matrix multiplication
because it is highly parallelizable. Also, it is a very important operation since it
appears as a basic kernel in many scientific applications. For this reason it has
been studied extensively [3, 4, 5].

1.1 OpenMP

OpenMP [6] provides a set of directives and environment variables to express
and control parallelism in the execution of a program. The user can choose the
scheduling algorithm. When a static scheduling algorithm is used, the distribu-
tion of iterations to threads is done before the execution of any of them. When
a dynamic scheduling algorithm is used, the next piece of work for a thread is
assigned when it is needed. It is taken from the remaining operations due. There
� This work was supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain

(TIN2004-07739-C02-01).
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is a default value for the number of iterations assigned to each processor which
can be changed by the user explicitly. We refer to the chunk size. The default
for the static scheduling is to split the work in as many parts as the number of
threads defined. The default for the dynamic scheduling is to take one iteration
each time.

Several nested loops can be parallelized. OpenMP permits this fact with
a feature known as nested parallelism. When nested parallelism is activated,
parallel constructs can be used within other parallel constructs.

In this paper we have used OpenMP for the parallelization of a matrix mul-
tiplication code based on the hypermatrix data structure.

1.2 Hypermatrix Data Structure

Our application uses a data structure based on a hypermatrix (HM) scheme
[1, 2], in which a matrix is partitioned recursively into blocks of different sizes.
A commercial package known as PERMAS uses the hypermatrix structure for
solving very large systems of equations [7]. It can solve very large systems out-
of-core and can work in parallel. This approach is also related to a variety of
recursive/nonlinear data layouts which have been explored elsewhere for both
regular [8, 9, 10, 11] and irregular [12] applications.

The HM structure consists of N levels of submatrices. In order to have a sim-
ple HM data structure which is easy to traverse we have chosen to have blocks
at each level which are multiples of the lower levels. The top N-1 levels hold
pointer matrices which point to the next lower level submatrices. Only the last
(bottom) level holds data matrices. Data matrices are stored as dense matri-
ces and operated on as such. Hypermatrices can be seen as a generalization of
quadtrees. The latter partition each matrix precisely into four submatrices [13].

Null pointers in pointer matrices indicate that the corresponding submatrix
does not have any non-zero elements and is therefore unnecessary. This is useful
when matrices are sparse. Figure 1 shows a sparse matrix and a simple example
of a corresponding hypermatrix with 2 levels of pointers.

In the past, we have been working on the sparse Cholesky factorization based
on the hypermatrix data structure. We created efficient routines which operate
on small matrices. By small we mean matrices which fit in cache. We grouped
such routines in a library called the Small Matrix Library (SML). Information

Fig. 1. A sparse matrix and a corresponding hypermatrix
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about the creation of the SML can be found in [14]. Further details on the
application of SML to sparse hypermatrix Cholesky can be found in [15].

The hypermatrix data structure, however, can also be used for dense matrix
computations. Recently, we have applied a similar approach to work on dense
matrices. When working on dense matrices in-core, two levels of pointers are
enough. To work efficiently on dense matrices we have extended our SML with
routines which work with larger sizes than the ones used for the sparse codes.
On MIPS, ALPHA and Itanium2 platforms we could obtain very efficient codes
for the matrix multiplication.

Now, we are interested in the efficient execution on multiprocessor machines.
The hypermatrix data structure, however, presents some difficulties when par-
allel code is developed. Namely, the partitioning of the matrix is done when the
data structure is set. Each pointer in the upper pointer matrix level maps a part
of the matrix. If the dimension of such matrix is not a multiple of the number
of processors used then the load is not distributed evenly amongst them.

We have started with the study of the hypermatrix multiplication opera-
tion, which is very regular and has a high potential for parallelism. We have
added OpenMP directives to a few loops and experimented with several features
available with OpenMP in the Intel Fortran Compiler: scheduling algorithms,
chunk sizes and nested parallelism. We anticipate than none of these features
was completely successful for the efficient parallelization of our code.

2 Parallel Dense Hypermatrix Multiplication

The target machine was a 8-way SMP with Intel Itanium2 processors running
at 1.5 GHz. The theoretical peak of this machine is 48 Gflops. The Itanium2 has
three levels of cache. In the first level it has separate instruction and data caches
with 16 Kbytes each. Then, it also has a 256 Kbytes L2 cache and an off-chip
L3 cache with possible sizes ranging from 1.5 up to 9 MB.

We have experimented with four and eight processors. In this section we will
discuss the results obtained. Our preliminary study on four CPUs provides a
speed-up of 3.7 for medium to large matrices. The best combination was that
where the two outermost loops were parallelized using nested parallelism and a
dynamic scheduling algorithm was used where the chunk size equaled 2. Figure 2a
shows the performance of our hypermatrix multiplication code on four processors
for the C = C − A ∗BT operation for both the sequential and parallel versions
of our code. We have used an upper block size of size 460× 460, i.e. each upper
level pointer maps a block of such size. We then tried the same approach on
eight processors. The same figure 2a shows the performance obtained on eight
processors with a dynamic scheduling strategy, with the two outermost loops
parallelized using nested parallelism. Several chunk sizes were used.

We observe that for small matrix dimensions small chunk sizes provide bet-
ter results. However, as the matrix gets bigger, larger chunk values can be more
effective. This is due to the reduction in the overhead which occurs when one
thread searches for new work. Giving a thread more work at once reduces the
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a) b)

Fig. 2. a) Two parallel loops with dynamic scheduling and several chunk sizes on 8, 4
and 1 processors. b) Performance of ATLAS’ DGEMM.

number of times this needs to be done. Also, the memory hierarchy can be bet-
ter used since contiguous blocks corresponding to consecutive iterations can be
reused in the cache. It is important to note that a certain chunk value is effective
only when it keeps a good load balancing. Since the loops we have parallelized
are the outer loops, they correspond to the upper level pointer matrix. The
chunk size times the number of processors should divide the upper level matrix
dimension evenly. Otherwise, load imbalance occurs and the performance drops.

We wanted to compare our results to those of ATLAS [3]. Figure 2b shows
the performance of the sequential and parallel (on eight processors) versions
of ATLAS matrix multiplication routine DGEMM. Their code, starting with
the sequential version, outperforms ours. We must note, however, that on this
machine ATLAS uses a hand-tuned kernel. The interesting point here comes
from the fact that their code achieves high speed-ups sooner than our code. For
some large matrix dimensions the speed-up we obtain is similar to theirs (around
7.0). However, for smaller matrices our speed-up is considerably lower. This is
due to the load imbalance mentioned above. We have revisited our code and tried
several variants aiming to improve its performance, specially when working on
smaller matrices.

2.1 Reducing the Block Size

By default we have been using an upper block size of 460× 460, i.e. each upper
level pointer maps a block of such size. However, we have also reduced the size of
the block to 368×368. Figure 3a shows the performance obtained with dynamic
scheduling and nested parallelism for this block size. Results are similar to those
obtained with our default block size of 460× 460.

For the upper levels we have also tried other multiples of the lower levels
close to the value

√
C/2, where C is the cache size [16]. Figure 5b shows the

performance obtained with several sizes. To simplify the comparison, the max-
imum value obtained for all chunk sizes for a given block size are presented.
Results are similar for all of them. We must note that the smaller block size
276 × 276 provides the worst performance for larger matrices. This size does
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a) b)

Fig. 3. a) Two parallel loops with dynamic scheduling: smaller blocks. b) Three loops
parallelized (one in the level of pointers to data).

not use the memory hierarchy so effectively. Also, there is more overhead in the
parallelization.

2.2 Parallel Loop in Level of Pointers to Data

We have tried another code which parallelizes a third loop in addition to the
outermost two loops. This loop is the outermost loop in the level of pointers to
data. Figure 3b compares its results to those shown in figure 2a. This code only
gets better performance for a few small matrices. For larger matrices, this code
does not offer any advantages. The granularity of this third loop is too small
and the overhead of the parallelization outweighs any possible advantages.

2.3 Static Scheduling

Figure 4a shows the results obtained with a static scheduling. Results with and
without nested parallelism are shown. When only the outermost loop is paral-
lelized we get a saw shape curve. The peaks correspond to sizes which get a
perfect partitioning of the hypermatrix, i.e. with a number of pointers in the
upper matrix which is a multiple of the number of processors. The use of nested

a) b)

Fig. 4. a) One and two parallel loops with static scheduling. b) Parallel outer loop
with dynamic scheduling and several chunk sizes.
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parallelism introduces some overhead. However, it improves the performance for
matrix sizes which are not multiples of the number of CPUs. The performance
obtained in both cases is in general worse than that presented in figure 2.

2.4 Dynamic Scheduling with Only 1 Parallel Loop

Figure 4b shows the results obtained when only the outermost loop is paral-
lelized. A dynamic scheduling is used in this case. Again, we get a saw shaped
curve. It is quite obvious that larger chunk sizes suffer from load imbalance more
often.

2.5 Combining Static and Dynamic Scheduling Algorithms

We have scheduled the outermost loop using a static scheduling and the second
outermost loop using a dynamic scheduling. Figure 5a shows the performance
obtained. The performance obtained is similar to the one obtained when both
loops are scheduled using a dynamic scheduling algorithm as shown in figure 5b.

a) b)

Fig. 5. a) Static scheduling of outermost loop and dynamic scheduling of next inner
loop. b) Maximum values obtained for each block size and scheduling algorithm.

2.6 Perfect Matrix Partitioning

Figure 6 shows the results obtained when the matrix has been partitioned in
a number of parts which is multiple of the number of threads. All partitions
have the same size: each upper level pointer maps blocks of 460 × 460. Thus,
a dimension of 3680 produces a hypermatrix with eight pointers in the upper
level. The number of pointers in the upper level corresponding to the other three
matrix dimensions in the figure are 16, 24 and 32 respectively. All of them are
examples where the load can be easily balanced amongst the processors.

These results allow us to study the overhead of each strategy. We use nest to
identify the use of nested parallelism. A value of 0 means nested parallelism is
not allowed while a value of 1 means the opposite. Label sch corresponds to the
scheduling algorithm used. A value of 0 denotes static scheduling. A value of 1
is used to indicate dynamic scheduling. We use chu to specify the chunk size. A
value of 0 is used to signify the default value for a given scheduling strategy.
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Fig. 6. Experiments with different OpenMP features when the hypermatrix is parti-
tioned for perfect load balancing

On these perfectly partitioned hypermatrices we can observe that, when the
matrices are small, the only way to get good speed-ups is via simple strategies:
parallelizing only the outermost loop with either static or dynamic scheduling.
As the matrices get large there are more strategies which provide good speed-
ups. However, in any case it is important to use a chunk size which allows for
a good load balancing. The result of dividing the dimension of the upper level
pointer matrix by the number of threads must be a multiple of the chunk size.

In a few occasions, a chunk size larger than the default for the dynamic
scheduling strategy (which defaults to 1) can improve slightly the performance
of our matrix multiplication. This is due to the reduction of the overhead which
occurs when one thread takes several iterations at once instead of taking one
iteration each time. Also, better use of the memory hierarchy results when one
thread reckons several contiguous blocks corresponding to consecutive iterations.

Nested parallelism is not really effective in such situations. It cannot provide
any advantages. Instead, it introduces an additional overhead with the creation
of the inner parallel construct.

3 Conclusions

We conclude that the best way to parallelize our application is by means of
an adequate partitioning of the matrix. If this is possible, a simple scheduling
strategy where just the outermost loop is parallelized turns out to be the best
solution. Both static and dynamic scheduling algorithms work well and perform
in a similar manner.

When data cannot be partitioned adequately we can take advantage of nested
parallelism. Despite its overhead, it offers the advantage of being able to open
new parallel sections which can employ otherwise idle processors. The resulting
performance curves are smoother than the saw shaped curves which result from
those cases where only the outer loop was parallelized.

We have conducted experiments with eight processors and found some load
imbalance in those cases where the dimension of the matrix in the upper pointer
level is low and is not multiple of the number of processors used. Thus, smaller
matrices suffer from load imbalance as the number of processors grow. This can
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limit the effectivity of parallel codes based on the hypermatrix scheme. In the
future, we plan to replace the hypermatrix data structure in our algorithms which
deal with dense matrices. We plan to use a plain storage of the data submatrices
which can be accessed with a simple indexing scheme. We believe that in this
way we can still use our routines which deal with small submatrices and, at the
same time, can split the work amongst all processors more effectively.
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Abstract. In this paper we study a scheduling problem with earliness
and tardiness penalties. The objective is to find a sequence of jobs on
parallel identical processors and a common due window. The beginning
and the end of the due window are decision variables but the size of the
due window is constrained from above and below. A job incurs penalty
if it completes before or after the due window. A penalty function is
nonlinear and identical for all the jobs. In the considered problem we
minimize the sum of earliness and tardiness penalties, due window loca-
tion penalty and due window size penalty. We proved some properties of
an optimal solution and constructed a pseudopolynomial time algorithm
based on the dynamic programming method. We also established the
computational complexity of the problem.

1 Introduction

Scheduling problems with a common due date assignment were widely studied
in the scientific literature over the past decade. This resulted in the literature
survey written by Gordon et al. [1]. In this class of problems, the due date itself
is a decision variable, and the objective is to schedule the jobs with minimum
deviation from the due date.

However, in practice, the completion of a task is usually acceptable without
penalty over a time duration. The due time duration is called due window. Some
relevant references are among others: Azizoglu and Webster [2], Kramer and
Lee [3], Liman et al. [4], [5], Mosheiov [6], Yeung et al. [7].

In this paper we study a parallel processor scheduling problem with a common
due window. Earliness and tardiness penalties are given by nonlinear functions,
which are job-independent. Moreover, the position and the size of the due window
are also penalized. These penalties are described by nonlinear functions, too.

Problem with nonlinear earliness-tardiness penalty functions was also studied
by Kahlbacher [8], who designed a pseudopolynomial time algorithm based on
the dynamic programming method for a single processor problem with a common
due date.

The model under investigation is applicable in many manufacturing systems,
where the negotiation between the producer and the customer occurs. The ne-
gotiation concerns the delivery time of the final products. The producer should
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deliver the products before some established moment and, on the other hand
the customer will not receive the products before the other established moment.
This results in the due window which corresponds to the time frame during
which the customer is most willing to take delivery of the products. Products
manufactured too early have to be held in inventory until the customer is ready
to receive them. This results in such costs as capital, insurance and deterioration
costs. On the other hand products manufactured too late incur costs connected
with late charges, express delivery, or loss sales.

In the following section, we present the definition of the problem. In Sect. 3
we provide some properties of an optimal solution. A dynamic programming
algorithm is described in Sect. 4. Finally, we summarize our paper in Sect. 5.

2 Problem Definition

In this section we define the problem under investigation.
There is a set J = {1, . . . , n} of n independent and non preemptive jobs to be

processed on m parallel identical processors. Each processor can deal with only
one job at a time. Job j ∈ J with processing time pj is available at time zero.
All jobs share a common due window. The start and the end of the due window
are also called the earliest due date, e, and the latest due date, d, respectively.
The size of the due window is bounded from below by Dmin and from above by
Dmax, i.e. Dmin ≤ d− e ≤ Dmax.

A schedule specifies an assignment of jobs to processors, a sequence of jobs on
each processor, the earliest and the latest due dates. Denote the start and the com-
pletion time of job j in the schedule σ by Sj(σ) and Cj(σ), respectively. (Sj and
Cj will be used instead of Sj(σ) and Cj(σ), respectively, if there is no possible con-
fusion as to the schedule we are referring to). Let us also define: [x]+ = max(x, 0).
The objective is to find a schedule σ to minimize the following criterion

Z(σ) =
∑
j∈J

( fE(Ej) + fT (Tj)) + fW (d− e) + fD(e),

where Ej = [e−Cj]+ is earliness of job j, Tj = [Cj−d]+ is tardiness of job j and
fE , fT , fW and fD are arbitrary nondecreasing functions such that f•(0) = 0
(• ∈ {E, T, W, D}). We assume that all the parameters are positive integers
(including e and d). We will refer to this problem as P.

For a given schedule σ, let us define:

– Ji - the set of jobs processed on processor i,
– Hi - the job from Ji which straddles the due window, i.e. Sj < e and Cj > d

(note, at most one such job exists),
– Ei =

{
j ∈ Ji : Sj < e

}
\Hi - the set of early jobs on processor i (excluding

job Hi),
– Ti =

{
j ∈ Ji : Cj > d

}
\Hi - the set of tardy jobs on processor i (excluding

job Hi),
– Wi =

{
j ∈ Ji : Cj ≤ d ∧ Sj ≥ e

}
- the set of due window jobs on processor i.



134 A. Janiak and M. Winczaszek

The jobs in Ei, Wi and Ti are called Ei-jobs, Wi-jobs and Ti-jobs, respectively.
Problem P is strongly NP-hard because it is a special case of problem

P ||Cmax what will be shown in Sect. 4.

3 Structural Properties of Optimal Solution

In this section we present several properties of an optimal solution, which will
be used to construct an exact algorithm for problem P.

Property 1. There exists an optimal schedule to problem P in which at least one
job starts at 0 and the jobs are processed without idle times between them.

Proof. Note that we can shift all the jobs and the due window to the left by some
value ε and the value of the total earliness-tardiness penalty and due window
size penalty will not change and due window location penalty will decrease. In
this way we can obtain a schedule in which at least one job starts at 0.

We can always eliminate an idle time on the processor by shifting the jobs
preceding the idle period to the right or shifting the jobs following the idle
period to the left (recall that early and tardy penalty functions, fE and fT , are
nondecreasing). ��

Property 2. There exists an optimal schedule to P, in whichEi-jobs (i = 1, . . . , m)
are sequenced in nonincreasing order of their processing times.

Proof. Assume that in an optimal schedule σ, on some processor i there are
two jobs j, k ∈ Ei such that pj < pk and job j is immediate predecessor of job
k. Let σ′ denote the schedule obtained from the schedule σ by swapping the
jobs j and k. This modification affects only earliness of jobs j and k. See, that
Ck(σ) = Cj(σ′) and Sj(σ) = Sk(σ′). Let x = e− Sj(σ). Thus, we have:

Z(σ′)− Z(σ) = fE([e− Ck(σ′)]+)− fE([e− Cj(σ)]+) =
fE([x− pk]+)− fE([x− pj ]

+) ≤ 0 .

This result contradicts the assumption that the schedule σ is optimal. ��

Property 3. There exists an optimal schedule toP, in whichTi-jobs (i = 1, . . . , m)
are sequenced in the nondecreasing order of their processing times.

We omit this proof because it is similar to the proof of Property 2.

Property 4. There exists an optimal schedule to P, in which for each i = 1, . . . , m,
job Hi (if it exists) is either shorter than all Ei-jobs or shorter than all Ti-jobs.

Proof. Assume that in the optimal schedule σ, for some processor i, job Hi

is longer than the shortest Ei-job (denote this job as j) and longer than the
shortest Ti-job (denote this job as k). By Properties 1 and 2, job j is immediate
predecessor of job k and job k is immediate successor of job Hi. We will show
that swapping jobs j and Hi or swapping jobs k and Hi decreases the objective
function value.
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In order to simplify the notation, let us define:

– H - job Hi in the schedule σ;
– σE - the schedule obtained from the schedule σ by swapping jobs H and j;
– σT - the schedule obtained from the schedule σ by swapping jobs H and k;
– x = e− SH(σ); y = CH(σ)− d; z = CH(σE)− d; v = e− SH(σT ).

The notation given above is illustrated in Fig. 1.

j H k

e d

x y

jH k

z

j Hk

v

Schedule

Schedule E

Schedule T

Fig. 1. Schedules σ, σE and σT with marked distances x, y, z, v

If z < 0 then in the schedule σE job H is early or completes within the due
window and TH(σ) = Tj(σE) (Tj(σ) denotes tardiness of job j in schedule σ).
Thus, it can be easily proved by adjacent job interchanging that Z(σE) < Z(σ)
(see the proof of Property 2).

Similarly, if v < 0 then in the schedule σT job k is tardy or completes within
the due window and Tk(σ) = TH(σT ). Thus, it can be easily proved by adjacent
job interchanging that Z(σT ) < Z(σ).

Now, let us investigate the case with z > 0 and v > 0. See that:

Z(σE)− Z(σ) = fT (z)− fE(x) , (1)

Z(σT )− Z(σ) = fE(v)− fT (y) . (2)

In order to prove that the schedule σ is not optimal, it is enough to show that
(1) or (2) is negative. Thus, we will show that if expression (1) is positive, then
expression (2) is negative and vice-versa. It is enough to consider the following
two cases:

(Case 1 ) Assume that Z(σE)− Z(σ) > 0. Thus, fE(x) < fT (z). Recall that
v < x and z < y. Hence, fE(v) ≤ fE(x) < fT (z) ≤ fT (y). Thus, Z(σT )−Z(σ) =
fE(v) − fT (y) < 0. This result contradicts the assumption that the schedule σ
is optimal.

(Case 2 ) Assume that Z(σT )− Z(σ) > 0. Thus, fT (y) < fE(v). Recall that
v < x and z < y. Hence, fT (z) ≤ fT (y) < fE(v) ≤ fE(x). Thus, Z(σE)−Z(σ) =
fT (z) − fE(x) < 0. This result contradicts the assumption that the schedule σ
is optimal. ��
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Property 5. In an optimal schedule of P, the Wi-jobs are sequenced arbitrarily.

Proof. It is enough to see that the value of the objective function does not
depend on the sequence of Wi-jobs. ��

4 Dynamic Programming Algorithm

In this section, we provide a dynamic programming algorithm A to solve problem
P optimally.

Hereafter, we assume without loss of generality that the jobs are numbered
according to the nondecreasing order of their processing times (i.e. p1 ≤ p2 ≤
. . . ≤ pn).

In order to simplify the notation, let us define:

– τk =
∑k

j=1 pj ;

– Ẽi =
{

Ei ∪ {Hi}, if pHi < minj∈Ei pj ,
Ei, otherwise;

– T̃i =
{

Ti ∪ {Hi}, if pHi < minj∈Ti pj ,
Ti, otherwise;

– F i - the first job processed on processor i;
– Li - the last job processed on processor i.

By Properties 2, 3, and 4, it follows that Hi ∈ Ẽi or Hi ∈ T̃i for each i = 1, . . . , m
in an optimal solution of P.

A dynamic programming algorithm A for problem P is based on Properties 1-
5. We solve problem P by generating partial schedules. Jobs are considered in the
order 1, . . . , n (recall that p1 ≤ p2 ≤ . . . ≤ pn). In iteration k of algorithm A, job
k is assigned to some processor i as an Ẽi-job, T̃i-job or Wi-job, i = 1, . . . , m. In
each partial schedule, the due window size can be different on different processors
but it starts at the same time e. So, let us denote the end of the due window on
processor i (i = 1, . . . , m) by di. In iteration n, we detect an optimal schedule
among schedules, in which the due window size is the same on all processors.

Define a schedule to be in the state (k, ā, w̄, b̄), where ā = (a1, a2, . . . , am),
w̄ = (w1, w2, . . . , wm) and b̄ = (b1, b2, . . . , bm), if it includes jobs 1, . . . , k, the
deviation of the start time of the first job processed on processor i from e is
equal to ai (ai = e− SF i), the deviation of the completion time of the last job
processed on processor i from di is equal to bi (bi = CLi − di), and the due
window size on processor i is equal to wi. The state variables are illustrated in
Fig. 2.

Consider a pair of partial schedules in the same state. If one of theses
schedules can be extended with unscheduled jobs to a complete schedule σ′

with due window starting time e = max(a1, a2, . . . , am) and due window size
w = w1 = w2 = . . . = wm, then the schedule with the minimum total earliness-
tardiness penalty can also be extended in the same way to a complete schedule
σ′′ with the same due window starting time and size and the total earliness-
tardiness penalty that is smaller than or equal to the one for schedule σ′. Since
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e d2

F1 L1

a1 w1 b1

F2 L2

a2 w2 b2
d1

Fig. 2. Two processor partial schedule with marked state variables

both the complete schedules have the same due window starting time and size,
schedule σ′′ will be as good as schedule σ′ with respect to the objective function
of problem P. These observations show that only the schedule with minimum
total earliness-tardiness penalty value among the schedules in the same state can
be chosen for further expansion.

In order to simplify the further considerations, define x̄i as a vector of size
m with value 1 on position i and value 0 on the other positions.

Let Fk(ā, w̄, b̄) be the minimum total earliness-tardiness penalty value among
the schedules in the state (k, ā, w̄, b̄). A schedule in the state (k, ā, w̄, b̄) with value
Fk(ā, w̄, b̄) can be obtained from a schedule in some previous state by taking one
of the following decisions about job k.

(i) Schedule job k as T̃i-job (i = 1, . . . , m). In this case, the previous state is(
k − 1, ā, w̄, b̄− pkx̄i

)
and Fk

(
ā, w̄, b̄

)
= Fk−1

(
ā, w̄, b̄− pkx̄i

)
+ fT (bi).

(ii) Schedule job k as Wi-job (i = 1, . . . , m). In this case, the previous state is(
k − 1, ā, w̄ − pkx̄i, b̄

)
and Fk

(
ā, w̄, b̄

)
= Fk−1

(
ā, w̄ − pkx̄i, b̄

)
.

(iii) Schedule job k as Ẽi-job (i = 1, . . . , m). In this case, the previous state is(
k − 1, ā− pkx̄i, w̄, b̄

)
. We have Fk

(
ā, w̄, b̄

)
= Fk−1

(
ā− pkx̄i, w̄, b̄

)
+fE([ai−

pk]+) if k �= Hi and Fk

(
ā, w̄, b̄

)
= Fk−1

(
ā− pkx̄i, w̄, b̄

)
+ fT (−ai − wi) if

k = Hi (if k = Hi, then job k is tardy and its tardiness is equal to −ai−wi).

Now, let us investigate what values of state variables ai, bi and wi represent
partial schedules which can be extended to feasible schedules. Value ai (i =
1, . . . , m) can be positive (if there are some Ẽi-jobs in the schedule) or negative
(if there is no Ẽi-job in the schedule). If it is negative, then |ai| ≤ pn. Similarly,
value bi (i = 1, . . . , m) can be positive (if there are some T̃i-jobs in the schedule)
or negative (if there is no T̃i-job in the schedule). If it is negative, then |bi| ≤ pn.
State variable wi (i = 1, . . . , m) must be always positive or zero. Note that
ai + bi + wi =

∑
j∈Ji pj . In consequence, if no job is scheduled on processor i

then ai + bi + wi = 0. Since we take into account only complete schedules with
w1 = w2 = . . . = wm, state variable wi can not be greater than min( τn

m , Dmax).
Observe that in an optimal schedule mini ai ≥ maxi ai + pn must hold. In other
case, moving the job which starts at maxi ai to another processor would improve
the criterion value. Moreover,

∑
ai ≤ τn −mDmin. Thus, state variable ai can
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not be greater than τn

m − Dmin + pn. Similarly, the state variable bi can not
be greater than τn

m − Dmin + pn. Thus, let ŵk = min(τk,
⌊

τn

m

⌋
, Dmax), âk =

min(τk + pn,
⌊

τn

m

⌋
−Dmin + pn), b̂k = min(τk − âk,

⌊
τn

m

⌋
−Dmin + pn) denote

the maximal acceptable value of wi, ai and bi, respectively, in iteration k of the
algorithm.

Below we present a formal description of the algorithm, which was con-
structed based on the considerations presented above.

Algorithm A

Step 1. (Initialization) For wi = 0, . . . , Dmax; ai = −pn, . . . , τn −Dmin; bi =
−pn, . . . , τn −Dmin (i = 1, . . . , m), set:

F0(ā, w̄, b̄) =
{

0, if ∀i wi = −ai − bi;
∞, otherwise .

Set k := 1.
Step 2. (Recursive relations) For ai = −pn, . . . , âk; bi = −pn, . . . , b̂k; wi =
0, . . . , ŵk (i = 1, . . . , m), if

∑m
i=1

(
ai + bi + wi

)
= τk is satisfied, calculate:

Fk(ā, w̄, b̄) =

min
i

⎧⎨
⎩

Fk−1(ā, w̄, b̄− pkx̄i) + fT (ti), if bi > 0, (i)
Fk−1(ā, w̄ − pkx̄i, b̄), (ii)
Fk−1(ā− pkx̄i, w̄, b̄) + fE([ai − pk]+) + fT ([−ai − wi]+), if ai > 0. (iii)

If k = n, then go to Step 3. Otherwise set k := k + 1 and repeat Step 2.
Step 3. (Optimal solution) Calculate the objective function value for the optimal
solution σ∗:

Z(σ∗) = min
ā,w̄,b̄

{
Fn(ā, w̄, b̄) + fW (w1) + fD(max

i
ai) :

Dmin ≤ w1 = w2 = . . . = wm ≤ Dmax

}
.

and establish the corresponding schedule of jobs by using the backtracking
method. Earliest and latest due dates can be calculated as follows: e = maxi ai;
d = e + w1.

Since in each iteration of Step 2 −pn ≤ ai ≤
⌊

τn

m

⌋
−Dmin + pn; −pn ≤ bi ≤⌊

τn

m

⌋
−Dmin + pn; 0 ≤ wi ≤ min Dmax (for each i = 1, . . . , m) and k = 1, . . . , n,

the time requirement of algorithm A is equal to:

O

(
n
(⌊τn

m

⌋
−Dmin + pn

)2m (
min

(⌊τn

m

⌋
, Dmax

))m
)

.

See that if fE(x) ≡ 0 and fD(x) ≤ fT (x) for each x ∈ [0,
∑

pj ] then all
the jobs complete on or before the due window in an optimal solution. So, for
Dmin = Dmax = 0, fE(x) ≡ 0, fD(x) ≡ x and fT (x) ≡ x problem P reduces to
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the classical parallel processor scheduling problem with the makespan criterion
(P ||Cmax). Since problem P ||Cmax is NP-hard in the strong sense, problem
P ||Cmax with a fixed number of machines m ≥ 2 is NP-hard in the ordinary
sense, see Garey and Johnson [9], and problem P can be optimally solved in
O(n(

∑
pj)3m) time, we have

Corollary 1. Problem P is NP-hard in the strong sense. It is NP-hard in the
ordinary sense for any fixed m ≥ 2.

5 Conclusions

In this paper we investigated a parallel processor scheduling problem with a com-
mon due window assignment. If a job does not complete within the due window,
it incurs a penalty which is described by an arbitrary nonlinear function which is
identical for all the jobs. We proved some properties of an optimal solution of the
problem which were used to construct an optimal algorithm based on dynamic
programming method. We also established the time complexity of the problem.

References

1. Gordon, V., Proth, J.M., Chu, C.: A survey of the state-of-the-art of common due
date assignment and scheduling research. European Journal of Operational Research
139 (2002) 1–25

2. Azizoglu, M., Webster, S.: Scheduling about an unrestricted common due win-
dow with arbitrary earliness/tardiness penalty rates. IIE Transactions 29 (1997)
1001–1006

3. Kramer, F.J., Lee, C.Y.: Due window scheduling for parallel machine. Mathematical
and Computer Modeling 20 (1994) 69–89

4. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Determination of common due window
scheduling problem. European Journal of Operational Research 93 (1996) 68–74

5. Liman, S.D., Panwalkar, S.S., Thongmee, S.: Common due window size and location
determination in a single machine scheduling problem. Journal of the Operational
Research Society 49 (1998) 1007–1010

6. Mosheiov, G.: A common due-date assignment problem on parallel identical
machines. Computers & Operations Research 28 (2001) 719–732

7. Yeung, W.K., Oguz, C., Cheng, T.C.E.: Single-machine scheduling with a common
due window. Computers & Operations Research 28 (2001) 157–175

8. Kahlbacher, H.G.: Scheduling with monotonous earliness and tardiness penalties.
European Journal of Operational Research 64 (1991) 258–277

9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-completness. W.H. Freeman and Co. (1979)



Distributed Architecture System for Computer
Performance Testing

Ezequiel Herruzo1, Andrés J. Mesones1, José I. Benavides1,
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eze@uco.es

2 Dept. of Computer Architecture, University of Málaga, Spain
oscar@ac.uma.es

Abstract. This article presents a system which is based on a distrib-
uted network architecture. The system defines a ”double” Client-Server
structure which permits to incorporate new client systems in real-time
using the Internet. We have used this distributed architecture system
to develop a tool to measure the computer performance characteristics
of several computer architecture systems. The computer performance is
tested by a free library called PAPI (Performance API), which allows us
to access to internal status registers of several CPU families in several
Operating Systems. As this testing has to be done in real CPUs, we have
to create a new system to provide this functionality. The structure pro-
posed has only one entry point to the whole system, the Master Server,
and several different Architecture Client Servers. We present the network
system description and the usage of PAPI for performance testing.

1 Introduction

There are several questions a programmer should consider when developing a new
code: “Am I making use of all the functionality the hardware is giving to me?”
“Am I using the proper data structure?” Most programmers do not consider these
questions; they just program the code in the desired programming language,
most times, not knowing what the compiler and/or language libraries are really
doing with their code. The traditional recipe for this was to make a “profile” of
the code, detecting the slices of the code for which most time was spent. This
strategy assumes that the only problem is in the program code. However, the
problem could be not in the code, but in the data structure: Cache misses could
produce a considerable delay in the execution time of the programmed code. In
general, the greater amount of events a code produces, the longer time a CPU
must devote to handle them. Most times a proper redistribution of the data
is translated into higher overall performance. Thus, it is highly desirable, for a
given piece of code, to be able to know the real events produced. This figure
is very difficult to estimate, but most new processors have introduced several
internal registers for these purposes. So tuning the code could be resumed as:
running the code in the desired processors, looking at those registers, finding out
the reasons of these figures and trying to solve the possible shortcomings.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 140–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our development has to gain the following goals:

– The system should work with a large amount of different computer systems,
with different Operating Systems and/or CPUs.

– User should not need to “physically” move to every target computer.
– Availability of the target computers should be known by the user in advance

before testing the code in them.
– User should be able to automatically load the code to be tested, compile it

and collect the results.
– Comparisons among the different computer systems should be easy to be

done.
– Only authorized users should be able to test the code in target computers.

As it is widely known, the Internet allows us the access to a large variety of
different computer architectures. Users have got used to web browsers and the
HTTP protocol. Many languages have enhanced the functionality of web servers.
By using all this, a distributed network (such as the Internet) system has been
developed to provide access to hardware event counters in different computer
architectures through the Internet.

2 Background

2.1 Microprocessor Internal Structure

To understand the aim of our proposed system it is necessary to understand, at
least briefly, how a microprocessor works. Electronics enhancement throughout
the years meant lower cost of miniaturization, higher integration of transistors,
larger sizes of silica to work with and, thus, higher working frequencies. This
implied that many more units were included within the microprocessors, cache
memories became usual inside the CPUs, etc. Performance of the CPU became a
major issue. A different data distribution and an instruction arrangement could
mean a great benefit in overall performance. For example, a cache miss within
each iteration of a loop could slow down a code severely, as each time a cache
miss occurs, a whole cache line must be replaced from memory. But, how many
times does a cache miss exist for a working code in a particular CPU? Since this
question could not be answered easily “off–line”, designers of CPUs from the
latest generations included some internal registers in which some events were
counted. These registers were not directly accessible by the user.

Basically, the CPUs count the amount of times a particular event happens, this
is the reason this internal registers are named internal event counter registers.

2.2 PAPI

We have used largely PAPI for testing the performance of different computer
architecture systems. PAPI (Performance Application Programming Interface)
is a free library composed of a set of 40 low-level and 6 high-level functions
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which allows the user to make hardware performance tests by accessing the event
counter internal registers which new processors include. PAPI has versions for
several CPU families and subtypes within those families and several Operating
Systems.

We use PAPI to test and measure all the available hardware counters of the
processors, i.e. instruction counters (MFLOPS, MIPS, Instructions issued per
cycle, etc), Cache access (L1 Cache Hits, L1 Cache Misses, L2 Cache Hits, etc),
running characteristics (Total number of cycles), etc.

2.3 Related Works

Several articles [1, 6] showed that PAPI worked properly under Linux environ-
ment for accessing hardware event counters. Taking these articles as the basis,
several authors have proposed tools which use PAPI to obtain information about
computer performance.

IDB [10] for Performance Analysis of Parallel Scientific Applications.
This is one of the first systems for the testing performance that uses PAPI.
This system dissociates the performance analysis from the underlying archi-
tecture by means of the analysis of the control flow chart of the program.

SvPablo. This tool[9] is composed of a graphical code navigator and a perfor-
mance visual displayer, developed by Illinois University. It combines PAPI
with a dynamic performance instrumentation software library called “Pablo
Toolkit”. This tool provides the hardware event counters of the MIPS R10000
CPU. This is the main lack, as it has not been ported to any other architecture.

DynaProf. It is a performance analysis tool[2] designed for inserting perfor-
mance measurement instrumentation (code sentences) directly into running
applications. It is not necessary to get the source code of the program and
compiling it again, thus DynaProf operates on a executable code and does
not rely on the compilation process.

HPCToolkit. More than a standalone tool, HPCToolkit [4] is a set of tools
working together under the same graphical interface. Its most interesting
characteristic is that this environment generates the output in XML format,
allowing a graphical visualization of the results in a web navigator. However,
HPCToolkit does not work in network environments, the output is not sent
to a remote computer.

All of the previous tools are entitled to work under network–isolated com-
puters, and thus users must work directly in each of the computers under perfor-
mance analysis. SvPablo works only under certain computer architecture (MIPS
R10000) which makes the availability of this tool to be rather short and eco-
nomically much more expensive. HPCToolkit is the tool closest to our concep-
tion, because the results are shown in a web page, however, these pages are not
sent through the Internet, and the computational cost is much higher than our
approach.
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3 Distributed Architecture Structure

The structure we propose to gain the goals of the system (defined in section 1) is
called DAS4CPT (Distributed Architecture System for Computer Performance
Testing). DAS4CPT is somewhat alike a proxy system. DAS4CPT is divided
into two different subsystems: the Master Server Subsystem and the Architecture
Client Servers Subsystem.

Fig. 1. DAS4CPT Network Structure

3.1 Master Server

The Master Server subsystem is composed of one computer which is in charge
of controlling the users, checking the availability of the target computers, send-
ing the information (source code and compiler flags) to the target computers,
collecting the results of the test codes from every target computer, showing the
comparative results to the users of all of their tests, etc. In a few words, it is the
entry point to the system.

As one of the requirements was to be able to gain access to several com-
puter architectures without the need of physically move to each of them, on the
other hand, there should be some mechanisms to authorize users. A web server
allows users to connect from anywhere and an authorization policy is easily im-
plemented by a login procedure. So we decided that the Master Server is based
on a Web server (we chose Apache) built up with PHP4 and MySQL database.
The database would store information about users (login, password, authoriza-
tion, etc.), about Architecture Client Servers (computer architecture, operating
system, availability, etc.), about the tests (source code, compiler flags, autho-
rization to be executed, results statistics for each test/user/architecture/PAPI
Event).
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3.2 Client Servers

Target computers are called Architecture Client Servers, because every one of
them offers a service to the Master Server (and indirectly to the final users)
which is its own Computer and System Architecture. These Architecture Client
Servers are responsible for receiving the source code of the test, compiling it,
executing it and sending the PAPI results back to the server.

First thought was to install a web server on each machine, but this approach
would not be efficient, because users should know in advance which target com-
puters were available and their URLs, and probably to install a lot of web servers
is not admissible for the policy of some companies and universities because of
security issues. In any case, it is not strictly necessary to install a web server. Ba-
sically, the Architecture Client Servers have to listen to requests from the Master
Server, to receive test source code and compiler flags, to compile the test, to exe-
cute it and to return the results to the Master Server. Architecture Client Servers
have not any check about users, that is responsibility of the Master Server. For
this task, the Architecture Client Server has been developed using Java in order
to make it as portable as possible. This Java program (server) runs a thread for
every requested connection, this thread is responsible for receiving the source
code, calling a C compiler (which should be previously installed in the target
computer, we recommend DJGPP or any other GNU compiler), compiling the
source code, executing the program and sending back the results to the Master
Server. The Architecture Client Server has been designed to be as low load as
possible. This design is very effective and versatile, because all the policies rely
on the Master Server, so any change to the policies would be translated in the
system by changing the Master Server, leaving the Architecture Client Server
unchanged.

3.3 Network Structure

As it has been previously noted, DAS4CPT is based on a “Double” Client–Server
network structure. “Double” means that both the Master Server and Architec-
ture Client Servers behave as clients and servers. The information interchange
procedure between the Master Server and an Architecture Client Server for a
testing is the following:

1. The Master Server rearranges the user source code, in which the user has
indicated which slice of code is to be tested, including all the necessary
commands in the code to allow the count of the PAPI Events produced only
in that slice of code.

2. The Master Server reserves an identifier for the test, in order to be able to
send the result back to the client computer which has requested that test.

3. The Master Server sends the information to the Architecture Client Server
with the following structure: [id. + flags + source code + END ]

4. The information is received by the Architecture Client Server, which saves
the source code of the test in a file named with the received identifier. The
Architecture Client Server throws a thread for each connection accepted
which will be in charge of handling the connection.
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5. The Architecture Client Server compiles the source code. In case of error,
the Architecture Client Server sends the compiler error message back to the
Master Server, or, if successful, the test is executed.

6. The Architecture Client Server returns the result of the test to the Master
Server.

3.4 Security Issues

As there are not sensitive information between the Architecture Client Server
and the Master Server, we have not used SSL or any other secure method for
the connection.

In order to avoid malicious test codes, some special users must authorize the
tests that the users have programmed. Tests that have not been authorized are
not eligible for been executed in the Architecture Client Servers. This policy
can be overridden by the Administrator, in that case, all the tests are eligible
by default. Architecture Client Servers accept connections coming only from the
Master Server.

4 PAPI as Core for Testing

Hardware counters access is needed for several kinds of CPUs and/or Operating
Systems, in which some CPUs have just a few counters, some Operating Systems
do not allow the access to these counters within an user profile, etc. PAPI is a
system which steps over all differences by providing a unified interface.

Although “native” CPU events are supported by PAPI, our system will only
handle PAPI predefined (or standard) events, because these PAPI events cover a
quantity of hardware events large enough to be well suited with the generic pur-
poses of our system. PAPI events will allow us to take precise measures about
many common items such as cache requests (L1/L2/L3 cache accesses, cache
hits, cache misses, etc), conditional branching, branch prediction, TLB opera-
tions, data access, floating point operations, instructions counting (instruction
per second, total number of cycles, instructions issued, etc).

5 Using the System to Performance Testing

After introducing the system structure designed and knowing some more about
PAPI, we will show the implementation of the Master Server. This is how an
external user would work our system. First of all, the user must log in. After a
successful login, the user would be allowed to read his/her tests, write new ones
or modify those previously written tests, to execute them on the Architecture
Client Servers running at that very moment, to observe the statistics of all of
the tests ran earlier, etc.

We are going to introduce the way a user interacts with DAS4CPT in order
to develop a test and execute it in an Architecture Client Server.
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1. The user in a Client User sends the test information to the Master Server; the
information that should be provided is the description of the test, where the
user could write down some information about the test; the Previous Source
Code is the opening of the “main” function and any other previous codes
needed for the code under testing, such as data initialization, dynamic mem-
ory allocation, etc.; the Source Code under Test is the slice of code for which
the hardware events will be taken into account and counted; the Later Source
Code is the source code remaining right after the source code under test un-
til the closing brace “}” of the “main” function (The closing of the “main”
function should not be done within the slice of the source code under test).

2. The Client User makes a request to the Master Server to use one of the tests
already saved in the Master Server for that user, in order to execute it. In
that case, the Master Server replies with a list of Architecture Client Servers
active in that very moment.

3. The User Client picks one of the Architecture Client Servers from the list.
4. The Master Server sends to the user a list of PAPI events available depending

on the selected Architecture Client Server, because not all the PAPI events
are available on all the Computer Architectures.

5. Client User selects one of the PAPI Events available for the Architecture
Client Server previously selected.

6. The Master Server sends a packet of information to the selected Architecture
Client Server, in the way described in section 3.3.

7. Once the Master Server receives the result of the execution of the test, this
result is saved in the database and it is sent to the Client User. Additionally,
the Client User could decide to receive the results by email.

The system can inform each Client Server about: Operating System running,
characteristics of the CPU: levels of cache, type of cache, total RAM mem-
ory, CPU frequency, etc. We have executed approximately 2.900 tests using
DAS4CPT for 16 hours, with an average execution of 185,5 tests per hour,
97,5% of these tests have been successful. Readers have at their disposal the
system in the URL: udaos02.uco.es/DAS4CPT. A guest user (login=guest; pass-
word=guest) is provided to make use of it.

6 Conclusions

The network architecture presented in the previous sections shows that it is a
good solution for any distributed system in which geographical dispersion of
resources prevents the user from making use of them. DAS4CPT is an appli-
cation of the system described for a specific task: testing source code in real
Computer Architecture systems. DAS4CPT has been developed by creating a
Master Server which has been used by a large amount of university students.
Although a previous task must be done (the Architecture Client Server program
must be installed in the target computers), the dynamic addition and elimina-
tion of Architecture Client Servers from the DAS4CPT system has been a very
powerful tool.
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Abstract. The paper presents a system for estimating the access time
for data stored on the CASTOR Hierarchical Storage Management (HSM)
system developed at CERN. The estimation is based on the gray-box
approach. The system consists of two modules: Monitor and Simulator.
Information about the current state of the HSM system is obtained by
the Monitor via CASTOR API functions. The second module is based
on event driven simulation of the HSM system. Special attention to the
queuing algorithm is paid. Implementation details and tests results are
presented.

1 Introduction

The Grid technology allows to perform large scale computations by using dis-
tributed resources provided by independent sites. Data Grids are focused on
the management of data rather than on the computational issues [1]. The Data
Grids often integrates heterogeneous storage systems (including HSM systems)
with various performance characteristics. HSM systems are commonly used to
deal with huge amount of data for economic reasons. Since the data are distrib-
uted and can be accessed from different locations, the problem of optimal access
to these data arises. One method to cope with this problem is the replication
method. When a data file is replicated the system has to choose which replica
to use. In order to make this decision the information about the access times for
each replica has to be available. The storage systems themselves do not provide
such information. That is why a system estimating the data access time need to
be developed.

In our previous work an estimation system for the DiskXtender HSM system
has been implemented [2]. Rodney Van Meter in [3] proposes Storage Latency
Estimation Descriptors (SLEDs) as a method of supplying to the client a predic-
tive information about the I/O performance of the underlying storage systems.
Shen et. al in [4] present a multi-storage architecture and a performance pre-
diction method to increase I/O efficiency of scientific applications using SRB
[5]. Delphoi service, part of the GridLab project uses queue waiting time es-
timation and estimation of data transfer time for optimal jobs scheduling on
machines [7].

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 148–155, 2006.
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Tape devices, which are commonly used in HSM systems, have access times
varying from less than a second to more than 100 s. Modeling the access time of
modern tape drives is not trivial. Hillyer and Silberschatz [6] present in their work
an accurate and detailed model for estimating the locate time for the Quantum
DLT4000 tape drive. Miller and Johnson [8] propose tape seek time model based
on a piece-wise linear regression approximation. Sandstå and Midtstraum [9]
present a low cost access time model for serpentine tape drives. They provide
analytic cost function for each possible seek scenario.

CASTOR (the CERN Advanced STORage manager), is a Hierarchical Stor-
age System (HSM) developed in CERN [10]. It is used to store huge amounts of
data from HEP experiments as well as to store general purpose user files. CAS-
TOR transparently migrates the data between the disk cache and the tertiary
storage. The access to data in CASTOR is through the use of rfio (remote file
input/output) protocol.

The rest of the paper is organized as follows. The next section describes gen-
eral architecture of the CASTOR HSM system. The third section presents data
access time estimation algorithm and shows implementation details. Experimen-
tal results for the CASTOR HSM system are presented in the fourth section.
Finally, the conclusions are presented in the last section.

2 CASTOR HSM System

2.1 General CASTOR Architecture

CASTOR is an open source hierarchical storage management system designed for
(but not constrained to) storing HEP users’ and experiments’ files. It manages
both secondary (disk) and tertiary (tape) storage.

CASTOR is a modular software system. This allows changing components
without affecting the whole system. The system also allows for very distributed
configurations.

All tape access is managed by the CASTOR stager. The client does not
normally know about the tape location of the files being accessed. The stager
interfaces with several modules:

– Name server - provides the CASTOR namespace, which appears as a normal
UNIX filesystem directory hierarchy.

– Volume Manager (VMGR) - gives the status of tapes and select a tape for
migration if the client created a new file or updated an existing one.

– Volume and Drive Queue Manager (VDQM) - provides a FIFO queue for
accessing the tape drives.

– The CASTOR tape mover, Remote Tape COPY (RTCOPY) - is a multi-
threaded application with large memory buffers, for performing the copy
between tape and disk.

– The RFIO server (rfiod) - manages the disk pools.



150 M. Kuta et al.

2.2 Scheduling Policy

CASTOR queue manager schedules file requests in order to:

– minimize number of tape mounts
– avoid starvation in the case when new requests for already mounted tape are

continuously incoming. This could block requests which are already in the
queue but can not be served because all drives are occupied.

The queue manager compares the submission date of the next request for the
currently mounted tape with the submission date of the first not served request
in queue. If the difference between the submission dates exceeds certain value
(VDQM_MAXTIMEDIFF parameter), the current tape is unmounted even if there are
requests for that tape which could be served. Bigger values of VDQM_MAXTIMEDIFF
parameter mean that the system wastes less time for mounts and dismounts,
lower values mean that scheduling is done in more fair manner.

Due to this priority scheduling algorithm in many cases even perfect estima-
tion cannot give exact results because some requests can be delayed due to the
incoming of new requests after the time estimation is done.
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Fig. 1. Request queue and order it is scheduled by CASTOR
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Fig. 2. Another request queue and order it is scheduled by CASTOR

Fig 1 presents simple request queue to tape library with one available drive.
To serve request 1 tape T1 is mounted. Then, to minimize number of mounts
and dismounts, requests 4 and 5 to tape T1 are served before requests 2 and 3.

Fig 2 presents similar request queue but with slightly different submission
time to system. After serving request 1 tape T1 is mounted and requests 4 and
5 could be served next. In fact only request 4 is served and tape T1 dismounted.
This is because difference between request’s 5 arrival time and arrival time of
request 2 (first not served request in queue) exceeds VDQM_MAXTIMEDIFF value
(typically 600 secs).
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3 Implementation of Data Access Time Estimation
System for CASTOR

The implementation of the estimation system is based on the general gray-box
approach [11]. That means the algorithm of Simulator is based on the knowledge
gathered by observing the HSM system behavior, rather than by studying the
source code. Such approach seems cheaper than modifying source code.

Anyway, the estimation algorithm depends to a certain extend, on the given
HSM system and should reflect its peculiarities.

Typically during serving a request an HSM system can be in one of the
following stages:

1. Waiting for resources
2. Rewinding the tape to the beginning of the tape
3. Unloading the tape
4. Moving tape from drive to slot
5. Moving tape from slot to drive
6. Loading the tape to become on-line
7. Positioning the tape to the first block of file being accessed
8. Transferring data from tertiary storage to disk cache
9. Transfer data from disk cache to client

The duration of stages 3, 4, 5, 6 is modeled by constant. The duration of
stages 2, 7 depends on the current and target position and on the tape model.
The duration of stages 8, 9 depends on the file size, the transfer rate and the
system load (number of simultaneous requests). Stages 8, 9 shows that before
delivering data to the user the whole data is introduced into the HSM disk cache
what contributes to a higher latency time. This drawback is common to other
HSM systems (eg. DiskXtender). Duration of stage 1 is not given by analytic
formula and its value comes from the simulation.

3.1 Implementation Details

The system consists of two modules: Monitor and Simulator.
The Monitor module queries the CASTOR HSM system about its configu-

ration and current state. The following data structures are kept in the model:

– list of automated media libraries,
– list of the drives, theirs state and characteristics,
– list of the tapes and theirs state,
– request queue,
– list of copies and fragments associated which each file in request queue,
– event queue.

The following CASTOR API functions are used to obtain information about
the CASTOR HSM system current internal state:

– Cns_stat - gets information about a file from the name server.
– Cns_getsegattrs - gets the file segment attributes (size, block address, com-

pression ratio, copy number).
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– stageqry - this function is used to obtain the request queue, the state of
each file, its submission time and the current size on disk cache. Each file is
identified by logical name in the name server.

– stage_qry_Hsm - queries stager catalogue about an HSM file, it is used to
check if the file is cached.

– vmgr_listlibrary - this function is used to obtain the list of all tape li-
braries managed by CASTOR.

– vmgr_listtape - this function allows to obtain the list of all tapes known by
CASTOR and their state (DISABLED, EXPORTED). Tapes are identified
by volume visual identifier.

– vmgr_listdgnmap - provides mapping between cartridge model, device group
name and tape library.

– Ctape_status - gets the status of all tape drives. (e.g. idle, assigned).
– vdqm_UnitStatus - checks the current tape drive state (e.g. mounted, read,

released).

The Simulator module uses event driven approach. Appropriate events are
added to event queue depending on the current state of the model. After process-
ing an event a global clock value is increased with the event estimation time.

The Monitor and Simulator modules communicate by socket mechanism.
Data marshalling is realized with The Externalisation Template Library, de-
signed for converting C++ data structures to machine independent representa-
tion [12].

All necessary for simulation parameters describing HSM components are read
from estimator’s configuration file. The loading and mounting time, unloading
and unmounting time constants were calculated experimentally. The tape trans-
fer rate was calculated by simple script analysing CASTOR logs.

The positioning time is computed using the low cost model introduced by
Sandstå in ([9]). Unfortunately the model requires the block address of the be-
ginning of each track of all used tapes to be calculated experimentally. As it
is time consuming process the necessary data may not be available. Estimator
enables to optionally model positioning time by constant.

4 Experimental Results

4.1 Testbed Configuration

The experiments were performed at the ACK Cyfronet AGH-UST site in Cracow
[13] using the following equipment:

– ATL 7100 - automated tape library with 4 DLT7000 drives connected to an
HP9000 K class server with four processors running HPUX 11.00

– ATL 2640 - automated tape library with 3 DLT7000 drives connected to an
HP9000 K class server with four processors running HPUX 11.00

This equipment is primary devoted for the DiskXtender HSM system being
in production. In order to perform the access time estimation tests for CASTOR
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one drive from each tape library was configured out from DiskXtender and as-
signed to CASTOR. Since the robot arms devices are not exclusively used by
DiskXtender software it is possible to run the both HSM systems at the same
time sharing the same grippers.

The castor software installed is ver. 1.7.1.

4.2 Testing Procedure

In order to perform the tests 200 files having sizes between 10MB and 1GB have
been stored on the CASTOR HSM system using four tapes. The total size of files
was over 20GB and disk cache size was 2GB. During the tests file read requests
with Zipf-like distribution pattern have been generated.

Three types of tests were done:

1. Single request under idle system - only one request is being served at a
moment.

2. Multiple requests of files from tapes - only files residing on tapes are re-
quested. Multiple requests can be served at a moment. The disk cache is
cleared after each request.

3. Multiple requests of files from tapes and disk cache (the most realistic one)

For each request in the tests the Estimated Time of Arrival (ETA) and Real
(measured) Time of Arrival (RTA) are logged.

4.3 Test Results

The test results are presented in Figures 3, 4, 5. The following notation is used
within the next part of the paper:

Δ = RTA− ETA, δ = RTA−ETA
RTA , Δmean =

nreq

i=1
|Δi|

nreq
, δmean =

nreq

i=1
|δi|

nreq
,

We can see that the estimations in the single request test (Fig.3) are the least
accurate. This is mainly caused by the inaccurate model of positioning time for
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DLT tapes and by the variations of compression ratios of data files which in
turn causes variations of transfer times. Anyway the accuracy is sufficient for
using in a replica selection process. The accuracy in the multiple requests from
tapes test (Fig.4) is higher which is caused by the averaging of errors in the case
when there are more than one requests in the queue. The best accuracy has been
achieved in the third most realistic test (Fig.5), where requests of files from the
disk cache are also estimated. The reason for this is that the disk access times
are easier to predict than the tape access times.

The parameter tint denotes time interval between consecutive requests.

5 Conclusions

In this paper we have presented an access time estimation method for the CAS-
TOR HSM system. The estimation is based on the gray-box approach proposed
in our previous work. The test results have shown that the achieved accuracy is
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sufficient for using in Grid environments with replicated data sets also for the
Castor HSM. This result validates the approach to different HSM systems.
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Abstract. The complexity and the dynamics of the Grid environment and of
the emering workflow-based applications on the Grid require novel performance
monitoring and analysis services in order to capture monitoring data at multiple
levels of abstraction, to analyze the data and to correlate metrics among entities.
In this paper, we present the design of distributed monitoring and performance
analysis services in the K-WfGrid project. We give an overview of the architec-
ture of the performance and monitoring services and discuss useful performance
and dependability metrics for workflows in K-WfGrid. We describe basic system
components including the monitoring and instrumentation service, the perfor-
mance analysis service along with data representation and service interface.

1 Introduction

Monitoring and analysis services are an important part of any distributed system and are
essential in Grid environments because performance and monitoring information is re-
quired not only by the user to get an overview about the infrastructure and the running
applications, but also by most Grid services such as brokering services, data access
optimization services, and schedulers. However, due to its complexity and dynamics,
various entities encompassing infrastructure elements, applications, middleware, and
others, need to be monitored and analyzed in order to understand and explain perfor-
mance behavior in the Grid. The K-WfGrid EU IST Project entitled ”Knowledge based
Workflow system for Grid Applications” [6] aims at providing knowledge-based sup-
ports for workflow construction and execution. The main objective of the K-WfGrid
project is to enable the user to semi-automatically compose a workflow of Grid ser-
vices, execute the composed workflow application, monitor the performance of the Grid
infrastructure and workflow applications, analyse the resulting monitoring information,
capture the knowledge contained in the information, and reuse the joined knowledge
gathered from all participating users in a collaborative way in order to efficiently con-
struct workflows for new Grid applications.

� The work described in this paper is supported by the European Union through the IST-2002-
511385 project K-WfGrid.
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In order to support the semi-automatic workflow composition, execution, and knowl-
edge capture, it is required to monitor and analyse various types of performance and
monitoring data related not only to resources and networks but also to workflow appli-
cations. Moreover, to support the knowledge gathered during the operation of the Grid,
performance results must be stored in a knowledge base for further tasks. Our goal is to
design and develop distributed monitoring and performance analysis services that ad-
dress the aforementioned issues. In this paper, we describe the design of the K-WfGrid
monitoring and analysis services with special focus on requirements, architecture, sen-
sors, metrics, data representation, and service interfaces.

2 Related Work and Motivation

Current monitoring systems are usually specialized, and focus only on application or
infrastructure monitoring [2, 11]. Those systems are tailored to collect and deliver a par-
ticular type of data which is reflected in their internal design and interface exposed to
clients to obtain the monitoring data. Instead of monitoring applications or infrastruc-
ture separately, we proposed a unified approach to the performance monitoring and
analysis for the Grid [10]. To integrate monitoring data coming from various sources
such as Grid applications, infrastructure, middleware, etc., an integrated and generic
framework for measuring and collecting these diverse monitoring data is required. How-
ever, until now, little effort has been spent in the development of such frameworks. Rare
efforts to provide a generic monitoring infrastructure are R-GMA [4] and Mercury
Monitor [7]. R-GMA employs an approach based on relational data model. Mercury
is a system which provides monitoring data as metrics and also supports steering. It
provides sensors for monitoring of application and resources.

However, both approaches have their limitations. R-GMA is based on Java servlets
technology, where data is represented in an XML-based relational model. Those fea-
tures make the solution rather slow, not suitable for transfers of large amounts of data in
a grid-scale system. Mercury, in fact, was built to overcome the limitations of R-GMA
with respect to data transfer. Nevertheless, both Mercury and R-GMA have deficien-
cies that make them unsuitable for a service-oriented knowledge-rich workflow-based
grid system. First, the systems are not tailored to work in a service oriented environ-
ments. Both client-monitor and monitor-sensor interfaces are based on custom APIs
which limits their interoperability. Second, data representation does not take into ac-
count semantic information which is indispensable to make the data really meaningful.
Third, we argue that monitoring and performance analysis of workflow applications re-
quires a specific support which is not addressed in the mentioned systems. This support
includes, among others, a high-level abstract representation of workflow applications
presented to end-user, and a standardized instrumentation service; using the abstract
representation, the user can pick the workflow regions, workflow activities, or code re-
gions to be instrumented, while the instrumentation service makes it possible to issue
the instrumentation requests in a standardized manner.

Motivated by the limitation of existing tools, our goal is to develop a distributed
and generic monitoring and performance analysis framework for workflow-based Grid
applications. Unique features of our approach are the following:
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– monitoring sensors layer is fully decoupled from the monitoring system itself; stan-
dard libraries, interfaces and procedures are developed to deploy both stand-alone
and application-embedded (instrumentation) sensors,

– monitoring sensors are configurable, for example, they may be activated or deacti-
vated at any time; sensors can be event-driven or demand-driven and with/without
rule-based monitoring capabilities [9],

– monitoring data and performance results are delivered to clients on the fly,
– monitoring data types are defined with ontological description to support knowl-

edge extraction,
– monitoring and performance analysis services are decentralized, based on a peer-

to-peer model, to support scalability, availability and fault-tolerance,
– monitoring and analysis services are available as Grid/Web services to enable in-

teroperability while the actual communication with the services is based on a low-
level, but fast, mechanism to ensure efficiency.

3 Overall Architecture

To cope with the dynamic nature of the Grid, the monitoring and analysis services have
to operate in a distributed and self-organizing manner. Therefore, the monitoring and
analysis services will utilize a peer-to-peer architecture model. As the key issues of
the Grid are integration and interoperability, the Grid services for monitoring and per-
formance analysis of Grid infrastructures and workfows must expose a well-defined
interface to other services in order to access them. Moreover, K-WfGrid is based on a
service-oriented architecture (SOA). As a result, the monitoring and analysis services
must be built based on a Grid service-oriented model. Performance data has to be shared
among diverse services and multiple types of data have to be collected and delivered by
the monitoring and analysis service. Therefore, it requires a common XML-based rep-
resentation for instrumentation and monitoring requests, and XML representations for
performance and event data that can be used by other services, user interfaces and Grid
applications to invoke and control the monitoring and performance analysis. As perfor-
mance results are stored in a knowledge base, a novel ontology describing performance
data of Grid workflows is required.

Fig. 1 presents the architecture of Grid performance monitoring and analysis ser-
vices. The architecture includes two main services: Generic Monitoring and Instrumen-
tation Infrastructure (GEMINI) and Grid Performance Analysis Service (PAS). All of
them will be OGSA-based services executed on multiple Grid sites. They support the
instrumentation, monitoring and performance analysis of Grid workflow-based appli-
cations and infrastructures. To implement them we rely on existing implementations of
the Web Service Resource Framework (WSRF)[13], e.g. Globus Toolkit (GT) [3].

The GEMINI is responsible for conducting the instrumentation, collecting perfor-
mance data from applications and resources and providing that data to the PAS or
other external services which require performance and monitoring data. GEMINI in-
cludes an Instrumentation Service (supporting dynamically enabled instrumentation of
Grid workflow applications) and a Monitoring Service (collecting and providing per-
formance measurements). The PAS controls the instrumentation of Grid workflow ap-
plications and analyzes the performance of applications and infrastructures based on
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Fig. 1. Architecture of the Monitoring and Performance Analysis Framework

performance and monitoring data provided by the GEMINI. Moreover, the PAS sup-
ports the performance interpretation and bottleneck search for workflows. Both ser-
vices – GEMINI and PAS – publish the information about themselves and about the
types of performance data they provide into the Grid Organizational Memory (GOM)
[5] which is an OWL-based knowledge base and service registry currently beeing de-
veloped within the K-Wf Grid project. In addition, an event infrastructure is provided
by the monitoring infrastructure.

4 Metrics

The performance monitoring and analysis services will capture and provide several per-
formance metrics that characterize workflow-based Grid applications. Metrics are well
classified and are associated with multiple levels of abstraction such as code region,
invoked application, activity, workflow construct, etc. To help the client query and sub-
scribe metrics provided by the monitoring at runtime, information about every metric
monitored is described in OWL (Web Ontology Language) [12]. The performance data
of workflows is described in an OWL-based ontology by using WfPerfOnto [8].

Performance metrics are built from performance measurements and events obtained.
Examples of application performance metrics are elapsed time (end-to-end response
time), CPU time spent in user/system mode, communication time, etc. [8]. Events con-
taining execution status of workflows include workflow instantiating workflow / instan-
tiation finished (success / error), workflow execution state changed (e.g.,
initiated,active, terminated, suspended, completed), etc.

Infrastructure metrics include both static and dynamic information, e.g. machine
name, IP address, operating system, CPU type, maximum memory/disk size, mem-
ory/disk/CPU usage, availability of a machine/service, network path bandwidth/latency/
availability, etc. Given a large number of infrastructure monitoring tools, (see [2]), we
do not intend to develop a new infrastructure monitoring. Instead, we focus on the



160 H.-L. Truong et al.

integration of existing infrastructure monitoring tools into our framework, making tool-
specific metrics available through well-defined representations and interfaces.

5 Generic Monitoring and Instrumentation Infrastructure

We have designed and developed a generic monitoring and instrumentation infrastruc-
ture – GEMINI. Basically, GEMINI is composed of two main layers: (1) the network
of Monitors which expose external interfaces for clients, and whose main task is to
act as monitoring data broker, i.e. to manage sensors and deliver clients’ requests to
sensors and monitoring data back from sensors to clients; (2) Sensor Infrastructure,
i.e. a number of sensors connected to Monitors which extract monitoring data and de-
liver it to Monitors. Though the current prototype of GEMINI features only a set of
separate Monitors with a number of sensors connected to each one, in the final ver-
sion we plan a fully decentralized peer-to-peer system such as the one shown in Fig. 2.
In this figure, there is a distributed and decentralized network of Monitors, organized
hierarchically into an upper-layer Domain Monitors (D-Monitors) and lower-layer Mon-
itors. This organization into a super-peer topology increases the scalability of the sys-
tem. A relatively low number of D-Monitors manage underlying Monitors. Thus the
information needed for system management is shared only between D-Monitors.

Fig. 2. Architecture of GEMINI monitoring framework

Each D-Monitor exposes two web-service interfaces: the Monitoring Interface and
the Instrumentation Interface. Clients use those interfaces for requesting monitoring
data and also for issuing application instrumentation requests. The actual data transfer
from sensor(s) to the client (not shown) is direct and based on a low-level communica-
tion mechanism for efficiency reasons.

We provide a set of Generic Sensors which can be used to deploy both stand-alone
sensors, or application-embedded ones. Generic Sensors can be easily extended with
plug-ins to produce any type of monitoring data. The sensor model in K-WfGrid is
an extension of a previous sensor model for Grid monitoring and data integration [10].
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Several types of sensors will be supported, such as event-driven sensors (sensors de-
liver monitoring data upon an event), demand-driven sensors (sensors provide moni-
toring data upon a request), and sensors which support rule-based monitoring (sensors
use rules to control their actions). Developers can very easily extend the monitoring
framework just by providing new types of sensors for special purposes.

In case of workflow applications, we instrument and monitor them at several layers:

– Workflow layer. In this case we are interested in information on the level of entire
worklow, for example its execution status, which activity is currently running, etc.
We obtain this information directly from the Grid Workflow Execution Service
which is instrumented for this purpose to generate appropriate events to GEMINI.

– Activity layer. This layer addresses individual activities of the workflow, including
code regions inside activities. Instrumented services generate appropriate informa-
tion to GEMINI to enable monitoring and analysis at this level.

– Legacy code layer. Sometimes activities invoke legacy code, even, for example,
stand-alone MPI applications. We support this ‘multi-lingual’ scenario by adapting
”legacy” monitoring system OCM-G to work as a sensor for GEMINI [1]. This is
relatively easy thanks to the standard sensor layer of GEMINI.

6 Distributed Performance Analysis

Although most monitoring tools in the Grid operate in a distributed fashion, most per-
formance analysis tools obtain monitoring data from distributed sources but analyze
this data at a centralized location. Our approach is different: we design a distributed
performance analysis service (DIPAS). The DIPAS includes a set of distributed Grid
services which collect performance and monitoring data from the monitoring service
and collaborate in doing the analysis in a distributed fashion.

Fig. 3 presents the distributed analysis framework which consists of a set of distrib-
uted Grid analysis agents. Agents are organized in groups and communicate following
a peer to peer model. Agents communicate with each other by exchanging standard
messages whose ontology is described by the WfPerfOnto ontology [8]. The clients
of DIPAS will utilize the performance analysis service by invoking service operations
provided by agents whose information will be published into the GOM. Thus any client
that wants to request for performance analysis information can discover the analysis
service by accessing the information published in the GOM. A client that wants to send
an analysis request first locates an agent by searching the GOM.

Agents obtain monitoring data from the MIS and they can control the instrumenta-
tion of the workflows. Once an agent has done some analyses it stores the performance
results into a performance experiment repository.

The performance of workflows will be analyzed during runtime at various levels of
detail including code region, activity, and workflow construct and workflow. Different
workflow graphs and performance results are collected and stored into a performance
experiment repository. Based on the performance experiment repository we can conduct
a multi-experiment analysis. Moreover, the performance analysis has to analyze the
performance of concrete workflows and to map the performance results of concrete
workflows to abstract workflows.
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7 Service Interface and Data Representation

Fig. 3. Distributed analysis framework

Besides exposing Web services operations,
the monitoring and analysis services have to
provide well-specified representations for the
data they provide and for the request used to
access and retrieve the data. In K-WfGrid, we
have to address (i) how instrumentation re-
quests are specified, (ii) how monitoring data
and events are described, and (iii) how re-
quests for monitoring data are defined.

First, we will use the workflow instru-
mentation request language (WIRL) as the
language between the instrumentation re-
quester (e.g. the Performance Analysis Ser-
vice) and the instrumentation service. WIRL
is an XML-based request and response proto-
col developed at the Univeristy of Innsbruck.
A WIRL request consists of experiment in-
formation and instrumentation tasks. Exper-
iment information (e.g., activity identifier,
application name, computational node, etc.)
identifies applications to be instrumented. In-
strumentation tasks specify instrumentation operations, such as a request for all instru-
mented functions within an application, to enable or disable an instrumented code. An
instrumentation task may contain information about code regions and metrics of inter-
est. A WIRL response contains the name of a request, the status of the request (e.g. OK,
FAIL), and detailed result information.

Second, performance measurements and monitoring data of applications and in-
frastructures are represented in XML. Each type of performance and monitoring data
is provided by a sensor type. A message containing performance data of a monitored
resource (e.g. machine, network path, code region) consists of information about the re-
source identifier, sensor identifier, experiment identifier, and the performance measure-
ments. The sensor identifier, resource identifier, and experiment identifier are generic
information (meta-data) that describes the monitoring data. the part expressing perfor-
mance measurements is dependent on each sensor type.

Information about the supported and available monitoring data as well as the moni-
toring and analysis services has to be published into the GOM so that clients can access
and retrieve interesting monitoring data.

Third, performance monitoring and analysis services support data query and sub-
scription, as well as notification. Requests for data query and subscription will be ex-
pressed in a pre-defined XML schema named PDQS (Performance Data Query and
Subscription). PDQS requests will be used in service interfaces for data query and sub-
scription. PDQS requests are constructed based on OWL descriptions of the monitoring
data published in the GOM. Basically, the data subscription and query requests include
the subscription time (specifies the duration during which the subscription is valid), the
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sensor and resource identifier (determine types of monitoring data), and the data filters
(used to filter the content of performance data).

8 Summary

In this paper, we have presented the design of a novel distributed monitoring and analy-
sis framework, which is currently being developed as a part of the K-WfGrid project.
To cope with the dynamics and complexity of the Grid and the workflow-based ap-
plications executed on the Grid, the monitoring and performance analysis services are
designed to work in a distributed manner – both in terms of architecture and function-
ality, following a peer to peer communication model, and to operate at multiple levels
of abstraction, such as code region, activity and workflow. To address the integration
and interoperability in the Grid, the monitoring and performance analysis services offer
well-defined Web Service interfaces and data representations based on XML and OWL
to other services and clients in order to discover the performance monitoring and analy-
sis services and to utilize them. We are currently implementing the first prototype of
our this framework. The first running prototype is expected to be available in autumn of
2005 under an open source licence.
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Abstract. Algorithms for the sparse matrix-vector multiplication
(shortly SpM×V ) are important building blocks in solvers of sparse sys-
tems of linear equations. Due to matrix sparsity, the memory access pat-
terns are irregular and the utilization of a cache suffers from low spatial
and temporal locality. To reduce this effect, the diagonal register block-
ing format was designed. This paper introduces a new combined format,
called CARB, for storing sparse matrices that extends possibilities of the
diagonal register blocking format.

We have also developed a probabilistic model for estimating the num-
bers of cache misses during the SpM×V in the CARB format. Using
HW cache monitoring tools, we compare the predicted numbers of cache
misses with real numbers on Intel x86 architecture with L1 and L2 caches.
The average accuracy of our analytical model is around 95% in case of
L2 cache and 88% in case of L1 cache.

1 Introduction

There are several formats for storing sparse matrices. They have been designed
mainly for the SpM×V . The SpM×V for the most common format, the com-
pressed sparse rows (shortly CSR) format, suffers from low performance due
to the indirect addressing. Many studies were published about increasing the
efficiency of the SpM×V [4, 1].

There are some formats, such as register blocking, that eliminate indirect ad-
dressing during the SpM×V . Then, vector instructions can be used. These for-
mats are suitable only for matrices with a known structure of nonzero elements.

The overhead of a reorganization of a matrix from one format to another one
is often of the order of tens of executions of a SpM×V . So, such a reorganization
pays off only if the same matrix A is multiplied with multiple different vectors,
e.g., in iterative linear solvers.

2 Terminology and Notation

2.1 The Cache Model

The cache model we consider corresponds to the structure of L1 and L2 caches in
the Intel x86 architecture. An s-way set-associative cache consists of h sets and
one set consists of s independent blocks (called lines in the Intel terminology).

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 164–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Let CS denote the size of the data part of a cache in bytes and BS denote the
cache block size in bytes. Then CS = s · BS · h. Let SD denote the size of type
double and SI the size of type integer.

We consider both types of cache misses: (1) Compulsory misses (sometimes
called intrinsic or cold) that occur if the required memory block is not in the
cache since it is accessed for the first time, and (2) thrashing misses (also called
cross-interference, conflict , or capacity misses) that occur if the required memory
block is not in the cache even though it was previously loaded, since it has been
replaced prematurely from the cache due to the capacity reasons.

2.2 Common Sparse Matrix Formats

In the following text, we assume that A is a real sparse matrix of order n. Let
nZ be the total number of nonzero elements in A.

The compressed sparse row (CSR) format. A matrix A stored in the CSR
format is represented by 3 linear arrays A, adr, and ci. Array A[1, . . . , nZ] stores
the nonzero elements of A, array adr[1, . . . , n] contains indexes of initial nonzero
elements of rows of A, and array ci[1, . . . , nZ] contains column indexes of nonzero
elements of A. Hence, the first nonzero element of row j is stored at index adr[j]
in array A. This is the most common format for storing sparse matrices.

The register blocking formats. These formats are designed to handle ran-
domly occurring dense blocks in a sparse matrix. Let NB denote the number of
dense blocks and L denote the total number of elements in all blocks. Clearly,
L ≥ nZ. There are 2 variants:

– Rectangular register blocking (shortly RRB): Elements of A are grouped into
dense rectangular blocks of the same size rx · ry . Each block i is described
by a pair [xstart

i ,ystart
i ] (the position of its left upper corner) and rx · ry

numbers (the values of all its elements, including zeroes). This format has
been deeply studied [4] (including fast heuristics for finding a suboptimal
sizes rx and ry of rectangular blocks) and it is not discussed further here.

– Diagonal register blocking (shortly DRB): Nonzero elements of A are grouped
into dense diagonal blocks whose sizes can differ. Each block i is described
by a pair [xstart

i ,ystart
i ] (the position of its begin) and yend

i (the y-position
of its end) and yend

i − ystart
i + 1 numbers (the values of all its elements).

The main idea of the DRB format is illustrated on Figure 1(b). It can be
implemented in 2 ways:
• a pair of arrays block elems[1, . . . , L] (elements of diagonal blocks) and
block aux[1, . . . , NB] (items xstart

i , ystart
i , yend

i , and pointers to the first
elements of blocks into the array block elems[1, . . . , L]) (see Figure 1(c));

• a linked list of diagonal blocks (see Figure 1(d)).
In the DRB format, nonzero elements that have no diagonally adjacent

nonzero elements are called isolated elements.
Storing a matrix as a set of small dense blocks is the most common technique

for improving performance of the SpM×V .
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block_elems

(a) (b)

(c)

(d)

block_aux

Fig. 1. The idea of the DRB format: (a) Nonzero elements of a sparse matrix A. (b)
A diagonal blocking of the nonzero elements. (c) Blocks are stored in arrays block aux
and block elems. (d) Blocks are stored as linked dense arrays.

3 New Formats for Sparse Matrices

3.1 The Combined Diagonal Register Blocking Format

In the classical DRB format, all nonzero elements must be in diagonal blocks
and isolated elements are stored as blocks of size 1. In many cases, the amount
of memory for storing all these isolated-element blocks can be reduced. To com-
bine advantages of formats CSR and DRB, we have designed a new combined
format, called C-DRB. The goal is to decrease the memory complexity and also
to improve the data locality of the SpM×V . Simply speaking, in the C-DRB
format, isolated elements are stored in the CSR format, while the blocks in the
DRB format.

Let n′
Z denote the number of isolated elements in matrix A and let L′ denote

the total number of elements of all diagonal blocks. Clearly, L′ = L − n′
Z. Let

N ′
B denote the number of diagonal blocks of size ≥ 2.

Matrix A in the C-DRB format is represented by

– array block elems[1, . . . , L′] and array block aux[1, . . . , N ′
B] that contain all

non-isolated nonzero elements of blocks of size ≥ 2 in the DRB format.
– arrays A[1, . . . , n′Z], ci[1, . . . , n′Z], and adr[1, . . . , n] that contain all isolated

elements in the CSR format.

It is easy to see that to store all isolated elements, the DRB format requires
n′

Z(4SI+SD) bytes, whereas the C-DRB format requires nSI+n′
Z(SI+SD) bytes.

Hence, for matrices that satisfy 3n′
Z > n, i.e., the average density is greater than

one isolated element per 3 rows, the C-DRB format is more space efficient.

3.2 Heuristic-Based Diagonal Register Blocking Format

Even though the C-DRB format combines the best features of the original two
common formats, it may still suffer from one potential problem. Although it is
easy to find all diagonal fully dense blocks, i.e., blocks that are fully filled
with nonzero elements, the number of these blocks may grow significantly with
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the order of matrixA and in the same way, the size of the required auxiliary data
structure (array block aux[1, . . . , N ′

B]) may grow. In general, this may deteriorate
the space efficiency and the performance of the SpM×V . The solution is obvious:
to allow diagonal partially full blocks. The maximum “sparsity” of diagonal
blocks can be defined by a block heuristic. Such a heuristic decides which fully
dense blocks or isolated elements are concatenated into sparser diagonal blocks,
called H-dense blocks. Various (even architecture dependent) block heuristics
can be designed. We have designed a heuristic to minimize the space complexity.
Elements are stored in a diagonal block only if the overhead of diagonal storage
pays off. Let us consider a diagonal block of size u containing v nonzero elements.
These elements consume v(SD + SI) bytes if they are stored in the CSR format
or 4SI + uSD if they are stored as a diagonal block. So, our heuristic evaluates
the condition 4SI + uSD ≤ v(SD + SI). This format is called H-DRB.

3.3 Cache Adaptive Formats

The C-DRB and H-DRB formats, in the same way as their predecessor, the
DRB format, may contain very long diagonal blocks. However, depending on
the particular cache mapping function, it may happen that long diagonal blocks
produce thrashing misses with themselves. If we consider H-dense blocks, the
problem is even worse. The solution is obvious: to put bounds on the length of
diagonal blocks with respect to the cache memory parameters.

These observations lead us to designing modified formats that adapt to the
cache memory parameters. We call them cache-adaptive formats. Matrix A
is divided into disjoint horizontal belts whose height is denoted by l. The size
of the parameter l must be carefully chosen to guarantee that all blocks in one
belt fit into the cache. Its maximal value denoted by lMAX can be estimated as
follows. During multiplication of one diagonal block, lMAX elements of array x,
y, and block elems are used. For optimal reusing, the cache must hold all these
data, so CS ≥ 3SDlMAX which implies lMAX ≤ CS/(3SD).

We have designed a cache-adaptive heuristic-based register blocking format
(shortly CARB). Diagonal blocks are constructed only within individual belts
and sorted within one belt by the positions of their upper corners.

4 Probabilistic Analysis of the Cache Behavior

Our model is based on the following simplified assumptions (similar as in [2]).
We assume that
1. There is no correlation among mappings of used arrays into cache blocks.
2. The whole cache size is used for data of the SpM×V .
3. Each execution of the SpM×V starts with empty caches.
4. All diagonal blocks are of the same length l. It should be valid only for

thrashing misses evaluation.

The total number of cache misses is the sum of compulsory misses, thrashing
misses caused by the multiplication of diagonal blocks, and thrashing misses
caused by multiplication of elements stored in the CSR format (see [2]),
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NCM = NC
CM +NT

CM +NT
CM(CSR).

4.1 Compulsory Misses

The DRB format
The total size of arrays x and y in bytes is Nx+y = 2nSD, the size of array
block aux is Nblock aux = 4NBSI, the size of array block elems is Nblock elems =
LSD. The number of compulsory misses can be approximated by this sum divided
by cache block size BS. So,

NC
CM =

2nSD + 4NBSI + LSD

BS
.

The C-DRB format and the H-DRB format
The total size of arrays x and y is Nx+y = 2nSD. The size of memory for
storing auxiliary information for blocks isNaux = 4N ′

BSI and the lower bound for
elements in blocks is Nblock = L′SD and the total size of data for CSR is NCSR =
SIn+ (SD + SI)n′

Z. The number of compulsory misses can be approximated by
this sum divided by cache block size BS. So,

NC
CM =

2nSD + 4N ′
BSI + L′SD + SIn+ (SD + SI)n′

Z

BS
.

4.2 Thrashing Misses

The DRB format, the C-DRB format, and the H-DRB format
During one execution of the SpM×V , all arrays are read only once except arrays
x and y. If l < lMAX, then almost no thrashing misses occur, so NT

CM = 0.
If l > lMAX, read operations for arrays x and y cause thrashing misses. For

every block, elements of arrays x and y must be reloaded. Hence, the number of
thrashing misses can be approximated by

NT
CM(DRB) � 2SDNBl

BS
� 2SDL

BS
, NT

CM(C-DRB, H-DRB) � 2SDN
′
Bl

BS
� 2SDL

′

BS
.

The CARB format
Under our assumptions, no thrashing misses can occur, so NT

CM = 0.

5 Evaluation of the Results

All results were measured at Pentium Celeron 2.4 GHz, 512 MB@ 266 MHz,
running OS Windows XP with the following cache parameters:

The L1 cache is a data cache with BS = 64, CS = 8K, s = 4, h = 32, and LRU
replacement strategy. The L2 cache is unified with BS = 64, CS = 128K, s = 2,
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h = 1024, and LRU strategy. Furthermore, SD = 8B, SF = 4B, SI = 4B, For
the CARB format (see Section 3.3), we have used the parameter lMAX = 256.
SW: Microsoft Visual C++ 6.0 Enterprise edition
Intel compiler version 7.1 with switches:
-O3 -Ow -Qpc64 -G6 -QxK -Qipo -Qsfalign16 -Zp16
All cache events were monitored by Intel Vtune performance analyzer 7.0 and
verified by the Cache Analyzer [3].

5.1 Test Data

We have written a program GEN that generates symmetric, positive definite
matrices produced by discretization of two elliptic partial differential equations
with Dirichlet boundary condition on rectangular grids. For testing purpose, we
have used 4 matrices

1. Matrix A is a random banded sparse matrix
2. Matrix B is filled by randomly located short (l < 10) diagonal blocks
3. Matrix C is given by discretization on a 100× 100 rectangular grid
4. Matrix D is given by discretization on a 10× 1000 rectangular grid

We have used 52 real matrices from various technical areas from MatrixMar-
ket and Harwell sparse matrix test collection.

5.2 Time and Memory Complexity of the SpM×V

Table 1 illustrates that the SpM×V using the CARB format causes in all cases
except one less compulsory and thrashing misses than the DRB and C-DRB
formats. The different way of storing elements caused

1. less number of compulsory misses, because isolated points need less memory.
2. less number of thrashing misses, because in the DRB and C-DRB formats,

blocks of large sizes cause thrashing misses with themselves and other blocks
during the SpM×V .

Table 1. Summary of measured cache misses

Type of cache misses format matrix A matrix B matrix C matrix D

Compulsory CSR 22,6 62,3 55,1 52
(in K) DRB 36,3 57,5 57,6 54,5

C-DRB 23,8 57,6 44,1 41,5
CARB 22,7 56,6 44,2 41,7

Thrashing CSR 0 48,2 0,1 4,5
in L2 cache memory DRB 2,7 49,5 17,8 25,8
(in K) C-DRB 4,7 50,4 20,2 22,8

CARB 0 47 0,2 4,5
Thrashing CSR 0,1 85,3 4,9 4,5
in L1 cache memory DRB 2,9 87,5 36,4 47,1
(in K) C-DRB 4,7 87,4 31,9 44,5

CARB 0 86,9 11,4 11,8
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Table 2. The execution time of SpM×V in ms for type double (for type float)

Format matrix A matrix B matrix C matrix D

CSR 1,49 (0,92) 8,47 (4,15) 3,19 (2,08) 3,3 (2,12)
DRB 2,57 (2,04) 11,4 (4,63) 5,26 (3,33) 5,46 (3,2)
C-DRB 1,95 (1,24) 11,65 (4,56) 4,52 (2,39) 4,47 (2,2)
CARB 1,46 (0,94) 9,5 (4,08) 2,6 (1,54) 2,73 (1,51)

Table 2 illustrates that the DRB and C-DRB formats suffer from greater
amount of auxiliary structures, which degrades performance. Clearly, matrices
A and B are not suitable for diagonal blocking, since they consist mostly of
isolated elements and very short diagonal blocks. For these matrices, the CARB
format is slightly slower than CSR. For matrices C and D, the SpM×V using
the CARB format is about 20% for type float and 35% for type float faster
than using the CSR format.

Significant speedups (more than 10%) were achieved for 42% of real matrices,
whereas significant slowdowns (more than 10%) were achieved for 10% of them.

5.3 Evaluation of the Probabilistic Model

Let R2 = NCM(L2)
RNCM(L2) and R1 = NCM(L1)

RNCM(L1) denote the ratios of the estimated
and real numbers of misses for L1 and L2 caches, respectively. They represent
the accuracy of the probabilistic model.

Table 3. The accuracy of the analytical models for the different formats

Ratio format matrix A matrix B matrix C matrix D

R2 CSR 100,6 101,6 99,8 92,4
(in %) DRB 93,2 100,5 76,4 67,9

CDRB 83,1 99,6 68,6 64,6
CARB 99,9 102,9 99,5 90,2

R1 CSR 106,3 76,1 98,3 98,9
(in %) DRB 92,7 74,1 61,3 53,6

CDRB 99,0 74,2 58,0 48,2
CARB 99,9 74,3 79,5 77,9

Table 3 illustrates that the real number of cache misses was predicted with
average accuracy 95% in case of the L2 cache and 88% in case of the L1 cache
for the CARB format. The accuracy of an analytical model is influenced by the
following assumptions.

1. We consider only effect of some read operations, mainly prologues and epi-
logues of cycles. This omission decreases the model accuracy especially for
the L1 cache due to its less capacity.

2. We assume that all diagonal blocks are of the same length. This assumption
is valid only for matrix A.
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3. We assume that both L1 and L2 caches are data caches. In the Intel archi-
tecture, this assumption holds only for the L1 cache, whereas the L2 cache
is unified and it is used also for storing codes of the SpM×V and system
tasks. This fact is not taken into account in our formulas, but the error is
small due to small code sizes.

6 Conclusions

The contribution of this paper is twofold.

– We have designed new formats for storing sparse matrices that combine
advantages of the CSR format and the DRB format. One of them is adaptive
to the parameters of the cache.

– We have derived an analytical probabilistic model for estimating the numbers
of cache misses during a SpM×V using these formats. We have concentrated
on the Intel architecture with L1 and L2 caches. Using HW cache monitoring
tools, we have verified that the accuracy of our analytical model is around
90%. The errors in estimations are due to simplifying assumptions in our
model. Both the model and the measurements prove that our new formats
reduce the number of cache misses by around 12% in case of L2 cache and
5% in case of L1 cache.
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#J04/98:212300014.

References

1. J. Mellor-Crummey and J. Garvin. Optimizing sparse matrix vector product compu-
tations using unroll and jam. International Journal of High Performance Computing
Applications, 18(2):225–236, 2004.
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Abstract. The Grid computing plaform which has emerged recently,
while robust and feature-rich, is still considerably complex to program
for. Not only the migration of legacy applications is difficult – even the
development of a new, complex application from the beginning could
be quite a challenge using today’s Grid middleware. This work proposes
a new approach to Grid programming. The presented solution called
GridSpace, based on the component programming methodology and Se-
mantic Grid initiative achievements, employs decomposition, dynamic
organization and semantic comparison techniques in order to provide a
new, abstract layer for programmers of Grid applications.

Keywords: grid programming, semantic discovery, dynamic workflow.

1 The Grid Programming Problem

Thus far, the approach to Grid systems was mainly focused on the middle-
ware layer. It provides a solution to the main problem: sharing various resources
globally over multiple administrative domains. The effort applied has provided
us with some considerable solutions, relatively mature and at near-production
quality. [7, 20]. While all these initiatives make the Grid computing paradigm
available for us, they nevertheless remain complex. Programming for these frame-
works poses significant problems for Grid application developers who want to
use the Grid in their daily work. Herewith we want to address the problem and
propose a set of tools which may significantly simplify the act of programming
Grid applications.

There are some reasons why traditional programming approaches of today
will not serve Grid programmers well:

– the Grid is a constantly changing environment,
– resource users do not instantiate resources on their own,
– Grids contain resources from distinct administrative domains.

These factors cause Grid applications to be more loosely coupled that the appli-
cations we use at the moment. A developer cannot rely on a single computational
resource to be there forever; he needs to be much more flexible. What is more,
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he is usually forced to use the resources provided and managed by others, whose
policies cannot be influenced. This requires higher adaptivity. The requirements
of flexibility and adaptivity can only be fulfilled in a highly dynamic system.
This document describes a proposal of a platform which provides the means to
develop highly dynamic Grid applications.

2 Related Work

The concept of the GridSpace from the programming paradigm perspective is
based on the idea of the component programming model. There are projects
which try to introduce this technique to the Grid developers community. The
Common Component Architecture combines the IDL-based distributed frame-
work concept with certain requirements of scientific applications [1]. Some
frameworks dedicated to Grid computing are compliant with the standard, such
as the XCAT Framework [11] and the MOCCA computing platform [17]. An-
other model derived from component techniques is the Fractal model [4]. It is
focused on the idea of hierarchical, recursive composition of reusable software
modules to properly handle the complexity of Grid applications.

Another approach is to device a ready solution instead of proposing a new
standard. One of the solutions to the Grid application decomposition prob-
lem involves active objects which may be composed, deployed and published in
Internet-wide Grids [3]. Another solution with a similar level of decomposition
granularity is the H2O framework which proposes specially-designed pluglets as
a means to wrap, deploy and reuse software as Grid applications [13]. Some other
descriptions of research in this field may be found in [8].

A good overview of the effort that the Grid programming problem got may
be found in [15]. This challenge has caused the emergence of a special research
group of the Global Grid Forum dedicated to advanced programming models.
One of the achievements of the group was a thorough overview of the techniques
of developing software for distributed environments [16]. One of the recommen-
dations of the group is a new GridRPC standard [18] which uses the remote
procedure call paradigm to deliver a clear and highly useful programming model
for Grids. The document lists a set of function names along with their semantics
which should be implemented by every GridRPC-compliant framework. Up to
now the group has pointed to implementations of the technology in two distinct
systems: NetSolve [21] and Ninf [19].

Other development initiative is the GridSuperscalar programming para-
digm [2]. The idea of GridSuperscalar is based on the concept of implicit par-
allelism of assembler code which may be extracted and exploited by an intelligent
processor during program execution. In that paradigm, Grid developers program
their applications in a sequential way while a specialized parser and scheduler are
able to identify basic blocks of code anddependencies among them.This knowledge
then forms a basis for out-of-order parallel scheduling of different tasks in a Grid.

A very strong research initiative related to the Grid programming concept
has emerged from the area of workflow-based applications. Started with refining
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IT world solutions (GSFL [12]) several proposals were made for scientific appli-
cations, some of which were successfully applied [5, 6, 10]. The projects usually
use workflows for distribution of computations across a Grid, from conceptually-
simple parameter study problems, through more complex directed acyclic graph
approaches, to Turing-complete solutions such as the ones based on Petri Nets
[22]. Even though the research conducted so far is impressive, some challenges
remain to be solved in that area through subsequent scientific workflow-focused
initiatives [9].

3 The Overview of the GridSpace Environemnt

The core concept of the solution is to look at the Grid computing from the per-
spective of an application developer and the working environment he requires
– appropriate development tools: languages, interpreters, debuggers, monitoring
etc. It is important that these tools introduce a special layer between the pro-
gramming infrastructure and the resources on the Grid. Grid middleware offers
such an interface on a technical level – it enables access to various distinct Grid
resources using similar methods and protocols. However, the application pro-
grammer needs yet another layer to address the requirements of the dynamic
Grid: a semantic-rich abstraction of Grid resources made available for him. The
traditional notions of APIs and libraries do not work appropriately in the Grid
environment – static binding between routine calls and routine implementations
is not sufficient when the resource pool changes too frequently. The /emphsta-
tic binding here means that even if the call client is dynamically linked to the
server, it still completely depends on that certain server to be there. A new layer
which provides runtime translation of requirements into particular routine call
signatures is needed.

The GridSpace system is meant to:

– separate the application developer from the ever-changing Grid resources,
– provide unified access to resources by means of semantic abstractions,
– seamlessly introduce dynamism into the newly-created applications,
– support an evolving and well-organized library of applications,
– allow easy reuse of previously-constructed solutions.

The system we propose is a set of connected modules supporting the Grid
application developer: a problem solving programming language to design solu-
tions, an interpreter to execute it, a runtime layer to run the written applica-
tions and a distributed library to maintain, share and reuse solutions within a
community.

Fig. 1 depicts various users and how they interact with the environment.
GridSpace provides a common space for multiple developers to design and inter-
change their concepts as programs. Data providers add metadata descriptions to
share resources with other users. In a similar way, the providers of computational
elements may add their descriptions to publish resources and make them avail-
able for developers. The developers of Grid applications, using the GridSpace
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Fig. 1. GridSpace works as a vital part of PSE for multiple users

as a problem-solving environment, may apply these resources to solve certain
issues. The modularity and generality of our concept make it usable for many
different fields of research. In subsequent sections we describe how our tools aid
the developer in the difficult task of Grid programming.

4 GridSpace Scripting Language Supporting Problem
Solving

The scripting language for development of dynamic Grid applications is the top-
most part of our system. It combines simple grammar, web addressing techniques
and well-known flow control constructs to direct support design of distributed
applications for the Grid. This language is meant as glue connecting various
Grid resources together in a single application – it does not support computa-
tions directly. All the processing of the logic of an application is done within the
elements which make up the application. The most distinct features are:

– using metadata descriptions instead of real data structures,
– metadata using ontologies to describe both data and computation,
– simple variables (for control expressions) based on the XML Schema,
– addressing (pointers) based exclusively on URLs,
– real processing embedded in routine calls with ad-hoc dynamic binding pro-

vided by the interpreter,
– direct support for parallel and distributed execution.

In order to understand the added value of our proposition it is important
to perceive every piece of a new Grid application as an abstract entity defined
only by its structural and semantic description. Such a description-based ap-
proach allows for highly flexible programming as the physical counterpart of a
certain data or computational resource is bound to the description exclusively
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at runtime and may change between subsequent application executions. This
is the role of a sufficiently-sophisticated language interpreter and the runtime
system.

5 Design of GridSpace Execution Environment

Technically, the interpreter residing inside our system is a simple stack machine
which parses and executes scripts. The interesting function of this tool is the
method of accessing every piece of data and computational resource. It translates
all the higher-level, abstract semantic descriptions into physical realizations of
these entities in the Grid. To this end, it uses an internal ontology inference
infrastructure to reason over the provided information. As the main source of
information about the available resources it uses the runtime engine residing
below the programming layer and constituting an interface to the lower-level
Grid middleware.

Fig. 2. Details of the dynamic semantic binding process

The most important feature of the interpreter is the notion of dynamic rou-
tine call binding. The application describes what kind of functionality it needs
at a certain stage of computation and the engine tries to find an implementa-
tion of such functionality provided by the environment. This process depends
heavily on ontological descriptions of data and computation semantics as it has
been already proven that a simple signature-based syntactic description is not
sufficient for that kind of dynamic discovery and matching process. The process
is presented in Fig. 2.
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6 Runtime Subsystem for GridSpace

Every programming language needs a runtime engine to conduct any processing.
Our solution is based on reuse of the well-known and widely-used concept of
tuple space, applied as higher level Grid middleware. The most important tuple
types are the data tuple, the component tuple and the application execution
tuple. All of these reside in the GridSpace logically; physically they are stored
in a distributed XML registry. Each tuple consists of one description document
which gives all the details of its structure, syntax and semantics. No real data
or components are stored in the space – they are just referred to by URLs in
descriptions. Please consult Fig. 1 to see how different tuples may appear in the
GridSpace tuple space.

Data tuples describe the structure and meaning of single pieces of data,
either produced during application execution or inserted into the space by a
user. The description points to a certain place which contain the data. Similarly,
the component tuple contains a thorough description of component functionality
and capabilities – by using this information the interpreter is able to perform
dynamic routine call binding.

Both previous tuples are inactive in nature. Once they are put into the space,
they reside there. The last type of tuple, plan execution, is an active tuple. It
holds a description of a Grid application built (written) by a developer. Inter-
nally, that tuple represents a piece of code in the scripting language connected
with an instance of the interpreter. Upon injection into the system the execution
of the script commences automatically. The interpreter uses resources residing in
the GridSpace at the moment to perform the task, and every meaningful result
of computation is stored in the space as well. The useful part of the application
may become (at the behest of the user) a contribution to the dynamic language
library (see Fig. 2).

The concept of searching the space in order to meet a new request also
helps data management. It is not unlikely that a piece of data needed by an
application at a particular step of computations may become available after the
execution starts. This data may be provided by another application, possibly
run by another user of the same GridSpace. Hence, GridSpace is a means of
providing a seamless cooperative environment for various applications and users
to combine their efforts.

7 Dynamically Evolving Language Library

Most traditional programming languages employ a dedicated library as a source
or ready and reusable solutions for common development problems. However,
this approach is in contrast to the dynamic state of the Grid. Its changing
environment makes any type of statically pre-built solutions insufficient. The
GridSpace provides another concept of a programming language library as a
repository where every user is able to contribute his own hand-made solutions.
In fact, our tools make this process somewhat automatic and transparent to the
developer.
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This effect is achieved through the concept of hierarchical components. As
previously described, every computational resource is represented in the
GridSpace as an abstract description. Following this idea, every new script of
a Grid application may also be inserted into the space as a new element. From
that moment on every user of the tuple space may reuse this computation and
even include it into his own application as one of its components. It is impor-
tant to remember that due to the dynamic nature of routine call binding in the
GridSpace, every dependency of the component may be fulfilled even when the
environment changes – if a user wants to reuse some code he is not forced to
provide all the dependencies, and it also concerns data, as all the data required
by the reused component may still reside in the space.

8 Implementation Perspective

The presented system concept is not dependent on a single middleware tech-
nology. It may be built using various paradigms of distributed resource shar-
ing, including components, services and objects. However, in order to provide a
good execution platform for the GridSpace we plan to join our efforts with the
MOCCA [17] initiative which focuses on lightweight Grid computation middle-
ware for CCA components based on the H2O framework [13]. Since the H2O-
based middleware is Java-dependant, we also plan to use this highly portable
programming solution in the implementation of the GridSpace. Apart from the
usual libraries and tools for XML handling or repository back-end support (e.g.
database connectors) we will resue the communication solutions applied in the
H2O metacomputing framework based on the RMIX protocol [14].

9 Summary

In this paper we presented the design of our solution to the emerging Grid
application programming concept. After the analysis of the problem sources
we give a thorough description of works in similar fields of computer science.
Next, there is a detailed explanation of the GridSpace concept – a platform
for component-based Grid programming with use of various tools employing
semantic Grid concepts. The project presented in this work is not finished – it
is still under development and is subject to changes.
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Abstract. The paper presents new Grid application workflow para-
digm based on advanced control mechanisms provided by synchronizers.
Synchronizers generate program execution control decisions based on
predicates computed on global application states. We propose that execu-
tion control by synchronizers is used to co-ordinate parallel applications
executed on Grid. For this, we extend the graphical parallel program
design environment PS-GRADE by Grid level synchronizers. Grid and
application level synchronizers co-operate by sending state reports and
receiving control signals over Grid communication network. Open Grid
Services Infrastructure, implemented using Globus toolkit, is used for
these purposes.

1 Introduction

Grid computations require new computer-aided program design tools adjusted
to specific features of the new executive environment. This paper describes a
parallel program graphical design tool for the Grid in which new kind of pro-
gram execution control, based on the analysis of global application states, has
been embedded. These states are monitored inside applications by special con-
trol processes called synchronizers. The synchronizers collect state reports from
application processes, construct global consistent states, evaluate predicates on
them and send back control signals to application processes. Control signals influ-
ence application behavior in asynchronous manner. They can activate additional
actions inside application processes or influence the execution order of existing
actions, including canceling of further execution. Such features are included into
the PS-GRADE graphical program design tool [3, 4], which is a synchronizer-
extended version of the P-GRADE system [1]. PS-GRADE has inherited all
features of P-GRADE, which enables a very convenient and flexible graphical
specification of parallel applications based on message passing in clusters or par-
allel systems. A program is represented by a graph, which represents processes
and inter-process communication channels. Process functioning is described by
a control flow diagram, whose nodes can be filled with fragments of process code
in C language. Communication is specified by source and target variables used
in channels. Knowledge of standard communication libraries is not required to
specify programs.
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Synchronizers in PS-GRADE provide a flexible parallel program control par-
adigm where the structure of a program and its functionality can change at pro-
gram run-time. Such features are especially important in Grid computing, with
applications executed on many separate clusters. New version of P-GRADE (P-
GRADE Workflow) has been created by inclusion of the concept of application
workflow [2]. A workflow diagram defines the control flow between applications
and the flow of necessary data as transfers of files of intermediate results. In
standard workflow P-GRADE environment, the macro data flow paradigm has
been used as the main control principle. In this paper, we extend the workflow
paradigm towards more flexible control and introduce Grid-level state monitor-
ing done by Grid-level synchronizers. This extends the workflow paradigm known
in the previous work, by more general principles, in which application execution
control is based on predicates computed on application execution states, globally
available on the Grid.

The paper is composed of 3 parts. The principles of application control based
on synchronizers are described in the first part. The second part discusses im-
plementation issues for the proposed environment on the Grid. The third part
presents an example of the use of this environment for solving the TSP problem
on the Grid.

2 Grid-Level Control Based on Synchronizers

In the PS-GRADE system processes report their local states to special syn-
chronizer processes, which construct consistent application states and compute
predicates on the monitored states, Fig. 1. Depending on the predicates, con-
trol decisions are taken in synchronizers. The decisions are distributed among
processes in the form of control signals. The signals can activate some control ac-
tions in processes where they arrive. These actions can constitute execution of an
associated code, or they can cause a current computational task to be abandoned
to make room for other ones. These ideas have been included into PS-GRADE at
the level of a single parallel program. Process state messages have automatically
attached timestamps based on partially synchronized processor clocks. Control
signal reception is performed asynchronously, which means that processes do

Fig. 1. Parallel processes co-operating with synchronizers
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Fig. 2. A workflow graph with a Grid-level synchronizer (left), an application-level
synchronizer inside an application internal graph (right)

not stop while waiting for the signals. They continue execution and react to in-
coming signals using a form of distributed interrupts. Synchronizers use strongly
consistent states of sets of processes. They consist of pairwise concurrent local
states according to a chosen state precedence relation. A strongly consistent
state (SCS) is a state, which could be discovered without any doubt by a syn-
chronizer based on received process event messages with timestamps of assumed
accuracy [7, 8, 9]. The discovery of a new SCS in a synchronizer activates pred-
icate evaluation procedures. The predicates can trigger control messages to be
sent to processes. The programmer decides which states should cause sending
the signals. Proper conditions and communication statements must be included
into the code of predicate evaluation procedures of synchronizers.

In this paper, the program execution control by synchronizers has been ex-
tended towards co-ordination of parallel applications executed on a Grid. The
Grid-oriented PS-GRADE environment is based on a modified version of PS-
GRADE with process level synchronizers prepared for sending state messages to
higher level synchronizers. The PS-GRADE windowing system is extended by
the highest workflow level window. This level window is constructed by inclusion
of application block icons and Grid-level synchronizers, which can be set in hier-
archical structures. When clicking on an application block icon, the current PS-
GRADE application level window opens, Fig. 2. The Grid-oriented PS-GRADE
provides a much more flexible control than the standard workflow mechanism.
In a standard workflow, the flow control system performs only one type of con-
trol actions it activates an application based on termination of a selected set of
other applications. It corresponds to a macro data flow driven paradigm. In our
system it is possible to specify other conditions, which can control the behavior
of applications. For this purpose, we introduce explicit interapplication or Grid-
level synchronizers. They co-operate with Grid applications, which are able to
send their state reports over Grid communication network. Existing application
level synchronizers are monitoring single application states and can report them
to Grid-level synchronizers. A Grid level programmer decides which application
states should be passed to the Grid-level synchronizer, and which have only
internal meaning. Application state messages are assembled in the Grid level
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synchronizers to form Grid level consistent states, using similar mechanisms as
at the process level [1]. Control signals generated by the Grid-level synchroniz-
ers are sent to application level synchronizers. They respond by sending control
signals down to its application processes. The programmer has to specify the
process reaction in respective parts of process code.

The way in which the Grid-level synchronizers extend the standard workflow
graph is shown as the left-hand side part of Fig 2. Applications A2 and A3
execute only after A1 terminates. The Grid-level synchronizer Synch1 collects
state information from A2 and A3. Both applications are working in parallel to
solve a search problem. When one of them finds the final solution, then Synch1
stops the other application and the application A4 is activated, taking the final
solution as its input. If both A2 and A4 have terminated and no final solution
has been found, then Synch1 activates A5. A6 starts when either A4 or A5
completes. All this control is graphically represented by different kinds of icons
of interconnected application ports and synchronizers.

3 Grid-Level PS-GRADE Implementation

Application level synchronizers send state reports and receive signals to/from
Grid-level synchronizers using new kinds of ports attached to block icons. For
each application, dedicated Grid services will be started to provide inter-cluster
communication. An application is coupled with such Grid services through its
application-level synchronizer. The connection between the Grid services and the
synchronizers is based on TCP sockets. We assume that multi cluster Grid ap-
plications will run for longer times, hours rather then seconds, the clock synchro-
nization accuracy does not need to be high. Therefore, clocks synchronization
for many clusters is not a serious technical problem [6]. The Globus Toolkit v3
(GT3) is used to implement the assumed web services infrastructure [5], Fig 3.
A dedicated web service is used for signal and message delivery (sending and
receiving) between GT3 sites. We call it Grade-Globus-Web-Service (GGWS).
GGSW performs the intergrid communication with SOAP protocol a standard
way for communication in GLOBUS Toolkit. Connections between applications
and their GGWSs at different sites are provided by GRADE Server Processes

Fig. 3. Grid-oriented PS-GRADE architecture
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Fig. 4. The TSP application structure

(GSP). Processes P1,1 ,..., P1,n report their states to an application level syn-
chronizer Synchr(1). Synchr(1) constructs global states and evaluates predicates
on them. When a given predicate is true, then Synchr(1) sends a report about
this fact to the Grid Level Synchronizer (GLS). Based on received state reports,
the GLS reconstructs Grid-level global states and evaluates Grid-level predicates
on them. Predicate evaluation can cause sending control signals from GLS to
applications. It is done by message transfers between GLS and application-level
synchronizers. The SCGS detection at the Grid-level will use state messages with
timestamps originating at different clusters/sites with strongly varying message
transmission time.

4 Example

The example presents how to design a TSP (Travelling Salesman Problem) pro-
gram for the GRID using the extended PS-GRADE environment. The program
looks for exact solutions or solutions with the preassumed quality for large num-
ber of cities. We have included more than one heuristic algorithm and an exact
Branch and Bound (B&B) algorithm as parts of one application executed on
many computer clusters in parallel. The heuristic algorithms find approximate
solutions 10 (100) times faster than the B&B algorithm. The best solutions,
found by the heuristic part of the application, are transferred to the B&B algo-
rithm to support better bounding of the search tree in a more exhaustive search
of the exact solution [9].

Our Grid application constitutes a workflow composed of 3 stages: prepro-
cessing , which prepares data for the parallel speculative processing; problem
solving , which solves the problem in parallel speculative manner. This stage
consists of five grid applications (B&B1, B&B2, B&B3, Heur1, Heur2) and
one global synchronizer (Synch1) controlling the execution; post-processing ,
which processes the results from the winner application.

In the middle stage, we use a parallel algorithm based on multi-grid exact
B&B method with auto load balancing supported by two heuristic methods.
The B&B part tries to find the exact solution. It consists of three, separate
farms of worker processes, mapped to separate Grid clusters of workstations. It
is controlled by the global synchronizer Synch1. In the same time, the heuristic
search part tries to find the solution better than the requested quality. It is
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Fig. 5. Synch 1 conditions: DataRequest, MinDist, FinishCond (left to right)

composed of two search applications. They are also controlled by the Synch1
synchronizer. If one of them finds a solution with the requested quality, better
than any previous search result, Synch1 transfers this solution to the B&B part.
If none of the heuristic parts finds the requested solution in this stage, we wait
for the B&B exact solution. After the B&B completes, the Synch1 synchronizer
can activate the post-processing stage.

The Grid level synchronizer Synchr1 cooperates with local synchronizers of
all search applications. It uses three conditions, Fig.5, based on three regional
states: "Dreq, which consist of B&B application data requests (sent by the local
synchronizer of selected B&B application), "Bmin", which consists of the best
result (minimal distance) that comes from each B&B application, and "Hmin",
which is the best result from the heuristic algorithms. The Data request con-
dition, sends the new pieces of data for computing to the requesting B&B ap-
plications in response to reception of messages on "Dreq’ state. The MinDist
condition controls distribution of the best search results to the all the B&B ap-
plications. It is based on two states: BMin and HMin. This condition handling
is activated when at least one of these states has changed. In the PS-GRADE
condition activation statement it is written as REG_BMin || REG_HMin. The
first two instructions of the condition flow diagram, see Fig. 5 center, collect
the actual state vectors (from BMin and HMin state messages). These vectors
consist of the current best result (minimal distance) obtained by the attached ap-
plications. In the first code block (SminDist=), the condition handling function
computes the global minimal distance. After that, the global minimal distance
is compared with the previous best result. If the new result is the best, the code
block (MinDist) prepares a message with the best result to be sent to all other
B&B applications (EO1 instruction). The condition FinishCond is based on two
states: BMin and HMin, It monitors the best result of the whole algorithm and
if it finds the requested solution. It stops all working applications by sending the
stop signal to them, see Fig. 5 right.

A B&B application, Fig. 6, consists of one local application synchronizer
LocSych and a number of worker processes W1, ... ,WN. The local synchronizer
controls the application execution by distribution of input data to free worker
processes (whose load is low) - condition DataRequest and by distribution of the
best results coming from B&B applications or from the "Synch1" i.e. produced
by the heuristic search condition MinDist. After reception of a data request from
a worker process, the condition Data Request checks if it has unused pieces of
input data for computing. If the data are available, the condition sends them to
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Fig. 6. B&B part: communication diagram (left),LocSynch condition window (right)

Fig. 7. Heuristic search application structure (application structure left, search process-
right)

the requesting process. If the data are not available, the condition sends a data
request to the global synchronizer.

Each heuristic search application should have the structure presented in
Fig. 7. It should consist of one local synchronizer, which will control two aspects
of the application. The synchronizer HSynch gathers the local best search results
from the heuristic search applications and sends them as the application state to
the global Grid synchronizer. Besides, it asynchronously waits for the end signal
from the global synchronizer. If the end signal arrives, the HSynch synchronizer
sends the termination signal to all working process. Each computing process is
placed inside the signal sensitive region. It is delimited by the first and the last
graphical instruction (start-end signal sensitive region) in the diagram shown in
Fig. 7. This start instruction co-operates with signal port 1 and is followed by
two control paths. The left path includes the ordinary TSP computation with
iterative search block (NextIter) and the instruction for sending the best search
result to the synchronizer if the comparison with the best-up-to-now result is
positive (in the if block). The computations in the left path can be interrupted
by the signal received by the port "1". The right search process path the signal
handling function - is activated by the signal arriving to port 1. In this example,
this function breaks computations in the left path and then ends the process
(see the canceling icon with an arrow).

5 Conclusion

The new control paradigm included in the Grid-level PS-GRADE enables de-
signing graphically much more flexible applications control than it is possible
with the standard workflow mechanism. Grid-level application state monitor-
ing based on Grid-level synchronizers has been introduced . State reports are
collected from applications by the synchronizers, which reconstruct Grid-level
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global states, evaluate predicates on them and send control signals to applica-
tions to modify applications behavior in an asynchronous manner. These features
have been embedded in a graphical program design environment PS-GRADE.
Globus Toolkit v3 (GT3) has been selected for implementation of web services
infrastructure of the new program execution environment. Signal and message
delivery between GT3 sites is done by dedicated web services. Intergrid com-
munication is implemented with SOAP protocol. The presented example shows
that the new programming environment provides convenient means for design-
ing complicated Grid applications control. Being on the Grid, we can extend
the time consuming parts of the applications and run it on any available clusters
during the middle stage of the algorithm. The best results from the heuristic part
of the application obtained in a shorter time than by the B&B computations,
can support faster finding of the exact solution.

Full implementation of the described system is under construction in coop-
eration with the SZTAKI Institute of Hungarian Academy of Sciences.
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Abstract. Computational grids have provided the usage of computa-
tional distributed resources for computation intensive applications. The
development of programs that use these capabilities is one of the chal-
lenging issues for grid computing. In this article, an effort has been made
to solve this problem by presenting mobile-agent-based parallel program-
ming on the grid. The presentation of this model which has been realized
by extending AlchemiTM grid system with adding agent properties and
navigational commands that let user to develop his program by using mo-
bile agents. To evaluate the system, algorithms of matrix multiplication
and convex hull have been implemented in the mentioned system.

1 Introduction

Computational grids [4] have facilitated the coordinated and reliable deployment
of geographically distributed resources for usage in computation intensives appli-
cations in a reliable, secure and managed situation. Development of applications
are challenging because of the heterogeneity of resources.

Mobile agents [1] have been used for parallel programming on the grid in
this work. Agents’ autonomy and mobility will cause the deploying them in
dynamic networks. Movement of code toward data is one of the major advantages
of using mobile agents in parallel programming over message-passing, specially
when exchanging data is massive, as well, the mobile-agent-oriented parallel
programs are more eligible.

In this paper, for using grid amenities as well as gaining benefit from mobile
agents in making parallel programs, a grid infrastructure called AlchemiTM [7],
has been used. AlchemiTM is a .NET-based, low-volume, full-ability and open
source system. AlchemiTM supports objects’ weak mobility[2]. The Object’s weak
mobility means that after moving an object we can only execute it from the be-
ginning. While in programming by mobile agents, we need agent strong mobility,
which provides the continuation of thread execution from the point where the
previous execution was left.

According to the above points, fundamental changes in AlchemiTM have been
made at this paper and the capability of inter-thread communication and strong
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mobility have been added to it to enable the agent-oriented parallel program-
ming. We have called the new system Alchemi+. The conducted tests for the
evaluation of the performance of the new system indicate an achievement of a
higher efficiency than MPICH-G2 (execution of MPI programs on Globus Toolkit
[6] provider).

In the rest of this article, in Sect. 2, we will glance through the backgrounds
to the focus of this paper, and then we the performed changes in AlchemiTM will
be mentioned in Sect. 3. Section 4 presents the performance evaluation of the
new system, called Alchemi+, by two algorithms of matrix multiplication and
convex hull. At the end, we will present the conclusion of the article and probable
future works.

2 Background

We will state a brief background about grid, the role of agents in grid computing,
Messengers and finally AlchemiTM system.

Grid. The goal of grid computing is the illustration of a huge, powerful, virtual
and self-managing computer which has been constructed from heterogeneous
connected systems each of which shares a combination of resources. Ian Foster,
one the founders of GlobusTM project has defined Grid Technology as follows:

Grid technologies seek to make this possible, by providing the protocols, ser-
vices and software development kits needed to enable flexible, controlled resource
sharing on a large scale. [4]

In the 90’s Metacomputing projects provided the appropriate background
for current grid projects. At present, abundant grid infrastructures have been
developed, each one concentrating on special aspects of grid computing. Globus
ToolkitTM is the most famous grid core infrastructure that has been established
based on Open Grid Services Architecture (OGSA) standard.

Agents and Grid Computing. Many efforts have been made to use agents in
various aspects of grid computing. In [5] a four-layered architecture has been pre-
sented to make a computational grid that uses mobile agents in beneath layer
for sharing computational resources of computers. In other effort, the agents
have been used to resource management [3] in grid. In the present article, in
quite different activity from the other mentioned previously, mobile agents have
been used in parallel programming on grid infrastructure. This approach has
brought about the combination of the advantages of using mobile agents in par-
allel programming with those of deploying grid infrastructures that are providers
of abundant computational resources available to parallel applications in a reli-
able and secured manner.

One of the most important systems which has been used the mobile agents in
parallel programming is Messengers [1]. In this system, the applications, which
are called Messengers, develop as a set of threads, with the ability to immigrate.
Each messenger can stop its execution, move to other node and then continue
its execution from the previous point and status by using hop() statement. In
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Messengers, the mobile agents is used as a programming model. Strong mobility
has been enabled in Messengers system, but this system can be executed on one
LAN.

In this article, suggested model of Messengers has been deployed for adding
the parallel programming possibilities based on mobile agents on the grid with
this difference that the modified system (Alchemi+) includes merits such as
scalability.

AlchemiTM Framework. One of the systems which provides grid computing on
a network of personal computers is AlchemiTM system[7]. This system has been
implemented on WindowsTM and uses .NET Framework. Despite its low volume,
it has provided a strong and flexible infrastructure for grid computing by using
efficient architecture and components. Grid thread and Grid job models have
been suggested for writing grid programs and execution of legacy applications
on the grid. Also, this system can communicate with the other web service based
grids. In this system, it is not possible to communicate between threads during
execution that led to it is applied only in parallel applications are decomposable
to the completely independent tasks.

3 Alchemi+: Agent-Based Distributed Computing on the
Grid

To provide the agent-based parallel programming on the grid, inter-thread com-
munication and strong mobility have been added to AlchemiTM.

3.1 Inter-thread Communication

The communication among threads (Gthread objects) is not possible in
AlchemiTM. Due to need to inter-thread communication in mobile-agents-based
programming, GMonitor class has been installed. The GMonitor class can per-
forms on threads which are situated on different computers. A list of GMonitor
class methods is presented in Table 1. The information of the lock and locked
object transfers with the method of GMonitor.Enter through the interface of
each agent. Whenever each agent wants to use the object, it will check it with
the GMonitor.EnterT ry method and if there is a lock on it, it will be suspended
until the lock is released.

Table 1. GMonitor class members

Enter,
TryEnter

Obtains a lock for an object. This action also marks the beginning of a
critical section.

Wait Releases the lock on an object in order to permit other threads to lock
and access the object.

Pulse,
PulseAll

Sends a signal to waiting threads. The signal notifies a waiting thread
that the state of the locked object has changed.

Exit Releases the lock on an object. This action also marks the end of a critical
section protected by the locked object.
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3.2 Strong Mobility Implementation

We have deployed the translation of strong mobile codes to weak mobile codes
as our strategy for implementing agents’ strong mobility. The translation des-
tination is GThread class, which is one the AlchemiTM API classes and it has
weak mobility.

Each method is translated to a serializable inner class derived from GAgent
class which contains the activation record of that method. Local variables,
method parameters and program counter are converted to the fields of this class.
The execution of expressions and program counter changing should be performed
as atomic unit to permit the agent to move from one place to another with no
information loss. Go() method will cause the movement of an agent to its new
destination. Each mobile agent should implement IAgent interface (directly
or indirectly). Go() function is one of the members of IAgent interface.

The GAgent class is the implementation of IAgent interface and provides
various methods. A list of important methods ofGAgent class has been presented
in Table 2. The user code should be written in a GAgent derived class. Agent
execution will begin from start() method and therefore the user executive code
should be situated in this method. The code uses GAgent class methods to write
agent-oriented parallel algorithms.

Table 2. GAgent class members

From Returns the previous Node before Go
FromLink Returns the previous Link before Go
getContextInfo Returns the Agent’s context Info
getNode Returns the node on which the agent resides now
Go Moves this Agent to another host.
Id The unique id associated with this agent.
Replicate Replicates Agent and Moves it to GNode destination.
Start An agent does its main work in Start method.
Terminate Terminates Current Agent

Method Translation. The pre-processor generate a class for each agent
method. the object of this class represent the activation records of that method.
Activation record class of each method is defined as the subclass of
MarshalByRefObject class. Consider the sample function in Fig. 1. The x pa-
rameter, local variable y and program counter will be some of the properties of
the class sample. The existence of a method such as setPCforMove() is essential
to the suspension of execution and the movement of a thread. This method stores
the current program counter and then assigns -1 to it. Run() method includes
the translated code from the sample() function. To dominate synchronization
problems, each thread respectively requests and releases a lock before and after
the execution of expression. This work is performed by read accomplished() and
request read() functions. The generated activation record class from sample()
function is shown in Fig. 2.
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public void sample(int x) {
// local variables
int y;

// blocks of statements

BC1

BC2

}

Fig. 1. Structure of sample() method

[Serializable] protected class
_sample : MarshalbyRefObject{
int x,y, progCounter = 0;
Object trgt;
void setPCForMove() { ...}
void run() {
try { ...
this.request_read();
if ((progCounter = = 0)) {

progCounter+=1; BC1 }
this.read_accomplished();
this.request_read();
if ((progCounter = = 1)) {

progCounter+=1; BC2 }
this.read_accomplished(); }

catch(Exception e) { ... }} ... }

Fig. 2. Generated class from sample()

4 Performance Evaluation

To evaluate the performance of Alchemi+, two algorithms of “convex hull” and
“matrix multiplication” have been implemented with it. In addition, the al-
gorithms have been compared with the message-passing versions of them on
MPICH-G2 and MPICH. The execution environments of the algorithms have
been presented in Table 3.

Table 3. Specifications of environments used for experiments

Alchemi+ MPICH-G2 MPICH
Processors 8 * P4 2.4 GHz 1 * P4 2.4 GHz 8 * P4 2.4 GHz

OS Windows XP Redhat Linux 9.0 Redhat Linux 9.0
Middleware .NET Framework Globus Toolkit 3.2 OS Kernel

4.1 Matrix Multiplication

One of the methods for implementing distributed matrix multiplication is block
circulating. Figure 3(a) shows how this algorithm operates. Figure 4 presents the
pseudo-code of this algorithm. The obtained execution results of this algorithm
on three environments are shown in Table 4. The size of the matrices is [160,
160] and [180, 180], respectively. The time unit is millisecond.

The reason for declining the performance of the Alchemi+ algorithm by
increase of the number of processors and performs weaker than MPICH and
MPICH-G2 is the amount of overheads and the nature of matrix multiplication
algorithm. In detail, when the number of processors increases, the computing
block size decreases, and as a result, the ratio of communication to computa-
tion will increase. Because of the overheads that this system adds to real data
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(a) Matrix Multiplication (b) Convex Hull

Fig. 3. Distributed Algorithms on Alchemi+

1 matrix_mult(m)
2 {
3 master=this.getContextInfo();
4 procs=m*m;
5 for(k=0;k<m;k++){sync=0;
6 // goto all slave nodes
7 for(i=0;i<GNodeCollection
8 .getNodeCount();i++)
9 this.Replicate(GNodeCollection
10 .Item(i));
11 if(node.j==(node.i+k)%m){
12 //copy A to nodes in same row
13 this.A=copy(this.getNode().A);
14 for(i=0;i<GNodeCollection
15 .getNodeCount();i++)
16 if(GNodeCollection.Item(i)
17 .getName().equals("row"))
18 this.Replicate(GNodeCollection
19 .Item(i));
20 } this.Terminate();

21 multiply(); //Cij=Aij*Bij
22 try{ // barrier synchronization
23 GMonitor.Enter(sync); sync++;
24 if(sync!=proc) GMonitor.Wait(sync);
25 else GMonitor.PalseAll(sync); }
26 finally{ sync=0;
27 GMonitor.Exit(sync); }
28 this.B=copy(this.getNode().B);
29 //rotate B to columni 1
30 this.Go(this.FromLink("-column"));
31 this.getNode().B=copy(this.B);
32 try{//barrier synchronization
33 GMonitor.Enter(sync);
34 sync++;
35 if(sync!=proc)GMonitor.Wait(sync);
36 else GMonitor.PalseAll(sync);
37 } finally{
38 sync=0;
39 GMonitor.Exit(sync);
40 } } }

Fig. 4. Matrix multiplication pseudo-code in Alchemi+

Table 4. Results of matrix multiplication. execution on three environments

[160,160]*[160,160] [180,180]*[180,180]
N MPICH MPICH-G2 Alchemi+ MPICH MPICH-G2 Alchemi+
1 49.655 75.351 56.504 76.380 103.064 89.737
2 33.752 47.492 40.698 52.158 73.736 65.421
3 21.764 31.712 28.537 39.119 54.604 48.000
4 17.311 24.892 24.267 29.035 40.286 36.050
6 14.203 18.802 20.914 20.689 28.119 27.140
8 11.683 15.896 19.800 17.100 21.407 24.412
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at the time of communication, which is a summation of overheads of .NET,
AlchemiTM and finally Alchemi+, the speed of program execution will decrease.
While executed program on MPICH, will be executed with the least possible
overhead. Nevertheless, despite this weakness, the ability to execute the code on
a wide dispersed grid has been provided by his system. In general, the execution
of the programs that consist high-related subtasks on the grid is not beneficial.

4.2 Convex Hull

The convex hull algorithm from “divide and conquer” class, needs the making
of a dynamic search tree. As illustrated in Fig. 3(b), the program divides the
points into two subset with a size of n

2 . To solve this problem, in Fig. 5, a
program written by using Alchemi+ API, has been presented. Table 5 contains
the execution results. The size of problem is 30 and 50, respectively. In this
algorithm, because the volume of the data transferred by the agent is lower than
the former example, the performance of Alchemi+ has predictably moved closer
to that of of MPICH and further away from that of MPICH-G2.

1 convex_hull(points) {
2 for (i = 0; i < max_level; i++) {
3 this.Replicate(new GLink("right"));
4 this.Replicate(new GLink("left"));
5 mid_pt=top_pt+(tail_pttop_pt)/2;
6 if (FromLink().getName=="left’’)
7 tail_pt = mid_pt1;
8 if (FromLink().getName=="right’’)
9 top_pt = mid_pt1;

10 } my_pt = convex(top_pt, tail_pt);
11 for (i = max_level; i > 0; i--) {
12 this.Go(this.From());
13 if (other_pt = = NULL) {
14 other_pt = my_pt;
15 this.Terminate();
16 } else
17 my_pt = merge( my_pt, other_pt);
18 }}

Fig. 5. Convex hull pseudo-code in Alchemi+

Table 5. Results of convex hull execution on three environments

N=30 N=50
N MPICH MPICH-G2 Alchemi+ MPICH MPICH-G2 Alchemi+
1 0.360 0.462 0.377 2.055 2.363 2.158
2 0.258 0.297 0.271 1.104 1.430 1.270
3 0.192 0.238 0.212 0.651 0.984 0.810
4 0.159 0.207 0.190 0.462 0.787 0.693
6 0.134 0.178 0.151 0.344 0.551 0.481
8 0.087 0.155 0.113 0.238 0.503 0.385

5 Conclusion and Future Works

In this article, Alchemi+ system, which provides mobile-agent-based parallel
programming on the grid, has been presented. This has been carried out by
adding navigational statements to parallel programming by the use of agents on
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AlchemiTM. Some of the most important modifications in this system are: The
addition of GAgent class, from which user programs with inheritance are con-
structed, and include navigational statements and other agent-based program-
ming tools as well as GMonitor class which provides communication between
threads. Moreover, by the execution of two algorithms of matrix multiplication
and convex hull, the performance of this system has been evaluated.

By evaluation of the results, we can claim that above system has performed
better than MPICH-G2 in most cases. The measured speedup of the system in
the two foregoing tests has an almost linear and acceptable growth. The following
are some of the works which can be done in the future in the same direction as
that of the present article:

1. The execution of the full-applied algorithms such as CSG and BSP Tree on
Alchemi+ system to evaluate the performance of the system more exactly.

2. Optimization in the synchronization of the mobile agents.
3. Using the performance-measurement tools to evaluate the system.
4. The implementation of algorithmic skeletons on the Alchemi+ system.
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Abstract. The Internet computing model with its ubiquitous networking and
computing infrastructure is driving a new class of interoperable applications that
benefit both from high computing power and multiple Internet connections. In
this context, grids are promising computing platforms that allow to aggregate dis-
tributed resources such as workstations and clusters to solve large-scale problems.
However, because most parallel programming tools were primarily developed
for MPP and cluster computing, to exploit the new environment higher abstrac-
tion and cooperative interfaces are required. Rocmeμ is a platform originally
designed to support the operation of multi-SAN clusters that integrates applica-
tion modeling and resource allocation. In this paper we show how the underly-
ing resource oriented computation model provides the necessary abstractions to
accommodate the migration from cluster to multicluster grid enabled computing.

1 Introduction

Many researchers have contributed to important aspects of grid computing allowing
applications to share and aggregate distributed resources that cross the cluster boundary.
However, because most parallel platforms were built for MPP and cluster computing,
programmers still don’t have tools to exploit the grid in a straightforward way.

1.1 Distributed Parallel Applications

By its nature, the Grid seems to be the perfect platform to run application systems that
integrate multiple cooperative parallel applications distributed across the Internet. Each
parallel application should exploit local high performance hardware.

A parallel application should be able to launch other applications or instantiate spe-
cific remote components. In addition, components of distinct applications should be
able to exchange data through message passing or by accessing remote memory. Paral-
lel applications started independently, eventually running on different computing sys-
tems and under the control of different users, should be able to establish some kind of
relationship. To achieve cooperation between distinct applications we need mechanisms
to represent application entry points and to discover application components.

The concept of application system aims to aggregate collaborative application com-
ponents spread among multiple architectures and machines. Independently of the re-
sources used and the administrative domains and users involved, the programmer should
be able to produce a unified system view of the application system. Moreover, different
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programmers/users would benefit from the existence of multiple distinct views shaped
according to their different interests.

1.2 The Rocmeμ Approach

Rocmeμ combines the facilities of two systems: RoCl [2] and mεμ [3].
RoCl acts as a base layer interfacing low-level communication subsystems gen-

erally available in clusters. It constitutes a basic single system image, by providing
interconnectivity among communication entities despite their location. Those applica-
tion entities we name resources may exchange messages despite the underlying com-
munication subsystems. The RoCl dispatching mechanism is able to bridge messages
from GM to M-VIA, for instance. A cluster oriented directory service allows program-
mers to announce and locate application resources thus turningRoCl into a convenient
platform to drive multi-SAN clusters that integrate multiple subclusters (Myrinet and
Gigabit subclusters, for instance) interconnected by multihomed nodes.

mεμ was implemented overRoCl and provides higher-level programming abstrac-
tions. Basically, it supports the specification of physical resources, the instantiation of
logical resources accordingly to the real organization of physical resources and high-
level communication operations between logical resources.

(a) RoCl (b) mεμ

Fig. 1. Resource interaction in RoCl and mεμ

Figure 1 depicts the main difference between RoCl and mεμ abstraction mod-
els; while RoCl (figure 1(a)) provides unstructured communication between resources,
mεμ (figure 1(a)) offers mechanisms to organize resources and exploit locality.

Rocmeμ, as an overall platform, is well suited to the development of applications
aimed to exploit multi-SAN clusters that integrate multiple communication technolo-
gies such as Myrinet and Gigabit. The corresponding programming model has proved
to be very useful to manage the distinct locality levels intrinsic to that system archi-
tecture. The approach provides the necessary abstractions at the application level to
accommodate the evolution from cluster to multicluster grid enabled computing.

2 Resource Oriented Communication

RoCl is an intermediate-level communication library that allows system programmers
to easily develop higher-level programming environments. It uses existing low-level
communication libraries to interface networking hardware, like Madeleine [4].
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2.1 General Concepts

RoCl defines three major entities: contexts, resources and buffers. Contexts are used
to interface the low-level communication subsystems. Resources permit to model both
communication and computation entities whose existence is announced by registering
them in a global distributed directory service. To minimize memory allocation and pin-
ning operations,RoCl uses a buffer management system; messages are held on specific
registered memory areas to allow zero-copy communication.

Every application should initialize a RoCl context, register some resources, query
the directory to find remote resources, request message buffers, address messages to
resources previously found and retrieve received messages from a local queue.

RoCl includes a fully distributed directory service where resources are registered
along with their attributes; a directory server is started at each cluster node and all appli-
cation resources are registered locally. A basic interserver protocol allows applications
to locate remote resources; query requests are always addressed to a local server but, at
any moment, servers may trigger a global search by broadcasting the request.

Resources are animated by application threads which share the communication fa-
cilities provided by contexts. On the other hand, RoCl supports the simultaneous ex-
ploitation of multiple communication technologies being responsible for selecting the
most appropriate communication medium to deliver messages to a specific destination,
for aggregating technologies when the target resource of a message can be reached
through distinct technologies and for routing messages at multihomed nodes that inter-
connect distinct subclusters. To provide the above facilities, RoCl uses a multithreaded
dispatching mechanism and includes native support for multithreaded applications.

2.2 Multicluster Operation

The evolution of RoCl from the cluster environment (multisubcluster) to the grid envi-
ronment (multicluster) is highly dependent on the capabilities offered by its distributed
directory service. The ability to locate resources at cluster level is primarily based on
broadcast which does not scale to the grid environment.

RoCl was improved to include resource location in grid environment by means of
a directory proxy installed at each cluster. A directory server unicasts query requests to
all known proxies, whenever it fails to obtain replies from servers inside its cluster.

Resource lookup in a multicluster environment comprises the following stages: (1)
the application sends a request to the server running in the same node, (2) that server
searches its local database, (3) the request is broadcast to all cluster servers, (4) those
servers search their databases, (5) the request is sent to all known proxies that repre-
sent the known remote clusters, (6) proxies broadcast the requests to servers, (7) those
servers search their databases and finally (8) the replies are sent to the proxy of the
cluster where the query process started. The query process may conclude after stages 2
or 4 depending on the location of the resource. It is also possible to specify the scope
of a particular query (node, cluster or multicluster) thus bounding the lookup process.

The dispatching mechanism uses a similar approach in order to deliver messages to
resources instantiated on nodes from remote clusters. In effect, the directory proxy also
acts as a message forwarder; when the dispatching mechanism knows that a resource is
from a remote cluster, it sends the message to the proxy of that remote cluster.
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3 Unified Modeling and Exploitation

mεμ programing methodology includes three phases: (1) the definition and organiza-
tion of the concepts that model the parallel computer - physical resources -, (2) the
definition and organization of the entities that represent applications - logical resources
- and (3) the mapping of the logical entities into the physical resources.

The programing interface is organized around six basic abstractions (see figure 2)
designed for modeling both logical and physical resources: (1) domains - to group or
confine a hierarchy of related entities; (2) operons - to delimit the running contexts of
tasks; (3) tasks - to support fine-grain concurrency and communication; (4) mailboxes
- to queue messages sent/retrieved by tasks; (5) memory blocks - to define segments of
contiguous memory; (6) memory gathers - to create the illusion of global memory.

block gathermailboxtaskoperondomain

Fig. 2. mεμ entities

3.1 Representation of Resources

As an instantiation of the first phase of the methodology, figure 3(a) shows how the
physical resources of a parallel machine made of distinct technological partitions may
be modeled by a hierarchy of domains. At the top-level, the domain Cluster has as its
direct descendants three subclusters Quad Xeon, Dual PIII and Dual Athlon. At each
subcluster, nodes are modeled by Node Ax, Node Bx and Node Cx.

The second phase is illustrated in figure 3(b) by a high-level specification of a sim-
ple distributed web crawler. The crawling process is modeled by a top domain that
represents the application whose descendants are a certain number of Robots mod-
eled by operon resources. Further refinement introduces three different sorts of tasks
(Download, Parse and Spread) to model the three well known crawling stages: (1)
downloading of pages from the web, (2) parsing the pages to obtain new URLs and
(3) distribution of URLs for future crawling, according to a certain partitioning scheme.
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Finally, Pending models a general global accessible mailbox used by Download tasks
to store/retrieve pending URLs.

Resources are named and globally identified entities to which we may attach lists
of properties. In figure 3(a), FastEthernet, Myrinet and Gigabit are properties that qual-
ify Cluster and Subcluster domains, while CPU=2 and Mem=512 are another sort of
properties used to quantify characteristics of nodes Ax and Cx.

mεμ resources accumulate properties inherited from their chain of ancestors. In-
heritance allows resource properties to be propagated top-down from ancestors to de-
scendants, while synthesis is the reverse mechanism. mεμ also introduces the concept
of resource alias which is a virtual resource node, used as a proxy to one or more ex-
istent nodes. In addition to the ancestor and descendants, an alias also has one or more
originals, which share with it their own full set of accumulated properties. Aliases are
represented as dashed shapes and the dashed arrow coming from each original in the
direction of an alias represents the mechanism that allows for the sharing of the original
accumulated properties with the target resource (see figure 4).

3.2 Integration of Hierarchies

To map the abstract logical representation, derived from the second phase, into physical
resources, programmers should use mεμ primitives. Next, we describe the mapping
process used to produce the hierarchy presented in figure 4, which corresponds to the
fusion of two hierarchies - the hierarchy that represents the cluster (figure 3(a)) and the
hierarchy that represents the application (figure 3(b)).

First, the application identifies the target physical resources - the subclusters Quad
Xeon and Dual Athlon. Then, the alias domain Crawling is created to express the ef-
fective selection of physical resources. This domain represents a particular view of the
available physical resources. Subsequently, operons Robot may be launched by specify-
ing the alias Crawling as the target. Themεμ runtime system will automatically select a
node among the nodes of subclusters Quad Xeon and Dual Athlon, instantiate an operon
on that node and create an alias under the domain Crawling.

...

......

...

Cluster

RbtRbt

Pending

Quad Xeon
Sub−Cluster

N. C1 N. Ck

Dual Athlon
Sub−Cluster

Crawling

N. BmN. B1

Rbt Rbt Rbt Rbt

RbtRbt

Parse

Pending

Fig. 4. Resource mapping



Bridging the Gap Between Cluster and Grid Computing 201

It is important to note that the integration of hierarchies preserves the original or-
ganization of the logical hierarchy through aliases but introduces a system view which
combines physical and logical resources. The system view does not take into account
aliases but allows to reach any component without knowing the application structure.

3.3 Multicluster Exploitation

In a grid environment, the physical hierarchy of the application example depicted in
figure 4 will be extended to include, at least, an additional top-level domain. The new
root domain would have multiple descendant domains representing each of the clusters.

The multicluster environment enforces the need to control the access to resources.
mεμ allows to specify access control lists for each resource which are used to validate
(1) the creation of descendants and aliases and (2) the access to resource properties. The
selection/allocation of physical resources will thus be denied for unauthorized users as
well as the access to logical resources (messaging and memory access).

mεμ offers high-level structured message passing that allows any received mes-
sage to be implicitly broadcast to the totality of the active descendants of a logical
domain. This is a valuable feature of the resource oriented paradigm particularly suited
for a cluster environment where broadcast can be efficiently implemented at the hard-
ware/software level. In a multicluster environment programmers must be aware of po-
tential bottlenecks caused by logical domains that traverse distributed clusters.

Resource selection, through the creation of an alias that aggregates multiple phys-
ical domains, requires several mεμ lookup operations. Since those operations are im-
plemented using globalRoCl queries, the use of this functionality must be occasional.

4 Deploying Applications

Rocmeμ constitutes a very simple approach for the development and execution of ap-
plications in some particular grid scenarios - multicluster systems where the nodes at
each cluster may be interconnected by Myrinet, Gigabit and/or FastEthernet. Cluster
administrators are responsible for installing Rocmeμ libraries and services while pro-
grammers use mεμ programming interface to develop applications. Users are also re-
sponsible for defining a virtual cluster to support the execution of the application.

4.1 Virtual Clusters

Users may define virtual clusters – subsets of the totality of multicluster resources – us-
ing a web portal where the nodes of each cluster are graphically represented. Figure 5(a)
depicts the reservation of 15 nodes spread through three clusters.

Based on user’s selection, (1) the system manages to create a global user account,
(2) the mεμ physical hierarchy is updated to include the right access control lists and
(3) some mεμ aliases are created in order to produce a suitable view (see figure 5(b)).

4.2 Multicluster Wide Access

In a multicluster environment, the first problem to solve is TCP/IP connectivity, be-
cause of private networks, firewalls, etc. Our approach uses OpenVPN to provide full
connectivity among multicluster nodes despite the composition of each virtual cluster.
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Fig. 5. Creating a virtual cluster

SinceRocmeμ allows to dynamically start application components, we also needed
to extend rsh/ssh to support multicluster operation.Rocmeμmaintains a pool of shadow
accounts at each cluster and thus the virtual global account created when the user re-
serves multicluster nodes is mapped into multiple (real) shadow accounts.

Finally, access to binaries and application data requires some kind of multicluster
file system. Our approach is to extend NFS by introducing appropriate proxies. This
idea has already been investigated and deployed in the context of PUNCH [7], a wide-
area networking computing environment.

5 Discussion

In the last decade PVM and MPI have dominated the field of parallel computing. The
paradigm still remains the main choice for grid programming as attested by current ports
like MPICH-G2 [8] and other platforms to run unmodified PVM/MPI applications [9].

Message passing is more adequate than the connection based approach for exploit-
ing the parallelism of distributed memories in grid and web services [6]. However, fine
grain synchronization is not easily achieved in a grid environment, meaning that grids
cannot be programmed as flat huge machines made of a larger number of processors.

Rocmeμ offers programmers the possibility of structuring the communication be-
tween resources in a multicluster environment following the same principles that lead
to the organization of a cluster into subclusters. Taking into account the hierarchy of
a multicluster grid and the available interconnection technologies, programmers may
take advantage of locality at: (1) SMP nodes, where processors share memory, (2) sub-
clusters, where nodes are interconnect by a sole high performance communication tech-
nology, (3) clusters, where subclusters are interconnect by multihomed nodes and (4)
multicluster grid, where clusters are interconnected by Internet links.

Programmers need the power of grids to build and deploy applications that break
free of single resource limitations to solve large-scale problems. Although much work
have been done in the context of Globus [5] to exploit grid resources, Rocmeμ of-
fers as a unique feature the integration of: physical resource specification, application
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modeling and logical components instantiation, providing much of the operations iden-
tified in [1] as key functionality for developing grid applications.
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Abstract. Web Service Resource Framework (WSRF) is a recent effort
of the grid community to facilitate modeling of the stateful services.
Semantic Web Services initiative is proposing a standard called OWL-
S to help the automated discovery, composition and invocation of the
services. This article describes a broker based architecture, which tries
to combine WSRF and OWL-S in a way to enable automated discovery
and invocation of the stateful services. Analysis of the requirements are
provided and an application scenario is described, which has been used
to evaluate the architecture.

1 Introduction

Recently, Web service (WS) technologies are gaining importance in the imple-
mentation of the distributed systems, especially grids. One such example is the
Web Service Resource Framework (WSRF) [4], which extends the current WS
technologies by modeling the stateful services. Design and development of the
service oriented distributed system is quite common and there are several emerg-
ing WS initiatives, which tries to automate the process of discovery, composi-
tion and invocation of services. The semantic web services are a typical example,
showing the potential of how ontological modeling can improve the shortcomings
of the service oriented computing.

In this paper we propose the semantic description of the stateful web services
introduced by the WSRF specifications. We also describe a corresponding dis-
tributed broker based architecture for discovery and invocation of both stateful
and stateless services. We provide a brief overview of the semantic web services
specification (OWL-S) and show how it can be used to model the basic stateful
services as described by the WSRF.
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2 Semantic Web Services

One of the challenges of the loosely coupled distributed systems is the ability
to dynamically discover and integrate the services needed by the applications.
Interoperability among services is especially important in the distributed envi-
ronments hosting a large number of services, i.e. grids. Semantic descriptions
facilitates the process by expressing the characteristics of the service, which can
later be used for their discovery, composition and invocation. The rich semantics
needed for such descriptions can be provided by the ontologies.

OWL-S is an ontology-based approach to the semantic web services [1]. The
structure of the ontology consists of a service profile for advertising and dis-
covering services, a process model which supports composition of services, and
service grounding, which associates profile and process concepts with underly-
ing service interfaces. Service profile (OWL-S profile) has functional and non-
functional properties. The functional properties describe the inputs, outputs,
preconditions and effects (IOPE) of the service. The non-functional properties
describe the semi-structured information intended for human users, e.g. service
name, service description, and service parameter. Service parameter incorporates
further requirements on the service capabilities, e.g. security, quality-of-service,
geographical scope, etc. Service grounding (OWL-S grounding) enables the ex-
ecution of the concrete Web service by binding the abstract concepts of the
OWL-S profile and process to concrete messages. Although different message
specifications can be supported by OWL-S, the widely accepted Web Service
Description Language (WSDL) is preferred [2].

Other frameworks for semantic descriptions of the services, such as WSMF [16]
and IRS [17], provide more elaborate service descriptions. Since we have focused
mainly on the discovery and invocation, OWL-S was sufficient for our purposes.
We have also considered the level of implementation and the number of tools
available for WSMF and IRS.

3 WSRF

WS-Resource Framework (WSRF) is a set of specifications, which are based
on the concept of modeling state as stateful resource and codify the relationship
between Web Services (WS) and stateful resource in terms of a set of conventions
on current (i.e. stateless) WS technologies [4]. A stateful resource is defined as
having specific state data expressible as an XML document and a well defined
life-cycle. It can be acted upon by one or more Web services, e.g. files in a file
system or rows in a relational database are considered a stateful resource. Fig. 1
shows a sample implementation scenario for the stateful service in the globus
toolkit environment (GT4) [5].

In the example a virtual bookstore, which can buy and sell books is mod-
eled. A sample stateful resource is a book, which is defined by various resource
properties, e.g. title, author, price, etc. Adding a particular book is performed by
contacting a service factory, which creates an instance of the resource (binding of
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Fig. 1. Sample implementation scenario for the WS-Resource

service and particular resource) and returns an identifier, i.e. so-called endpoint
reference. The client can interact with the given resource by calling the methods
exposed by the service instance interface. The pairing of the service instance and
the resource is called a WS-Resource. There can be various different interfaces
for the same resource, e.g. for buying books, selling books, listing books, etc.
The actual resource instances are homed by the Resource home, which can be
implemented as either persistent or transient store. Detailed description of the
WSRF is beyond the scope of this paper; for additional details see [4].

4 Overview

In this section we provide an overview of the requirements of the broker based
architecture motivated by the OWL-S Broker [13]. Essentially, broker based com-
munication involves three parties, namely, provider of the services and resources,
a client (requestor) requesting realization of its goals, and broker, which mediates
the communication between provider and requestor.

The proposed broker is focused only on the automated discovery and invo-
cation of services. The operations which should be performed by the broker
include (1) the interpretation of the capabilities of the services, advertised by
the provider, (2) interpretation of the requests from the clients, (3) discovery of
the service, both keyword and semantic based, and (4) execution of the corre-
sponding services.

In OWL-S, the service capabilities are described by the corresponding IOPE
(inputs, outputs, preconditions and effects). Such description can be partly anno-
tated from the WSDL description of the service and is sufficient for the stateless
service. Stateful services, i.e. WS-Resources, however, are composed of a service
and a stateful resource. Since resource as well as corresponding service are well
defined, it is possible to semi-automatically map the resource description with
a domain specific ontology. This can enable automated discovery and execution
for the stateful services. A possible ontological mapping supporting OWL-S and
WSRF is described in the next section.
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5 Service Discovery

In our system, the process of service discovery has three parties, client, provider
and broker. The provider is publishing the profile’s functional and non-functional
properties, called advertisements, to a broker. The client queries the broker for
the given functional and non-functional properties and receives descriptions of
all the relevant services. Service registry is comparing the request to the ad-
vertisements. This is called matchmaking of services. Since requests usually do
not match exactly the advertisements, it is necessary to derive the correspond-
ing match based on the subsumption, e.g. service reserving places in Cantonese
restaurant should also match queries for Chinese restaurant. There are different
ways of performing semantic matching of services [15]; however, in our case we’ll
only consider hierarchy of classes, properties and explicitly defined equivalence.
In the implementation we have defined the degrees of matching by subsequent
matching rules. The rules are based on the subsumption of classes, properties and
also consider explicitly stated equivalence, i.e. the OWL construct owl:sameAs.

We have designed a simple ontology, which describes WS-Resource, i.e. re-
source, resource properties and its association with instance service and service
factory, see Fig. 2. A resource class was defined having one or multiple instances
of resource properties. The instances of resource properties are described by
the identification (xsd:qname) and association to a relevant domain ontology
concept. The resource instance has two object properties, which map the given
resource to a service instance and a service factory. Since resource properties are
already defined as an XML Schema, the ontological description can be created
semi-automatically. The datatype mappings for the WS-Resource is described
in the next section. It should be noted that both ontological and datatype map-
pings describe only the resource properties types, the actual instances of resource
properties are implementation dependent.

In the process of implementation, there were several well known issues in the
OWL-S profile, which were related to the OWL language and the limitations of
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Fig. 2. A simplified schema of the ontological model (right) and datatype mapping
(left) for WSRF services
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the description logics in the description of services. A good survey of the OWL-S
shortcomings is described in [8]. One of the major issues in the profile descrip-
tion is the conditional model. Since conditions refer to the concrete parameter
instances, which are not known before execution, it is necessary to define the
variables.

The latest version of OWL-S is addressing the issue and specifies the con-
ditions by providing a class Expression. Expression is defined by the language
used, e.g. SWRL, RDF [3], KIF [6], and the actual expression. Based on the lan-
guage, the expression is incorporated as either XML Literal or String Literal. In
our case we have used KIF for expressing conditions, therefore it was necessary
to execute the given KIF expression on the instances of the service profiles.

6 Service Invocation

Service grounding for the stateful service differs in the description of the resource
properties document, which is specified in XML Schema [10]. It is thus essential
to define a datatype mapping between XML Schema and OWL-S. Datatype
mapping in OWL-S grounding is based on the RDFS and eliminates previous
shortcomings, which were based on the XSLT approach. Currently, a mapping
between XML schema datatypes and OWL, is based on semantics and uses a
sample RDFS ontology, as described in [8]. The mapping is depicted in Fig. 2 .
It can be seen that the mapping reflects the nested data structures of the XML
Schema. XML Schema SimpleType is mapped to a corresponding OWL type,
which is bound to the datatype property of the OWL-S grounding. Together
with complex and array types, a mapping through RDF property is used to map
the elements to XSDTypes.

The basic WS-Resource has a well defined interface for accessing and mod-
ifying its resource properties and their values. This interface has three main
methods, namely, getResourceProperty, setResourceProperty and getMultipleRe-
sourceProperties. The datatype mapping for the stateful services is based on
mapping the inputs and outputs of these methods to a datatype property of the
domain concept. The actual mapping is based on the RDFS mapping schema,
which is complemented by the ontological mapping to the Resource class.
Schematic representation of the process is shown in Fig 2.

7 Architecture

The architecture is shown in Fig. 3. The overall schema has three main compo-
nents, namely, the client, the broker and the service providers. The broker’s role
is to mediate client requests for the service capabilities and match them with
the description received from the service providers. The broker has knowledge
base (KB) and reasoning engine based on the JTP [9], which is used to store
the service profiles and groundings and to perform the reasoning necessary for
the process of matchmaking. The process of matchmaking is coordinated by the
discovery processor, which receives the client’s requests and queries the KB to
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Fig. 3. Main components of the broker based architecture

find the relevant results. It is also used to process the descriptions from the ser-
vice registries. In order to coordinate parsing of the description of the stateful
service, access to the GT4 WS-core libraries is necessary [5]. The actual invo-
cation of the service is performed by the WSDL invocation processor, which is
also interconnected with the GT4 WS-Core.

The broker needs to interact with the service providers to get the WSDL
and OWL-S specifications. This is accomplished by using the UDDI standard
for service registries [7]. The corresponding mapping from OWL-S to UDDI was
based on [12] and extended to support the stateful service descriptions. The
client is accessing the broker through discovery and invocation API. Discovery
API supports semantic matchmaking as well as keyword based lookups, which
are implemented using the native UDDI API. Further, in order to access the
OWL-S ontologies directly, the client can use the OWL-QL language to query
the knowledge base [11]. This is supported by the fact that in the current im-
plementation OWL-QL is transformed into a KIF query, which is native to our
reasoning engine. The invocation API combines the OWL-S API [1] and GT4
invocation methods [5].

8 Application Scenario

The Flood Forecast Simulation Cascade as shown in Fig. 4 is a hydrometeorolog-
ical application, already well tested and developed during the project CrossGrid
[14]. The application is a cascade (a natural workflow) of several simulation
stages, which leads to the final result - a prediction of a potential flood. The
cascade begins with meteorological prediction of weather for a short future pe-
riod. This prediction is then recomputed into possible watershed, which in turn
affects the water level of the target river. This water level is computed in the
hydrological stage of the application. The resulting hydrograph (time series of
water level values) is fed into the final stage of the cascade - a hydraulic predic-
tion. This - using detailed terrain model of the target flooded area - computes
the water flow in the target area, water depth and flow vectors.
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Fig. 4. Flood prediction scenario showing both stateful and stateless services

In our application scenario the meteorological, hydrological and hydraulic
methods are simple web (stateless) services. The inputs and outputs of the
services are associated with the domain ontology concepts. In contrast, mete-
orological hydrological and hydraulic data services are stateful services, which
are storing resources (in this case files in a file system). The services are also
described by the non-functional parameter, i.e. geographic scope, which cor-
responds to the geographical scope of the data they are able to provide. The
resource properties, i.e. descriptions of the file content, are modeled by the do-
main ontology. The goal of the discovery is to find the appropriate stateful
services for a given region providing data in the required data format (specified
by the resource properties). The subsequent invocation procedure executes the
best suitable instances of services. Although only a static workflow is assumed,
employing the OWL-S process model can enable more complex and dynamic
workflows.

9 Conclusion

We have described a broker based architecture for automated service discovery
and invocation. We have shown a flood prediction application scenario, that we
have used to evaluate the initial implementation. In the future we would like to
extend our work to consider OWL-S process model as well as further WSRF spec-
ifications, such as WS-Notification, WS-Security, WS-GRAM, WS-transfer, etc.
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1 Department of Computer Science,
University of Applied Science Bonn-Rhein-Sieg,

53754 St. Augustin, Germany
2 Central Institute for Applied Mathematics,

Research Centre Jülich,
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Abstract. Although processor speed and memory bandwidth as well as
capacities of persistent storage devices evolved rapidly in the last years,
the bandwidth between memory and persistent storage devices could
not match that pace. As current scientific applications tend to process
an enormous amount of data at runtime, the access to a local disk might
become the main performance bottleneck.

The communication infrastructure for local area networks has also
evolved rapidly, thus modern filesystems for supercomputing are using
storage area network solutions to distribute the load of application i/o to
several special purpose i/o nodes. These san solutions, however, are often
bound to a specific organizational structure, such as different locations of
the same company or several institutes of a university. This often implies
a common user base and accounting information at each site. In a highly
variant grid environment these demands might be hard to meet.

This paper describes the definition of two adio devices for romio, a
publicly available mpi i/o implementation, to provide transparent access
to remote parallel i/o and additionally access to remote i/o on files in
the memory of a remote server. The architecture of these devices allows
for a definition of remote servers on a per job basis, and can be configured
by the user before runtime.

1 Introduction

In 1996, the mpi forum defined an extension to the existing message passing in-
terface [1], formulating a standardized api to i/o for scientific applications. With
its definition, the mpi i/o extension decouples problems of i/o with distributed
data from the user application, and introduces a new layer for the user’s view of
a file.

Modern applications in computational science fields have a growing need for
computer resources. Not only do they need more computational power to meet
greater challenges, they also need the i/o infrastructure to efficiently read and
write the computed data to and from persistent storage. The data used by the
application is, when loaded into memory, often scattered among the processes
to be able to increase the problem size.
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This implies that, in order to save this data to disk, the filesystem has to
be shared with all nodes or the application itself has to deal with different
strategies to efficiently store the data local to one of the nodes. On a very static
configuration of one or two clusters a shared filesystem may still be practical, but
in a highly variable grid of different clusters, a shared filesystem among different
sites may become an administrative challenge.

Traditionally clusters have a shared filesystem using nfs. But nfs was not
designed to fit the needs of access patterns for scientific applications. Multiple
concurrently accessing processes on a single file need a parallel filesystem to
support that kind of concurrency. For example overall throughput can be in-
creased by using multiple independent communication channels. This is one of
the reasons why filesystem in scientific computing move on towards storage area
networks and parallel filesystems like pvfs2 [2], lustre [3], clusterfile [4] or
gpfs [5]. Multiple i/o servers handle i/o requests by multiple clients in parallel
and share workload among the servers.

Each of these filesystems needs some kind of system level configuration, be-
fore it can be used, though. The EU project deisa [6] for example is deploying
a distributed gpfs parallel filesystem between several european IBM clusters.
With a distributed filesystem a supercomputer inherits several constraints like
a common user database within the grid, so this is usually only practical in a
fairly static cluster environment with closely cooperating sites. On clusters that
are only coupled for one specific job or application run, this might be too much
overhead in administration. In the clusterix project [7], e.g. it is planned to
easily integrate many different clusters on a very fluctuating basis. A static dis-
tributed filesystem over these clusters is not practical. Here a flexible interface
to the different filesystems in the grid is needed.

Besides parallel i/o to increase performance and reduce execution time of the
application, another challenge in a highly variant grid environment is the location
of data. In grid middleware like globus [8] or unicore [9], the data is copied
to the desired location before and/or after the job execution. If the application
needed only a small portion of a larger file, this might lead to significant overhead
in job preparation.

But persistent storage is not the only need of scientific applications. During
an application run, the need to migrate large amounts of data temporarily to
disk can also arise. Normally applications would use a temporary filesystem local
to a node to store this data, but these filesystems are usually not shared for
performance reasons. With modern high-bandwidth lan and wan interconnects
collective communication to distant nodes in the cluster can be faster than a
transfer to a shared storage device, as shared resources involve data transfer
anyway. To save the time needed to write the data to disk, it can be stored
much faster, if the remote site keeps them in main memory, i.e. a main memory
based filesystem. This implies that the amount of data stored is more restricted
than for disk based filesystems but today larger clusters have tens to hundreds
of gigabytes of main memory available.
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2 Virtual Filesystems for Transparent I/O

The viola testbed [10] interconnects several partners with a dedicated high
bandwidth optical backbone providing multi-Gbits/s bandwidth. Although the
optical network provides a high bandwidth the latency is bound mainly by the
geographical distance between the different sites. The core backbone used for
a test compute grid of four geographically distant clusters is located within a
100 km radius. The resulting latency has to be taken into account when designing
client-server applications using this network.

The clusters at the distributed sites are multi-purpose linux clusters based on
AMD Opteron and Intel CPUs with different local network topologies, forming
a slightly inhomogeneous network of clusters. To support this inhomogeneity,
metampich [11] is used to provide a common mpi middleware. metampich
itself is based on the commonly available mpich [12] mpi implementation for
linux. It is designed to interconnect several inhomogeneous clusters to provide a
common user view on the grid.

To form a global cluster with different communication interconnects, the
solution with the basic mpich would be to use the p4 communication device,
using tcp/ip as the underlying protocol, as tcp/ip will probably the least com-
mon denominator. This would not honor any local communication interconnect,
which might support faster non-tcp/ip-based protocols for intra-cluster com-
munication. metampich defines special routing processes to enable intra-cluster
communication over the fast local communication device and inter-cluster com-
munication routed over those special processes, using tcp/ip over the wan in-
terconnect. Although the special router processes imply a small overhead in
latency, asynchronous data transfers can perform better than a direct tcp/ip
link to the distant process, as the routers can usually be reached with the fast
local interconnect.

Being based on mpich, metampich also supports mpi i/o based on the
romio [13] mpi i/o implementation, developed and available from Argonne Na-
tional Laboratory. Similar to mpich, romio defines several independent devices
for the supported filesystem, to deal with filesystem specific data handling. On
top of these low level devices is a common layer called adio (Abstract Device
Interface for i/o) [14], which again serves as the api for the mpi implementation.
To support new filesystems, only the creation of a corresponding adio device is
needed, and eventually minor changes to the adio and mpi layer.

2.1 Remote I/O on Harddisks

The parallel i/o project within viola deals with utilizing the provided optical
network for remote parallel i/o. As a static shared filesystem is not feasible
in a highly variant grid, our approach extends the existing middleware to pro-
vide transparent parallel i/o on remote servers without explicit involvement of
distributed parallel filesystems on operating system level.

The tunnelfs adio device redirects a local mpi i/o call and its correspond-
ing data to the remote server instead of issuing a local i/o call. It uses a client-
server message exchange pattern to coordinate the data exchange and uses mpi
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function calls for data manipulation and is therefore able to use the provided
mpi datatypes sending the data to the remote server. With the use of mpi func-
tionality, data buffers do not need to be modified on client or server end, other
than it is done by the mpi function anyway. This enables the use of optimized
communication functions for sending non-contiguous data buffers, already ex-
isting in the mpi implementation. Additionally mpi derived datatypes and file
views defined on the client side can be reused on the server side.

On the receiving end of the communication, the tunnelfs i/o server then
issues the i/o call itself, working as a proxy to the client. The tunnelfs i/o
server naturally has to use a different communicator for the mpi file handle, but
file-views and datatypes can be reused on the server side. Figure 1 shows the
layers of mpi and adio as they are used by the client and server.

Client Server

Application

MPI

ROMIO

MPI

Tunnelfs I/O-Server

ROMIO

ADIO

file system

ADIO

ad_tunnelfs

protocol layer

protocol
 layer

Fig. 1. Layer model of the tunnelfs device

With i/o clients and servers being processes in the same mpi environment,
separate i/o server processes have to be started with the application. Through
the integration of the i/o server binaries with the metampich middleware, this
can be done transparently for the user. In this approach a node running i/o
server processes in one application run can be used for normal computation
purposes in the next run. This results in a highly flexible grid environment,
where the user can declare the amount of i/o servers to support the i/o needs
of his application.

2.2 Remote I/O on Memory

When dealing with i/o hierarchies and their performance, i/o to disk implies
the most penalties to application run time. Therefore i/o to persistent storage is
avoided where possible. As the problem sizes increase, memory local to a process
is a precious resource and usually is very limited for temporary storage of buffers.
Thus applications are often forced to write temporary data to disk, to be used
again later in the application run.
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With the available bandwidth of modern and especially future wide area
networks, another solution for this type of temporary data i/o is amenable.
Instead of writing to a local disk, the use of (multiple) wide area network links
and a distributed remote main memory filesystem for high speed i/o can deliver
the requested high i/o rates.

The memfs adio device implements a user-level, main memory based file
system for non-persistent data within an mpi environment. While the current
implementation of the memfs device is limited to a single node, future versions
will implement a multi-server distributed file system across node boundaries.

3 Integration

When developing mpi applications the user normally starts with a global com-
municator MPI COMM WORLD, containing all mpi processes in the environment. As
i/o clients and servers are present in the same global mpi environment, either
the user application has to have explicit knowledge about the server processes, to
exclude them when communicating with other user clients, or the servers must
not appear in the global view of the user’s application. To enable the transpar-
ent use of our remote i/o, we decided for the latter approach. From within the
MPI Init calls, the reference to the global communicator is saved in a separate
handle, called TUNNELFS COMM WORLD. A new communicator is created containing
either only clients or only servers. This new communicator is then used as a refer-
ence for the MPI COMM WORLD handle in the user application. The communication
between i/o clients and servers is handled with the former global communicator
through the special reference, which is implicitly known to the client adio device
and the server process. The client itself uses the newly created handle, redefined
to MPI COMM WORLD by including a special header file. The domains of the com-
municators used are shown in figure 2. The arrows depict the flow of data for
a user process to the i/o server. If the server is within the local metahost, the
client can directly send the data to the i/o server. If the i/o server is located on
another metahost, the client sends it to its local corresponding router process,
and it gets forwarded from there.

IO

R R

MetaHost A MetaHost B
MPI_COMM_WORLD (Application Level)

TUNNELFS_COMM_WORLD (ROMIO Level)

R MetaMPICH Router Process

IO Tunnelfs IO Server Process

User Application MPI Process

Flow of Data from Client to IO Server

Fig. 2. mpi processes and their affiliation with global communicators
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In mpich the user is able to specifically select an adio device through a
filename-prefix like “nfs:” or “ufs:”. The two new adio devices developed in
viola parallel i/o use the same scheme. They are selected by the prefixes “tun-
nelfs:” for the remote i/o and “memfs:” for the i/o to memory device. Each
device in adio truncates its own prefix from the filename before further usage.
The tunnelfs device does the same, sending only the modified filename to
the remote server. There a separate mpi i/o call is issued using the transfered
filename, also recognizing a valid filesystem prefix. Therefore the user can also
specify a specific filesystem on the server by combining the tunnelfs prefix
with another prefix. To specify remote i/o to memory the user can therefore use
the combined prefix “tunnelfs:memfs:”.

The tunnelfs device currently supports remote datatype definition for mpi
derived datatypes. With tracking local datatypes and their remote definition,
the server is able to set its local file view accordingly to the user defined file view
for a specific process. The user can access any file on a filesystem local to the
remote i/o server, provided the filesystem is accessible by the mpi subsystem.

4 Results

The current prototypes of tunnelfs client-device and server are able to handle
a single i/o server in the mpi environment. We have successfully tested intra-
cluster i/o without a preconfigured shared filesystem. The target filesystem can
be chosen to be any filesystem supported by the adio layer.

The current version of the memfs device supports accesses only to the local
main memory the adio device runs on. In future versions the memfs device
will implement a distributed main memory based file system between multiple
memfs servers that distribute data and load.
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To evaluate the tunnelfs and memfs we ran an mpi benchmark program
that measured 8 different mpi i/o operations. Results are given as average band-
width numbers over these operations. We ran our tests on 2 clusters connected
with a dedicated 100 km distance 10 GigE fibre network and 1 GigE network
cards in each cluster node connected to a cluster switch. All cluster nodes are
4-way SMP nodes with 10.000 rpm SCSI disks accessed locally on a node by a
UFS device, and an NFS-mounted RAID-5 based shared filesystem hosted by a
cluster file server.

Performance results as given in figure 3 show that with tunnelfs on the se-
lected bundle of mpi i/o operations up to 50% of the nominal network bandwidth
(GigE for inter-cluster as well as Myrinet for intra-cluster) can be sustained. Cur-
rently, bandwidth other than for NFS is limited by the network adapter (1 GBit)
on the single server node rather than by an i/o device. With multiple tunnelfs
i/o servers in the future, this bottleneck will be eliminated. The memfs device
accessed locally on a node as a usual local ADIO-device reaches several GB/s
bandwidth.

5 Related Work

The problem to access data directly on a remote site, for example from a cen-
tral file server, was already addressed in 1997 with the rio filesystem, and was
continued by the work on rfs [15], both of which use tcp/ip to access the
remote server. Although tcp/ip is available to almost all modern clusters, it
might not always be the most efficient way to communicate. Almost all cluster
or interconnect manufacturers supply an mpi implementation that can make use
of special communication hardware, without using the generic tcp/ip interface.
Using these special communication interfaces will usually result in improved
performance.

6 Conclusion and Future Work

We defined a communication protocol between i/o client and server based on
mpi point-to-point messages and implemented two virtual filesystem devices in
romio for remote parallel i/o and i/o to main memory. The filesystem device
for remote parallel i/o can be used to tunnel i/o requests to a remote server, and
to be issued at the remote location. At the remote location any other supported
filesystem but tunnelfs itself can be used. The memfs filesystem device for
i/o to main memory can be used with or without the tunnelfs device. Both
devices support most of the mpi i/o calls defined. Almost all mpi i/o functions
of mpi-2 but remote error handling are currently supported.

Current development efforts concentrate on the multi-server environment.
The i/o servers will be aware of other i/o servers in the environment, and if
suitable share workload and data automatically. The workload sharing for the
tunnelfs device will be implemented on the level of mpi file views, whereas the
memfs device will also support other data distribution methods.
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Abstract. We present a new system BeesyCluster which can be seen as an
easy-to-use access portal to an expandable network of services deployed and
published on clusters or PCs with virtual payments for the use of services. Ad-
ministrators/users can attach their clusters/PCs available via SSH with a click
of the button without any need for further configuration on the provider’s ma-
chine. Further, users can publish console, queued applications or files from their
accounts. Services run on the provider’s account but access to the services is
granted through BeesyCluster either via WWW or Web Services with proper au-
thorization. Providers earn points for their services invoked by users which allows
them to use services offered by others. We compare the set of features to other
systems, especially grid systems, pointing out the proposed security concept, in-
terfaces and API. We also benchmark the Web Service interface in BeesyCluster
by measurement of latency and remote task submission times on large 32-bit
128-processor and 64-bit 256-processor clusters available in the ACC network,
Gdansk, Poland. We compare the results to the performance of standard Web Ser-
vices with HTTP Basic Authentication and HTTPS deployed on Tomcat/AXIS.

1 Introduction

Publishing services for remote clients and remote task invocation are well known con-
cepts in the literature. CORBA, RMI allow for the client-server interaction via remote
calls ([1]) as do multi-tier applications with thin/thick clients and servers like J2EE
or Tomcat. For Web Services ([2]) input/output arguments are wrapped in SOAP and
carried over protocols like HTTP(S) or SMTP. While conceptually equivalent to COR-
BA/RMI (remote procedure call), SOAP/HTTP enables interaction between parties via
usually unblocked HTTP ports making Web Services more versatile and accessible than
the other technologies.

� Available on three servers at http://beesycluster[1,2].eti.pg.gda.pl
�� Calculations were carried out at the Academic Computer Center, Gdansk, Poland. Work par-

tially sponsored by the Polish National Grant KBN No. 4 T11C 005 25.
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2 Related Work vs. Our Contribution

Controlled resource sharing between, usually large, universities and institutions, has
become possible thanks to grid systems ([3]) examples of which are CrossGrid ([4]),
CLUSTERIX ([5]) and EuroGrid ([6]). It must be assured that the client can neither
overuse the remote resources allocated to them nor succeeds in an attempt to gain unau-
thorized access to other resources. Furthermore, secure data transmission, accounting
and resource discovery must also be supported. Globus Toolkit ([7]) provides grid sys-
tem developers with many of these functions allowing to focus on the higher level,
the actual grid implementation. Legion allows users to spawn tasks remotely on a uni-
fied virtual metacomputer ([8]). H2O ([9]) is a component-level distributed system in
which components can be deployed in containers, also by authorized external entities
and made available to clients. While large grid systems allow the user to run tasks
remotely, even via complex and easy-to-use interfaces like Migrating Desktop ([10]),
still the configuration of remote sites, often difficult and time-consuming ([11] includes
configuration of Worker Nodes for CrossGrid, [8] for Legion), is required.

We see the above as an obstacle in building large, open systems of services with
easily configurable, detachable remote sites which could very well be single PCs or
clusters offering unique applications or services.

We addressed these goals in a new system BeesyCluster, the continuation of our
PVMWebCluster initiative ([12], [13]), which offers the following features:

1. ease of addition of a remote site (cluster/PC) to the system (requires only an account
with SSH access with no additional configuration on the access node),

2. one-click service publishing from the provider’s account on a cluster/PC (support
for queuing systems like PBS, LSF),

3. one-click service (application, files etc.) rental capability from the provider’s ac-
count(s) by any user of BeesyCluster,

4. accounting for the use of resources – the provider earns points for offering services
which can be spent on services offered by others,

5. access through both WWW and Web Services and discovery through BeesyClus-
ter’s own UDDI server (based on soapuddi).

3 New Concept – BeesyCluster

3.1 Access Portal to HPC Facilities

On the one hand, BeesyCluster can be thought of as an easy-to-use access portal to
HPC facilities allowing the user to run/publish their own applications and edit files on
the registered clusters/PCs via WWW (Figures 1 and 2) and Web Services with single
sign-on for all clusters/PCs. It is the high-level middleware that executes commands
on clusters/PCs on behalf of authorized users. BeesyCluster aims at making powerful
ACC1 clusters available via WWW and Web Services and allow inexperienced users to
invoke published MPI/PVM applications with a mere click of the button (Figure 1).

1 http://www.task.gda.pl/english/kdm.html
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Fig. 1. BeesyCluster’s File Manager Fig. 2. Tasks (Queued) by the User and Tasks
Rented from His/Her Account

3.2 Open, Distributed Network of Services

On the other hand, BeesyCluster offers a truly open network of services offered by
providers to clients (Figure 3) with the following features:

Fig. 3. Client-Server Interaction in BeesyCluster

Computing Model: Many providers, many clients, the client may also offer services
as a provider; users can access and manage their accounts/files, run tasks through
WWW or Web Services.

Setting Up an Account: A new user-provider sets up a BeesyCluster account by sub-
mitting logins/passwords of accounts available through SSH on the selected clus-
ter/PC and is able to log in via BeesyCluster just after the administrator has granted
access. It is only required that the account(s) are accessible via SSH. No other con-
figuration is necessary which is possible thanks to the BeesyCluster security model
explained in Paragraph 3.3. This gives BeesyCluster an advantage over the often
complex process of deployment of new sites in grid systems ([11], [8]). The user
can set up a BeesyCluster account without any cluster/PC accounts for use of free
services published by others.

Publishing Services: The user can publish any of the applications (both run from the
shell and to be submitted to the queue like LSF/PBS) or files from any of the reg-
istered accounts of any of the PCs/clusters registered to other users/groups (e.g.
student groups) in BeesyCluster. The user-provider who grants access to a resource
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can allow right delegation to other users. Publishing a service does not give shell
access and thus does not sacrifice security (Paragraph 3.3).

Running Services:
1. The user has full access to any of the files/applications on their registered ac-

counts on the registered PCs/clusters, can: access/edit files, run commands via
an easy-to-use WWW interface (Figure 1) or Web Services
(Figure 6).

2. For every published service, users see a link in the WWW interface. By click-
ing the user-client invokes the service which runs on the provider’s account
as may require a proper environment (libraries etc.). The Web Service inter-
face is meant for more advanced users for integration of BeesyCluster services
into their programs, the WWW interface for novice users. In the latter case,
a sample scenario may involve clicking on a link corresponding to a climate
modelling application, uploading files with input data (to a special directory
for the client user on the provider account) and either running the task or spec-
ification of the queue, email notification, exact number of processors etc. for
LSF or PBS. Afterwards, the user can check the status of the task and upon
completion view results in File Manager and download or copy them to their
own accounts.

BeesyCluster was designed as a J2EE application with the following components
(Figure 4): KC (Cluster Commander) – WWW front-end, TS (Team Support) module,
AS (Authorization), RA (Run Anywhere for SSH communication with PCs/ clusters),
PS (Payment Service for accounting of rented services – each user has a virtual wallet
to which points are added after other users executed paid services or subtracted after the
user has used others’ services), Web Service front-end which are proper EJBs deployed
as Web Services in JBoss/AXIS.

Fig. 4. BeesyCluster’s Architecture

3.3 Security Concept

In Globus ([7]) and Legion ([8]) the authorization of the user is actually done by the
resource provider/resources. In H2O proxy-objects authorize the user based on the poli-
cies given by the kernel owner or the user who loaded the pluglet ([9]). The Beesy-
Cluster server itself acts as a centralized proxy which both authenticates and authorizes
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client bc/AS bc/KCWS

lid = get login agent id ()

sid=get signer id ()

auth=logIn(login,password,lid,sid)

run (auth,cluster,command)

ticket=get ticket to resource(auth,res)

run resource(ticket)

BeesyCluster WWW

Web Service interface WWW Interface

through

the login,

file manager,

available 

resources

web pages

run a rented 

resource

run a command

Fig. 5. Sequence to Invoke an Application in BeesyCluster via Web Services and WWW

the user to invoke a given service. It is assumed the provider trusts BeesyCluster in-
vokes services on their account only for the users they granted access to or for the
account owner. Thus the attachment of a new cluster/PC and a user-provider account
requires just database entries with the IP of the cluster and the account login/password.
The commands are issued on the clusters via SSH by module RA (Figure 4).

Transmission from the client to BeesyCluster uses HTTP or HTTPS which requires
proper configuration ([14]) and the keystore file for the Web Service client.

The authentication and authorization are implemented within BeesyCluster and re-
quire actions presented in Figure 5 for both the Web Service and WWW front-ends. For
the Web Service access, after having obtained ids of login (handle logins) and signer
modules (handle various encryption algorithms), the client must login with a password
and obtain an authenticator which contains the id of the user, expiration date and is
digitally signed by the system. The authenticator can be used to launch a command on
a cluster the user has access to. Based on the authenticator, the user can obtain a ticket
valid to use the given resource. Both the authenticator and the ticket are valid for a
definite period of time thus it is safer to use them rather than login/password pairs.

3.4 Interfaces and API

BeesyCluster offers an easy-to-use WWW interface which allows the user to: manage
files/directories through an interface similar to Midnight Commander (Figure 1) includ-
ing (de)compression, editing files, one-click task launch (interactively or queued on a
cluster), browsing available resources, publishing own resources with a single mouse
click, viewing task results from queued tasks (own and rented tasks) – Figure 2, dele-
gating rights to other users and managing personal data. BeesyCluster allows FTP from
the BeesyCluster server to any location where FTP is available. All file operations on
the accounts registered in BeesyCluster are executed through a Java SSH library.

For a rented task, a unique directory is created by BeesyCluster before running to
which the task can print output (this can be assured by the programmer-provider). The
task can read the directory name from an environment variable set by BeesyCluster.
In fact, application could also be copied to this directory before execution in effect
releasing the programmer from using the variable, just writing output to the directory
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1 import p l . gda . pg . e t i . b e e s y c l u s t e r 2 .∗ ;
import as . i n t e r f a c e s . a u t h .∗ ; import as . i n t e r f a c e s . s i g n .∗ ;

3 . . .
ASServ ice s e r v i c e = new A S S e r v i c e L o c a t o r ( ) ; AS p o r t = s e r v i c e . getAS ( ) ;

5 t r y { / / f i r s t g e t l o g i n a g e n t and s i g n e r module i d s
L o g i n A g e n t D e s c r i p t i o n [ ] l a d = p o r t . l i s t L o g i n A g e n t s ( ) ;

7 S i g n e r D e s c r i p t i o n [ ] sd= p o r t . l i s t S i g n e r s ( ) ;
S t r i n g [ ] a u t h = p o r t . l o g I n ( new S t r i n g [ ] { "< l o g i n >" , "<password >" } ,

9 l a d [ 0 ] . ge t ID ( ) , sd [ 0 ] . ge t ID ( ) ) ; / / t r y t o l o g i n now
/ / now t r y t o c a l l a method from t h e KCWS i n t e r f a c e

11 KCWSService s e r v i c e 1 =new KCWSServiceLocator ( ) ;KCWS p o r t 1 = s e r v i c e 1 . getKCWS ( ) ;
System . o u t . p r i n t l n ( p o r t 1 . runCommand ( au th , 2 , a r g s [ 0 ] ) ) ; / / run t h e g i v e n command

13 } ca tch ( IOE xcep t ion e ) { . . .

Fig. 6. Client Code to Invoke a Command on a Cluster via BeesyCluster/Web Services

where the application was spawned. The user-client can view the task results, copy them
but does not see other directories nor has access to the shell on the provider’s account.

The code for running a given command on the cluster via Web Services is shown
in Figure 6. Apart from the account owner, the client user would only run one of re-
sources previously made available to them (include predefined paths to the execution
file, maximum number of processors on which the user can run the task etc.).

4 Performance Tests

For benchmarking Web Services, we used the following configurations:

1. Standard Web Services, No Security. The client calls a service deployed as a JWS
(Java Web Service) file on the Tomcat 4.1.18/AXIS 1.1 server.

2. Standard Web Services, Basic Authentication, HTTPS. Configuration as above.
3. Web Services in BeesyCluster. The user logs in and runs the command (Figures 5

and 6). We measure times for the latter call which validates the authenticator and
invokes the command on the cluster via SSH. Case 2 indicates the HTTPS overhead
when added to this scenario. BeesyCluster uses JBoss 3.2.3/AXIS 1.1.

For the server, we used a Pentium4, 2GHz, 1GB RAM machine, for the client a Pen-
tium4 2.8GHz, 1GB RAM laptop, both running Fedora 1. We have measured:

Web Service Latency: Measured by running the String getString(String)
method with a 3-char String given as input and returned as output. Figure 7 shows
the latencies measured on the client and server on a single node, through LAN and
WAN (Internet via ADSL) for all three configurations above. For BeesyCluster, we
measured just the getString method of the KCWS (Figure 6) interface.

Time Required to Run a Task on the Server: For configurations 1 and 2 the com-
mand is run on the Tomcat/AXIS server. For BeesyCluster it is run on a cluster
account registered for the given user (actually on an access node for 128-processor
galera and 256-processor holk at ACC, Gdansk, Poland). We run command
cat <filename> which prints the contents of files of varying sizes to the stan-
dard output. Figure 8 presents the task run times (until calls return on the client
side) on BeesyCluster and Tomcat/AXIS through LAN and WAN for both servers.

For BeesyCluster, the login phase costs as much as the times of returning the string of
the authenticator size (around 512 bytes).
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Fig. 7. Latency for 3-char String Used as In-
put/Output Web Service Parameter

Fig. 8. Task Submission/Run Times via Web
Service on Local Node, LAN, WAN (Internet)

It is important to note that BeesyCluster can serve client requests from many servers,
in fact implementing clustering thanks to a distributed database with replication, used
by all BeesyCluster servers. The client authenticator or ticket are passed in the re-
quest for both WWW and Web Service interfaces. We have three servers running at
beesycluster[1,2].eti.pg.gda.pl.

Analysis of latency of SOAP implementations, including AXIS, can be found in
[15]. Our times for AXIS are slightly shorter (understandable given the faster hard-
ware). We also present the latency for SOAP over HTTPS which is around 5 times larger
than for HTTP (for small message sizes). We conclude that for latency, the BeesyClus-
ter Web Services (KCWS.getString on JBoss/AXIS) are slightly slower than pure
Tomcat/AXIS, both of which are faster than HTTPS on Tomcat/AXIS.

For remote task submission, BeesyCluster’s call is slightly slower than pure Tom-
cat/AXIS but implements security and runs a command and fetches standard output
from the remote cluster.

5 Conclusions and Future Work

We have explained the main ideas and the security concept of BeesyCluster which of-
fers an access portal to an expandable network of distributed clusters/PCs with easy
resource publishing and interface. We have shown that the performance of the Web Ser-
vice interface is comparable to that of pure Web Services deployed on Tomcat/AXIS.

We are currently deploying the system for the ACC users as an access point for
the HPC resources in Gdansk, Poland. We plan on testing the clustering features of
BeesyCluster, especially under the large number of incoming requests.
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Abstract. A large number of MPI implementations are currently avail-
able, each of which emphasize different aspects of high-performance com-
puting or are intended to solve a specific research problem. The result is a
myriad of incompatible MPI implementations, all of which require sepa-
rate installation, and the combination of which present significant logisti-
cal challenges for end users. Building upon prior research, and influenced
by experience gained from the code bases of the LAM/MPI, LA-MPI,
FT-MPI, and PACX-MPI projects, Open MPI is an all-new, production-
quality MPI-2 implementation that is fundamentally centered around
component concepts. Open MPI provides a unique combination of novel
features previously unavailable in an open-source, production-quality im-
plementation of MPI. Its component architecture provides both a stable
platform for third-party research as well as enabling the run-time compo-
sition of independent software add-ons. This paper presents a high-level
overview the goals, design, and implementation of Open MPI, as well as
performance results for it’s point-to-point implementation.

1 Introduction

The face of high-performance computer systems landscape is changing rapidly,
with systems comprised of thousands to hundreds of thousands of processors
in use today. These systems vary from tightly integrated high end systems, to
clusters of PCs and workstations. Grid and meta computing add twists such as
a changing computing environment, computing across authentication domains,
and non-uniform computing facilities, such as variations in processor type and
bandwidths and latencies between processors.

This wide variety of platforms and environments poses many challenges for
a production-grade, high performance, general purpose MPI implementation,
requires it to provide a high degree of flexibility in many problem axes. One
needs to provide tunable support for the traditional high performance, scalable
communications algorithms, as well as address a variety of failure scenarios.
In addition items such as process control, resource exhaustion, latency aware-
ness and management, fault tolerance, and optimized collective operations for
common communication patterns, need to be dealt with.

These types of issues have addressed in one way of another by different
projects, but little attention has been given to dealing with various fault scenar-
ios. In particular, network layer transmission errors—which have been considered
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highly improbable for moderate-sized clusters—cannot be ignored when dealing
with large-scale computations [4]. This is particularly true when O/S bypass
protocols are used for high performance messaging on systems that do not have
end-to-end hardware data integrity. In addition, the probability that a parallel
application will encounter a process failure during its run increases with the
size of they system used. For an application to survive process failure it either
must regularly write checkpoint files (and restart the application from the last
consistent checkpoint [1, 10]) or the application itself must be able to adaptively
handle process failures during runtime [3] and use an MPI implementation that
deals with process failure. These issues are current, relevant research topics.
While some have been addressed at various levels by different research efforts,
no single MPI implementation is currently capable of addressing all these in a
comprehensive manner.

Therefore, a new MPI implementation is required: one that is capable of
providing a framework to address important issues in emerging networks and ar-
chitectures. The Open MPI project was initiated with the express intent of ad-
dressing these, and other issues. Building upon prior research, and influenced by
experience gained from the code bases of the LAM/MPI [13], LA-MPI [4], FT-
MPI [3], and the PACX-MPI [5] project, Open MPI is an all-new, production-
quality MPI-2 implementation. Open MPI provides a unique combination of novel
features previously unavailable in an open source implementation of MPI. Its
component architecture provides both a stable platform for cutting-edge third-
party research as well as enabling the run-time composition of independent
software add-ons.

1.1 Goals of the Open MPI Project

While all participating organizations have significant experience in implement-
ing MPI, Open MPI represents more than a simple merger of the LAM/MPI,
LA-MPI, FT-MPI, and PACX-MPI code bases. While influenced by previous im-
plementation experiences, Open MPI uses a new software design to implement of
the Message Passing Interface. Focusing on production-quality performance, the
software implements the MPI-1.2 [7] and MPI-2 [8] specifications and supports
concurrent, multi-threaded applications (i.e., MPI THREAD MULTIPLE).

To efficiently support a wide range of parallel machines, high performance
“drivers” for established communications protocols have been developed. These
include TCP/IP, shared memory, Myrinet (GM and MX), and Infiniband (MVAPI
and OpenIB). Support for more devices will likely be added based on user, mar-
ket, and research requirements. For network transmission errors, ideas first ex-
plored in LA-MPI are being extended with optional support is being developed
for checking data integrity. In addition, by utilizing message fragmentation and
striping over multiple (potentially heterogeneous) network devices, Open MPI
is capable of both maximizing the achievable bandwidth to applications and is
developing the ability to dynamically handle the loss of network devices when
nodes are equipped with multiple network interfaces. Handling of these network
failovers is completely transparent to MPI applications.
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The Open MPI run-time layer provides basic services to start and man-
age parallel applications in interactive and non-interactive environments. Where
possible, existing run-time environments is leveraged to provide the necessary
services; a portable run-time environment based on user-level daemons is used
where such services are not already available.

2 The Architecture of Open MPI

Open MPI’s primary software design motif is a component architecture called
the Modular Component Architecture (MCA). The use of components forces the
design of well contained library routines and makes extending the implemen-
tation convenient. While component programming is widely used, it is only re-
cently gaining acceptance in the high performance computing community [2, 13].
As shown in Fig. 1, Open MPI is comprised of three main functional areas:

– MCA: The backbone component architecture that provides management ser-
vices for all other layers;

– Component frameworks: Each major functional area in Open MPI has a
corresponding back-end component framework, which manages modules;

– Components: Self-contained software units that export well-defined inter-
faces and can be deployed and composed with other components.

The MCA manages the component frameworks and provides services to them,
such as the ability to accept run-time parameters from higher-level abstractions
(e.g., mpirun) and pass them down through the component framework to indi-
vidual components. The MCA also finds components at build-time and invokes
their corresponding hooks for configuration, building, and installation.

Each component framework is dedicated to a single task, such as providing
parallel job control or performing MPI collective operations. Upon demand, a
framework will discover, load, use, and unload components. Each framework has
different policies and usage scenarios; some will only use one component at a
time while others will use all available components simultaneously.

Components are self-contained software units that can configure, build, and
install themselves. Components adhere to the interface prescribed by the frame-
work that they belong to, and provide requested services to higher-level tiers.

framework
Component

framework
Component

framework
Component

framework
Component

Component N

meta framework
MCA

...Component A Component B

Component framework

Fig. 1. Three main functional areas of Open MPI: The MCA, its component frame-
works, and the components in each framework
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The Open MPI software has three classes of components: Open MPI compo-
nents, Open Run Time Environment (ORTE) components, and Open Portable
Access Layer (OPAL) components.

The following is a partial list of MPI component frameworks in Open MPI
(only MPI functionality is described; ORTE and OPAL frameworks and compo-
nents are not covered in this paper):

– Point-to-point Management Layer (PML): This component manages all full
message delivery. It implements the the semantics of a given point-to-point
communications protocol, such as MPI.

– Byte-Transfer-Layer Layer (BTL): This component is handles point-to-point
data delivery over the network, and is unaware of upper-level point-to-point
communications protocols, such as MPI.

– BTL Management Layer (BML): This component provides services during
job startup and dynamic process creation to discover and maintain the set of
BTLs that may be used for point-to-point communications between a given
pair of end-points.

– Collective Communication (COLL): The back-end of MPI collective opera-
tions, supporting both intra- and intercommunicator functionality.

– Process Topology (TOPO): Cartesian and graph mapping functionality for
intracommunicators. Cluster-based and Grid-based computing may benefit
from topology-aware communicators, allowing the MPI to optimize commu-
nications based on locality.

– Parallel I/O: I/O modules implement parallel file and device access. Many
MPI implementations use ROMIO [14], but other packages may be adapted
for native use (e.g., cluster- and parallel-based filesystems).

The wide variety of framework types allows third party developers to use
Open MPI as a research platform, a deployment vehicle for commercial products,
or even a comparison mechanism for different algorithms and techniques.

The component architecture in Open MPI offers several advantages for end-
users and library developers. First, it enables the usage of multiple components
within a single MPI process. For example, a process can use several networks
simultaneously. Second, it provides a convenient possibility to use third party
software, supporting both source code and binary distributions of components.
Third, it provides a fine-grained, run-time, user-controlled component selection
mechanism.

2.1 Module Lifecycle

The Byte Transfer Layer (BTL) framework provides a good illustrative example
of the complete usage and lifecycle of a module in an MPI process:

1. During MPI INIT, the BTL Management Layer (BML) framework (described
below) discovers all available BTL components. Components may have been
statically linked into the MPI library or can be loaded from shared libraries
located in well-known locations.
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2. Each BTL component is queried to see if its want to run in the process. Com-
ponents may choose not to run; for example, an Infiniband-based component
may choose not to run if there are no Infiniband NICs available.

3. Components that are selected and successfully initialized will return a set of
BTL modules to the BML, each representing distinct network interfaces or
ports. Each module may cache resources and addressing information required
for communication on the underlying transport.

4. The BML queries each of the BTL modules to determine the set of processes
with which they are able to communicate. For each peer, the BML maintains
a list of BTLs through which that peer is reachable. These tables are exposed
to the upper layers for efficient message delivery and striping.

5. BTL modules exist for the duration of the process. During MPI FINALIZE,
each BTL module is given the opportunity to cleanup any allocated resources
prior to closing its corresponding component.

3 Implementation Details

Several aspects of Open MPI’s design are discussed in this section.

3.1 Object Oriented Approach

Open MPI is implemented using a simple C-language object-oriented system
with single inheritance and reference counting-based memory management us-
ing a retain/release model. An “object” consists of a structure and a singly-
instantiated “class” descriptor. The first element of the structure must be a
pointer to the parent class’ structure.

Macros are used to effect C++-like semantics (e.g., new, construct, destruct,
delete). Upon construction, an object’s reference count is set to one. When the
object is retained, its reference count is incremented; when it is released, its
reference count is decreased. When the reference count reaches zero, the class;
destructor (and its parents’ destructor) is run and the memory is freed.

The experience with prior software projects based on C++ and the according
compatibility and compilation problems on some platforms has encouraged us to
take this approach instead of using C++ directly. For example, C++ compilers
may layout the same class or structure differently in memory. This can lead to
problems when serializing data and sending it across a network if the sender was
compiled with a different compiler than the receiver.

3.2 Component Discovery and Management

Open MPI offers three different mechanisms for adding a component to the MPI
library (and therefore to user applications):

– During the configuration of Open MPI, a script traverses the build tree and
generates a list of components found. These components will be configured,
compiled, and linked statically into the MPI library.
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– Similarly, components discovered during configuration can also be compiled
as shared libraries that are installed and then re-discovered at run-time.

– Third party library developers who do not want to provide the source code of
their components can configure and compile their components independently
of Open MPI and distribute the resulting shared library in binary form. Users
can install this component into the appropriate directory where Open MPI
can discover it at run-time.

At run-time, Open MPI first “discovers” all components that were statically
linked into the MPI library. It then searches several directories to find available
components and sorts them by framework type.

Components are identified by their name and version number. This enables
the MCA to manage different versions of the same component, ensuring that the
components used in one MPI process are the same—both in name and version
number–as the components used in a peer MPI process. Given this flexibility,
Open MPI provides multiple mechanisms both to choose a given component and
to pass run-time parameters to components: command line arguments to mpirun,
environment variables, text files, and MPI attributes (e.g., on communicators).

3.3 Point-to-Point Components

The Open MPI point-to-point (p2p) design and implementation is based on
multiple MCA frameworks. These frameworks provide functional isolation with
clearly defined interfaces. Fig. 2 illustrates the p2p framework architecture.

Fig. 2. Open MPI p2p framework

As shown in Fig. 2 the architecture consists of four layers. Working from the
bottom up these layers are the Byte Transfer Layer (BTL), BTL Management
Layer (BML), Point-to-Point Messaging Layer (PML) and the MPI layer. Each
of these layers is implemented as an MCA framework. Other MCA frameworks
shown are the Memory Pool (MPool) and the Registration Cache (RCache).
While these frameworks are illustrated and defined as layers, performance-critical
send/receive paths bypass the BML, as it is used primarily during initialization
and BTL component selection.
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MPool. The memory pool provides memory allocation/deallocation and regis-
tration/deregistration services. OS-bypass networks such as Infiniband and
Myrinet require memory to be registered (physical pages present and pinned)
before send/receive or RDMA operations can use the memory as a source
or target. Separating this functionality from other components allows the
MPool to be shared among various layers. For example, MPI ALLOC MEM
uses these MPools to register memory with available interconnects.

RCache. The registration cache allows memory pools to cache registered mem-
ory for later operations. When initialized, MPI message buffers are regis-
tered with the MPool and cached via the RCache. For example, during an
MPI SEND the source buffer is registered with the memory pool and this
registration may be then be cached, depending on the protocol in use. Dur-
ing subsequent MPI SEND operations the source buffer is checked against
the RCache, and if the registration exists the PML may RDMA the entire
buffer in a single operation without incurring the high cost of registration.

BTL. The BTLs expose a set of communication primitives appropriate for both
send/receive and RDMA interfaces. The BTL is not aware of any MPI se-
mantics; it simply moves a sequence of bytes (potentially non-contiguous)
across the underlying transport. This simplicity will enable early adoption
of novel network devices and encourages vendor support.

BML. The BML acts as a thin multiplexing layer allowing the BTLs to be shared
among multiple upper layers. Discovery of peer resources is coordinated by
the BML and cached for multiple consumers of the BTLs. After resource
discovery, the BML layer is bypassed by upper layers for performance.

PML. The PML implements all logic for p2p MPI semantics including standard,
buffered, ready, and synchronous communication modes. MPI message trans-
fers are scheduled by the PML based on a specific policy. This policy incor-
porates BTL specific attributes to schedule MPI messages. Short and long
message protocols are implemented within the PML. All control messages
(ACK/NACK/MATCH) are also managed at the PML. The benefit of this
structure is a separation of transport protocol from the underlying intercon-
nects. This significantly reduces both code complexity and code redundancy
enhancing maintainability.

Althought there are currently three PML components available in the Open
MPI, this paper only discusses the OB1 PML component. OB1 is Open MPI’s lat-
est generation PML, reflecting the most recent communications research. There
is currently only one BML component – “R2.” Finally, there are several BTL mod-
ules available, providing support for the following networks: TCP, shared mem-
ory, Portals, Myrinet/MX, Myrinet/GM, Mellanox VAPI, and OpenIB VAPI.

These components are used as follows: during startup, a PML component is
selected and initialized. The PML component selected defaults to OB1 but may be
overriddenby a run-time parameter.Next the BML component R2 is selected (since
there is only one available).R2 then opens and initializes all availableBTL modules.
During BTL module initialization, R2 directs peer resource discovery on a per-BTL
component basis. This allows the peers to negotiate which set of interfaces they will
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use to communicate with each other for MPI communications. This infrastructure
allows for heterogeneous networking interconnects within a cluster.

4 Performance Results

The data obtained in this section was using Open MPI version 1.0.1rc6 using the
OB1 PML with the MVAPI, GM, Shared Memory, and TCP BTL components.
These runs are compared with data from three other MPI implementations on
the same hardware. GM data was obtained with MPICH-GM version 1.2.6; the
shared memory and TCP data with MPICH2 version 1.0.3 [9]; the Infiniband
data with MVAPICH version 0.9.5 [6]. Latency is measured as half the round
trip time of zero byte MPI messages, using a ping-pong benchmark code, and
the bandwidth data is measured using NetPIPE version 3.6.2 [12]. The systems
used to make these measurements are described in the Table 1.

Table 1. Hardware and software setup used to generate results data

Interconnect CPU RAM Bus Kernel Stack
Infiniband (2) Intel Xeon 3.6 GHZ 6GB PCIe 2.6.12 IB Gold 1.0
Myrinet (2) Intel Xeon 2.8 GHz 2GB PCI-X 2.6.11 GM 2.0.22
TCP/SM (2) AMD Opteron 2 GHz 8GB PCI-X 2.6.9

4.1 Point-to-Point Latency

Ping-pong latencies are listed in Table 2. As this table shows, Open MPI has
extremely competitive latencies. The latency of 6.86 μsec using GM is slightly
better than that obtained by MPICH-gm. The shared memory latency of 1.23
μsec is about 1 microsecond better than MPICH2, but the TCP latency of 32.0
μsec, is 3 microseconds higher than MPICH2 (tuning is ongoing). The latency
of 5.64 μsec using the MVAPI verbs is about 1.5 higher μsec than MVAPICH’s
remote queue management scheme. However, because Open MPI uses the Shared
Receive Queue support provided by the MVAPI verbs, it scales much better than

Table 2. Latency of zero byte ping-pong messages

Implementation Latency
Open MPI GM 6.86μs
MPICH-GM 7.10μs
Open MPI Shared Memory 1.23μs
MPICH2 Shared Memory 2.21μs
Open MPI TCP 32.0μs
MPICH2 TCP 29.0μs
Open MPI OpenIB 5.13μs
Open MPI MVAPI 5.64μs
MVAPICH MVAPI (RDMA) 4.19μs
MVAPICH MVAPI (Send/Recv) 6.51μs
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MVAPICH by using far less memory. MVAPICH’s latency increases linearly with
the number of processes in MPI COMM WORLD; Open MPI’s latency remains
essentially constant (and is lower than MVAPICH’s) [11]. Open MPI’s latency
is about one microsecond lower than MVAPICH’s send/receive semantics.

4.2 Point-to-Point Bandwidth

Fig. 3 shows Open MPI obtaining slightly higher bandwidths than MPICH-
GM, peaking out around 235 MB/sec – very close to the raw GM bandwidth.
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Similarly, Fig. 4 shows that Open MPI shows better shared memory bandwidths
than MPICH2, peaking out at 1020 MB/sec, with a message size of about 1 MB.
MPICH2 and Open MPI over TCP (Gigabit Ethernet) exhibit similar band-
widths, peaking out at 112 MB/sec, shown in Fig. 5. Open MPI’s MVAPI band-
width is shown in Fig. 6; it is quite similar to those obtained by MVAPI, peaking
out at 915 MB/sec. Finally, Open MPI’s Open IB bandwidth is shown in Fig. 7;
no other Open IB-native MPI is available to compare to.
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5 Summary

Open MPI is a new implementation of the MPI 2.0 standard. It provides func-
tionality that has not previously been available in any single, production-quality
MPI implementation, including support for all of MPI-2, multiple concurrent
user threads, and multiple options for handling process and network failures.
Open MPI uses a flexible component architecture, and it’s point-to-point design
is such that it provides excellent point-to-point communications performance for
wide variety of interconnects, all within a single library implementation.
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Abstract. Grid applications deal with large volumes of data. As a con-
sequence, effective data management solutions are vital for grids. The
Clusterix Data Management System (CDMS) has been developed after
a careful analysis of end-user requirements and existing implementations.
A special attention has been paid to making the system user-friendly and
efficient, aiming at the creation of a reliable and secure Data Storage Sys-
tem. For example, taking into account network parameters, CDMS tries
to optimize data throughput via replication and replica selection tech-
niques. Another key feature considered during the development is fault
tolerance. In CDMS the distributed operation model and modular de-
sign assure elimination of single point of failure. In particular, multiple
instances of the data broker are running concurrently, and their coherence
is ascertained by the synchronization subsystem. This paper presents the
concept and details of implementation of data management mechanisms
adopted in CDMS, as well as its integration with applications.

1 Introduction

Data management issues are amongst the most important in modern grid
environment [1, 12]. The applications being run on grids become more real-
life oriented, they base on and generate data sets of growing importance and
confidentiality.

One of the principal goals of data management systems in grids [1] is to
provide transparent and efficient access to globally distributed data. Among
the most important issues that need to be solved are: optimization of the data
transfers over the WAN, reliability and security of data access [7] and ease of
use.

The most frequently encountered approach to solving these problems bases
on use of metadata and mechanism of data replication [2, 10]. Metadata are
used, e.g., for the translation of a logical filename to its physical location. The
replication mechanism should provide optimization of data access and reliability.

� This work has been supported by the Polish Ministry of Science and Information
Society Technologies under grant 6T11 2003C/06098 “ClusteriX - National Cluster
of Linux Systems”.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 240–248, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



ClusteriX Data Management System and Its Integration with Applications 241

An example of a modern data management system based on the above-mentioned
mechanisms is the Reptor system [9], developed as a part of the EU DataGrid
Project. Being one of the most advanced grid data management systems, it still
does not provide full transparency, and ease of use. Its other shortcomings are:
the lack of mechanisms of adaptation to the network infrastructure, and presence
of single points of failure, e.g., single Metadata Repository.

ClusteriX (National Cluster of Linux Systems) is a distributed national com-
puting infrastructure with 12 sites (local Linux clusters based on 64-bit Ita-
nium2 processors) located accross Poland [3, 13]. ClusteriX sites are connected
by the Polish Optical Network PIONIER providing a dedicated communication
infrastructure. This paper presents our experience in building the ClusteriX Data
Management System (CDMS) [8] and its integration with applications.

The paper is organized as follows. In Section 2, we introduce the concept
and functionality of CDMS and the system architecture minutes are presented
in Section 3. Section 4 is devoted to system interface, while Sections 5 and 6
describe respectively the integration of CDMS with end-user applications and
the GRMS Resource Broker. The paper finishes with conclusions in Section 7.

2 Concept and Functionality

During the design phase of the CDMS system development, a particular attention
was paid to the creation of a fault-tolerant, secure and scalable architecture.

The system was equipped with many mechanisms aimed at providing fast
data access, as well as adequate security of the stored and transferred data.
A high-security level was achieved via a robust data access control system
comprised of system-level attributes and access control lists (ACLs).

The development of an intuitive and effective data access and system adminis-
tration toolkit was seen as an equally important task. It is particularly necessary
when the end-user is not expected to be aware of the low-level mechanisms and
in the CDMS an Virtual Filesytem (VFS) abstraction layer was implemented,
creating an illusion of working with a local file system.

The CDMS has a modular design which allows for an easy replacement of
the standard decision-making modules. The current set of modules is based on
simple heuristics, and they can be substituted with more advanced ones. For ex-
ample, an artificial intelligence based approach (using neural networks, genetic
algorithms, etc.) can be used, or a dedicated set aimed at a specific grid envi-
ronment can be developed. The use of the dynamic loading mechanism available
in most of modern operating system allows to change the CDMS functionality
at runtime, without shutting down the Data Broker.

In order to increase the fault tolerance, there is a possibility to run multiple
Data Broker instances. One of them acts as a master process, while the remaining
ones are passive until a failure occurs. The Synchronisation Module is responsible
for maintaining data integrity between the instances. Implementation of the
heart-beat mechanism makes it is possible to detect a failure and initiate a
recovery procedure instantly.
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The Transport Subsystem consists of a set of Transport Agents, which allows
for implementation of advanced transfer-time mechanisms like data encryption
and partitioning. This can be achieved again by reimplementation of stamdard
Transport Agents. As a further improvement of efficiency of the Transport Sub-
system, the implementation of so-called chain-transfer has been proposed [7],
which would improve the bandwidth utilisation and network load-balancing.

The CDMS has been implemented in the C language (Optimisation an Repli-
cation Modules excepted) using the gSOAP package[6]. An adequate data trans-
mission security, x509 certificates infrastructure and gsiftp protocol support have
been achieved using Globus Toolkit 3.x libraries[4].

In the grid infrastructure based on the Globus Toolkit, users are identified
using x509 certificates, which have unique subjects. This fact is the foundation
of user namespaces introduced in CDMS, which are named after the subject of
an user certificate. This approach eliminates possibility of collisions in file and
directory names. Every user in the CDMS system has his own filesystem root
(/) located in his namespace. The Universal Resource Locator (URL) for the
CDMS system is defined as follows: cdms://[user-namespace]/url-path. The
user-namespace part can be omitted, in such case the subject of the certificate
used to access the data will be used automatically.

3 System Architecture

The architecture of the ClusteriX Data Management System was introduced in
[8]. It has a modular design and consists of (Fig. 1):

– Main Management Module (CDMS Core)
– Global Data Catalogue (GDC)
– Local Data Catalogue (LDC)
– Transport Subsystem
– Synchronization Module
– Statistic Module
– Optimization Module
– Replication Module

The main part of the system is the CDMS Core responsible for data col-
lections management, data coherence, running the Optimizer and Replicator
processes and data transfer initialization. Using data stored in the Global Data
Catalogue, the Main Management Module performs the mappings of logical file-
names to the Storage Element holding the data. Proper functioning of the GDC
is crucial for reliable operation of the CDMS, which makes replication of this
data vital for the entire system.

The responsibility of the Replication Module is to perform data replication
on the CDMS Core request. It currently allows for the initial and automatic
replication.

The initial replication process consists of three stages: choice of the suitable
Storage Elements, replication planning, and the replication itself. Accepting a
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Fig. 1. Architecture of the CDMS

request for an incoming data transfer – from a user into the CDMS – the Main
Management Module queries the Optimization Module for possible locations for
the incoming data. Next it takes the first two entries from the returned list, and
initiates the parallel data transfer.

The automatic replication is carried out by the Replication Module when
the system load is low. It decides upon decreasing or increasing the number of
replicas using information provided by the Statistic Module. When the demand
for a given dataset increases, the number of replicas is increased as well. When
the data are no longer needed, the number of replicas is decreased accordingly
by removing the least accessed copies [11].

The main task of the Optimization Module is determining the best data lo-
cation from available replicas. The application of this module decreases delays in
data access and balances the load between Storage Elements. The Optimization
Module uses such statistical data as network thoroughput and performance of
Storage Elements, as well as measured values like current network load, system
load and available disk space on Storage Elements.

The Transport Subsystem has been introduced to increase the CDMS perfor-
mance during data transfers. It consists of the Proxy Transport Agents (PTAs)
and Transport Agents (TAs). The PTA is responsible for transferring data be-
tween the user and the CDMS. It runs as a standalone process, accepting data
transfer requests from the CDMS Core. Such a solution allows the CDMS Core
to select the agent located closest (in networking terms) to the served user.

The main task of TA is transferring data between Storage Element and the
Proxy Transport Agents. Data sent by the user to PTA are directed to a suitable
TA. The ClusteriX Core asks the Optimization Module for the suggested data
locations, and then it requests thr proper TA to perform the required operations.
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An important feature of the Transport Subsystem is parallel data transfer be-
tween the Proxy Agent and Transport Agents. It enables data replication in the
very moment they enter the Data Management System without any considerable
overhead.

4 System Interface

Access to the system resources is possible via a WebService interface using the
SOAP protocol. Such a solution allows to make client applications independent
from the operating system and programming language. An example of a CDMS
client application is an administrative toolkit implemented in the C language
for the Linux/UNIX platform. Another example is the GridSphere[5] portlet,
offering a rich user-level access funtionality, implemented in the Java language.

Every interface function returns a message which consists of two parts. The
first one contains the error code and the error message. The second part is
strictly dependent on the called function, and contains the relevant data, for
example, directory listing. The system interface is split into the end-user and
administrator parts.

The basic functionality of the CDMS is accessible by a set of functions be-
longing to the end-user interface. They allow user applications to create and
remove directories, copy data between CDMS and local filesystem, list contents
of directories, etc. The basic set of user utilities is a part of the CDMS package.
They have been deliberately implemented to resemble standard Unix utilities.
For example, clx ls / displays contents of a user home directory.

A package of administration utilities has been provided as well. They use
the WebService interface to communicate with the CDMS broker. The provided
functionality includes: creation of user account and removal, quota manipulation
and modification of access control lists.

The CDMS administration will be greatly simplified by a GridSphere portlet
which is currently under development. It will allow the system to be administered
via a web browser, making this task completely independent from the operating
system.

5 Integration of End-User Applications with CDMS

Computational applications can use CDMS directly or indirectly. The most com-
mon situation is when an application works with files stored on a local filesystem.
In such case, input files of the application can be staged in from the CDMS, and
the results stored in the CDMS during the stage-out phase. This is the “indirect”
use, and does not require any modification of the application itself.

Another case is when the application is modified to use the CDMS directly.
This involves use of the WebService interface via the SOAP protocol. Addition-
ally any interaction with the CDMS must be authenticated and later encrypted
via the GSI layer, so support for this feature is another requirement for the
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application. After satisfying these requirements, the end-user would be able to
request data transfer to and from CDMS during computations.

The general scheme of the application execution is very similar in both cases.
First the user places a request to the Resource Broker, e.g. GRMS, specifying
resource requirements, input and output data, and providing it with a credential,
allowing it to interact on the user behalf with CDMS as well as the local job-
managers. The Resource Broker selects an apropriate computational resource,
requests input data transfer and commits the application to a local job manager.
After the computations are finished, the obtained results are retrieved from the
local filesystem and placed in the CDMS. The sole difference is that the CDMS-
aware application can fetch additional data during run-time, for example, after
assessing results obtained at a specific point of computations. Also, such an ap-
plication can place partial results in the Data Management System allowing the
user to check on the application progress periodically, or use them as the input
data for another application.

6 Integration with GRMS

A very important part of the CDMS development was to implement mechanisms
of cooperation with the Resource Broker. The final result is almost a complete
transparency of this cooperation from the user point of view. The only difference
is a modification of the URL. In a basic grid infrastructure data management
is based on a ftp server accessed via the gsiftp protocol, and the URLs point
to such a server. In a CDMS-enabled infrastructure URLs point to logical file
names (Fig.2), which are further resolved by the Data Broker.

<grmsjob appid = "demo">
<simplejob>

<executable type="single" count="1">
<file name="exec-file" type="in">
<url>cdms:///demo.pl</url>

</file>
</executable>

</simplejob>
</grmsjob>

Fig. 2. Sample job description including CDMS URL. The demo.pl file is located in
the root directory of the user running this job

The GRMS analyses the job description, and decides whether an initial data
transfer is necessary. When the application specifies a remote source of data in
a standard grid infrastructure, GRMS is responsible for copying the data via a
third-party transfer to a computational resource. With CDMS such a scenario
is not possible because the physical data location is unknown. In this case, the
GRMS connects to the CDMS Broker and requests the data to be transfered on
the designated node.
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In the CDMS WebService interface, multiple functions for copying data to
computational nodes are defined. For the integration with Resource Brokers, the
following functions are designated:

1) enum CopyStatus { COPYING, FINISHED, FAILED };
2) CopyStatus copyToCEBlocking( string lfn, string url );
3) CopyStatus copyFromCEBlocking( string lfn, string url );
4) string copyToCE( string lfn, string url );
5) string copyFromCE( string lfn, string url );
6) CopyStatus getCopyStatus( string sid );

The blocking functions (2 and 3) require as the parameters the logical file
name (URL in CDMS), and external data locations, e.g., URL pointing to the
computational resource storage. They return the status of copy operation (FIN-
ISHED or FAILED). The non-blocking functions (4 and 5) accept exactly the
same parameters as their blocking versions, but they return an unique data trans-
fer session identifier (SID). It can be used to check the current status of a data
transfer via the getCopyStatus function. It may return one of the states defined
in the CopyStatus enum. Such an approach allows for the CDMS integration
with any Resource Broker.

6.1 Stage-In Scenario

The sequence diagram (Fig.3) presents the CDMS actions during a data transfer
request from the Resource Broker.

In the first step, the GRMS decides upon the resource assignment, and re-
quests a data transfer to be performed. At the moment, GRMS uses blocking
functions so the copyToCEBlocking function will be called (1).

Fig. 3. Stage-in sequence diagram



ClusteriX Data Management System and Its Integration with Applications 247

The Management Module of CDMS verifies if the requested file exists in
CDMS (2), and calls the Optimization Module to determine the best physical
data location to be used (4). The Optimization Module requires, as its input,
the destination of requested data, list of Storage Elements holding replicas of the
file, and file size. Using these parameters and querying the Network Resource
Manager, the Optimization Module orders the list of Storage Elements by feasi-
bility and returns it to the Management Module. The CDMS Broker delegates
user credentials (obtained from the GRMS) to the selected Storage Element, and
requests it (6) to perform data transfer to a computational resource (7). When
this data transfer is finished (or it has failed), the copyToCEBlocking function
returns (10) with a proper status code, and the GRMS continues with the job
preparation and execution.

6.2 Stage-Out Scenario

After the job is finished, the results have to be retrieved from the computational
resource. If the user requested them to be placed in the CDMS, the GRMS again
contacts the Data Broker to request data transfer. In Fig.4 the sequence diagram
for such a scenario is shown.

First the GRMS calls (1) a blocking function copyFromCEBlocking with the
proper parameters (logical file name and physical data location). The CDMS
Broker checks whether such a file exists (2). If so, all the replicas will be updated
to the new version and if it is a new file, CDMS creates its logical instance in
the Global Data Catalogue, and starts the optimization process (4). In this case,
the Optimization Module requires only the file size and physical data location as

Fig. 4. Stage-out sequence diagram
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parameters. The Management Module receives an ordered list of feasible Storage
Elements, then delegates user credentials and requests the data retrieval to be
performed (6), using the WebService interface of Storage Element. After the
transfer is finished, the copyFromCEBlocking function returns (10), and GRMS
continues with the job finalizing procedures, while CDMS initiates the replication
process for the newly received data (11).

7 Conclusions

The CDMS is an advanced grid data management system, providing the end-
user with efficient mechanisms for data transfer and storage. A very important
feature of this system is its near complete transparency to users and seamless
integration with the Resource Manager. On the other hand, advanced users are
able to efficiently utilize the CDMS for inter-application data transfer, and to
implement modules adapting CDMS to their needs.
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Abstract. This paper presents the SSH Session Server Framework for
the dynamic generation of interfaces of user applications. The original
goal of this framework, developed for the CLUSTERIX grid project [2],
is to create a flexible portal interface that can be easily extended and
adapted for utilization with different shell applications. The approach
is based on describing command line interface models with XML files.
During the development, the main pressure is put on separation of the
visualization layer from the application logic, as well as providing possi-
bility of the framework extension at run-time. The support for VRML,
X3D, SVG, charts (JPEG, PNG) formats of visualization is also an im-
portant feature. Full language localization is supported with any type of
the visualisation. The SSH Session Server Framework is integrated with
the GridSphere portal framework [5] - one of the products of the GridLab
project [4].

1 Introduction

In the CLUSTERIX national grid project [2], one of key tasks is to deliver a
consistent, secure and easy-to-use interface for end-users and administrators,
providing a high scalable and seamless integration with the “core” grid services.

This paper presents our solution to this task, namely the SSH Session Server
Framework. The original goal of this software is to create a flexible web portal
inteface that can be easily extended and adopted for utilization with different ap-
plications. During the development the main pressure is put on separation of the
visualization layer from the application logic, as well as providing possibility of
the framework extension at run-time. It is required to provide an easy adaptation
of existing applications, and utilization of them seemlesly. These requirements
constraint us to use the SSH protocol with SSH sessions and pseudo-terminals
as a communication concept.

To create this framework, we utilize our experience gained during the de-
velopment of the WebCI advanced portal interface [6] for distributed computing
systems. In comparison with WebCI, one of new features is using XML ap-
plication extensions, called by us parsers, which allow for describing rules of
interaction between users and applications.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 249–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



250 P. Kopta, T. Kuczynski, and R. Wyrzykowski

The paper is organized as follows. In Section 2 we introduce the architecture
of the framework, while Section 3 presents the way how an application interface
is described, using the XML format. Sections 4 and 5 present respectively two
main parts of the framework: the SSH Session Server, and Portlets/Services
layer. The paper finishes with final remarks in Section 6.

2 Framework Architecture

The SSH Session Server Framework is a system that allows for making dynamic
transformations of Command Line Interface (CLI) into Graphical User Inter-
face (GUI). This framework operates in a distributed way, since it allows for
aggregating outputs of multiple applications executed on multiple resources.

The framework consists of two main parts (see Fig.1). The first one is the
SSH Session Server - a multithreaded server implemented in Perl. This part
of the framework is responsible for persistent SSH connections, and making
transformations (XML into commands and input parameters, application output
into XML, etc). The SSH Session Server Portlet and Services are the second part

Fig. 1. Architecture of SSH Session Server Framework
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of the framework. They are implemented as GridSphere API compliant portlet,
and several GridSphere services. This part of the framework is responsible for the
generation of forms with input parameters, transformation of input parameters
into XML format, generation of output presentations using various formats -
VRML, X3D, SVG, charts (JPEG,PNG), HTML, XML, etc.

Amongst many unique features of the framework, the most important are:

– adding user-defined interfaces at the portal run-time, so each user can cus-
tomize his portal, either by uploadings created by him, or downloaded XML
interface descriptions;

– easy adaptation of existing applications, so in most cases no modifications
in applications are needed;

– seamless installation achieved as a result of communication by SSH with
utilization of pseudo TTY (PTYs);

– XML-based application interface description, where XML describes the ap-
plication interface model in the form of a finite-state automaton, as well as
input parameters, output presentations, localization, etc.;

– support for HTML, VRML, X3D, SVG, charts (JPEG, PNG).

The SSH Session Server Framework is an outcome of collaboration between
the CLUSTERIX [2] and GridLab [4] projects.

3 Description of Application Interface

Before executing any application through the SSH Session Server Framework,
an XML-based application interface descriptor has to be prepared.

The descriptor consists of numerous ParsingChain elements. Each of Pars-
ingChain elements describes one full interaction with the application, like input
parameters, pattern for the application invocation, regular expressions for trans-
formation of output to XML, output presentation XSLT style sheets bound to

Fig. 2. Dynamically generated input form - Unix “ls” command
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the next ParsingChain element, state transition table with mappings of prompt
pattern to identifiers of the next ParsingChain element, etc.

Application interface descriptors are loaded and shared by users at run-time.
Since each descriptor is versioned by the SSH Session Server with a timestamp, it
is possible to copy it from one SSH Session Server to another SSH Session Server
using portals. Descriptors copied in this way are treated by portals as identical,
and can be utilized with any session that has been bound to a descriptor with
the same ID and version.

Both the SSH Session Server itself and the SSH Session Server Framework
portal side (portlet and services) utilize application interface descriptors to
generate plugins.

Fig. 3. Dynamically generated output presentation for the application “Heat Transfer
Simulation”

Fig. 4. Dynamically generated application output presentation - Unix “ls” command



Grid Access and User Interface in CLUSTERIX Project 253

In case of the SSH Session Server, plugins take care about transforming XML
input parameters to real application parameters, wrapping them into the pattern
for the application invocation, execution of command, transformation of output
to XML (with regular expressions), and going over the finite state automaton
generated for the application interface, in accordance with the state transition
table.

The portal part of the framework is responsible for the presentation layer,
including generation of forms with input parameters (Fig.2), transformation of
parameters to XML, sending them to the SSH Session Server, and processing
the application output (Fig.3 and Fig.4) in accordance with descriptors and
parameters of output presentation, as well as the state transition table. This part
also handles the proper application interface localization (complying with user
settings in the portlet framework). Properties files with translations to different
languages are bound to the application interface descriptor.

4 SSH Session Server

The SSH Session Server is a key element of our framework. Its main purpose
is to intermediate between a user interface (WWW) and SSH sessions. It is
responsible for creating and managing user account in the SSH Session Server,
storing and managing user parsers, as well as managing SSH sessions with remote
hosts. The SSH Session Server is implemented in Perl.

4.1 Users

Because the SSH Session Server can be used by many users, each user must
possess an account with informations about created parsers, available parsers
created by other users, and open SSH sessions.

The creation of such accounts is performed in two steps: (i) the user sends
a request to create an account on the server; (ii) the server sends an email with
confirmation to the user. If an answer does not arrive to the server in a specific
time, the request is erased and the entire process has to start from the beginning.
This procedure prevents remote robot attacks (programs that create plenty of
accounts).

4.2 Parsers

The parser in the framework is a program that translates data incoming from
the SSH protocol (from remote hosts) to XML format; the resulting document
is forwarded to the SSH Session Server Portal.

The task of parsers is to validate data received from a remote program, and
to transform that data to a more formalized format - XML. In a simple case, for
example, for the “ls” Unix command, the parser has to listen for data until it
encounters a system prompt (end of “ls” data), and translate the list of files and
directories to the XML format. In a more complicated case, for example, for the
“ssh” command, the parser must receive data until it encounters one of possible
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cases: request for password, request to accept remote host public key or system
prompt. In any of these cases, the parser has to transform the received text in a
different way.

Parsers are defined by user as XML documents that contain: (a) a text that
will be send by the SSH protocol to a remote host (usually command or program),
(b) arguments for this text (values of arguments are defined when the parser is
running), (c) what response the parser expects, and (d) rules for transforming
incoming data to the XML format.

The internal structure of parsers is based on finite state automaton, since
any parser can have states linked with states of a remote program. Transitions
between these states are carried out after matching correct patterns with data
received from SSH sessions.

In the framework, parsers are represented by Perl programs. Parsers created
by one user can be private, when only the author of a parser has access to it, or
public, when any user can use this parser.

4.3 SSH Sessions

A session in the SSH Session Server is a connection with a remote host by the
SSH protocol. To send and receive data, we use pseudo-terminals (terminals
associated with the “ssh” program).

To create a session, the user must pass remote user name, password for
remote account, and host name. After successfully logging in, the user can run
an available parser for this session (usually a remote command).

A session exists until the user closes it. This means that the user after logging
out from the SSH Session Server portal, can log in again and use an earlier
created session at any time.

4.4 Implementation

The SSH Session Server is implemented in Perl. The main reasons for this choice
are: implementation speed and the very efficient regular expression implementa-
tion in Perl.

A running implementation of the Server is composed from several processes:
listening processes that wait for user requests, as well as processes responsible
for managing user/parser data, and data describing open sessions. The data
transformations from the SSH output to XML format are placed in separate
processes, so in any time several transformations can take place.

Most of volume-consuming data (parser data, data received by SSH) are
stored in hashed files, so the memory footprint of the Server is not too big.

4.5 Security

Since user authorization data are sent without encryption, we choose the HTTP
over SSL (https) protocol for communication between the SSH Session Server
portal and Server.



Grid Access and User Interface in CLUSTERIX Project 255

5 Portlets and Services

SSH Session Server Portlets and Services are the second part of the framework.
They are responsible for the generation of user interfaces.

An SSH Session Server Portlet is a GridSphere API compliant portlet that
invokes appropriate methods of services described in details below.

Fig. 5. Architecture of the portal part of the SSH Session Server Framework
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5.1 Services

There are 4 main services (Fig.5.):

– SSHServerService: responsible for portal and SSH Session Server communi-
cation (1 to 1 mapping);

– ParserManagementService: responsible for the management of application
descriptors on the portal side, input form generation, management of output
visualization style sheets, dynamic loading of properties with localization;

– SessionManagementService: responsible for the management of session de-
scriptors, transformation of input parameters, output visualization;

– SSHServerPortalService: the same interface as SSHServerService but taking
care about invoking appropriate methods of ParserManagementService and
SessionManagementService.

SessionManagementService and ParserManagementService are dependent on
the following core services:

– SecureDirectoryService: responsible for caching content on the portal side,
including session and application descriptors, XSLT style sheets, localization,
and output visualization files; this service provides the portal with a secure
space for each user;

– ChartService: responsible for generation and caching of charts, and utilized
during output visualization.

5.2 Security

To prevent users from performing insecure operations in JVM of the portal, all
XSLTs encapsulated in application interface descriptors are checked for occur-
rence of XML namespaces which correspond to names of Java classes that can
be executed using Xalan [1] extensions.

The checking process utilizes XSLTs containing the list of allowed namespaces.
The security policy for all XSLTs is: “what is not allowed is disallowed”. In fact
it is easy to extend the set of allowed classes with custom ones allowing for their
utilization (from the XSLT level) during input forms generation and output
visualization.

6 Final Remarks

Although building a grid system based on the SSH Session Server Framework is
seamless (see Fig.1), a lot of effort is needed in order to fully integrate it with
existing grids. Amongst others the following features are necessary:

– refactoring the SSH Session Server to GSI-enabled web service,
– support for gsissh,
– support for file transfers (both scp and gridftp),
– credential delegation.
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The SSH Session Server Framework can be also used as a basis for the devel-
opment of systems with wider functionalities, that support execution of end-user
applications in various grid environments.
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Abstract. With the proliferation of large scale dynamic execution environments
such as grids, the need for providing efficient and scalable application adapta-
tion strategies for long running parallel and distributed applications has emerged.
Message passing interfaces have been initially designed with a traditional ma-
chine model in mind which assumes homogeneous and static environments. It is
inevitable that long running message passing applications will require support for
dynamic reconfiguration to maintain high performance under varying load condi-
tions. In this paper we describe a framework that provides iterative MPI applica-
tions with reconfiguration capabilities. Our approach is based on integrating MPI
applications with a middleware that supports process migration and large scale
distributed application reconfiguration. We present our architecture for reconfig-
uring MPI applications, and verify our design with a heat diffusion application in
a dynamic setting.

1 Introduction

A wide variety of computational environments are increasingly available to host the
execution of distributed and parallel applications. Examples include large scale su-
percomputers, shared or dedicated clusters, grid environments, and metacomputing
environments. Performance variability in such environments is the rule and not the ex-
ception. For application developers, this variability poses new challenges that go far
beyond those of parallelism and scalability. The issue here is not only how to optimize
large applications to run on a given set of distributed resources, but also how to main-
tain the desired performance anytime there is a change in the pool or characteristics
of the resources or in the application’s demands during its lifetime. In conventional
distributed and parallel systems, achieving high performance was a matter of appli-
cation-level scheduling or application-specific tunings. Such techniques relied on the
following assumptions: 1) the application’s performance model is known, 2) the num-
ber of resources is static, and 3) the characteristics of the resources are known. An
obvious solution is dynamic application reconfiguration; i.e., adjusting the allocation of
resources as the demand on the system and its availability varies.

While this new generation of computational environments presents multiple resource
management challenges, it also provides an abundant pool of resources that is appealing
to large scale and computationally demanding distributed applications. Examples are
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parallel computational science and engineering applications that arise in diverse disci-
plines such as astrophysics, fluid dynamics, materials science, biomechanics, or nuclear
physics. These applications often involve simulating multi-scale problems and exhibit
an insatiable need for computational resources. Many of these applications have been
implemented with the Message Passing Interface (MPI) [1]. MPI is a widely used stan-
dard to develop parallel applications that harness several processors. However, the is-
sues of scalability, adaptability and load balancing still remain a challenge. To maintain
a good performance level, MPI applications need to be able to scale up to accommodate
new resources or shrink to accommodate leaving or slow resources. Most existing MPI
implementations assume a static network environment. MPI implementations that sup-
port the MPI-2 Standard [2, 3] provide some support for dynamic process management
by allowing running processes to spawn new processes and communicate with them.
However, developers still need to handle explicitly issues such as resource discovery,
resource allocation, scheduling, profiling, and load balancing. Additional middleware
support is therefore needed to relieve application developers from non-functional con-
cerns while allowing high performance.

The Internet Operating System (IOS) [4, 5] is a distributed middleware framework
that provides support for dynamic reconfiguration of large-scale distributed applica-
tions through opportunistic load balancing capabilities, resource-level profiling and
application-level profiling. IOS has a modular nature that allows developers to create
easily various reconfiguration policies. One key ingredient to application reconfigura-
tion is the support for process migration. Applications should support process mobility
to be able to benefit from IOS reconfiguration policies.

We target in this work the broad class of iterative applications. A large number of
scientific and engineering applications exhibit an iterative nature. Examples include
partial differential equation solvers, particle simulations, and circuit simulations [6].
We have chosen to experiment initially with the class of iterative applications for two
reasons: this class is important in the scientific and engineering communities, and 2) It
exhibits predictable profiling and reconfiguration points that could easily be automated
through static software analysis or code-level annotations. To allow such applications to
benefit from the reconfiguration capabilities of IOS middleware, we have developed a
user-level library on top of MPI that allows process migration [7]. Our strategy achieves
portability across different implementations of the the MPI standard. MPI/IOS is a sys-
tem that integrates IOS middleware strategies with existing MPI applications. MPI/IOS
adopts a semi-transparent checkpointing mechanism, where the user needs only to spec-
ify the data structures that must be saved and restored to allow process migration. This
approach does not require extensive code modifications. Legacy MPI applications can
benefit from load balancing features by inserting just a small number of calls to a sim-
ple application programming interface. In previous work [7], we described in detail
the IOS architecture and evaluated our migration scheme. We take this work further in
this paper by demonstrating the capability of IOS to adapt the class of iterative MPI
applications to changing load conditions.

The remainder of the paper is organized as follows. Section 2 presents related work.
In Section 3, we give an overview of the IOS middleware. Section 4 presents the
MPI/IOS architecture with details on how MPI has been extended to support reconfigu-
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ration with IOS. Section 5 discusses the adopted reconfiguration policies. In Section 6,
we present performance evaluation. We conclude with discussion and future work in
Section 7.

2 Related Work

There are a number of conditions that can introduce computational load imbalances dur-
ing the lifetime of an application: 1) the application may have irregular or unpredictable
workloads from, e.g., adaptive refinement, 2) the execution environment may be shared
among multiple users and applications, and/or 3) the execution environment may be
heterogeneous, providing a wide range of processor speeds, network bandwidth and la-
tencies, and memory capacity. Dynamic load balancing (DLB) is necessary to achieve
a good parallel performance when such imbalances occur. Most DLB research has tar-
geted the application level (e.g., [8, 9]), where the application itself continuously mea-
sures and detects load imbalances and tries to correct them by redistributing the data, or
changing the granularity of the problem through domain repartitioning. Although such
approaches have proved beneficial, they suffer from several limitations. First they are
not transparent to application programmers. They require complex programming and
are domain specific. Second, they require applications to be amenable to data partition-
ing, and therefore will not be applicable in areas that require rigid data partitioning.
Lastly, when these applications are run on a dynamic grid, application-level techniques
which have been applied successfully to heterogeneous clusters [8, 10] may fall short
in coping with the high fluctuations in resource availability and usage. Our research tar-
gets middleware-level DLB which allows a separation of concerns: load balancing and
resource management are transparently dealt with by the middleware, while application
programmers deal with higher level domain specific issues.

Several recent efforts have focused on enhancing MPI run-time systems to adapt
applications to dynamic environments. Adaptive MPI (AMPI) [11, 12] is an implemen-
tation of MPI on top of light-weight threads that balances the load transparently based
on a parallel object-oriented language with object migration support. Load balancing in
AMPI is done through migrating user-level threads that MPI processes are executed on.
This approach limits the portability of process migration across different architectures
since it relies on thread migration. Process swapping [13] is an enhancement to MPI
that uses over-allocation of resources and improves performance of MPI applications
by allowing them to execute on the best performing nodes. MPI process swapping has
been also used for the class of iterative applications. Our approach is different in the
sense that we do not need to over-allocate resources initially. Such a strategy, though
potentially very useful, may be impractical in large-scale dynamic environments such
as grids where resources join and leave and where an initial over-allocation may not be
possible. We allow new nodes that become available to join the computational grid to
improve the performance of running applications during their execution.

Other efforts have focused on process checkpointing and restart as a mechanism to
allow applications to adapt to changing environments. Examples include CoCheck [14],
starFish [15], MPICH-V [16], and the SRS library [17]. CoCheck, starFish, and MPICH-
V support checkpointing for fault-tolerance, while we provide this feature to allow
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process migration and hence load balancing. Our framework could be integrated with
the sophisticated checkpointing techniques used in these projects to be able to support
also non-iterative applications. SRS supports checkpointing to allow application stop
and restart. Our work differs in the sense that we support migration at a finer gran-
ularity. Application-transparent process checkpointing is not a trivial task, could be
very expensive, and is architecture-dependent as it requires saving the entire process
state. Semi-transparent checkpointing provides a simpler solution and a more portable
approach. It has been been proved useful for the important class of iterative applica-
tions [13, 17]. API calls are inserted in the MPI program that informs the middleware
of the important data structures to save. This is an attractive solution that can benefit
a wide range of applications and does not incur significant overhead since only rele-
vant state is saved. The instrumentation of applications could be easily automated since
iterative application have a common structure.

Several projects have actively investigated the issue of application adaptivity in grid
environments. Examples include GrADS [18], AppLeS [19], Cactus [20], and Grid-
Way [21]. We share several performance and scheduling ideas with these projects. Most
of the strategies they have adopted rely on the application ’s stop and restart mechanism;
i.e., the entire application is stopped, checkpointed, migrated, and restarted in another
hardware configuration. Although this strategy can result in improved performance in
some scenarios, a more effective adaptivity could be achieved if migration is supported
at a finer granularity. We address reconfigurability at the process-level of the application
to increase flexibility.

3 Overview of the IOS Framework

The goal of IOS middleware is to provide effective decentralized middleware-triggered
dynamic reconfiguration strategies that enable application adaptation to the constantly
changing behavior of large scale shared networks. To distributed application developers
who often lack the time and expertise to handle complex performance tunings, IOS is a
promising approach that combines both ease of use and high performance.

Applications wishing to interact with IOS need to have a flexible structure that syn-
ergizes easily with the dynamic nature of shared networks. They should exhibit a large
degree of processing and/or data parallelism for efficient use of the system and scal-
ability to a large number of resources. We assume that every application consists of
distributed and migratable entities. In the case of MPI application, such entities refer to
MPI processes.

IOS reconfiguration mechanisms allow 1) analyzing profiled application communi-
cation patterns, 2) capturing the dynamics of the underlying physical resources, 3) and
utilizing the profiled information to reconfigure application entities by changing their
mappings to physical resources through migration. A key characteristic of IOS is that
it adopts a decentralized strategy that avoids the use of any global knowledge to allow
scalable reconfiguration.

The IOS architecture consists of distributed middleware agents that are capable of
interconnecting themselves in various virtual topologies. We support both hierarchical
and peer-to-peer (P2P) topologies. The first is more suitable in grid environments that
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Fig. 1. Interactions between a reconfigurable application and the local IOS agents

usually consist of a hierarchy of homogeneous clusters while the second is more suitable
for Internet environments that usually lack a well defined structure.

Figure 1 shows the architecture of an IOS agent and how it interacts with the appli-
cation entities that are hosted in a given node. Every IOS agent consists of a profiling
component, a decision component, and a protocol component:

– Dynamic Profiling Component
Resource-level and application-level profiling is used to gather dynamic perfor-
mance profiles about physical resources and application entities. Profiling gen-
erates performance profiles that are used in the reconfiguration decisions. Every
application entity profiles its processing, communication, data accesses and mem-
ory usage. Every resource has also a profiling monitor that monitors periodically
its utilization. Information about the resource’s available CPU power, memory, and
disk storage are measured and recorded periodically. The IOS architecture defines
well-defined interfaces for profiling monitors which allow using several profil-
ing technologies as long as they implement the appropriate interfaces. Examples
include the Network Weather Service (NWS) [22] and MDS [23].

– Protocol Component
The protocol component is responsible for inter-agent communication and virtual
topology creation. The middleware agents form a virtual network. When new nodes
join the network or existing nodes become idle, their corresponding protocol com-
ponent contact peers randomly to steal work [24]. This strategy aids in advertising
new or existing resources as they become available. Every work stealing request
carries with it performance-related information about the node that originated the
request.

– Reconfiguration Module
Upon receiving a work stealing request, the reconfiguration module tries to evaluate
whether there are any potential candidate entities that will benefit from migration
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to the originator of the request. The decision is done by examining the performance
of the application entities in the local node and the predicted performance in the re-
mote node. If a gain is predicted, the local protocol component notifies the selected
entities to migrate.

Applications communicate with the IOS middleware through clearly defined inter-
faces that permit the exchange of profiled information and reconfiguration requests.
Figure 2 shows the profiling interface that allows applications to notify the middle-
ware about all communication exchanges. The profiling component maintains a list
of all application entities hosted in its local run-time system. For every application
entity, the list maintains information about all other entities that have been exchang-
ing messages with it and their frequency of communication. In other words, this list
represents a weighted communication subgraph of every application entity where the
nodes represent application entities, the edges represent communication links, and the
weights represent communication rates. Every entity has a unique name (UAN) asso-
ciated with it and a universal locator (UAL) that keeps track of the current location
where the entity is currently hosted. A UAN stands for Universal Actor Name while
a UAL stands for Universal Actor Locator. We adopt here the naming conventions of
the SALSA [25] language. SALSA is a language for developing actor oriented appli-
cation. It is a dialect of Java with high-level constructs for universal naming, remote
message sending, and coordination. IOS has been prototyped using both SALSA and
Java.

�

�

�

�

//The following methods notify the profiling agent of entities
//entering and exiting the local run-time system due
//to migration or initial entity startup.

public void addProfile(UAN uan);
public void removeProfile(UAN uan);
Public void migrateProfile(UAN uan, UAL target)

//The profiling agent updates its entity profiles based
//on message sending with these methods

public void msgSend(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

//The profiling agent updates its entity profiles based
//on message reception with this method

public void msgReceive(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

//The following methods notify the profiling agent of the start
//of a message being processed and the end of a message being processed,
//with a UAN or UAL to identify the sending entity

public void beginProcessing(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

public void endProcessing(UAN uan, UAL targetUAL, UAL sourceUAL,
int msg_size);

Fig. 2. IOS Profiling API
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4 Reconfiguring MPI Applications with IOS

4.1 Process Migration Support

In MPI, any communication between processes needs to be done as part of a communi-
cator. An MPI communicator is an opaque object with a number of attributes, together
with simple functions that govern its creation, use and destruction. An intracommunica-
tor delineates a communication domain which can be used for point-to-point communi-
cations as well as collective communication among the members of the domain. On the
other hand, an intercommunicator allows communication between processes belonging
to disjoint intracommunicators.

We achieve MPI process migration by rearranging MPI communicators. Migration is
performed by a collaboration of all the participating MPI processes. It has to be done at
a point where there are no pending communications. Process migration requires careful
update of any communicator that involves the migrating process. The class of iterative
application have natural barrier points. When necessary, we perform all reconfiguration
at the beginning of each iteration. A migration request forces all running MPI processes
to enter a reconfiguration phase where they all cooperate to update their shared commu-
nicators. The migrating process spawns a new process in the target location and sends
it its local checkpointed data.

Process migration and checkpointing support have been implemented as part of a
user-level library. This approach allows portability across several vendor MPI imple-
mentations that support the MPI-2 process spawning feature since the library is imple-
mented entirely in the user space and does not require any infrastructural changes. The
library is called PCM (Process Checkpointing and Migration).

4.2 Profiling MPI Application

MPI processes need to send periodically their communication patterns to their corre-
sponding IOS profiling agents. To achieve this, we have built a profiling library that
is based on the MPI profiling interface (PMPI). The MPI specification provides a gen-
eral mechanism for intercepting calls to MPI functions. This allows the development

Fig. 3. Library and executable structure of an MPI/IOS application
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of portable performance analyzers and other tools without access to the MPI imple-
mentation source code. The only requirement is that every MPI function be callable by
an alternate name (PMPI_Xxxx instead of the usual MPI_Xxxx.). The built profiling
library intercepts all communication methods of MPI and sends any communication
event to the profiling agent.

All profiled MPI routines call their corresponding PMPI_Xxxx and, if necessary,
PCM routines. Figure 3 shows the library structure of the MPI/IOS programs. The in-
strumented code is linked with the profiling library PMPI, the PCM library, and a vendor
MPI implementation’s library. The generated executable passes all profiled information
to the IOS run-time system through Java Native Interface (JNI) and also communicates
with a local PCM Daemon (PCMD) that is started in every node. The PCMD is respon-
sible for storing local checkpoints and passing reconfiguration decisions across a socket
API from the IOS agent to the MPI processes. For more details about the PCMD, the
reader is referred to [7].

4.3 A Simple Scenario for Adaptation

MPI applications interact with each other, with the checkpointing and migration ser-
vices provided by the PCM library, and with the profiling and reconfiguration services
provided by IOS agents. Walking through the simple scenario of an application adapta-
tion that is shown in Figure 4 further explains these interactions. The example illustrates
the execution of a parallel MPI application that is composed of n processes running on
n different processors.

Fig. 4. A reconfiguration scenario of an MPI/IOS application
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1. An available processor joins the IOS virtual network.
2. The new processor starts requesting work from its peers.
3. Processor 1 receives the work stealing request. The decision component in its lo-

cal IOS agent predicts that there will be a gain migrating process 1 to the remote
processor f .

4. MPI process 1 gets notified of a migration event.
5. At the beginning of the next iteration, the migrating process broadcasts a message

to the rest of the processors so that they enter a reconfiguration phase.
6. The migrating process checkpoints its local state, and spawns an image of itself

in the remote processor f . The local PCMD takes care of transferring the check-
pointed state to the newly created process and notifying the rest of the processes.

7. As a part of completing the migration process, the PCM library takes care of re-
arranging the MPI_COM_WORLD communicator by removing the old process and
including the new one. The newly created process gets assigned rank 1.

5 Reconfiguration Policies

The reconfiguration policies use the application’s characteristics and the underlying re-
sources’ characteristics to evaluate whether there will be any performance gain through
migration. Resources such as storage, CPU processing power, network bandwidth, and
network latencies are ranked according to their importance to the running application.
For instance, if the application is computationally intensive, more weight is given to the
CPU processing power. If the application is communication intensive and the messages
exchanged have large sizes, more weight is given to the network bandwidth. Whereas, if
it is communication intensive with small exchanged message sizes, the network latency
is very important.

Let P be the set of m processes running on a local node n.

P = {p0, p1, ..., pm}

Let R be a set of resources available in the local node n.

R = {r0, r1, ..., rl}

Let ω be the weight assigned to a given resource ri based on its importance to the per-
formance of the set P .

0 ≤ ω(ri, P ) ≤ 1 and
l∑

i=0

ω(ri, P ) = 1

Let a(r, f) be the amount of resource r available at foreign node f , u(r, l, A) be the
amount of resource r used by the processes P at local node l, M(P, l, f) be the es-
timated cost of migration of the set P from l to f , and L(P ) be the average life ex-
pectancy of the set of processes P . The predicted increase in overall performance Γ
gained by migrating P from l to f , where Γ ≤ 1 is:

Δr,l,f,P =
a(r, f)− u(r, l, P )
a(r, f) + u(r, l, P )

(1)
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Γ = (
∑

r

ω(r, P ) ∗Δr,l,f,P )− (
M(P, l, f)

(10 + log(L(P ))
) (2)

When a node l receives a work stealing request from a node f , a process or a group
of processes will be migrated if the evaulation of the gain Γ is positive. The larger this
value is, the more beneficial the migration is.

It is important to factor in Equation 2 the remaining life expectancy of the group of
processes P . The intuition behind this is that processes who are expected to have a short
remaining life are not migrated because the cost of the reconfiguration might exceed the
benefit over their remaining life expectancy. For the case of iterative applications, we
estimate the life expectancy by looking at the number of remaining iterations multiplied
by the average time each iteration takes in the current node.

6 Performance Evaluation

6.1 Application Case Study

We have used a fluid dynamic problem that solves heat diffusion in a solid for testing
purposes. This applications is representative of the large class of highly synchronized
iterative mesh-based applications. The application has been implemented using C and
MPI and has been instrumented with PCM library calls. We have used a simplified
version of this problem to evaluate our reconfiguration strategies. A two-dimensional
mesh of cells is used to represent the problem data space. The mesh initially contains
the initial values of the mesh with the boundary values. The cells are uniformly dis-
tributed among the parallel processors. At the beginning, a master process takes care
of distributing the data among processors. For each iteration, the value of each cell is

Fig. 5. Parallel decomposition of the 2D heat diffusion problem
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calculated with the values of its neighbor cells. Each cell needs to maintain a current
version of the values of its neighboring cells. To achieve this, processors exchange val-
ues of the neighboring cells, also referred to as ghost cells. To sum up, every iteration
consists of doing computation and exchange of ghost cells from the neighboring proces-
sors. Figure 5 shows the structure of the parallel decomposition of the heat diffusion
problem.

6.2 Adaptation Experiments

We have used the iterative 2-dimensional heat diffusion application to evaluate the re-
configuration capabilities of the MPI/IOS framework. The original MPI code was in-
strumented with PCM calls to enable checkpointing and migration. For the experimental
testbed we used a 4-dual node cluster of SUN Blade 1000 machines. Each node has a
processing speed of 750M cycles per second and 2 GB of memory. For comparative
purposes, we used MPICH2 [26], a free implementation of the MPI-2 standard. We em-
ulated a shared and dynamic environment with varying load conditions by introducing
artificial load in some of the cluster nodes and varying it periodically.

We conducted two experiments using the heat application using the MPI/IOS frame-
work and MPICH2 under similar load conditions. For both experiments, we started
running the application, then we kept increasing the load in some of the cluster nodes
and watched how the application’s performance was affected in each case.

The first experiment was conducted with MPI/IOS. Figure 6 shows the performance
of the application. We started running the application with 8 processes on 4 proces-
sors. the remaining 4 processors joined the virtual IOS network gradually. We started
increasing gradually the load on one of the cluster nodes (two processors) participat-
ing in the computation. One node joined the virtual IOS network around iteration 1000
and started sending work stealing requests. This caused one process to migrate to the
new machine and to reduce the load on its original hosting node. We notice an increase
in the application throughput. The load in the slow machine increased even further
around iteration 2500. Around iteration 3000, a fourth node joined the virtual network

Fig. 6. Performance of the the two-dimensional heat simulation application using the reconfigu-
ration mechanism of MPI/IOS. The experiment was conducted on a 4 dual-processor SUN blade
1000 cluster.



An Architecture for Reconfigurable Iterative MPI Applications 269

and started sending work stealing packets. At this point, two processes migrated to this
machine. This caused the slow processors to be eliminated from the computation. The
application ended up using a total of the 6 best available processors, which caused a
substantial increase in its performance. The total execution time of the application was
645.67s.

Figure 7 shows the performance of the application using MPICH2. We emulated the
same load conditions as in the first experiment. With no ability to adapt, the application
was stuck with the first hardware configuration and experienced a constant slowdown in
its performance. The highly synchronized nature of this application causes it to run as
fast as the slowest processor. The application took 1173.79s to finish, about an 81.8%
decrease in performance compared to the adaptive execution.

Fig. 7. Performance of the the two-dimensional heat simulation application using MPICH2. The
experiment was conducted on a 4 dual-processor SUN blade 1000 cluster.

7 Discussion and Future Work

We presented in this paper an architecture that enhances the performance of itera-
tive applications under dynamically changing conditions. We implemented a user-level
library that adds checkpointing and process migration features to existing iterative
MPI applications. We also integrated our library with a middleware for reconfigurable
computing. The experimental evaluation has demonstrated the importance of augment-
ing long-running MPI application with reconfiguration capabilities to achieve high
performance.

This work opens up several interesting future directions. One direction is the eval-
uation of different reconfiguration policies and how effective they are in dynamic exe-
cution environments. The sensitivity of these policies to application’s characteristics
needs also to be investigated. Another important direction is extending our frame-
work beyond the class of iterative applications. This will require developing more
sophisticated checkpointing and migration policies. We plan also to evaluate our frame-
work on larger networks with interesting and realistic load characteristics and network
latencies.
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Abstract. The importance of Java as a language for high performance
computing is significant. The latest Java virtual machine technology is
closing the gap between computational speed of object oriented and pro-
cedural languages like C or Fortran. Because current computers are based
on the parallel execution, the Java communication capabilities become
more important. The main high level mechanism for Java distributed
computing is RMI (Remote Method Invocation) technology which gains
significant critique because of low performance. In this paper we de-
scribe transport layer implementation for KaRMI based on PMv2 com-
munication library which is part of the SCore Cluster System Software.
Presented implementation allows to use efficiently RMI technology with
the GigabitEthernet cards. The performance of our solution is compared
with the standard RMI and original KaRMI.

1 Introduction

The importance of Java as a language for high performance computing is continu-
ously increasing. The main reason is increasing popularity of Java and spreading
of knowledge, not only amongst computer scientists but also among physicists,
chemists and even biologists who are developing software to solve problems in
the specific application areas. It has been common believe that Java will be ef-
ficient tool for interface design while computational kernel will be still written
in traditional languages like Fortran or C. This was caused by the well known
difference between procedural and object oriented programming models.

Resent comparisons made with respect to computational performance show
that C++ generally outperforms Java. However Java is easier to use, leads to
more robust code and shorter development times. With the advent of newer
just-in-time compilers, Java performance is now comparable to C++ and the
latest Java virtual machine technology is closing the gap. Eventually Java should
be a good compromise between efficient algorithm performance and effective
application development [1].

The single node performance is important, but nowadays most of the CPU
cycles is delivered by the parallel and massively parallel computers, in particular
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large PC clusters. Therefore the user is interested in tools which allow for efficient
parallel programming. The parallel code development for scientific computing is
dominated by the message passage approach implemented in the form of the MPI
library. Up to now, number of MPI bindings has been developed for Java [2, 3]
ontop of available transport layers such as plain sockets or RMI. Unfortunately,
most of the solutions has not been widely adopted by the programmers, most
probably due to the fact that they does not fit well into Java objects paradigm.
Low performance was additional reason.

The important advantage of Java is its networking capability which allows
for easy development of distributed applications. Java supports different levels
of network communication, staring form plain sockets up to application level
tools. The main high level mechanism for Java distributed computing is RMI
(Remote Method Invocation). RMI, introduced in the Java JDK 1.1, is designed
as object oriented continuation of idea of Remote Procedure Calls (RPC). Un-
fortunately it has two main disadvantages: usage for the code parallelization is
quite complicated and the performance of standard RMI is not satisfactory.

These disadvantages of the RMI gave motivation for development of new
tools which aim is to simplify parallel programming in Java and to increase per-
formance. In particular, parallelization can be greatly simplified using JavaParty
[4] or JavaSymphony [5]. It extends Java language only by adding new keyword
remote. New keyword can be used in class definition and it indicates that objects
of this class are not limited to only one Java Virtual Machine (JVM).

Since raw socket programming require protocol design and implementation,
most of the high level approaches to the parallel programming in Java choose
RMI as the communication mechanism. As mentioned before, standard RMI im-
plementation has limited performance which limits usability of tools developed
ontop of it. Poor performance of standard RMI is caused by a slow serialization
process and by the time required for TCP/IP based communication. Alternative
RMI implementations with improved performance were developed by the num-
ber of authors. The most promising one is KaRMI [6]. Beside faster serialization
it also separated transport layer which is not limited to TCP/IP. KaRMI comes
with the transport layer implementation for the TCP/IP sockets, Myrinet/GM
and Myrinet/ParaStation. Nowadays Gigabit Ethernet is quite common inter-
connect for PC clusters but in this case KaRMI has to use TCP/IP protocol
since none of the low latency communication systems like M-VIA [7], Gamma
[8] or SCore [9] is supported.

In this paper we describe transport layer implementation for the KaRMI
based on PMv2 communication library (part of the SCore Cluster System Soft-
ware) which allows to use software with the GigabitEthernet cards. The perfor-
mance of our solution is compared with the standard RMI and original KaRMI.

2 KaRMI

KaRMI is a drop-in replacement for Java RMI. It is written almost completely
in Java with some transport part which uses native calls to the communication



274 R. Metkowski and P. Ba�la

libraries. In the RMI arguments to remote methods are passed “by-value”. Be-
cause of this, the arguments which are usually quite complicated object, must
be serialized. After serialization they are sent to the remote JVM where deseri-
alization takes place. Object serialization process has big influence on the RMI
performance. According to the estimates it can take between 25 and 50% of the
time needed for the remote method invocation. In result, any communication
has large latency which prohibits efficient parallel computations. In order to
improve performance the KaRMI authors introduced new efficient serialization
mechanism called UKA-serialization [10].

Standard Java RMI uses JDK-serialization implemented in JVM. It uses
type introspection mechanizm to convert object and all of its primitive fields
to the byte array representation. A complete graph of objects that refer to
non-primitive fields is also converted. UKA-serialization approach is different.
Programmer is required to provide explicit marshaling and unmarshaling pro-
cedures. In this case one can avoid time consuming creation of the graph de-
pendency and retrospection paths and the serialization can be performed faster.
The another advantage is smaller size of the object transferred to the remote
JVM (“Slim Encoding of Type Information”).

The main advantage of the JDK-serialization is that it allows to recreate
object from the byte representation in a newer Java release even when byte code
of the class has changed. UKA-serialization is lacking such capability, however
it is not important when computations are performed on the clusters since we
can easily guarantee that code of the class and JDK versions are the same on
all nodes.

Another important feature of KaRMI is separation of the transport layer.
It allows to add interfaces for the different types of network hardware. Such
interface in KaRMI is called technology. Configuration file describes available
technologies and KaRMI chooses the best available technology to connect to the
remote host. In contrast, Java RMI is limited to the TCP/IP transport layer only.

3 PMv2 Communication Library

SCore is a complete parallel programming environment developed for the Linux
clusters. It provides many tools to manage the whole system as well as to run par-
allel jobs. One of them is MPICH-SCore - modified MPICH implementation that
uses PMv2 communication library and modified startup procedure that follows
SCore single system image model. Other important tools are PVM-SCore and
SCASH - Software Distributed Shared Memory. In all cases the communication
is based on the PMv2 which provides efficient low-latency transport.

The PMv2 Library supports many types of hardware. Drivers for shared
memory, Myrinet, Ethernet and UDP are available. Important advantage of
the PMv2 library is that it works with any ethernet card with properly written
driver. Moreover, the card driver has not to be modified. The PMv2 library is not
visible to the user since he is using higher level tools such as SCASH or MPICH-
Score. However, the PMv2 API is available and communication functions can be
called directly.
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The library API contains functions for message passing and remote memory
access. The message passing ones are very primitive and allow to send/receive
packet smaller than MTU. It is possible to use system function select for polling
but special functions from PMv2 API need to be called before and after select.
There are no message types or any other means for selective receive available.

4 Implementation

PMv2 library can be used as the fast and low latency communication layer,
we have used it to develop new technology for KaRMI. The Java part of our
RMI implementation is based on PSPTechnology included in the KaRMI. It was
expected that this will improve RMI speed and reduce latency. To follow KaRMI
nomenclature our implementation has been called SCoreTechnology.

The simplest way to develop a new KaRMI technology is to create a class
that extends uka.karmi.stream.StreamTechnology. In this case two main methods
that have to be implemented are initExportPoint and createConnection. Former
one is responsible for the creation of new export point while the later one creates
connection to the remote export point. Since we have decided that our class is
subclass of the StreamTechnology we also had to create our implementations of
the InputStream and the OutputStream.

Because there is no Java API for the PMv2 library we had to use Java Native
Interface (JNI) to provide cooperation between Java classes and communication
library. When new export point is formed, a new thread is created to service
incoming connections to this export point. Because of lack of support for the
selective message receiving we have developed system of a virtual ports. Each
port has its own cyclic buffer. If received message is addressed to the different
export point it is stored in the cyclic buffer and then can be read by another
thread. Posix mutexes and condition variables are used to synchronize access to
the cyclic buffers. Since functions from PMv2 API are not thread safe the other
mutexes are used to synchronize send and receive operations.

5 Performance

As it has been shown previously[11] the main advantage of SCore and PMv2
library is latency reduction which results in the speedup of the parallel codes.
To check performance of our solution we have used simple code to create remote
object and call its ping and ping(byte b[]) methods. Size of the array b was
changed to test SCoreTechnology with the different amounts of data. The results
have been compared to the situations where original KaRMI and standard Java
MPI have been used.

Tests have been performed on a cluster with 8 SMP nodes. Each node con-
tains two pentium-III 450 MHz processors. Operating system on all nodes was
Redhat 9 and SCore Cluster Software version was 5.8.2.

Obtained results for the ping test are shown in the Table 1. As it was ex-
pected SCoreTechnology allows to execute remote method much faster than the
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Table 1. The invocation time of the remote method depends on the size of the array
passed as argument. All times are given in the miliseconds. The last column contains
speedup of the SCoreTechnology implementation vs. KaRMI SocketTechnology.

Size of the b[] array Java RMI
KaRMI
SocketTechnology

KaRMI
SCoreTechnology

ScoreTechnology
Speedup

w/o argument 470.5 293.8 224.2 1.31
500 688.7 396.0 325.1 1.22
1000 721.3 459.9 386.9 1.19
1500 755.6 423.5 360.4 1.18
2000 771.0 431.1 374.6 1.15
2500 856.1 446.7 390.5 1.14
3000 892.8 485.4 454.4 1.07
6000 1053.7 599.1 603.9 0.99
9000 1283.1 726.3 967.7 0.75
12000 1477.5 890.0 878.1 1.01
15000 1719.2 1011.3 1008.2 1.00

Table 2. The synchronization time for the different number of nodes. All times are
given in the miliseconds

Number of nodes Java RMI
KaRMI
SocketTechnology

KaRMI
SCoreTechnology

ScoreTechnology
Speedup

2 505.4 269.9 310.2 0.87
3 1027.0 596.9 631.6 0.94
4 1552.4 922.0 953.0 0.97
5 2159.0 1241.1 1271.8 0.98
6 2763.4 1566.6 1592.8 0.98

original KaRMI. The invocation time, which in this case corresponds to the com-
munication latency is reduced by 30%. Compare to the Java RMI reduction is
even larger up to 50%. This results confirm that our implementation reduces
significantly communication latency even compare to the KaRMI.

The ping test involves only two nodes of the cluster and do not reflect behav-
ior of the multiprocessors systems. To test collective operations we have tested
cluster synchronization performed with the exchange of messages. Short mes-
sage has been send sequentially to the nearby node. The total time to travel
through all nodes has been measured and is presented in the Table 2. The re-
sults show that both KaRMI with SocketTechnoloy and SCoreTechnology have
similar performance, significantly better than standard RMI.

6 Conclusions

We have developed new communication mechanism for the Java RMI imple-
mentation dedicated for Linux clusters. This technology allows for fast and low
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latency RMI communication on the Linux clusters equipped with the SCore
Cluster Tools. We have measured performance and latency of the RMI calls.
The results show that our implementation performs better than original Java
RMI from SUN or KaRMI. Since the developed communication technology is
based on the PMv2 library it does not use TCP/IP stack. Its usability is limited
to the single clusters and cannot be used for the resources connected over WAN.
Presented results show that despite common critique of the RMI performance,
the latency can be reduced and RMI can be efficiently used as communication
mechanism both directly or as low level communication layer for tools such as
JavaParty or JavaSymphony.

References

1. R. A. Vivanco, N. J. Pizzi Scientific computing with Java and C++: a case study
using functional magnetic resonance Software: Practice and Experience vol. 35 no.
3, pp. 237 – 254, 2004

2. S. Mintchev V. Getov Towards Portable Message Passing in Java: Binding MPI
In: M. Bubak, J. Dongarra, J. Wasniewski editor, Proceedings of the 4th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface Lecture Notes In Computer Science 1332 pp.
135 – 142, 1997

3. B. Carpenter, V. Getov, G. Judd, A. Skjellum, G. Fox MPJ: MPI-like message pass-
ing for Java Concurrency: Practice and Experience vol. 12, no. 11, pp. 1019 – 1038,
2000.

4. M. Philippsen, M. Zenger. JavaParty — Transparent Remote Objects in Java
Concurrency: Practice and Experience, vol. 9, no. 11, pages 1225–1242, 1997.

5. T. Fahringer, A. Jugravu JavaSymphony: A new programming paradigm to con-
trol and to synchronize locality, parallelism, and load balancing for parallel and
distributed computing. Concurrency and Computation: Practice and Experience
vol. 17, no. 7-8, pp. 1005 – 1025, 2005.

6. M. Philippsen, B. Haumacher, C. Nester. More Efficient Serialization and RMI
for Java. Concurrency: Practice and Experience, volume 12, no 7, pages 495–518,
2000.

7. A. Bertozzi, M. Panella, and M. Reggiani. Design of a via based communica-
tion protocol for LAM/MPI suite. In K. Klockner, editor, Procs. 9th Euromicro
Workshop on Parallel and Distributed Processing, pp. 27–33, 2001.

8. L. Schneidenbach,B. Schnor, S. Petri Architecture and Implementation of the Socket
Interface on Top of GAMMA Proceedings of the 28th Annual IEEE Conference on
Local Computer Network, Bonn/Knigswinter, Germany, October 21-23, 2003.

9. Y. Ishikawa, A. Hori, H. Tezuka, F. O’Carroll, S. Sumimoto, H. Harada, and
T. Takahashi. RWC PC cluster ii and Score cluster system software. In R. Buyya,
editor, High performance cluster computing: Architectures and systems, volume 1,
pages 646–660. Prentice Hall, 1999.

10. M. Philippsen, B. Haumacher. More Efficient Object Serialization IPPS/SPDP
Workshops, pages 718–732, 1999.

11. R. Metkowski, P. Ba�la, and T. Clark. The performance of different communication
mechanisms and algorithms used for parallelization of molecular dynamics code. In
R. Wyrzykowski, J. Dongara, M. Paprzycki, and J. Waśniewski, editors, PPAM01,
LectureNotes inComputerScience2328,pages151–161.Springer-VerlagBerlin,2001.



Practical Experience in Building an
Agent System for Semantics-Based

Provision and Selection of Grid Services

Gustaf Nimar1,�, Vladimir Vlassov2, and Konstantin Popov3

1 Amadeus e-Travel, Sophia Antipolis, France
2 Royal Institute of Technology (KTH), Stockholm, Sweden

3 Swedish Institute of Computer Science (SICS), Stockholm, Sweden

Abstract. We present our practical experience in implementing an
agent-based system for provision and selection of Grid services. The
agents form a marketplace where services are offered and searched. Agents
communicate semantic information about services using OWL-S. We de-
scribe our implementation that is built on Globus Toolkit 3, the JADE
agent framework and an OWL-S toolkit. This combination of technolo-
gies can be used for more sophisticated agent-based services, such as
automatic composition of services. We illustrate and evaluate our frame-
work using a simple example, yet without loosing generality. Our pre-
liminary evaluation captures the relative costs of different stages during
service provision and selection, and detects potential bottlenecks.

1 Introduction and Related Work

The Grid is envisioned as a global ubiquitous infrastructure that allows to treat
all kinds of computer-related services as commodity - that can be described, lo-
cated, purchased or leased, used, shared, etc. Services can be composed together
forming ”virtual organizations” that deliver non-trivial qualities of service [9, 10].
The Grid is to be become large, decentralized and heterogeneous.

The scale and decentralization of the Grid implies that Grid clients and ser-
vices can possess only partial information about the Grid. Moreover, access to
some information can be restricted due to security. The Grid is also volatile, thus
any information accumulated about it is inherently imprecise. The agent-based
approach [19, 20, 16] is generally considered to facilitate system development for
such environments [13], and its virtue for the Grid is well recognized [8, 6]. An
agent in a multi-agent system (MAS) serves a specific role; it is situated in a
particular environment; it has complete control over its own state and behaviour;
it can communicate with other agents, and its internal and external behaviours
are flexible depending on its state and environment. Agent-based software engi-
neering can be used for enhancing the Grid infrastructure itself, providing e.g.
knowledge-based information services and semantic service description [6] that
will utilize and complement the present day Grid infrastructure [8].
� The work was done when the author was with the KTH, Stockholm, Sweden.
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Grid services, similar to agents in MAS, need flexible communication [8, 6]:
its form and content changes following the evolution of the agent’s state and
environment, as well as the system structure can change over time. Communi-
cation using semantic, self-explanatory information addresses the problem [6],
as agents can exchange both syntactic data and the knowledge domain in which
the data is to be interpreted.

The use of semantic information for agent communication is already being
standardized by FIPA [7]. In particular, in the Abstract Service Architecture
the agent’s ”service description” contains semantic information [5]. W3C coined
the notion of ”semantic web” [1] that addresses the issues of knowledge repre-
sentation and usage. W3C contributes in particular the Resource Description
Framework (RDF), Web Ontology Language (OWL) and Web service ontology
(OWL-S). RDF is a data model for entities and relations between them. It pro-
vides a simple semantics for this model and a representation schema in XML
syntax. OWL extends RDF and can be used to explicitly represent the meaning
of entities in vocabularies and the relationships between those entities. OWL-S
defines a standard ontology shared by Web services.

In this paper we present our practical experience in integrating the state-
of-the-art agent and semantic-web technologies in a Grid service based on the
current release of the Globus Toolkit 3 [11]. We believe our results will remain
valid for the GT4, as we do not crucially depend on OGSI [18].

We focus our study on use of agents and semantic information for service pro-
vision and selection. Clients need to locate suitable services, whereas providers
can impose constraints on how their services can be used. Clients are represented
by service selection agents that work on behalf of clients and guard their inter-
ests. Service providers are represented by service provision agents that provision
services according to providers’ interests. Both agents interact to achieve a mu-
tual agreement. Each client or provider should be represented by its own agent
because the agent can contain confidential information.

Communication with semantic information provides flexibility for provision
and selection agents. First of all, a system for provision and selection of Grid
services has to handle arbitrary types of services. Next, there should be an
expressive language for specification of client’s needs that might be difficult to
translate into a rigid communication language. Finally, negotiation may take
several steps that can be difficult to express in a rigid communication language.

Our prototype illustrates the issues in building such a system. Our limita-
tions are that we have used a simple query language at the client’s end (a WSDL
document - the same type of description used at provider’s end), and we have
implemented a simple matching algorithm. These limitations, however, are en-
capsulated in particular components in our implementation, and the performance
analysis factorizes away the performance properties of those components.

Surveys on MAS [16, 13] show, in particular, how agents can be used for
resource brokering, workflow management and planning. Research is active in
particular in the fields of negotiation, communication languages, ontologies and
scalability issues. In the context of Grid, agents are in particular used for resource
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brokering [4] and for scientific computing and workflow management [14, 15, 3].
Following the semantic web, the notion of ”Semantic Grid” was coined [8, 6].
Concerning service provision and discovery, work is done on semantic matching
- e.g. [2, 17] which however does not consider the use of agents and system design
and implementation issues. Ontology-driven resource discovery for Grids is also
considered in [12], which adopts the peer-to-peer approach.

2 Protype System Architecture

The system is structured as a marketplace where agents handle both provision
and selection of Grid services (see Figure 1). Services to be provisioned are
assigned to an SPA in the system. SPAs store service descriptions. An SPA can
be assigned a single or several services registered at a VORegistry which is a
simple registry service included in Globus Toolkit 3. SPAs advertise themselves
at a Directory Facilitator (DF) which is a predefined agent with a directory
of SPAs. DFs are used by Service Selection Agents (SSA). A user requesting
a service specifies the requirements to an SSA as a WSDL service description
document with additional semantic data. These are transformed into a service
description in a supported ontology, and the SSA negotiates with the SPA.

Fig. 1. System Architecture

In our prototype
a service to be provi-
sioned are defined in
GWSDL of GT3. The
precision of service se-
lection is improved by
semantic data such as
service properties, ca-
pabilities, and taxon-
omy. This information
is stored in GWSDL
Service Data Elements
(SDEs). A deployed
Grid service can be assigned to an SPA which compiles the service definition
into an OWL-S ontology object.

When a client needs to locate a Grid service using an SSA, it specifies the
service requirements. The specification is a GWSDL definition with SDEs that
contain further requirements to be matched with properties and capabilities of
offered services. The definition is translated into an OWL-S ontology object
similarly to service provisioning. The definition does not need to be complete as
it is used as ”a pattern” during service selection.

A sequence diagram of assigning VO resources to an SPA is shown in Figure 2.
First, SPA fetches descriptions of services from the VORegistry. Next, SPA con-
structs OWL-S descriptions using the WSDL documents and SDEs with semantic
information. Finally, the SPA publishes itself at the Directory Facilitator.
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Fig. 2. Assigning a VO to an SPA Fig. 3. Selecting a service

Fig. 4. The information flow in the system

The goal of an SSA is to identify a service best matching the user’s re-
quirements. The SSA sequence diagram is shown in Figure 3. When a client
initiates a search for a service, the agent first downloads a list of available SPAs
from the DF and selects the SPAs to interact with. Then the SSA sends the
formalized user’s query in FIPA ACL request messages. Each SPA searches its
storages and responds with an FIPA ACL inform message. Upon receiving the
descriptions from SPAs, the SSA searches the received descriptions for a best
match.

A system that provides service selection should support different matching
algorithms and different search strategies used by agents. It should encourage
the requestors and the providers of services to be detailed in their descriptions
of services; include semantic matching of inputs and outputs; and allow for pri-
oritizing the search categories. In the example presented in Section 4 we use a
simple algorithm; the study of matching algorithms is out of scope of this paper.

The information flow in the system is shown in Figure 4. GWSDL services
descriptions and SDEs containing semantic data are converted by both SPAs and
SSAs into OWL-S ontology objects by means of the WSDL-2-ontology translator.
Internal representation of ontology objects is converted to and from the network
representation by means of service description writer and reader, respectively.
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3 Prototype System Implementation

The system prototype has been implemented in Java using the following software
platforms and development tools: JADE 3.1 [22], GT 3.2 [23], Java SDK 1.4.2. In
addition, we used OWL-S-1.0.1 [21] that is a Java API for reading, executing and
writing OWL-S. The OWL-S-1.0.1 API has been revised in order to support the
serviceCategory (including taxonomy) located in the ServiceProfile of a service
description. The revision affected the reader and the writer of XML documents
as well as the representation of ontology objects (in OWL-S 1.0). We also used
Jdom 1.0 [24] that is a Java API for reading, manipulation, and writing Java
representation of XML. As the system prototype was implemented before Java
SDK 1.5 was released, we did not use Web Service support in Java SDK 1.5.
When developing experimental Grid services we also used Eclipse 3.0 [25] with
the additional Globus Toolkit Plug-in for Eclipse 0.2.0 [26].

The classes and interfaces of the system prototype have been organized in the
following five packages: agents, content, grid, matcher and storage. The agents
package holds implementations of agents based on the JADE platform. The
content package includes classes for managing the content carried in the ACL
messages together with classes used when working with WSDL documents. The
package has been divided into three sub packages: lang (classes to work with the
content languages included in the ACL messages), owls (classes to manage the
OWL-S ontology), and wsdl (interfaces and classes of the rewritten OWL-S API
mentioned above). The grid package includes classes that communicate directly
with Grid services. The package, in particular, contains methods for extracting
Service Data elements given a GSH. The matcher package includes classes for
matching the requested service description expressed in OWL-S against the ones
being advertised in the same ontology. In the matching algorithm described
earlier, matching of input and output parameters types is based on the URI
of the types. This means that providers and requestors of services can define
their own types. The classes responsible for storing descriptions of the services
at a Service Provision Agent are grouped in the storage package. The system
prototype allows the storage to be implemented using various technologies, e.g.
databases or classes of the Java collection framework.

Service Provision Agent is implemented by the class ServiceProvisionA-
gent which extends the JADE Agent class. The SPA includes functionality for
assigning services and VOs. The ServiceProvisionAgent also includes function-
ality for performing service matching. The actions of each agent are based on
JADE behaviours. The SPA behaviours are listed in Table 1.

Service Selection Agent is implemented by the class ServiceSelectionA-
gent. Like the ServiceProvisionAgent, invocation of the selection agent is sup-
ported by the platform. The SSA behaviours are listed in Table 2. One interesting
method of the ServiceSelectionAgent class is the search method that initializes a
search for a service. Every search is identified with a unique identification num-
ber. The first behaviour executed in the search is the GetSPAs, which fetches
a list of available SPAs. Then a parallel behaviour is invoked, executing one or
more SearchSPA behaviours in parallel. Each of the SearchSPA behaviours sends
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Table 1. Behaviours of the Service Provision Agent

Behaviour Description

addService Assigns a service to an SPA given a GSH. Using the WSDL document rep-
resenting the service, all non-standard Grid service operations are translated
into service descriptions. The descriptions are then handed to the local storage.

addVO Fetches the GSHs of all the services located in the registry. Each of the services
is added to the SPA’s storage using the addService behaviour.

ListenForReq A cyclic behaviour that listens for incoming requests. If a message is received
it will be parsed and the right action will be taken.

RegisterSPA Registers itself at the Directory Facilitator.
SearchAndResponse Searches the local storage for the requested service and sends the result back.

Table 2. Behaviours of the Service Selection Agent

Behaviour Description

GetSPAs Searches the Directory Facilitator for available SPAs.
Receive A cyclic behaviour that listens for incoming result messages. A received message is

parsed and if it contains search results it’s stored in a result vector. The behaviour
can be terminated by calling the setDone method.

SearchSPA Searches a given SPA for the requested services, i.e. sends an ACL request with a
findService Action.

Timeout Behaviour that sleeps for a while, wakes up after a given timeout, and terminates the
collection of search results and starts evaluating the results.

a request to one of the SPAs. Finally a second parallel behaviour is executed in-
cluding both a receive behaviour (collecting results) and a Timeout behaviour
(terminating the search after the given timeout). The Timeout behaviour will
also sort the collected results finding the best suited service.

Grid Service Extension. Properties that cannot be expressed in WSDL
are defined in Service Data Elements. Some of the OWL-S properties are used
in our matching algorithm, e.g. the data fields of the Service Category. In the
proposed solution we created an SDE called OwlsDataType holding the necessary
properties (Fig. 5). The Service Data type can be imported into any Grid service
description using the import element.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="OwlsData" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://globus.org/master/thesis/service/OwlsService/OwlsSDE"
xmlns:tns="http://globus.org/master/thesis/service/OwlsService/OwlsSDE">

<wsdl:types>
<schema targetNamespace="http://globus.org/master/thesis/service/OwlsService/OwlsSDE"

attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">
<complexType name="OwlsDataType">

<sequence> <element name="categoryName" type="string"/>
<element name="taxonomy" type="string"/>
<element name="value" type="string"/>
<element name="code" type="string"/>

</sequence>
</complexType>

</schema> </wsdl:types> </wsdl:definitions>

Fig. 5. The Service Data Type OwlsDataType
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4 An Example: Sending Messages to Mobile Phones

Our example considers Grid services sending SMS messages, MMS messages,
ring tones, and images to mobile phones. The services are provided by different
operators. Grid services, compared to stateless Web services, allow to define
additional service data which in our case carries semantic data. Furthermore, it
might be convenient to charge a client for all messages sent within some period
of time by associating an instance of a service with a client instead of charging
each message sent by means of a stateless Web service.

Assume four mobile operators each represented by an SPA. A Grid service
offered by an operator is described in WSDL with additional Service Data (based
on taxonomy). The service is assigned to the operator’s SPA which registers at
the Directory Facilitator. The services provisioned by SPAs are listed in Table 3.
Assume that a SSA is to find a service sending SMSs that has an operation similar
to SMS(msg:string, number:long) → (status: boolean) that costs less than 1.5
SEK. The SSA will transform a WSDL definition of the required service to an
OWL-S description object that is sent to SPAs in a FIPA ACL request message.

Table 3. The operator’s SPAs and their services

Agent Operations (WSDL pseudo code) Service Category

SPA1 sendSMS(msg:string, num:long)→(status:bool) categoryName: currency
sendMMS(msg:MMS, num:long)→(status:bool) code: LESSTHAN
sendRingTone(tone:int, num:long)→(status:bool) taxonomy: sek
sendPicture(picture:int, num:long)→(status:bool) value: 1.3

SPA2 SMSSender(msg:string, num:int)→void categoryName: currency
MMSSender(msg:MMS, num:int)→void code: LESSTHAN
RingToneSender(tone:int, num:int)→void taxonomy: sek
PictureSender(pic:int, num:int)→void value: 1.4

SPA3 sendSMS(msg:string, num:long)→(status:bool) categoryName: currency
sendMMS(msg:MMS, num:long)→(status:bool) code: LESSTHAN
sendRingTone(tone:int, num:long)→(status:bool) taxonomy: sek
sendPicture(picture:int, num:long)→(status:bool) value: 1.6

SPA4 birthdaySMS(msg:string, num:long, time:Time)→(status) categoryName: currency
birthdayMMS(msg:MMS, num:long, time:Time)→(status) code: LESSTHAN
birthdayRingTone(tone:int, num:long, time)→(status) taxonomy: sek
birthdayPicture(pic:int, num:long, time:Time)→(status) value: 1.3

Service Match(requestedService, providedServices) {
int highestScore; Service hasHighestScore;
for all providedService in providedServices do {

int score = 0;
score += weightInput * matchInput(requestedService, providedService);
score += weightOutput * matchOutput(requestedService, providedService);
score += weightName * matchName(requestedService, providedService);
score += weightTaxonomy * matchTaxonomy(requestedService, providedService);
if (Score > highestScore) {

highestScore = Score;
hasHighestScore = providedService;

}
}
return hasHighestScore;

}

Fig. 6. The Service Matching Algorithm
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For this prototype we use a simple matching algorithm shown in Figure 6. Each
provisioned service is assigned an integer score – the higher the score the better
the service match. The score is based on a weighted addition of the results of
four different comparison methods. The weights make it possible for prioritizing
between the methods. With the algorithm, the best match for the requested
service will be the service offered by the SPA1 for 1.3 SEK.

5 Preliminary Evaluation of the Framework

In this paper, we present results of preliminary evaluation of the ontology-
enabled agent-based framework leaving more detailed evaluation for future work.
In order to determine potential bottlenecks in the framework we measured the
time consumed by different parts of the system prototype. We ran the system
on an AMD Athlon 1800+ under Windows XP.

In the first series of experiments, we measured the time consumed by different
parts of the system when an SPA executes the service provision behaviour, i.e.
creates an OWL-S service description object given the Grid service’s WSDL
document and additional Service Data. The overall time of provisioning of four
services described in the above example was 1209 ms. Our experiments showed
that when provisioning service, the part of the system interacting with the Grid
container (in our case an Apache server) consumed about 90% of the total time.
In particular, measurements showed that the Apache WSDL parser was the most
time consuming element. Experiments also showed that fetching service data
consumed 4,5% of the total provision time; storing of four services (i.e. merging
WSDL Service objects and corresponding Service Data into service descriptions
in OWL-S) consumed from 0,2% to 6% per service.

In the second series of experiments, we measured time spent in different parts
of the system when an SSA selects services provided by several SPAs. The total
wall clock time for selection among four services was 813 ms. The SSA timeout
value was set to 500 ms. When the SSA timeouts, it sorts the SPA responses and
selects the best one. Measurements showed that the JADE agent platform itself
consumed most (about 60%) of the overall selection time. Apart the platform,
the conversion of ontology objects to and from XML documents was also time-
consuming (18% consumed for writing and 22% for reading XML documents).

We also evaluated the memory usage in the prototype. The results show that
a single service description consumes 80% of the total memory usage, when kept
in the main memory as a collection object (e.g. Vector). Databases or text files
can be used for storing the large amount of service descriptions, whereas object
collections can be used for caching of descriptions in the memory.

6 Conclusions and Future Work

We have presented our practical experience in creating an agent-based system for
service provision and selection in Grids using semantic Grid service descriptions.
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A system is based on using GWSDL and OWL-S languages to define service op-
erations and to provide additional semantic data (properties and capabilities,
or constraints and requirements) on Grid services to be provisioned by Ser-
vice Provision Agents (SPA) and/or to be searched by Service Selection Agents
(SSA). Initially, semantic information is provided in service data elements of
WSDL service descriptions, which are then translated into OWL-S descriptions.
SPAs may use different algorithms to match its service properties and capabili-
ties against requirements and constraints given by an SSA. A system prototype
was implemented using available programming platforms and environments: the
JADE agent platform, the Globus Toolkit (GT3), the OWL-S-1.0.1 API [11] for
working with OWL-S, and the Jdom 1.0 API [24] for working with XML.

Our future work includes porting the system prototype to GT4; stronger
evaluation of the prototype; considering different matching algorithms; experi-
menting with semantic information defined in different ontologies; considering
security aspects; providing support for service composition.
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Abstract. In this paper, we discuss the computational complexity of
the problem of configuring a computing site. The theoretical considera-
tions are based on the Quattor framework configuration model. We also
present some experimental results.

Quattor is a framework for managing large scale computing fabrics.
It is a result of developments of the Fabric Management Work Package
of the European DataGrid project.

Our experience on using the Quattor framework in the DataGrid test-
bed and the CERN Computing Centre shows that the ability of proper
configuration and management of a computing fabric is essential for
having a working grid.

1 Introduction

The Quattor framework [1] presented more thoroughly in [2] provides automated
and scalable configuration and installation of very large heterogeneous comput-
ing fabrics. It has a modular architecture with a central configuration database
and autonomous agents running on fabric nodes. Configuration information is
expressed in a high level description language called Pan [3].

With its novel and innovative approach, featuring two main concepts of
nodes autonomy and central control over configuration of a fabric, Quattor ad-
dresses the requirements of managing large scale grid enabled sites [4, 5] allow-
ing constructing large scale computing fabrics built of thousands of computing
nodes. Such fabrics support evolutionary model that allow introduction of new
technologies and components while maintaining service.

Other available automatic fabric management tools such as: Cfengine [6], OS-
CAR [7], Rocks [8] or LCFGng [9] lack required functionality such as scalability
or open architecture.

Quattor is a result of developments of the Fabric Management Work Package
of the European DataGrid project [10]. It has been used for more than 3 years in
production in the CERN [11] Computer Centre to manage more than 2600 ma-
chines of multiple functionality, such as batch nodes, disk, tape, database and web
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servers; and of heterogeneous hardware. Outside of CERN, Quattor is used by the
LHC Computing Grid Project ([12]) and many European institutes such as Dap-
nia, LAL/CNRS, Lyon/IN2P3, CINES, NIKHEF, CCLRC-RAL, UAM etc.

In this paper we present a theoretical estimation of computation complexity
of configuring a site with Quattor. It is an important factor since it contributes
to scalability characteristics especially when dealing with very large computing
fabrics.

2 Configuration Trees and Reference Structures of Pan
Templates

In the Quattor model, configuration information is expressed in the Pan language
[3, 13] and structured using a construct called the Pan template that groups lan-
guage statements. A Pan template is a single unit of compilation. Amongst dif-
ferent types of templates featuring in the language, object templates are special.
The Pan compiler generates configuration information for every object template
it compiles. The compiler can only be invoked on object templates and the other
types of templates cannot be compiled directly. A configuration information has
a form of a tree of configuration elements described by an XML document. Ex-
actly one configuration tree is associated with exactly one object template, as
a result of compilation of this object template. Since, templates may reference
other templates by include statement, create function or external path mech-
anism, the compiler processes a tree of referenced templates. A given object
template is a root for such a tree of compilation from which the compilation
process begins. Object template references directly or indirectly the nodes of
this tree.

Although the external path references an element in a configuration tree, it
can be seen as a reference to an object template. A configuration tree can be
only obtained by compiling an object template, and there is one to one mapping
between object templates and configuration trees.

O1

O2

O3

N1

N4

N3

S1

N2

S2

S3

D1

D2

Fig. 1. Templates reference graph. Squares represent templates. Diamond shaped ar-
rows represent the include, single triangle shaped the create and double triangle shaped
arrows the external type of dependencies. O denotes the object, N, S, D the other
types templates
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External path can be treated by the compiler differently than other depen-
dencies. For every type of dependency different from external path, the compiler
processes included or created template, every time appropriate referencing state-
ment is encountered, since the compilation happens in the compilation space of
compiled object template. For an external path, the compiler accesses a configu-
ration tree, which is a result of a compilation of an object template in its private
space. Therefore, the compiler can compile such an object template every time
it is referenced, or can keep resulting configuration tree in its memory after the
first compilation. To optimise the process of compilation, the compiler keeps all
templates during its compilation session.

Templates create a Directed Acyclic Graph (DAG). Templates are the nodes,
and reference relations created by include, create and external path statements
are the vertexes of such a graph. An example of a graph is presented in Figure 1.
For example for the O3 object template, the compiler will compile templates: O3,
N3, N4, S1, S2, S3, D1, D2, O2, N2. Templates S1, S2 and S3 will be compiled
twice since they are in trees of both the O2 and O3 object templates.

3 Complexity of Full Compilation

The maximum time of compilation, expressed in templates being compiled, is
shown below. This is achieved by finding worse case scenario and estimating the
number of compilations expressed in templates. It is assumed that the compiler
is invoked on all object templates at once, therefore they are compiled in one
compiler run.

To perform the calculation one important and realistic assumption is made. It
is assumed that the time to compile non object templates increases linearly with
their number [14]. To simplify calculations, it is assumed that for every object
template, every non object template is recompiled exactly once. The assumed
structure for calculating the complexity is shown in Figure 2. In practice the
structure will look more like it is presented in Figure 3.

Thanks to the behavior of the compiler, the references to object templates do
not change the number of templates compiled. Object templates are compiled

O1

O2

O3

Oi

T1 T2 T3 Tj-1 Tj

Fig. 2. The structure of templates assumed for complexity calculation. O denotes
object T non-object templates. Arrows represent the dependencies
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O1

O2

O3

Oi

T1 T2 T3 Tj-1 Tj

Fig. 3. Structure of templates that happens in reality. O denotes object T non-object
templates. Arrows represent the dependencies

O1

O2

O3

Oi

T1 T2 T3 Tj-1 Tj

Fig. 4. Structure of templates equivalent in time of compilation to the structure in
Figure 2. O denotes object T non-object templates. Arrows represent the dependencies

only once during a session of the compiler. Therefore the structures shown in
Figure 4 are equivalent to the one in Figure 2.

T is a set of all templates and |T | = n
N is a set of non-object templates, N ⊂ T and |N | = i
O is a set of object templates, O ⊂ T and |O| = j

O ∪N = T

i+ j = n

For every object template, the object template and all templates from the
set N will be compiled. Time of compilation t will be a function of j - number
of object templates and i - number of non-object templates:

t(i, j) = j(i+ 1) where i, j ∈ N (1)

since i = n− j

t(j) = −j2 + nj + j and
dt(j)
dj

= −2j + n+ 1

to find an extrema of the function t(j), the equation is to be solved:
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dt(j)
dj

= 0

it gives:

j =
n+ 1

2

This is a maximum of the function, since dt(j)
dj is monotonically decreasing

because:
d2t(j)
dj2

= −2 < 0

For n = 2k + 1 where k ∈ N
and then:

tmax2k+1 = t(
n+ 1

2
) =

(n+ 1)2

4
For n = 2k where k ∈ N the maximum of the discrete function t(j) is in

both points:

j1 =
n

2
and j2 =

n+ 2
2

since for both:

tmax2k =
n(n+ 2)

4
Overall complexity of compilation of a set of n templates is:

Complexity(n) = O(tmax2k) = O(tmax2k+1) = O(n2)

In case of a stable situation, when the global configuration of a computing
site is constant and only configuration of computing nodes changes, therefore
the set of non-object templates is invariable, the time of compilation depends
on the number of object templates that are compiled. According to Eq.(1), the
time is linear to the number of object templates compiled, with a constant factor
corresponding to the number of non-object templates.

In practice, a set of non-object templates is much smaller than a set of object
templates. Therefore compilation time of a set of templates is linear to the number
of object templates and much shorter than in worst case scenario. For example, for
a set of 5000 templates describing configuration of 4800 machines, therefore con-
taining 4800 object templates, there will be 964800 compilation. Assuming worst
case scenario, a set of 5000 templates containing 2500 object templates would re-
quire 12505000 compilation. An order of magnitude is the difference.

4 Experimental Results

Experiments were performed on a set of 8799 templates coming from the Config-
uration Database (CDB) [15] of the CERN Computer Centre. The set contained
3203 object templates. Everyobject template was accompaniedby a template with
network information. Therefore, there was a set of 2393 shared templates. The set
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of shared templates is rather constant. During experiments, number of compiled
object templates varied and the set of shared templates was kept constant.

The templates were compiled on a Pentium-M 1.5 GHz machine with 756
Mbytes of RAM running Fedora Core 3 Linux. Compilation was made with
the Pan ’panc’ compiler version 1.0.9, and the CDB ’cake’ dependency machine
version 1.1 [15]. The compilation times were measured using the ’time’ standard
Unix utility.

First, a random set of 100 object templates was compiled 1000 times. A
compilation set was randomly chosen for every compilation. The histogram of
the durations of the compilation is presented in Figure 5. The distribution of
the results is similar to the normal distribution. In this case the obtained results
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294 P. Poznański and J. Kitowski

 0

 50

 100

 150

 200

 250

 0  100  200  300  400  500  600

co
m

pi
la

tio
n 

tim
e 

(s
)

number of templates

Linear regression for template sets of size: 0 - 400

Fig. 7. The compilation durations of sets of 0 - 600 object templates

have the statistical parameters equal to: t̄ = 12.47[s] and st = 1.45[s]. This shows
that the time of compilation of object templates is statistically equal.

To verify that the duration of compilation of a set of object templates is linear
to the number of these templates, the following experiment was performed. Sets
of object templates of the size starting with 50 up to 2550 with a step of 50
templates were compiled. The sets of the sizes 50 - 1050 were compiled 10 times
and bigger sets 3 times.

The results for the sets of size 0 - 2550 templates are presented in Figure 6
and 0 - 600 in Figure 7.

It can be observed that up to around 400 object templates, the compilation
duration is linear to the quantity of compiled templates, that confirms linear
complexity obtained theoretically (cf. Eq.(1) and the following discussion). This
is caused by the fact that the compiler allocates all the machine physical memory,
and operating system starts swapping. On machines with more memory, the
compilation stays linear for bigger sets of templates. Optimising the compiler
to occupy less memory is another possibility of achieving linear time for big
compilation sets.

5 Conclusions

The obtained theoretical results show that computational complexity of compil-
ing configuration is quadratic to a number of all templates. Furthermore, the
results show that it is linear to a number of object templates. The results has
been confirmed experimentally.

The theoretical and practical considerations of computational complexity of
configuration demonstrate that this aspect of managing computing fabrics is
scalable.
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Abstract. This paper presents a high level description of Domus, an
architecture for cluster-oriented Distributed Hash Tables.

As a data management layer, Domus supports the concurrent execu-
tion of multiple and heterogeneous DHTs, that may be simultaneously
accessed by different distributed/parallel client applications. At system
level, a load balancement mechanism allows for the (re)distribution of each
DHT over cluster nodes, based on the monitoring of their resources,
including CPUs, memory, storage and network. Two basic units of
balancement are supported: vnodes, a coarse-grain unit, and partitions, a
fine-grain unit. The design also takes advantage of the strict separation of
object lookup and storage, at each cluster node, and for each DHT. Lookup
follows a distributed strategy that benefits from the joint analysis of multi-
ple partition-specific routing information, to shorten routing paths. Stor-
age is accomplished through different kinds of data repositories, according
to the specificity and requirements of each DHT.

1 Introduction

Certain classes of applications require large dictionaries, which are data reposi-
tories that store <key, data> records, accessed by its unique <key>.

Distributed Hash Tables (DHTs) are one of the most popular approaches to
distributed dictionaries. Research in this domain has been prolific, ranging from
1st generation models, oriented to the cluster environment [1, 2, 3, 4], to numer-
ous recent contributions, most exclusively focused in the area of P2P systems
[5, 6].

Despite its abundance, most DHT designs have concentrated on the issues
related to a single DHT deployment. Applications, however, may require the
simultaneous availability of several DHTs, whether exclusively accessed by a
single application, or shared by multiple applications.

Moreover, depending on certain basic attributes (e.g., the type of hash func-
tion, the persistence level required for data records, etc.), DHTs may exhibit
different properties that are suited to different application scenarios. The lack

� Supported by the portuguese grant PRODEP III - 5.3/N/199.006/00.
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of support for the above desired features, both at the design and deployment
levels, lengthens the application development cycle and prevents the resources
of the distributed/parallel environment to be more efficiently exploited.

In this paper we present a general description of Domus, an architecture
aimed to support the creation, usage and management of multiple DHTs, to be
simultaneously deployed at a cluster environment.

The design is compatible with the possibility to specify, for each DHT, the
value of a basic set of attributes, thus supporting heterogeneity of DHTs.

At the execution environment, heterogeneity is also conveniently exploited
through a load balancement mechanism that builds on the dissociation of the
addressing/lookup and storage functions of the data records, once these functions
may impose different requisites on the resources of the cluster nodes.

The discovery of a data record is based on a distributed lookup approach, that
benefits from the combined analysis of multiple sources of routing information,
available at each cluster node, to shorten routing paths.

The remaining of the paper is organized as follows: section 2 revisits previous
work on specific issues of the architecture, section 3 presents a general view,
sections 4 and 5 elaborate on the main components, and section 6 concludes.

2 Previous Work

Domus architecture gives continuity to our previous work.
In [7, 8] we have presented and evaluated a model for the balancement of the

range (address space)Rh of an hash function h, over a set of heterogeneous cluster
nodes. The model provides for the definition of two basic units of balancement:
a) the vnode, a coarse-grain unit, and b) the partition, a fine-grain unit.

Whenever a cluster node n requires #V.n vnodes of a DHT, for a global
number of #V vnodes then, ideally, n should be responsible for the fraction
Qi.n = #V.n/#V of Rh, which defines the node’s ideal quota. However, in
reality, nodes are given a certain number of partitions of Rh, which may be
viewed as slices of Rh, all of the same size, and mutually exclusive. Thus, if a
node n is bound to #P.n partitions, for a global number of #P partitions, the
node’s real quota of Rh is given by Qr.n = #P.n/#P .

Vnodes and partitions relate as follows: for each one of its vnodes, a node will
be given a certain number of partitions; this number is dynamically adjustable so
that, for every cluster node n enrolled in the DHT, Qi.n and Qr.n are maintained
as close as possible, at every moment, even when the number of nodes that
support the DHT and/or their ideal quotas change.

Depending on the number of nodes that support a DHT, and on the maximum
deviation allowed between real and ideal quotas, the overall number of partitions
bound to each node may be considerable, preventing any cluster node to maintain
the full <partition, node> assignment/addressing table.

A well known solution to the previous problem is to interconnect the par-
titions of the DHT by an application level topology that supports a distributed
lookup mechanism. Under such mechanism: a) each node needs to keep only a
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small (logarithmic bound) number of <partition, node> associations, determin-
istically defined and b) looking up for any partition involves the participation of
a limited (logarithmic bound) number of nodes.

However, in the context of our work, the direct application of this solution to
our models is not recommended. Because a cluster node may be responsible for
multiple partitions of the same DHT, it may be visited many times if a routing
chain is exclusively based on the conventional distributed lookup algorithms,
where lookup requests “hop between partitions”.

We have thus studied algorithms for aggregated routing [9], suitable to Chord
[6] and de Bruijn [10] graphs, which fit naturally in our models for the weighted
distribution of the hash function range. By using aggregated routing, the com-
bined routing information of various partitions is investigated to ensure that
lookup requests “hop between cluster nodes”, leading to shorter routing chains,
when compared to conventional routing.

3 General View

A typical Domus deployment, as shown in figure 1, builds on four major com-
ponents: i) client applications (ai); ii) DHTs (dj); iii) services (sk); iv) cluster
nodes (nl). External applications and services, not represented, may also coexist.
A Domus deployment or instantiations is named hereafter as Domus cluster.

In the same figure, base services allow for: a) the interaction between appli-
cations and/or services, through high performance message passing (as provided
by RoCL [11]), b) the global monitoring of resources (as provided by Ganglia
[12]) and c) the remote execution of services (e.g., via RoCL, Ganglia or rexec).

d1

communication infrastructure

d0 d2

base
services

n0

s0

base
services

n6

a2

base
services

n5

base
services

n1

a1

base
services

n2

base
services

n3

base
services

n4

a0a1

s3s1 s2 s4 s5

Fig. 1. A typical Domus cluster

Figure 1 also illustrates some basic architectural possibilities and constraints:

– one client application may access multiple DHTs;
– one DHT may be accessed by multiple client applications;
– one DHT may be implemented by multiple Domus services;
– one Domus service may support multiple DHTs;
– one cluster node runs no more than one Domus service, per Domus cluster.
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Client applications interact with Domus services to explore DHT abstractions
or for administration purposes. Interactions are conducted through the facilities
offered by a user-level library which, among others, includes methods to: a) cre-
ate/destroy, open/close and shutdown/restart a Domus cluster; b) add/remove
Domus services; c) create/destroy, open/close and shutdown/restart DHTs; d)
insert, modify, read, browse or remove data records from DHTs.

Domus also supports the user-level definition of a basic set of attributes for
each DHT: a) the hash function; b) maximum deviation between ideal and real
quotas of the DHT, for any node; c) initial distribution of the DHT; d) redistrib-
ution constraints; e) balancement thresholds; f) routing overlay and algorithms;
g) storage media and block size; h) data access pattern (read-only/read-write).

4 Domus Services

Domus services are the fundamental building blocks of the Domus architecture:
it’s their cooperation that enables to deploy, access and manage multiple DHTs.

At each node, Domus services comprise an addressing subsystem (AS), a
storage subsystem (SS) and a balancement subsystem (BS).

The AS and SS subsystems support the address space and storage space,
respectively, of one or more vnodes, eventually from different DHTs. The BS
subsystem monitors the utilization of certain node resources and, if necessary,
triggers the migration of local vnodes to another Domus services.

The address/storage space of a vnode is the union/sum of the address/storage
space of its partitions. The address space of a partition is its own slice of the hash
function range. The storage space of a partition refers to the storage resources
consumed to hold the data records whose keys map onto its address space.

The separate management of the address/storage space of vnodes and par-
titions allows increased flexibility: such spaces may be independently managed,
by different services1, which has proved to be useful for balancement purposes.

The possible enrollment of a service in more than one DHT, and at several
levels, is illustrated by figure 2. The figure shows how the AS and SS subsystems
of services s1, ..., s5 support the DHTs d0, ..., d2, for the scenario of figure 1.

AS

d0

s1

SS SS

s2

AS AS

s3

SS AS

s4

SS

d2

d1

AS

s5

SS

Fig. 2. A possible association of the AS/SS subsystems of s1, ..., s5 to d0, ..., d2

1 Named addressing/storage services of the vnodes or partitions (the services whose
AS/SS subsystem manage the address/storage space of the vnodes or partitions).
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4.1 Addressing Subsystem

Lookup of Partitions. For a large number of partitions, a distributed ap-
proach to partition lookup is advisable. In our case, that approach must also
be compatible with the decoupling of the addressing and storage functions of
partitions; such implies that the lookup of a partition may involve two distinct
lookups: i) the finding of its addressing service and ii) the finding of its storage
service.

Domus supports the interconnection of the overall partition set of any DHT
by a routing overlay, such as a Chord or de Bruijn graph, thus requiring the defi-
nition of a routing table (RT) per partition, residing at the partition’s addressing
service (in the AS subsystem). Each RT maintains addressing references (AR) to
the addressing services of other partitions of the same DHT. Along with its RT,
a storage reference (SR) to the storage service of the partition is also preserved.

Thus, finding the storage service of a partition starts by locating its address-
ing service, in order to obtain its SR reference. Relying in addressing services for
the maintenance of SR references ensures that finding a storage service benefits
from the same distributed lookup mechanisms used to find an addressing service.

Aggregated Routing. A Domus service may be the addressing service for
several partitions of the same DHT. In such case, there will be many RTs locally
available for that DHT. The combination of the totality or part of the RTs of a
DHT, available at each service, allows routing decisions to be performed under
enhanced algorithms (aggregated routing), that usually lead to shorter routing
chains than conventional routing, which bases routing decisions in a single RT.

To make aggregated routing faster, all the addressing information available
at each Domus service is brought into addressing indexes (AIs), one per each
DHT. For a partition uniquely identified by its PID, the AI index maintains the
RT table of the partition, its SR reference and an access counter (AC).

Figure 3 shows the AI index maintained by services s3 and s4, at their AS
subsystems, for DHTs d2 and d1, accordingly to the roles defined in figure 2 for
those services. SR references are explicitly represented, by dashed arrows.

AS
d2

s3

AI

SS

...

d2

AS
d2

s4

d2

d1AI

AC RT SR

d1

AI

SS

...

...

PID AR
PID AR

PID AR
...

PID

Fig. 3. A representation of the AI indexes of s3 and s4

Load Balancing. The AS subsystem measures the access rate to the local RTs
of a DHT and, if this statistic surpasses a certain threshold on the average access
rate per vnode, it will trigger the creation of a new vnode. The new vnode will
“steal” some partitions from the others, thus the average number of partitions
per vnode decreases which, in turn, lowers the average routing load per vnode.
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The AS subsystem may also switch routing algorithms, if needed. Routing
algorithms supported in Domus, for Chord and de Bruijn graphs, range from con-
ventional routing methods, to more complex algorithms for aggregated routing;
the first class of algorithms is lighter, but routing chains are longer; the second
class is heavier, but routing chains are smaller. Because all these algorithms con-
verge to the same final answer of a lookup request (though some converge faster
than others), different algorithms may be used along the same routing chain.

4.2 Storage Subsystem

Repositories. The data records whose keys map onto the address space of
a partition are saved in a per DHT repository, at the storage service of the
partition. In this context, a repository is any data store capable of holding
dictionaries.

The SS subsystem supports any kind of repository (and multiple instances),
if provided proper midleware to interact with it. Each kind has specific proper-
ties, relevant to different application scenarios. Any Domus deployment should
support at least a RAM-based (volatile) and a disk-based (persistent) repository.

The local repository of a DHT is identified by a repository reference (RR) –
see figure 4. This is used to access the repository trough a repository abstraction
layer (RAL) that presents a generic/unified interface to repositories, irregardless
of their base storage platform. The RAL layer maps a high-level RR reference to
a low-level handler, used to access the repository via appropriate middleware.

A specific storage index (SI) per DHT is also preserved. For each partition
locally stored, it contains its PID, the addressing reference (AR) to its addressing
service and a storage counter (SC). Conveniently, if the AS subsystem is allowed
to inspect the SI indexes of the SS subsystem, a routing chain may end sooner.

Figure 4 magnifies the SS subsystem of s4, already visible in figure 3; it shows
the SI index for d2 and d1, including some AR back-references (also to s4).

Load Balancing. Domus provides several mechanisms to balance the consump-
tion of storage resources. Firstly, during the creation of a DHT, a correspondence
between a vnode and a certain amount of storage is established; thus, if vnodes
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Fig. 4. A representation of the inner structure of the SS subsystem of s4
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become “full”, some options are: a) to delete data records (the DHT may behave
like a cache), or b) to create more vnodes for the data records in excess. Secondly,
Domus may enforce fragmentation of user-level data records into DHT-level data
blocks; these are uniformly spread over the partition set of the DHT, which has
a twofold effect: it ensures that both the storage consumption and the access
load are also uniformly spread over the Domus services that support the DHT.

4.3 Balancement Subsystem

The BS subsystem monitors the load on local resources (like CPU, main mem-
ory, disk and network), with the help of specialized tasks, provided by the base
services (e.g., Ganglia [12] and Domus-specific plugins). Such tasks collect raw
information about the load/availability of node resources and maintain utiliza-
tion statistics (e.g., exponential moving averages). If the utilization of a resource
surpasses a certain threshold, the BS subsystem triggers a balancement event.

The processing of a balancement event involves the selection of the set of
RTs or data records, of a certain local vnode, that should be moved to another
Domus service, in order to diminish the pressure on the overloaded resources.
The selection is based on the analysis of the access rate and storage utilization
statistics, maintained by the AS and SS subsystems, for RTs and data records.
A supervisor service choses the service where RTs or data records should be
moved.

5 Supervisor Service

Some tasks in a Domus cluster may require global coordination, such as: a) the
creation/destruction, shutdown/restart of the Domus cluster; b) the adding/re-
moval, shutdown/restart of specific Domus services; c) the creation/destruction,
shutdown/restart and redistribution of specific DHTs. These tasks are conducted
under the supervision of a well known Supervisor service).

The expansion of the set of Domus services, of a Domus cluster, may be
administrative, as required by an administrative application, or automatic, as
the result of the processing of balancement events. Contraction is administrative,
typically motivated by the need to detach some cluster nodes from a Domus
deployment; in such scenario, the addressing and/or storage responsibilities of
the affected services must be transfered to other services, in other cluster nodes.

Shutting down a DHT requires saving all its RTs and data records in persis-
tent repositories, at the cluster nodes that host the Domus services enrolled in
the DHT. Afterwards, the DHT will enter an off-line state. The restart of a DHT
brings it back to the on-line state. Shutting down a Domus service involves the
local shutdown of its supported DHTs. Finally, shutting down an entire Domus
cluster involves the shutdown of the Domus services and of the Supervisor.

Balancement events are serialized by the supervisor and comprise the follow-
ing two phases: 1) the discovery (or instantiation) of Domus services with the
necessary available resources, and 2) the coordination of the transfer of RTs or
data records, from the overloaded service to the selected recipients.
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6 Conclusions

The main contribution of this paper is the definition of an architecture for cluster-
oriented DHTs, aimed to support multiple, heterogeneous and balanced DHTs.

The design allows the user-level specification, separately for each DHT, of a
basic set of attributes, providing for heterogeneous DHTs.

It also supports the decoupling of the routing and storage functions of DHTs,
as a strategy to achieve global load and storage balancement, in the highly
dynamic execution environment of the cluster.

To our knowledge, Domus is novel in the combined support for all these
features, and also in the distributed lookup enhancements that allow to accom-
modate aggregated routing algorithms.

A prototype version of Domus is being developed in the context of SIRe2, as
a simple implementation of the work described here.
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Abstract. This paper deals with iterative algorithm of reconstruction
of 2D tomographic scans. The relative speedup of the reconstruction
process as well as real–time and high fidelity imaging can be improved
by implementation of distributed processing. The properties of the se-
quential algorithm are studied, and the scheme of coloring of projections
is introduced in the concurrent version of the presented algorithm. The
details of the elaborated distributed implementation of the ART (Alge-
braic Reconstruction Technique) are presented. Parallel implementation
in a system based on dynamically configurable SMP clusters is proposed
followed by performance analysis.

1 Introduction

Modern computer technology has a great impact on properties and development
of some methods of medical non–invasive diagnosis. The medical imaging tech-
niques, including different kinds of computer tomography (CT), have evolved
to more accurate and real–time algorithms [1, 2]. Accuracy, fidelity, real-time
processing, and efficiency of the reconstruction remain the most important fac-
tors in the wide application of the methods. Parallel implementation of the
reconstruction algorithms should reduce the processing time and improve the
efficiency of the CT algorithms.

The structure and properties of the iterative Algebraic Reconstruction Tech-
nique (ART) have been presented in [1]. The sequential structure of the method
is analysed and evaluated with the graph theory. The elaborated algorithm is im-
plemented on the distributed memory message passing multicomputer platform.
Some benchmark two–dimensional problems are used to estimate performance
and weight coefficients of the operations in the distributed environment. The
massive data transfers between processing units decrease the performance of the
method. A shared memory system seems to be more suitable to efficient applica-
tion of the presented algorithm. The distributed scheme of the ART method is
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implemented in a system of dynamic shared memory processor (SMP) clusters
with communication on the fly [5, 6].

2 Problem Formulation

Since some different deterministic and parasitic physical phenomena shape the
final output form of the Radon transforms p + pe, the reconstructed two–
dimensional image μ is an approximate solution of the complex matrix equation

C · (μ + e) = p + pe (1)

The resolution of the final image is determined by the medical requirements,
and in general case dim(μ) = Mx × My pixels. The precision and fidelity of
the final results depend on the number of projections, dim(p) = P , as well
as the relative values of noise signals and some disturbances during the time
of exposure, dim(pe) = P , pe,i = random. The C matrix is sparse, real and
positive definite, dim(C) = P × (Mx × My). The components of the matrix
describe the contribution of the cij pixel in the i–th projection pi. The outcome
of CT reconstruction is deformed by error e of the implemented either iterative
or transform–based algorithm of image processing. The general, threshold level
of this error max(e) can be estimated, but its local value in the created image
is random. Among other things, it depends on the complexity and shape of the
scanned object.

The coherent and effective formulation of the CT reconstruction algorithm
should be based on the coupled and complex analysis of physical constrains of
the measuring process, and properties of some selected mathematical methods.
A high fidelity and real–time reconstruction of the CT image is a computation-
ally and memory demanding task. Nowadays, the distributed implementation of
the reconstruction algorithm is a promising and cost–effective way to increase
the quality and performance of the CT technique. The correct, software and
hardware driven formulation of the distributed algorithm enables to overcome
some limitations and to reduce some errors of the reconstruction process.

In the first step the concurrent version of the elaborated algorithm was im-
plemented and validated in a multicomputer, message passing environment. The
distributed version of the ART algorithm was based on the MIMD (multiple
instruction, multiple–data) and typical domain decomposition paradigms. Since
C matrix is sparse, its full representation in the computer memory was squeezed
with the CRS (Compressed Row Storage) algorithm [3]. This matrix remains
the largest data structure in the algorithm, therefore it was homogeneously de-
composed between processing units PEn. The vector of projections p + pe and
vector of the image μ were duplicated in the computing nodes.

The size of C matrix makes data transfers between computing units non–
efficient or even impossible. The spatial decomposition of C matrix on either
distributed or shared memory environment is the general constraint of the re-
construction algorithm. The critical section of the algorithm consists of tasks,
where one of the operands is a part of C matrix (Fig. 1).
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T1 Calculate the sum of projections.
T2 Set the number of projections.
T3 Assemble the C matrix.
T4 Create the introductory form of the image

μ(0)

Ta Decompose the vector of projections p by col-
ors (create colors).

Tb Transfer components of the C matrix be-
tween processing units to obtain mutually–
dependent subsets.

T5 Calculate approximate value of the j–th pro-
jection in the i–th iteration.

T6 Calculate value of the correction coefficient
δj .

T7 Modify the vector of the image μ(i).
T8 Check the convergence of the iterative algo-

rithm.

Fig. 1. Graph of the elaborated iterative CT reconstruction algorithm in the distrib-
uted message–passing environment. Weight coefficients of threads (nodes on the graph)
and relations between threads (thin arrows) are estimated for low resolution image
dim(μ) = 40 × 40 pixels. Wide, horizontal arrows indicate data transfers between
processing units.

The general form of the leap–frog ART algorithm is shaped by the iterative
processing of projection vector p. Any new, approximate value of the projection
p
(i)
j must be taken into account in the next step of image reconstruction μ(i+1).

Certainly, the modified form of the image μ(i+1) should be used immediately in
the calculation of the next projection p(i)

j

∀j∈<1,P> δ
(i)
j =

1
Nj

⎛
⎝pj −

Nj∑
m=1

cjmμ
(i)
m

⎞
⎠ (2)

∀j∈<1,P> ∀μm⊂pj μ(i+1)
m = max

(
μ(i)

m + δj
i ; 0
)

(3)

where Nj is equal to the number of pixels connected with the j–th projection.
These task and data dependencies are not suitable to simple implementation in
the multi–computer/multi–processor platform. Therefore the relations between
the coupled data are modified in the presented approach. The performance of
the ART algorithm is improved, when the set of projections p is divided into
mutually–independent sub–sets of projections (i.e. colors of projections)

p = [p1, . . . , pj, . . . , pP ]T =
[
pT

1 , . . . ,p
T
j , . . . ,p

T
R

]T
(4)

where r is the index of the sub–set (i.e. color), r = 1, . . . , R. The r–th sub–
set consists of the independent projections, where the dot product of any two
projections remains equal to zero
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∀pi,pj∈pr

Mx×My∑
m=1

(ci,m · cj,m) = 0 (5)

The coloring task is made once, before the iterative reconstruction of the image
(Fig. 1). The independent projections belonging to the same color are transferred
between processing units and they are written down to a single processing nodes
(or memory bank). In this way the scheme of the iterative loop is modified. The
main iterative processing of projections is decomposed to two nested steps. The
outer loop is controlled by the index of color r, while the inner loop refers to
independent projections in the r–th sub–color.

The applied scheme of domain partitioning, and subsequent task decompo-
sition make the algorithm suitable to efficient parallelization. Finally, the set of
projections is divided into two compliment sets in the iterative loop: S–A – set of
active color, S–NA – a number of mutually–dependent sets (colors). The process-
ing of the active color consists of three subsequent steps T5→ T6→ T7 (Fig. 1).
They are made for a single projection, and then the new locally modified form of
the image μ(i) is broadcasted to other concurrently processing units. They start
to calculate large number, partial and simple corrections of the approximate
solution (a part of the T5 task)

∀pj ,j �=r p
(i),n
j = p

(i),o
j +

Nj∑
m=1

cjm ·
(
μ(i),rn

m − μ(i),rn−1
m

)
(6)

while the active processing node move to the next projection. The activation of
the next color leads to changing of the S–A and the S–NA subsets. The new
active unit begins from T6 → T7 tasks.

The presented formulation of the ART technique produced a I/O bound algo-
rithm that was first executed in a distributed memory message–passing environ-
ment. The performance of the processing units does not create some perceptible
constraints in the benchmark calculations. However, a large number of tiny–size
data transfers must be made in the iterative loop which was the reason of low
parallel execution speedup (Fig. 2). A shared memory multiprocessor platform
seemed to be more appropriate to implement the presented formulation of the
ART technique. In the next chapter, we will analyze of the algorithm efficiency

Fig. 2. Optimal speedup (dotted line) and the speedup of the ART algorithm (solid
line) as a function of the number of processors in a message passing environment
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in a system of dynamic shared memory processor clusters (SMP) with a new
type of inter–processor communication called communication on the fly.

3 Implementation of the Method in Dynamic SMP
Clusters

Dynamic SMP clusters are organized by connecting processors at program run-
time to shared memory module busses. The essential concept of the new com-
munication on the fly is based on elimination of shared data exchange through
multiple transactions concerning memory modules and replacing it by switching
processors (with data in their data caches) between SMP clusters which con-
tain processors that are interested in using shared data [5, 6]. The shared data
(brought by a switched processor) are made available for other processors in
the cluster by means of so called reads on the fly. They consist in simultane-
ous parallel reading of data to processor’s data caches by means of snooping a
cluster memory bus while a processor writes shared data to the memory module
from its data cache. In these way the multiple data reads (otherwise performed
sequentially over the memory bus) are overlapped with the data writes, which
speeds up program execution. The other feature is that such data exchange takes
place directly between processor data caches, which is another source of commu-
nication speedup since it eliminates a series of memory–data cache transactions,
otherwise necessary in the system.

The assumed system is built of dynamic shared memory clusters (A, B, ...)
created by connecting processor nodes PEn (n = 1, . . . , N) to busses of memory
modules Mm (m = 1, . . . ,M) at program run–time (Fig. 3). Basic elements of
a processor node (PEn) consists of a data processor (Pn) which co–operates

Fig. 3. System structure with dynamic SMP clusters and communication on the fly
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with its data cache (DCn) and the bus request controllers (BRC). PEn can be
connected to two memory modules at a time. BRCs control data communication
of processor node with memory modules including initiation of switching the
processor between SMP clusters and of accessing busses of memory modules.

Each cluster has its internal data bus (Intra–cluster Bus) connected to a local
memory module and shared by all processors in the cluster. The bus is supervised
by a local bus arbiter. The main task of a local arbiter is to attribute access rights
to the memory bus on requests from processors. Arbiters fulfill also inter–cluster
switching requests coming from processors. Many processors can read data from
memory busses simultaneously based on snooping the address and data lines by
the BRC units. Such reads on the fly are not controlled by arbiters, excluding
involved write operations. All processors are also connected to the global bus,
which enables for them reading data from all non–local memory modules under
coordination of the global arbiter [5, 6].

The main advantage of the described system for image reconstruction algo-
rithms is the possibility of parallel data exchange performed in synergy with
dynamic processor switching between SMP clusters. Reconfiguration of system
structure enables adjusting the interconnection structure to program needs. It
also enables adjusting to current needs the computing power available in clusters.

Fig. 4. Extended macro–data flow graph of the iteration loop of the ART algorithm
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Efficiency of the ART algorithm executed in the system with the proposed
architecture was evaluated by simulation experiments based on the use of pro-
gram graph execution simulator written in C. Special extended macro–data flow
graph representation was used [5, 6]. The idea of the execution of the iterative
part of the ART algorithm shown in Fig. 1 in the assumed system is presented in
a graph in Fig. 4. In this graph, rectangles mean computational sequential code
nodes, circles with R (or W) inside denote data reads from a memory module to
a processor data cache (or data write from a data cache to a memory module).
A double circle with R inside denotes a data read on the fly. Such nodes are
synchronized with a write node (the source of data for the reads) by a barrier
(B) to be sure that all requests of data reads on the fly are deposed in BRCs be-
fore the write takes place. A small crossed rectangle means switching a processor
from one SMP cluster (memory module bus) to another (indicated by a mem-
ory module — Mi, i ∈ (1, . . . ,M)). Ellipses denote dynamic processor clusters
organized by processor switchings for data transmissions through reads on the
fly. The graph activation paths (going top down) are assigned to processors P1,
P2, . . . , Pn. Each processor Pj, j ∈ (1, . . . , N), has 2–ported data cache at the
memory modules side. One cache port of Pj is constantly connected to the mem-
ory module Mj. The second port of Pj can be dynamically switched to busses of
consecutive memory modules (M1, M2, . . . , Mm, see consecutive node levels at
the graph in Fig. 4) to collect (via reads on the fly) the results of computations
produced by nodes T7l, l ∈ (1, . . . , n), executed in consecutive processors.

Fig. 5 presents parallel program speedup evaluated by simulation of the ART
method program graph execution. The efficiency is maximal in the case when all
initial data are pre–fetched before execution of programs into data caches whose
capacities are adjusted to program needs. In this case, there is no communication
data cache–memory during computations and processors use initial data exclu-
sively from caches and data supplied to data caches by other processors via reads
on the fly. Such computing can be performed only if data caches are sufficiently
large. However this method cannot be used when C matrix size is too big. In such
cases, data have to be gradually pre–fetched from memory modules between com-
putations. Introduction of multiple memory modules in such cases improves scal-
ability and efficiency of the algorithm comparing that with a single module use.

Fig. 5. ART computation speedup as a function of the number of processors (left) and
the number of shared memory modules (right)
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Increasing the number of memory modules enables a better distribution of
data in the system and improves efficiency since processors can implement two
data transmissions: data cache–memory module, at a time. However, for a given
number of memory modules, increasing the number of processors above a cer-
tain limiting value can cause efficiency to fall down. It happens when too many
processors compete for accessing memory modules. Program efficiency improve-
ment can be obtained only by a coordinated increase the number of proces-
sors and memory modules. The simulation results have shown that increasing
the number M of memory modules with a fixed number N of processors gives
processors strong efficiency improvement if M ≤ N . There exist boundary val-
ues of these parameters, for which the advantages from using many processors
for parallel computations are reduced by contention in accessing shared memory
modules.

4 Conclusions

Applying multiprocessor systems based on dynamic SMP clusters with com-
munication on the fly brings strong shortening of the computation time in
tomographic image reconstruction. The assumed system architecture strongly
improves data communication in the system and enables adjusting system struc-
ture to program needs. An efficient implementation of the ART image reconstruc-
tion algorithm has to include the appropriate number of processors and shared
memory modules in the system. Program graph analysis supported by introduced
coloring scheme enables taking correct parallel program design decisions.

The paper has been partially sponsored by the ICS PAS and PJIIT research
grants as well as the W/WE/2/03 grant of Bialystok Technical University.
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Abstract. ParSol is a library for semiautomatic parallelization of data
parallel algorithms. It offers sequential and parallel arrays to be used in
C/C++ algorithm implementations. The tool is developed as an exten-
sible software package by using object–oriented techniques. ParSol uses
MPI for interprocess communication. In this article, issues of application
of parallel arrays for parallelization of MfsolverC++ are discussed. This
solver simulates two-phase immiscible flow in porous media. A short
description of the mathematical model is given and a basic informa-
tion on the finite-volume approximation scheme is presented. Results of
computational experiments are presented.

1 Introduction

The multiphase flow in porous media has gained recently a lot of attention. This
is due to the fact that problems involving the multiphase flow, heat transfer, and
multicomponent mass transport in porous media arise in a broad spectrum of
engineering disciplines. Important technological applications include the drying
of porous solids and soils, subsurface contamination and remediation, thermally
enhanced oil recovery, geothermal energy production, porous heat pipes, nuclear
reactor safety analysis, high-level radioactive waste repositories, paper machines.

A standard modeling approach for multiphase flow in porous media are
macroscopic models obtained by volume averaging or homogenization methods
from microscopic equations. The transport phenomena are mathematically de-
scribed by the basic principles of conservation for each phase separately and
by appropriate interfacial conditions between various phases. Unfortunately, the
resulting models are difficult to solve due to large number of strongly coupled
nonlinear differential equations in the systems.

Mathematical models for multiphase flow and heat transfer in porous media
were described in many papers and books (see [1, 4, 5] and references cited in
these works). We have created an extensible software tool MfsolverC++ for
solution of multiphase flow problems. It is using an object-oriented approach
and special numerical methods to build a solver for system of PDEs by merging
together independent solvers for alone-standing equations that enter the system.
Such strategy is used in Diffpack software library [6].
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The rest of the paper is organized as follows. In Section 2, we formulate
the mathematical model of two–phase immiscible flow in porous media and de-
scribe very briefly the finite-volume scheme, which approximates the system of
nonlinear PDEs. The tool itself is described Section 3 and results of compu-
tational experiments are presented in Section 4. In Section 5, we give details
about a parallel implementation of the tool and describe ParSol tool of paral-
lel C++array objects. By using this tool a parallel version of the code follows
semi-automatically from the serial one.

2 Model for Two-Phase Immiscible Flow in Porous Media

Isothermal two-phase immiscible flow in porous media is an example of a problem
solved in our tool. For this problem we have chosen global pressure model [4].
Comparing to other models and formulations, equations in this model are less
coupled and entering quantities are smoother, because most of them describe
mixture properties: velocity, density, etc.

The problem is described by the system of two partial differential equations.
The first equation is mass conservation equation for two-phase mixture:

ε
∂ρ

∂t
−∇

(
K
ν

(
∇p− (λ1ρ1 + λ2ρ2)g

))
= m, (1)

where m = m1 +m2 is the mixture mass source or sink. In the absence of any
external mass source or sink, m = 0. The obtained equation is sometimes called
pressure equation and is used to find the global (mixture) pressure p. The mixture
kinematic viscosity ν is positive. Thus if the absolute permeability tensor K of
porous medium is positive-definite, so is K/ν. Consequently, it follows from (1)
that the pressure equation is elliptic.

The second equation describes mass conservation of one of the phases:

ε
∂ (ρ1s1)
∂t

+∇ (ρuλ1) = −∇
(

Kλ1λ2

ν

(
∇pc + (ρ1 − ρ2)g

))
+m1, (2)

where mixture velocity u is found from the Darcy law:

ρu = −K
ν

(
∇p− (λ1ρ1 + λ2ρ2)g

)
. (3)

We call (2) saturation equation. It is used to find saturation s1.
Recall that dpc/ds1 < 0 by the property of capillary pressure. Hence if K is

positive-definite, then (2) is a degenerate parabolic equation. The degeneracy is
caused by the fact that fractional mobilities λ1 and λ2 can become zero. When
the capillary forces are small, saturation equation (2) is advection dominated. It
is purely hyperbolic in the absence of these diffusive forces.

For numerical solution of the obtained system of PDEs we employ a special
sequential procedure [2]. According to it, equations are first decoupled and then
solved implicitly. This solution procedure is sometimes called semi-implicit. Dif-
ferently from fully coupled and implicit schemes (see [1]), it is more flexible and
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can be extended in the natural way, if the model is extended by additional PDEs
for saturations, concentrations or temperature. Differently from IMPES methods
(implicit approximation of the pressure equation and explicit approximation of
saturation equations), all equations are solved implicitly, what can lead to the
relaxations of the time step restrictions.

In our tool we are using a cell-centered non-uniform staggered Cartesian grid
to partition the problem domain into the control volumes. PDEs are approxi-
mated by the finite–volume schemes. In this way, the mass is conserved locally
(volume by volume).

The advection terms in (2) are approximated by using one of the following
methods:

– Upwind approximation, which gives the monotone difference scheme. PDEs
are approximated with the first order of accuracy even for smooth solutions.

– TVD schemes [5], which have the second order of accuracy for smooth part
of the solution. We note that TVD schemes are nonlinear even for linear
problems and the stencil of the grid used by such schemes is larger than for
the upwind approximation.

The pressure equation is linearized by the Picard method. A combination
of the Picard and Newton iterations is used to deal with strong nonlinearities
in the saturation equation. Newton iterations generally give better convergence
performance if the initial guess is good, but the Picard method is often more
robust, i.e. less dependent on the initial guess.

We use harmonic or arithmetic means of coefficients to approximate diffusive
fluxes on the interfaces of control volumes. Obtained matrices are 3-diagonal in
1D case, 5-diagonal in 2D, and 7-diagonal in 3D. Dirichlet, Neumann, and full
flux boundary conditions are implemented.

3 Description of MfsolverC++

It becomes more and more popular in the scientific computing to exploit the
object-oriented programming (OOP) techniques. We also use OOP in the design
and implementation of our tool. This allows us to reduce the amount of time
spent on the programming and debugging and makes all implementational as-
pects cleaner and simpler. According to the strategy proposed in [6] and used in
Diffpack software library, we build our solvers for the systems of PDEs by merg-
ing together independent solvers for alone-standing equations that enter the
system. Our solver for solution of isothermal two-phase immiscible flow prob-
lems using global pressure model is shown in Figure 1. Initially MfsolverC++
was created as a sequential application.

Class Pressure and his children are independent solvers of pressure equa-
tion (1). Class Saturation and his children are independent solvers of saturation
equation (2). Equations become coupled into the system through the coefficients.
In our PDE solvers, these coefficients, including the source, initial and boundary
conditions functions, are represented by virtual functions. Subclasses of PDE
solvers override these functions and implement the physically relevant versions,
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Buckley-Leverett McWhorter

CommonRel

Manager

PressureM

Pressure

. . .

SaturationM

Saturation

LinEqSolver

TimePrm

GridFD

Fig. 1. Design of the PDE system solver with relations between solver classes, manager
and pool of common relations. Solid arrows indicate inheritance (“is-a” relationship,
with arrows pointing from subclass to base class). Dashed arrows indicate pointer
(“has-a” relationship).

when the coefficients are coupled to other unknown fields in the PDE system.
All these functions are often built of a common set of relations (constitutive re-
lationships, model definitions, etc.). Therefore, they are collected in class hierar-
chies and accessed from PDE solvers through a base class CommonRel interface
(pointer). Note that constitutive relationships can be easily changed without
affecting the code in PDE solvers.

A manage class Manager acts as the solver class for the whole PDEs system.
This class contains two way pointers to the subclasses for solving the pressure
and saturation equations, PressureM and SaturationM, respectively, which enable
the coupling by overriding the virtual functions of base classes with the functions
from common relation hierarchy. The manager is also responsible for creating
a space grid and time discretization. It allocates a common linear system and
solver object, and distributes all these data to the PDE solver classes.

Finally, we note that such design of PDE system solver suits very well to
the sequential solution procedure, which was chosen to decouple the systems of
PDEs in our tool. It is naturally extensible if the differential model is extended
by the additional PDEs.

4 Computational Experiments

In this paper we show how our tool solves a sample 2D problem. We consider
unsteady displacement of oil by water in two-dimensional horizontal reservoir
(water flooding problem). An assumption is made that external forces that are
driving water into reservoir are so large that capillary forces can be neglected, i.e.
saturation equation (2) is hyperbolic. We investigate the case of a homogeneous
permeability field and the case with a simple heterogeneity. Results of numerical
experiments are presented in Figure 2.

The reservoir is initially filled with the oil. The water is pumped in over
the well at one of reservoir’s boundary: x ∈ (0, 45; 0, 55), y = 0. The oil can exit
domain over the whole opposite boundary, i.e. x ∈ (0; 1), y = 1. Figures 2(a) and
2(b) show saturation distribution of infiltrating water phase at time moments
t = 2 and t = 7 in case of homogeneous permeability field. Brooks and Corey
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Fig. 2. 2D water flooding simulation

expressions [1, 5] for relative permeabilities were used. Wells are implemented as
flux-type boundary conditions.

As can be expected from hyperbolic-type problem, solution exhibits a shock
wave, which is moving in all possible directions with the same speed. Figure 2(c)
shows water saturation profiles in case of simple heterogeneity in reservoir, when
absolute permeability inside rectangular domain (0.4, 0.6) × (0.3, 0.7) is 10−3

times smaller than outside. Comparing results at the same time moment t = 7,
influence of heterogeneity can be clearly seen. In Figure 2(d) streamlines of oil
flow are shown.

5 Parallel Implementation of MfsolverC++

The major difficulty in using parallel computers is that writing a parallel program
(or parallelizing existing sequential codes), requires the knowledge of special
methods and tools, which is not trivial to be mastered. Hence the main obstacle
in the spreading parallel computing is the lack of specialists who may create
parallel software. One of the ways to improve the situation is the creation of tools
to simplify the parallelization of algorithms [7]. We have developed a new tool,
which can be used for semi–automatic parallelization of data parallel algorithms,
that are implemented in C++.

5.1 Parallel Array Objects

The aim of ParSol is to bring HPF parallelization simplicity to C++language, us-
ing popular parallelization standards. The current ParSol library features are: a)
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PS_CmArray< ElemType, DimCount > 

PS_CmArray_2D< ElemType > 

PS_CmArray_1D< ElemType > 

PS_CmArray_3D< ElemType > 

PS_ParArray< ElemType, 
DimCount > 

PS_CustomTopology PS_1DTopology 

PS_2DTopology 

PS_3DTopology 

… 

… 

PS_ParArray_2D<ElemType> PS_ParArray_1D<ElemType> … PS_ParArray_3D<ElemType> 

Fig. 3. ParSol library class diagram

created for C++ programming language, b) based on HPF ideology, c) the library
heavily uses such C++ features as OOP and template and only standard C/C++
features are used, d) MPI 1.1 standard is used to implement parallelization, e)
ParSol is an open source library. At present, ParSol may be used for paralleliza-
tion of data-parallel or domain decomposition algorithms. ParSol class diagram
is shown in Fig. 3.

Next we describe the main elements of the library.

Sequential array classes. These are the classes to be used instead of na-
tive C/C++ arrays. No other libraries, except ParSol itself, is necessary to use
them. Comparing to native C/C++ arrays, ParSol sequential arrays have a num-
ber of advantages for programming mathematical algorithms, such as virtual
indexes, built-in array operations, automated management of dynamically allo-
cated memory. The main functionality resides in template class PS CmArray.
However, general functionality requires interface complexity. So children are
derived for special cases (i.e. 1D, 2D, 3D arrays), that provide a user-friendly
interface. It is recommended for end-user to use those classes whenever possible.

Parallel array classes. Parallel arrays are the descendants of appropriate
sequential arrays and parallelization methods are added to the sequential array
functionality. We note that parallelization is similar for different kinds of arrays.
So parallelization code is localized in class PS ParArray, and is used in parallel
array classes by multiple inheritance.

Topology classes. The purpose of these classes is to ensure that all processes
are in proper order for parallel array functionality. In HPF, this functionality is
performed by special directives. All the general code resides in PS CustomTopo-
logy class. As with sequential array classes, there are also descendants classes,
which provide the end–user with more friendly interface for one-, two- and three-
dimensional cases.

Stencil classes. A stencil is determined depending on requirements of computa-
tional scheme. Based on the given stencil, different amount of information needs
to be exchanged among neighbours. This part of data is required for parallel
arrays to operate properly.



318 R. Čiegis, A. Jakušev, and V. Starikovičius

A user of ParSol tool should develop a sequential code and use array op-
erations provided by ParSol wherever possible. This requirement can be called
an advantage, because it frees programmer from implementing simple tasks,
allowing to concentrate on problem solving, and makes code cleaner.

Parallelization of data parallel algorithms is done in few simple steps. The
difference from HPF is that the user must specify explicitly the stencil of the
grid used in the algorithm. Such information is required to implement additional
data communication part of parallel algorithm. The other requirement is that
all computations should not depend on the order in which array points are
processed (for example the Jacobi iterative method satisfies this requirement,
but the Seidel iterative method can not be parallelized with ParSol.)

The parallelization of such a sequential program takes the following steps: a)
replace includes of sequential headers with parallel ones; b) replace sequential
classes with their parallel analogy in variable declarations only; c) add MPI
initialization code (one line at the beginning of the program); d) add topology
initialization code (in its simplest case, one line at the beginning of the program);
e) specify when array neighbours should exchange data.

5.2 Computational Experiments

We have tested ParSol on a set of benchmarks designed to measure the per-
formance of several components and parts of MfsolverC++ crucial for efficient
performance of parallel version of the tool. A nonlinear 2D diffusion problem
was approximated by the explicit Euler scheme. A detailed description of the
problem is given in [3]. The problem was approximated on rectangular grids
N ×N with a different number of cells. Table 1 presents experimental speedup
Sp(N) and efficiency Ep(N) values for solving discrete problems on IBM SP4
computer. A two–dimensional data decomposition p1 × p2 was used with p1, p2
values as close to each other as possible.

In the second test we have solved by the Conjugate Gradient method a sys-
tem of linear equations which was obtained after the discretization of the three
dimensional Puasson problem by the finite–volume method. Table 2 presents
experimental speedup Sp(n) and efficiency Ep(n) values for solving problems of
different size. Computations were performed on PC cluster.

Application of ParSol for parallelization of MfsolverC++ still requires some
restructuring of solver’s code. However we have shown that essential parts of

Table 1. The speedup and efficiency for the explicit Euler algorithm on SP4

p Sp(80) Ep(80) Sp(160) Ep(160) Sp(320) Ep(320)

2 1.975 0.988 1.984 0.992 2.004 1.002
4 3.741 0.935 3.928 0.982 3.986 0.996
8 6.766 0.846 7.293 0.911 7.831 0.979

12 8.701 0.725 10.19 0.849 11.216 0.934
24 14.18 0.591 18.24 0.760 21.961 0.915
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Table 2. The speedup and efficiency of the CG algorithm on PC cluster

p Iterations n Tp Sp Ep

1 188 100 24.10
2 188 100 13.22 1.82 0.911
4 188 100 6.65 3.63 0.906
8 188 100 4.03 5.97 0.747

1 350 200 366.54
2 350 200 185.51 1.98 0.988
4 350 200 94.99 3.86 0.965
8 350 200 51.58 7.11 0.888

the solver, i.e. solvers for saturation and pressure equations can be successfully
parallelized by using ParSol tool.
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Abstract. We describe our work in building support for streaming data
services for Geographical Information System Grid services. We examine
how streaming approaches may be used to increase data service per-
formance for transporting XML messages. Similarly, streaming versions
of traditional static map services may be combined with general au-
dio/video session management capabilities to build collaborative, an-
notatable shared maps. Distributed services linked through messaging
substrates require information and broker management capabilities, and
we describe our research here. Finally, we discuss efficient XML repre-
sentation techniques that can be used to increase performance of Web
Services and support Web enabled devices.

1 Introduction

The implications of messaging and real-time data streaming in the core standards
of Service Oriented Architectures [1] are just beginning to be investigated. SOAP
intermediaries and distributed messaging systems may potentially greatly alter
the nature of the Grid applications, creating an “Application Internet” on top
of the core Internet.

As we have reviewed elsewhere [2], service oriented systems (i.e. Grids) are
characterized by distinct, distributed services with well defined public interfaces.
These services communicate through the exchange of messages. Both service
definitions and message formats are expressible in XML using WSDL [3] and
SOAP [4], respectively. Perhaps underappreciated so far is the importance of
the message-based nature of service-oriented systems. Most applications have
focused on the “remote procedure call” view of Web Services, and this approach
has been successful in building file-system based scientific application Grids.
However, remote procedure call implementations are only a convention. We may
also exploit messaging approaches to handle streaming and real time data. One
of the primary characteristics of this approach is the use of messaging substrates

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 320–332, 2006.
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Fig. 1. Self-contained services, or collections of services, communicate through mes-
sages mediated by a messaging substrate. All communications (method invocation and
responses, event notifications, data exchanges, and data streams) are messages.

[5] to support the routing of the messages, as well as provide various qualities of
service such as reliability and security.

We illustrate the basic concepts in Fig. 1. We may consider the individual
services as distinct structures on a messaging foundation (Fig. 1 represents a
top-down view in our analogy). The individual services expose public interfaces
to the rest of the Grid services. Resource-specific internal interfaces and bridges
(i.e. access to a particular database or simulation application) are not public:
the service mediates access to these resources. All communication between ser-
vices uses distinct messages that are managed by the messaging substrate that
abstract network transport protocols (TCP/IP, UPD, etc.). Services publish or
subscribe to messaging channels, constructing or consuming messages as appro-
priate, but are not otherwise responsible for message routine or message quality
of service. Similar approaches have been used to manage inter-service commu-
nication of state changes and other notifications [6], but as we advocate in this
paper, the message substrate approach should apply to all messages. The system
may support several modes, including client-server and peer-to-peer (see 2.3)

Fig.1 is self-similar in that we may build Grids hierarchically, where each col-
lection of services that constitutes a particular subgrid may itself expose a single
external interface. Such systems are made possible through workflow and light-
weight information systems that together can be used to define these subgrids.
This work is described in more detail in Section 3.

In this paper, we describe our efforts to build service oriented, real time sys-
tems based on the NaradaBrokering substrate [7]. NaradaBrokering is a
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distributed, topic-based publish/subscribe system that may be used to route
arbitrary message payloads. We begin with an examination of several applica-
tions: Geographical Information System (GIS)-based applications for accessing
data archives, using video collaboration techniques for developing streaming map
videos within collaborative sessions, and annotating video streams. We then
examine two fundamental services needed to support messaging Grids: infor-
mation management using WS-Context, stream and broker management using
HPSearch. We conclude with an examination of techniques for improving Web
Service performance by using more efficient XML representations.

2 Geographical Information System (GIS) Data Service
Applications

2.1 Improving Web Feature Service Performance

The Open Geospatial Consortium (OGC) [8] standard specification Web Feature
Service (WFS) [9] defines standard interfaces for web-based clients and servers
to access geospatial feature data. WFS and other OGC based services use the
Geography Markup Language (GML) [10] to encode geospatial data, and this
provides a common language for both providers and consumers. The original
WFS specification is based on HTTP Get/Post methods, but this type of service
has several limitations such as the amount of the data that can be transported,
the rate of the data transportation, and the difficulty of orchestrating multiple
services for more complex tasks. Web Services help us overcome some of these
problems by providing standard interfaces to the tools or applications we develop.
We have developed a Web Service version of WFS and are testing in several
scenarios where scientific data analysis tools such as Pattern Informatics [11]
require fast access to large amount of data.

Our experience shows that although by using Web Services we can easily
integrate several GIS and other services into complex tasks, providing high-rate
transportation capabilities for large amounts of data remains a problem because
the pure Web Services implementations rely on SOAP messages exchanged over
HTTP. This conclusion has led us to an investigation of topic-based publish-
subscribe messaging systems for exchanging SOAP messages and data payload
between Web Services. We have used NaradaBrokering which provides several
useful features besides streaming data transport such as reliable delivery, abil-
ity to choose alternate transport protocols, security and recovery from network
failures.

Our streaming WFS uses standard SOAP messages for receiving queries from
the clients; however, the query results are published (streamed) to a NaradaBro-
kering topic as they become available. Our initial implementation uses MySQL
database for keeping geographic feature data, and we employ a capability in
MySQL that streams the results row by row, allowing us to receive individual
results and publish them to the messaging substrate instead of waiting for whole
result set to be returned. The initial performance results show that (especially
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Table 1. The performance of streaming and non-streaming versions of the Web Feature
Service is compared. Timings are in milliseconds. Numbers in parentheses are standard
deviations.

Event Mag-
nitude Lower
Bound

Data Size
(KB)

Streaming WFS Response Time
Non-Streaming WFS

Time for
streaming
the result

Total Response
Time

3 880 2414 4570 (360) 5663 (31)
3.5 287 827 3405 (48) 4414 (39)
4 106 320 2945 (50) 4099 (71)
4.5 36 100 2661 (27) 3917 (38)
5 11 31 2425 (38) 3913 (77)

for smaller data sets) streaming removes a lot of overhead introduced by object
initializations. Table 1 gives a comparison of the streaming and non-streaming
versions of our WFS implementations. The data requested is the Southern Cali-
fornia seismic records for the eventful year of 1992, initially obtained from South-
ern California Earthquake data center [12] and converted into GML for our Web
Feature Service. The first column is the minimum magnitude of the earthquake,
the second column shows the data size of the query result. Timings for Streaming
WFS contains two columns; the first column shows the time it takes to generate
and stream out GML feature collection, the second column shows the total re-
sponse time. The fourth column shows the total response time for non-streaming
WFS. The difference between streaming and non-streaming WFS versions is that
streaming version does not accumulate the query results and stream as soon as
they become available. The timings are in milliseconds and include object ini-
tializations, query processing, database query and transport times.

We can deduce from the table that for larger data sets when using streaming
our gain is about 25%. But for the smaller data sets this gain becomes about 40%
which is mainly because in the traditional Web Services the SOAP message has
to be created, transported and decoded the same way for all message sizes which
introduces significant overhead. We are investigating new methods for reducing
the overhead in the streaming WFS to further improve the performance.

2.2 Collaborative Map Videos Through the Streaming Web Map
Services

The Web Map Service [13] is another HTTP GET/POST-based service that
we may convert into a Web Service. Map servers are useful for building Web
portal interfaces for geophysical Grid applications that integrate Web Feature
Service-based data services with remote executables. Examples of this work may
be found in [11]. We are also interested in going beyond static images to support
the displays of time-dependent geographic data.
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In our initial investigation of this problem, we generate the video image as a
sequence of map images. After generating map images on the Web Map Server for
each time slice for the same data layer, the WMS then converts the sequence into
a video stream and publishes it to a Real Time Protocol (RTP) [14] session which
is represented as <IP Address, Port Number> pair. The supported video stream
formats are H.261 and H.263, which are widely used formats in videoconferencing
systems. A client capable of playing those formats can connect to the RTP session
and play the stream published. Map video stream can be played in collaborative
environments such as AccessGrid [15] and GlobalMMCS [16] sessions.

The map video stream has several configurable parameters which affect the
quality of the produced map video stream: frame rate and video format of the
stream, update rate of the map images in the video stream. We use the H.261
codec and update map images every 0.5 seconds while we keep the video frame
rate at 10 frames per second. This provides sufficient quality for the video stream
displayed at the receiving side. The reason frame rate and image update rate are
different is that some clients might not be capable of visualizing video streams
with low frame rate or can visualize them with very low quality. Keeping frame
rate high will improve the quality of the video shown on the player while the
map image rate is kept at a different rate.

Map video streams can be published to unicast or multicast RTP sessions.
AccessGrid venues are multicast sessions. A video client listening a multicast ses-
sion can receive and play the stream as long as the underlying network lets client
receive multicast packets. GlobalMMCS also provides this map video stream to
its clients as unicast video stream.

2.3 Collaboration Tools for e-Annotation

Streaming map servers may be viewed by any compatible client, and by inte-
grating with GlobalMMCS, we may deliver streaming map video to a range of
systems (including Access Grid, Polycom, and RealPlayer); see [16]. We may also
build our own custom clients and services with extended capabilities for replay
and annotation.

The e-Annotation collaborative tools facilitate interactive collaboration and
distance education. The e-Annotation collaborative tools work in a peer-to-peer
fashion atop of the collaboration architecture based on publish-subscribe mes-
saging middleware. All the participating peers collaboratively work with each
other using the NaradaBrokering messaging overlay network to annotate a live
or archived video stream. The e-Annotation player is composed of the following
components, illustrated in Figure 2.

Stream List Panel : There are three stream lists in this panel: a list of real
time live streams, an archived video stream list, and a composite annotation
stream list. These three stream lists are dynamically updated from the RTSP
server by subscribing to the streaming control info topic from one of the brokers.
Each stream list is a topic.

Real time live video play panel: This panel contains a video player which can
play the selected real time live video stream that user selects in the real time live
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Fig. 2. The e-Annotation user interface allows video image display, capture, annota-
tion, and playback. The image shown is LandSat imagery of the western United States,
obtained from the NASA OnEarth project, http://onearth.jpl.nasa.gov/.

stream list. All the real time live video streams are published by GlobalMMCS
through different NaradaBrokering topics.

Streaming player panel: This panel has a video player to play the buffered
or archived video stream from the NaradaBrokering’s buffers and storage nodes.
This player supports pausing, forwarding and rewinding the video streams with
dynamic length (the buffered live video) or fixed length (the archived video
stream). It also supports taking snapshots from a playing video stream. When
taking a snapshot, the timestamp is associated with that snapshot. These snap-
shots are loaded to whiteboard to be annotated collaboratively and saved with
the original stream as a new composite stream.

Video annotation player panel: This panel contains a player to play the
new created composite annotation video stream. When the annotation stream is
played back, the original video stream is played in the streaming player panel,
and the annotated snapshots (which are streamed by RTSP server) are played
in this panel, synchronized with the original video stream by the timestamps
associated with them.
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3 Web Intermediary and Service Management

3.1 Service and Intermediary Management

We are developing HPSearch [17] as script-based management console for con-
trolling services and NaradaBrokering intermediaries. HPSearch provides dual
functionality: 1) it provides a high-level language suitable for application devel-
opers to program workflows in a Grid that utilizes the messaging middleware,
and 2) it provides tools to manage the messaging middleware.

HPSearch enacts a simple distributed services model by leveraging the capa-
bilities of messaging middleware for routing data in streams between services.
WSProxy is a specialized component of the HPSearch system that wraps an
existing service or a program while providing a Web Service interface for steer-
ing the service. It also provides an interface to the NaradaBrokering messaging
system that transparently maps input / output streams to messages. Thus data
is sent between services by publishing the event containing the data on a pre-
determined topic. Topics are automatically created by the HPSearch engine thus
linking distributed services. WSProxy also presents a simple Web Service inter-
face to help steer the service. The HPSearch runtime steers the service while the
input / output is transparently managed by NaradaBrokering. NaradaBrokering
has been recently augmented with topic creation and discovery [18] and message-
level security. We plan on adding handlers in HPSearch to help automatically
register secure streams and issue tokens to participating services. This will allow
the application programmer to manage the security features of each stream that
links distributed services.

HPSearch uses NaradaBrokering to route data streams between distributed
services. Accessing a single broker over-and-over usually results in inefficient
routing of data due to over loading. To assuage this problem we deploy a set
of co-operating broker nodes that together form a virtual broker network. This
broker network usually has multiple routes connecting peripheral brokers, thus
providing alternate routes avoiding congestion at a single broker node. The dis-
tributed services connect to the peers at the periphery of this network. Thus,
the brokering network can route data between peers much more efficiently, also
providing different quality of service to each peer if required.

The scripting architecture also allows us to aggregate performance metrics in
the system. These would allow us to determine congested paths and help decide
alternate routes to create. The management architecture may be extended to
manage remote brokers and provide means to try alternate configurations for
creating links that span firewalls.

Management of such a set of multiple broker nodes and creating links be-
tween them poses a scalability issue. To address this issue, we are developing
a specialized Web Service called the Broker Service Adapter. The Broker Ser-
vice Adapter helps us deploy brokers on distributed nodes and setup links be-
tween them. Further broker nodes or the links between them may fail. HPSearch
provides a scripting interface to instantiate new brokers at runtime and create
links between brokers. The routing characteristics may be completely changed
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by tearing down an existing broker network and instantiating a completely new
network.

Recently, management of systems has gained much research interest within
the Web Service community. WS-Management [19] and WS-Distributed Man-
agement [20] are two competing Web Service specifications that propose man-
agement of remote resources based on the Web Service architecture. We plan
on extending the Broker Service Adapter architecture to incorporate a simple
WS-Management based interaction while fault-tolerance and scalability is auto-
matically handled by the underlying Broker Service Adapter architecture.

3.2 Managing Dynamic Information with WS-Context

Collections of services such as Geographic Information System and collaboration
services, such as described in Section 2, may be thought of as an actively collab-
orating set of grid/web services where services are put together for a particular
goal. Each interaction with a set of services (including both workflows described
in [11] and video collaboration sessions described in 2.3) can be modeled as a
session. Each session is associated with a life time and maintains rapidly up-
dated information known as context. Simply restated, this means that context
plays an important role in enabling services to correlate their activities. We use
the term “gaggle” for dynamically assembled grid/web services for a particular
functional collection [21]. Gaggles may be gathered at any one time and can be
considered as very small part of the whole grid.

We have designed and implemented information services [22] that support dy-
namically generated context to meet with aforementioned requirements of rich
interacting systems. We have extended existing WS-Context Specifications [23]
and provided with an implementation of XML metadata services supported by a
MySQL database as backend storage. The WS-Context Metadata Service keeps
track of context information shared between multiple participants in grid/web
service interactions. It maintains user profiles, application specific metadata, in-
formation regarding sessions and state of entities in these sessions. In order to
provide fault tolerance and scalability, we have also designed distributed meta-
data management architecture to support dynamically assembled Grid applica-
tions where metadata is widely-scattered and dynamically generated [24]. Addi-
tional applications of WS-Context services are described in Section 4.

4 High Performance XML Transfer

In a conventional Web Service environment, XML is the presentation format,
which provides interoperability to the heterogeneous participating nodes. But
in some constrained computing environments, such as mobile computing and
real-time computing, processing verbose XML-based messages becomes a per-
formance bottleneck. These performance overheads consist of parsing to retrieve
information from its structured representation, more transmission time with in-
creased document size over a narrow-bandwidth mobile connection and conver-
sion overheads from in-memory representation to textual format.
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The high-performance XML encoding is an open research area [25] [26] [27].
Related work on solving these problems can be categorized as individual message
optimization or message stream optimization. An individual message approach
produces a simplified, efficient, and self-contained message that has different rep-
resentation of XML content – XML Infoset information. XBIS [28] falls on to this
category. The message stream approach optimizes a whole sequence of messages
– a session. Participating nodes negotiate the characteristics of the session and
the message format in the session. Fast Web Services [29] and Handheld Flexible
Representation [30] [31] (described below) fall on this category.

To achieve high-performance SOAP message processing and exchange in
constrained environments, we are designing Handheld Flexible Representation
(HHFR) and have implemented a prototype. We focus initially on handheld ap-
plications but we see important extensions to both Web enabled sensor devices
and to data-centric Web Services in general. The architecture provides the pre-
ferred representation for applications (target services, client services, or message
receivers) by separating SOAP message contents from the XML syntax of the
message. The architecture targets a message stream and negotiates character-
istics of the stream that includes the structure and types of SOAP message,
reliability and security issues, and a preferred representation. To achieve the
goal, the architecture design should address several issues.

Replacement of XML Syntax with Optimized Representation: The
HHFR architecture and its framework supports message exchanging in the pre-
ferred representations, which is an optimized (or binary) format in most cases.
The architecture separates SOAP message contents from the XML syntax. It
is responsible to build the message in the preferred format (or representation)
using internal DataStructure object and the separated contents stored in the
HHFR data model. The internal DataStructure is created by parsing the HHFR
schema document, which is a surrogate of separated structure and types of the
SOAP message. We restrict the XML Schema definition for the HHFR Schema
definition. These restrictions, such as a single schema document, no facets like
minInclusive and maxInclusive, no references, make parsing a HHFR Schema
document produce a single structure.

Focus on Message Streams: The HHFR works best for the Web Services,
where two participating nodes exchange a stream of messages. For applications
using a specific service, messages in the stream share the same data structure and
data type for information items in it. Most of message headers are not changing in
the stream session. Therefore, the structure and type of SOAP message contents
in HHFR schema format and unchanging-SOAP headers can be transmitted only
once, and the rest of the messages in the stream has only payloads.

Context-store as a Repository: In the HHFR architecture, a context-store
module holds a static data of the message stream including the unchanging-
SOAP headers, HHFR schema as a data representation, and other stream charac-
teristics. These characteristics are captured by a negotiation stage. WS-Context
(see 3.2) is well suited for this purpose. Information is defined with a URI. For
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example, we derived the HHFR scheme itself as URI-S. The current representa-
tion of the message in the stream is URI-R and the choice of transport protocol
is URI-T.

Negotiation of Characteristics: to use the preferred representation and set
up characteristics of the stream, the HHFR uses a conventional SOAP message
in the beginning of the stream like the negotiation in the WS-SecureConversation
[32] specification. The SOAP message, which has a Negotiation Schema defined
with the HHFR Schema definition, is sent to request to start a HHFR session.
It contains a HHFR Schema document of the SOAP message and any available
quality of service issues.

To demonstrate the effectiveness of HHFR architecture, we have implemented
a prototype mobile Web Service framework based on the HHFR architecture
design. The prototype implements core design features of the design, such as
the representation conversion, a fast transport option for a message streaming,
the negotiation stage, and a simple HHFR data model. We choose Java as a
language platform for both mobile and conventional computing and we limit
the mobile node as the service client. Since the HHFR design doesn’t cover the
SOAP Engine feature, we utilize existing efforts – Apache AXIS and kSOAP.

We experiment benchmarks to compare the performance of the HHFR proto-
type with the performance of the conventional Web Service framework – AXIS.
The details of the experiments and results can be found in [31] and we sum-
marize them here. We develop two applications, a string array concatenation
application and a floating number array addition application. Both applications
use TCP transport for benchmarking. A string array concatenation service pro-
duces a single concatenated string of all string in a message. We measure a Round
Trip Time (RTT) of the session, which includes multiple messages of given array
length. The other application is a float number addition service that returns a
summation of all float numbers of an array in a message. In this benchmark,
RTT of the conventional SOAP application contains an OS level float-to-text
conversion overhead, while RTT of the HHFR doesn’t.

From the experiments, we observe a bigger performance savings on a longer
session. The string concatenation benchmark and the float addition benchmark
show that HHFR communication out-performs a conventional SOAP and the
gap is fast-increasing as the number of messages in a session grows. These per-
formance gaps are mainly caused by high latency of the cellular network, which
uses the SprintPCS Vision service (speed up to 14.4kbps). The second observa-
tion we did is from the float number adding service and it is an efficient memory
space usage of the HHFR prototype implementation by avoiding text conver-
sions for building SOAP messages. During the benchmark, the runtime system
of the prototype processes a larger size array in the message.

The high-performance XML can be achieved in many ways. For example, a
binary data attachment in the SOAP message, such as MTOM [33] and XOP
[34], is very popular solution to avoid a redundant encoding for already-encoded
multimedia data or to preserve data integrity of the encrypted data. However
the approach can be applied to only fixed data format and cannot cover user
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defined data structure such as the array. Another example is compressing SOAP
documents. Compressing is reducing the size of the document for narrow band-
width connected Web Service nodes. The XML specific XMill [35] can reduce
the document size in half or more. But because of another layer of processing
– a compression and a decompression, the compression approach is not saving
overall performance overhead in many data domains.

5 Summary and Conclusion

We have described several research efforts to investigate problems in managing
streaming data, with an emphasis on applications to earth science data and col-
laboration through our SERVOGrid project. As we have discussed, streaming
approaches are capable of increasing Web Service performance for data-centric
services such as the Web Feature Service. Similarly, static Web Map Services
may be transformed into video streaming services that can be further integrated
with shared collaboration tools for annotation and playback. Underlying these
systems is the need to manage both the services and the brokers (or, messag-
ing intermediaries) that constitute the system. We described our efforts here in
developing HPSearch and WS-Context. Performance is one of the key problems
facing Web Service applications. As we discussed, efficient and flexible XML
representation is one possible solution. We have initially investigated this for
hand-held collaboration devices but see obvious extensions web enabled sen-
sor devices and to more conventional data services (particularly the Web Fea-
ture Service). Several open areas for additional research are described within
Sections 2, 3, and 4.

This work is supported in part by a grant from the NASA Advanced Infor-
mation Systems Technology program.
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Abstract. Nowadays, there is a big necessity of modeling groups of
people behavior. The knowledge of crowd dynamics is very useful in de-
veloping different facilities. The article contains a description of a model
of passengers flow in public transport vehicles. The model is created on
the basis of tram NGT-6, used by MPK SA in Krakow (Public Transport
Company). The model proposed is based on Cellular Automata Technol-
ogy combined with Multi-Agent theory. The interactions among passen-
gers (agents) are included. The dimensions and the shape of an agent
make it possible to take into account the real behavior of a passenger.

1 Introduction

Over the last years, an increasing interest in the movement patterns of groups
of people could have been observed mainly, because the knowledge of people
behavior is necessary for developers of all public facilities. In the article, the
authors propose a simulation model of passengers movement in public transport
vehicles, particularly for trams and buses.

There are two possible ways of modeling people movement: continuous and
discrete. Generally, discrete models seem to be better for describing detailed
passengers behavior, while most of the models are based on Cellular Automata
(CA). Let us describe some of them. In 1992 Nagel and Schreckenberg proposed
a 1D CA model of vehicles movement (on the road). Probably, the first work,
which describes collision avoidance in movement of people was proposed by Fukui
and Ishibashi in 1999 [1]. Another multi-directional pedestrian walkway models
were presented by Blue and Adler in 1999 and 2000 [2]. In 2001 Burstedde at
al., proposed a model which included two kinds of floor fields: a dynamic and a
static one [3]. Dijkstra et al. proposed a multi-agent model of people movement
in a shopping center (2001, 2002) [4, 5]. In 2003 Klüpfel proposed model of vessel
evacuation based on static potential field [6]. In 2004 Gloor et al. proposed a
simulation of hikers behavior in Alps [7]. Another interesting paper written by
Narimatsu et al. (2004), presents patterns of collision avoidance [8]. In 2004,
2005 Wąs and Gudowski presented a model including strategical abilities in
pedestrian movement [9, 10].
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2 Some Assumptions of the Model

A simulation of the behavior of a crowd of passengers in a public transport
vehicle requires a different set of assumptions, than the classical models based
on Cellular Automata. The first important difference is space discretization. The
majority of the known models use a quadratic lattice (or hexagonal), in which
an agent is represented by a circle inscribed in a cell of the lattice. For models
of smaller size, this is an excessive simplification. The authors propose a more
precise representation of agents by the shape of ellipse. This could work better
for imaging the interactions among agents. Each pedestrian is represented by
an ellipse which occupies two cells (an agent is standing Fig. 1a), two cells plus
some parts of other two cells (an agent is standing across Fig. 1b, 1c), or four
cells (an agent is sitting on a seat). Geometry and possible movement directions
are presented in Fig. 1.

a)

b) c)

Fig. 1. Agent representations and their possible movement directions

A single cell has dimensions of 0.25×0.25m. The size of cell is based on average
human dimensions, according to WHO data: shoulder breadth: X = 0.45m, body
depth Y = 0.27m (Fig. 2).

The second assumption is connected with the movement in the model. The
authors propose 1 cell/time-step-slice in all possible directions. A conclusion is
that the movement could be realized in complex Moore neighborhood, composed
of two simple Moore neighborhoods. Thus, space discretization is similar to
Margolus neighborhood (Fig. 3).

X

Y

Fig. 2. Body dimensions of an agent, and ellipse of the body (according to WHO data)
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a) b)

Fig. 3. Complex Moore Neighborhood, connection of two simple Moore neighborhoods

The description of the neighborhood proposed is shown below:

X(a, λ) = N(l, λ) ∪N(r, λ) (1)

X(a, λ) - neighborhood of an agent a,λ - radius of neighborhood X,
l - left side (arm) of a pedestrian,
r - right side (arm) of a pedestrian,

N(l, λ) - Moore neighborhood of the left side of pedestrian,
N(r, λ) - Moore neighborhood of the right side of pedestrian,

λ - radius of Moore neighborhood.
Value of parameter λ = n describes the possibility of movement in n time

steps. One of main reasons for using elliptic shape of agents is the problem of
crowd compressibility, which could be better reflected with the application of
the ellipse.

3 Model Description

The situation analyzed is passenger movement in public transport vehicles. Let
us consider NGT-6, a low-floor tram used by MPK SA (Kraków Public Trans-
port Company). The tram runs between two tram terminals. In each stop it
opens the doors and some passengers exit it and some enter it. All the time, the
passengers/agents have the possibility of moving inside the tram, for example
validate tickets or to look for and take a seat etc. There are some places in the
tram which could attract a passenger: validating machines, seats, places situated
near doors etc.

3.1 Formalization

Let us apply in this work the following formal definition of Cellular Automata:
(L, S,N, f), where: L - Set of cells of the lattice, S - Set of states, N - Set of
neighbors, f - transition function (Weimar 1998). Although the model presented
is an extension of classical Cellular Automata, the majority of mechanisms from
CA are taken into account.

A configuration Ct:L → S is a function which associates each state with
a grid cell. An equation of changing configuration is shown in term (2) with a
supplement (3).

Ct+1(r) = f ({Ct(i)|i ∈ N(r)}) (2)
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where:
N(r) - Set of neighbors of cells r,

r - Current cell number,
t - t = t+ 1 discrete time step,
i - Single cell.

N(r) = {i ∈ L|r − i ∈ N} (3)

3.2 Space Discretization

Presented model has 2D graphics. The surface in the model is divided into a
quadratic lattice. There are distinctive cells in the model such as: walls, ex-
its/entrances, inter-mediate aims (seats, ticket validating machines etc.). Marked
edges, which indicate mean prohibited pass between two cells, represent various
barriers. The figure below presents the layout of the tram NGT6 in the form of a
model lattice (Fig. 4). Black cells represent walls, grey cells represent seats and
blue cells represent open doors.

Fig. 4. Layout of tram NGT6 adapted to a model

3.3 Movement Algorithm

Tram runs between two terminals and it stops and opens doors at every tram
stop. Agents are randomly generated with a random set of features such as
destination (length of journey), the necessity of validate the ticket (single or
periodical ticket), age. Agents can move in the model all the time (both when
the tram moves and stops). Agents’ features determine movement characteristics.
For instance, if an agent is elderly, and their journey is of long distance, they
want to take a seat. If an agent has a single ticket, they want to validate it
immediately after getting to a vehicle. If an agent’s journey is short, they stay
in a short distance to the door. Thus, there are some defined cells in the lattice
which represent intermediate aims (seats, validators, neighborhood of doors etc.).
These cells are referred by authors as tarpits, because they stall agents. Every
agent has a defined set of priorities and a timetable of tarpits.

Agents could move in the directions shown in Fig. 1. They can turn round,
but the center of rotation could be situated only in the center of cell. General



Modeling of People Flow in Public Transport Vehicles 337

movement algorithm is presented below in the Fig. 5. In this case we have a
model with the maximum pedestrian speed Vmax is larger than 1 simulation has
to proceed within a time-step-slice given by formula t/Vmax, where t is a time
step, and it usually equals 1 second [4]. Agents with the velocity Vp less than
Vmax do not move at every time-step-slice. The authors propose a simple way
of creating automatically a movement structure for every agent with a given
velocity. For every agent an integer part of ratio Vmax/Vp determine the time
interval (measured in time-step-slices) between the movements. The fractions are

START

STOP

are you faced towards
desired direction?

are you able to
turn around?

can you move towards
desired direction?

is it possible
to pivot?

move pivot

turn around

wait

NO

NO

NO NO

YES

YES

YES YES

Fig. 5. General movement algorithm

a)
Vmax

Vp

= 2.5

t=0 t=2 t=5t=4

Ó=0 Ó=0.5 Ó=1 Ó=0

b)
Vmax

Vp

= 1.3

t=0 t=2 t=5t=4

Ó=0 Ó=0.6 Ó=1.2 Ó=0.2

t=1

Ó=0.3

t=3

Ó=0.9

Fig. 6. Example of automatic movement structure creation
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accumulated and when their total equals one or becomes larger, the agent waits
one additional time-step-slice. Then, we subtract one from the total and proceed
as described above. In Fig. 6, two cases of described method are presented. Gray
fields indicate time-step-slices (t) in which movement occurs.

4 Application Description

The model described has been implemented as C++ application. The MFC
library has been used for developing a user interface. The simulation model is
represented by C++ class SModel.

The components of the model are: a grid with known length and heigth (class
SGrid), a set of cells (class SCell), a set of agents (class SActor with its derivative
SPassenger).

5 Simulation Results

In the current stage of research the authors want to formulate a set of rules which
would reflect a real behaviour of passengers in public transportation vehicles. The
model proposed seems to be accurate. The figures below present two cases. In
the first we can observe passenger flow when vehicle’s doors are open in the tram
stop. And in the second we can see a situation inside a vehicle moving between
the stops.

Fig. 7. Screenshot. Passengers flow during stopping at a tram stop.

Fig. 8. Screenshot. Passengers flow between tram stops.
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6 Conclusions

The model presented describes passenger movement in public transport vehicles.
The simulation shows, that the agents behavior of the model is quite similar to
the behavior of passengers in reality. But there are some limitations to the model
which should to be developed and finally validation should be executed. One of
the biggest difficulties in the model is crowd compressibility. The authors plan
to apply described model in order to minimize the a tram needs to wait for the
passengers to get on (average waiting time at a stop), minimize the evacuation
time of a crowded vehicle, and make ticket punchers more available. These goals
could be achieved by evaluating the quantity and the placement of doors and
punchers and the arrangement of space inside a vehicle (seats, barriers, etc.).

The approach presented is based on Cellular Automata with substantial
modification - not only local by also global relations are taken into consid-
eration. Every agent occupies not one, but two cells or four cells. Therefore,
besides progressive movement, rotation is also permitted. Thus, passenger can
squeeze through the crowd. Tarpit cells are introduced which allows us represent
intermediate aims in simulations.
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Abstract. The paper considers the problem of determining an optimal
observation schedule for discrimination between competing models of a
dynamic process. To this end, an approach originating in optimum ex-
perimental design is applied. Its use necessitates solving some maximin
problem. Unfortunately, a high computational cost is the main reason
for limited practical applications, especially regarding distributed para-
meter systems. The paper constitutes an attempt to overcome such an
impediment via a parallel implementation performed on a Linux cluster.
The resulting numerical scheme is validated on a simulation example
motivated by problems arising in chemical kinetics.

1 Introduction

Satisfactory simulation and control of complex phenomena usually involves
knowledge about analytical models of the investigated processes. Issues regarding
the quality of a model, its structure and parameter values are of great significance
in all practical applications, e.g. technical diagnostics of industrial processes [7].
The existence of several plausible models, obtained as a result of performed ex-
periments is rather a common situation in such structural identification tasks.
Moreover, we have to bear in mind that for dynamic processes the quality of
identification algorithms strongly depends on the manner of taking observations
[17, 14]. The foregoing facts give rise to the question of how to design observation
strategies for discrimination between alternative models.

Application of optimum experimental design methods to distinguish between
candidate models constitutes an attractive approach due to the maximized dis-
crimination certainty. For example, application of the T-optimality criterion is
equivalent to maximization of the power of a test for the fit of a second model
when the first one is assumed true [5]. In addition to that, an optimally designed
experiment minimizes the experimental effort, since the observations are taken
only at the most informative points (time instants). This economic aspect is
very important in situations when measurements are expensive or difficult to
perform.

The design of optimum experiments for the most accurate parameter identi-
fication originated in the late 1950’s [6] and nowadays constitutes a well-known
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approach, rich in the literature and applicable for a wide variety of systems
[1, 5, 16, 12]. Various measurement strategies have been considered, including de-
termining the optimum trajectories of movable sensors for distributed parameter
systems which is computationally most demanding. The recent comprehensive
monographs [11, 15] provide good examples of this trend.

In contrast, the much higher level of complexity in the case of the experi-
mental design for discrimination between competing models has been limiting its
application to relatively simple models, usually static and linear [2, 1, 5]. In the
past few years the approach based on the T-optimum criterion was generalized
regarding multivariate models of dynamic systems [16]. Its use implies the ne-
cessity of solving a complex maximin problem. The same criterion was adopted
for determining an optimum location of stationary sensors for discrimination be-
tween models of distributed parameter systems [9]. Nevertheless, serious compu-
tational efforts, indispensable to find optimum designs in acceptable time using
a single low-cost computer, still limit practical applications in domains such as
the prediction of atmospheric pollution or the diagnosis of complex industrial
processes.

The present paper demonstrates a possibility of parallelizing computations
for the classical iterative scheme of Wynn-Fedorov type, adopted to find
T-optimum designs for multivariate models of dynamic systems described by
systems of ODE’s [2, 8]. Such an approach, never considered in the literature,
significantly speeds up computations and, what is even more important, offers
possibilities of further developments, which is especially attractive in the field of
discrimination between models of distributed parameter systems using modern
measurement techniques, e.g. moving sensors.

2 Motivating Example

Chemical kinetic models constitute a wide class of dynamic systems [3]. Meth-
ods of parameter estimation for that kind of equations, when their structural
forms are fixed, are relatively well developed [14]. But when the mechanism of a
reaction is not fully known, several alternative models are often proposed. As an
example, we consider two chemical reactions describing conversion of substance
A into substance B, which in turn changes into substance C:

– consecutive irreversible reactions A θ1→B
θ2→C described by the equations

d[A]
dt

= −θ1[A]λ1 ,

d[B]
dt

= θ1[A]λ1 − θ2[B]λ2 ,

d[C]
dt

= θ2[B]λ2 ,

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0,

(1)

where [A], [B] and [C] denote the concentrations of reagents A, B and C,
respectively, and a0, b0, c0 are initial concentrations.
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– a reversible first-order reaction followed by an irreversible reaction

A
θ1�
θ3

B
θ2→C described by the equations

d[A]
dt

= −θ1[A] + θ3[B],

d[B]
dt

= θ1[A]− θ2[B]λ − θ3[B],

d[C]
dt

= θ2[B]λ,

[A]t=0 = a0, [B]t=0 = b0, [C]t=0 = c0.

(2)

The parameters θi and λi are unknown and, consequently, they are estimated
from experimental data. In many chemical systems the reverse reaction is often
neglected when it is very slow, which results in the simpler consecutive model
(1). The validity of such an assumption may be examined using a model discrim-
ination technique, when usually the time points to observe the concentrations
are determined during an optimization process.

3 Optimum Experimental Design Problem

We consider a general non-linear system whose responses can be observed up to
additive random errors. The model of that system has the state-space represen-
tation in the form

dx(t)
dt

= f(x(t)), x(0) = x0, t ∈ [0, tf ]. (3)

Here t stands for time, x : R → R
s is the system state and tf is the time

horizon. Moreover, f is required to be continuously differentiable. Thus our basic
assumption is that the observations yi ∈ R

s of process responses are described
by the following model:

yij = x(ti) + εij , i = 1, . . . , n, j = 1, . . . , ri, (4)

where n is fixed and chosen prior to the experiment. In this description ti ∈ T
stands for a time moment when the system state is measured, ti �= tκ whenever
i �= κ, T being some known compact set of allowable measurement points. The
errors εij are zero mean, uncorrelated and sampled from a normal distribution.
The additional index j is necessary if the observations are to be repeated several
times for some moments ti, as in practice repeated experimental runs typically
lead to different observed responses, even if the ti’s are exactly the same. Here the
number of replications for a given time moment ti is denoted by ri,

∑n
i=1 ri = N .

The basic assumption is that the model structure f(x) coincides with either
f1(x, p̃1) or f2(x, p̃2), where functions f1 : R

s+m1 → R
s and f2 : R

s+m2 → R
s

are given a priori, with p̃1 ∈ P1 ⊂ R
m1 and p̃2 ∈ P2 ⊂ R

m2 being constant
parameters which are fixed but unknown to the experimenter (P1 and P2 denote
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some known compact sets). The purpose of the experiment is to determine which
of the models f1 and f2 is true. There is no loss of generality in assuming that
the first model is true, i.e., f(x) = f1(x, p̃1), where p̃1 is some given value
regarded as known prior to the experiment (this value could be obtained based
on some preliminary experiment or we can base on some nominal values if they
are available). To make the discrimination between the models f1 and f2 as
accurate as possible then amounts to selection of ti’s and wi’s so as to maximize
the non-centrality parameter [5]:

T 0
12(ξN ) = min

p2∈P2

n∑
i=1

wi‖x(ti)− x2(ti; p2)‖2, (5)

where x(t) = x1(t, p̃1), wi = ri/N, and the collection of variables

ξN
def=
{
t1, . . . , tn
w1, . . . , wn

}
(6)

is called the normalized N -observation exact design of the experiment. The ti’s
and wi’s are said to be the support and weights, respectively.

Motivations behind the criterion (5) are intuitively clear, as it constitutes a
measure of the discrepancy between the responses of both the models: a good
design for discriminating between the models will then provide a large lack of fit
in terms of the sum of squares for the second model.

The allowed replications of observations at support points ti entail serious
difficulties, as the resultant numerical analysis is not amenable to solution by
standard optimization techniques, particularly whenN is large. This is caused by
the discrete nature of the N -observation exact designs, since the weights wi are
the multiples of the reciprocal of N . To alleviate this inconvenience, the notion
of the design is relaxed to all probability measures ξ over T which are absolutely
continuous with respect to the Lebesgue measure and satisfy by definition the
condition ∫

T

ξ(dt) = 1. (7)

The set of all such measures is denoted by Ξ(T ). They constitute the so-
called continuous designs [5]. Thus, the relevant continuous generalization of the
criterion (5) is as follows:

T12(ξ) = min
p2∈P2

∫
T

‖x(t)− x2(t, p2)‖2 ξ(dt). (8)

Any design satisfying

ξ� = arg max
ξ∈Ξ(T )

T12(ξ) (9)

is then called the local T12-optimum design.
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4 Numerical Construction of Optimum Designs

In order to find numerical approximations of optimum designs, the generalized
iterative Fedorov procedure [2, 8] was chosen for a parallel implementation. The
algorithm in its basic, sequential version can be represented by the following
steps (assuming that n stands for the number of support points at the current
step):

Step 1. Choose an initial nonsingular design ξ0. Set k = 1.
Step 2. In the k-th step find

p̂2k = arg min
p2∈P2

n∑
i=1

wi‖x(ti)−x2(ti, p2)‖2, tk = arg max
t∈T

‖x(t)−x2(t, p̂2k)‖2.

Step 3. If φ(tk)−Δ(ξk) ≤ ε, where

φ(tk) = ‖x(tk)− x2(tk, p̂2k)‖2, Δ(ξk) =
n∑

i=1

wi‖x(ti)− x2(ti, p̂2k)‖2,

then ξ� = ξk. STOP. Otherwise, go to Step 4
Step 4. Choose αk with 0 ≤ αk ≤ 1 and compute the convex combination of

designs:
ξk+1 = (1− αk)ξk + αkξ(tk)

where ξ(tk) is the design concentrated only at one support point tk.
Set k = k + 1 and go to Step 2

The choice of sequences αk is not unambiguous [2]. In our case we set αk = 1/
(1+nk), where nk stands for the number of support points in the k-th iteration. A
drawback of this kind of iterative algorithms is the clusterization phenomenon,
which means the tendency to taking observations at adjacent (but different)
time instants. This may result in an excessive number of support points. It is
thus important to additionally use a postprocessing method in order to remove
clusters and obtain a solution minimizing the size of the design (and thus the
measurement effort) [13]. Computationally, Step 2 is the most demanding part of
the algorithm, since the solution of the appropriate global optimization problems
is crucial for the convergence of the entire scheme. It is also the most time-
consuming part of the scheme. That is why main attention was concentrated on
parallelizing that part of computations. Thus, in our approach a number of slave
processors compute global minima in parallel and the reminder of the algorithm
is executed by the master processor. As a global optimizer, the extremely simple
adaptive random search (ARS) strategy was chosen [17] (a global minimizer for
problems with box constraint). It belongs to the group of stochastic algorithms
and is especially suited for the case when the admissible set of decision variables
X is a hypercube. The procedure consists of two main phases – variance selection,
when trial points are generated in order to fix an optimum range of search (a
small variance of random increments in the decision variables enhances local
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convergence, whereas a large one allows for an escape from a local minimum)
and variance exploitation, when the best variance value found in the previous
phase is used to generate a number of trial points by disturbing the initial guess
with Gaussian noise.

A parallel implementation of the ARS scheme can be achieved by:

❶ using ‘multistart’, when each of the processors conducts a search in the
entire admissible domain, but using different initial guesses; additionally,
each processor can perform several search cycles, all with different initial
guesses,

❷ using a partition of the search domain, when each processor makes a search
only in a specific part of the entire domain; several search cycles per processor
are also possible,

❸ using a combination of the foregoing two methods.

Again, bear in mind that the quality of the solutions obtained during Step
2 of Fedorov’s scheme has strong influence on the convergence of the whole
algorithm. Thus, it may be profitable to additionally perform several search
cycles by each processor, even when the ‘multistart’ approach is used. Although
this makes the time of computations on each processor larger, a better search
of the space of decision variables may result with a reduction in the number of
main loop iterations necessary to reach a desired numerical accuracy ε.

5 Experimental Results

In order to verify the efficiency of the presented approach, the discrimination
problem formulated in Sec. 2 was considered. The model described by (2) is as-
sumed to be true with nominal parameter values (θ1, θ2, θ3, λ) = (0.7, 0.2, 0.1, 2.0).
The feasible ranges of parameters for the alternative model (1) are set to 0.55 ≤
θ1 ≤ 0.85, 0.05 ≤ θ2 ≤ 0.35, 1.5 ≤ λ1 ≤ 2.5, 1.5 ≤ λ2 ≤ 2.5. The time horizon
(design region) and initial concentrations are respectively set to T = [0, 10] and
x0 = (a0, b0, c0) = (1, 0, 0) for both the models. Note, that the observation vector
x(ti) contains three elements, i.e., x(ti) = ([A(ti)], [B(ti)], [C(ti)]).

The program used for parallel computing of optimum designs was written
completely in Fortran 95 using ifort – Intel�Fortran Compiler v.8.1 for Linux
64-bit platforms and the mpich-1.2.6 implementation of MPI for message pass-
ing [10]. Computations were performed on a Linux cluster which was recently
built at the University of Zielona Góra within the framework of the national
CLUSTERIX project [18, 4]. This homogenous cluster is equipped with four
SMP nodes with two 64-bit Intel Itanium II 1.4GHz processors each, running
under the control of GNU/Linux Debian for ia64. The connection between the
nodes is realized via Gigabit Ethernet.

The parallel implementation of the ARS procedure was realized using strat-
egy ❶ (‘multistart’) in a master-slave model, when one of the processors plays a
managing role and assigns subtasks to the remaining processors, gathers partial
results from them and then determines the ultimate solution in the sequential
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Fig. 1. Plot of the φ(t) function for ξ� vs. the support location (vertical lines) (a) and
the plot of the obtained total computation time (b)

part of the program. In order to examine time speedup, we performed numerous
experimental runs and obtained virtually the same solution (optimum design)
each time – differences resulting from numerical inaccuracies appeared only from
the second decimal place. The resulting optimum design contains three support
points and has the form

ξ� =
{

0.40, 2.47, 10.00
0.229, 0.327, 0.444

}
.

This means that almost half of the measurement effort should be concentrated
on the time instant t = 10s. As can be seen from Fig. 1(a) containing a plot
of the sensitivity function φ(t) = ‖x(t)− x2(t, p�

2)‖2, support points are located
at the maxima of φ(t), which is consistent with T-optimality theory [15, 5]. The
compiled program was executed using various numbers of processors. The num-
ber of search cycles performed on each slave processor depended on the total
number of processors to achieve in total about 32 independent starts of the ARS
algorithm per one iteration of the Fedorov procedure. Figure 1(b) presents the
averaged total processing time as a function of the number of processors. When
analyzing the obtained speedup, it is worth to noticing that despite the constant,
deterministic computation time of a single ARS run (since the number of gen-
erated trial points is fixed a priori and remains constant), the ARS algorithm
itself is probabilistic. This means, that the quality of the obtained solution may
vary from run to run, which, in consequence, may influence the convergence of
the Fedorov scheme (see also comments in Sec. 4).

6 Conclusions

The paper discussed the problem of parallel computations performed on a ho-
mogenous Linux cluster in order to determine T-optimum experimental designs
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for discrimination between models of dynamic systems described by system of
ODE’s. The obtained results are promising, especially when we consider the
fact that parallelization was applied only in the phase of global optimization.
Satisfactory modelling of complex spatial processes, like atmospheric or ground-
water pollution proliferation leads to problems of discriminating between models
of distributed parameter systems described by systems of PDE’s. In that case,
the level of computational complexity is much higher owing to the necessity of
multiply solving model equations on relatively dense, multidimensional grids. It
seems to us that combining parallelization of solving PDE’s describing models
with parallelization of the global optimization process should allow us for a wider
application of discrimination techniques based on optimum experimental design
in fields such as pollution forecast or diagnosis of complex industrial processes.

Acknowledgement. This research was supported by the Polish State Commit-
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Jacek Lebiedź, Krzysztof Mieloszyk, and Bogdan Wiszniewski
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Abstract. Results of the ongoing project1 , aimed at parallel interac-
tive visualisation of spatial data coming from GIS system are presented.
Application Vis3D being developed by the authors is a product of one of
the demonstration tasks of the CLUSTERIX (National Cluster of Linux
Systems) project, currently in its final stage. Major characteristics of the
application is the potential for 3D immersion of emergency teams in a
virtual scene for Crisis Information Management Software (CIMS) using
real terrain data in a real-time.

1 Introduction

Virtual imagery using 3D is increasingly getting attention from various scien-
tific communities, as the perspectives of getting out of Internet extremely high
computational power offered by the grid technology, capable of exploring vast
resources of scientific data, also in the Internet, are getting closer. High perfor-
mance applications of particular interest are related to interactive visualisation,
simulation steering and real-time collaboration. One example are flight simula-
tors combining real cockpit and flight controls operated by human users with
computer generated sky, weather, runways and terrain [4]. Natural interaction
using 3D computer graphics involves three classes of systems: home entertain-
ment with computer and video games, that alone were able to create a market
worth of billions of dollars worldwide, experience based systems for training sim-
ulations, especially Distributed Mission Training (DMT) systems for the military
and civil sectors [4], or the most recent Crisis Information Management Software
(CIMS) for the emerging application area known as homeland security, and test-
beds for novel technologies in a relatively rich environment before they are ready
for the real world.

More often, such applications can offer immersion by superimposing virtual
images on real objects and making users real participants of a dynamic scene, who
� This work has been supported by the Polish Ministry of Science and Information So-

ciety Technologies under grant 6T11 2003C/06098 “CLUSTERIX - National Cluster
of Linux Systems”.

1 This work has been supported by the Polish Ministry of Science and Information
Society Technologies under grant 6T11 2003C/06098.
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can look around, over and under the objects being displayed in three dimensions.
The trend is evident in computer games [2], and will certainly boost expectations
of users of other systems with an interactive 3D graphics capability. Although
their visualised structures may be extremely complex, most games deal with
artificial data. On the other hand, non-entertainment applications implementing
interactive 3D graphics, may use the same engines, physics and architectures as
the latter, but have to deal with real data. Two problems emerge:

– vast stores of distributed data must be shared, disseminated over some (quite
often long distances) and processed on time to enable on-line collaboration
of participants;

– data at different locations may be in incompatible formats, inconsistent,
incomplete, mixed with irrelevant ones, and otherwise exhibiting low quality
for high performance processing.

Interactive visualisation of urban terrain based on spatial data provided by GIS is
one of several pilot utility applications within the CLUSTERIX (National Clus-
ter of Linux Systems) project [5]. The Vis3D application is targeted at the GIS
system currently in use by the City of Gdansk, as a step towards expanding the
existing municipal CIMS system by a virtual training capability for emergency
teams.

2 Clusterix Project Context

The basic concept behind the CLUSTERIX project is to develop a distributed
meta-cluster based on the Polish Optical Network PIONIER [5]. Local clusters
located at several geographically separated supercomputer centres across Poland,
connected dynamically by a high-performance network provided by PIONIER,
will be able to deliver advanced services integrated into one coherent system.
While the major effort in the CLUSTERIX project is on development of a mid-
dleware capable of providing quality of service with regard to management and
monitoring of resources and classic high-performance computing applications,
some other types of applications are also attempted to explore the potential
brought by this new grid architecture. One of these applications is Vis3D for

GIS C

GIS B

GIS A

Fig. 1. Interactive visualisation of terrain data
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interactive visualisation of real terrain data based on the content of a typical
GIS system. The idea of this application is outlined in Figure 1.

An observer moving on or above a terrain indicated in Figure 1 as a grid
may change its position and orientation to view various sectors of a dynamic
scene from different distances and angles of inclination. Position changes are
dynamic and unpredictable from the system point of view, as they reflect ar-
botrary decisions of an independent human operator, e.g. a pilot of a heli-
copter flight simulator, or a driver of a simulated car. The visualised terrain
may consist of contingent geographic areas, described by spatial data coming
from several GISes. This may be the case when flying over contengent regions of
a country, with separate administrative units maintaining their own geographical
databases, or driving through agglomerated municipal areas.

Owing to the physical distribution of local clusters across Poland, and the
planned meta-cluster capability of the CLUSTERIX system, it is conceivable to
develop a 3D visualisation system for the entire country. This ambitious goal,
however, has to be approached in steps – of which the first one is to solve the
problem of an effective cluster-based visualisation of spatial data coming from a
single GIS. This is the case of the Vis3D application described in this paper.

3 Real Terrain Visualisation

Exact visualisation of a real terrain requires access to high quality spatial data.
A common assumption is that users may want all visually recognisable objects
and their details to be present in the scene. Unfortunately, data provided by
the supporting GIS is often missing or incomplete. It can be seen in Figure 2
showing a real photo of some urban terrain close to GUT campus, and its view
rendered by Vis3D based on the actual GIS content for this part of the city.

Note that the parking bay along the street has not been visualised, while a
church-like object behind the line of buildings has been visualised as a block-
shaped object. Such problems result from deliberate elimination of information
by GIS administrators, who may consider some information redundant (chim-
neys, windows, roof types), or irrelevant (species of trees, road markings). In such

parking bay expanded building church−like block

Fig. 2. Real and rendered views of the same terrain
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cases all missing information must be generated automatically using the exist-
ing data. Special heuristics had to be developed in the project to overcome this
problem [3]. Of course no heuristics can be 100% accurate, so manual correction
(edition) is often necessary, particularly for unique objects like churches.

Another problem with GIS data may be their inconsistency. This is because
GIS content is maintained and continuously updated to reflect the current state
of the city structure. So far there are no mechanisms for automatic verifica-
tion of consistency of updates introduced to the database by various agencies
in a city, so in most cases municipalities must rely on their officers and bureau-
cratic procedures rather then specialised tools; note in Figure 2 the apparently
obsolete data concerning the height of a building recently expanded, and incor-
rect dimensions of the church-like object, visualised (due to the lack of other
specific information) as a block of a similar height. In order to overcome such
problems we have decided not to implement dynamic acquisition of GIS data
in parallel to the visualisation process and developed a separate terrain visu-
alisation model, optimised additionally for better performance of visualisation
algorithms [3]. Creation of the model is off-line with a special editing tool, on
the basis of available GIS data, which are checked and corrected when neces-
sary. One disadvantage of this approach is that further changes of GIS data (e.g.
new buildings erected or streets reconstructed) require updates of the visualisa-
tion model. This however may be eliminated in the future, as GIS technology
improves and develops more efficient mechanisms for internal model checking.

A need for photo-realistic image generation poses another problem for the
scene complexity, related to the fact that human observers cannot accept iden-
tical oval trees, still river waters, simple box-shaped buildings, etc. Therefore it
is important for the terrain model to balance properly complexity of the scene
and reality of its view. Photo-realistic visualisation of a real terrain in an in-
teractive 3D graphics application is further complicated by a dynamism of an
observer moving freely along arbitrary trajectories in a cube, of which a visu-
alised terrain is just a floor. An observer may shift on the terrain as well as fly
over it, so scene complexity changes dynamically. The level of visual details of
each object is selected in general on the basis of its distance from the observer,
viewing direction, its size and form. The scene may also contain moving objects,
which can add further to the complexity of a scene view. These may be “fixed”
objects that exhibit motion, like waves, flags, or trees, as well as cars, planes, or
trains that move across the scene. On top of that, some of the moving objects
can be independent of the visualisation application, in the sense that they may
have their autonomous operators forcing them to behave unpredictably (as in
the case of distributed interactive simulation systems [4]).

4 Solution Model

By separating a process of terrain modelling (generation of visualisation data
from spatial data retrieved from GIS) from image generation (of the scene
view), the GIS data quality problem indicated before could be overcome. Terrain
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modelling does not depend on observer’s position, so it suffices to perform it only
once before the actual visualisation. Image generation in turn is a cyclic process
and creates a scene view in a continuous fashion. Although the terrain model is
optimised for better performance of rendering procedures used for implementing
the image generation process, the overall execution time of the latter is limited
by animation smoothness, required to preserve realism of a view perceived by an
observer moving in real-time. A solution adopted to achieve that in the reported
project uses a concept of image simplification with regard to the distance of an
observer from various parts of a scene.

In graphics systems with relatively low computational power, e.g., a worksta-
tion, it is reasonable to calculate various levels of detail for each object in a scene
in an off-line mode before image generation. The off-line approach requires, how-
ever, special data structures for describing these levels within the terrain model.
For graphics system with high computational power, e.g. a cluster, the level of
detail can be calculated in real time, along with the image generation. This on-
line approach does not require any additional structures in a terrain model, and
allows for adding moving objects during interactive animation.

Clustering of workstations for interactive rendering tasks is not a new idea [1].
It was first used to drive large tiled displays and next shifted towards load-
balancing of rendering tasks for effective utilisation of the graphics resources
available in a cluster. The current trend is to make scalable cluster-based graphics
a Web-based service, available to remote workstations.

This is also the aim of the project reported here. However, a significant
difference is that the class of clusters used in the CLUSTERIX project may
have generally poor graphics capability. Therefore, the Vis3D architecture (see
Figure 3) distinguishes a specialised graphics workstation for rendering the scene,
and a cluster for processing the terrain model data using a technique of scene
simplification driven by movements of the observer. This leads to a two-step
approach: terrain modelling regardless of the scene complexity, and parallelised
scene optimisation, outlined in Figure 4.

By default, a terrain sector is represented by the visualisation model data
with a high detail-level landscape. Therefore the visualisation station can render
each sector using its local graphics capability (as pointed by the upper arrow in
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Fig. 3. Basic architecture of the Vis3D application
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High detail landscape

Low detail landscape Rendered Sector

Texture (ortagonal view)

Fig. 4. Sector rendering

Figure 3). Scene optimisation, involving elimination of excessive details (in accor-
dance to the distance from the observer) results in sectors with low detail-level
landscapes. From the standpoint of the visualisation station, terrain modelling
does not change, except that computation costs incurred on rendering simplified
sectors are much lower. Simplification of sectors is performed by the cluster (as
indicated in Figure 3 with a lower arrow), delivering next the reduced sector
data to the visualisation station for rendering.

4.1 Terrain Modelling

Landscapes with natural and urban elements can make very complicated and
irregular structures. The model of terrain developed for Vis3D provides a quick
access to data on the terrain being actually within the sight of the observer. In
order to enable effective access to detailed data describing the vicinity of the
observer the area is divided into a regular grid of sectors. Data allocated to each
sector contain information about its location on a scene, geometric complexity
required later on for its optimisation, and indexes of textures needed for ren-
dering it. The most important information concerns landscape and its elements,
coded as geometric primitives. Different components of the landscape (like a city
square or a sporting field) are described by the relevant texture, and parame-
ters defining the properties of its surface. Each area is represented as a group of

Sector

Grass Woods Roads

Crop 1 Crop 2 Crop3

Fig. 5. Layers of the terrain model
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primitives of different types, which allow for very detailed rendering and precise
definition of interactions with the observer (see Figure 5). Dynamic creation of
successive levels of detail uses data transformed accordingly to the landscape of
a particular sector, and texture being generated from detailed data representing
its orthogonal view put on it, as shown in Figure 4. The landscape of each sector
is stripped off artificial elements, like roads or railways, as well as elements of
the terrain, like ponds or meadows. It allows to reduce landscape details to the
minimum and to speed up the process of sector simplification without compro-
mising on realism – owing to the texture individually selected for each sector
and rendered after sector simplification.

4.2 Parallelised Scene Optimisation

Visibility of a real terrain may reach as far as several tens of kilometres, de-
pending on the altitude. Visualisation of the area with the same level of detail
everywhere prevents from rendering a scene in a realistically short time, because
of the large volume of data, implying unnecessarily high accuracy of the scene
view. Sectors being close to the observer should be rendered in a detailed form,
while the distant ones may be rendered in a much simpler form. Therefore, the
observer’s altitude and distance are decisive factors for determining the required
level of detail. The idea is outlined in Figure 6.

Low detailed sectors

High detailed sectors

Observer

Mid detailed sectors

Fig. 6. Distance driven optimisation of scene sectors

The change of levels of detail of the sector occurs with a frequency not less
than a time required to dislocate the observer for a distance equal to the actual
size of the sector. Closer sectors require relatively less calculation, as less details
have to be eliminated from the view, while more distant ones require more cal-
culations to reduce excessive details. Individual load of processors simplifying
the scene view at their respective sectors depends on the current position of the
observer. Load balancing is possible then by running remote sector simplification
tasks on nodes processing close sectors of the scene. Owing to the compact form
of the visualisation model described before – about 0.5-1.0 MB for the area of 10
by 10 kilometres, compared to 1 GB of RAM and 20 GB of hard disk space at
each cluster node – the database replication (usually posing a problem in clus-
ter based rendering of images) is marginal, and each node may have locally a
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complete set of terrain data for the entire area. Such a parallelisation model has
two important advantages. Firstly, no frame by frame animation is necessary,
as in the classic animation paradigm. Elements of a dynamic scene are calcu-
lated continuously, and all relevant sectors are sent in a just-in-time fashion to
the visual station for final rendering. Secondly, as the entire scene is calculated
simultaneously, i.e., sectors in and out of the observer’s site alike, panoramic
visualisation to exercise more interactive immersion in a virtual scene is possible
just by connecting more graphics workstations to the cluster.

5 Conclusions

Vis3D is a first step towards a 3D graphics application for visualising real terrain
based on distributed GIS data, using the meta-cluster capability of the CLUS-
TERIX system. Such an application may provide in a near future a Web-based
service for various systems incorporating interactive immersion in 3D virtual en-
vironments for scalable training and simulation exercises. Of particular interest
is further development of tools for dynamic acquisition of spatial data from GIS
to build-up and update the visualisation model data, as well as techniques for
global management of a dynamic scene consisting of data processed by several
local clusters distributed over a larger territory.

References

1. G. Hunphreys, M. Houston, R. Ng, R. Frank, S. Ahern, and P.D. Kirchner.
Chromium: a stream-processing framework for interactive rendering on clusters.
ACM Transact. Graph., 21(3), July 2002.

2. id Software. Quake III: Arena. www.idsoftware.com/games, 2002.
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Abstract. The new FP6 programme project Medigrid1 is targeted in
Global Change and Ecosystems sub-priority. This paper will discuss this
project and will describe its primary aim — development of a frame-
work for multi-risk assessment of natural disasters. We have considered
several aspect and user requirements during the design of architecture.
The service oriented architecture based on the Globus Toolkit 4 has been
chosen. The data management services will be implemented on the top
of the OGSA-DAI framework with several improvements and extension.
We will use a workflow management system for integration purpose. A
portal technology has been chosen as user interface.

1 Introduction

The occurrence of natural disasters poses a great threat to people’s lives and
their properties, not to mention a negative impact to economies of whole regions
and countries. In order to make prevention, forecasting and mitigation of such
disasters possible a lot of effort has been invested into research of phenomena
like forest fires, floods, landslides and soil erosion and others. Currently, there
are models available that are capable of computing various aspects of these
hazards. However, the data, the models or the results of simulations are not
easily available to the audience that could make proper use of them; resources
are not available to computationally intensive models and so on.

We are working to overcome some of these problems in the Medigrid project
by employing the grid technology. The grid technology will allow us to make the
models and data accessible via internet in a secure manner for all partners and,
possibly, other parties in the future. It will also allow us to exploit computing
resources connected to the grid for execution of demanding simulation models.
The aim of the project is to create a distributed framework for multi-risk assess-
ment of natural disasters that will integrate models, which have been developed
in previous projects funded by European Commission. These include models for
1 This work is supported by the project Medigrid EU RTD SustDev FP6-004044,

NATO grant “Flood Forecasting Computed on Grid Infrastructures” EST.EAP.CLG
981032 and Slovak national project VEGA 2/3132/23.
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simulation of forest fire behavior and effects, flood modeling and forecasting,
landslides and soil erosion simulations. Also, a distributed repository with earth
observation data, combined with field measurements is being created, which
will provide data to all models using data format conversions when necessary.
The entire system of models and data will be shaped further as a multi-risk
assessment and decision support information platform.

2 User Requirements

An important aspect of simulation applications supported in the Medigrid pro-
ject [6] is that some of them are closely bound to the Windows operating system
while the others can be executed only on the Linux platform. This means that
underlying grid infrastructure must be operable on heterogeneous resources. This
is not an easy task as several standard grid data management components are
operable on Linux systems only, e.g. current implementation of the GridFTP
[7], the basic grid transportation mechanism, requires the Linux platform.

All of the Medigrid applications use geographical data in the computations.
The content of geographical data changes rarely; those data are reused again and
again by the simulations. Replication of such data sets is a necessity to increase
their availability and to reduce access latencies. Some of the data sets can be
made available to all partner organizations; however, there are some data files,
which are proprietary and can be used only by members of certain organization
due to the license agreement issues. The use of such data in the highly distributed
environment, such as the Medigrid, is quite delicate and could be potentially dan-
gerous. Much attention must be paid to the data security and data access policies.
Owners of the data must then have absolute control over data access policies.

Many input data sources for the applications and many simulation results
must be stored, maintained and accessed in the Medigrid system. To facilitate
usage of the data managed in the Medigrid, rich metadata must be kept and
made available to the users — to discover the data of their interest. Moreover,
experimental results of a single simulation can be composed from multiple data
files and must be locatable as a single result data set. We need to exploit the
concept of the logical file collections within the metadata service.

3 Architecture

The software architecture of the project was designed according to the user
requirements discussed in the previous section. Globus Toolkit 4 [2] with sev-
eral extensions will be used as middleware. Every computational model will be
wrapped to a web service. The overview of the architecture is shown on figure 1.
The system will comprise of system services, user services and user interfaces
discussed in separate subsections.
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Fig. 1. The Medigrid Architecture

3.1 System Services

After the analysis of the available data management tools for the grid envi-
ronment, we have identified the data access and integration framework [8] as a
likely candidate for realization of the Medigrid data services. OGSA-DAI pro-
vides many features that are required by the Medigrid project; it supports GSI
authentication and authorization [9], provides file manipulation activities, data
transfer activities and allows definition of fine grained security policies. However
there are several problems with the current state of the OGSA-DAI implemen-
tation. File system manipulation activities do not perform authentication and
authorization checks. File reading activity reads whole file into memory before
transfer. As the OGSA-DAI system is an easily extensible framework, we have
solved those problems by implementing additional activities which overcome
mentioned drawbacks. The data transfer speed is significantly lower than the
speed achieved by the GridFTP. The OGSA-DAI wraps all of the transferred
data pieces in XML documents. Furthermore, it uses Axis as an underlying
data transfer mechanism, which uses the SOAP protocol [10], which envelopes
transferred data by additional XML data. This produces a huge XML overhead
over transferred data that actually slows down the data delivery process. This
problem will be resolved by implementing specialized delivery activity for the
OGSA-DAI system.

To allow access to the specific data resource in distributed environment, the
user/grid service must first know the physical location of the data object. In
the Medigrid project we plan to use the Replica Location Service (RLS) — a
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simple registry that provides a mechanism for recording the existence of replicas
and discovering them. RLS will maintain a mapping between logical file names
(LFNs) and physical file names (PFNs).

Data for the simulation models need to be shared between geographically
distributed computational facilities. All the models use the spatial data for com-
putation of the simulations; those spatial data are often reused by different sim-
ulation jobs. The concept of the data replication can be used to increase the data
availability and thus increase the efficiency of the whole system. Under the term
of data replication, we understand creation of multiple copies of a single data
source across multiple grid nodes. The problem of replica optimization can be
divided into two subproblems. Short-term optimization aims at minimizing data
transfer time, given a requesting grid node and a logical filename. Long-term
optimization concerns global reduction of network traffic in the grid by deciding
which files should be replicated (or deleted) and where to place those replicas.

For the purpose of the Medigrid project, we need a sophisticated metadata
service that supports user defined attributes and the concept of logical file collec-
tions. Under the term of logical file collections, we understand a virtual directory
that can contain multiple logical files and/or multiple logical collections. We need
this functionality to encapsulate multiple files in a single collection to grasp the
logical relation of those files. For example, the simulation result can be composed
of several different files and we need to retain the information that those files are
members of a single result set. The Metadata Catalog Service (MCS), developed
under the GriPhyn project [11], was identified as a suitable metadata service for
the Medigrid.

The GIS operations in the Medigrid project will be provided by the open
source server MapServer [13]. It runs as a CGI executable in any CGI-enabled
web server (e.g.,Apache). As inputs, it directly supports many vector and raster
data formats. The output can be either an ordinary JPEG or PNG image, or an
HTML page. The HTML output is fully customizable, due to MapServer’s sup-
port of HTML templates. The output maps consist of multiple layers, which can
be switched on and off, according to user’s actual needs. The system also includes
MapScript, an interface providing access to the MapServer from some well-known
programming languages. MapServer provides simple means for navigation: mov-
ing to all directions, zooming in and out, recentering of the map, showing and
hiding layers, and adding a legend. A slight disadvantage of MapServer is its re-
duced level of interactivity, due to the HTTP’s request-response communication
model. However, this disadvantage can be overriden, though not perfectly, with
the use of JavaScript. In our project, we plan to use MapServer as the main
visualization engine for creating and displaying 2D maps. While the MapServer
engine will provide us with a complete set of server functions, we will have the
task of making the server work with our data, taking care of data conversions,
and providing a nice and useful user interface.

The Medigrid is typical project where the workflow management system is
a perfect solution for integration of web services. User services are mainly com-
putational services with very close subject of interest, so the usual situation
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is that results from one computation (service) can be used as input data for
another computation. Although we have had experiences from the CrossGrid
project [12] [1], we decided to use workflow enactor FreeFluo [3] developed in
the MyGRID project [4]. A workflow will be described with XScufl [5] language
supported by FreeFluo enactor.

Security is one of the key issues in our project. We had established a private
certification authority for project members. Current implementation of Globus
toolkit 4 Authentication and authorization framework is going to be used. It
contains a SAML callout [16] authorization module which enables outsourcing of
authorization decisions to an external authorization service. We are now deciding
whether we will use Privilege and Role Management Infrastructure Standards
Validation [15] or Virtual organization membership service [14] as authorization
service.

3.2 User Services

User services are the core of the Medigrid project, so they have to be designed
precisely. As it can be seen on Figure 2, a user service will consist of several com-
ponents. To overtake the problem of potential overload when multiple requests
for computation are sent to a service, we have decided to develop the Job Man-
agement component. This component will ensure that only one computation will
run at time and other requests will be queued in a priority queue. Access to data
oriented services (like the metadata catalogue, replica services and data services)
will be wrapped by the Data access layer. Because the computational problems
are not simple and they could not be solved in real-time, we will create the No-
tification management component that will inform the registered clients about
the state of their computations. User services for users which don’t have public

Fig. 2. User service components
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data will have their private data services with fully restricted access. When the
results are ready to be published, they will be transferred to public data servers.
In our project, we will have these types of computational services:

1. Meteorological services
2. Hydrological services
3. Hydraulics services
4. Fire propagation services
5. Land slides services

The auxiliary services will also play a very important role in the project.
One of their tasks is the conversion of datasets when result from one com-
putational service will be used as an input to another computational service.
Another important type of auxiliary services will be visualization services. The
purpose of the visualization services is to present the results of simulations in an
easy-comprehensible way. As the output data and relationships among them are
usually quite complex, graphical representation can be an essential key to under-
stand them. The MediGrid visualization service will support both 2D maps and
3D presentations of the endangered areas. We have proposed modular architec-
ture of the visualization. There will be a central visualization engine, common
for all processes. It will work with its internal data formats. The engine will be
encapsulated by input and output modules, which will convert the input data
formats into the internal formats, or the internal formats into the output for-
mats, respectively. Such an architecture will allow the developers to add further
input and output formats easily.

3.3 User Interface

The Medigrid user interface will be based on JSR 168 compliant portlets. We are
going to use the Gridsphere framework. Each type of user services will have its
own portlet. The system services will also have their user interfaces. To fulfill the
needs of integration of the computational services, several portlets for workflow
construction, execution and monitoring will be created. The user interfaces for
data management services will play also an important role. They will allow
user to manipulate the datasets, search and update metadata, affect the replica
optimization and locate replicas. The user will be able to monitor the usage
and the effectivity of the Medigrid framework throught portlets for resources
monitoring.

A special UI will be used for operations on large datasets (uploading to the
system and downloading from system). The main goal of this UI will be elim-
ination of potential overload of portal when manipulating with large datasets.
One public data service will be reserved for this purpose as a mediator among
private data services and user interface. This user interface will be a java applet
runnable directly from the portal.
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4 Conclusion

In this paper we presented the proposed architecture of the Medigrid framework.
The proposal has been created according to user requirements on security, data
management and integration. We were faced to several problems like require-
ment of private data server with possibility of publishing of results, integration
of computational models with different formats of input and output data, man-
agement of multiple requests for computation especially on Windows platform,
etc. Some of them where already solved and the solution was described. But
there are few problems which will need a lot of effort. In the data management,
we will need to find out the best algorithms for replica optimization and extend
current OGSA-DAI implementation to improve the data transfer speed which
is crucial for large datasets. The proposal of the Medigrid project aims to cre-
ate generic risk management framework. Therefore we need to design a user
interface capable of fullfiling the requirements on risk analysis and management
operations.
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Abstract. NuscaS is an object-oriented package designed at Czesto-
chowa University of Technology to investigate thermomechanical phe-
nomena using FEM modeling. Its functionality includes also implemen-
tation on clusters. This paper presents our experience in adaptation of
the NuscaS system to the CLUSTERIX environment, which is a na-
tional grid infrastructure with 12 local Linux PC-clusters connected by
the Polish Optical Network PIONIER. Using the MPICH-G2 middle-
ware, the proposed solution allows for running tasks across several lo-
cal clusters as meta-applications. The performance results of numerical
experiments with FEM modeling of casting solidification confirm that
CLUSTERIX can be an efficient platform for running numerical meta-
applications. However, harnessing its computing power needs to take into
account the hierarchical architecture of the infrastructure.

1 Introduction

CLUSTERIX (National Cluster of Linux Systems) is a truly distributed na-
tional computing infrastructure with 12 sites (local Linux PC-clusters) located
across Poland [1, 16]. CLUSTERIX sites are connected by the Polish Optical
Network PIONIER providing the dedicated 1 Gb/s bandwidth. Although the
CLUSTERIX grid offers potentially large performance, the key questions facing
computational scientists is how to effectively adapt their applications to such a
complex and heterogeneous architecture.

Finite element method (FEM) is a powerful tool for simulating different
phenomena in various areas of science and technology [13]. However, many ap-
plications of this method have too large computational or memory costs for a se-
quential implementations, to be useful in practice. Parallel computing allows this
bottleneck to be overpassed [13, 14]. In particular, an object-oriented environ-
ment for the parallel FEM modeling on clusters, called ParallelNuscaS, was
developed at Czestochowa University of Technology [15]. This environment
is dedicated to modeling of such thermomechanical phenomena described by
� This work has been supported by the Polish Ministry of Science and Information So-

ciety Technologies under grant 6T11 2003C/06098 “CLUSTERIX - National Cluster
of Linux Systems”.
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time dependent PDEs as heat transfer, solidification, stresses, damages of ma-
terials, etc.

Efficiently harnessing computing power of grids requires the ability to match
requirements and characteristics of applications with grid resources. Challenges
in developing grid-enabling applications lie primarily [3] in the high degree of
system heterogeneity and dynamic behavior of grid environments. For exam-
ple, communication between computers of the same site, connected by a high
bandwidth and low latency local network, is much faster than communication
between nodes of different sites provided by a wide area network characterized
by a much high latency. What is also important, computers may reside in differ-
ent administrative domains with different access control policies, run different
software, etc.

It makes programming HPC applications on grids a challenging problem. An
important step in this direction is emergence of scientific-application-oriented
grid middleware, such as MPICH-G2 [4] that implement the well-established
MPI standard on top of grid infrastructure based on the Globus Toolkit [2].
The MPICH-G2 environment significantly spares computational scientists from
low-level details about communication handling, network topology, and resource
management. However, in spite of these achievements, the development of ef-
ficient algorithms for large-scale computational problems, like FEM modeling,
that can exploit grid architectures efficiently still remains an exceptionally
challenging issue.

This paper presents our experience in adaptation of the NuscaS system to
the CLUSTERIX grid environment. The proposed solution allows for running
tasks across several local clusters as meta-applications, using the MPICH-G2
middleware.

The paper is organized as follows. In Section 2, we shortly present the
architecture of the CLUSTERIX grid. The concept and main features of the
ParallelNuscaS system are described in Section 3. How thermomechanical meta-
applications based on ParallelNuscaS are adapted to the CLUSTERIX environ-
ment using the MPICH-G2 tool, it is presented in Section 4. Section 5 describes
a model problem related to the FEM modeling of castings solidification, which
is used for testing the ParallelNuscaS software in the CLUSTERIX environ-
ment. Performance results of these tests are presented in Section 6, for both the
single-site and cross-site runs. Conclusions are given in Section 7.

2 Architecture of CLUSTERIX Grid

CLUSTERIX is a distributed PC-cluster (or meta-cluster) with 12 local Linux
clusters in the core [1], located in independent centers across Poland. They are in-
terconnected via dedicated 1 Gb/s channels provided by the Polish Optical Net-
work PIONIER. At this moment, the CLUSTERIX core includes 254 Intel Ita-
nium2 processors (1.3 GHz, 3 MB cache) in 127 two-way SMP nodes. Each of
nodes is equipped with 4 GB or 8 GB RAM, and 73 GB or 146 GB SCSI HDD.
Two Gbits-per-second VLANs are used to improve management of network traffic
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in local clusters: communication VLAN, using Gigabit Ethernet or Inifiniband, is
dedicated to support nodes messages exchange, while connection to the PIONIER
backbone is provided through a Gigabit Ethernet L2/L3 coupling switch.

Selected 32-bit machines are dedicated to management of local clusters and
the entire infrastructure. While user tasks are allowed to be executed only on
computational nodes, each local cluster is equipped with an access node where
the Globus Toolkit and local batch system are running. An important element of
the CLUSTERIX core is the Data Storage System managed by the CLUSTERIX
Data Management System - CDMS [6]. Before execution of an application, input
data are fetched from storage elements and transferred to access nodes; after
the execution output data are returned from access nodes to storage elements.
Currently each storage element is equipped with 2 TB HDD.

The CLUSTERIX middleware is developed as Open Source, and is based
on the Globus Toolkit 2.4 and Web Services. The use of Web Services makes
the created software easier to reuse, and allows for interoperability with other
grid systems on the service level. The important feature of this middleware is
ability to manage infrastructure with dynamic changing configuration. In par-
ticular, new clusters may be attached to the CLUSTERIX core dynamically.
The connection of new clusters to the CLUSTERIX core opens possibilities to
access a shared environment with the extraordinary computational power. For
example, an experimental installation with 802 Itanium2 CPUs offering a peak
performance of about 4,5 TFLOPs has been created.

3 ParallelNuscaS System

NuscaS is an object-oriented package for the FEM modeling, developed at Czesto-
chowa University of Technology [12]. ParallelNuscaS is an extension of the se-
quential NuscaS software. It is one of pilot applications adapted for the execution
in the CLUSTERIX environment.

For uniprocessor nodes, the message-passing model is used in ParallelNuscaS.
In this case, a FEM mesh is decomposed [7] into a number of submeshes (sub-
domains), which are then processed concurrently over different processors. We
use iterative methods for solving large linear systems with sparse matrices, which
are the result of FEM discretization [8]. The kernel of these methods is the
sparse matrix-vector multiplication. When implementing this operation in paral-
lel, the overlapping of computation and communication is exploited to reduce the
algorithm execution time.

Because both uniprocessor and SMP nodes are considered, we investigate not
only the message-passing model of parallel programming, but the hybrid model
as well [10]. This model is a mixture of multithreading inside SMP nodes and
message passing between them.

4 Meta-applications in CLUSTERIX

According to the project goals, CLUSTERIX is used both for running high-
throughput computing applications, as well as large-scale distributed applications
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that require parallel use of resources of one or more local clusters. For the exper-
imental verification of the project assumptions and results, selected end-user’s
applications are deployed to be executed on the CLUSTERIX grid. It is clear
that delivering end-user applications able to use distributed resources efficiently
will in the end decide on success or failure of computational grids.

These applications fall into two different categories:

– Applications dedicated to run on a single local cluster (single-site execution);
this restriction is related only to a single instance of a given application,
while different instances of this application can be executed on different
local clusters.

– Meta-applications intended to be executed on more than one local cluster
(cross-site execution); they will take into account the heterogeneity of the
meta-cluster in respect of both the computing power and network perfor-
mance.

4.1 Running Tasks in CLUSTERIX Environment

The standard procedure for running tasks in the CLUSTERIX environment
is illustrated in Fig.1. A user submit its task through the Web portal, which
generates a special file with the task description in the XML format. This file
is sent to the GridLab Resource Management System (GRMS), which chooses
the best resources (one or several clusters) for the task execution, according
to the task description, with respect to hardware and software. The task is
then submitted using Globus services to batch systems of local clusters. The
important step is also assignment of a virtual account that will be used for the
task execution. The Virtual User’s Account System (VUS) is responsible for
performing this step.

After staging the executables and input files using CDMS, the task is exe-
cuted on computational nodes of the chosen local clusters. CDMS is also respon-
sible for copying the results after finishing the task. Finally, the user is notified

Fig. 1. Running tasks in CLUSTERIX environment
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about the task termination through the Web portal (alternative way is to use
e-mail or SMS).

4.2 Using MPICH-G2

In the CLUSTERIX project, the MPICH-G2 middleware [4] based on the Globus
Toolkit is used as a grid-enabled implementation of the MPI standard. It allows
for running multilevel parallel applications across many sites (local clusters).
MPICH-G2 extends the MPICH software to use Globus-family services. To im-
prove performance, we use MPICH-based vendor implementations of MPI in lo-
cal clusters, e.g. MPICH-GM which allows for running MPICH over the Myrinet
interconnect.

CLUSTERIX has a hierarchical architecture, with respect to both the mem-
ory access and communication. Inside an SMP node, data exchanges between
processors are performed through shared memory. SMP nodes are grouped into
local clusters, and communications inside them are implemented using such
network protocols as Gigabit Ethernet, Myrinet, or Infiniband. They are char-
acterized by high bandwidths and small latencies (especially Myrinet and In-
finiband). Finally, local clusters connected by WANs are building blocks for the
whole meta-cluster.

Taking into account the hierarchical architecture of the CLUSTERIX infra-
structure, it is not a trivial task to adapt the existing applications for effective use
in the meta-cluster. It requires parallelization on several levels corresponding to
the meta-cluster architecture, taking into account the high level of heterogeneity in
networkperformancebetweenvarious subsystemsof themeta-cluster (seeTable 1).
In particular, there is a quite complex problem of minimizing the influence of less
efficient networking between local clusters on the efficiency of calculations.

Table 1. Hierarchical architecture of CLUSTERIX

latency bandwidth
local (vendor MPI) 104 μs 752 Mb

s

local (MPICH-G2) 124 μs 745 Mb
s

global (MPICH-G2) 10 ms 33 Mb
s

5 Testing Problem

The FEM modeling of castings solidification is chosen as a model problem for
testing the ParallelNuscaS software on CLUSTERIX. This physical phenomenon
is governed [12, 14] by a quasi-linear heat conduction equation

∇(λ∇T ) + q̇ = cρ
∂T

∂t
, (1)

where T , t, λ, ρ, and c denotes respectively temperature, time, coefficient of
thermal conductivity, density, and specific heat. This equation contains the term
of heat source q̇, which describes the rate of latent heat evolution:
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q̇ = ρsL
∂fs

∂t
,

where L is latent heat, and fs is solid phase fraction. The subscript s refers to
the solid phase.

For solving equation (1), the so-called apparent heat capacity formulation
is used [12]. The testing numerical problem corresponds to solidification of a
casting made of the Al − 2%Cu alloy, in a metal mould.

In our tests, the problem geometry was meshed with 40613, 80401, 159613,
249925, 501001, and 750313 nodes, using triangular finite elements. Every mesh
was decomposed using the Metis library [5] into suitable sub-domains. It should
be noted that both in the sequential and parallel cases, the average from ten runs
was used to estimate the sequential T1 and parallel Tp execution times, where p
is the number of processors. For each run, the time necessary to solve a system
of linear equations using the conjugate gradient algorithm was measured.

6 Performance Results

6.1 Single-Site Performance

Fig.2 presents the performance results obtained for a single local cluster, lo-
cated in Poznan Supercomputing and Networking Center. In spite of using only
the Gigabit Ethernet, the results of these experiments are very good since the
speedup and efficiency are almost ideal. For example, for the mesh with 501001
nodes, our parallel code gives speedup of Sp = 9.72 for p = 10 processors.
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Fig. 2. Testing problem on a single cluster: speedup and efficiency for different mesh
sizes versus number of processors

6.2 Cross-Site Performance

Fig. 3 presents the performance results obtained on two distant local clusters,
located evenly in Poznan and Czestochowa. These results are rather promising.
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Fig. 4. Comparison of single-site and cross-site performance for meshes with 249925
and 501001 nodes

For example, the speedup for the mesh with 750313 nodes is Sp = 15.05, for
p = 18 processors (9 from Poznan, and 9 from Czestochowa). However, for small
meshes the cross-site communication overhead becomes more significant, and
decreases the speedup. For example, for the mesh with 159613 nodes, the parallel
runtime on 18 nodes is only 9.66 times smaller than the sequential runtime.

For achieving such results, the key points are to use a modified version of the
conjugate gradient algorithm with only one synchronization point [8], as well as
exploiting the overlapping of computation and communication when implement-
ing the sparse matrix-vector multiplication in parallel.

For large meshes, the obtained values of speedup/efficiency are satisfactory
for practical needs. At the same time, the execution of relatively small problems
(e.g., with 40613 nodes) as meta-applications is not reasonable because of too
large cross-site communication overheads. For such problems, the use of resources
of a single local cluster is sufficient in practice.
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Fig. 4 presents the comparison of the cross-site and single-site performance.
This comparison shows a loss in speedup when more than one local cluster is
used. This negative effect is decreasing with the growth of the mesh size.

7 Conclusions

This paper presents our experience in adaptation of the NuscaS FEM-dedicated
package to the CLUSTERIX grid environment. Using the MPICH-G2 middle-
ware, the proposed solution allows for running tasks across several local clusters
as meta-applications. The performance results of numerical experiments with
FEM modeling of castings solidification confirm that CLUSTERIX can be an
efficient platform for running numerical meta-applications. However, harnessing
its computing power needs to take into account the hierarchical architecture of
the infrastructure, especially the heterogeneity in the network performance.
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Abstract. This paper presents the concept and some details of imple-
mentation of a software package designed for modeling bi–phase gas–parti-
cle flows, using DEM and MP–PIC methods. In particular, this package
allows for the parallel implementation of computations on shared-memory
systems. The performance of the sequential and parallel versions of the
package is investigated. A short characteristic of the testbed is included.

1 Introduction

Bi-phase gas-particle flows are applied in many industrial domains [1, 10],
especially in chemical and processing engineering, coal combustion, powder pro-
duction technology, environmental engineering, petrochemical industry, pharma-
ceutical industry and others. In this work, the combination of the Euler approach
to the gas movement description and the Lagrange approach for the particle
movements is used for modelling such flows. The most important numerical
methods implementing the above-mentioned combination are DEM (Distinct
Element Method) and MP – PIC (Multiphase Particle in Cell). The distinc-
tion between motionless cells, associated with the gas movement, and movable
cells, associated with the particles, is the basic assumption of our computation
methodology [1, 6, 7, 9, 10].

In the previous works [8, 9], we described an object oriented package which
implements this methodology. This paper presents our experience in adaptation
of the package to its parallel implementation on shared-memory architectures.

The paper is organized as follows. In Section 2, we shortly present the math-
ematical and numerical models used in simulation, while Section 3 describes the
concept of the package which implements these models. How this package is
adapted to the shared-memory model of parallel programming, it is presented
in Section 4. Performance results of numerical experiments are shown in Section
5. Conclusions are given in Section 6.

2 Mathematical and Numerical Models

The mathematical model for the problem solved includes the following equation
of progressive motion for a single grain located in a motionless cell associated
with the gas movement, without interactions with other grains [7]:

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 373–379, 2006.
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(mp + apmg)
d2xi

dt2
= βcvV

(
Ugi −

dxi

dt

)
− Fmgi (1)

where:
mp – mass of particles,
mg – mass of gas,
V – cell volume,
ap – coefficient of gas uplift pressure,
cv - concentration of particles in the cell,
Ug – velocity of gas,
β – a certain coefficient,
Fmg – gravitational force.

Interactions between particles are derived according to the “spring–dumper”
model [6]. The important part of calculations of particles motion is detection of
collisions between particles [9].

The model of average Ug is applied to determine the velocity of gas for the
cuboid geometry of a pipe [1, 9].

3 Sequential Implementation

The choice of adequate data structures is of great importance for the efficient
implementation of the model. The nature of the problem requires two separate
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Fig. 1. Architecture of the software package for bi-phase simulation



Parallel Implementation of Software Package 375

structures - for gas and for particles of loose phase. As a result, the package
implementation includes [8, 9] the following main modules (Fig.1):

– fluid - involving data structures for gas, and responsible for solving the gas
motion according to avarage speed of gas in the pipe;

– grains – involving data structures for particles;
– fehlberg - responsible for solving systems of differential equations, using

the Fehlberg method, in order to determine the motion of particles.

4 Parallel Implementation

To parallelize computations, we have decided to use the parallel programming
model with shared memory. The global access to shared-memory data structures
describing parameters of particles allows for eliminating a large communication
overhead caused by a distributed-memory implementation. Among possible im-
plementations of the shared-memory model, the pthreads library [3] has been
used for its portability, and possibility of direct control of running threads to
increase the efficiency of computations.

The parallelization affects only modules with a substantial contribution to the
total time of simulation. Thus only calculations of gas and particles motion are

Fig. 2. Decomposition of computations among threads for one time step of simulation
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parallelized, while the detection of particles collisions is performed sequentially
[9]. For one time step of simulation, the decomposition of computations among
threads is shown in Fig. 2, where a case of two threads is considered.

5 Experimental Evaluation of Parallel Implementation

5.1 Testbeds Used in Experiments

In our experiments the following testbeds were used:

1. SMP node equipped with two Athlon MP 1.66 GHz processors (512kB L2
cache),

2. SMP node with two Intel Pentium III 750 Mhz (256 KB L2 cache),
3. SMP node with two Intel Itanium2 1.4 GHz (256 KB L2 and 3 MB L3

caches),
4. SMP nodes with Intel Xeon 2.4 GHz and 3.2 GHz (1 MB L2 cache), with

the Hyper–Threading option,
5. desktop machine with Intel Pentium 4 Mobile 2.4 GHz (512 kB L2 cache),

with the Hyper–Threading option,
6. desktop machine with Intel Xeon 3.2 GHz with the Hyper–Threading option

(1 MB L2 cache),
7. Hyper–Transport node with two AMD Opteron 1.6 GHz (1 MB L2 cache),
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The Hyper–Threading technology was exploited for Intel Xeon and Pentium
4 Mobile processors. This technology allows for creating processors which contain
multiple (in fact, two) logical processors per physical processor [11]. As a result,
by executing more than one thread simultaneously this technology can generally
improve the overall application performance. Furthemore, on SMP machines
equipped with Xeon processors, tests with Hyper-Threading switched off were
also performed.

During preliminary research, two basic compilers for PCs were tested: GNU
Compiler Collection (gcc) [2] and Intel icc [4]. These tests shown a signif-
icant advantage of the icc compiler. Depending on a hardware platform used
in simulations, code created by icc is from 36% to 40% faster than code cre-
ated by gcc, version 3.3, and from 64% to 104% faster than code created by
gcc-2.95. All tests were carried out using the second level of code optimization,
corresponding to -O2 option of compiler. With respect to these results, all the
further tests were performed using only the icc compiler.

5.2 Performance Results

In our tests, speedup Sp = t1/tp is used as a basic parameter for measuring
the implementation scalability. Here time tp corresponds to the execution of
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simulation in parallel on p processors, while t1 stands for the sequential execution
time of simulation [3].

The best achieved speedup (see Fig.3) is Sp = 2.59, which corresponds to
using Itanium2 processors for the problem with 3000 particles. Such a super-
speedup is possible due to the enormous cache in Itanium 2 (256 kB L2 and
3 MB L3). The large size of cache memory (1 MB of L2 cache) is also a reason
for super-speedup in case of Xeon procesors. For Itanium 2 processors, the fur-
ther growth of the problem size results in the speedup reduction to Sp = 2.21
for 6000 perticiples. At the same time, for Athlon processors the same problem
growth does not cause a speedup reduction. Very promising are scalability re-
sults obtained for Opteron processors, where only large problem sizes guarantee
achieving a high speedup.

The performance evaluation performed for the Hyper–Threading (HT) tech-
nology gives results consistent with other tests of this technology [5, 11]. When
it comes to the problem size, the speedup is from 1.08 do 1.37 – the results much
worse than those gained on machines using the SMP architecture. Fig. 4 shows
speedup for different problem sizes and different number of physical processors,
when the same machine was tested in three configurations: (a) with one proces-
sor and HT switched on; (b) with two processors and HT switched off; (c) with
two processors and HT switched on.
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Finally, during the tests with Opteron processors, the speedup of 1.1 – 2.2
is achieved for the two-proceesor architecture, depending on the problem size,
while the speedup of 1.2 – 3.6 is gained on four processors (see Fig. 5.).

6 Conclusions

The obtained results of performance tests allow us to confirm usefulness of the
shared-memory model for the parallel modelling of bi–phase gas–particle flows.
This conclusion is especially important having in mind the multicore architecture
of new processor designs.

These tests demonstrated also the influence of the implementation of a mul-
tiprocessor architecture on the scalibility of computations. With respect to com-
parison of architectures of Intel and AMD processors, in general the advantage
of machines with Intel processors was observed, since these processors allow for
achieving the effect of super-speedup. At the same time, the HyperTransport com-
munication technology, used in new Opteron processors, gives good results only for
sufficiently large tasks. Finally, it was shown that the Hyper–Threading technol-
ogy allows for achieving a relatively small increase in performance (average 15%,
maximum 37%).
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Abstract. The past few years have seen enormous progress in the per-
formance of propositional satisfiability (SAT) solving, and consequently
SAT solvers are widely used in industry for many applications. In spite
of this progress, there is strong demand for higher SAT algorithms effi-
ciency to solve harder and larger problems. Unfortunately, most modern
solvers are sequential and fewer are parallel.

A number of recent propositions was concerned with dynamic work-
load balancing for parallel SAT solving. Here, it is a complementary
approach that only explores an initial static decomposition for workload
repartition. The two computational models of Shared Memory and Mes-
sage Passing are compared, using OpenMP for Shared Memory and MPI
for Message Passing implementations.

1 Introduction

The propositional Satisfiability problem (SAT) is one of the most studied in
computer science since it was the first problem proven to be NP-complete by
S. Cook in 1971. Nowadays, the Satisfiability problem evidences great practi-
cal importance in a wide range of disciplines, including hardware verification,
artificial intelligence, computer vision and others. Indeed, a survey of Satisfia-
bility in 1996 [13] contains over 200 references of applications. SAT is especially
important in the area of Electronic Design Automation (EDA). In spite of its
computational complexity, there is increasing demand for high performance SAT-
solving algorithms in industry. Unfortunately, most modern solvers are sequen-
tial and fewer are parallel (see [28] for a complete review on parallel resolution
of SAT).

The remainder of this paper is organized as follows. Section 2 briefly in-
troduces the SAT problem and major concepts of the field. Section 3 gives an
overview of the main techniques used in the efficient implementation of state-of-
the-art sequential DPLL solvers. Section 4 briefly describes the main proposed
methods to parallelize the core sequential algorithms. Section 5 presents our
proposition in parallel resolution of SAT with OpenMP and MPI, followed by a
brief concluding Section.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 380–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Parallel Resolution of the Satisfiability Problem (SAT) 381

2 Preliminaries

Let V = {v1, v1, . . . vn} be a set of n boolean variables. A (partial) truth assign-
ment τ for V is a (partial) function: V → {True, False}. Corresponding to each
variable v are two literals: v and ¬v called positive and negative literals. A clause
C is a set of literals interpreted as a disjunction, � denotes the empty clause and
unit clauses have a single literal. A formula F is a set of clauses interpreted as
a Conjunctive Normal Form (CNF) of a formula of the propositional calculus.
A truth assignment τ satisfies a formula F (τ is a solution) iff it satisfies every
clause in F , and the empty formula ∅ is always satisfied. A truth assignment τ
satisfies a clause C iff it satisfies at least one literal in C and the empty clause
� is never satisfied.

Definition 1. The Satisfiability Problem (SAT):
-Input: A set of Boolean variables V and a set of clauses C over V.
-Output: Yes (gives a satisfying truth assignment τ for C if it exists) or No.

The restriction of SAT to instances where all clauses have at most k literals is de-
noted k-SAT. Of special interest are 2-SAT which is linearly solvable and 3-SAT
is NP-complete. The Max-SAT problem is the optimization variant problem of
SAT to find a truth assignment that maximizes the number of satisfied clauses.
Nevertheless, the Max-2-SAT problem is well known to be NP-hard. Current
research on propositional satisfiability is focused on two classes of solving meth-
ods: complete algorithms mostly based on Backtrack search and incomplete ones
represented by variations of Local search. Complete algorithms are guaranteed
to find a satisfiable truth assignment (a solution) if the problem is satisfiable,
or to prove the problem unsatisfiability. Incomplete algorithms cannot prove the
unsatisfiability even though they may be able to find a solution for certain satis-
fiable instances very quickly. Most of the more successful complete SAT solvers
are variants of the Davis Putnam Logemann Loveland: DPLL procedure [9].
They work quite well in practice and are the most widely used SAT solvers. We
may mention a number of works on the hybridation of incomplete and complete
algorithms to solve Boolean Optimization problems. Moreover there is continu-
ing interest in translations betwen CSP (Constraint Satisfaction Problems) and
SAT[1, 11, 30]. We mention this aspect because comparatively much more work
has been done in the parallel resolution of CSP than SAT ([14, 15]), and [18]
studies decomposition methods for parallel resolution.

3 Efficiency of Sequential DPLL SAT Solvers

There has been extensive research effort to develop gradually more efficient SAT
solvers ([12, 21]). Empirical evaluation of SAT solvers on benchmark problems
has been of particular interest for both fundamental algorithms and theoretical
understanding of SAT[5]. Web sites[26, 27] are libraries that collect a number of
benchmark problems, solvers and tools to provide a uniform test-bed for solvers.
An anual SAT competition is held as a joint event with the SAT conference.
Below are the main elements for efficiency of sequential DPLL solvers.
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- Better Branching Heuristic: this is the first element for efficiency of se-
quential solvers. Two factors have to be considered to define good general
purpose decision strategies: to find a solution if it exists as fast as possible
and to detect a contradiction as early as possible. Moreover, a “good” heuris-
tic is one that does not require too much time to compute and provides a
fairly accurate cost estimate. The branching rule problem has received many
attentions and achieved many progresses. Moms (Maximum number of Occur-
rences in Minimum Size clauses) is one of the most widely used general heuris-
tic. It favours the shortest clauses to obtain unit clauses and contradiction by
UnitPropagation. Many versions of Moms heuristics have been proposed. UP
heuristic, used in Satz[22] exploits the power of UnitPropagation by choosing
the literal that would produce the maximal number of unit clauses. Recent
works on dynamic learning and conflict analysis (see below) define new heuris-
tics such as VSIDS (Variable State Independent Decaying Strategy) used in
Chaff[24].

- Careful UnitPropagation Implementation: DPLL solvers spend the bulk of
their effort (greater than 90%) searching for clauses implied in UnitPropaga-
tion, sometimes called Boolean Constraint Propagation. Therefore, an efficient
UnitPropagation procedure implementation is the key for efficiency. [32] is an
interesting deep case study on cache performance of SAT solvers showing that
“cache friendly data structures is one of the key elements for efficiency”. It gives
comparative results of different data structures on various applications in term
of run times, data access and cache miss rates. It finds that there are still a lot
of space for improvements because the speed difference of main memory, L1 and
L2 caches tends to be larger.

- Dynamic Learning, Conflict Analysis and Non-Chronological Backtracking:
these CSP techniques were introduced in DPLL algorithms and have now become
a standard in most of recent SAT solvers. If a conflict is encountered the DPLL
algorithm analyses it for backtracking to a level so as to resolve this conflict
and a 0-level backtracking means that the problem is unsatisfiable. A clause
is called conflicting clause if it has all its literals assigned to False. Advanced
conflict analysis relies on an implication graph to determine the actual reasons
for the conflict. This permits to backtrack up more than one level of the decision
stack and, at the same time, to add some clauses called conflict clauses to a
database. This last operation is the base for the learning process which plays a
very important role in pruning the search space.

- Specific SAT Problems Processing: DPLL solvers typically suppose CNF
encoded problems but this is seldom the natural formulation of “real world”
applications. Indeed, the CNF representation provides conceptual simplicity and
implementational efficiency, it also entails considerable loss of information about
the problem’s structure that could be exploited in the search. There is a new
interest in studying the CNF conversion for DPLL solving in different domains
such as Planning, Bounded Model Checking (BMC) or Automatic Reasoning to
improve search efficiency.
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4 Parallel Resolution of SAT

Sequential computer performance improvements are the most significant factor
in explaining the few existing works on Parallel Algorithms for Satisfiability
compared to sequential ones. Indeed, the challenge to parallel processing is sub-
stantial in this area because there are still many problems considered out of
reach for the best currently available solvers. We refer to [28] for a recent re-
view of Parallel Resolution of SAT with complete algorithms, but we outline
in this section the major progresses in this direction. An important character-
istic of the SAT search space is that it is hard to predict the time needed to
complete a specific branch. To cope with this problem, most of the parallel al-
gorithms dynamically partition the search space assigning work to the available
threads during run-time. The most difficult part consists of balancing the work-
load in such a way that on the one side idle time should be limited, and on the
other side the workload balancing process should consume as few computing and
communication time as possible.

[2] is the first real parallel implementation of the DPLL procedure on a
message based MIMD machine, and it is the reference work of the domain. Ex-
cellent efficiencies have been obtained on a Transputer system with up to 256
T800 processors and with two different connexion topologies, the linear array
and the 2-dimensional grid. PSATO [31] is the first DPLL solver for distrib-
uted architectures, and it introduces the central concept of guiding path to de-
fine non-overlapping portions of the search space to be examined. //Satz[19]
is a parallel-distributed DPLL solver based on the master-slave communica-
tion model and work stealing for workload balancing. This work emphasizes the
ping-pong phenomenon which may occur in workload balancing. [20] presents
experimantal results on a cluster of 216 PCs interconnected by a Fast-Ethernet
network where significant speedup is obtained. PaSAT[3, 4] is the first parallel
DPLL solver with intelligent Backtracking and lemma exchange for learning (see
Section 3). Feldman et al.[10] present a parallel multithreaded SAT solver on a
single multiprocessor workstation with a shared memory architecture. It shows
the general disadvantageousness of parallel execution of a backtrack-search al-
gorithm on a single multiprocessor workstation, due to increased cache misses.
More precisely, it observes the negative effect on otherwise highly optimized
cache performance of the sequential algorithm. GridSAT[6, 7] is the first DPLL
solver designed to solve real hard previously unsolved problems on a large num-
ber of widely distributed and heterogeneous resources: the Grid. Its philosophy is
to keep the execution as sequential as possible and to use parallelism only when
it is needed. It is based on zChaff[24] as sequential core solver and it implements
a distributed learning clause database system. The baseline Grid infrastructure
is provided by the Globus system. The experimental results are obtained on dif-
ferent but non-dedicated nationally distributed Grids, and a number of various
challenge problems of the SAT’2002 conference is presented as test applications.
To our best knowledge, [8] is the unique published work to investigate the par-
allel functional programming for DPLL implementation, inspite of its natural
recursive expression.
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5 Our Proposition

This section presents our proposition in parallel SAT solving. It is a complemen-
tary approach of all the previous ones restricted to dynamic workload balancing,
in the sense that it only explores an initial decomposition for workload repar-
tition. The two computational models of Shared Memory and Message Passing
are compared, using OpenMP[25] for Shared Memory and MPI[29] for Message
Passing implementations. Moreover our approach is to be as possible indepen-
dent of the sequential solver running on all the processors for parallel execution.
This is of particular importance because of the rapid evolution of the sequential
state-of-the-art solvers. We put a parallel layer upon the target solver that is
viewed as a blackbox. Among all the recent freeware DPLL implementations
we have experimented zChaff, Sato, kcnfs and Satz. Here, for lack of place we
will only present partial results obtained with Satz to illustrate the approach
feasibilty, however the best absolute execution times have been obtained with
zChaff. The sequential solver Satz developped by Chu Min Li [22] is written in C
which enables the use of OpenMP and MPI as well without any extra processing.
An important feature of Satz compared to other DPLL implementations is that
it explores independently left and right subtrees making easier parallel imple-
mentation. It has no intelligent backtracking and sophisticated conflict analysis
for learning, thus reducing the potential communications for lemma exchange
between processors.

5.1 Initial Decomposition Strategy

The first step of our parallel proposition aims to obtain at most 2k indepen-
dent subproblems assigning both possible values true and false to some k “well
chosen” variables. At each variable choice, the simplifications obtained by Unit-
Propagation are achieved. All the subproblems are placed in a stack that can be
then dynamically allocated to processors all along the parallel execution. The
subproblems are defined by their associated guiding path as previously presented.
In OpenMP implementation this is obtained by a simple parallel forloop with a
dynamic allocation strategy directive #pragma omp for schedule(dynamic). We
refer to [16] for a detailed comparative study of the different repartition strate-
gies enabled by OpenMP. In MPI implementation, a classical master-slaves com-
munication protocol has been defined. The value for the k parameter may be
adapted to the available processors number such that 2k >> Nbproc. This k
parameter reflects the parallel granularity of our application (see below). In the
reported experience it never goes beyond 10 giving at most 1024 potential tasks.
The strategy for the choice of these k variables used to initially partition the
problem is of particular importance. We will consider the three following strate-
gies (see Section 3): Satz, the branching heuristic of Satz to give comparative
results with the sequential resolution; Moms, the classical heuristic and Rand,
the random choice of variables.
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5.2 Experimental Results

Experimentation is conducted on a SGI Origin 3800 machine thanks to the
CINES1. Its configuration is 768 R14000/500MHz processors, and 384Go of
memory. Its architecture is of ccNUMA type, made of a number of intercon-
nected blocks of processors giving 1.6GB/s data transfer rate.

The first application is called the longmult family, and it comes from the
Bounded Model Checking domain. Each of the instances is associated with one
output bit of a 16x16 shift and add multiplier. All the instances are unsatisfi-
able2. The longmult14 and longmult15 hardest ones are presented. The second
application is called the DES family, and it comes from the logical cryptanalysis
domain [23]. It is a new way to generate hard and structured SAT problems by
light encoding a few numbers of tours of the DES encrypton system, and all
these instances are satisfiable. Only the hardest ones b1-k1.1 and b1-k1.2 are
presented here.

The following tables present for each problem instance: its reference, the
number of variables v, the number of clauses c, the sequential CPU time of Satz,
the respective parallel time and efficiency obtained with up to 32 processors.

Table 1 gives comparative results of OpenMP and MPI implementations on
the longmult family with the Satz initial decomposition strategy and a gran-
ularity giving about 120 subproblems for longmult14 and 200 subproblems for
longmult15. Actually, there was a contradiction between the use of OpenMP for
this application and our basic choice not to go inside the solver code. State-of-
the-art DPLL solvers such as Satz or zChaff make intensive use of dynamic data
structures, but unfortunately OpenMP does not yet permit the dynamic private
(not shared) memory allocation, thus leading to mandatory memory manage-
ment overhead ([15, 17]). In all the cases the MPI implementation overcomes
the OpenMP one, but both provide noticeable linear speedup until 8 processors,
then a regular decreasing efficiency for MPI and out-of-memory for OpenMP
with more processors.

Table 1. OpenMP-MPI with Satz decomposition strategy

Pb. Strat. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 Satz 4053 t4 e4 t8 e8 t16 e16 t32 e32
7.176v OMP 1060 0.95 540 0.93 384 0.66 ? ?
22.389c MPI 971 1.04 503 1.00 327 0.77 284 0.44
Lm15 Satz 4865 t4 e4 t8 e8 t16 e16 t32 e32
7.807v OMP 1251 0.97 665 0.91 ? ? ? ?
24.351c MPI 1211 1.00 622 0.97 361 0.84 274 0.55

Table 2 gives the comparative results of the three decomposition strategies
Satz, Rand and Moms with MPI implementation on both longmult unsatisfiable

1 Centre Informatique National de l’Enseignement Supérieur.
2 http://www.cs.cmu.edu/ modelcheck/bmc.html
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Table 2. Decomposition strategies with MPI

Pb. Strat. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 Satz 4053 971 1.04 503 1.00 327 0.77 284 0.44
7.176v Moms 1750 0.58 891 0.57 552 0.46 291 0.43

22.389c Rand 2050 0.49 1286 0.39 748 0.34 410 0.31
Lm15 Satz 4865 1211 1.00 622 0.97 361 0.84 274 0.55
7.807v Moms 2027 0.60 1102 0.55 568 0.53 350 0.43
24.351c Rand 2448 0.50 1505 0.33 1108 0.27 554 0.27

b1-k1.1 Satz 6352 1319 1.20 660 1.20 336 1.18 173 1.15
307v Moms 1562 1.01 797 0.99 423 0.94 150 1.32
1731c Rand 1823 0.87 702 1.13 428 1.08 187 1.06

b1-k1.2 Satz 7709 1595 1.20 839 1.14 430 1.12 220 1.10
398v Moms 1994 0.96 921 1.04 401 1.20 154 1.56
2124c Rand 65 29 114 8.45 105 4.58 1461 0.16

Table 3. Granularity study

Pb. NB-Pbs. Seq 4 Pr. Ef4 8 Pr. Ef8 16 Pr. Ef16 32 Pr. Ef32

Lm14 32 4053 1308 0.77 1182 0.43 1070 0.23 1079 0.12
7.176v 60 1099 0.92 721 0.70 610 0.41 605 0.20

22.389c 112 990 1.02 513 0.99 344 0.73 292 0.43
Lm15 46 4865 1384 0.88 1009 0.60 832 0.36 786 0.19
7.807v 92 1273 0.95 728 0.83 568 0.53 456 0.33
24.351c 184 1247 0.97 628 0.97 364 0.83 277 0.55

family and DES satisfiable one. We may notice the Satz strategy to be always
near the best one in this experiment. It shows superlinear speedup for the sat-
isfiable instances. A non surprisingly random behaviour of the Rand strategy is
observed too. It is wortwhile to notice that both Rand and Moms strategies are
much more easily implemented compared to the Satz one which runs the solver
up to a depth bound. Note that CPU time needed for the decomposition step
is not reported because it can be seen as preprocessing and it is not significant
compared to the search time.

The last Table 3 presents the comparative results obtained with different
granularity values for the longmult unsatisfiable family. For the DES satisfiable
family the granularity is much more interpreted in terms of non-determinism.
It gives for each number of generated subproblems, its efficiency obtained with
the Satz decomposition strategy in MPI implementation. It shows the important
effect of this parameter on the overall efficiency especially for scalability.

6 Conclusion

After introducing the different components for sequential efficiency of the state-
of-the-art solvers, we give the essential steps towards the parallel framework
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progress of this last decade. However significant parallel efficiencies are still ob-
tained by a number of recent propositions, more detailed research in all the
directions are needed to improve the parallel performance. A simple static ini-
tial decomposition strategy may be applied to obtain reasonable efficiencies and
then be combined with a more sophisticated dynamic workload strategy. The
main characteristic of our approach is that it is completely independent of the
sequential solver, thus can be viewed as a first brick of a future platform for
parallel resolution of SAT.

The two parallel computational models used in this study are Shared Mem-
ory and Message Passing. It is not unheard of for both models to be applied
simultaneously -threads on shared memory for “intra-node computations” and
message passing among them for “inter-node communications”. Such an hybrid
approach could become standard and we will use it for further progress. Indeed
new improvements can be done in the sequential resolution, the next step for a
widespread use of Satisfiabiliy technique in real world applications remains the
parallel efficiency challenge.
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Abstract. In the global economy an increasingly popular concept of or-
ganization is that of a collaborative enterprise. An essential ingredient of
such an enterprise is the information technology infrastructure that en-
able the coordination and the sharing of information and other resources.
Grids have been proposed as the infrastructure for such organizations,
however, to date they have been delivering high performance for com-
putation and data while a lot remains to be developed for the grids to
be readily useful in day to day enterprising. In particular, for the grid
concept to be usefull it must redefine its understanding of a resource.
This paper defines the collaborative enterprise identifies the role grids
could play in engineering processes taking place in such organizations.
It presents a high level architecture for grids based engineering services
and tools, reviews it and defines the research and development issues. It
is based on the results of an on-going European Union project InteliGrid
- Interoperability of Virtual Organizations on a Complex Semantic Grid.

1 Introduction

Since 1980s a problem of the islands of computation has been emerging in prac-
tically every industry. Every intellectual work was getting IT support but was
poorly interconnecting with other related processes thus the name “island of
computation”. Research started on how to interconnect those tools so that the
slow and error prone re-entering of data could be skipped and complex processes
involving several tools could have been automated. A well known illustration of
this problem in the domain of architecture, engineering and construction is the
“islands of automation” picture [1]. Conceptually, the integration solutions have
been betting on the agreement on a commonly accepted and standardized data
structures, such as the ISO-STEP or IAI-IFC standards. These data structures
were derived from what has been called a “conceptual model” of the area of dis-
course. This approach was conceived at a time when file transfer (on floppy disks,
CDs or as email attachments) was the usual method of information exchange.
Their architectures and technical solutions are based on file-transfer idea (e.g.
STEP physical files). However, since the interesting part of these standards have
been the data structures describing the problem domain, the actual research pro-
totypes used whatever was the state of the art for interoperability at the time.
This included CORBA, COM and DCOM, internet and Web and recently the
semantic web (overview these technologies in [2]). The Internet also provided the
communication infrastructure for “a temporary network of companies, suppliers,

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 389–398, 2006.
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customers, or employees ... with the purpose of delivering a service or product”
(www.powerhomebiz.com/Glossary/glossary-T.htm). In short such networks are
called virtual or networked organizations or collaborative enterprises (VO, NO,
CE). Another popular definition of a VO is “a temporary collaboration to ex-
ploit a business opportunity” [3]. The term became a buzzword in the late 1990s,
however, some industries have always been organized in such a way. Every con-
struction project, for example, is such a temporary collaborative network of
companies, suppliers and customers. Traditionally the communication medium
for these networks in construction have been drawings on paper. Recently the
paper is being replaced by digital files and models.

2 Grid Computing

The statement by Foster et al. [4] captures the essential requirements of collab-
oration inside a CE: “ the problem is coordinated resource sharing and problem
solving in dynamic, multi-institutional virtual organizations ... not primarily file
exchange but rather direct access to computers, software, data, and other re-
sources, as is required by a range of collaborative problem-solving in industry.
This sharing is highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the condi-
tions under which sharing occurs”. This statement became one of the definitions
of grid computing, particularly for the evolution of grid technology towards se-
mantic grid. It gave ground to the optimism that perhaps grid technology could
provide the solution to the old problem of the islands of computation and offer in-
frastructure for the collaborative enterprise. Since the early 2000 there has been
an increasing collaboration among the research communities of grid computing,
semantic web and the collaborative enterprise communities which resulted in
a better understanding among them, including their vocabularies. One project
that such cross fertilization is happening is the InteliGrid project funded by the
EU (www.InteliGrid.com). The author believes that it is the understanding of
the term “resource” that has been causing some misunderstandings and that re-
sulted in a novel and original interpretation of the roles of the grids in networked
enterprizes.

3 Resources

In grid computing context (in which also Foster’s definition was written) the
term resource is used to denote machines, hosts and the CPU cycles, storage or
communication facilities. In the WSRF, a WS-resource is defined as: “A Web
service having an association with a stateful resource”. A resource is definitively
something on the other side of the keyboard. In engineering and industrial con-
text the high level process model of industrial activities as phrased in the ISO
Framework Standard originating in the 1950s has been “Resources are used in
Processes that will result in Results and all these objects have Properties and
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Characteristics [5]. This understanding of a resource is much wider. In it, a re-
source is anything needed to produce a product or a service and includes real
world items such as people, raw materials, components, sub-assemblies as well
stuff like energy and, last but not least, information technology that is needed
to support the production process. This resource is predominantly something
on this side of the keyboard. Foster’s grid only becomes relevant for networked
enterprising if and only if the term resource adopts the wider industrial meaning.
A direct implication of this, however, is the extension of the universe of discourse
that the grid middleware is concerned with. Not only purely IT concepts but
domain concepts need to be addressed as well. Which implies that the so called
semantic grid is not only interested in the semantic annotation of grid resources
with concepts from some grid resource ontology, but in concepts from the do-
main ontology. The relation of these two domains is a research issue addressed
in the InteliGrid project. Some early ideas on the conceptual and architectural
implications are addressed in this paper.

4 Vision, Goals, and Requirements

The vision of the next generation collaboration platform for networked enter-
prises is to enable the industries with challenging integration and interoper-
ability needs a flexible, secure, robust, ambient accessible, interoperable, pay-
per-demand access to (1) information, (2) communication and (3) processing
infrastructure. In a construction related virtual organization the group of com-
panies and contractors involved would be different each time. Some, like the chief
designer or main contractor would stay on the project longer, some would just
come in, do their job, and get out; quickly and dynamically. A grid could pro-
vide a platform, which lets them get in and out of an extremely complex virtual
enterprise, built around complex, structured information fast. The specific goal
is to provide infrastructure where a user would simply get building information
model information from the grid and also put it there. The complexity of the
IT that will be used to physically store this information, protect it, make it
available to other etc. would be totally hidden from the end user. Large scale
use of services and agents, each with a potentially different schema, would not
allow for her knowing the individual schemas. She would use terms from her
professional vocabulary, from a generic engineering ontology, to find relevant
information and services. Similarly, software authors would make the software
commit to an engineering ontology semantically compliant with the standard
building model and technically compliant with the grid middleware protocols.
The ”Save As ...” option would be replaced by “Save to grid” and the “Load ...”
with an ontological query mechanism, that would search the grid for relevant
information. The specific requirements of the industry include:

– Security. By using any kind of shared infrastructure, an organization is
exposing some of its resources to other - partner organizations; in the case
of project webs, one neutral location is used for the exchange of files. In
the case of grids the resources could be much more scattered. The number
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of providers of resources is much larger. Even a pool of resources within
the company could be offered to the VO. Because of such scenarios, the
grid should provide reliable authentication, secure and strongly encrypted
communication from ground-up.

– On demand access to services. Engineering projects are distinctive and
unique. This also requires specialized tools and software. It is not economical
to buy tools that are used once; instead renting them and using them on-
line, paying per use, not per license is a likely future option for all except the
very popular engineering software. In addition, some simulation and analysis
software might require computing power not available within the company.
The services would therefore be rented and executing on the fastest and most
powerful machine (or machines) on the grid.

– On-demand access to information. Product model databases structured
according to STEP or IFC standards may be large. Logically, they would
have to appear as a central database with all information about a designed
product. Physically they would be distributed in a safe, reliable and redun-
dant way across the grid.

– Engineering language. Although the language that the engineers use to
describe the buildings is closer to STEP or IFC concepts than it is to lines
and words in a non-structured data, the natural language is still on a higher
semantic level. This level needs to be reflected in the architecture as well.

5 Architecture

The ideas presented are based on service-oriented architecture (SOA) and model
driven automation (MDA) [6]. In a service oriented architectures, the unit of
modularity is a service. Model-driven automation (MDA) supposes that services
are defined my models, that models encapsulated within layers. The architecture
presented in this paper is a high level architecture. One of goals when developing
it was that it should have been fairly generic. This fact can be proven by trying
to fit existing architectures of systems developed over the last decade into it.
It is also used to identify the pieces that exist and the pieces that need to be
developed.

5.1 End User View

As a way to enable the understanding of the architecture we start by presenting
how an end user view might experience a services oriented system. From top to
bottom (Fig. 1):

– Shells and GUI layer. She accesses the computing resources through var-
ious shells (e.g. Windows Explorer, KDE), browser based shells of collabora-
tive environments (e.g ProjectWeb, CONJECT) and, of-course, she interacts
with applications.

– Applications and services layer. This consists of tools that assist in the
evolution of design and contribute to the information that is the results of
the supporting process.
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Fig. 1. End user perspective

– Engineering infrastructure layer. This layer is specific to engineering
and AEC but does not change the design information.

– Generic infrastructure layer. This layer is infrastructure as well, but not
specific and not aware of engineering or AEC. Tolls on this level could also
be used in banking, medicine etc.

– Physical resources. Hardware and networks.

5.2 The Three Layers

The mechanisms that we use to structure the overall architecture is to split the
discussion into (Fig. 2):

– concepts: this is something that exists in the form of standards, ideas, graphs,
schemas, ontologies, notions etc.

Fig. 2. The three main layers of the architecture
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– services and applications: this layer consists of software that can be compiled,
installed, executed, that runs and communicates with other software.

– to run the applications and services need primitive resources such as net-
working, storage, CPU etc.

5.3 Conceptual Layer

In the architecture, this layer must provide information on what concepts exist
in the system, and how they are encoded (Fig. 3). The concepts are organized
into two axes. On the vertical access is what we call the conceptual stack.

– in the common sense layer are all the concepts we can think of; the CYC
project [7] was an attempt to encode these concepts in a form of an ontology.

– in the engineering layer we have the concepts that the engineers that will
use the system deal with; walls, bridges, windows, reinforcement bars etc.
etc.

– in the services and grid layer are IT concepts that are describing the IT
elements of which the system is built.

– in the resource layer are concepts describing low level resources, such as
CPU, memory, networking, security etc.

On the horizontal axis is the so called semantic Web stack [8]. From left to
right:

– Unicode is the way in which characters are encoded;
– Universal Resource Identifiers (URI) are they way in which the resources are

identified
– XML and XML Schema Languages are the way in which structured infor-

mation is transferred and its structure defined.
– RDF and RDF Schema have the same role in the narrower scope of resources.
– Ontologies define what exist for a number of agents or services on a higher

semantic level that XML Schema. OWL family of languages is currently the
most popular way of encoding the ontologies.

– Layers related to risk, logic and inference, proof and trust are hotly debated;
they should culminate making sure that a web service can be trusted. Few
mature technologies and solutions for these layers exist, therefore they are
drawn in a dashed line.

Finally the intersections of the horizontal and vertical layering are examined.
Existing and proven technologies are drawn with a grey background, future work
as hollow, dashed rectangles. The items will be discussed top to bottom, left to
right:

– common sense layer: efforts like CYC would fit in here.
– engineering layer: the schema layer is quite well developed with standards like

IFC and STEP; there may be more work needed related to the process and
communication. The authors are not aware of any work in construction IT
that would have addressed the RDF. Whether it is needed or not is a research
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Fig. 3. Conceptual layers

question. On the ontology layer there seems to be a need for “Industry
Foundation Ontology” (IFO) that could perhaps be derived on one hand
from the IFC models and on the other from the work in the classification
systems. This IFO could be further generalized into an engineering ontology.

– services layer: The web services interoperability (WS-I www.ws-i.org) pro-
vides a well developed set of standards, conventions and frameworks to ad-
dress the web-services-kind-of functions but do not sufficiently address grid
technology. The WS-I+ and the WSRF framework [9] are extending the con-
cepts not only towards grid services but towards lower level grid resources
as well. OWL-S (http://www.daml.org/services/owl-s/1.0/) is an ontology
in which web services can be described; similarly there may be a need for ex-
tending it so that grid services can be described. We are naming this OWL-G
(G for grid).

– resource layer: current ideas of grid development go onto the direction that
anything is viewed as a service - the low level or virtualized hardware and
networked resources as well, therefore, in our graph, the boxes from the
services layer have been extended into this layer as well.

5.4 Services and Applications Layer

In the services and application layer anything is ether a service or an application
(Fig. 4). These services implement the concepts and standards defined in the
conceptual layer and use the resources of the physical resource layer. They talk
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Fig. 4. Services and application layer

to each other using the web services protocols such as, but not limited to, SOAP
or XML-RPC. Layers from top to bottom:

– applications: this is software through which people interact with the system.
The applications can be rather autonomous and stand alone (for example a
CAD modeler works off-line, the user, in the end, uploads the drawing to
a shared repository). Other applications may depend on resources that are
on-line. For example an application may look up product specification from
an on-line database or have a complex simulation performed on an on-line
supercomputer.

– business services: this software is on line and exposes it functionality in such
a way that it can be used by remote clients. A project web site, for example, is
such a primitive service. Web services based product model server could be a
next step in its evolution. Labeling them “business services” we want to stress
that these services are specific to a particular business (like construction).

– meta services are services about services. At these services, a service from
the layer above can register so that it can later be fund by users. The services
in the left hand side are rather well known and deal with established web
services concepts. The right hand box is new and will have to deal with what
ontology to particular services commit to and how to map concepts from the
ontology into the schema with which they work.

– middleware provides the generic infrastructure for a service oriented architec-
ture such as security and authentication mechanisms, resource management,
accounting, notification etc. These mechanisms are much ricer in the grid
than in the web services context, where the code that executes the service
and its API are very tightly connected and where access and security policies
are managed by each service individually.

– physical resource virtualization: current architectures are used to dealing
with physical storage, files, network; developments in grid computing go
into the direction where these basic resources are virtualized, requested and
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fulfilled from a pool of resources, transparently to the service that is using
them.

6 Critical Discussion

The high level architecture that was presented in the previous section tells us
more on how to view at a particular system than how to implement it. This
section provides a critical review. Strengths. The architecture uses some well es-
tablished reference architectures as its baseline: the service oriented architecture,
the semantic web stack and a common sense logic of specializing concepts from
common sense through engineering to IT ones. It would be quite easy to map
the architectures of interoperable systems for construction, such as ToCEE [10]
or ISTforCE [11] into this architecture. Contrary to several others, it makes a
very clear distinction about the issues that each of the diagrams is addressing. It
is generic - only a few rectangles on a few layers are specific to AEC. This means
that the implementation could make full use of technologies developed for any
services oriented system. One could argue that construction does not need grid
technology. The presented architecture abstracts the lower level services and it
is irrelevant for higher level ones if the actual implementation is grid or web ser-
vices based. Weaknesses. The architecture is depending on some developments
in the semantic web / grid area and assumes that the web services solutions
will extend to the grid itself. It is also rather conservative so that it could take
advantage of existing technologies. The architecture is not described in a stan-
dard notation, but for high level architectures these notations hardly exist. The
UML/RUP is only applicable on a detailed level for the design of one service.
Opportunities. By closing the gap between engineering schemas and the WS-I
platform AEC services could start capitalizing on the synergies of web service
and product model work. By developing the Industry Foundation Ontology it
could harmonize the otherwise divergent developments in the IAI-IFC and the
ISO 12006-2 Classification Standards. Threats. Too much effort is spent on han-
dling technology related issues and mastering the rapidly evolving web services
and semantic web standards that indeed sometimes seem to loose touch with the
reality of end user requirements. Not enough time remains to address the unique
engineering issues. The technological and semantic baseline on which the next
generation of engineering services would (according to this architecture) have
to be built may be to complex and demanding for an average SME developing
solutions for the AEC.

7 Conclusions

A high level architecture for a service oriented system for doing collaborative
enterprising has been proposed. It bridges between the IT and engineering un-
derstanding of resources and virtual organizations. It is generic enough so that
several of the past developments can fit into it. It is being refined in an on-going
R&D project InteliGrid.
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Abstract. Large artificial neural networks are examined. Structures
discussed in this article simulate the cortex of mammalian visual system
and its dynamics. Simulations of thousands of Hodgkin-Huxley neurons
always require high computational power. Discussion of such networks
parallelisation is presented in some detail. Analysis of simulation time,
algorithm’s speedup as a function of processors’ number and density of
connections is discussed as well.

1 Introduction

Human brain built of about 1011 neural cells is a hard object of simulation
even for contemporary super-computers. Some idea of whole brain modelling
was suggested by Maass [1] and since then it has been called Liquid State Ma-
chine (LSM) [2][3]. In general, the brain (or a fragment of it) is treated as a
liquid. Mammalian brains’ cortex is built of neurons organised in microcircuits
[4]. Microcircuits form columns and the function of each column depends on its
location in the brain. Cortical microcircuits turn out to be very good “liquids”
for computing on perturbations because of the large diversity of their elements,
neurons, synapses and the large variety of mechanisms and time constants char-
acterising their interactions, involving recurrent connections on multiple spatial
scales. Like Turing machine, the model of LSM is based on strict mathemati-
cal framework that guarantees under ideal conditions universal computational
power [1].

Applying ideas of liquid computing [1] allows to decrease the number of
neurons in constructed model. In addition, we can dramatically shorten the sim-
ulation time using cluster-based parallelised simulations of groups of microcir-
cuits. In this communication we present some method of visual system’s model
parallelisation and benchmarking results.
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2 Model of Mammalian Visual System

Discussed model of mammalian visual system consists three main modules
(Fig. 1). The idea of LSM requires such architecture, so we have: “Input” (retina),
“Liquid” and output called “Readout” [1]. The Retina is built on 16x16 square-
shaped grid and it is divided into 16 patches (4x4). Each patch is connected
with HHLSM (Hodgkin-Huxley Liquid State Machine) column which simulates

Fig. 1. Scheme of simulated visual system

the Lateral Geniculate Nuclei (LGN) and ensemble of cortical microcircuits.
HHLSM consists 1024 cells put on 16x16 grid. There are layers arranged in
each column (Fig. 2). Set of columns simulates the Liquid which is connected
with the Readout device. The Readout’s architecture is similar to the Retina,
in analogy it is divided into 16 patches with 16 cells in each patch. Connections
among layers and neurons of each layer are established with some probability i.e.

Fig. 2. Structure of HHLSM column as the fundamental microcircuit
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p=10%. All simulations discussed in this paper are conducted in parallel version
of GENESIS for MPI environment (for detail see Appendix A). Neurons used
in simulations are built according to Hodgkin-Huxley model [5] (for detail see
Appendix B).

Such model can be easily scaled into multiprocessor simulation. In referred
research each column and its corresponding retinal or readout patches should
be simulated on one node. Note that in that case we require 16 processors for
the best realisation of the model and additional one for control of simulation.
However, both the Retina and the Readout may be easily divided into 4 (2×2), 64
(8×8) or 256 (16×16) patches, depending on the number of processors available.
Thus, if each patch is connected with corresponding HHLSM column - we will
have possibility to conduct a simulation of about 256 thousands Hodgkin-Huxley
neural cells.

3 Parallelisation and Results

We investigate the model consisting 16896 neurons (as the Liquid is simulated
by ensemble of 16HHLSM columns). 30% of randomly chosen retinal cells are
stimulated and the signal is transformed by the Liquid. As a result we obtain
some activity of the Readout device. We simulate 20ms of biological work for
such system. The main objective of the referred research is to check the depen-
dence of simulation time from the number of processors used for simulation and
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Fig. 6. Time of simulation as a function of MPI threads. The number of MPI threads
is equal to the number of active HHLSM columns.

from the percentage number of connections established among neurons in the
liquid.

As we mentioned before, the architecture of the network implies that the
problem can be most effectively parallelised into sixteen main nodes with one
controlling node. Results confirm our expectations (see. Fig. 3). Simulation’s
time reaches its minimum when the model parallelised for 17 nodes runs on
17 processors. Note that increasing the number of processors is useless for the
algorithm with 17-node parallelisation implemented.

In analogy, Fig. 4 presents the simulation’s speedup as a function of the
processors’ number. In the best case simulation is about 11 times faster than the
one computed with from 1 or even 3 CPUs.

Fig. 5 presents the simulation’s time as a function of the probability of con-
nections arranged inside each HHLSM column. One can note that the time of
simulation does not increase rapidly and for the full connection it reaches about
700 seconds.

We also investigated the model with some HHLSM columns being disabled.
Fig. 6 shows how the time of simulation depends on the number of MPI threads.
The number of MPI threads is equal to the number of active HHLSM columns.
Neurons in columns are connected with the probability p = 10%. Results ob-
tained for 16HHLSMs are comparable with these from Fig. 3, however, applying
additional MPI threads in model parallelised for 17 nodes seriously increases the
simulation’s time.
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4 Conclusions

In this paper we report results of mammalian visual cortex’ simulations. We
simulated about 16 thousands Hodgkin-Huxley neurons organised in layers and
cortical columns - microcircuits. Modular structure of visual cortex allows for
applying good parallelisation as particular microcircuits can be simulated on
separate nodes. Our model is scalable. Though, we can easily increase the number
of neurons in each cortical column which will let us run simulations consisting of
more than 256 thousands Hodgkin-Huxley neurons. This will help us build more
realistic model of visual cortex.

Communication among nodes is arranged by parallel version of GENESIS
simulator. For this article we present one of the first results obtained in GEN-
ESIS parallelised for Linux MPI. Achieving the speedup of 11 for 17 processors
is satisfactory and lets us predict similar magnitudes for much larger, scaled
simulations.

All of discussed simulations were conducted on the local cluster. Our machine
is part of CLUSTERIX - Polish GRID project [7]. Having access to 800 processors
and increasing the number of simulated microcircuits we can imagine a structure
consisting several millions of neural cells simulated in similar way. This will lead
to creation of very sophisticated models and such attitude can open for us quite
new field of computational complex systems’ research.
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Appendix A: Details of Simulations’ Hardware and
Software Environment

The local cluster used for all simulations and discussed in this contribution is
built of 12 machines and 1 additional machine - so-called “access node”. Each
SMP machine has two 64-bit 1.4 GHz Itanium2 IA64 processors with 4 GB
of RAM memory. Cluster works under control of Debian Linux Sarge (v. 3.1)
and 1.2.6 kernel version. The model is simulated in GEneral NEural SImulation
System GENESIS v.2.2.1 with its MPI extension. A gcc compiler was used for
general system configuration. In near future we expect to recompile the system
with Intel CC/FC 8.1 compiler.

Appendix B: Details of Hodgkin-Huxley Neurons

Our HHLSMs consist of multicompartmental neurons with two dendrites com-
partments, a soma, and an axon. Dendrites contain synaptically activated chan-
nel and the soma has voltage activated Hodgkin-Huxley sodium and potassium
channels. The behaviour of each compartment is equivalent to the behaviour of
some electrical circuit and is described by differential equation:

Cm
dVm

dt
=

(Em − Vm)
Rm

+
∑

k

[(Ek − Vm)Gk] +

+
(V

′
m − Vm)
R′

a

+
(V

′′
m − Vm)
Ra

. (1)

Thus, each circuit is characterised by a group of parameters set as follows:
resistances Ra = 0.3Ω, Rm = 0.33Ω, capacity Cm = 0.01F , and potential
Em = 0.07V . For the soma compartment Ek = 0.0594V whilst for the dendrite
Ek = 0.07V . Conductance for each type of ionic channels is chosen to be: GK =
360Ω−1 and GNa = 1200Ω−1. The soma has a circular shape with the diameter
of 30μm, while dendrites and axon are cable like with the length of 100μm.
All other parameters are chosen as suggested by GENESIS authors to simulate
behaviour of the biological-like neurons [6]. More details concerning Hodgkin-
Huxley model one can find in [5].
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Abstract. The present contribution shall illustrate the necessity of
planning and optimising resource allocation in a grid. Requirements to
be met by a resource management system will be defined. These re-
quirements are comparable with the requirements on planning systems
in other fields, e.g. production planning systems. Here, various methods
have already been developed for optimised planning. Suitable methods
are Evolutionary Algorithms. Based on an example from the field of pro-
duction planning, the performance of these methods is demonstrated and
use in the GORBA resource broker shall be described.

1 Introduction

With the growing acceptance of grid computing, the number of resources in
a grid environment and the number of users increase constantly. For the best
possible usage of grid resources and most rapid execution, efficient planning
of the grid resources is required. This contribution shall illustrate the use and
benefits of modern resource management methods in a grid environment. It
will be shown that there still is considerable need for the use of optimisation
processes in allocation planning. This gap shall be closed by the global optimising
resource broker GORBA (Global Optimising Resource Broker and Allocator)
that is currently being developed. The concept of GORBA and the underlying
optimisation processes shall be outlined.

2 Resource Management in a Grid Environment

A resource management system in a grid environment is responsible for allocating
grid resources to waiting requests for resources. In this context, the following
requirements are made on a modern resource management system [1, 2]:

– Quality of Services (QoS)
• guaranteed resource usage (advanced reservations)
• negotiation of resource usage
• deadlines (+ malleability)

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 406–413, 2006.
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• co-allocation for multi-site jobs and complex workflows
• service level agreements (SLA)
• different QoS levels

– Reliability / Fault-Tolerant Scheduling
• failure detection & recovery

– Grid Economics
• payment and penalties for resource usage, failures, and violated SLAs
• load balancing in the grid

These requirements are made by both the user and the supplier of grid ser-
vices. As a rule, each user attaches importance to cheap and a rapid execution of
the job with guaranteed response times and the possibility of using and reserv-
ing certain resources (QoS). The supplier tries to reach a homogeneous usage of
his resources and to serve all users equally well (grid economics). To meet these
partly contradicting requirements, the best possible solution has to be found.
Both users and suppliers of grid services additionally ask for reliability and fault
tolerance.

Resource management systems can be divided into queuing systems and plan-
ning systems [1, 3]. The difference between both systems lies in the planned time
window and the size of the set of jobs considered. Queuing systems try to allo-
cate the resources available at a certain time to the current waiting request for
resources. Resource planning for the future for all waiting requests is not done.
In contrast to this, planning systems plan for the present and future, which re-
sults in an assignment of start times to all requests. Today, almost all resource
management systems belong to the class of queuing systems. Contrary to queu-
ing systems, planning systems require more information, such as the duration of
execution, long-term availability of ressources, etc. For this reason, implemen-
tation of queuing systems usually is much easier. However, a queuing system is
efficient in case of a low usage of the system only. In the case of increased usage,
the queuing system reveals considerable weaknesses with respect to the quality
of services, resource usage, and execution time of the individual grid jobs. For
instance, for waiting grid jobs no statements can be made with respect to the
presumable time of job execution.

Presently, resource management systems [4] exist in e.g. the grid systems
Unicore [5], Nimrod/G [6], and Condor-G [7]. Unicore allows for the listing of
suitable resources, together with the costs and the presumable execution time.
Condor-G allows for resource finding according to criteria given by the user.
In Nimrod/G, conventional optimisation in terms of costs or time or both is
possible. Usually, resource management systems in grid environments are mere
”resource finding systems” with manual resource allocation. At best, optimum
scheduling of the actual job takes place with previous planning being maintained
(e.g. Nimrod/G).

Automatic resource allocation should be made such that the above require-
ments on a resource management system, e.g. best possible usage of resources,
guaranteed and short response time, etc., are fulfilled. Comparable problems are
dealt with in many industrial resource planning tasks, such as in production
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planning. A typical task of production planning is the allocation of alternative
processing stations (i.e. resources) to partial jobs in a given order. The main
objectives include execution of all jobs within their due dates and as rapidly as
possible, preferred treatment of rush orders, homogeneous resource usage, and
efficient and fast replanning due to equipment breakdown, cancellation of jobs or
new orders. Such planning problems are NP-complete and as no efficient exact
solution methods are known for this class of problems, heuristic methods are
applied to find appropriate solutions within an acceptable time. The planning
problems in a grid environment are very similar to the previously described plan-
ning problems. Differences consist in the variable availability of resources and
in the difficulty to predict the duration of execution of individual jobs, which
aggravates planning and frequently gives rise to replanning.

Our objective is the development of a resource management system for a grid
environment, which fulfils the above requirements in the best possible manner. It
generates allocation plans for the resources existing and the jobs to be executed,
in which it is specified when each job is executed on which resource. For the
optimisation of the allocation plans, the optimisation tool HyGLEAM (Hybrid
General-purpose Evolutionary Algorithm and Method) developed at our institute
and tested for a variety of applications is used [8, 9]. The concept of our global
optimising resource broker GORBA shall be explained below. A similar approach
is described in [10].

3 GORBA - Global Optimising Resource Broker and
Allocator

Before focusing on our resource broker GORBA, the concept of resource manage-
ment in a grid environment, in which GORBA is embedded, shall be explained
[11]. Our concept of a heterogeneous grid environment is based on describing
the grid task as an instantiated workflow, called application job. An application
job consists of a workflow definition and the corresponding data. Here, any user-
defined structure of the workflow is allowed (e.g. parallelism, sequences, splitting,
or joining) [12].

Handling of application jobs requires a dedicated grid middleware. This grid
middleware receives the application job from the application and analyses and
distributes parts of the application job in the grid. For this purpose, the grid
middleware divides the application job into single grid jobs as described by the
workflow. After processing these single grid jobs, the grid middleware collects the
overall result and sends it back to the application. Figure 1 shows the principle
of our grid environment.

Resource management is divided into two services, the resource broker and
the job manager. Figure 1 shows the details of our resource management sys-
tems. The resource broker GORBA receives the application job that consists
of a workflow definition and the corresponding data. It analyses the workflow
and generates the single grid jobs from the application job. The resource broker
acquires the capacities of the work nodes by using the information service and
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Fig. 1. Resource Broker GORBA embedded in a grid environment

plans the distribution of the single grid jobs. For this task, GORBA is equipped
with two planning components that are based on conventional and evolution-
ary processes, respectively. In any case, conventional planning is made. In cases
of smaller usage, this conventional planning will be completely sufficient. As
soon as higher usage results in allocation conflicts or waiting situations, the
conventional planning result is taken as basis of subsequent planning using the
Evolutionary Algorithm HyGLEAM. Thus, it is ensured that the planning re-
sults of HyGLEAM have the quality of the conventional planning results at
least.

GORBA generates an optimised allocation plan that distributes the grid jobs
to the grid resources. The optimisation objectives are:

– Favourable/best allocation of all jobs not yet started to all resources, unless
the latter are occupied by jobs already started.

– Individual weighing between costs and execution time per application job.
– Option ”rush order”: specification of acceptable additional costs per time

unit of earlier execution compared to a given time.
– Specification of global secondary objectives, such as homogenous working

loads.

For every objective a quality function is defined, which delivers a normalised
quality value, from which a weighted sum is calculated. Additionally, penalty
functions are used for situations like the violation of due dates. Later extensions
of GORBA will aim at optimised data storage in terms of low-cost storage
locations, reasonable transfer costs, good network performance, etc. Permanent
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replanning takes place in case of the following events: new application job, can-
cellation of an application job, resource failure, new resources, and application
job execution with a deviation from planning time larger than a given limit.

A schedule generated by GORBA is handed over to the job manager for
execution. Therefore, the job manager has access to the grid jobs and the assigned
work nodes. It is responsible for the execution of the grid job on the assigned
work node. After a grid job has been completed, the job manager transmits
the intermediate result to the next grid job or a possibly occurring error to the
resource broker. GORBA can be embedded in any grid middleware (e.g. Globus
[13]) and can use their basic grid services.

Open problems consist in the difficult comparability of various hardware
and software platforms with respect to execution time, the presently frequently
lacking availability of information by the work nodes, and the lacking accuracy of
time estimates in the job description by the user. We think that these objectives
must be tackled, if an improvement of QoS is required regardless which kind
of planning method is used, as this is a general problem of the transition from
queuing to planning systems.

3.1 Hybrid Evolutionary Algorithm HyGLEAM

HyGLEAM is a hybrid consisting of application-independent local search algo-
rithms and the Evolutionary Algorithm GLEAM (General Learning Evolution-
ary Algorithm and Method) [14]. GLEAM is an Evolutionary Algorithm of its
own that combines elements from Evolution Strategy and real-coded Genetic
Algorithms with data structuring concepts from computer science. Coding is
based on chromosomes consisting of problem-configurable gene types. The def-
inition of a gene type constitutes its set of real, integer or Boolean parameters
together with their ranges of values allowing for mutation operators that take
explicit restrictions into account. Among others, GLEAM uses mutation opera-
tors influenced by the Evolution Strategy in so far, as small parameter changes
are more likely than greater ones. Mutation can also change the gene order and
add or delete genes in the case of dynamic chromosomes. GLEAM uses ranking-
based selection and elitist offspring acceptance. A detailed description of the
present state of GLEAM can be found in [15]. To keep the hybrid generally
applicable suitable local search algorithms must be derivative-free and able to
handle restrictions. Two well-known procedures from the sixties were chosen,
since they meet these requirements and are known to be powerful local search
procedures: the Rosenbrock algorithm [16] and the Complex method [17]. We
use an implementation according to Schwefel, who gives a detailed description
of both algorithms together with experimental results [18]. Figure 2 shows the
pseudo code of that hybridisation method of HyGLEAM we use for scheduling
(memetic algorithm part of HyGLEAM). As this paper focuses on scheduling
of grid jobs and due to the lack of space HyGLEAM and its basic algorithms
have been described here very briefly only and the interested reader is referred
to given literature.
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Fig. 2. Pseudo code of the used hybridisation of HyGLEAM

Fig. 3. Results of the scheduling task from chemical industry. The maximum numbers
of workers required per shift is shown for a) the manual schedule, b) a time-optimised
schedule and, c) a worker- and time-optimised schedule both made by GLEAM.
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3.2 Scheduling Example from Chemical Industry

In order to demonstrate that EAs can be applied successfully to scheduling tasks,
the results of a scheduling and resource optimisation problem solved by Blume
and Gerbe using GLEAM shall be reported [19]. with batches with varying num-
bers of workers being required during the different phases of each batch. The ob-
jective of scheduling these batches means a maximum reduction of production
time and peak number of workers per shift (human resource). Restrictions like
due dates of batches, necessary pre-products from other batches, and the avail-
ability of shared equipment must also be observed. Allocation conflicts are solved
by the sequence of the batches within a chromosome. As that can be overwritten
by suitable changes of the starting times, however, the combinatorial aspect is
limited to solving allocation conflicts. The concrete planning task reported here
consists of 87 batches for which a manually created schedule served as a stan-
dard of comparison. It requires 12 workers at maximum and lasted nearly 210
shifts, as shown in Fig. 3a. The number of shifts can be reduced to 123 (59%), if
the upper limit for the human resource needs only to be adhered to, see Fig. 3b.
This was achieved by a significant increase of the portion of labour time spent on
work during a shift. If both, production time and the number of required workers
are to be reduced, the best solution found is a reduction to 148 shifts (70%) and
a maximum of 9 workers per shift (75%) as shown in Fig. 3c. This is equivalent
to a reduction in man hours of 52% of the manual solution. Besides this task,
others have been performed, including replanning, because of new orders and
equipment failures. The major result of this is that plans of similar quality were
produced in a shorter time compared to the initial planning. As this task has a
lot of similarities to the scheduling of job sequences described by workflows and
competing for resources we can expect a relevant benefit for optimised resource
brokering.

4 Conclusion and Future Work

The presented contribution emphasises the necessity of planning and optimising
resource allocation in a grid. With the concept of a global optimising resource
broker GORBA, a system was presented, which can fulfil these planning tasks. It
is based on the Evolutionary Algorithm HyGLEAM, the performance of which
has already been approved in a number of applications [8, 9, 15, 19]. As an ex-
ample, optimisation of a production planning task with GLEAM was described
in this paper.

At the moment, it is worked on implementing a first prototype of GORBA,
which will then be used to perform reference studies and benchmark tests. The
reference studies will be aimed at analysing and evaluating the optimisation
processes implemented in GORBA under different load conditions. Depending
on the test results, a parallelisation of HyGLEAM may be considered to improve
its performance and to allow fast replanning solutions.

In the next step, the optimisation options of GORBA are planned to be
extended to cover data-related resources as well.
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Abstract. In the paper a new library for construction of evolutionary
algorithms is presented. The library offers greater flexiblity than other
known libraries of this type due to application of C# interfaces.
The process of construction of an evolutionary program with the
use of the library is discussed. The results of the practical evaluation
of this library on a set of instances of the job shop problem are presented.
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1 Introduction

Many combinatorial optimization problems are NP-hard, [6]. This means that
unless P = NP , no polynomial-time exact algorithms exist for solving such prob-
lems. However, since many real-life problems are NP-hard, we need effective tools
for approximate solving of these problems in polynomial time. The Evolutionary
Algorithm (EA in short, see Fig. 1) is an example of such a tool.

t ← 0;
initialization(P0); // base population
evaluation(P0);
while (not stop condition) do

Tt ← preselection(Pt); // temporary population
Ot ← crossing and mutation(Tt);
evaluation(Ot);
Pt+1 ← postselection(Pt,Ot); // offspring population
t ← t + 1;

end

Fig. 1. Pseudo-code of an evolutionary algorithm

Recall that an EA is a combination of a Genetic Algorithm (GA in short),
Genetic Programming (GP), Evolutionary Strategy (ES) and Evolutionary Pro-
gramming (EP), see [4, 10] for more details.
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General form of EA. The simplest EA works on the base, offspring and tem-
porary populations of individuals. In the initialization step of EA, the base pop-
ulation P0 is create in a random way. Next, evaluation of P0 is performed, i.e.
for each individual from P0 a fitness function is calculated. In the main step
of EA, the offspring population Pt, t > 0, is created. First, in the process of
preselection, the temporary population Tt is built from the best (with respect
to the fitness function) individuals of Pt. Next, individuals from Tt are crossed
and mutated, which leads to the next offspring population Pt+1. The process is
continued until a certain stop condition is met (see Fig. 1).

Applications of EAs. Evolutionary algorithms have been successfully applied
to solve such difficult problems as automatic generation of computer programs
and electronic circuits [8] or the travelling salesman problem [10]. We refer the
reader to [4, 10] for more details on applications of EAs.

Construction of EAs. Several approaches to the construction of evolutionary
algorithms have been proposed. In one approach, we build a library of classes,
which are next used for the construction of EAs. There are such libraries imple-
mented in C++ [5] and Java [9]. To the best of our knowledge, such libraries in
C# do not exist.

2 General Description of the TEAC Library

Our library, TEAC (Toolbox for Evolutionary Algorithms in C#), [11], has been
created in order to give programmers a tool for construction of new evolutionary
algorithms in a comfortable way. Great effort has been made in order to give
the library expandability and effectiveness. At some extent the TEAC library
has been influenced by the TEA library [5], written in C++. However, the MPI
routines and C++ templates used in TEA made impossible a simple conversion
of TEA into C# and a lot of code of the library had to be written anew.

Language. The TEAC library has been written in C# on Microsoft’s .NET
platform. We used this platform deliberately, although it is not as efficient as
the native C++ language. However, C# offers greater flexibility, since the library
can be used in connection with other languages of the .NET platform. Moreover,
Web services which are accessible in .NET, can serve in future editions of the
TEAC library as transport layer in parallel EAs.

Architecture. All objects defined in the TEAC library have been divided into
evolutionary processes (i.e. the ones which use selection and other genetic oper-
ators, see Fig. 2) and evolutionary materials (i.e. chromosomes, genomes, indi-
viduals and populations, see Fig. 3). We extensively used C# interfaces in order
to construct general evolutionary algorithms. The implementation rich in inter-
faces is the main feature of the TEAC library, compared to the above mentioned
TEA library. These interfaces give the opportunity to expand the TEAC classes
according to specific needs in an easy and comfortable way.
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Since in the construction of the library we used the MVC (Model-View-
Controller) model, all objects and algorithms are separated from control and
user interfaces. This make the structure of the library more transparent.
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Fig. 3. Hierarchy of Evolutionary Materials Classes in the TEAC Library

Selection is represented by classes that inherit from Preselection and
Postselection classes. We have implemented, among others, operators of
proportional (rulette), tournament, rank linear and threshold selection and op-
erators of trivial, random, (μ, λ)−type and (μ+ λ)−type postselection.

Mutation and crossover operators. The TEAC library includes, among oth-
ers, as operators of bit, replacing, adjacent and positional mutation as operators
of multi-point, uniform and GOX (Generalized Order Crossover) crossover.

Genetic operators. Several genetic operators have been implemented in the
TEAC library. They have been divided into global operators (acting on the whole
population) and local operators (acting on particular individuals). This division
allows the user of the library better tuning of particular operator parameters.
All genetic operators are descendants of EvolutionaryOperator class. Crossover
operators do not change either individuals or populations but only create new
ones. Mutation operators may change individuals from the initial population
or create new individuals depending on the value of CloneMutated property,
defined in LocalMutation class (see Fig. 2).
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Fig. 4. Hierarchy of Evolutionary Algorithms Classes in the TEAC Library

Factory of individuals, represented by interface IIndividualsFactory, is
the process that generates new individuals. The user of the TEAC library defines
the above process by choosing an implementation of the factory interface, which
allows to separate the process of the generation of new individuals from the
starting mechanisms of their evolution.

Evolutionary materials are all objects representing the “parts” of evolving
organisms or their groups. The objects that inherit from classes Genome and
Population or from interfaces IChromosome and IIndividual belong here.

Population class operates on individuals interfaces only. Thanks to that, the
TEAC library classes can be useful, even in the case of introducing new individ-
uals, totally different from these implemented in TEA, [5]. The only requirement
is the need of an implementation of IIndividual interface.

Algorithms. The TEAC library also delivers an implementation of example
evolutionary algorithms. Classes SimpleEvolutionaryAlgorithm and Simple-
GeneticAlgorithm define such algorithms. The Evolution class, playing the
role of a monitor for evolutionary algorithms, has also been implemented. The
classes of the TEAC library, specific to evolutionary algorithms, are presented in
Fig. 4. We refer the reader to thesis [11] for more details on the TEAC library.

3 Computational Evaluation of the TEAC Library

We conducted two computational experiments in order to evaluate the quality of
the TEAC library. In the first experiment, a set of instances of job shop problem
was solved by an EA constructed using the TEAC library. In the second one,
in a similar way, a set of instances of VLSI layout problem was solved. Due to
space limitations, we describe only the results of the first experiment.

Problem formulation. The job shop scheduling problem is one of the most
difficult problems in the scheduling theory. The two-machine case is NP-hard
in the ordinary sense and the three-machine problem is NP-hard in the strong
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Fig. 5. Hierarchy of Classes in the EA for Job Shop Problem

sense, [3]. The problem can be formulated as follows. We are given a set of
independent and nonpreemptable jobs Jj , 1 ≤ j ≤ n, that have to be executed
on machines Mi, 1 ≤ i ≤ m. Job Jj consists of operations Ojk, 1 ≤ k ≤ jk,
and operation Oji has to be executed on machine Mi. The order of execution of
operations of a particular job is fixed but it can be different for different jobs.
The criterion of optimality of a schedule is the maximum completion time of all
jobs. For more details on the problem we refer the reader to reviews [2, 7].

Representation of solutions. A solution of a scheduling problem is usu-
ally presented by a Gantt chart, [3]. The chart can be represented in an EA
in two ways: by an immediate representation (a genome of an individual is a
schedule itself) and an intermediate representation (an individual is decoded in
some way in order to obtain a feasible schedule). The first representation, how-
ever, needs operators that are job-specific. Hence, we need a schedule builder,
that ”knows” how to build a schedule. In our experiment we applied permuta-
tion with repetitions (pwr) coding and we used an integral chromosome, imple-
mented by IntArrayChromosome class. We used a builder of active schedules,
defined by ActiveScheduleBuilder class (see Fig. 5), that decoded chromo-
somes into schedules (being objects of Schedule class), evaluated next by the
JobShopFitness method.

Selection and crossing-over. In the experiment we used rank preselection,
defined by TournamentSelection class, that returned twice bigger population
than the initial one. The size of tournament was equal to 5.
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For crossing we used GOX operator, implemented by GeneralizedOrder-
Crossover class. Postselection was random.

Mutation. Since we used pwr coding, there was a great number of possible
mutation operators. We applied position based mutation operator (Position-
BasedMutation class), order-based mutation operator (SwapMutation class) and
adjacent two-job exchange mutation operator (AdjacentMutation class).

Algorithm. The schema of the EA was identical to the simple evolutionary
algorithm. We saved the best current schedule, found by the algorithm defined by
SimpleEvolutionaryClass class. The algorithm stopped after 2000 generations.

The hierarchy of the classes implemented in the EA used in the experiment
for the job shop problem is given in Fig. 5.

Datasets. For tests we used data from FT06, FT10, FT20 and selected LA
files, accessible in OR-Library [1]. The experiment was conducted on a PC with
Athlon 2500+ CPU and Microsoft c© Windows XP operating system.

Table 1. Results of Computational Experiment for Job Shop Problem

File Size OPT AVR Best Time
FT06 6x6 55 55.0 55 40.50
FT10 10x10 930 979.1 955 130.44
FT20 20x5 1,165 1,228.8 1,202 199.44
LA01 10x5 666 666.0 666 66.02
LA16 10x10 945 972.9 956 141.70
LA20 10x10 902 914.7 907 141.08
LA21 15x10 1,046 1,111.6 1,097 288.40
LA25 15x10 977 1,032.5 1,019 253.66
LA28 20x10 1,216 1,302.2 1,286 412.35
LA29 20x10 1,152 1,266.9 1,248 409.20
LA39 15x15 1,233 1,320.3 1,291 384.13
LA40 15x15 1,222 1,312.4 1,288 385.36

Results. The solutions obtained by our EA for the job shop problem are pre-
sented in Table 1. Column Size gives the size of a particular instance, nxm, where
n and m are the numbers of jobs and machines, respectively. Columns OPT, AVR
and Best show the optimal, the average and the best found result, respectively.
Column Time presents the running time of the EA (in seconds). All these results
are average values of 10 independent runs of the algorithm.

Experiment conclusions. The experiment gave satisfactory results, though no
particular effort has been made in order to tune the parameters of the applied
EA. The schedules were close to optimal ones and were obtained in reasonable
time. An average error of the obtained solutions was from 0% (FT06, LA01) to
9.97% (LA29). Since the size of the experiment was small, in the future we plan
to investigate test instances of a greater size.
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4 Conclusions

In the paper we presented a new library for construction of evolutionary algo-
rithms, TEAC, implemented in C#. We described main features of the library
and illustrated its application to solving a job shop scheduling problem.

The present version of the TEAC library is not the final one. We wish to
conduct further research in two directions. First, we plan to prepare a parallel
version of the library. The present version of our library can be parallelized
only via multi-thread system calls offered by Windows environment. In order to
achieve a real parallel library, we want to apply Web services, available on .NET
platform. Second, we also wish to conduct more exhaustive experiments with
better tuning of the applied EA parameters.
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Abstract. The paper is devoted to computational grids applications
in evolutionary optimization of mechanical structures. The LCG2 and
UNICORE grid middleware are used. The optimization is performed by
means of the distributed evolutionary algorithm. The fitness function is
computed using the finite element method. The numerical example is
presented in the paper.

1 Introduction

The shape optimization of structures can be solved using methods based on
sensitivity analysis information or non-gradient methods based on genetic algo-
rithms [13]. Applications of evolutionary algorithms in optimization need only
information about values of an objective (fitness) function. The fitness function
is calculated for each chromosome in each generation by solving the boundary -
value problem by means of the Finite Element Method (FEM)[8][17]. This ap-
proach does not need information about the gradient of the fitness function and
gives the great probability of finding the global optimum. The main drawback of
this approach is the long time of calculations. The applications of the distributed
evolutionary algorithms [15] can shorten the time of calculations[9][1][2][3][4].

The computational grids enable to use distributed computational resources.
The authorization is one of the most important elements of grids. The Public
Key Infrastructure is used in most grid projects. The Virtual Organizations (VO)
created by people with similar interests or working on similar projects allow to
create grids and share resources.

The use of grid techniques in optimizations can lead to improvements in
hardware and software utilization. The other advantages of grids are simple
and uniform end user communication portals/programs. The first evolution-
ary optimization tests [10] were performed using Condor package[5]. The plug-
ins and programs for evolutionary optimization of structures using UNICORE
environment[16] were presented in [11]. The application of LCG middleware[12]
and Crossgrid[6] project resources is presented in the paper.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 422–429, 2006.
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2 Optimization of Structures Using the Distributed
Evolutionary Algorithm

Sequential genetic and evolutionary algorithms are well known and applied in
many areas of optimization problems. The main disadvantage of these algo-
rithms is the long time needed for computation. The distributed evolutionary
algorithms (DEA) work similarly to many evolutionary algorithms operating on
subpopulations. The evolutionary algorithms exchange chromosomes during a
migration phase between subpopulations. When DEA is used the number of fit-
ness function evaluations can be lower in comparison with sequential and parallel
evolutionary algorithms. DEA work in the parallel manner, usually. Each of the
evolutionary algorithms in DEA works on a different processing unit. The the-
oretical reduction of time could be bigger then the number of processing units.
The flowchart of the distributed evolutionary algorithm for one subpopulation
is presented in Fig. 1. The sample DEA with four subpopulations is shown in
Fig. 2. The starting subpopulation of chromosomes is created randomly. The

START

create

starting subpopulation

send chromosomes

to clients and receive

finess functions values

evolutionary algorithm

operators

stop condition
Y N

END

selection

chromosomes

fitness

f. values

compute fitness

function value

compute fitness

function value

client/worker

client/worker

server/master

migration
communication

with other

subpopulations

compute fitness

function value

client/worker

Fig. 1. The flowchart of the distributed evolutionary algorithm for one subpopulation

evolutionary operators change chromosomes and the fitness function value for
each chromosome is computed. The migration exchanges a part of chromosomes
between subpopulations. The selection decides which chromosomes will be in the
new population. The selection is done randomly, but the fitter chromosomes have
bigger probability to be in the new population. The selection is performed on
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Fig. 2. DEA with 4 subpopulations

Fig. 3. Fitness function evaluation using FEM

chromosomes changed by operators and immigrants. The next iteration is per-
formed if the stop condition is not fulfilled. The stop condition can be expressed
as a maximum number of iterations.

Computation of the fitness function in optimization problems is performed
by means of results of the FEM analysis. The genes describe the shape, mate-
rial properties, topology of the structure. The structure is meshed and proper
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boundary conditions are applied before FEM analysis. The flowchart of fitness
function evaluation is presented in Fig. 3.

3 Evolutionary Optimization Using Grid Based on LCG
Middleware

The goal of the LCG project [12] is to create middleware (based on Globus
Toolkit) which allows to create big grids. The LCG project is connected with
Large Hadron Collider project realized in CERN. Many European grid projects
use LCG as software basis, for example Crossgird [6], EGEE [7]. The grids con-
sist of user interface (computer for submitting, monitoring jobs), resource bro-
ker (computer which authorizes users, transfers files across grid, decides which
resources will be used by user), gatekeepers (computers which translate the re-
source brokers job requests into working nodes job requests), working nodes
(computers executing jobs) and storage elements (computers allowing to high
performance access to storage data). The computer elements of the grid are
distributed in many sites. The resource broker decides on the basis of job descri-
pion provided by the user, current sites load and virtual organization policies,
which computing elements should be used. The communication between compu-
tational sites and user are performed using resource broker, also jobs monitoring
and fetching jobs results.

The simplest way to use such grids is to submit the evolutionary optimiza-
tion job. The Crossgrid project testbed enables to use MPICH [14] jobs. The
distributed evolutionary algorithm can be implemented using MPICH library.
There is submition of one job for one optimization problem.

4 UNICORE EAOPT Plugin

The UNICORE environment enables to perform computational tasks with use of
computers without deep knowledge about target computers operating systems,
directory structure etc. The UNICORE client module is written in Java and
can be used on most computer systems currently available. The client is very
flexible and prepared to use third party plugins. The special classes to be used in
plugins like file browsers are defined in UNICORE. The communication between
client module and the target system can be performed with the use of predefined
classes.

The plugin proposed in the paper can be applied to prepare the evolutionary
optimization job. The parameters of the distributed evolutionary algorithm like
the number of chromosomes, genes, subpopulations, probabilities of operators,
constraints on design variables can be loaded using plugin. The EAOPT is also
responsible for transferring files to target computer and the execution of job.
The transfer of output files is also performed after computations.

The EAOPT plugin is shown in Fig. 4.
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Fig. 4. The EAOPT plugin

5 Numerical Test Performed Using LCG2

The minimization of the mean equivalent stresses in a plate is considered. The
plate is loaded using two load schemas. The fitness function is expressed as a
sum of mean equivalent stresses for two load cases:

F =
1
V

∫
Ω1

σeqdΩ1 +
1
V

∫
Ω2

σeqdΩ2 (1)

where V is a volume of the plate, σeq means equivalent Huber-Mises stresses,
Ω1 is the plates area for the first load case, Ω2 is the plates area for the second
load case. The chromosome contains 6 genes (g0-g6) and describes shape of the
plate as shown in Fig. 5.

The LCG grid environment and CrossGrid testbed were used during evolu-
tionary optimization. The MPICH version of the coevolutionary algorithm was
used (the tests were performed using two processors, the location of the used
clusters were chosen by the resource broker). The parallelization of evolutionary
algorithms can achieve good efficiency when low number of processors are used.
The speedup near 2 was obtained using two processors. The best found result
is shown in Fig. 6. The distribution of equivalent stresses for both load cases is
presented. The Eq.stress means equivalent stress value for contour number No.
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Fig. 5. The geometry of the plate, a) first load case, b) second load case

a) b)

Fig. 6. The best result, a) equivalent stresses map for best found chromosome for the
first load case, b) for the second load case

6 Numerical Test Performed Using UNICORE Plugin
EAOPT

The goal of the test is to solve an identification problem. The identification prob-
lem can be expressed as an optimization problem. The aim of the identification
is to find the position of the center and the radius of a void in a plate on the
base of measured displacements.

The geometry of the plate is presented in Fig. 7. The plate is made from
elasto-plastic material. The displacements are measured in sensor points (Fig. 7).

The fitness function is expressed as:

F =
n∑

i=1

|ui − ûi| (2)
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100 sensor points

x

y

r

Fig. 7. The geometry of the plate

where n is the number of sensor points, ui are equivalent displacements in i-th
sensor point and ûi are equivalent displacements in i− th point computed using
the FEM for current chromosome.

The parameters of the distributed evolutionary algorithm are: the number of
subpopulations - 2, the number of chromosomes -10, the number of variables -
3. The gaussian mutation and simple crossover operators were used. The genes
of the chromosomes contains floating point values.

The results (Table 1) in the last iteration are very close to the searched one.

Table 1. The results of identification

design exact value for error value for error
variable value the best chromosome in the first the best in last

in the first iteration iteration in last iteration iteration
x 35 60.431 72.6% 35.001 0.005%
y 50 48.035 3.929% 48.980 2.040%
r 10 10.064 0.646% 10.064 0.646%

7 Conclusions

The coupling of distributed evolutionary algorithm, finite element method and
computational grid creates modern, powerful and efficient structures optimiza-
tion tool. The evolutionary computation using grid environments opens new
possibilities. The access to powerful computational distributed resources enables
to perform computationally intensive jobs. The one time login and use of resource
broker allow simple access to many clusters in virtual organization. The location
and performance of the resources are not need to be known before submitting
jobs.
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2. Burczyński T., Kuś W., D�lugosz A., Poteralski A., Szczepanik M., Sequential and
Distributed Evolutionary Computations in Structural Optimization. Lecture Notes
on Artificial Intelligence 3070, Springer, 2004.
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4. T. Burczyński, W. Kuś, Optimization of structures using distributed and parallel
evolutionary algorithms Parallel Processing and Applied Mathematics, PPAM2003,
Revised papers, Lecture Notes on Computational Sciences 3019, Springer, pp.
572-579, 2004.

5. Condor, High Throughput Computing, http://www.cs.wisc.edu/condor/
6. Crossgrid project home page, http://www.crossgrid.org
7. EGEE Enablig Grids for E-Science in Europe home page, http://www.eu-egee.org
8. M. Kleiber (red.), Handbook of Computational Solid Mechanics, Springer- Verlag,

1998.
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Abstract. In the paper the problem of using an evolutionary algorithm
to partition a dataset into a known number of clusters is considered.
A novel approach, based on data decomposition, for parallel comput-
ing of the fitness function is proposed. Both the learning set and the
population of the evolutionary algorithm are distributed among proces-
sors. Processors form a pipeline using the ring topology. In a single step
each processor computes the local fitness of its current subpopulation
while sending the previous subpopulation to the successor and receiving
next subpopulation from the predecessor. Thus it is possible to overlap
communication and computation using non-blocking MPI routines. Our
approach to parallel fitness computation was applied to differential evo-
lution algorithm. The results of initial experiments show, that for large
datasets the algorithm is capable of achieving very good scalability.

1 Introduction

The aim of clustering [7] is to partition a set of patterns, called the learning set ,
into homogenous and disjoint groups called clusters. Clustering has many impor-
tant applications in scientific research. One of most commonly used clustering
techniques is K–means algorithm [7, 2]. It is easy to implement and computa-
tionally efficient. However its main drawback is the possibility of being trapped
in a local optimum.

In recent years many clustering methods based on evolutionary algorithms
(EAs) have been proposed [6, 9, 11]. EAs [10] are stochastic search techniques
inspired by the process of biological evolution. Unlike local optimization methods
e.g. K–means they simultaneously process a population of problem solutions,
which gives them the ability to escape local optima. However this ability comes
at the expense of very high computational complexity. This problem is especially
important in clustering applications where evaluation of each solution requires

� This work was supported by the Ministry of Scientific Research and Informa-
tion Technology, Poland, under the project 6 T11 2003 C/06098 “Clusterix - Na-
tional Cluster of Linux Systems”. All computational experiments were performed
on the cluster, built in the framework of this project, at Czȩstochowa University of
Technology.
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reading the whole learning set. A possible method for alleviating this drawback
is a parallel implementation of an evolutionary algorithm [1].

The main contribution of the paper is a novel method for parallel computing
of the fitness function of the EA population. Although we have tested the method
on the clustering problem it can be applied to other learning problems (e.g
supervised learning of decision tree and neural network classifiers [2]), which
have similar structure. In this paper the method is used to speed up a differential
evolution algorithm (DE) [14]. DE is a relatively new evolutionary algorithm,
which requires the representation of solution by real-valued vectors. It has been
successfully applied to many difficult optimization problems [12]. According to
our knowledge only one application of DE (based on sequential computing) to
the clustering problem has been proposed [11].

The paper is organized as follows. In the next section the differential evolu-
tion algorithm is presented. Section three describes the problem of a clustering
a dataset into a known number of partitions and shows, how evolutionary algo-
rithms can be applied to that problem. The next section presents the method
for parallelization of the algorithm. Some initial experimental results concerning
scalability of the algorithm are presented in the section five. The last section
concludes the paper.

2 Differential Evolution Algorithm

In this section the most popular DE/rand/1/bin differential evolution method
is presented. For the more detailed description the reader is referred to [14].

Like all evolutionary algorithms, differential evolution maintains a popula-
tion U = {u1,u2, . . . ,uS} of S solutions to the optimization problem. Usu-
ally each solution takes the form of a D-dimensional real-valued vector, i.e.
ui ∈ RD. At the begin members of the population are initialized randomly. The
algorithm advances in generations . Each generation involves three consecutive
phases: reproduction (creation of a temporary population), computing of the ob-
jective function (called the fitness in the EA terminology) of all members of the
temporary population, and selection.

Reproduction in differential evolution creates a temporary population
Y = {y1,y2, . . . ,yS} of trial vectors . For each solution ui a corresponding trial
vector yi is created. Each element yi,j (where j = 1 . . .D) of the trial vector yi

is generated as:

yi,j =

{
ua,j + F ∗ (ub,j − uc,j) if rnd() < CR

ui,j otherwise
.

In the above expression F ∈ [0, 2] is a user supplied parameter called mutation co-
efficient . a, b, c ∈ 1, . . . , S are randomly selected in such way, that a �= b �= c �= i.
rnd() denotes a random number from the uniform distribution on [0, 1), which
is generated independently for each j. CR ∈ [0, 1] is another user supplied para-
meter called crossover factor. The parameters F and CR influence convergence
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speed and robustness of optimization process. The choice of their optimal values
is an application dependent task [14]. In our experiments we used CR = 0.01
and F = 0.5.

The remaining two phases of DE generation are computation of the fitness
for all members of the trial population Y and selection. Selection in differential
evolution is very simple. The fitness of each trial solution yi is compared to the
fitness of the corresponding original solution ui. The trial vector replaces the
original in U if its fitness is better. Otherwise the trial vector is discarded.

3 Clustering with Evolutionary Algorithms

Let X = {x1,x2, . . . ,xM} be a N–dimensional learning set of M objects, such as
X ⊂ RN . The elements ofX are called feature vectors . The problem of clustering
into K groups (clusters) can be defined as the search for the optimal partition
G∗ = {C1, C2, . . . , CK}, (where ∀i�=jCi ∩ Cj = ∅,

⋃K
i=1 Ci = X), such as:

G∗ = arg min
G

f(X,G),

where f(X,G) is a criterion function. There are many possible criterion func-
tions described in the literature [7]. Among them a commonly used one is the
square error (SE) [7]. It can be defined as:

SE(X,G) =
K∑

i=1

∑
xj∈Ci

d2(xj ,mi), (1)

where d2 is a squared distance (e.g. Euclidean), mi is the center of the cluster
Ci, which can be expressed as:

mi =
1
|Ci|

∑
xj∈Ci

xj .

In order to apply differential evolution approach to the above problem, we
have to work out a method for encoding partitions of the learning set by real-
valued vectors. The most natural idea [6, 9, 11] consists in representing each
cluster by a prototype vector. Each feature vector is assigned to the cluster
represented by the closest prototype. The solution of the clustering problem
takes the form of a vector u ∈ RKN , which can be described as a composition
of K prototypes:

u = [u(1);u(2); . . . ;u(K)],

where u(i) ∈ RN is the prototype of the i-th cluster. The square error criterion
can be reformulated as:

SE(X,u) =
M∑
i=1

min
j=1...K

d2(xi,u(j)). (2)
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The above approach allows us to use the DE algorithm to directly solve
clustering problem by using function (2) as the fitness and taking the problem
dimension D = N ∗K. The sole remaining issue is the initialization of the popu-
lation U . In our experiments we used a simple method, in which for each u ∈ U
randomly chosen feature vectors from X were assigned to cluster prototypes
u(1),u(2), . . . ,u(K).

4 Parallelization of the DE for the Clustering Problem

As equation (2) shows, the computational complexity of computing fitness func-
tion for all solutions in the trial population Y is O(KNSM). This is the most
expensive phase of the DE generation, because the complexity of the other phases
i.e. selection and reproduction is not greater than O(KNS) and the number of
feature vectors M can be vary large in practical applications. Efficient paral-
lelization of the fitness computation is crucial to achieving good scalability.

4.1 Computation of the Fitness

The most natural approach to parallelizing fitness computation makes use of
data decomposition. If the learning set X is evenly partitioned into P subsets
X1, X2, . . . , XP , such as

⋃P
i=1Xi and ∀i�=jXi ∩Xj = ∅ than the fitness (2) of a

trial vector yi can be expressed as:

SE(X,yi) =
P∑

i=1

SE(Xi,yi),

In the remainder of the paper by the local fitness we will call the fitness computed
using one of the subsets X1, X2, . . . , XP . The fitness computed using the whole
learning set X will be called the global fitness .

One possible method for parallelization [8] uses a master–slave model. Each
subset Xi is placed in a separate slave processor. To compute the global fit-
ness the master processor broadcasts the population to the slaves. Each slave
computes its local fitness function for each population member. The vectors
containing local fitness values are send back to the master, which adds them up
getting the global fitness.

The advantage of the master-slave method is the simplicity of the imple-
mentation of selection and reproduction. They are executed sequentially on the
master processor. However this simplicity limits scalability of the method. More-
over, during the communication the master and the slaves are idle, which limits
scalability further.

In this paper we propose a new method for parallelization of the fitness com-
putation, which is based on the pipeline approach. In this method the learning
set is, like in master-slave approach, evenly distributed among the processors.
Additionally the population Y of trial vectors is evenly partitioned into subpop-
ulations Y1, Y2, . . . , YP . Each subpopulation is initially placed in a single proces-
sor. Figure 1 shows the partition of the learning set X and an initial partition of
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Fig. 1. Initial data decomposition and direction of subpopulation transfer

SubPopulation LocalCompute, LocalSend, LocalReceve;
double LocalFitness[S];
LocalCompute=Yj; LocalSend=Yj ;
for (int i=0; i<P-1; i++) {

MPI Request rq1,rq2;
MPI ISEND(NEXT CPU IN RING,&rq1,LocalSend);
MPI IRECV(PREV CPU IN RING,&rq2,LocalReceve);

ComputeLocalFitness(LocalCompute,LocalFitness);
MPI WAITALL(&rq1,&rq2);

SendPop=LocalCompute;
LocalCompute=LocalReceive;

}
ComputeLocalFitness(LocalPop);

Fig. 2. Pseudocode for parallel computation of the fitness for the processor j

the trial population Y into P processors of a parallel computer. Each subset Xj

remains assigned to the processor CPUj during the execution of the algorithm.
Processors form a ring structure, as shown on Figure 1. The computation of
fitness is performed in P steps. In a single step a processor computes a local
fitness of its current sub-population, sends the previous sub-population to its
successor in the ring and receives the next sub-population from its predecessor.
An important advantage of this approach is the possibility of performing com-
munication and computation simultaneously using nonblocking MPI operations
[13]. The pseudocode for such implementation is shown on Figure 2. Functions
MPI ISEND and MPI IRECV start non-blocking send and receive operations re-
spectively. ComputeLocalFitness computes the local fitness of the current trial
subpopulation stored in LocalCompute and places local fitness in proper position
in the LocalFitness array. MPI WAITALL waits for the completion of send and
receive operations.
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After execution of the algorithm shown on figure 2 each processor received
all the subpopulations which form the trial population and computed the local
fitness for them. Thus the local fitness of all the members of the distributed
trial population is stored in the LocalFitness vector. To compute the global
fitness LocalFitness vectors from all P processors have to be added. In order
to perform this addition all processors call the MPI ALLREDUCE [13] collective
communication routine. This routine uses an O(logP ) algorithm to compute
the sum and sends it to all P processors.

If we omit the cost of the MPI ALLREDUCE, the above method has a potential
for achieving linear speedup. Although it requires P computation steps, each step
is speeded up P 2 times because booth the size of the learning set and the size
of the population are reduced P times. Moreover using non-blocking operations
allows us to hide the cost of communication.

4.2 Reproduction and Selection

The selection and the reproduction are performed all follows. Each processor
keeps a local copy of the current population U . During the reproduction phase
processor j generates, according to (2), only its initial sub-population Yj . Be-
cause |Yj | = |Y |/P = S/P the reproduction phase is speeded up P times. During
computation of the fitness each processor stores incoming trial sub-populations
Y1, Y2, . . . , YP . After the computation of the fitness by the algorithm described
in the previous subsection, the processor was visited by each sub-population,
which means that it now can reconstruct the complete population Y of trial
vectors. Moreover the processor has global fitness values for all the elements
of Y , obtained by executing MPI ALLREDUCE routine. Having Y , fitness of all
elements of Y , and from the previous generation U with corresponding fitness
values each processor is able to perform the selection and update U . Identical se-
lection is performed by each processor independently. Hence the selection is the
only phase, which is not speeded up in comparison with the sequential version
of DE.

5 Experimental Results

In this section some initial experimental results are presented. Previous studies
have shown that evolutionary algorithms are easily able to find good quality
solutions for the clustering problem (see e.g. [6, 9], and especially [11] for the
results obtained by the DE). Therefore in this paper we focus on scalability of
the new parallel method.

In all the experiments we used a cluster of seven SMP servers connected
by a Gigabit Ethernet network. Each server in the cluster is equipped with two
Itanium II 1.4GHz CPUs with 1MB L3 cache and 2GB of RAM. The servers run
Debian operating system based on Linux kernel version 2.6 The DE algorithm
was implemented in C++ language and linked to MPICH version 1.2 [5] MPI
library.
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Fig. 3. Computational speedup a) and efficiency b) for the lena dataset

For initial experiments we used a dataset derived from the well-known lena
image, which is a standard image processing benchmark. The learning set was
generated by converting each pixel from 128x128 pixel (16384 pixels total) ver-
sion of the image to a three–dimensional feature vector containing RGB values
in the range [0, 255]. In this image processing context the problem of clustering
is called the vector quantization [3].

As a basis for calculating speedup the average time of a single generation was
used. This time was estimated by running the DE for 100 generations, then by
dividing the total computation time by the number of generations. The clustering
algorithm was run with varying sizes of the DE population and with varying
numbers of clusters. The speedup obtained in the experiments is shown on the
figure 3a. Each line labelled as “lena–cx–py” corresponds to one experiment,
in which the number of clusters was equal x and the size of the population
equal y. The choice of x and y allowed us to test the algorithm using a very
wide range of granularity of the communication pattern. This granularity can be
measured by the length of the shortest interval between two consecutive message
exchanges. As figure 2 shows this length can be roughly approximated by the
time of single generation divided by the number of processors P (if P > 1 there
are P − 1 evenly spaced message exchanges in a generation). The most extreme
values of this metric are 3.2 seconds (for lena-c256-p64 on 2 processors) and 3.3
milliseconds (for lena-c16-p48 on 14 processors).

Because all the curves on figure 3a are close to the optimal linear speedup we
have also calculated the efficiency, which is defined [4] as the ratio of achieved
speedup to the ideal linear speedup. The efficiency is plotted on figure 3b. The
plot indicates lower efficiency for cases, in which communication pattern is more
fine-grained (i.e. small number of clusters and many processors). However, even
in the worst case the efficiency is higher than 0.9.
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6 Conclusions and Future Work

In the paper a new method for parallel computation of the fitness function of EA
was proposed. Although we have tested the method on clustering problem using
differential evolution algorithm, it can be applied to other learning problems as
well. Preliminary experimental results show, that for large datasets our approach
is able to achieve near linear scalability.

The most important drawback of our approach is the limitation of maximum
speedup by the size of EA population. This problem can be tackled by using
a two-level hierarchical parallelization. At the lower level a single parallel DE
algorithm described in this paper could be employed. At the higher level mul-
tiple DE algorithms could be executed using the parallel island [1] model. In
this model multiple evolutionary algorithms execute independently in separate
islands. However, from time to time a solution is able to migrate (“swim”) from
one island to another. Booth experimental and theoretical studies show [1], that
the island model of multiple EAs offers faster convergence in comparison with
the single EA.

The above two-level schema can be easily mapped into a metacluster consist-
ing of several geographically distributed local clusters connected by a wide area
network (WAN). Each cluster could serve as an island for one parallel EA. The
migration of solutions would take place across WAN. Because the communica-
tion pattern of migration is very coarse grained (i.e. the migration takes place
after many consecutive generations), the higher latency of WAN would not im-
pair the scalability of the EA. In the near future we are going to implement
the two–level method and test it in the Polish national metacluster built in the
framework of the Clusterix project [15].
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Abstract. In recent years the problem of adaptation in time-varying
landscapes has been intensively studied by many groups of researches.
The number of publications successively grows. This domain of research
is important for many technical branches, e.g. the optimal control, the
learning process of neural networks, the fault detection in dynamic sys-
tems. In this work some taxonomy of non-stationary environments as
well as behavior of a simple evolutionary process in such landscapes are
presented and illustrated.

1 Introduction

Most optimization algorithms assume static objective function: they search for a
near-optimum solution with respect to some fixed measure (or set of measures),
whether it is maximization of profits, minimization of a completion time for some
tasks, minimization of production costs, etc. However, real-world applications
operate in dynamic environments, where it is often necessary to modify the
current solution due to various changes in the environment. Thus it is important
to investigate properties of adaptive algorithms which do not require re-start
every time a change is recorded.

We are interested in solving such non-stationary problems with evolutionary
computation techniques. It would be interesting to investigate the behavior of a
evolutionary process in these scenarios. In this paper we discuss the nature of
simple evolutionary model in the non-stationary adaptation problems.

The paper is organized as follows. In section 2 some taxonomy of non-
stationary environments and a measure of the severity of changes are introduced.
Quality rates for adaptation algorithms for different classes of non-stationary
problems are described in section 3. Section 4 presents the simulating inves-
tigation of properties of the simple evolutionary process in a non-stationary
environment. Finally the paper is summarized.

2 Non-stationary Environments

A non-stationary optimization problem in general can be formulated as follows:

max f(x, t)
∣∣(ci(x, t) ≤ 0, i = 1, . . . ,m,x ∈ D(t)

)
, (1)
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where f(x, t) is an objective function, ci(x, t) denotes an ith constraint and D(t)
is a space of solutions.

In general f(x, t), ci(x, t) and D(t) can be time varying simultaneously. But
physically it occurs very seldom. The classification of all possible cases, which
elements of the sequence (f, {ci}m

i=1,D) are varying in time, is proposed in [18]. In
this work we focus on non-stationary landscapes with the empty set of constrains
and the space of solution invariable in time.

There are a number of criteria along which non-stationary environments can
be categorized [2]: frequency of changes, predictability of changes, regularity of
changes, severity of changes. In this paper we focus on the last criterion.

The nature of changes can manifest in their speed and range. The classifica-
tion under this criterion is difficult because of estimation subjectivity whether
changes are sudden or adiabatic, wide or local. In the case of the fitness function
varying in time, some measure of changes in a given subspace Ω ⊂ D and a given
time interval T can be introduced [18]

– continuous domain
(let f(x, t) ∈ L2(Ω), ∀t)

M(Ω, T, t) =
1
T

t+T∑
τ=t+1

∫
. . .
∫

Ω

(
f(x, τ) − f(x, τ − 1)

)2
dω∫

. . .
∫

Ω
f2(x, τ)dω

, (2)

where dω = dx1dx2 . . . dxn;
– discrete domain

M(Ω, T, t) =
1
T

t+T∑
τ=t+1

∑
xi∈Ω

(
f(x, τ)− f(x, τ − 1)

)2∑
xi∈Ω f

2(xi, τ)
. (3)

The measure M(Ω, T, t) describes the average speed of relative fitness changes
in subspace Ω taken over the time interval T which can be considered as a
sampling interval, i.e. the time interval between two successive calculations of
the fitness function. One may define two constants Θa and Θc (Θa < Θc) for
given searching problem in order to classify changes of the fitness function:

– M(Ω, T, t) < Θa — the adiabatic changes (S1), which guarantee approxi-
mately stationary state of evolutionary search. The population “keeps up”
with the changed optimum. There are usually no quality differences between
this problem and stationary problems.

– Θa < M(Ω, T, t) < Θc — the indirect changes (S2). It is the most interesting
case. An effectiveness of the searching process significantly depends on a
chosen searching strategy and its input parameters.

– M(Ω, T, t) > Θc — the turbulent changes (S3). In this case, usually the
search procedure have to be restarted and tuned to the completely new
problem after the change has occurred.

Parameters Θa and Θc have, rather, informal nature and are not well defined.
The ability of classifying, to which of changes type: S1,S2 or S3, a given problem
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belongs, allows to choose a class of optimization methods to solve the problem
and choose a measure of a given methods effectiveness. If a given problem belongs
to the class S1, global optimum is usually moved to such a point which is close
enough to be found again without a risk of becoming trapped in a local optimum.
Then it is possible to use standard optimization methods, like gradient methods,
to follow the optimum point during all the processing time. Here, evolutionary
computation method is computationally rather too expensive to use.

From an evolutionary point of view, S2 is the most interesting class. The
changes are too difficult and therefore computationally too expensive for the
classical optimization methods, but not too difficult for evolutionary methods,
which may solve the problem because of their softness and concurrent searching,
especially when we are satisfied even if it’s suboptimal only.

The turbulent changes S3 are usually unable to controlled (e.g. the changes
of square error function in the on-line neural network training process where
a sequence of training patterns is randomly chosen from a training set). Any
optimization process can not keep up the optimum peak track. Applied adapta-
tion algorithms usually find hills of a form of objective function averaged over
searching time

3 Quality Rates for Adaptation Algorithms

Before a form of a quality rate for searching algorithm in the non-stationary
environments is chosen, a researcher has to decide what kind of results will be
satisfying, what type of searching process should be applied. Four main types of
searching processes can be distinguished [13, 14].

C1: A tracing process. — This type of the searching process is dedicated
mainly to adiabatic problems (S1). The goal of the searching process of the
type C1 is to keep solutions closed to the optimum as well as possible. Most
of publications of the non-stationary optimization consider such a type of
searching process. Applied measures of searching algorithms are usually
based on measures for stationary environments [5, 9, 10]. Although authors
did not use these measures to non-stationary optimization evaluation, the
closeness to the optimum during the search process is an interesting value
which seems to be helpful in comparisons between applications and is easy
to control in experiments. The evolutionary approach to non-stationary
optimization presented in [12] uses the following tracing measure:

μtr =
1

tmax

tmax∑
t=1

ρ
(
xopt(t),x0(t)

)
, (4)

where x0(t) is the best point of population in the time t and xopt(t) =
arg maxx∈D Φ(x, t), ρ(a, b) is a distance measure in D, e.g. if D ⊂ R

n then
ρ(a, b) = ‖a− b‖.

C2: An optimization in a mega-epoch. — This type of searching process
concerns tasks, in which consecutive changes in the environment are signif-
icant but occur rather seldom (ones in a ’mega-epoch’). The goal is to find
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the optimum before a new change occurs. For estimations of non-stationary
optimization results, the two measures of accuracy and adaptability were
proposed in [15, 17].

C3: Keeping solutions on an acceptable level. — In many real techno-
logical problems, e.g. in the on-line training of a dynamic neural networks
[8, 13], in control systems [3] or in many problems of the operational re-
search, the optimal solution is not so necessary as the solution of an accept-
able quality. This problems usually are of the type S2. One has to be sure
that the fitness of the actual best known solution will not be worse than
a given assumed level during the whole length of a searching process. This
acceptable level may, for example, describe non conflict run of concurrent
processes, guarantee the stability of the controlled dynamic system [18].

C4: A process with averaged acceptability. — This type of searching
process is dedicated to turbulent problems (S3). A searching process is
unable to follow the optimum as well as to guarantee the acceptable solu-
tions during the algorithm processing. The only measure of the adaptation
process is its ability to find the solution with the best average fitness over
all realization of Φ(x, t)(t = 1, 2, . . . , tmax). This measure can be expressed
in the following form [13]

μavac =
1

tmax

tmax∑
t=1

ρ
(
x�,x0(t)

)
, (5)

where

x� = argmax
(

1
tmax

tmax∑
t=1

Φ(x, t)
)
.

4 Illustrative Examples

Let us consider the following two-dimensional non-stationary adaptation land-
scape composed by two Gaussian peaks

Φ(x, t) = (0.5 + 0.5 cos
(
πt/s))e−10‖x−a1‖2

(6)

+(0.5− 0.5 cos
(
πt/s))e−10‖x−a2‖2

,

where t denotes time, s is a given positive parameter controlling the rate of
change of peaks highs, a1 = (0.25, 0.25) and a2 = (0.75, 0.75) are locations of
Gaussian peaks’ centres.

Adaptation process is controlled by the Evolutionary Search with Soft Selec-
tion (ESSS) algorithm [6, 13]. A real, n-dimensional, searching space (an adap-
tation landscape) R

n is given. A fitness function Φ to be maximized is also
defined on this adaptation landscape. Previously, an initial population P (0) of
η elements is randomly generated. If the ESSS algorithm is used to solve the
optimization problem in R

n without constrains, the concept that an initial pop-
ulation has to be ‘uniformly distributed’ in the search space has no sense. One
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Positions (black points) of the best elements in the current population on the
map of mean values of the fitness funtion taken over one period of changes for adiabatic
(a), indirect (c) and turbulent (e) cases. The comparison of two measures: the tracing
μtr (4) (the upper graph) and the average acceptability μavac (5) (the lower inverse
graph) ones for adiabatic (b), indirect (d) and turbulent (f) cases.
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Table 1. The comparison of two measures of the ESSS adaptation quality for land-
scapes belonging to different severity classes

function severity class evolutionary process
s M([[0, 1], [0, 1]], 1000, 1000) μtr μavac

100 0.00021 (adiabatic) 0.19133 0.10190
10 0.02071 (indirect) 0.29772 0.06937
1 1.27840 (turbulent) 0.32715 0.03124

of the possible and rational solution is to create an initial population by adding
η times a normally-distributed random vector to a given initial point x0

0 ∈ R
n.

The fitness φ0
k = Φ(x0

k) is calculated for each element x0
k of the population

(k = 1, 2, . . . , η). The searching process consists in generating a sequence of η-
element populations. A new population P (t + 1) is created based only on the
previous population P (t). In order to generate a new element xt+1

k , a parent ele-
ment is selected and mutated. Both selection and mutation are random processes.
Each element xt

k can be chosen as a parent with a probability proportional to
its fitness φt

k (the roulette method). A new element xt+1
k is obtained by adding

a normally-distributed random value to each entry of the selected parent:(
xt+1

k

)
i
=
(
xt

hk

)
i
+N(0, σ) i = 1, . . . , n, (7)

where the standard deviation σ is a parameter to be selected.
Figure 1 presents results for the ESSS algorithm with following parameters:

η = 20 and σ = 0.01. Figure 1(a) and 1(b) illustrates the adiabatic function
changes s = 100. The best point of the population follows the global optimum
during all time. In the case of the indirect changes (Fig.1(c) and 1(d)), pop-
ulation converges to one of the local optimums (which is higher in the begin-
ing of the evolutionary process) and fluctuates around it. The turbulent case
(Fig.1(e) and 1(f)) is characterized by the fact that the global optimum is not
monitored. The population fluctuates around the indirect point between local
peaks. This feature is well known in the on-line training process of the artificial
neural networks (cf. [8]).

The comparison of two measures: the tracing measure μtr (4) and the average
acceptability μavac (5), of the ESSS adaptation process quality is presented in
Tab. 1. All values of measures are averaged over 500 algorithms runs. It is easy
to see that the effectiveness of the evolutionary adaptation has to be described
using different measures for landscapes for landscapes of different severity class.
Obtained results confirm the observation of behavior of the considered evolu-
tionary process presented in Fig. 1.

5 Summary

For years, the evolutionary algorithms were applied mostly to the group of static
problems. However, nowadays a wider group of non-stationary problems is opti-
mized with evolutionary algorithms. In this paper, the properties of the simple
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evolutionary process in a non-stationary environment are analyzed using a set
of simulating experiments. Obtained results shows that behavior of the popula-
tion strongly depends on the severity of landscape changes. In the adiabatic case
the population follows the current global optimum localization. In the turbulent
case the population tries to localize the averaged solution taken over a given
(relatively wide) time period. Both evolutionary adaptation properties can be
quantitatively monitored using two measures: the tracing and the average ac-
ceptability ones. The first measure μtr (4) gives an information how closed to
the optimum the current solution is. The second one μavac (5) represents the
evolutionary adaptation process ability to find the solution with the best aver-
age fitness taken over all realization of fitness function during a given wide time
period.
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Abstract. This paper deals with the possibilities of applying evolution-
ary methods in computer aided design1. As the representation is one of
the main issues in any computer aided design system here an approach
using hierarchically organized data is presented. It is based on tradi-
tional graph structures extended to be able to represent different types
of relations within a designed object. Genetic operators working on such
graphs and other elements of an evolutionary system are also presented.
The method is illustrated by examples from two different domains. One
of them is a chair design system based on proposed method. The other
one is derived from the design of skeletal structures of transmission
towers.

1 Introduction

The human design process, computer aided or traditional, is an iterative one
consisting of several steps [1]. Firstly a preliminary or conceptual design is cre-
ated, then it is analysed or tested in order to find out which of its components
must be redesigned or refined. The process of evaluation and optimisation is
repeated until an acceptable solution is found. Still, majority of computer aided
design systems focuses on refining parameters defining design, thus on its opti-
misation and they usually work on a single design at a time. Since designing can
be treated in computer science as a search process, with a space of all possible
designs being a search space, it is possible to use search techniques used in other
domains.

There is a number of search methods well established in computer science
that can also be used in the space of designs. [14]. One of them is evolutionary
technique. Instead of one solution at a time a larger subset of the search space,
known as a population, is considered. As evolutionary search consists in eval-
uating and refining possible solutions it can be seen as analogous to a human
design iterative process of analysis, testing and optimisation [1, 3]. Similarly to
the refinement step in human design, which is based on earlier analysis and test-
ing, in evolutionary search designs to be transformed are determined according
to their evaluation (so called fitness). The refinement step is often performed
1 The work reported in this paper was partially supported by the State Committee

for Scientific Research grant 8T07A01621.
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not on actual solutions (called phenotypes, in this paper - designs) but on their
coded equivalents (called genotypes). Traditionally a binary coding is used most
often in which each solution is transformed to a binary string [1, 10, 4, 13].

In design problems it is very often insufficient as not only geometrical prop-
erties of an object has to be represented but also other ones (like colour, material
etc.) as well as relations between object components.

The methods used in CAD problems like boundary representations, sweep-
volume representation, surface representations or CSG (constructive solid geome-
try) [11, 9, 12] allow only for the “coding” of geometry of an object being designed
and do not take into account the inter-related structure of many design objects
i.e. the fact that parts (or components) of an object can be related to other
parts in different ways. In this paper a representations based on hierarchically
organized data is used.

Different types of graphs have been researched and used in this domain, for
example composition graphs [5, 6, 7]. In this paper an extension of composition
graphs - hierarchical graphs is presented. They can represent an artifact being
designed at different levels of detail at different stages of the design process thus
hiding unnecessary low-level data and presenting the designer only an outline of
the object or showing a detailed view of the whole object (or of its part).

Using hierarchical graphs as the representation in an evolutionary search
requires the adaptation of traditional evolutionary operators like cross-over and
mutation. As the graphs selected by some selection methods to be transformed
by the evolutionary operators at subsequent stage of the evolution and their
structure are not known a priori the operator must be defined in such a way as
to allow for an “online” computation of new graphs. Thus the operator has to
be specified by an algorithm rather then a set of rules.

An example of application of this method is also shown and some advantages
and disadvantages of this approach as well as possible future research directions
are also briefly discussed.The method is illustrated by examples from two differ-
ent domains. One of them is a chair design system based on proposed method.
The other one is derived from the design of skeletal structures of transmission
towers [2, 8, 15].

2 Representation

Hierarchical graphs (HGs) are an extension of traditional graphs. They consist
of nodes and edges. What makes them different from standard graphs is that
nodes in HGs can contain internal nodes. These nodes, called children, can in
turn contain other internal nodes and can be connected to any other nodes with
only exception being their ancestors.

A node in a hierarchical graph may represent a geometrical object or a groups
of objects. It may also be used to hide certain details of a designed object that are
not needed at a given stage of design or to group object having some common
features (geometrical or functional). A node that represents a single object is
called an object node. Nodes that do not represent actual geometric entities but
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are used to represent hierarchical structure or other relations are called group
nodes. It is important to note that the edges between nodes are by no means
limited to edges between descendants of the same node. In other words there
may exist edges between nodes having different ancestors.

Nodes and edges in hierarchical graphs can be labelled and attributed. Labels
are assigned to nodes and edges by means of node and edge labelling functions
respectively, and attributes - by node and edge attributing functions. Attributes
represent properties (for example size, position, colour or material) of a compo-
nent represented by a given node.

A labelled attributed hierarchical graph may represent a potentially infinite
number of designs. The given graphG being a hierarchical graph can represent a,
potentially, infinite subset of designs having the same structure. To represent an
actual design we must define an instance of a graph. An instance of a hierarchical
graph is a hierarchical labelled attributed graph in which to each attribute a
value has been assigned from the set of possible values of a given attribute.

As such a hierarchical graph defines only a structure of a design to create a
visualisation of an object an interpretation is necessary. Such interpretation de-
termines the assignments of geometrical objects to nodes, its fragments to bonds
and establishes a correspondence between edges and sets of relations between
objects (components of a design). The objects assigned to nodes are usually
called primitives. The geometry of these objects may be internally represented
by means of any known representation that allows for easy application of sim-
ilarity transformations. Geometrical objects used depend on the domain of ap-
plication, for example when designing chairs the set of geometrical objects could
contain boxes and cylinders, or some predefined objects like legs, seats and other
parts of a chair and a set of relations could consist of an adjacency relation. For
the design of transmission towers a set of primitives may consist of bars used to
build trusses [15].

An example of a hierarchical graph and a corresponding object are depicted
in fig.1a and 1b respectively. The nodes depicted as black filled circles are object
nodes and other nodes are group nodes. The object shown (a simple chair) is
actually only one of many possible designs this graph can represent. The chair
was obtained after choosing an instance of this graph and then interpreting it.

3 Evolutionary Design System

To use such a representation in an evolutionary design system a number of
elements of this system must be defined.

Firstly the method of initialization must be chosen. One of the possibilities is
to generate a population of random graphs consisting of nodes and edges from a
given set. Although this method is easiest to implement in any design system it is
usually very slow in producing acceptable or feasible designs as many designs are
rejected. Another possible mechanism is known as graph grammars and it has
been successfully used in many domains to generate graphs [16]. Graph grammars
are systems of graph transformations consisting of symbols, an initial graph (an
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Fig. 1. A HG-graph and one of its possible interpretations

axiom) and sets of rules called productions. Each production is composed of two
graphs named left side and right side of the production.

A family of HG-graphs can be generated by means of a graph grammar. Such
a grammar describes all formally correct solutions, for example chairs or layouts
of transmission towers. To produce a graph we apply a sequence of productions.
We start with an initial graph as a current one. Applying an appropriate produc-
tion consists in finding a subgraph of the current graph such that it is isomorphic
with the left side of the production to be applied. Then this subgraph is replaced
by the right side of the production. This two steps yield a new current graph and
they are repeated until we reach a final graph. This process is called a derivation.

It also possible to allow the user to generate an initial population of graphs
or to use graphs generated by another program.

The genetic operators (usually a crossover and a mutation) constitute the
next element of an evolutionary algorithm. As in this paper a nonstandard rep-
resentation is used new genetic operator had to be devised.

The graph based equivalent of a standard crossover operator requires estab-
lishing subgraphs that would be then exchanged. When a crossover is performed
on two selected graphs, G1 and G2 the subgraphs g1 and g2 respectively are
selected in these graphs. Then each subgraph is removed from a graph and in-
serted into the second one. As a result two new graphs are generated. However
there may exist edges connecting nodes belonging to a chosen subgraph with
nodes not belonging to it. Such edges are called embedding of a subgraph. So re-
moving a subgraph from a graph and inserting it into another requires a method
allowing for proper re-connection of these edges. The underlying idea is that all
edges should be re-connected to similar nodes to those they were connected to
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in the graph from which they were removed. There is probably more than one
possibility of defining which nodes are similar.

In this paper a similarity-like relation is used. This relation is called homol-
ogy. The name was inspired by the gene homology in biology. This relation is
responsible for establishing subgraphs of selected graphs that are homologous
- or similar in some way- and thus can be exchanged in the crossover process.
The definition of this relation is based upon the assumption that both graphs
selected for crossover code designs consisting of parts having similar or even
identical functions (even if these parts have different internal structure, material
or/and geometrical properties).

In other words both graphs are assumed to belong to the same class. The
homology relation is defined on three levels that differ in terms of requirements
put on graphs to be in the relation. The weakest of these relations is called
context free homology and it only requires two subgraphs to have the same
number of top-level nodes (i.e. nodes that do not have ancestors) with identical
labels (without considering the number and labels of their children-nodes or
ancestors). It is the least restrictive of the three relations and it allows for higher
variety of new graphs to arise from a crossover but at the same time it is able
to produce the least meaningful graphs or, in other words, the most “disturbed”
ones.

On the opposite side the strongly context dependent homology is defined. It
requires the top-level nodes in both subgraphs to have not only identical labels
but also to have identically labeled ancestors up to the top-most level of the graph
hierarchy. Nevertheless the internal structure of a node and its attributes are not
taken into account so even exchanging strongly homologous subgraph may still
produce considerably different new graphs. When the context free relation is to
weak i.e. it results in too many graphs being unacceptable (rejected by fitness
function) and the strong homology is too restrictive or results in designs that
are very similar or even identical to its parents the weakly context dependent
homology may be useful. It takes into consideration direct ancestors of a given
node but not any ancestors of higher level in graph hierarchy.

Formally a crossover operator cx is defined as a 6-tuple (G1, G2, g1, g2, T, U),
where G1, G2, g1, g2 are hierarchical graphs and their subgraphs respectively.
The crucial elements of this operator are T and U that are called embedding
transformations i.e. they describe how edges of the embedding are to be re-
connected. They are sets of pairs of the form (b, b′), where b denotes a bond (a
predefined part of a node) to which an edge was connected originally and b′ - the
one to which it will be re-connected in a new graph.

It is important to notice however that the graphs to be crossed over and
their respective subgraph are selected during the execution of the evolutionary
algorithms so the embedding transformations can not be defined a priori (as
it is in graph grammars [16, 5]. Hence probably the most difficult problem is
to find a method allowing us to establish these transformations. The algorithm
generating these transformations requires only the subgraphs being exchanged
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to be homologous. For each level of homology a crossover operator is defined thus
we have three crossover operators having different level of context dependence.

As the second genetic operator mutation is usually used. This operator is
much easier to be defined for hierarchical graph-based representation.

The mutation operators may be divided into structure changing mutations
and attributes changing. The second group can be further divided into local and
global mutation operators.

The attribute changing operators are executed as changing values of at-
tributes of a selected node (local mutation) or nodes (global mutation). As a
result it changes geometrical properties of objects assigned to this node or nodes
by the interpretation. However it is also possible to define mutation operators
introducing structural changes in an artifact being designed what would not
be possible in binary representation. Such mutations could consist in adding or
removing nodes from a hierarchical graph. In the chairs design system these mu-
tations may for example result in obtaining chairs with changed number of legs
or different number of components of a back.

So while crossover allows us to generate artifacts being combinations of pre-
viously existing designs mutation may introduce wholly new elements into object
being designed.

4 Results

The method presented in this paper was implemented. It was tested in the
domain of graphical design - as a chair design system It was also used as a tool
for the design of transmission towers. To select genotypes to be crossed over
or mutated a fitness proportional selection is used in both applications. The
examples of objects obtained from both systems are presented in fig. 2 and fig. 3
respectively.

a b

Fig. 2. Examples of chairs generated by an evolutionary system
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a b

c d

Fig. 3. Examples of first and second level towers design by an evolutionary system

The chairs presented in fig.2a and 2b were obtained by a graph-based evo-
lutionary algorithm from an initial population of 10 graphs representing chairs
defined by the user.

The evolutionary design system for transmission towers is a two level system
[2]. In the first step a layout of the tower is evolved from the initial population
generated by a graph grammar. Then one layout is selected and its internal
structure is evolved. In fig 3a a layout selected from the first level is depicted. F
ig. 3b depicts an element from the initial population of the second level evolution
based on the selected layout. Figs. 3c and d show the best element evolved in
the second level evolution and a poor one respectively.

5 Conclusions

Applying evolutionary methods to the design domain poses many problems. One
of the main problems concerns coding designs in such a way that they can be
easily transformed during an evolutionary process. The solution presented in
this paper is a hierarchical graph used as a genotype and equivalents of stan-
dard genetic operators. Graph-based operators are usually more complex than
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those used in binary representation but in author’s opinion the benefits of using
graph representation (possibility of coding relationships between components
of an artifact and ability to introduce structural changes) compensate for it.
The strongest point in a graph-based representation is its ability to represent
in a uniform way all types of relations and objects and to produce highly fit
individuals.

The use of graph grammars makes it possible to generate an initial popula-
tion of graphs represented designs belonging to a desired class. Thus the graph
grammar and fitness function are the only elements of the evolutionary design
system that has to be changed in order to design different objects.

References

1. P. J. Bentley, Generic Evolutionary Design of Solid Objects using a Genetic
Algorithm, PhD thesis, UCL London 1), 3-38. (1997)

2. Borkowski A., Grabska E., Nikodem P, and Strug B., Searching for Innovative
Structural Layouts by Means of Graph Grammars and Evolutionary Optimization,,
Proc. 2nd Int. Structural Eng. and Constr. Conf, Rome (2003)

3. De Jong K, Arciszewski T, and Vyas H, An Overview of Evolutionary Computation
and its Applications, in. Artificial Intelligence in Engineerig,9-22, Warsaw (1999)

4. D.E.Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Reading, MA, Addison-Wesley. (1989)

5. E.Grabska,Theoretical Concepts of Graphical Modelling. Part one: Realization of
CP-graphs. Machine GRAPHICS and VISION, 2(1993)

6. Grabska, E.. Graphs and designing. Lecture Notes in Computer Science, 776 (1994).
7. E.Grabska, W. Palacz, Hierarchical graphs in creative design. MG&V, 9(1/2),

115-123. (2000)
8. Hajela P. and Lee, J, genetic Algorith in Truss Topological OpJournal of Solids

and Structures vol.32, no 22 , 3341-3357, (1995)
9. Hoffman, C. M.,Geometric and Solid Modeling: An Introduction, Morgan Kauf-

mann, San Francisco, CA, (1989)
10. Holland, J. H. Adaptation in Natural and Artificial Systems, Ann Arbor,(1975)
11. Mantyla, M.,An Introduction To Solid Modeling, Computer Science Press,

Rockville,MD,vol.87,(1988)
12. Martin, R R and Stephenson, P C Sweeping of Three-dimensional Objects

Computer Aided Design Vol 22(4) (1990), pp223-234.
13. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs..

Springer-Verlag, Berlin Heidelberg New York (1996)
14. Michalewicz, Z. Fogel, D. B.: How to Solve It: Modern Heuristics.. Springer-Verlag,

Berlin Heidelberg New York (2000)
15. P. Nikodem and B. Strug. Graph Transformations in Evolutionary Design, Lecture

Notes in Computer Science,vol 3070, pp. 456-461, Springer, 2004.
16. Rozenberg, G. Handbook of Graph Grammars and Computing by Graph. Trans-

formations, vol.1 Fundations, World Scientific London (1997)



Improving Parallelism in Structural Data Mining

Min Cai1, Istvan Jonyer1, and Marcin Paprzycki2

1 Department of Computer Science, Oklahoma State University,
Stillwater, Oklahoma 74078, U.S.A
{cmin, jonyer}@cs.okstate.edu

2 Computer Science Institute, SWPS, 03-815 Warsaw, Poland
marcin.paprzycki@swps.edu.pl

Abstract. Large amount of data collected daily requires efficient algo-
rithms for its processing. The SUBDUE data mining system discovers
substructures in structurally complex data, based on the minimum de-
scription length principle. Its parallel implementation, MPI-SUBDUE,
was created in 2001 to reduce computation time and/or to deal with
larger datasets. In this paper, a new, more efficient implementation of
MPI-SUBDUE is introduced. The experimental results show that, for
the mutagenesis dataset, the new implementation outperforms the orig-
inal one by up to 33% and that the performance gain increases with the
number of processors used.

1 Introduction

Large amounts of data are collected on a daily basis and added to the existing
repositories. The need to extract valuable information from this data challenges
researchers to develop efficient techniques to discover and interpret interesting
patterns in it. In this paper we are interested in discovering concepts in struc-
tural data, for which a number of algorithms have been proposed [1, 6, 8]. One of
them, SUBDUE, discovers substructures on the basis of the minimum description
length principle [8]. Working with graph-based data representation and utilizing
graph-algorithms, when applied to real-world problems, SUBDUE takes a very
long time to execute. In 2001, a parallel version of SUBDUE (MPI-SUBDUE)
was implemented [1, 8]. MPI-SUBDUE partitions the graph representing the
dataset into parts that are analyzed independently first, and then partial re-
sults are communicated so that the globally-best substructure is selected. Par-
allelization was achieved through MPI, while communication between processes
consisted of a sequence of point-to-point messages. However, even a superficial
analysis of MPI-SUBDUE indicated a number of possible inefficiencies, which
not only could have resulted in poor performance, but also constitute a problem
form the point of view of programming simplicity and expressiveness [7].

Since SUBDUE is one of the best existing graph-based data mining tools, we
have decided to develop its more efficient version and in the process to improve
it from the point of view of programming simplicity and expressiveness. To ac-
complish these goals, we have proceeded with the following modifications of the
MPI-SUBDUE:

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 455–462, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– the initial graph partitioning was parallelized,
– multiple point-to-point communications (MPI Send and MPI Recv) have

been replaced by an MPI collective communication (MPI Allgatherv),
– parallel summation has been applied to deciding the globally best discoveries.

In reporting our work we proceed as follows. In the next section we present
an overview of the SUBDUE system. Both the original and the NEW-MPI-
SUBDUE are described in Section 3. We follow with the description and analysis
of experimental results of testing both algorithms on three datasets. In Section
5 we summarize our results and outline our future work.

2 SUBDUE

SUBDUE is a data mining system working through substructure discovery aimed
at finding interesting and recurring subgraphs in a labeled graph. This goal is
achieved by applying the minimum description length principle (MDL). SUB-
DUE has been successfully applied to molecular biology, image analysis and
computer-aided design, as well as other domains [8]. During SUBDUE’s exe-
cution two basic steps (1) substructure discovery and (2) replacement are per-
formed. Structural data (input for SUBDUE) is represented as a labeled graph.
Objects in the data correspond to vertices, while relationships between them
correspond to edges. A substructure is a connected subgraph (a subset of ver-
tices and edges from the input graph) and represents a structural property of
the dataset. In the first step SUBDUE discovers the best (according to the MDL
principle) substructure in the complete data-graph. This substructure could be
the final answer, but it is also possible to repeat the process to discover a hi-
erarchy of important structures. To achieve this goal, all instances of the best
substructure at a given level are compressed to a single vertex and SUBDUE
is invoked on the “reduced graph”. Hierarchy of substructures obtained in this
way is then used for various levels of interpretation; depending on goals of data
analysis (see [1, 6, 8] for a complete description of SUBDUE and examples of its
application to real-life problems).

3 Parallel SUBDUE

Data parallel approach and functional (or control) parallelization are the two
main ways of achieving algorithm parallelization. Both approaches can be used
to parallelize SUBDUE. Functional parallel SUBDUE has been introduced in
[1]. In this paper, we focus on the data parallel approach. In parallel SUBDUE,
the input graph is first partitioned into n partitions that are distributed among
n processors. Each processor finds the best substructure in its partition and
communicates it to all other processors. Each processor uses these substructures
to compare them with its own structures, using the MDL principle (structure
that is very good for the data in partition k may be bad in partition l and thus
all “local champions” must be compared vis-á-vis structures in each partition).
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Results of local comparison are then combined and exchanged between processors
and as a result, the “globally best” substructure is found. This process can be
repeated to obtain a hierarchical decomposition [1, 6, 8].

Let us note that this approach to algorithm parallelization may come at a
price. Since the original graph is divided into subgraphs it is possible that some
structures that existed in the original dataset will be lost. This happens when the
input is partitioned by removing some edges, thus potentially cutting important
substructures and dividing them between multiple processors. To maximally
offset this problem a high-quality graph partition program (METIS) is used,
which eliminates only a minimal number of edges; thus reducing possibility of
splitting important substructures.

3.1 MPI-SUBDUE

In the original version of MPI-SUBDUE [8], the input graph was partitioned into
n subgraphs using the METIS package [2]. In METIS 4.0, two partitioning pro-
grams pmetis and kmetis can be used to partition a graph. The pmetis is based
on multilevel recursive bisection [5], whereas the kmetis is based on multilevel
k-way partitioning [4]. Both routines produce high quality partitions. However,
as specified in [2], kmetis is expected to be considerably faster than pmetis when
the number of partitions is larger than n = 8.

A series of point-to-point communications (MPI Send and MPI Recv) were
used to exchange information between processors. There is a total of three sit-
uations in MPI-SUBDUE, when inter-processor communication takes place: (1)
when the best local substructures are exchanged, (2) when the results of local
comparisons are propagated, and (3) when the final best substructure is estab-
lished (see above and [8]).

3.2 NEW-MPI-SUBDUE

We made three improvements to the original version of MPI-SUBDUE. First, we
have explored parallelism in the graph partitioning. The input graph is now par-
titioned using the PARMETIS (version 3.1) graph partitioning package [3]. Sec-
ond, instead of using point-to-point communications (MPI Send and MPI Recv
routines), the MPI collective communication (MPI Allgatherv routine) is used.
Obviously, point-to-point communication involves a pair of processors and use
of MPI Send and MPI Recv puts excessive communication demands on the sys-
tem, which deteriorates the program’s performance. Collective communication,
on the other hand, involves every process in a group, and allows all machine
resources to be exploited more efficiently. Furthermore in many cases, vendors
offer machine-tuned, efficient implementations of collective communication [7].
Third, hierarchical (binary-tree based) summation is used in finding globally
best substructures. After being evaluated on all partitions, the “scores” of sub-
structures are propagated up the hierarchy, where at each internal node of the
tree these “scores” are added for substructure reported from two different par-
titions, and their sum is passed further up the hierarchy. The algorithm of the
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NEW-MPI-SUBDUE(Graph) 

Global variables: n, j, Value[0…(n-1)], Pos_Instances[0…(n-1)], Neg_Instances[0…(n-1)]

begin 

  spawn(P0, P1, P2, P3, …, Pn);

  apply PARMETIS to partition the graph into n partitions; 

  for all Pi where 1  i  n do 

    each processor discovers the best substructure in its graph partition;  

    each processor broadcasts its best substructure to all other processors;  

    each processor evaluates its best substructure and broadcasts the results to all other processors; 

    each processor stores the value, number of positive instances, number of negative instances of  

        the best substructures in Value[0…(n-1)],Pos_Instances[0…(n-1)],

        and Neg_Instances[0…(n-1)], respectively; 

    for j  0 to log(n) do 

      if (i-1) mod 2j = 0 and i-1+2j < n then 

          Value[i-1] Value[i-1] + Value[i-1 + 2j];

          Pos_Instances[i-1] Pos_Instances[i-1] + Pos_Instances[i-1+2j ];

          Neg_Instances[i-1] Neg_Instances[i-1] + Neg_Instances[i-1+2j ];

          each processor broadcasts Value[i-1], Pos_Instances[i-1], Neg_Instances[i-1]

              to all other processors; 

      endif     

    endfor 

    each processor updates the values of its best substructure with its  corresponding elements  

        in Value[0…(n-1)], Pos_Instances[0…(n-1)], and Neg_Instances[0…(n-1)] and  

        sends the updated best substructures to P0;

    endfor 

P0 finds and outputs the global best substructures 

end

Fig. 1. The NEW-MPI-SUBDUE algorithm

NEW-MPI-SUBDUE is summarized in Figure 1. Interestingly, as we will see in
the next section, set of changes that could be considered relatively insignificant,
resulted in a very significant performance improvement.

4 Experimental Results

Let us now illustrate the performance of the NEW-MPI-SUBDUE in experi-
ments performed on three input graphs that represent mutagenesis data and
are derived from OxUni [9]. These datasets were collected in order to predict
the mutagenicity of aromatic and heteroaromatic nitro compounds. Here, mu-
tagenicity is denoted by positive or negative real numbers. There are four levels
of background knowledge in the database: atoms in the molecules, bonds in the
molecules, and two attributes describing the molecule as a whole and higher
level submolecular structures. The atom and bond structures were obtained
from a standard molecular modeling package called Quanta [9]. In our current
experiments, we were concerned only with performance improvements of the
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Table 1. Partition time for Graphs 1 and 2

Graph 1 Graph 2
N Execution time Execution time Execution time Execution time

METIS PARMETIS METIS PARMETIS
(seconds) (seconds) (seconds) (seconds)

2 0.145 0.081 0.147 0.082
4 0.164 0.053 0.169 0.073
8 0.164 0.076 0.172 0.071
16 0.182 0.075 0.204 0.070

NEW-MPI-SUBDUE, and due to space limitations and since such results are
outside of scope of this paper, we will not report on patterns found in the data.

First, we experimented with two small data graphs: Graph 1 had 2844 ver-
tices and 2883 edges, while Graph 2 had 2896 vertices and 2934 edges. These
two graphs are similar in size to these used in the original report [8] and we have
found that the computer hardware has progressed so fast, that problems that
were computationally challenging in 2000 are now much too small for an interest-
ing comparison. We have therefore moved to the complete mutagenesis dataset
(Graph 3 had 22268 vertices and 22823 edges), where the real performance gain
could be observed.

Our experiments were performed on a cluster composed of 20 compute nodes,
each with two AMD Athlon MP 1800+ (1.6GHz) CPUs. Each compute node has
2 GB of DDR SDRAM, and switching between compute nodes is provided by
a 24-port full-backplane Gigabit Ethernet switch. All nodes run RedHat 9.0
operating system. In our work we used Portland Group C compiler version 5.0-
2 and MPICH. All experiments were performed on an empty or lightly loaded
machine. Results reported here, for all numbers of processors, represent best
times obtained for multiple runs.

Since the available cluster had 40 processors and since we have used a binary
summation algorithm, it was natural to utilize up to 25 = 32 processors. Since the
NEW-MPI-SUBDUE was implemented on the basis of the MPI-SUBDUE, we
used the same master-slave approach and processor P0 coordinated the execution
of the program. Therefore, a total of 33 processors were used in the largest
experiment. To obtain a complete performance picture each input data-graph
was partitioned into 2, . . . , 32 partitions. First, in Tables 1-2 we present the
time of graph partition of the original MPI-SUBDUE (sequential partition) and
the NEW-MPI-SUBDUE (parallel partition). When experimenting the original
MPI-SUBDUE, since there are two programs in the sequential partition, pmetis
and kmetis, and kmetis is considerably faster than pmetis when the number of
partitions is larger than 8 [2], we used kmetis for partitioning the graph into
more than 8 subgraphs and pmetis for partitioning the graph into less than
or equal to 8 subgraphs. In the NEW-MPI-SUBDUE, we used PARMETIS for
graph partitioning.

Two observations can be made. First, as expected, parallel performance of
PARMETIS is not very impressive, as we observe almost no speedup. However,
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Table 2. Partition time for Graph 3

N Execution time Execution time
METIS PARMETIS

(seconds) (seconds)
2 1.009 0.700
4 1.268 0.621
8 1.269 0.597
16 1.425 0.599
32 1.626 0.601

thanks to its parallelism the partition time remains almost flat, whereas the time
for the sequential partition increases with the number of partitions required.
Therefore, second, when the total execution time of parallel SUBDUE is the
shortest (for the largest number of processors), the sequential partition time is
the longest and thus its effect (approached from Amdahl’s Law perspective) is
the most significant. However, third, the overall partition time is very small in
comparison with the total execution time.

In Tables 3-5 we depict performance of the complete execution of the two
versions of parallel SUBDUE obtained for running 1 iterations (finding the best
substructure only). We also present the sizes of the largest and smallest partition
and the actual performance gain.

The performance improvement of NEW-MPI-SUBDUE over the original MPI-
SUBDUE is significant. While the performance gains of up to 68% in Graph 1
and 67% in Graph 2 were obtained, they are not very significant due to the short
total execution time of the code. The realistic picture of performance gains is
illustrated in the case of the large Graph 3. Here the gain ranges between 21%
and 39% and slowly increases with the number of processors used.

The single-processor execution time of SUBDUE applied to Graph 3 is 2149
seconds and this means that a total speedup of approximately 268 is obtained
on 32 processors. This results is easily explained when one considers the fact
that when the data-graph is divided, then each processor operates only on a
subgraph. Since formulas that express complexity of SUBDUE, while known to
be polynomial in terms of the number of vertices and edges, depend also on
the density of the graph, and thus we cannot easily utilize them in the case of

Table 3. Experimental results for Graph 1 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time
N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement

(seconds) (seconds)
2 3 1376 1468 28 9 68%
4 5 586 790 6 4 33%
8 9 244 412 2 2 0%
16 17 96 236 1 1 0%
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Table 4. Experimental results for Graph 2 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time
N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement

(seconds) (seconds)
2 3 1404 1492 21 7 67%
4 5 614 790 6 5 17%
8 9 218 496 2 1 50%
16 17 84 248 1 1 0%

Table 5. Experimental results for Graph 3 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time
N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement

(seconds) (seconds)
2 3 10914 11354 653 514 21%
4 5 5362 5756 178 132 26%
8 9 2580 2932 58 45 22%
16 17 1218 1560 23 14 39%
32 33 458 870 12 8 33%

our graph. However, we can see in our final experiment (Graph 3) that increase
of the number of processors by a factor of 2 results in each case in decrease
of time by a factor of 4 and this gives us some indication about the complexity of
the SUBDUE when applied to this particular data-graph. One could therefore
suggest that even when 4 processors are used, graph could be divided into 32
partitions (8 partitions per processor) and in this way the total execution time
reduced. Unfortunately, this approach may be counter-productive as it may lead
to problems described above as by splitting the data-graph into unnecessary
sub-graphs we may be loosing information about important substructures.

It is worth noting that the even though the mutagenesis dataset leads to a
very sparse graph the results of applying PARMETIS are not very good (es-
pecially for large number of processors). Let us consider Graph 3 and n = 32
processors. In this case an optimal partition should be into subgraphs of size 696,
whereas the actual minimum partition size was 458, while the maximum 870.
This immediately points to a serious workload imbalance. If parallel SUBDUE
is to be successful for even larger datasets, balancing sizes of subgraphs needs
to become one of research priorities.

5 Conclusions

In this paper, by exploring data parallelisms and applying MPI collective com-
munication, a NEW-MPI-SUBDUE algorithm was implemented and tested with
three mutagenesis datasets (two small ones and one large). The experimental
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results show that the NEW-MPI-SUBDUE algorithm provides performance that
is approximately 20-30% better that the original MPI-SUBDUE.
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Abstract. In this paper we deal with the problem of finding an opti-
mal query execution plan in database systems. We improve the analysis
of a polynomial-time approximation algorithm due to Makino et al. for
designing query execution plans with almost optimal number of parallel
steps. This algorithm is based on the concept of edge ranking of graphs.
We use a new upper bound for the edge ranking number of a tree to
derive a better approximation ratio for this algorithm. We also present
some experimental results obtained during the tests of the algorithm
on random graphs in order to compare the quality of both approxima-
tion ratios on average. Both theoretical analysis and experimental results
indicate the superiority of our approach.

1 Introduction

A parallel query execution is a way for improving performance in large database
systems. In general, there are three types of parallelism in database systems:
inter-query parallelism, inter-operator parallelism and intra-operator parallelism.
In all cases the goal is processor allocation but at different levels. In inter-query
parallelism we have a set of queries (some of them can be executed concurrently)
and we have to find their parallel scheduling. If more than one processor is
assigned to a query then the two other mentioned types of parallelism can be
exploited as well. In inter-operator parallelism we schedule operations within
a single query. In this paper we consider joins only as they are the most time
consuming operations. Thus, we schedule join operations by assigning processors
to joins and determining which operations can be computed independently. In
the last type of parallel scheduling, intra-operator parallelism, we split one join
operation among several processors in order to compute it efficiently. In this
paper we present results which can be applied in inter-operator parallelism.

In the inter-operator parallelism we have two main problems to consider: join
sequence selection and allocation of processors to joins. In this paper we deal
with the first issue. Furthermore, the algorithm under consideration does not
deal with the join execution costs. To avoid large intermediate relations we can
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use a technique described in [8], where the graph ranking approach can still be
used.

Finding an optimal parallel query execution plan (QEP) is NP-hard. Thus,
for complex queries the problem is intractable and most approaches are based on
heuristics which generally have no formal analysis (such as worst case bounds)
on their optimality [12]. Makino, Uno and Ibaraki [9] gave an algorithm with a
worst case performance guarantee for solving this problem. In the sequel we will
call their approach as the MUI algorithm. In the next section we describe the
concept of edge ranking and the MUI algorithm. In Section 3 we improve on
the prior analysis of MUI. Finally, Section 4 gives some experimental results.

2 Preliminaries

The join graph of a query is defined as a simple graph G such that the vertices
of G correspond to the base relations and two vertices are adjacent in G if
the corresponding relations have to be joined during the execution of a query
[4, 8, 11]. In this paper we assume that the join operations are executed in steps.
We are interested in finding parallel scheduling of the joins, so we assume that in
each step many join operations can be performed. If a base relation is used in two
different join operations (which means that in the query graph the edges which
correspond to these operations are incident to a common vertex) then these joins
cannot be computed in the same step. The scheduling of the join operations can
be represented as a rooted tree T ′, where nodes of this tree represent the join
operations and a particular join can be evaluated only if all its descendants have
been already computed. Furthermore, if two nodes are unrelated in T ′ then the
corresponding joins can be computed in parallel. The above data structure is
known as the operator tree. For more detailed description of operator trees see
e.g. [1, 5].

If an operator tree T ′ has been computed the join can be scheduled in such a
way that the tree is processed in a bottom-up fashion – in the ith step all joins
which correspond to the nodes in the ith level of T ′ are computed, where the last
level is the root of T ′. Note that the height of T ′ (the length of the longest path
from the root to a leaf) is the number of parallel steps required to process the
query. So, it is desirable to find a tree T ′ of small height. Note that if some rela-
tions x and y have been joined in the ith step (let z be the resulting intermediate
relation) then in all joins in the later steps we use z instead of x and y.

In the following we assume that a join graph G = (V (G), E(G)) is given,
where |V (G)| = n and |E(G)| = m(G) = m. We denote by Δ(G) the maximum
vertex degree of G, in short the degree of G. An edge k-ranking of G is a function
c : E(G) → {1, . . . , k} such that each path between edges x, y satisfying c(x) =
c(y) contains an edge with a greater color. The smallest integer k such that there
exists an edge k-ranking of G is the edge ranking number of G and is denoted
by χ′

r(G). Makino et al. [9] introduced the minimum edge ranking spanning tree
(MERST) problem. In this problem the goal is to find a spanning tree whose
ranking number is as small as possible.
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Spanning trees and their edge rankings can be used to find good QEPs (which
in our case is equivalent to finding low height separator trees) in the following
way. In order to complete the execution of the query, we have to compute joins
which correspond to edges forming a spanning tree in the query graph G. In-
deed, if C is a cycle with l edges in G then computing any l− 1 joins from that
cycle results in an intermediate relation obtained by joining all base relations
corresponding to the vertices of C. Furthermore, if we have selected some span-
ning tree T of G, then the task is to find an optimal parallel scheduling of joins
corresponding to the edges of T . We find an edge ranking c of T and sched-
ule the operations in such a way that for any two edges e1, e2 ∈ E(T ) the join
corresponding to e1 is the father of the join corresponding to e2 in an operator
tree T ′ if and only if c(e1) > c(e2) and every path connecting e2 to an edge e
with c(e) > c(e1) passes through the edge e1. So, the number of colors used by
c is the height of the operator tree T ′ obtained in this way. Furthermore, this
approach is optimal in the sense that if the spanning tree of the query graph is
given then the height of an operator tree of minimum height equals to the edge
ranking number of T [9].

Let us illustrate the above concepts in the following example. Consider a
database query of the form

Select * from A,B,C,D,E, F where A.x = C.x and A.y = D.y and
A.z = E.z and A.t = B.t and B.u = E.u and B.v = F.v . . .

(1)

Fig. 1(a) depicts the corresponding query graph G containing edges {A,B},
{A,C}, {A,D}, {A,E}, {B,E}, {B,F} which correspond to the join opera-
tions that have to be computed in order to complete the above query. The edges
of a spanning tree T of G are marked with heavy lines in Fig. 1(a). Note that
the degree of T is minimum over degrees of all spanning trees of G. Furthermore,
this is an optimal solution to the MERST problem for the graph G. We compute
an edge ranking of T in order to create an operator tree. An example of such
a coloring is given in Fig. 1(a) (the numbers labeling the edges of T are the
colors). The largest color used is equal to 3. Thus, this query can be computed
in parallel in three steps. The operator tree T ′ created on the basis of this edge
ranking is given in Fig. 1(b). Nodes of T ′ are labeled with the corresponding
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Fig. 1. (a) a query graph G, its spanning tree T and an edge ranking of T ; (b) the
corresponding operator tree T ′
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join operations. Finally, the operator tree can be used to create a parallel sched-
ule as described above. In this case the join operations {A,C} and {B,F} are
computed independently in the first step. In the second step we have operations
{A,D} and {B,E}. However, instead of using the relation A (B) we use the
intermediate relation {A,C} ({B,F}) created previously. In the final step we
join the intermediate relations corresponding to the sons of the root. The first
relation is the result of joining A,C,D and the other was obtained by joining
B,E and F .

Though the MERST problem is polynomially solvable for threshold graphs
[8], it is NP-hard for general graphs [9]. As we described above, the difficulty
lies in finding a required spanning tree of the query graph. The MUI algorithm
solves MERST for general graphs with sublinear approximation ratio

min{(Δ∗ − 1) logn/Δ∗, Δ∗ − 1}
log(Δ∗ + 1)− 1

,

where Δ∗ is the degree of a spanning tree whose Δ is as small as possible, and
log stands for log2 [9].

The algorithm MUI can be described as follows:

1. Find a spanning tree T of G with Δ(T ) ≤ Δ∗ + 1.
2. Find an optimal edge ranking of T .

In the first step we use a 1-absolute approximation polynomial-time algorithm
given in [3]. The problem of finding an optimal edge ranking of a tree is polyno-
mially solvable [6].

3 Worst-Case Analysis of MERST

The following upper bounds for the edge ranking number of a tree are used to
derive the corresponding approximation ratios of MUI. In the following Δ =
Δ(T ).

Theorem 1. ([9]) If T is a tree with degree equal to Δ then

χ′
r(T ) = �logn�, if Δ = 0, 1, 2

χ′
r(T ) ≤ (Δ− 2) logn

logΔ− 1
= B1(T ), if Δ > 2.

Theorem 2. ([2]) If T is a tree with degree equal to Δ > 1 then

χ′
r(T ) ≤ Δ logΔ m = B2(T ).

The following simple lower bounds are also used

Lemma 1. ([9]) For any tree T , χ′
r(T ) ≥ max{Δ, �logn�}.
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If To is an optimal solution to MERST for G, and T is a tree produced in the
first step of algorithm MUI, then on the basis of Lemma 1 and Theorem 1 we
have [9]

χ′
r(T )

χ′
r(To)

≤ (Δ∗ − 1) logn/(log(Δ∗ + 1)− 1)
max{Δ∗, �logn�}

≤ min{(Δ∗ − 1) logn/Δ∗, Δ∗ − 1}
log(Δ∗ + 1)− 1

= R1(G). (2)

Our approximation ratio for MUI, obtained on the basis of Lemma 1 and
Theorem 2 is

χ′
r(T )

χ′
r(To)

≤ (Δ∗ + 1) logΔ∗+1(n− 1)
max{Δ∗, �logn�} = R2(G). (3)

Since B1 − B2 = Θ(log n) for Δ ≥ 4 [2], by (2) and (3) we have R2(G) ≤
R1(G) for Δ∗ ≥ 3. Note, that for a fixed value of Δ∗ we have R1 = Θ(log n) and
R2 = Θ(1).

4 Experimental Results

Below we present some experimental results gained while testing MUI on random
graphs. Each chart shows the values of parameters as functions of n, the size of
graph. We generated graphs for each n ∈ {50, 60, . . . , 150}. Each point denoted
in the chart is the average of 100 values. All graphs created during the tests were
connected. Note that if G is not connected then solving the MERST problem for
G reduces to solving the problem for all connected components of G separately.
Then a solution for G is a spanning forest and its edge ranking number is the
maximum over the edge ranking numbers of the trees forming the forest. In order
to create a random graph we constructed its random spanning tree and then,
according to the graph density g, more edges were added. This means that for
small g (i.e. g = 0.005) the random graphs were trees. Fig. 2 shows the results
of the computer experiments.

Fig. 2(a) depicts the relation between the edge ranking number of a tree
and the bounds B1 and B2. The degree of all trees generated was equal to 10.
Two types of inaccuracies are included in the approximation ratios considered
in this paper. The first follows from the fact that the MUI algorithm uses a
heuristic for finding a minimum degree spanning tree. However, it is possible
to create examples of graphs for which a spanning tree with minimum vertex
degree is not the one with minimum edge ranking number. Then, there is some
inaccuracy in bounding the edge ranking number when only n and Δ are given.
Thus, the purpose of comparing the edge ranking number with its bounds is
that the quality of the approximation ratio directly depends on the bounds
used.

The second test is presented in Fig. 2(b), where we tested only the first
part of MUI, i.e. we generated random graphs G with Δ(G) = 10 and densities
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Fig. 2. Experimental results

g = 0.01, 0.05, 0.1, respectively. We used only small values of g, because as the
experiments show, already for these values of g, the degree of the spanning trees
is very small. From the theoretical analysis it follows that once we obtain a
spanning tree which is a path, the problem has been solved optimally, so we
want to avoid such cases. Some values of the first function for g = 0.05 are equal
to 10, because random graphs obtained in these cases were trees.

Fig. 2(c) compares approximation ratios R1 and R2. In this test the graph
density g = 0.01. We used a small value of g, because as the previous experiment
shows, for larger g the average over degrees of T was smaller than 4 and in that
case we would rather use the theoretical analysis from Section 3 to compare R1
and R2.

Fig. 2(d) presents the approximation ratio R2. In this test, for each value of
n and g we generated random graphs G with Δ(G) = 10. Then, we computed
R2 for the spanning tree obtained in the first part of MUI. As before, each point
is the average of 100 values (i.e. 100 different random graphs G were created).
The first function, because of the small value of g, presents R2 for trees with
Δ = 10. For smaller values of n and g = 0.01 graphs G are also trees. Larger
graphs G are not acyclic. The approximation ratio R2 is clearly not monotonic
in Δ∗, which explains why the second function presented in Fig. 2(d) can get
smaller and bigger values than the first one.
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5 Summary

In Section 3 we gave a theoretical analysis which indicates that the new approx-
imation ratio better describes the worst case behavior of the MUI algorithm. On
then other hand, the experimental results presented in Section 4 compare both
bounds in the average case. The mean value of R1 (taken over all test cases) was
15% bigger than the mean value of R2.
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Abstract. One of the key requirements of data warehouses is query
response time. Amongst all methods of improving query performance,
parallel processing (especially in shared nothing class) is one of the giv-
ing practically unlimited system’s scaling possibility. The complexity of
data warehouse systems is very high with respect to system structure,
data model and many mechanisms used, which have a strong influence
on the overall performance. The main problem in a parallel data ware-
house balancing is data allocation between system nodes. The problem is
growing when nodes have different computational characteristics. In this
paper we present an algorithm of balancing distributed data warehouse
built on shared nothing architecture. Balancing is realized by iterative
setting dataset size stored in each node. We employ some well known
data allocation schemes using space filling curves: Hilbert and Peano.
We provide a collection of system tests results and its analysis that con-
firm the possibility of a balancing algorithm realization in a proposed
way.

1 Introduction

A distributed spatial data warehouse system (DSDW) gathers telemetric infor-
mation about media utility consumption (gas, energy, water, heat) [5]. The data
warehouse is a part of a decision support system that is one of two layers in
an infrastructure built to provide a forecasts of media consumption. The second
layer is a telemetric system of integrated meters reading.

The telemetric system of integrated meters reading is based on AMR tech-
nology (Automated Meter Reading). The telemetric system enables data to be
transferred from media consumption meters (localized on a huge geographical
area) to the telemetric server using a GSM cellular phone network with GPRS
technology. The distributed spatial data warehouse system is a part of a deci-
sion support system for making tactical decisions about the media production
amount based on a short-term prognosis of its use. Forecasts are made exploiting
the analysis of the data stored in the data warehouse (supplied with data from
a telemetric server). The telemetric server is a source of measured data which
are loaded into the DSDW database during an extraction process.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 470–477, 2006.
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1.1 Architecture of Distributed Spatial Data Warehouse, the
Description of Used Data Model

The DSDW system has a shared nothing type distributed architecture, where
every node has its own processor, a memory area, and a disc [9]. All the commu-
nication between the nodes is done only through network connections (messages
passing) with RMI technology (Remote Method Invocation). Shared nothing ar-
chitecture offers unlimited scaling possibilities and almost linear speedup coming
along with system enlargement. One of more important problems during exploit-
ing this architecture in DBMS systems is data allocation amongst nodes that
has strong influence on final performance.

The data warehouse system is composed of a set of nodes. Every node is
equipped in an independent Oracle 9i RDBMS. Data in each node is organized
in cascaded star model and indexed with an aR-tree. The data model and the
index have the same structure across the system nodes.

Telemetric data gathered in the system has a spatial dimension and a time
dimension. The spatial dimension consists of three attributes of space location
(X, Y, Z) describing the localization of meters [6]. The time dimension contains
dates of measurements. The system supports a few types of meters, each of
them has a different frequency of readings, that cause the granularity in time
dimension to vary.

An aR-tree with a virtual memory mechanism was added to the system to
deal with summarized data, which are the most important in the DSDW system.
Hence, aggregates are computed as they arrive during query execution (unless
they were computed in a response to previous queries). Such construction of
the index causes that the query determines which data will be drawn to an
aggregation [5]. The next advantage of this index structure is that the time
taken to draw data already aggregated is very small in comparison to the time
taken for aggregation, when large amounts of detailed data are pulled out from
the data warehouse.

1.2 The DSDW System Balancing Fundamentals

Our previous solutions for balancing the DSDW system concerned a case when
the system consisted of nodes having the same parameters or the same perfor-
mance characteristics. The essence of the problem considered in this work was
the DSDW system balancing which is based on computers with different perfor-
mance characteristics. The differences concern the computational capacity, size
of operational memory, and I/O subsystem throughput.

The rest of the paper is organized as follows. Section 2 contains the motivation
for our algorithm. Section 3 provides a detailed description of the algorithm of
balancing, and section 4 presents and discuses the results of performed systems
tests. Conclusions and discussion on future work are contained in section 5.
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2 Algorithm Motivation

To improve the efficiency of the data warehouses realized in shared nothing
architecture all the nodes have to be involved in realization of every query.
Optimal speedup, and the same minimal response time, is achieved when the
work time of all nodes is the same. Each node in such a system computes its
answer only on contained piece of data. Huge amounts of data makes impossible
to relocate data during query execution. The source data for the DSDW system
are partitioned among N nodes, so that every node possesses the same data
schema. The fact table, which usually takes more than 90% of the space occupied
by all the tables, is split into N partitions loaded into nodes. The dimension tables
are replicated into all nodes in the same form [1].

In this paper we present a balancing method based upon setting the size of
partitions that are loaded into the system nodes (the fact table is partitioned).
The following questions need to be addressed to effectively balance the data
warehouse: how to manage nodes differences, how to mark efficiency of a node,
how to link between them.

To manage nodes differences we decided to arrange data allocation amongst
nodes and to set partition sizes. To this end we exploited some well known data
allocation schemes using space filling curves. The curve visits every point of
space exactly once and never crosses itself and is used for the linear ordering of
k-dimensional space [4]. In these schemes the curve selects the next grid block
which is in turn assigned to a node in round-robin fashion [2, 7]. Two types
of curves: Peano and Hilbert [3] were implemented, and schemes fashion was
changed in a way which enables to control the dataset sizes stored in all nodes.

Node efficiency is marked by an execution of a single range query. The real-
ization of such query must draw and aggregate all detailed data stored in system
nodes. The measure of efficiency is the obtained aggregation time.

As a link mechanism we propose a simple adjusting of dataset size, based
on imbalance values of particular nodes. During balancing we use the test set
that is a subset of the fact table and is chosen to the query marking nodes
performance. The algorithm iteratively calculates partition sizes by executing
a series of size computation, loading and aggregation (query execution). The
algorithm is applicable only before the main warehouse run, when system is
tuned up. We have made some additional presumptions: characteristics of the
nodes are constant and communication costs are very low (omitted).

3 System Balancing Algorithm

In order to catch a real differences between system nodes we use the concept of
a fact table division factor – pi. It represents a value that is a ratio of the fact
table size stored into an i node to total size of fact table. Using the aggregation
times of the test set, obtained by every node, the algorithm iteratively computes
values of pi factors in order to obtain a work time of a node similar to the mean
work time [10].
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1. Load dimension tables to all nodes in the same form,
2. Set all fact table division factors as pi = 1/N ,
3. Load test subset of fact table, partitioned according to division factors, to

all nodes,
4. Aggregate all test subset data,
5. Maximum imbalance is less than assumed ? Yes – go to 7, No – go to 6,
6. Correct division factors pi using aggregation times, go to 3,
7. Load the whole fact table, partitioned according to last computed division

factors, into all nodes.

In the first step the algorithm loads dimension tables to all nodes; the same
copy of dimension tables is loaded into each node. Initially, all factors pi are
set to the value 1/N where N indicates the total number of nodes. Next step
of the algorithm is a fact table partition plan calculation (first part of step 3
of balancing algorithm). A code from [8] was used to compute h-values (the
transformation of k-dimensional space into linear with the use of the Hilbert
curve).

The fact table partition plan making algorithm:

1. Calculate h/z-value for a localization of each meter,
2. Sort all meters by h/z-value ascendant,
3. Allocate grid blocks to nodes using the round-robin method with skipping –

to preserve the value of divide factor for i node.

Then fact table is sent to all nodes using a previously prepared partition
plan (splitting of the fact table into partitions loaded into particular nodes).
Moreover, this step respects the precalculated dataset sizes for each node.

The next step is an aggregation that is performed using a range query sup-
plied by the user. Every iteration uses the same query. On the basis of obtained
aggregation times, the algorithm calculates the imbalances of all system nodes
in relation to the fastest one – according to the formula (1)

imbalancei =
Ti − Tfast

Tfast
(1)

where: Ti and Tfast are aggregation times of ith and the fastest node.
If the maximum imbalance (amongst all nodes) is greater than assumed, then a
correction of fact table division factors (pi) is performed (according to algorithm
presented below). Beside the aggregation times, the correction algorithm takes
into account two additional factors: corrP , used when the division factor is
increased, and corrN , used when the factor is decreased.

The division factors correction algorithm:

1. Calculate an average aggregation time of all nodes – avg
2. For each node calculate its imbalance of aggregation time with relation to
avg. The imbalance is used next to correction of pi factors. Imbalance is
calculated according to formula (2).

imbalancei =
Ti − avg
avg

(2)
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(a) if imb > 0 then make correction using formula (3)

pi = pi · (1− corrN · imb) (3)

(b) if imb < 0 then make correction using formula (4)

pi = pi · (1− corrP · imb) (4)

(c) if imb = 0 then do not make correction
3. Correct all factors to 100%

When the maximum imbalance is below the assumed value, the whole fact
table is partitioned and loaded into nodes using division factors calculated dur-
ing the last iteration of the balancing algorithm (by exploiting the previously
presented the making fact table partition plan).

4 Tests

The test platform was composed of 6 nodes (5 servers and one server/maintainer).
Source data was stored in the maintainer node which was responsible for real-
izing the program of the tests, especially balancing (implementing balancing
algorithm described in section 3). Servers were performing operations ordered
by the maintainer on their copy of data. Nodes were configured as follows:
3 nodes – 2.8 GHz Intel Pentium 4, 512 MB RAM, 120GB 7200 RPM IDE
HDD, 2 nodes – 3.2 GHz Intel Pentium 4, 1 GB RAM, 120GB 7200 RPM
IDE HDD, 1 node – 1.7 GHz Intel Pentium 4, 256 MB RAM, 80GB 7200
RPM IDE HDD. The maintainer software was run on one of the three early
mentioned nodes. Each node worked under Windows XP, had an installed Ora-
cle9i server and Java Virtual Machine v. 1.4.2 04. All the nodes were connected
by a 100Mbit Ethernet network.

The fact table stored in the system had 9.4 millions rows. During balancing
two test subsets were used, first having 0.93 millions and second having 1.87
millions rows (later called respectively the large test subset and the small test
subset). The tests consist of a dozen or so balancing processes, after each of them
two queries were performed in order to evaluate the quality of the balancing
process. The first query draws out data from a few large regions (later called
large-region-query), while second query draws data from a dozen small regions
(later called small-region-query). In descriptions of the tests we are using the
following signs: h – balancing with use of Hilbert curve, p - with use of Peano
curve; 2d – ordering in two dimensions, 3d - ordering in three dimensions; a/b
– corrN and corrP factors respectively. Stop condition of each one balancing
process was decreasing imbalance below 10% or reaching ten process iteration.

The analysis of maximum imbalance graphs (maximum imbalance amongst
all nodes, in every iteration of the balancing process) presented in figure 1 shows
that the time taken for all processes of balancing using the Peano curve were
shorter than corresponding processes when the Hilbert curve was used. The
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Fig. 2. System response times on large-region- and small-region-queries after balancing
with the use of small and large test subset

use of bigger correction factor values in all cases resulted in the shortening of
balancing process duration.

The next analysis concerns the realization of queries sent to system after
finishing each balancing process. The charts presenting response time for large
and small-region-queries and for both cases of test subset are shown in figure 2,
while corresponding charts of maximum imbalance in figure 3. Comparing the
response times on particular queries – the system balanced with use of either
a small or large test subset, either a large- or small-region-query submitted to
process – we see that the response time does not depend on correction factor val-
ues used during balancing. The next observation is the fact that system response
times on region queries when the Hilbert curve was used to balance are generally
higher than response times on queries after analogical balancing with the use of



476 M. Gorawski and R. Chechelski

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

h2d-1/1 p2d-1/1 h3d-1/1 p3d-1/1 h2d-2/2 p2d-2/2 h3d-2/2 p3d-2/2

M
ax

im
u

m
im

b
al

an
ce

[%
]

large-region/small subset small-region/small subset
large-region/large subset small-region/large subset

Fig. 3. Maximum imbalances of response times on large-region- and small-region-
queries after balancing with the use of small and large test subset

the Peano curve. Furthermore, there is no influence of ordering type (two or
three dimensional) on the system’s response time and imbalances of submitted
region-queries realization.

While analyzing the charts of maximum imbalance (fig. 2) we see that large-
region-queries result in a low mean imbalance and a smother graph (imbalances
are similar). The reason for this is the fact that small queries could receive
regions stored in a part of system nodes, so only part of the nodes are involved
in its realization. For larger queries there is higher probability that all system
nodes will participate in computations.

The comparison of response times and imbalance charts for the small and
large test subset shows that system imbalance after processing large-region-
queries was lower when larger test subset was used for balancing. Moreover,
the mean response time after that balancing is lower than after balancing with
the second test subset.

In response to small-region-queries system had similar mean imbalances in
the cases of both subsets, nonetheless the mean response time is significantly
lower for queries sent to process after balancing with larger test subset.

5 Conclusions

In this paper we have presented a spatial telemetric data warehouse balancing
algorithm. The considered data warehouse is made of PC computers having dif-
ferent computational characteristics. The presented results confirmed the possi-
bility of warehouse balancing by using the method of setting node data set sizes.
Described algorithm iteratively selects dataset sizes using the query realization
time on test subset of the fact table. The comparison of two space filling curves
used to ordering – Hilbert and Peano – shows that both of them give similar
results, but Peano is slightly better to employ in our system.
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The set of results presented in this work shows that exploiting larger data
subsets to system’s balancing, improves the mean time of system’s response and
decreases the imbalance of the system. The improvement does not depend on
curve type and used correction factor values. The values only have an impact on
the balancing process duration time.

The presented algorithm could be developed in the following directions:

– balancing of the data warehouse during data updating,
– looking for other mechanisms of nodes efficiency evaluation and linking with

partition size,
– improvement of response time for small range queries.
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Abstract. ETL processes are sometimes interrupted by occurrence of
a failure. In such a case, one of the interrupted extraction resumption
algorithms is usually used. In this paper we present a modified Design-
Resume (DR) algorithm enriched by the possibility of handling ETL
processes containing many loading nodes. We use the DR algorithm to
resume a parallel data warehouse load process. The key feature of this
algorithm is that it does not impose additional overhead on the normal
ETL process. In our work we modify the algorithm to work with more
than one loading node, which increases the efficiency of the resumption
process. Based on the results of performed tests, the benefits of our
improvements are discussed.

1 Introduction

Processing large amounts of data for data warehouse during ETL process (Ex-
traction Transformation and Loading) takes a very long time, several hours or
even days. There is usually a relatively small time window fixed for a whole
extraction. The more data to be processed, the longer the ETL process. When
for some reason an extraction is interrupted, for example by hardware failure or
no power supply, the extraction must be restarted. Such a situation is not rare.
Sagent Technologies reports that every thirty extraction process is interrupted
by a failure [9]. After an interruption there is usually no time left for running
the extraction from the beginning. In this case, the most efficient solution is to
apply one of the interrupted extraction resumption algorithms. In this paper we
analyze the standard and our modified Design-Resume [6] algorithm (DR). The
modified DR handles extraction graphs containing many extractors and many
inserters.

Most commercial tools [2, 8] do not consider the internal structure of transfor-
mations and the graph architecture of ETL processes. Exceptions are researches
[10, 11], where the authors describe the ETL ARKTOS (ARKTOS II) tool. To
optimize ETL process, there is often designed a dedicated extraction applica-
tion adjusted to requirements of a particular data warehouse system. Our ex-
perience prompted the decision to build developmental ETL environment using
JavaBeans components [4]. In the meantime, a similar approach was proposed in
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paper [1]. Presented therein was J2EE architecture with an ETL and an ETL-
Let container, providing efficient execution, controlling, and monitoring of ETL
tasks during continuous data propagation.

Further speeding up of the ETL process forced us to abandon JavaBeans plat-
form. The ETL-DR environment succeeds the previous ETL/JB [4] (JavaBeans
ETL environment) and DR/JB [5] (ETL environment with DR resumption sup-
port). The new ETL-DR environment is a set of Java object classes, used by
a designer to build extraction and resumption applications. This is analogous
to JavaBeans components in the DR/JB environment. In the DR/JB we imple-
mented an estimation mechanism detecting cases where the use of DR resump-
tion is inefficient. Unfortunately, the model we used did not take into account
many significant external factors, like virtual memory usage. In the ETL-DR
the situation changed. We improved the implementation of the DR filters, which
resulted in reduction of resumption inefficiency. Now the resumption is almost al-
ways faster than restarting the extraction from the beginning. Moreover, a lot of
problems appeared in graphs containing many loading nodes. Hence, we decided
to stop research on this mechanism. Another direction of our research is com-
bining the DR resumption with techniques like staging and checkpointing. The
combination of DR and staging, we named it hybrid resumption. This approach
performs slightly better than pure DR algorithm but its efficiency depends on
the extraction graph structure. Research on checkpointing is still in progress.

The main goal of all the extensions of the DR algorithm is to resume the
ETL processes containing many loading nodes as efficiently as possible. Briefly
described in Sect. 2 are the basic and modified DR algorithms. In Sect. 3 is
our test environment; its resumption tests with results and short comments are
described in Sect. 4. In Sect. 5 the obtained results are discussed and the paper
is summarized. References are included in the last section.

2 Design-Resume Algorithm

2.1 Basic Version of the Algorithm

The Design-Resume [6, 7] algorithm (DR) recovers extraction processes from sys-
tem failures. It works using properties assigned to each node of the extraction
graph and data already loaded to a destination prior to a failure. This algorithm
belongs to the group of redo algorithms [6], but during resumption it uses ad-
ditional filters that remove from the data stream all tuples contributing to the
tuples already loaded. An extraction graph is a directed acyclic graph (DAG),
whose nodes process data and whose edges define data flow directions.

The algorithm is divided into two phases. In phase 1 the extraction graph is
analyzed and additional filters are assigned (Design procedure). In phase 2 the
filters are initialized with data already loaded into a data warehouse (Resume
procedure). The most important feature of the DR algorithm is that it does
not impose any additional overhead on the uninterrupted extraction process.
Algorithms like staging or savepointing usually increase processing time a lot
(even several times). The drawback of the DR algorithm is that it cannot be
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applied if before a failure no output data were produced. Design procedure is
usually run once to assign filters that are needed during resumption. The Resume
procedure is run each time the ETL process must be resumed. It recovers data
already loaded from a destination, and uses the data to initialize additional filters
assigned in phase 1.

The basic DR algorithm, denoted later as DR(1), can resume only single-
inserter (an inserter is a loading node) extraction graph. This limitation lowers
the resumption efficiency, and encouraged us to modify the algorithm.

2.2 The Algorithm Modifications

The DR algorithm’s limitation disallowing the resumption of ETL processes with
many loading nodes is quite burdensome. The extraction graph must be divided
into segments containing one inserter each. Usually the data loaded by one of
the inserters are transformed by the same set of transformations as the data
loaded by another inserter. It is 100% true for parallel warehouses where some
of the tables are duplicated on the machines the warehouse consists of. Divid-
ing the graph into smaller parts and running them independently forces some
transformations to be run twice or more to do the same job. This waste of time
would be eliminated if the original extraction graph was used for resumption.
To improve the algorithm we modified both Design and Resume procedures.

The first modification was analysis of which inserters are necessary during
resumption, and which have already completed the loading process. It is pos-
sible because each inserter after loading, writes its ID into the list of inserters
that finished the processing. The list is kept in an external disk file. Before re-
sumption the list is loaded from the file, and all inserters found on the list are
removed from the extraction graph. After removing the inserters, the transfor-
mations that lost its destination nodes are removed also. This way we obtain
the resumption graph containing only the nodes producing missing data. This
modification has the biggest impact on the overall resumption efficiency. It also
forces DR filters assignation routine to be run before each resumption, because
the graph structure changes.

Next we introduced a new transitive property sameSuffix. It was mentioned
by DR algorithm authors in [6] but it was not developed. This property gives
a chance to assign DR filter more optimally, and closer to extractors. It is held
when the tuple stream differs from the one before a failure but still contains
contributors of the last loaded tuple and order of tuples is unchanged. Its influ-
ence is mostly visible when processing path divides into many paths performing
similar operations but loading data by separate inserters. Such a situation occurs
in parallel data warehouses.

After defining the new property we changed filter assignation rules. Now data
stream can be filtered in a common part of the graph even if it is targeted to
many inserters. We also had to modify the definition of the redundant filter, and
change the DR filters structure [6].

We also added another small extension, namely a subsetNotRecommended
hint for the Design procedure. The hint is applied to a particular inserter and it
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denotes that using the subset filtration based on the data taken from a hinted
inserter is not suggested. Subset filtration [6] is one the two possible filtration
methods used in the DR resumption. It uses a complete tuple set taken from the
inserter. Each tuple provided to the DR filter input is checked if it contributes
to any tuple from the set taken from inserter. This method can be inefficient
when the set to be searched is very large. In such a case it is sometimes better
not to filter anything this way and do the filtration later when prefix filtration is
possible. Prefix filters [6] needs to know only the last loaded tuple. They compare
tuples from the input with the one taken from the inserter. All the tuples are
rejected until the one corresponding to the last loaded is found. Then filter stops
rejecting tuples, and the rest of the tuple stream remains unchanged. Obviously
it is not always possible not to use subset filters. In such a case, the hints for
the inserters that cannot use prefix filtration are ignored.

3 ETL-DR Extraction Environment

The ETL-DR environment is written in Java; it is a successor to the DR/JB en-
vironment (Sect. 1). However, in the new environment we do not use JavaBeans
technology. We gambled on simplicity, efficiency, and ease of further develop-
ment. The ETL-DR is a set of classes used by the graph designer to create
an extraction application. These are analogous to JavaBeans components in the
DR/JB environment. In comparison to the DR/JB, we significantly improved the
processing efficiency and the complexity of the most important transformations,
namely DR filters, grouping and joining.

Besides increasing the processing efficiency of the ETL-DR environment, the
most important fact is that we implemented a modified DR algorithm within
it (Sect. 2.2). It enables the resumption of interrupted extraction processes de-
scribed by graphs containing many loading nodes. Moreover, to take advantage
of all the DR algorithm features, we use a modified algorithm of loading data into
a database. Tuples are loaded in a way making the inserter suffix-safe [6], which
means that the last loaded tuple is known. This can speed up the resumption
process significantly.

4 Tests

4.1 Test Conditions

The base for our tests is an extraction graph containing 4 extractors and 15
inserters (loading nodes). The graph consists of three independent parts, but it
is seen by the extraction application as a single ETL process. To load data into
a distributed data warehouse consisting of 5 PC machines we had to increase the
number of inserters in the graph. Each inserter loads data into a single database
table. Finally we obtained the graph containing 75 inserters.

The ETL process generates a complete data warehouse structure (Fig. 1). It
is a distributed spatial data warehouse system designed for storing and analyzing
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Fig. 1. Schema of the generated data warehouse

a wide range of spatial data [3]. The data is generated by media meters working
in a radio-based measurement system. All the data is gathered in a telemetric
server, from which it can be fetched to fill the data warehouse. The distributed
system is based on a new model called the cascaded star model. The test input
data set size is 500MB.

Data set is distributed over the 5 PC machines. All the dimension tables are
replicated and each machine gathers the same data set. The fact table containing
measurements from remote meters is divided into 5 more or less equal parts. The
meter ID determines the target machine. The inserters loading into fact tables
are preceded by additional filter nodes. Their task is to filter the tuples according
to the distribution criteria (meter IDs).

Due to space limitations we cannot present the structure of a whole graph.
We can only try to describe it shortly. Extractors read the data from four source
files:

– meters parameters (meterID, nodeID, locX, locY, locZ, type, scope, mon-
Date),

– weather changes around collecting nodes (nodeID, temperature, humidity,
clouds, measDate),

– collecting nodes parameters (nodeID, locX, locY, locZ, monDate),
– set of meter measurements records (meterID, date, time, zone1, zone2).

Basing of the four source files, the complete data warehouse containing 15
tables is generated. METERS, NODES and WEATHER dimensions consists of
the main table containing record describing particular meters, nodes or weather
states, and also additional sub-dimension tables with necessary attributes. The
required identifiers are created during ETL process. Fact table contains mea-
surements from gas, energy and water meters. Some of them measure values in
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two separate zones. Such records are transformed into records containing one
measured value each with the zone number. One more thing that ETL process
creates is a set of measurement groups, meters of the same type belonging to
the same collecting node are put into the same group. Such a division is useful
during analysis performed by the DSS system that uses the warehouse.

During each test the extraction process was interrupted in order to simulate
a failure. The resumption process was then run and the time was measured.
The collected measurement results permitted us to prepare resumption charts
showing the resumption efficiency depending on the time of a failure.

For the tests we used the following machines:

1. for ETL software:
– 1x PIV 2.8GHz 512MB RAM, Windows XP Prof, J2SDK 1.4.2 06

2. for distributed data warehouse based on Oracle 9i database:
– 1x PIV 2.8GHz 512MB RAM, Windows XP Prof
– 2x PIV 2.8GHz 512MB RAM, Windows 2000
– 2x PIV HT 3.2GHz 1GB RAM, Windows XP Prof

Communication with the database was implemented using JDBC interface
and Oracle OCI drivers. Oracle SQL*Loader was also used for fast data loading
into database tables. Portions of data were loaded into temporary tables by
SQL*Loader, and simple INSERT queries moved the packets into target tables.
A single uninterrupted extraction process lasts about 65 minutes.

4.2 Modified DR Algorithm Tests

The goal of the test is to stress the difference between the efficiency of the stan-
dard version of the Design-Resume algorithm marked as DR(1), and our modified
version, named DR(m). The test is based on the extraction graph presented in
Sect. 4.1.

As can be seen in Fig. 2, the resumption based on the DR(1) algorithm can be
very inefficient. This is due to the necessity of running the resumption for each
inserter separately. Thus many transformations have to be run several times,
each time doing the same job. Such waste of time does not take place during
DR(m) resumption. In this case, the transformations are run only once, and
they produce tuples for all the inserters at the same time. The figure show, that
in our test, DR(1) resumption can be even eight times slower than the DR(m)
method, that performs much faster.

Normal uninterrupted extraction process takes up to 65 minutes (about 4000
seconds). DR(m) resumption does not exceed this time, and we can say that
no matter when the failure occurs, it is always profitable to run the resump-
tion. Unfortunately DR(1) resumption efficiency is unacceptable. It lengthens
the processing about eight times in the worst case, only for failures at the end
of the extraction process it can save some extraction time but it is still no more
than 10-15%. The reasons for this inefficiency are:

– running the same transformations for each inserter separately,
– when one of the inserters loads data to its destination machine, the other

machines do nothing wasting time and the computation power.
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Figure 2 compares also the total processing times depending on the resump-
tion algorithm. As one may observe, the curve for DR(m) resumption stays close
to the normal extraction line (NE). Its peak can be found near the middle of the
extraction, but the distance to NE does not exceed 12% (Fig. 3), which is a very
good result. The overall time of DR(1) resumption varies between 200% and
800% of NE time. This causes that DR(1) cannot be applied to ETL processes
containing many loading nodes (like in our parallel data warehouse system).
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5 Summary

The paper describes our extensions to the resumption of the interrupted ex-
traction process. The Design-Resume algorithm [6] designed by Labio et al was
briefly explained and its general idea was presented. We focused on the problem
of resumption, when the extraction graph contains many loading nodes, and an
example of such a case was described in Sect. 4.1. Mentioned therein was the
ETL process loading data to a parallel spatial data warehouse collecting telemet-
ric measurements [3]. As shown in the tests, running the resumption for each
inserter separately may be very inefficient. That is why we proposed a modi-
fication to the algorithm. First we modified the Design procedure. During the
resumption, those inserters which completed the loading prior to a failure, do not
have to be run again. The proposed solution resulted in increasing the efficiency
of the resumption (Fig. 2). The efficiency almost reached the highest possible
level (Fig. 3). It is impossible to make the total processing time (extraction +
resumption) shorter than the uninterrupted extraction process. If it was possi-
ble it would mean than it is better to interrupt extraction and run resumption
process rather than running single extraction process.
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Abstract. A parallel algorithm for solving complex non–hermitian Toe-
plitz linear systems is presented. The parallel algorithm exploits the spe-
cial structure of Toeplitz matrices to obtain the solution in a quadratic
asymptotically cost. Despite of the low cost of the sequential algorithm
we have obtained an efficient parallel algorithm. Our parallel algorithm
is based on transforming the Toeplitz matrix into Cauchy–like matrix
leading to a reduction in the communication cost. We use a message–
passing programming model and the experimental tests are carried out
on a distributed memory computer architecture.

1 Introduction

Fast algorithms for solving Toeplitz linear systems are based on the displacement
rank property of the Toeplitz matrices. There exist a great amount of the so
called fast algorithms in the literature but all of them are based on a little set
of classical ideas. In addition, there exists a lack of parallel versions of these
fast algorithms for the solution of Toeplitz linear systems using general purpose
distributed memory computer architectures like clusters of personal computers.
This fact is mainly due to the difficulty in obtaining a good efficiency in parallel
fast algorithms. There exist a great dependency among operations that causes
a low computational cost with a large number of point–to–point and broadcast–
type communications if a message passing model programming is used [1].

On the other hand, if the Toeplitz matrix is not strongly regular, fast algo-
rithms can break down or can produce poor results regarding the accuracy of
the solution. In [2] it can be found a parallel algorithm that uses a refinement
technique in order to improve the precision of the solution.

The parallel algorithm presented in this paper transforms the Toeplitz matrix
into an another type of structured matrix called Cauchy–like. This transforma-
tion allows to avoid all the point–to–point communications appearing in other
parallel algorithms that work directly with the Toeplitz matrix. Furthermore, we
use a blocking parallel algorithm that minimizes the execution time by balancing
and overlapping the computational time and the communication cost.
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Although the non–hermitian represents the most general class of Toeplitz
matrices, there exist several improvements that must be apply to the sequential
algorithm before building a parallel one (see [3] i. e. for the real symmetric case).

We make use of the standard libraries LAPACK [4] and ScaLAPACK [5] in
order to achieve a more easy and portable implementation. We use the BIHAR
library for performing the DFT [6, 7] together with our own implementation of
the DFT by using the Chirp-z factorization [8].

The next section includes a brief revision of the mathematical background. Af-
terward, the sequential (Sect. 3) and parallel (Sect. 4) algorithms are
described. The experimental analysis is shown in Sect. 5.

2 Rank Displacement and Cauchy–Like Matrices

The concept of rank displacement [9] describes the special structure of structured
matrices. The definition uses the displacement equation of a given n×n matrix.
If the rank r of the displacement equation is considerably lower than n (r # n),
it is said that the matrix is structured.

Given a Toeplitz matrix T = (tij) = (ti−j)0≤i,j<n ∈ Cn×n, its displacement
equation can be defined in several ways. A useful form for our purposes is

∇T = Z1 T − T ZT
−1 = G H∗ , (1)

where Z1 = Z + e1e
T
n and Z−1 = Z − e1e

T
n , being Z the one position down

shift matrix, ei the ith column of the identity matrix and G,H ∈ Cn×2 are the
generators. The rank of ∇T is 2 so matrices G and H has only 2 columns. An
explicit form for G and H can be found in [10, 11].

It is said that a matrix C = (cij)1≤i,j≤n is a Cauchy matrix, if for some
complex vectors ω = (ωi)n

1 and λ = (λi)n
1 , the matrix

∇ω,λC = ((ωi − λj)cij)n
1 , (ωi − λj)cij = 1 ,

has very low rank with respect to n. If (ωi−λj)cij �= 1, matrix ∇ω,λC is said to
be a Cauchy–like matrix. Cauchy–like matrices can also be defined as the unique
solution of the displacement equation

∇Ω,ΛC = Ω C − C Λ∗ = Ĝ Ĥ∗ , (2)

being Ω = diag(ω1, . . . , ωn), Λ∗ = diag(λ1, . . . , λn), and

Ĝ∗ =
(
g1 . . . gn

)
, Ĥ∗ =

(
h1 . . . hn

)
.

If ωi �= λj for 1 ≤ i, j ≤ n, Cauchy–like matrices have the following form

C = (Ci,j)1≤i,j≤n =
(
g∗i hj

ωi − λj

)
1≤i,j≤n

. (3)

Both Toeplitz and Cauchy–like matrices as defined in (1) and (2), respectively,
are structured matrices. There exists a direct relation between both classes of
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matrices, because the circulant matrices Z−1 and Z1 (1) can be diagonalized by
using the Discrete Fourier Transform (DFT).

If F is the normalized DFT matrix of size n defined as F = 1√
n

(
e−

2πi
n kj
)
,

for j, k = 0, . . . , n − 1, where i =
√
−1 and FF ∗ = F ∗F = I, being I the

identity matrix, then F Z1 F ∗ = Ω and F Z−1 F ∗ = Λ∗, thus, applying the
transformation F (.)F ∗ to (1) can be obtained the displacement (2).

The solution of a Toeplitz linear system

Tx = b , (4)

with T ∈ Cn×n and b, x ∈ Cn, can be approached by using F to transform the
Toeplitz system into a Cauchy–like system

(FTF ∗)(Fx) = (Fb)→ Cx̂ = b̂ . (5)

The Cauchy–like linear system (5) is solved by performing a LU factorization
of C, C = LU∗, where L and U are lower triangular matrices. Solving the
following two triangular linear systems

Ly = b̂ , U∗x̂ = y , (6)

the solution x̂ of (5) is obtained. Finally, x← F ∗x̂ is the solution of (4).

3 Triangular Factorization of Cauchy–Like Matrices

Given a Cauchy–like matrix C and the displacement equation defined in (2),
Gohberg, Kailath and Olshevsky [12] proposed an algorithm (GKO) to factorize
non-hermitian Cauchy–like matrices. The algorithm uses (3) in order to obtain
certain entries of the Cauchy–like matrix or its Schur complements. For non–
hermitian complex Toeplitz matrices and using the displacement matrices Z1
and Z−1 (1), all the elements of C can be computed using (3).

Given the following partitions of the matrices C, Ω y Λ∗,

C =
(
d u
l C1

)
, Ω =

(
ω1 0
0 Ω1

)
and Λ∗ =

(
λ1 0
0 Λ∗

1

)
,

where
(
d∗ l∗

)∗ and
(
d u
)

are one dimension vectors, and being

X =
(

1 0
l/d In−1

)
and Y =

(
1 u/d
0 In−1

)
,

if the transformation X−1(.)Y −1 is applied to (2), we have

(X−1 Ω X)(X−1 C Y −1)− (X−1 C Y −1)(Y Λ∗ Y −1) =(
ω1 0

Ω1 l/d− l ω1/d Ω1

)(
d 0
0 Ccs

)
−
(
d 0
0 Ccs

)(
λ1 u Λ∗

1/d− λ1 u/d
0 Λ∗

1

)
=

(X−1 Ĝ) (Ĥ∗ Y −1) .
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From the element (2, 2) of the previous equation it is obtained

Ω1 Ccs − Ccs Λ∗
1 = Ĝ1 Ĥ∗

1 . (7)

Matrix Ccs is the Schur complement of C with respect to d and, therefore, (7) is
the displacement representation of the Schur complement of C with respect to
its first element C1,1. Matrices Ĝ1 = X−1Ĝ and Ĥ∗

1 = Ĥ∗Y −1 are the generators
of Ccs. Here, the property that the Schur complements of a structured matrix
are structured too, is used.

The computation of the first row and column of C by means of (3) and the
computation of Ĝ1 and Ĥ∗

1 defines the first step of the algorithm. Repeating
this process n iterations on the successive arising Schur complements, the LU
factorization of C is obtained. This algorithm is described in Alg. 1.

Algorithm 1 (LU factorization of a Cauchy–like matrix): Given Ĝ ,Ĥ, Ω
and Λ∗ of the displacement (2), this algorithm returns the lower unit triangular
factor L and the lower triangular factor U such that C = LU∗.

for j = 1, . . . , n

d = Ĝj,: Ĥ∗
:,j

ωj−λj

Uj,j = d
for i = j + 1, . . . , n

Li,j =
Ĝi,: Ĥ∗

:,j
d (ωi−λj)

Ui,j = Ĥ:,i Ĝ∗
j,:

ωj−λi

for k = 1, . . . , r
Gi,k = Gi,k −Gj,kLi,j

Hi,k = Hi,k −Hj,kUi,j/d
end for

end for
end for

Algorithm 1 can be apply r, r < n, iterations. In this case, the algorithm also
returns the generators updated.

4 The Parallel Algorithm

The central part of the parallel algorithm is the LU factorization of C using
the procedure described in Sect. 3. For the parallel LU factorization of C, the
generators are distributed between the processors using the ScaLAPACK model.
Under this model a logical unidimensional mesh with p×1 processors is used for
distributing Ĝ and Ĥ (2) cyclically by row blocks of size η as follows.

Let the following partition of the generators be

Ĝ =

⎛
⎜⎜⎜⎝

Ĝ0

Ĝ1
...

Ĝn/η−1

⎞
⎟⎟⎟⎠ , and Ĥ =

⎛
⎜⎜⎜⎝

Ĥ0

Ĥ1
...

Ĥn/η−1

⎞
⎟⎟⎟⎠ , (8)
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where η is the number of rows of each block. The blocks of Ĝ and Ĥ are cyclically
distributed among the p processors such that Ĝb and Ĥb, b = 0, . . . , n/η − 1,
completely belong to processor Pb mod p×1. The ith row of Ĝ and Ĥ belong to
blocks Ĝi/η and Ĥi/η, respectively. Matrices Ω and Λ∗ are distributed in the
same way. Algorithm 2 is the parallel version of Alg. 1.

Algorithm 2 (Parallel LU factorization of a Cauchy–like matrix): Given
Ĝ, Ĥ, Ω and Λ∗ (2) distributed as shown in (8) for a given η ≥ 1, this algorithm
returns the unit lower triangular factor L and the lower triangular factor U , such
that C = LU∗. Factors L and U are returned distributed as the generators (8).
On each processor Pk, for k = 0, . . . , p− 1:

for b = 0, . . . , n/η − 1
Let Cb

cs be the Schur complement of C with respect to
the leading submatrix of order bη partitioned as:

Cb
cs =

(
C11 C12
C21 C22

)
, C11 ∈ Cη×η .

if Ĝb ∈ Pk (and Ĥb ∈ Pk)
1. Compute factors Lb and Ub using Alg. 1 so C11 = LbU

∗
b .

2. Broadcast Ĝb and Ĥb, updated in step 1, and Ωb and Λ∗
b .

else
3. Receive Ĝb, Ĥb, Ωb and Λ∗

b .
end if
for i = b+ 1, . . . , n/η − 1

if (Ĝi ∈ Pk), update the blocks Ĝi, Ĥi, Lib and Uib, end if
end for

end for

Updating blocks Ĝi, Ĥi, b < i < n/η, of the generators in the above algorithm
can be easily obtained from Alg. 1. Applying only η (η < n) iterations of the
loop with index j in Alg. 1, the following factorization is obtained

C =
(
L1
L2

)(
U∗

1 U
∗
2
)

+
(

0 0
0 C1

cs

)
,

and the generators for the displacement of C1
cs are obtained too. Applying a few

modifications to Alg. 1 it is easy to obtain an algorithm to compute L2, U∗
2 and

the generators for the displacement of C1
cs, once L1 y U∗

1 have been computed.
Each iteration of this algorithm is executed locally on each processor using the
parameters received from the processor Pk.

Algorithm 2 performs one broadcast in each iteration of its main loop. The
total number of broadcasts is n/η and each message contains 6η elements so the
size and the number of messages are both a function of η. Different values of
η changes the overlapping between communications and computations and also
the weight of both factors in the total cost of the algorithm. The optimum value
of η depends on the machine and is experimentally tuned.

The completely parallel algorithm is summarized in Alg. 3.
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Algorithm 3 (Parallel solution of Toeplitz linear system): Given a non–
hermitian complex Toeplitz matrix T ∈ Cn×n and a right hand side vector b ∈
Cn, this algorithm returns the solution vector x of the linear system Tx = b.
On each processor Pk, for k = 0, . . . , p− 1:

1. Every processor computes matrices Ĝ, Ĥ, Ω, Λ∗ and the vector b̂.
The elements are distributed as in (8).

2. Apply Alg. 2 to obtain the triangular factors L and U .
3. Solve the triangular systems (6) in parallel by using PBLAS routines.

P0 gathers x̂ from the rest of the processors and computes x = F ∗x̂.

5 Experimental Results

The experimental results have been obtained in a cluster of 10 nodes, each of one
is a two–processor board with 1 Gb. of RAM with two Intel Xeon at 2 GHz. The
interconnection network is a SCI with a 2D torus topology. In the experiments,
each MPI process is mapped onto one processor of each node.

The first test consists of tuning the block size η used in the partition (8).
Figure 1 shows that there exists a range of values for η that can be used to get
the best performance. We have chosen a fixed size of η = 20 for our machine. A
more detailed study with other problem sizes shows that this is the best choice.

p = 10
p = 9
p = 8
p = 7
p = 6
p = 5
p = 4
p = 3
p = 2

se
c.

20

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Fig. 1. Time versus different block sizes for n = 4000 and different processors

Another improvement carrying out in the algorithm deals with the use of the
Chirp-z factorization for computing of the DFT. The time for transforming G
and H (1) to Ĝ and Ĥ (2) involves two DFT’s. The BIHAR library routines used
highly depends on the prime decomposition of the problem size so if the problem
size can be factorised in a product of low primes, the transformation is very fast;
but if not, the transformation spends a great amount of time regarding the total
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Table 1. Prime decomposition of different problem sizes

n 1999 2999 3999 4999 5999 6999 7999 8999 9999
p. d. 1999 2999 3 · 31 · 43 4999 7 · 857 3 · 2333 19 · 421 8999 32 · 11 · 101
bihar 0.20 0.45 0.02 1.26 0.16 0.55 0.10 4.13 0.05

Chirp-z 0.01 0.02 0.03 0.06 0.06 0.07 0.07 0.15 0.15

n = 9999
n = 7999
n = 5999
n = 3999
n = 1999

procs.

se
c.

10987654321

10
9
8
7
6
5
4
3
2
1
0

Fig. 2. Time for different size problems and different number of processors

Table 2. Efficiency of the parallel algorithm

n/p 2 3 4 5 6 7 8 9 10
1999 85% 77% 68% 61% 59% 51% 41% 37% 42%
2999 88% 81% 75% 68% 63% 58% 55% 49% 49%
3999 92% 86% 81% 75% 70% 68% 63% 56% 57%
4999 77% 88% 83% 77% 72% 69% 63% 58% 56%
5999 80% 92% 88% 83% 78% 75% 72% 64% 64%
6999 83% 74% 93% 89% 85% 82% 78% 69% 72%
7999 103% 76% 97% 93% 90% 86% 83% 75% 77%
8999 103% 75% 68% 91% 88% 85% 81% 72% 74%
9999 104% 100% 98% 95% 91% 88% 85% 76% 79%

execution time. Table 1 shows different problem sizes, its prime decomposition
(p. d.) and the execution time in seconds without (bihar) and with the use of the
Chirp-z factorization. If the prime factors are large, with the Chirp-z factorization
we obtain a considerable lower time than only using BIHAR routines.

Figure 2 shows a large reduction in time achieved with the increment in the
number of processors. This is specially significant because this result means the
parallel algorithm can be useful in applications with real time constraints.
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In addition, the results regarding the efficiency are quite good even up with
10 processors, taking into account that the asymptotically computational cost
of the sequential algorithm is of O(n2) operations (see Table 2).

6 Conclusions

In this paper we have presented a parallel algorithm for solving Toeplitz linear
systems of equations for non–hermitian complex matrices. The parallel algorithm
exploits the rank displacement property the structured matrices. The transfor-
mation of a Toeplitz matrix into a Cauchy–like matrix lets to derive a parallel
algorithm with a low communication cost so it can be obtained a large reduc-
tion in time and even a quite good efficiency in some cases. This fact represents
an important improvement regarding other sequential algorithms traditionally
used, like Levinson– or Schur–type algorithms, whose parallelization does not
offer good results when run on distributed memory architectures.
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José Laginha Palma1, and Daniel Ruiz2

1 FEUP, Porto, Portugal
{cbalsa, jpalma}@fe.up.pt

2 ENSEEIHT–IRIT, Toulouse, France
{dayde, guivarch, ruiz}@enseeiht.fr

Abstract. We propose an algorithm called BlockCGSI to compute some
partial spectral information related to the ill-conditioned part of a given
coefficient matrix. This information can then be used to improve the
solution of consecutive linear systems with the same coefficient matrix
and changing right-hand sides.

The BlockCGSI algorithm combines the block Conjugate Gradient
with the inverse Subspace Iteration. We indicate how to reduce the total
amount of computational work by controlling appropriately the accuracy
when solving the linear systems at each inverse iteration. We also improve
the global convergence of the algorithm by means of polynomial filters.

1 Introduction

Partial spectral information associated with the smallest eigenvalues can be used
to improve the solution of successive linear systems of equations. This is spe-
cially the case in the simulation of time dependent partial differential equations,
where at each global iteration there are several systems with the same spectral
properties to be solved. The idea is to perform some partial spectral decomposi-
tion in the first global iteration, and to exploit this information to improve the
convergence in the iterative solution of the following linear systems. In previous
work [1], we have experimented two techniques to improve the convergence of
Conjugate Gradient (CG) algorithm, namely the deflation of the initial residual,
and the Spectral Low Rank Update (SLRU) preconditioner [2]. We observed
that the SLRU preconditioner, in contrast with the deflated starting residual, is
efficient even when the precomputed spectral information is not very accurate.

In this work, we just focus on the computation of a near -invariant subspace
associated with the smallest eigenvalues in the iteration matrix, and we propose
an algorithm, called BlockCGSI, based on the inverse subspace iteration [3]. In
this algorithm, the set of multiple solutions required for each inverse iteration is
computed iteratively using a stabilized version of the block Conjugate Gradient
algorithm (blockCG) [4, 5]. This combination, detailed in section 2, was proposed

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 494–504, 2006.
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initially in [6], and used to deflate the initial residual in the consecutive runs of
the CG algorithm.

In section 3, we analyze the convergence of the blockCG algorithm, and
we propose a way to choose the threshold used to monitor the accuracy in the
solution of the linear systems with respect to the global convergence of the inverse
iteration outer loop. We devote section 4 to some numerical results illustrating
the good behavior of our algorithm in general. Finally, in section 5, we conclude
about the potential and limitations of the proposed technique.

2 BlockCG Coupled with Subspace Iteration (BlockCGSI
Algorithm)

In this section, we present and detail partly the BlockCGSI algorithm used to
compute an M-orthonormal basis W of a near -invariant subspace associated
with the smallest eigenvalues in the preconditioned matrix M−1A. If this basis
incorporates, for instance, all the eigenvalues of M−1A in the range [0, μ], we
can expect, when using it later as a second level of preconditioning, that the
condition number of the coefficient matrix will be reduced to about κ = λmax/μ
(where λmax is the largest eigenvalue in M−1A). In Algorithm 1, λmax and μ are
considered as input parameters (just a rough upper bound on λmax is sufficient
in general).

An other input concerns the choice of the block size s that defines the dimen-
sion of the working subspace at each inverse iteration. It also gives the number
of right-hand sides and solutions vectors of the multiple linear systems solved
by the blockCG algorithm, and consequently the amount of memory required as
working space.

As a starting point, the algorithm requires the generation of an M-ortho-
normal basis of size s. The closer are these vectors to the targeted near -invariant
subspace, the faster will be the convergence of the inverse iteration. The scope
of steps 1 to 4 in Algorithm 1, is to generate an initial M-orthonormal set V (0)

of s vectors with eigencomponents corresponding to eigenvalues in the range
[μf , λmax] below some predetermined value ξ # 1 (denoted as the “filtering
level”). This filtering technique is based on Chebyshev polynomials (step 3) and
details about it can be found in [7]. The idea behind the use of these Chebyshev
filters at the starting point is to put the inverse subspace iteration in the situation
of working in the orthogonal complement of a large number of eigenvectors, e.g.
all those associated with the eigenvalues in the range [μf , λmax]. We can also
expect that the resulting filtered right-hand sides will present more favorable
spectral properties that can improve the convergence behavior of the blockCG.
Obviously, there is some compromise to achieve, in the sense that very small
values of μf and ξ will minimize the number of inverse and blockCG iterations
but will also increase the computational efforts in the Chebyshev initial filtering
step.

The essence of the inverse subspace iteration is the QR iteration. It con-
sists in multiplying a set of vectors by A−1M and M-ortonormalizing it in turn.
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Algorithm 1. BlockCGSI algorithm

Inputs: A,M = RTR ∈ IRn×n, μ, λmax ∈ IR, s ∈ IN
Output: a near -invariant subspace W associated with all

eigenvalues in the range ]0, μ]

Begin
Generate the initial subspace (with filtering)

1. Z(0) =RANDOM(n, s)
2. V (0) = Z(0)Γ such that V (0)T

V (0) = Is×s

3. Q(0)=Chebyshev-Filter(V (0), ξ, [μf , λmax], A,R)
4. V (0) = R−1Q(0)Γ such that V (0)T

MV (0) = Is×s

5. W (0) = empty
6. For k = 1, ..., until convergence Do:

QR iteration
i. Solve M−1AZ(k) = V (k−1) with blockCG
ii. Pk = Z(k) −W (k−1)W (k−1)T

MZ(k)

iii. Q(k)Γk = P (k) such that Q(k)T
MQ(k) = Is×s

iv. Q(k) = [W (k−1) Q(k)]

Ritz acceleration
v. βk = Q(k)T

AQ(k)

vi. Diagonalize βk = UkΔkU
T
k

where UT
k = U−1

k

and Δk =Diag(δ1, ..., δp+s) (Ritz Values)
vii. V (k) = Q(k)Uk (Ritz Vectors)

Update the computational window
viii. W (k) = converged columns of V (k)

ix. V (k) = non-converged columns of V (k)

x. (n, p) = size(W (k))
xi. Incorporate new vectors in (V (k))

7. EndDo
End

If W (k−1) (initially empty) contains the set of vectors that have already con-
verged at step k − 1, the current subspace Q(k) should converge gradually to
a near -invariant subspace that is M-orthogonal to W (k−1). In step i, the mul-
tiplication by A−1M is performed implicitly through the iterative solution of
the system M−1AZ(k) = V (k) via the blockCG. In order to reduce the com-
putational costs, this system is solved with a certain accuracy determined by
the residual threshold ε. The appropriate choice of ε is detailed in section 3.2.
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In step ii, the approximate solution vectors Z(k) are then projected onto the
orthogonal complement of the converged vectors W (k), in order to remove the
influence of eigencomponents associated with the converged eigenvalues. The
set of projected vectors P (k) is then M-orthonormalized (step iii), and gathered
together with W (k).

To improve the rate of convergence of the inverse subspace iteration, the QR
iteration is followed by the Ritz acceleration (steps v to vii), as suggested by [3].
The spectral information contained in Q(k) is thus redistributed in the column
vectors of V (k), that will contain each better approximations of individual eigen-
vectors. Steps v, vi, and vii, give the Ritz values, diag(Δ) = δ1, ..., δp+s, ranged
in increasing order, and the associated Ritz vectors, [v1, v2, ..., vp, ..., vp+s], where
p is the dimension of W (k−1) and s is the current block size.

The end of the BlockCGSI algorithm consists in testing the convergence and
updating the computational window. In step viii, all the Ritz vectors that are
considered as near -invariant (with respect to the given accuracy) are assigned
to W (k). More precise details about the monitoring of the convergence are given
in section 3.1. Step xi consists in incorporating new vectors in the current set of
vectors V (k). The operation that consists in introducing a set of � new vectors,
after some of the Ritz vectors have converged, is detailed in Algorithm 2. We
denote this algorithmic issue in the BlockCGSI algorithm as “sliding window”.
Its purpose is to enable the approximation of a number of eigenvectors greater
than the block size s. Basically, we generate randomly the new vectors and filter
them, as in the starting steps of the BlockCGSI algorithm. Then, these vectors
are projected in the M-orthogonal complement of the converged ones, in order to
remove the corresponding eigencomponents. Note that we can also opt to reduce
or enlarge the block size s at this stage, when setting the value of � (i.e. the
number of newly incorporated vectors).

Algorithm 2. Incorporate New Vectors
a) P =RANDOM(n, �)
b) P = QΓ such that QTQ = I�×�

c) P=Chebyshev-Filter(Q, ξ, [μf , λmax], A,R)
d) Q = R−1PΓ such that QTMQ = I�×�

e) P = Q−W (k)W (k)T
MQ

f) V (k) = [V (k)P ]

3 Convergence Analysis

The BlockCGSI algorithm involves two iterative loops: the first, that we also
denote as the outer iteration, corresponds to the inverse iteration (at step 6 in
the in Algorithm 1), and the second loop, or inner iteration, in the call to the
blockCG algorithm (at step i in Algorithm 1) for the iterative solution of the
linear system with multiple right-hand sides, M−1AZ = V . These two iterations
require some specific stopping criterion to monitor the global convergence of the
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algorithm. Sections 3.1 and 3.2 are devoted to the analyze of the convergence
properties at the two iteration levels. In section 3.2, we also propose a way to
link the monitoring of the convergence in the inner loop with the measure of the
convergence in the outer loop.

3.1 Inverse Subspace Iteration (Outer Loop)

At each inverse iteration k in Algorithm 1, the blockCG algorithm solves the s
linear systems M−1Az

(k)
j = v

(k−1)
j , j = 1, ..., s, where the matrix A is precondi-

tioned with a symmetric and positive definite preconditioner, M = RTR. The
symmetrized system can be written as usual as

R−TAR−1Rz
(k)
j = Rv

(k−1)
j ⇐⇒ Ãz̃

(k)
j = ṽ

(k−1)
j , j = 1, ..., s. (1)

For simplicity, we will omit to repeat that j varies from 1 to s. We will consider
that the subscript j refers to the position of the corresponding eigenvalue in the
current working set. The superscript (k) denotes the inverse iteration number,
and the tilde refers to the symmetrized system (1).

The outer iteration produces a sequence of Ritz vectors ṽ(1)
j , ṽ

(2)
j , ..., ṽ

(k−1)
j ,

that converge to the eigenvector ũj = Ruj corresponding to the eigenvalue λj of
both matrices Ã and A. At step k, the vectors ṽ(k)

j are orthonormal, since the

vectors v(k)
j (columns of matrix V (k)) are M-orthonormal. The corresponding

Ritz values (diagonal elements of matrixΔ(k)) are given by δj(k) = vj
(k)T

Av
(k)
j =

ṽ
(k)T
j Ãṽ

(k)
j .

Provided the Ritz acceleration is incorporated in the algorithm, the conver-
gence rate of the inverse subspace iteration, given by [8], is proportional to ratio
λj/λp+s+1, where λp+s+1 is the eigenvalue immediately following the current
set of (p + s) approximated eigenvalues. This property shows that, if the inner
iteration is accurately enough and if λj is well separated from λp+s+1, we can
have a good estimation of the eigenvalue λj in a few number of inverse iterations.
In some cases, it can even be useful to increase the block size s just to benefit
from a better gap in the relation above (“Guard Vectors” effect).

Finally, we introduce the error bound on each approximate eigenpair, given
by [3]:

|λj − δ(k)
j | ≤

||Av(k)
j − δ(k)

j Mv
(k)
j ||M−1

||Mv
(k)
j ||M−1

= ||M−1Av
(k)
j − δ(k)

j v
(k)
j ||M , (2)

assuming that λj is actually the closest eigenvalue to δ(k)
j . Dividing (2) by δ(k)

j

instead of λj , we get an estimate of the relative residual upper bound and an
estimate of the number of correct digits in δ

(k)
j , which can be used to decide if

a Ritz vector v(k)
j has converged or not.
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3.2 BlockCG Iteration (Inner Loop)

The block Conjugate Gradient (blockCG) algorithm solves simultaneously the
s linear systems from equation (1). For each system, j = 1, .., s, it produces a
sequence of vectors z̃[i]

j (where the superscript [i] stands for the blockCG iteration

number) giving, after convergence, the approximate solution z̃(k)
j used in the k-th

inverse iteration.
The residual vector associated with each iterate z̃[i]

j is r̃[i]j = ṽ
(k−1)
j − Ãz̃[i]

j .
We also introduce another vector, which we will use to measure the proximity
of the current iterate z̃[i]

j from the corresponding eigenvector ũj,

S̃
[i]
j = Ãz̃

[i]
j − δ̃

[i]
j z̃

[i]
j = ṽ

(k−1)
j − δ̃[i]j z̃

[i]
j − r̃

[i]
j ,

where δ[i]j = δ̃
[i]
j = z̃

[i]T
j Ãz̃

[i]
j /z̃

[i]T
j z̃

[i]
j is the Rayleigh quotient corresponding to

the current iterate z̃[i]
j . After some inverse iterations, we can assume that λj is

the closest eigenvalue in the spectrum ofM−1A from δ
[i]
j , and the error bound (2)

applied on the symmetrized system, at each inner iteration [i], yields

|λj − δ[i]j | ≤
||S̃[i]

j ||2
||z̃[i]

j ||2
=
||ṽj

(k−1) − δ[i]j z̃
[i]
j − r̃

[i]
j ||2

||z̃[i]
j ||2

. (3)

Additionally, if we start the blockCG iteration with z̃
[0]
j = 0, at each iteration

the current residual r̃[i]j remains orthogonal to both ṽj
(k−1) (the right-hand side)

and z̃[i]
j (linear combination of the current Krylov vectors). Thus, r̃[i]Tj (ṽj

(k−1)−
δ
[i]
j z̃

[i]
j ) = 0, and we can write

||ṽj
(k−1) − δ[i]j z̃

[i]
j − r̃

[i]
j ||22 = ||ṽj

(k−1) − δ[i]j z̃
[i]
j ||22 + ||r̃[i]j ||22. (4)

Finally, if we translate the previous properties to the non-symmetrized system,
we get

|λj − δ[i]j | ≤
||M−1Az

[i]
j − δ

[i]
j z

[i]
j ||M

||z[i]
j ||M

=

√√√√ ||v(k−1)
j − δ[i]j z

[i]
j ||2M + ||r[i]j ||2M

||z[i]
j ||2M

def
=

√
φ

[i]
j

2
+ ω

[i]
j

2
. (5)

From (5), we can see that the error bound associated with each Rayleigh
quotient depends on the relative residual measure ω[i]

j = ||r[i]j ||M/||z[i]
j ||M and

on φ
[i]
j = ||v(k−1)

j − δ
[i]
j z

[i]
j ||M/||z[i]

j ||M . Even if we expect that the backward

error measure ω[i]
j will decrease down to a level of small magnitude, the value

of φ[i]
j is more likely to stagnate on a higher level, depending on the proximity
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of the right-hand side v(k−1)
j from the correspondent eigenvector uj. Therefore,

the bound in (5) can be dominated by the value of φ[i]
j , and little improvement

on the global convergence of the algorithm can be expected by further iterations
in the blockCG.

We now investigate the asymptotic behavior of φ[i]
j , assuming that z[i]

j actu-

ally converges to z∗j = A−1Mv
(k−1)
j . Let us first introduce the asymptotic limit

of δ[i]j , δ∗ = 〈z∗j , v
(k−1)
j 〉

M
/||z∗j ||2M , and the angle θj in the M -norm between z∗j

and v(k−1)
j , whose cosine is given by

cos(θj) =
〈z∗j , v

(k−1)
j 〉

M

||z∗j ||M ||v
(k−1)
j ||M

= ||δ∗z∗j ||M . (6)

Since v(k−1)
j is M-orthonormal, we can write sin(θj) = ||v(k−1)

j − δ∗z∗j ||M , which

is also the asymptotic limit of ||v(k−1)
j −δ[i]j z

[i]
j ||M . Consequently, the asymptotic

limit of the component φ[i]
j in (5) is

φ
[i]
j −−−→

i→∞
sin(θj)
||z∗j ||M

= δ∗ tan(θj), (7)

which depends only on the two vectors v(k−1)
j and z∗j = A−1Mv

(k−1)
j . It is

also clear that, if v(k−1)
j is close to an eigenvector, the angle θj should be very

small, as well as the corresponding asymptotic limit of φ[i]
j . With respect to the

bound in (5), this allows more room for decreasing the backward error ω[i]
j in

the blockCG iteration. The strategy suggested by this analysis is to decrease
the value of the stopping criterion in the blockCG (inner loop) along with the
convergence of the inverse iteration (outer loop). This is in agreement with the
suggestions made in [9]. This basic idea is further developed to propose a stopping
criterion for the blockCG.

The stopping criterion for the blockCG defines the approximation degree of
all the solution vectors z̃(k)

j ≈ Ã−1ṽ
(k−1)
j or equivalently of z(k)

j ≈ A−1Mv
(k−1)
j .

We propose to monitor only the convergence of the approximate solution z[i]
p+1,

corresponding to the smallest nonconverged Ritz value δ(k−1)
p+1 in the previous

inverse iteration. The reason is that, in general, this system needs more efforts
to be solved accurately. We use the relative residual measure

ω
[i]
1 =

||v(k−1)
1 −M−1Az

[i]
1 ||M

||z[i]
1 ||M

, (8)

readily available in the blockCG iteration (see [5]). Notice also that ω[i]
1 is very

close to the usual Rigal-Gaches [10] backward error measure.
In the outer loop, we consider the upper bound in (2) to monitor the accuracy

of the approximated eigenvalues. A Ritz value δ(k)
j has converged when it has at
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least t correct digits, e.g. when |λj − δ(k)
j |/δ(k)

j ≤ 10−t. In order to satisfy this
inequality, the stopping criterion in the blockCG is set as

ω
[i]
1 ≤ ε, with ε = 10−tδ

(k−1)
1 , (9)

where δ(k−1)
1 is the smallest of the current set of nonconverged Ritz values. This

stopping criterion is based on the upper bound (5), assuming that |λ1−δ[i]1 | from
the inner loop will be close to |λ1−δ(k)

1 | after the actual computation of the Ritz
values in the outer loop.

Another assumption is that the value of φ[i]
1 in (5) is not dominant, and

therefore that the value of w[i]
1 governs the absolute error measure |λ1 − δ[i]1 | in

the inner iteration. This is surely the case when the Ritz vector v(k−1)
1 is close

to an eigenvector because, in this case, the value of sin(θ1) should be small.
However,this situation can be reversed when φ[i]

1 has reached its stagnation level
defined in (7), in which case the blockCG iteration should be stopped and the
next inverse iteration be launched. The risk of having ω[i]

1 much smaller than φ[i]
1

in the course of the blockCG iterations can anyway be limited with a relative
precision 10−t not too small (t = 1 or 2, for instance), which is in general enough
for our purpose, e.g. building a near -invariant subspace for preconditioning the
solution of consecutive linear systems with the same matrix. Another issue that
helps in general to minimize this risk, is the use of δ(k−1)

p+1 (smallest Ritz value in
the computational window) instead of the corresponding eigenvalue λp+1 in (9).
Indeed, when the Ritz vector is not close to be an eigenvector, the associated
Ritz value is larger than the actual eigenvalue, all this resulting in the choice of
a larger threshold ε in (9).

4 Numerical Experiments

In this section, we present some numerical results concerning the computation
of the near -invariant basis W associated with the eigenvalues of M−1A in the
range ]0, μ[. We have chosen, for illustration, a test matrix coming from the
2D heterogeneous diffusion equation discretized by finite elements in a L shape
region, with size n = 7969 and non-zeros elements nnz = 55131. We also precon-
dition the resulting linear system by means of the classical Incomplete Cholesky
without fill-in (IC(0)). The spectrum is distributed from λmin = 1.66e− 08 to
λmax = 1.55e+ 00.

In figure 1, we show the convergence behavior of the values ω1, φ1 and the
upper bound

√
ω2

1 + φ2
1 in (5) of |λ1 − δ1|, as presented in section 3.2. The two

plots in figure 1 illustrate the behavior of these three values in the blockCG run
at the first inverse iteration (k = 1). The first plot corresponds to the case of
non filtered starting vectors, and the second one to the case of starting vectors
filtered with a level ξ = 1e− 2 and a cut-off value μf = 5e− 3. We can observe
the effect of the Chebyshev filtering of the starting vectors, which helps to make
the value of φ1 much smaller than what it can be with randomly generated
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vectors. The consequence of that is that ω1 becomes a good measure of the upper
bound of |λ1−δ1|, even at the very beginning of the algorithm. Additionally, the
filtering of the starting vectors changes the convergence behavior of the blockCG,
because the filtered right-hand sides have more favorable spectral properties. It
also enables to decrease substantially the asymptotic value of φ1 in the first
inverse iteration, which allows a larger range for the choice of the threshold ε in
the blockCG.

In table 1, we present the total number of iterations performed at different
levels in the BlockCGSI algorithm (see Algorithm 1) to compute a near -invariant
subspace associated with all the eigenvalues in the range ]0, μ[. The requested
relative precision in these eigenvalues has been set to one correct digit (t = 1),
with respect to the convergence criterion for the outer loop given in section (3.1),
and the stopping criterion for the blockCG set accordingly as in (9). The total
number of inverse iterations is indicated by InvIt and the sum of all the it-
erations performed by the blockCG over all solves by bCGIt. The Chebyshev
iterations count parameter ChebIt includes all the iterations spent in filtering
the starting vector and the new vectors when the computational window is up-
dated (see Algorithm 2). Finally we also include the total number of floating
point operations performed by the BlockCGSI algorithm, in millions (Mflops).
We have varied the filtering level from ξ = 1e− 6 to ξ = 1e− 16, including the
case of no filtering. The block size haves been chosen to illustrate all the possi-
ble cases, e.g. when it is below, equal, or greater than the targeted number of
eigenvectors (q). The two cut-off values of the filtering step μf correspond to the
cases when it is greater or equal to the principal cut-off value μ in Algorithm 1.

The different results exposed in table 1 show that the algorithm manages to
compute the targeted spectral information independently of the choice of the
block size s. Of course it is optimal when s is correlated to the actual number
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Fig. 1. Correlation between the residual measures ω1, φ1 and the upper bound on
the spectral error |λ1 − δ1|, in the blockCG with block size 4, and at the first inverse
iteration
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Table 1. Iteration and operation count as a function of the filtering level

μ = 1.0e − 2 (3 eigenvalues) μ = 3.0e − 2 (9 eigenvalues)
Filter s = 3, μf = 1.0e − 1 s = 5, μf = 1.0e − 1 s = 5, μf = μ s = 9, μf = μ

Level ξ InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops InvIt bCGIt ChebIt Mflops

- 6 96 - 148 4 73 - 243 30 191 - 907 17 118 - 1310
1e − 6 6 75 28 143 2 44 28 180 4 41 104 358 2 25 52 351
1e − 8 6 63 37 134 2 35 37 165 3 20 138 352 2 11 69 274
1e − 10 6 53 46 127 2 27 46 153 3 12 170 390 1 3 85 235
1e − 12 3 35 55 99 2 19 55 140 3 6 204 434 1 3 102 275
1e − 14 3 27 64 96 2 12 64 128 2 4 236 450 1 1 118 295
1e − 16 2 19 75 88 1 10 73 130 2 4 270 556 1 1 135 335

of eigenvalues (q) in the range ]0, μ[. In this case, all the iterations count are
minimized as well as the total number of operations. With larger block sizes s,
the algorithm benefits from the “guard vectors” effect (see section 3.1), and the
number of inverse iterations are reduced. A greater block size also improve the
convergence of the block Conjugate Gradient. For these reasons, the increase of s
does not necessarly imply increase of the total amount of work. When the block
size is smaller than q the “sliding window” feature enables to obtain at any rate
all the targeted vectors.

As we can observe in table 1, the filtering of the new vectors with Chebyshev
polynomials improves very much the efficiency of the BlockCGSI algorithm.
As the filtering level ξ decreases, the number of inverse iterations is reduced
because the resulting filtered vectors are close to a near -invariant subspace, and
the stagnation level of φ is very low (see also figure 1). This gives room for
greater decrease of the error |λi − δi| at each inverse iteration. The number of
blockCG iterations is also reduced, due to the better spectral properties of the
right-hand. Obviously, decreasing the filtering level ξ also increases the number
of Chebyshev iterations (ChebIt). In that respect, there is a compromise to reach
in terms of total computational cost. The optimal value of ξ, that minimizes this
computational work (Mflops), also depends on the other filtering parameter μf ,
and on the number of targeted eigenvalues q. We can observed that the closest
is μf from μ, the higher is the optimal choice for ξ, and the smaller is q, the
smaller is the optimal ξ.

5 Concluding Remarks

We have developed an algorithm that computes a near -invariant subspace,
associated with the smallest eigenvalues in M−1A, which combines the sub-
space inverse iteration and a stabilized version of the block Conjugate Gradient
(blockCG) algorithm. The main focus in this work was the precise control of
the accuracy when solving the system with multiple right-hand sides at each in-
verse iteration, and more precisely the good agreement of the stopping criterion
used in the blockCG iteration with the measure of convergence in the inverse
iteration itself. We have also investigated some particular techniques, like the
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Chebyshev filtering of the starting vectors, and a form of dynamic adjustment
of the dimension of the current subspace at each inverse iteration. The pre-
liminary experiments indicate that Chebyshev filtering is useful to reduce the
total amount of work through the reduction of both the inverse and blockCG
iterations. The “sliding window” technique is helpful at any rate to make the
algorithm more flexible and robust.
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M., Dongarra, J., Hernandez, V., Palma, J., eds.: High Performance Computing
for Computational Science, 6th Int. Meeting, VECPAR’04. LNCS 3402, Berlin,
Springer-Verlag (2005) pp. 703–719

2. Carpentieri, B., Duff, I., Giraud., L.: A class of spectral two-level preconditioners.
SIAM Journal on Scientific Computing 25 (2003) pp. 749–765

3. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)
4. O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear

Algebra and its Applicattions (29) (1980) 293–322
5. Arioli, M., Duff, I., Ruiz, D., Sadkane, M.: Block Lanczos techniques for accel-

erating the block cimmino method. SIAM Journal on Scientific and Statistical
Computing 16(6) (1995) pp. 1478–1511

6. Arioli, M., Ruiz, D.: Block conjugate gradient with subspace iteration for solving
linear systems. In: Iterative Methods in Linear Algebra, Second IMACS Sympo-
sium on Iterative Methods in Linear Algebra, Blagoevgrad, Bulgaria, S. Margenov
and P. Vassilevski (eds.) (June, 1995) pp. 64–79

7. Giraud, L., Ruiz, D., Touhami, A.: A comparative study of iterative solvers ex-
ploiting spectral information for SPD systems. Technical Report RT/PA/04/40,
CERFACS (2004) Also Technical Report TR/TLSE/04/03, ENSEEIHT-IRIT,
Toulouse, France.

8. Golub, G.H., Loan, C.F.V.: Matrix Computation. The Johns Hopkins University
Press, Baltimore and London (1983)

9. Golub, G.H., Ye, Q.: Inexact inverse iteration for generalized eigenvalue problems.
BIT 40 (2000) pp. 671–684

10. Rigal, J.L., Gaches, J.: On the compatibility of a given solution with the data of
a linear system. Journal of the ACM 14(3) (July 1967) pp. 543–548



Parallel Schwarz Methods: Algebraic
Construction of Coarse Problems,

Implementation and Testing

Radim Blaheta, Petr Byczanski, Ondřej Jakl, and Jǐŕı Starý
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Abstract. The paper describes domain decomposition methods of the
Schwarz type with coarse problems constructed algebraically by aggre-
gation of unknowns. The description includes a new method with no
overlap of subdomains and interfaces on the coarse grid. Implementation
issues are discussed for all the methods and their comparison is made on a
model elasticity problem. Special attention is given to nonsymmetric hy-
brid preconditioners. A parallel implementation of the additive Schwarz
method is tested on a 3D elasticity problem, employing a Beowulf cluster.

1 Introduction

Our aim is to solve discrete symmetric elliptic boundary value problems formu-
lated as follows

find uh ∈ Vh : a(uh, vh) = f(vh) ∀vh ∈ Vh (1)

where Vh is a finite element space, a is a bounded symmetric bilinear form and
f is a bounded linear functional on Vh.

To be more specific, we solve a problem in a domain Ω ⊂ Rd (d = 2, 3) and
the bilinear form in (1) takes one of the following forms

a(u, v) =
∫
Ω

∑
ij

kij
∂u

∂xi

∂v

∂xj
dx (2)

a(u, v) =
∫
Ω

∑
ijkl

cijklεij(u)εkl(v)dx (3)

The bilinear form (2), corresponding to a scalar boundary value problem (e.g.
heat conduction), is assumed to be symmetric and positive definite (SPD) on
V = {v ∈ H1(Ω) : v = 0 on ∂ΩD} . The second form (3), which corresponds
to an elasticity problem, is assumed to be SPD on V = {v ∈ [H1(Ω)]d : v = 0
on ∂ΩD}. Above, ε(u) is the small strain tensor induced by the displacement
u, H1(Ω) is the Sobolev space, ∂ΩD is a part of the boundary of Ω, where the
Dirichlet boundary conditions are imposed. For more details see e.g. [7].

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 505–512, 2006.
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The domain Ω is divided into a set Th of finite elements. We shall assume
triangular and tetrahedral elements in the case of d = 2 and d = 3, respectively.
Then Vh = {v ∈ V : v |E ∈ P1 ∀E ∈ Th} with P1 denoting the set of linear
polynomials. Let us denote Nh the set of nodes of Th and Φh = {φ1, . . . , φn}
be the nodal FE basis of Vh. Then uh =

∑
uiφi, and the problem (1) can be

transformed into the following algebraic problem:

Find u = (u1, . . . , un)T , Au = b, u, b ∈ Rn (4)

with A being symmetric positive definite n× n matrix.
Our main interest is to solve this algebraic system (4), assuming that the

system can be very large with n being about 106 or even more. In such cases, the
system should be solved iteratively, e.g. by the conjugate gradient (CG) method.
For an efficient solution of large scale systems, we need a suitable preconditioner
B to A as well as a possibility to perform the main operations in parallel. By main
operations, we understand the matrix-vector multiplication with the matrix A
and application of the preconditioner B.

For this purpose, we shall consider one and two-level additive Schwarz
preconditioners

B1L =
m∑
1

Bk , Bk = RT
kA

−1
k Rk (5)

B2L = B1L +B0, B0 = RT
0 A

−1
0 R0, (6)

where Ak (k = 1, . . . ,m) are local subproblems and A0 is a coarse subproblem.
The choice of subproblems is discussed in the next sections. We shall also consider
nonsymmetric hybrid preconditioners defined by

BH = B1L +B0(I −AB1L), (7)

BH = B0 +B1L(I −AB0). (8)

More details can be found e.g. in [5], [4]. For the parallelization of matrix-vector
multiplication and other necessary operations, we shall use a problem decompo-
sition compatible with the local subproblems.

2 Local Subproblems and Parallel Implementation

We shall start with a FE triangulation Th of the domain Ω and divide this
triangulation into m parts Tk. This division can be done in two steps: firstly
Th is divided into nonoverlapping sets T 0

k , which are consecutively extended to
overlapping sets T δ

k . We shall denote

Ω0
k = ∪{E : E ∈ T 0

k }, Ωδ
k = ∪{E : E ∈ T δ

k }.

Practically, the division of Th can be defined by exploiting specific features of
the problem and the triangulation (easy for structured grids) or using general
algorithms (see e.g. [6] for a survey).
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Now, we can define the local matrices Ak and restrictions Rk. Let Aδ
k be the

FE matrix arising from assembling the element matricesAE for E ∈ T δ
h . Then Ak

will be the matrix arising from Aδ
k by incorporating homogeneous Dirichlet type

boundary conditions on the inner boundary ∂Ωδ
k \ ∂Ω. Note that the boundary

conditions on the outer boundary ∂Ωδ
k ∩∂Ω are given from the solved boundary

value problem.
Let us denote

N δ
k = Nh ∩Ωδ

k, NB
k = Nh ∩ (∂Ωδ

k \ ∂Ω), Nk = N δ
k \NB

k ,

then the restriction Rk can be represented by a Boolean matrix with nonzero
elements only in the positions (ii), i ∈ Nk,

(Rk)ii = IDOF ,

where IDOF = 1 for the scalar problem and IDOF is 2x2 and 3x3 identity matrix
for 2D and 3D elasticity, respectively. The dimensions ofRk are nDOF ·card(Nk)×
nDOF · card(Nh), where nDOF is the number of degrees of freedom (DOF) per
node.

The local triangulations can be distributed over m processors of a parallel
computing systems and the construction and solution of the local problems with
Ak can be done in parallel. Frequently, the solution of subsystems is simplified,
e.g. by using an incomplete factorization of Ak.

For the parallel implementation of the CG method with any of the Schwarz
preconditioners (5) – (8), it is desirable to parallelize also the other necessary
operations, mainly the matrix-by-vector multiplication. To this end, we can use
a nonoverlapping decomposition of the set of nodes Nh and consequently the set
of the DOFs. Let

Nh =
m⋃
1

N ′
k, N ′

k ⊂ Nk ⊂ N δ
k

be such decomposition. Then due to extension of T 0
k to T δ

k , we can manage that
all nodes, which are neighbours of some node in N ′

k, belong to N δ
k . In this case,

the full row/column information concerning DOFs corresponding to the nodes in
N ′

k can be found in Aδ
k. It enables a parallel implementation of the matrix-vector

product. Note that the parallelization of the scalar products and vector updates
can use the same decomposition.

Up to now, we assumed a certain distribution of the triangulation over the
processors and parallel construction of the subproblems. Another approach, espe-
cially useful for the implementation of Schwarz methods in existing FE software,
consists in assembling the full matrix A and construction of Āδ

k according to

Āδ
k = RkAR

T
k .

Note that Aδ
k and Āδ

k differ only in diagonal terms corresponding to DOFs
associated with the nodes in NB

k .
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Let δ express the size of overlap, Hd = max diam{Ωδ
k} and the subproblems

are solved exactly. Then the efficiency of the preconditioner B1L is characterized
by

cond (B1LA) ≤ C(1 + δ−2) (9)

with C independent on Hd, h, δ. For the proof see e.g. [3] and the references
therein.

3 A Coarse Problem by Aggregation

The preconditioner B1L, involving only the local subproblems, is not numerically
scalable, i.e. its efficiency deteorates with an increasing number of subdomains,
cf. (9) with δ proportional to Hd. A remedy is to include a global subproblem
into the preconditioners, see (6) – (8).

If the triangulation Th is a refinement of a coarser triangulation TH , then it
is easy to define A0 as the FE matrix corresponding to the discretization of the
solved boundary value problem on TH and RT

0 as a natural interpolation given
by the embedding VH ⊂ Vh. The use of a coarser nested triangulation is efficient,
but has also several drawbacks: in many cases, it is impossible to define such
coarser triangulation; it is difficult to guarantee that the solution of systems with
A0 will be approximately as expensive as the solution of the local subproblems;
and finally, it is difficult to implement such two-level Schwarz preconditioners in
an existing FE software.

The above difficulties motivate an interest in coarse problems created alge-
braically from the information involved already in the FE matrix A correspond-
ing to Th. One of the simplest and efficient ways is to create A0 by aggregation
of DOFs [1], i.e. by dividing the set of nodes Nh into nonoverlapping groups,

Nh = G1 ∪ . . . ∪GN Gi ∩Gj = 0 for i �= j. (10)

Then, we can define

A0 =
(
a
(0)
ij

)
N×N

, a
(0)
ij =

∑
k∈Gi

∑
l∈Gj

akl , (11)

R0 = (rij)N×n , rij = 1 if j ∈ Gi, rij = 0 otherwise . (12)

For elasticity problems, we shall use the nodal blocks of DOFs, i.e. rij = IDOF

if j ∈ Gi and akl will be the appropriate nDOF × nDOF block of A.
The necessary information about aggregation is usually stored in one des-

tination vector d ∈ Rn, di = j iff j ∈ Gi. Then the implementation of the
prolongation and restriction is very easy and straightforward. It is also possible
to develop efficient algorithm for computation of A0 according to (11), even in
the case when the sparse structure of A0 is not known apriori and when A exists
only in the distributed form of Aδ

k, k = 1, . . . ,m.
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If diam{
⋃
E : some of vertices of E are in Gi} ≤ H and some additional

but natural assumptions are fulfilled, then

cond (B2LA) ≤ C(1 + h−1H + δ−2H2) . (13)

with C independent on Hd, H, h, δ. For the proof see [3], [8], [9]. The estimate
(13) indicates that the coarse problem created by aggregation can ensure the
numerical scalability.

Aggregation can be easily created on regular structured grids by regular
clustering. On unstructured grids, we can use several algorithms based on simple
matrix graph or more sophisticated ones based on the strength of couplings
between nodes, see e.g. [8].

4 Coarse Problems with Interfaces

The flexibility of aggregation technique allows also to introduce new variants of
the Schwarz method. Let us describe one of them, see [3].

Let T 0
k (k = 1, . . . ,m) define a nonoverlapping decomposition of Th, Ω

0
k is

the subdomain associated with T 0
k (see Section 2),

N0
k = Nh ∩ Ω̄0

k, N0B
k = Nh ∩ (∂Ω0

k \ ∂Ω), N IB
h =

m⋃
k=1

N0B
k .

Then we can define the local problems Ak by assembling the FE matrices for
the elements from T 0

k and incorporating the homogeneous Dirichlet boundary
conditions on ∂Ω0

k \ ∂Ω. The restriction Rk is defined by the inclusion (N0
k \

N0B
k ) ⊂ Nh.

The coarse global problem A0 is defined by an aggregationNh = G1∪. . .∪GN

which involves all nodes on N IB
h as single-element groups (if i ∈ N IB

h , then there
is k such that, Gk = {i}). DOFs associated with the nodes on N IB

h are presented
only in the coarse problem.

The efficiency of the corresponding additive two-level preconditioner B2L is
characterized by

cond (B2LA) ≤ 2(1− γ)−1 , (14)

where γ = cos(V0,W0) with V0 being the coarse space created by aggregation
and W0 being any direct sum complement of V0, i.e. Vh = V0 ⊕W0. See [3] for
the proof.

The advantages of the new method are the following: the local subproblems
are fully independent, the aggregation on the inner boundaries ∂Ω0

k \ ∂Ω are
determined in advance, the aggregation within ∂Ω0

k is independent on the other
subdomains and can be done independently. Moreover, this way of decomposition
induces favourable properties for the use of nonsymmetric hybrid preconditioner,
whose efficiency is independent of the number of local problems.



510 R. Blaheta et al.

5 Nonlinear and Nonsymmetric Preconditioners

The preconditioners (5) – (8) require to solve subproblems for implementation of
the operations gk = A−1

k wk . Although these subproblems are smaller than the
original problems, it is still inefficient to solve them exactly by direct methods.
Based on evaluation of numerical tests, we adopted the following strategy.

The matrices of the local subproblems Ak are replaced by an incomplete fac-
torization Fk = LkUk , and problems with Fk are solved instead of the original
subproblems. For the coarse subproblem, this procedure is not sufficient. There-
fore, we solve the problem A0g0 = w0 by inner CG iterations preconditioned by
an incomplete factorization F0 of A0 . The relative residual norm criterion with
ε0 = 10−1 is used for stopping the inner iterations.

The described strategy provides an approximate two-level preconditioner
B̃2L, that is a nonlinear mapping which represents some approximation to the
linear SPD preconditioner B2L. The use of the nonsymmetric hybrid precondi-
tioner BH or its inexact form B̃H implies a further violation of the standard
requirements for linear SPD preconditioner. Nevertheless, both B2L and B̃H can
be implemented to standard CG method or its flexible variant. The implemen-
tation in the flexible GPCG[s] with explicit orthogonalization to s ≥ 1 previous
search directions guarantees correctness and convergence of the procedure, see
e.g. [2].

6 Numerical Results

The efficiency of various preconditioners arising from implementation of the de-
scribed ideas can be compared by solving a model elasticity problem (plane
deformation) in Ω = 〈0, 2〉 × 〈0, 3〉 with pure Dirichlet boundary conditions
(∂ΩD = ∂Ω). The problem can be written as follows: Find u ∈ V ,

a(u, v) =
∫
Ω

(f1v1 + f2v2)dx ∀v ∈ V ,

where a is the bilinear form (3), f1(x1, x2) = f2(x1, x2) = 7.5 + 2.5x1 + 1.1x2.
The elasticity tensor C = (cijkl) has the following nonzero elements

ciiii = λ+ 2μ, ciijj = λ, cijij = cijji = μ

for i, j ∈ {1, 2}, i �= j. If E and ν denote the elasticity modulus and Poisson
ratio, then λ = Eν(1 + ν)−1(1− 2ν)−1 and μ = E(1 + ν)−1/2, respectively.

The problem is discretized by linear triangular FE on a uniform grid with
the mesh size h = 1/30. The local problems are given on subdomains Ωk =
〈0, 2〉 × 〈xk, xk+1〉 with overlap δ = 2h or zero overlap for the method with
interfaces on the coarse grid. The subproblems are solved exactly.

The required numbers of iterations for the accuracy ε = 10−3 and various
additive (AP) and hybrid (HP) Schwarz preconditioners can be seen in Table 1.
The hybrid preconditioners are used in nonsymmetric form in combination with
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Table 1. The numbers of iterations for the relative accuracy ε = 10−3. AP denotes
additive preconditioner (5,6) , HP denotes the hybrid preconditioner (7) + GPCG[1].

Number of subdomains
Type δ Coarse problem 2 4 8 16 24
AP 2h no coarse problem 20 47 25 56 34 77 47 111 56 138
AP 2h nested, H = 3h 8 13 8 13 8 14 8 16 9 18
HP 2h nested, H = 3h 6 10 6 11 6 12 7 13 8 16
AP 2h regular aggr. 2 × 2 15 35 17 37 18 41 20 45 20 47
HP 2h regular aggr. 2 × 2 11 23 12 26 12 27 13 27 14 30
AP 0 aggr. 2 × 2 + interf. 15 29 16 32 16 32 17 38 18 42
HP 0 aggr. 2 × 2 + interf. 8 16 8 18 9 18 9 21 9 22
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Fig. 1. Stabilization of the number of iterations due to coarse problems by aggregation
(left). ACG(p) denotes regular clustering of p3 nodes. Computing times for additive
preconditioners (right). The coarse problem should be balanced with the local ones.

GPCG[1]. The coarse problem uses either nested coarse triangular grid with the
mesh size H = 2h, aggregation with clustering 2×2 square macroelements or the
same aggregation with interfaces. For each number of subdomains, two columns
show the numbers of iterations for ν = 0.3 and ν = 0.49, respectively.

The efficiency of parallel solvers based on the CG method and additive
Schwarz preconditioners without and with coarse problem constructed by
aggregation can be seen from the diagrams in Figure 1.

The solved problem is a square footing benchmark. This 3D elasticity problem
with isotropic elastic material (E = 14.0MPa, ν = 0.3, ρ = 2.5 g cm−3) is defined
on a cuboid 100 × 100 × 40m. The boundary conditions include zero normal
displacements and zero tangential stresses on all sides with the exception of the
top one. A constant pressure is given on the central part (10 × 10m) of the
top side. One quarter (50 × 50 × 40m) of the symmetric problem domain is
discretized firstly into 80 × 80 × 80 equal bricks that are subsequently divided
into tetrahedral FE. The discretized problem has 1 594 323 DOFs and is solved
with a relative accuracy ε = 10−4.
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The parallel solution uses the additive Schwarz method with one-dimensional
decomposition of the domain up to 30 subdomains and a coarse problem created
by regular aggregation of 3 × 3 × 3 or 6 × 6 × 6 nodes. The computations are
performed on a Linux cluster consisting of 16 computing nodes with 2 × AMD
Athlon/2600GHz processors and 3 GB memory each. The nodes are intercon-
nected via Myrinet L9 2 Gb/s and Fast Ethernet networks.

7 Concluding Remarks

Our experience shows that the Schwarz preconditioners and methods can be used
for development of efficient and scalable parallel solvers at least when working
on smaller parallel computing systems. These methods are flexible enough for
balancing the computational load on the processors, adopting inexact solvers etc.
On the other hand, a special care should be devoted to physical or numerical
anisotropy, high Poisson ratio and similar difficulties.

The Schwarz technique with algebraic coarse problem created by aggregation
can be easily implemented into existing FEM software. Another implementation,
which starts with a FE grid decomposition and parallel assembling of the local
problems, is useful if the solved system must be several times updated. It is e.g.
the case of solving nonlinear problems.

Acknowledgement. The work is supported by the grant No. S3086102 of the
Academy of Sciences of the Czech Republic.
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Abstract. Solution methods for very large scale optimization problems
are addressed in this paper. Interior point methods are demonstrated
to provide unequalled efficiency in this context. They need a small (and
predictable) number of iterations to solve a problem. A single iteration of
interior point method requires the solution of indefinite system of equa-
tions. This system is regularized to guarantee the existence of triangular
decomposition. Hence the well-understood parallel computing techniques
developed for positive definite matrices can be extended to this class
of indefinite matrices. A parallel implementation of an interior point
method is described in this paper. It uses object-oriented programming
techniques and allows for exploiting different block-structures of matri-
ces. Our implementation outperforms the industry-standard optimizer,
shows very good parallel efficiency on massively parallel architecture and
solves problems of unprecedented sizes reaching 109 variables.

1 Introduction

Since their discovery [1] interior point methods (IPMs) have enjoyed well-deser-
ved interest and have been subject of intensive study which led to a development
of complete theory [2] and a thorough understanding of their implementation [3].
Interior point methods for optimization have a number of advantages. Depending
on the algorithm used they guarantee finding a solution of the problem in not
more than O(

√
n) or O(n) iterations where n is the problem dimension. In

practice they display a faster convergence suggesting that they enjoy O(log n)
complexity. But most of all, IPMs are reliable and can be implemented to provide
unprecedented efficiency when applied to solve very large scale problems. We
illustrate these features in this paper.

The bulk of work in every iteration of an interior point method is the solution
of an indefinite system of equations. This system is regularized [4] to guarantee
that an (indefinite) triangular Cholesky-like decomposition of it can be found.
There exists a vast body of literature about parallel Cholesky decomposition.
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Indeed, the method is often implemented to exploit block-operations and all
independent operations are executed on different processors.

To increase the degree of parallelism in the implementation of Cholesky
factorization one looks for such an ordering of a sparse matrix which concen-
trates nonzero entries in independent blocks and if possible limits the fill-in to
these blocks. Very large scale optimization problems by their very nature dis-
play block-structure. It is a consequence of the way how these problems are
modelled. Models of engineering problems commonly involve indexing variables
over discretizations in several dimensions hence they replicate few generic blocks.
Such blocks are usually loosely coupled, and the word “loosely” translates into a
high degree of sparsity displayed by matrices involved. Examples of such models
include features such as:

– dynamics: inter-temporal connections are spread over a long horizon,
– uncertainty: scenarios are induced by stochastic (event) tree, or
– spatial distribution: functions are discretized over their domains.

We have developed a structure-exploiting optimization code called OOPS
(Object-Oriented Parallel Solver) [5, 6, 7]. OOPS is an implementation of the
pri-mal-dual interior point method which uses all recent algorithmic advances
(see http://maths.ed.ac.uk/~gondzio/parallel/solver.html).
It allows any block-structure of the optimization problem to be exploited by the
linear algebra operations of the interior point method. In this paper we illustrate
the parallel efficiency of this software. We apply it to a class of min-variance
portfolio optimization problems [6, 8]. These models are quadratic (or nonlinear
when higher order moments are used to measure risk). Stochastic programming
modelling techniques [9] are used and this leads to challenging optimization
problems which defy standard software.

The paper is organised as follows. In Section 2 interior point methods for
optimization are briefly explained. In Section 3 the linear algebra operations
involved by IPMs are discussed and exploiting block structure of matrices in
these operations is addressed. In Section 4 the object-oriented implementation
of linear algebra operations is briefly discussed and in Section 5 the formula-
tion of min-variance portfolio optimization problems is given. In Section 6 the
computational results are reported and in Section 7 the conclusions are given.

2 Interior Point Methods for Optimization

Developed over the last two decades, interior point methods have gained a strong
position in the area of optimization. They easily generalise from linear, through
quadratic to nonlinear programming and for all these classes of problems provide
efficient algorithms. In this section we discuss IPMs applied to convex nonlinear
programs and briefly comment on the simplified linear and quadratic models.
Next, we show how their implementation can take advantage of three particular
block-structures: primal and dual block-angular and bordered block-diagonal.
The reader interested in the theory of IPMs is encouraged to consult [2]; aspects
of their implementation for general problems are discussed in [3].
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Consider the convex nonlinear optimization problem

min f(x) s.t. g(x) ≤ 0,

where x ∈ Rn, and f : Rn )→ R and g : Rn )→ Rm are convex, twice differ-
entiable. Having introduced a nonnegative slack variable z ∈ Rm the inequality
constraint can be rewritten as an equation g(x) + z = 0. The inequality z ≥ 0 is
“replaced” by the logarithmic barrier terms giving the following barrier problem

min f(x)− μ
m∑

i=1

ln zi s.t. g(x) + z = 0

and the associated Lagrangian

L(x, y, z, μ) = f(x) + yT (g(x) + z)− μ
m∑

i=1

ln zi.

The first order optimality conditions for the barrier problem (conditions for a
saddle point of Lagrangian) have the following form:

∇xL(x, y, z, μ) = 0⇒ ∇f(x) +∇g(x)T y = 0
∇yL(x, y, z, μ) = 0⇒ g(x) + z = 0
∇zL(x, y, z, μ) = 0⇒ Y Ze = μe

(y, z) ≥ 0,

(1)

where Y = diag{y1, y2, · · · , ym} and Z = diag{z1, z2, · · · , zm}. Interior point
algorithm for nonlinear programming [2] applies Newton method to solve this
system of equations and gradually reduces the barrier parameter μ to guarantee
the convergence to the optimal solution of the original problem. The Newton
direction is obtained by solving the system of linear equations:⎡

⎣Q(x, y) A(x)T 0
A(x) 0 I

0 Z Y

⎤
⎦
⎡
⎣ΔxΔy
Δz

⎤
⎦ =

⎡
⎣−∇f(x)−A(x)T y

−g(x)− z
μe− Y Ze,

⎤
⎦ , (2)

where the matrices Q(x, y) = ∇2f(x) +
m∑

i=1
yi∇2gi(x) ∈ Rn×n and A(x) =

∇g(x) ∈ Rm×n are the Hessian of Lagrangian and the Jacobian of constraints,
respectively. After substituting Δz = μY −1e − Ze − ZY −1Δy in the second
equation we get[

−Q(x, y) A(x)T

A(x) ΘD

] [
Δx
−Δy

]
=
[
∇f(x) +A(x)T y
−g(x)− μY −1e

]
, (3)

where ΘD = ZY −1 is a diagonal scaling matrix. The matrix involved in this set
of linear equations is symmetric and indefinite. For convex optimization problem
(when f and g are convex), the matrix Q is positive semidefinite.
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If the variables x have a sign restriction (x ≥ 0) the above system contains
an additional primal scaling matrix ΘP = XS−1 and the indefinite matrix used
in (3) takes the form

H =
[
−(Q(x, y) +Θ−1

P ) A(x)T

A(x) ΘD

]
. (4)

In case of linear programming matrix A is constant and Q = 0 and in case of
quadratic programming matrices A and Q are constant. LP and QP problems
are usually formulated with the equality constraints and nonnegative variables
hence the corresponding reduced systems take forms

HLP =
[
−Θ−1

P AT

A

]
and HQP =

[
−(Q+Θ−1

P ) AT

A

]
,

respectively. To simplify notation in the rest of this paper we will drop arguments
of A(x) and Q(x, y) in (4) and use A and Q instead.

Standard approach [10, 11] requires 2 × 2 pivots be used in symmetric de-
composition of matrix H . In our implementation we follow [4] and regularize
matrix H to transform it to a quasi-definite matrix [12]. We add primal and
dual regularizations and obtain

HR =
[
−Q−Θ−1

P AT

A Θ−1
D

]
+
[
−Rp 0

0 Rd

]
,

where diagonal positive definite matrices Rp ∈ Rn×n and Rd ∈ Rm×m can be
interpreted as adding proximal terms to the primal and dual objective func-
tions, respectively. After this modification HR becomes quasi-definite hence
for any symmetric row and column permutation a triangular decomposition
HR = LDLT exists with diagonal matrix D. This matrix has exactly n neg-
ative and m positive pivots. Since 2 × 2 pivots do not have to be used, the
symbolic and numerical factorization phases can be split as in the positive def-
inite case. This is an important feature in the implementation of interior point
methods and it is essential for the implementation of structure exploiting linear
algebra techniques.

3 Linear Algebra for Block-Structured Matrices

There are many structures that could be exploited by an interior point solver. We
restrict our attention to those in which Hessian and Jacobian matrices are built
of blocks. The well-known elementary structures observed in Jacobian matrices
A are: ⎡

⎢⎢⎢⎢⎢⎣
A1

A2
. . .

An

B1 B2 · · · Bn B0

⎤
⎥⎥⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎣
A1 C1

A2 C2
. . .

...
An Cn

⎤
⎥⎥⎥⎦ ,
⎡
⎢⎢⎢⎢⎢⎣
A1 C1

A2 C2
. . .

...
An Cn

B1 B2 · · · Bn B0

⎤
⎥⎥⎥⎥⎥⎦ , (5)
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and represent a primal block-angular, dual block-angular and row and column
bordered structure, respectively. However, many real-life problems have more
complicated nested structures that embed those and other elementary blocks.
We assume that Hessian matrix Q has a closely related structure induced by the
column partitioning of A.

The corresponding matrix H can be reordered leading to structures which
can be exploited by a parallel factorization. Suppose, for example, that the aug-
mented system matrix has the symmetric bordered block-diagonal structure.

H =

⎡
⎢⎢⎢⎢⎢⎣
H1 GT

1
H2 GT

2
. . .

...
Hn G

T
n

G1 G2 · · · Gn H0

⎤
⎥⎥⎥⎥⎥⎦ , (6)

where Hi ∈ Rni×ni , i = 0, ..., n and Gi ∈ Rn0×ni , i = 1, ..., n. Under the con-
dition that H is quasi-definite (and we assume that it has been regularized
to satisfy this condition), we can obtain a Cholesky-like block decomposition
H = LDLT , where

L =

⎡
⎢⎢⎢⎢⎢⎣
L1

L2
. . .

Ln

Ln,1 Ln,2 · · · Ln,n L0

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣
D1

D2
. . .

Dn

D0

⎤
⎥⎥⎥⎥⎥⎦

and

Hi = LiDiL
T
i (7a)

Ln,i = GiL
−T
i D−1

i (7b)

S = H0 −
n∑

i=1

GiH
−1
i GT

i = L0D0L
T
0 . (7c)

This decomposition can be used to compute the solution to the system Hu = b,
where u = (u1, . . . , un, u0)T , b = (b1, . . . , bn, b0)T by the following sequence of
operations:

zi = L−1
i bi, i = 1, . . . , n (8a)

z0 = L−1
0 (b0 −

n∑
i=1

Ln,izi) (8b)

yi = D−1
i zi, i = 0, . . . , n (8c)

u0 = L−T
0 y0 (8d)

ui = L−T
i (yi − LT

n,iu0), i = 1, . . . , n (8e)
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Note that blocks Ln,i do not have to be stored. This leads to obvious memory
savings: blocks Ln,i are computed because they contribute to the Schur comple-
ment matrix S in (7c) but they do not have to be stored any longer. This also
results in time savings, since the multiplications with blocks Ln,i and LT

n,i in
equations (8b) and (8e) are executed as sequences of less expensive operations
using the following formulae:

Ln,izi = GiL
−T
i D−1

i zi = Gi(L−T
i D−1

i zi),
LT

n,iu0 = D−1
i L−1

i GT
i u0 = D−1

i L−1
i (GT

i u0).

Consequently, these operations have complexity O(nz(Gi)+nz(Li)) rather than
O(nz(Ln,i)) and it is usual to expect that nz(Ln,i)� nz(Gi) + nz(Li).

The block factorization H = LDLT together with computations (7) and (8)
are therefore an implicit representation of the inverse of H .

Apart from the above mentioned efficiency gains the use of a block implicit
inverse facilitates the parallelisation of the calculation. Indeed most of the two
operations: computing the symmetric decomposition (7) and using it for solv-
ing system of equations (8) will parallelise trivially. The sums in (7c) and (8b)
require parallel communications, while operations involving L0 and D0 (namely
factorization of S and the L−1

0 , L−T
0 operations in (8b, 8d)) have to be performed

on all processors.
We conclude this section by giving examples of reordered matrices H for the

three common structures mentioned earlier. The reordering preserves symmetry,
that is we apply the same permutation to block-rows and block-columns ofH . To
simplify the presentation we have made three assumptions: (i) Jacobian matrices
A in (5) have only two diagonal blocks, (ii) Hessian matrices Q have block-
diagonal structures induced by the block-column partitions in A, and (iii) the
(2, 2) block in H is zero.

Primal Block-Angular Structure
Blocks of H have been permuted following the reordering {1, 3; 2, 4; 5}.

H =

⎡
⎢⎢⎣

⎤
⎥⎥⎦ , PHPT =

⎡
⎢⎢⎣

⎤
⎥⎥⎦

Dual Block-Angular Structure
Blocks of H have been permuted following the reordering {1, 4; 2, 5; 3}.

H =

⎡
⎢⎢⎣

⎤
⎥⎥⎦ , PHPT =

⎡
⎢⎢⎣

⎤
⎥⎥⎦
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Row and Column Bordered Block-Diagonal Structure
Blocks of H have been permuted following the reordering {1, 4; 2, 5; 3, 6}.

H =

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ , PHPT =

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

4 Object-Oriented Implementation

As shown in the previous section block-structured matrices can be reordered by
permuting blocks to such forms which offer an advantage for parallel computa-
tions. Many real life problems have more complicated structures which include
a nesting of elementary block-structures. The nested block-structure of a matrix
can be thought of as a tree. Its root is the whole matrix and every block of a
particular sub-matrix is a child node of the node representing this sub-matrix.
Leaf nodes correspond to the elementary sub-matrices that can no longer be
divided into blocks. With every node of the tree we associate information about
the type of structure this node represents. This tree determines the order and
type of linear algebra operations needed by the interior point algorithm.

The design of OOPS follows object-oriented principles, treating the blocks
(and sub-blocks) of matrices as objects [7, 5]. We use a Matrix interface that
defines all linear algebra methods needed for an interior point algorithm such
as Factorize, solveL or solveLt. The interface also provides all operations re-
quired for a given Matrix object to become a sub-matrix in the nested structured
matrix. In such case Matrix object is accessed by the Matrix object correspond-
ing to its ancestor in the tree defining the nested structure.

Several specialised classes provide concrete implementation of the Matrix
interface, each exploiting a different possible structure such as for example primal
block-angular, dual block-angular, bordered block-diagonal, rank corrector as well

iA

iB

iC

iA

R

Rank corrector

implementation

RankCorrector

D

iA

iC

iB

y=Mtx

y=Mx

SolveLt
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PrimalBlockAngMatrix
Factorize

factorization

Implicit

DualBlockAng

factorization
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linear algebra
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Fig. 1. The matrix interface and several implementations of it
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as a standard dense matrix or sparse matrix. The implementing classes can be
classified as either leaf-node classes such as DenseMatrix or SparseMatrix or
the complex classes, such as PrimalBlockAng, DualBlockAng, RankCorrector or
BorderedBlockDiag (see Figure 1). The design of OOPS library is based on the
assumption that an efficient implementation of all methods for a complex class
can be reduced to a sequence of methods performed on its constituents [7, 5].
The top-level class here does not need to know the exact type of its constituent
objects nor whether they themselves are of leaf-node or complex type, it merely
needs to know that they support the methods of the interface and assumes that
they do so in a way most efficient for their particular structure. Summing up,
OOPS re-creates the structured matrix tree with a tree of Matrix objects.

5 Large-Scale Portfolio Optimization Problems

To demonstrate the efficiency of OOPS we have applied it to solve a class of
portfolio optimization problems. We follow a description of these problems given
in [9] and consider extensions [13] which allow for higher order moments to be
incorporated into the model (for more details see [6, 8]).

We consider investment of an initial wealth b into assets j = 1, . . . , J with
uncertain returns. We allow the portfolio be be rebalanced at discrete times t =
1, . . . , T and we want (i) to maximize the expected final wealth of the portfolio
at time T , and (ii) to minimize the associated risk. The standard formulation of
this problem leads to Markowitz portfolio optimization problem [14, 15].

The stochastic process is approximated by a discrete distribution and mod-
elled as an event tree. With each node of the tree i we associate the time stage
t it belongs to, the ancestor node a(i), and the list of successor nodes (children)
which belong to the next time stage t+ 1. The probability of reaching node i is
denoted by pi and it is equal to the product of probabilities associated with all
arcs in the the event tree leading from the root node to node i.

At every node i and for each asset j we define three variables xh
i,j , x

b
i,j and

xs
i,j which denote the amount of asset held, bought and sold, respectively. The

inventory constraint for an asset i writes:

(1 + ri,j)xh
a(i),j = xh

i,j − xb
i,j + xs

i,j , ∀i �= 0, j, (9)

where ri,j is the return associated with a branch (arc of event tree) connecting
ancestor node a(i) with i. The budget constraint imposes an equality of cash
inflow from selling assets and cash outflow for buying new assets:∑

j(1 + ct)vjx
b
i,j =

∑
j(1− ct)vjx

s
i,j ∀i �= 0∑

j(1 + ct)vjx
b
0,j = b,

(10)

where vj is a unit price of asset j and ct is a transaction cost. This constraint
takes a simplified form for the root node i = 0 where one can only purchase
assets of total value equal to the initial budget b.
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In the standard approach the wealth is measured by an expected value of the
final portfolio converted into cash

y = IE((1 − ct)
J∑

j=1

vjx
h
T,j) = (1− ct)

∑
i∈LT

pi

J∑
j=1

vjx
h
i,j , (11)

where LT denotes the subset of nodes in the event tree which belong to the
terminal stage. It is common to use the variance of return as a risk measure:

r = Var((1− ct)
J∑

j=1

vjx
h
T,j) =

∑
i∈LT

pi[(1 − ct)
∑

j

vjx
h
i,j − y]2. (12)

The min-variance portfolio minimizes the aggregate objective of the form y−λr
which combines two criteria into a single one and uses an arbitrary parameter λ
to express the wealth-risk trade-off. The larger the λ the more attention is paid
to risk hence more of safe assets are selected into the portfolio.

Summing up, the standard multi-stage Markowitz portfolio optimization
problem consists in minimizing y − λr subject to constraints (9), (10), (11)
and (12). Models require all decision variables xh

t,j , x
b
t,j , x

s
t,j be nonnegative and

may impose additional constraints on portfolio selection. This standard model
leads to a quadratic programming problem. It is a challenging problem because
the event tree corresponding to a multi-stage problem is usually very large (it
grows exponentially with the number of stages). Various extensions to the stan-
dard model which do not change the underlying structure were given in [6, 8].

6 Numerical Results

In this section we present computational results of our approach.
We have compared the performance of OOPS with that of the commercial

code CPLEX 9.1. Since we do not possess a parallel CPLEX license these results
are from runs on a serial 3GHz Linux PC with 2GB of memory. We summarize
our findings in Table 1. As can bee seen OOPS needs consistently less memory
than CPLEX. CPLEX actually fails to solve problem C70 due to running out
of memory (OoM). In this case we give an estimate solution time based on the
number of flops reported from its symbolic Cholesky factorization. The small-
est problem C33 is solved slightly faster by CPLEX, while for larger problems
OOPS becomes much more efficient than CPLEX. We demonstrate the paral-
lel efficiency of our code on a massively parallel environment. All computations

Table 1. Comparison of OOPS with CPLEX 9.1

prob vars cons f.s.d. CPLEX 9.1 OOPS
time mem time mem

C33 168.451 57.274 33 292 497MB 344 156MB
C50 382.801 130.153 50 1361 1.3GB 828 345MB
C70 745.651 253.522 70 (5254) OoM 1627 664MB
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were performed on the BlueGene (BlueSky) service at Edinburgh Parallel Com-
puting Centre (EPCC). This machine has 1024 nodes each of which comprises 2
IBM-PowerPC-440 processors running at 700Mhz and 512MB of RAM. In our
experiments we run the machine in co-processor mode, that is the two processors
on each node are split into a computing and a communicating unit, with all the
memory available to the computing unit.

On the BlueGene service the memory is local to each node. A problem that
just solves on the available memory on n processors is therefore likely to run out
of memory on n/2 processors. To circumvent this difficulty we present our results
in two series of problems. The first comprises the biggest problem we have been
able to solve on BlueGene: an ALM problem with 6 stages arranged in an event
tree of dimension 128x24x16x10x5x4 resulting in a total of 12.831.873 scenarios
considered. This problem has just over 500 million variables. When solved on
1024 nodes, each node works with a decision tree of dimension 3x16x10x5x4 or
12532 scenarios, leading to a sparse system matrix of size 175.448× 488.748. We
have solved variations of this problem A16 through A1024 on 16− 1024 nodes
where each node works with the same sub-tree as for the big problem, but the
total problem has fewer first stage decisions (f.s.d.).

For completeness we have also included the details of our largest problem
in the series solved at all (B1280). This example has a slightly larger event
tree and almost twice as many variables per scenario as A1024. Due to larger
memory requirements it could not be solved on BlueGene, but was solved on
the 1600 1.7GHz-processor HPCx service instead. Due to limited allocation of
computing resources on this system we are unable to provide further details for
this problem. Problem sizes for this series are summarized in Table 2. Columns
nz(A), nz(L) are the numbers of nonzeros in the system matrix and the implicit
inverse of the augmented system, respectively. Column peak Mem is the peak
Memory used per node by our implementation. As can be seen the number of
nonzeros in the implicit inverse grows linearly in the problem size and hence
the memory per node stays roughly the same. The memory increase for higher
number of processors is due to the local O(nodes2) memory requirements of
communication routing tables.

Table 3 gives run times for the first 20 iterations of each problem. Due to
the changing topology of the scenario tree between problems our IPM takes dif-

Table 2. Problem Dimensions

Prob f.s.d. constraints variables nz(A) nz(L) peak Mem
A16 2 2.806.987 7.819.462 15.638.922 118.774.704 260MB
A32 4 5.613.959 15.638.884 31.277.766 237.549.408 260MB
A64 8 11.227.903 31.277.728 62.555.454 475.098.816 264MB
A128 16 22.455.791 62.555.416 125.110.830 950.197.632 264MB
A256 32 44.911.567 125.110.792 250.221.582 1.900.395.264 268MB
A512 64 89.823.133 250.221.582 500.443.086 3.800.790.528 276MB
A1024 128 179.646.223 500.443.048 1.000.886.094 7.601.581.056 292MB
B1280 128 352.875.799 1.010.507.968 2.021.015.944 18.869.419.008 661MB



Direct Solution of Linear Systems of Size 109 Arising in Optimization 523

Table 3. Solution Statistics and breakdown by parts of algorithm

Prob nodes time(20iters) peak mem/node generation communication rest
A16 16 1815 260MB 6 26 1783
A32 32 1845 260MB 12 51 1782
A64 64 1911 264MB 23 102 1786
A128 128 2050 264MB 45 206 1799
A256 256 2289 268MB 89 416 1784
A512 512 2797 276MB 178 825 1794
A1024 1024 3818 294MB 361 1666 1791
B1280 1280 1139 (HPCx) 661MB - - -

Table 4. Second series of results

nodes peak Mem time Comm Cholesky Solves MatVectProd
16 426MB 2587 (1.00) 24 1484 (1.00) 956 (1.00) 28.8 (1.00)
32 232MB 1303 (0.99) 13 743 (1.00) 485 (0.98) 18.0 (0.80)
64 132MB 688 (0.94) 6 377 (0.98) 270 (0.88) 13.0 (0.55)

128 84MB 348 (0.93) 3 187 (0.99) 139 (0.86) 9.0 (0.40)
256 56MB 179 (0.90) 3 93 (0.99) 73 (0.82) 5.8 (0.31)
512 46MB 94 (0.86) 2 47 (0.98) 39 (0.76) 3.9 (0.23)

ferent numbers of iterations to reach optimality. We have therefore truncated
our benchmark runs after 20 iterations. We have also ensured that the same
numbers of centrality correctors were used in each runs, so that results are
comparable. The largest problems A1024 and B1280 are solved to optimality
in 45 and 53 iterations respectively. To interpret the results note that in the
setup of this series the calculations done on each processor for (7, 8) are the
same for all the problems. Computation time should therefore not increase with
problem size. Indeed this is demonstrated by the results where the only time
increase is due to (not entirely parallelisable) problem generation and parallel
communications.

Our second series of experiments comprises a 64x24x16x10 decision tree
problem, resulting in a total of 271.936 scenarios and a system matrix of size
3.807.119 × 10.605.544. This problem is solvable within the available mem-
ory on 16 nodes, while the tree architecture should enable efficient paralleli-
sation to up to 512 nodes. As can be seen in Table 4 the algorithm parallelises
well, reaching a parallel efficiency of 0.86 on 512 compared with 16 processors.
If the time spent by the algorithm is broken down, we see that communica-
tions and problem generation (not reported because it was below 1s) are less
of an issue than for the first series due to smaller problem size. The factor-
ization parallelises virtually perfectly (the only non-parallel bit, the factoriza-
tion of S being negligible). The backsolves (8) parallelise fairly well, while the
worst efficiency is obtained from matrix vector products (mainly needed to ob-
tain primal-dual residuals), but these do not contribute much to the overall
performance.
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7 Conclusions

We have demonstrated in this paper that block-structure of matrices can be
exploited by an interior point algorithm. IPMs work with indefinite systems
which can be transformed to quasi-definite ones by adding regularization terms.
After this transformation an arbitrary symmetric reordering of the indefinite
matrix can be used and a symmetric decomposition can be computed which
does not need 2× 2 pivots be used. Hence full advantage of the block-structure
in the matrix can be taken and by exploitation of block-operations a high degree
of parallelism can be achieved. Indeed, we have demonstrated that a modern
implementation of interior point method run on massively parallel computer
displays good parallel efficiency. Eventually, this allowed us to solve optimization
problems of dimensions reaching one billion variables.
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Abstract. The rational fraction number system is proposed to solve the
algebraic problems in FPGA devices. The fraction number consists of
the n-bit integer numerator and the n -bit integer denominator, and can
represent numbers with 2n bit mantissa. Experimental linear equation
system solver was developed in FPGA device, which implements the
recursive conjugate gradient method. Its hardware arithmetic unit can
calculate addition, multiplication, and division of fraction numbers with
n=35 in a pipelined mode. The proposed unit operates with the band
matrices with the dimensions up to 3500.

1 Introduction

Field programmable gate array (FPGA) is considered to be an excellent com-
putational raw for hardwired applications in digital signal processing (DSP),
communications, control, multimedia data computing, etc. Modern FPGA de-
vices provide millions configurable gates, and millions bits of built in memories,
which can operate at the frequencies up to hundreds of MHz. FPGA platforms,
which intended for DSP applications, provide tenths and hundreds of techno-
logical areas (islands), each of them has hardware multiplier and long product
accumulator. As a result, such FPGA calculator has the peak throughput more
than 100 billion operations per second.

Linear algebra problem solving becomes the important part of the modern
DSP applications, such as adaptive filtering, curve interpolation, system para-
meter estimation, signal back propagation problem solving, rigid body dynamic
modeling, image improvement and others. The solving of such problems demands
high precision calculations. Therefore it is usually implemented using single and
double precision floating point numbers. That is why linear algebra problems are
usually solved in PC and floating point DSP microprocessors. Such calculations
are realized in DSP microprocessors with fixed point arithmetic units (AU) very
rare, mainly for solve very small problems (matrix dimensions are usually not
higher than 10).

Modern high volume FPGAs give the opportunity to build the highly
pipelined floating point AUs with double precision, such as described in [1], [2].

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 526–533, 2006.
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However, the disadvantages of such AUs are comparatively high hardware vol-
ume and pipelining delays. Therefore such FPGA processors hardly compete
with the widely used floating point microprocessors.

FPGAs can provide the very precise fixed point number representation up
to hundreds of bits. But till now the efforts to solve the linear algebra problems
in FPGA are very rare. Really, long word adders can add and subtract large
integers very quickly in them. Their high speed can be supported by pipelining.
But hardware multipliers for such long words occupy much of chip area. For
example, 64 to 64 bit multiplier is built from sixteen 16 to 16 bit hardware
multiply units.

In the usual DSP algorithms the division operation is very rare. On the con-
trary, in the linear algebra algorithms the division is frequently used operation.
Moreover, this operation is the source of large calculation errors. The hardware
dividers are more complex than multipliers in modern FPGA, because such an
n-bit divider consists of n adder-subtractor stages. Therefore, some approaches
were used, which are based on the division free algorithms. As the example,
in [3], the parallel device for QR-decomposition algorithm, which is based on
Givens rotations, was implemented in FPGA.

Among many linear algebra methods and algorithms the conjugation gra-
dient method is famous due its features, for example, minimum computational
complexity (operation amount) for the sparse and band matrix solving and full
convergence to the exact solution for less than n iterations (where n is the matrix
dimension). Besides, this method uses mostly the convolution operation, vector
multiply and add, like to most DSP algorithms. It needs less than 2n division
operations and none operation like square rooting. But the most disadvantage
of this method consists in that, that its termination is guaranteed only if all cal-
culations are implemented without errors. Therefore this method is used rarely,
because the floating point operations do not provide the needed precision [4]. If
the precision problem will be solved, than this method would be very useful for
many DSP applications.

In this paper, the rational fraction number system is proposed to implement
the conjugate gradient method in FPGAs. Such system was already used in the
configurable DSP processor, represented in [5], where the example of the Toeplitz
matrix problem solving was shown. Then the FPGA-based processor is described
which solves linear equation systems with sparse band matrices. The behavioral
model description of this processor is represented, which has provided the depen-
dency search between the problem dimension and needed data bit widths. The
processor was configured in FPGA, and showed its high effectiveness.

2 Fraction Number Calculations

Fraction number is the numerical object, which consists of integer numerator and
integer denominator. Its name proves that such fraction represents any rational
number. Rational numbers are the real numbers, which are derived, for example,
as a results of linear equation solutions, or integer polynomial divisions.
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Rational fraction a/b has the feature, that it can approximate the given
irrational or transcendental number x. If the fraction a/b is less than x, and the
fraction c/d is higher than x, then the fraction (a+ c)/(b+ d), named medianta,
is nearest to x than these fractions. Therefore, if a set of mediantes is built, then
we can to approximate the number x with any precision.

If the noninteger number x is represented by 2n digits with the error eps1,
then it can be represented by the fraction a/b with the error eps2 = eps1,
and the numbers a and b have no more than n digits in their representation
[6]. The fraction number representation has a set of advantages. Firstly, any
binary fraction is depended on the binary data representation, and not exactly
represents the real number. The floating point number in binary representation is
equal to the fraction, which denominator is the power of two, and it is not equal
to the respective decimal fraction because it has the denominator which is equal
to power of ten. For example, the number 1/9 = 1/10012 is the exact fraction
in any numeric system, and can be represented with a error as the decimal
fraction 0.111110 or binary fraction 0.111000111000112. Secondly, the rational
fractions help to find the irrational or transcendental number approximation
with the given precision. Many elementary functions are effectively calculated
by proper rational approximation formulas. Many constants and constant tables
are effectively stored as rational numbers. And thirdly, rational fractions provide
comparatively simple set of arithmetical operations. The multiplication a/b to
c/d and division of them are equal to ac/(bd), and bd/(ac), respectively. Note,
that the division of the numerator to the denominator is not calculated. Addition
of them is equal to (ad+ bc)/(bd). For comparison of two numbers it is enough
to calculate ad − bc. Moreover, in the rational fraction number system, it is
necessary to take into account, that the numerator and denominator bit number
is more than two times less than the bit number of integers, which provide the
equal precision. Therefore, the hardware complexity of the fraction adder is near
the complexity of the integer multiplier with the same precision, and the fraction
multiplier complexity is two times less than the integer multiplier complexity.

In seventies, the main hardware implemented operation in mini - and mi-
crocomputers was addition. The floating point operations were implemented as
subprograms which performed a lot of clock cycles. To speed up the calculations,
in that time, the rational fractions were proposed to substitute the floating point
numbers. The main disadvantage of rational fractions is that the bit number in-
creases dramatically when operations are implemented precisely. Therefore, to
eliminate of this disadvantage, the division of numerator and denominator to
their greatest common divisor was made, as in the rational fraction processor,
which was proposed in [7]. But when the floating point coprocessors became
widely used, the fractional number processors became out of sight.

Then the rational fractions were built in many mathematical CAD tools like
Maple, which are implemented in PC. Such fractions are widely used for calcula-
tions with unlimited precision, for solving modern cryptographic problems and
others. Therefore, such languages as PERL and Java are supported by packages
providing unlimited precision calculations. For this purpose in [8] a new standard
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of data representation is proposed, named composite dates. These dates among
integers and floating point numbers include rational fractions as well.

To solve many mathematical problems the high precision AU are needed.
For example, the linear equation systems with sparse and band matrices is ef-
fectively solved by the conjugate gradient method. But the only disadvantage of
this method consists in that that its convergence is assured, when all the calcu-
lations are made precisely [4]. Therefore this method could not be implemented
when the single precision floating point is used. Note, that all floating point DSP
microprocessors have the built in single precision floating point AU, and could
not calculate the double precision floating point numbers effectively. In this situ-
ation the rational fraction calculations can have the high effectiveness. Below the
rational fraction effectiveness for the conjugate gradient method implementation
is shown.

3 Conjugate Gradient Method Modeling

To prove the rational fraction number effectiveness, the linear equation solving
by the conjugate gradient method was modeled using VHDL simulator. Firstly,
the package FractLib.VHD was designed, in which the type of fraction FractV
was declared. The object of this type consists of two binary vectors of the length
m. In this package, the functions of addition, subtraction, multiplication and
division of fractions are described, which overload the respective operations of
the VHDL language. The type ArrayFR1 represents the vector of fractions, the
constant NIL represents the zeroed fraction, the function FractReal translates
the fraction into the real number.

Then the VHDL program was designed, which loads the initial dates and
solves the linear equation system. The diagonal matrix A of the system is sym-
metric, positively defined one, and is represented by the arrays a0, a1, a2 of its
diagonals. The left column of the linear system, and unknowns are represented
by the vectors b, and x. The multiplication of the matrix A to the column p is
implemented in the procedure MATRxVECT. The conjugate gradient method
is implemented in the following process.

process
variable k:natural:=0;
variable x,r,p,w:ArrayFR1(1 to n);
variable pap,eps1,alpha,beta:FractV;

begin
wait for 1 ns;
xf:=(others=>NIL); r:=b; epsi:=NIL;
for i in r’ range loop eps1:=eps1+r(i)*r(i); end loop;
loop

k:=k+1;
if k=1 then p:=r;
else



530 O. Maslennikow, V. Lepekha, and A. Sergyienko

beta:=eps1/eps2;
for i in p’ range loop p(i):=r(i)+beta*p(i); end loop;

end if;
MATRxVECT(a0,a1,a2,p,w);
pap:=NIL;
for i in p’ range loop pap:=pap+p(i)*w(i); end loop;
alpha:=eps1/pap; eps2<=eps1; eps1:=NIL;
for i in x’ range loop

x(i):=x(i)+alpha*p(i); r(i):=r(i)-alpha*w(i);
eps1:=eps1+r(i)*r(i) ; x(i)<=FractReal(x(i));

end loop;
sqe<=(SQRT(FractReal(eps1)/real(n)));
wait on clk;
exit when sqe<1.0e-4;

end loop;
report ’’End of calculation’’ severity failure;

end process;

This process is similar to the algorithm which is represented in [4]. All the
dates are represented by m bit fractions, and the resulting vector x is the vector
of real numbers. The array A is constant one, and the array b is randomized
one. When the process is running, for the first nanosecond the input dates are
initialized, then on the each clock edge - the one iteration of the algorithm is
performed. The calculations are stopped, when the quadratic mean error sqe
is less than the given threshold. To control the results the similar process is
running, but with the double precision real dates.

The result of the modeling is the dependence between the fraction bit number
m and the maximum array length n when the convergention process is stable.
The derived dependence is shown in the fig.1. Analysis of this dependence shows
the following rule of thumb: each data width increase to 2 digits provides the
twofold increase of the maximum problem dimension. Extrapolating of the de-
pendence line shows that the data width 52 and 64 can provide the solving the
problem of dimension n = 1 mln., and 60 mln. respectively. The given threshold

Fig. 1. Dependence between the fraction data width (m) and the maximum array
length (n)
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of the number sqe provides 4-5 true decimal digits of the result, which is enough
for most of DSP applications.

4 FPGA-Based Processor for Realization of the
Conjugate Gradient Method

To prove the effectiveness of the conjugate gradient method calculations us-
ing rational fractions the FPGA - based processor was designed. The proces-
sor consists of pipelined AU, memory blocks and control unit, which generates
proper address sequences. The algorithm calculations are based on vector mul-
tiplication and addition of weighted vectors. Therefore, the basic operation is
multiplication and addition of data streams: P = AX + Y. The designed AU
structure is shown on the fig.2. Here the indexes n and d sign the numerator
and denominator of the fraction. The processor is implemented in the Xilinx
Virtex2-Pro XC2VP4 device, which has built-in 18 bit width multiply units and
18 kilobit dual port RAMs. The fraction bit width was selected, which is equal
to 35. This width provides the maximum problem size 3500. But the memory
size of the selected FPGA device provides maximum vector length 1024. The
samples in the matrix A are represented by 18 bit integers. When this matrix
is multiplied, then these integers are expanded to full 35 bits of numerators
and 35 bits of denominators. In such a manner the needed memory volume is
minimized.

Each multiplier unit (MPU) consists of four multiplication units and three
adder stages. The normalizer shifts left both numerator and denominator of
operation result to the equal bit number to prevent of significant bit disappear

Fig. 2. Internal structure of the proposed AU
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Table 1. Comparison of the designed AU with double precision floating point AUs

AU parameter Proposed AU AU in [1] AU in [2]∗

Hardware volume: slices 1005 4625 2825
multiplier units 20 9 9

Pipeline stages 9 34 13
Maximum clock frequency 138 120 140

∗ division is not implemented

after multiplication. First and second normalizer shift the dates up to 7 and 15
bits respectively. To calculate the division, the operands A and X are substituted
to each other and operand Y is equal to zero.

In the table 1 the performance of designed AU is represented and is compared
with the double precision floating point AUs, which are implemented in similar
FPGA devices.

The project comparing shows that the proposed AU has high throughput and
minimized configurable hardware volume which is in 2.8 - 4.6 times less than in
AUs for similar purpose.

To implement the algorithm, usually less than n iterations are needed, each
of them consists of l ∗ n cycles of matrix multiplication, 5n cycles of the vector
multiplication and addition, and 2 divisions (not to take into account the pipeline
loading and flushing). The solving of the equation system with the matrix A of
dimensions n=1024 and the band width l=5 lasts about 77 milliseconds. The
approximate throughput of this processor is equal to 270 Mflops.

5 Future Work

When configuring the designed processor in new Virtex4 FPGA devices, its speed
will be increased approximately in two times, and the hardware volume will be
decreased dramatically because such device supports the 35 bit multiplication
and product accumulation on the structure level.

The above throughput can be also increased in the parallel system consist-
ing of q designed processors (processor nodes). Each processor node in the such
system calculates the 1/q - th part of the algorithm using the band mining tech-
nique. Each of them can store the whole matrix A to minimize the interprocessor
communications. One of the node gathers the intermediate results, and sends the
variables eps1, alpha and beta to each processor node. They are the only inter-
processor communications, and they could not spend much time. Therefore the
speedup of the parallel processor is approximated by q.

One modern FPGA chip, such as Xilinx XC4VSX55 can contain up to q = 25
processor nodes. And such system can provide up to 15000 Mflops. Note, that
this device can contain only 8 nodes, described in [2] due to their higher hardware
complexity.
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6 Conclusions

The rational fraction number system has the advantages that it provides higher
precision than integers do, and is simpler in its FPGA implementation than the
floating number system.

The most advantages the rational fractions get in the modern FPGA im-
plementation due to small hardware volume, high throughput, possibility to
regulate the precision by selecting the data width. The VHDL modeling showed
the possibility of use such data representation in solving linear equations by the
conjugate gradient method, and showed the dependency between the data width
and the maximum problem dimensions.

The experimental project of the linear equation solver showed its high th-
roughput and small hardware volume in comparison with the processor based on
the floating point AU. The system of q such processor in a single FPGA device
can increase the throughput in q times, where q can be equal to 25 for modern
FPGA devices. Besides, the rational fraction calculations can get profit, when
the algorithms are implemented in fixed point DSP microprocessors, because
they are much simpler than floating point calculations and provide the needed
precision for many DSP applications.
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Abstract. We discuss a parallel preconditioner for the algebraic sys-
tems of equations arising from Newton-Raphson linearization and finite
element (FE) discretization of stabilized formulation for the highly non-
linear Stokes equations. We compare SSOR/Jacobi and FSAI(1)/Jacobi
preconditioners for the parallel MINRES accelerator implemented us-
ing C++/OpenMP. Results are presented for SGI Altix 3700 and IBM
Power4 machines. As an example a simulation of the compression test of
the rigid-viscoplastic material is shown.

1 Introduction

Steady-state metal forming process, as considered in the work compression test,
can be effectively modeled as a steady flow of viscoplastic material. Assuming the
incompressibility of metallic material, the Galerkin method results in mixed FE
formulation where the velocity u and the pressure p fields are approximated sep-
arately. Such a method requires fulfilling of the Brezzi-Babus̆ka condition for the
convergence and unique solvability. This condition imposes severe restrictions on
the choice of the combinations of velocity and pressure spaces, which, in conse-
quence, prohibits the use of convenient, equal-order finite elements. Therefore,
the stabilized FE method is applied to avoid limitations arising from the use of
classical Galerkin method.

The main goal of the paper is developping an efficient method for the sequen-
tial and parallel solution of the linear equations system arising from linearization
and discretization of stabilized formulation of the nonlinear Stokes problem.

2 Physical and Computational Model

2.1 Strong Form and Constitutive Model

Let the deformed material is represented by the two or three-dimensional domain
Ω with a boundary Γ = ∂Ω, where Γ = ΓD ∪ ΓN. Strong form describing
equilibrium conditions for the incompressible material, in domain Ω, with proper
boundary conditions on Γ , has the form:{

∇ · σ = ∇ · s−∇p = 0 on Ω n · σ = t on ΓN

∇ · u = 0 on Ω u = ut on ΓD,
(1)

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 534–541, 2006.
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where σ is the Cauchy stress tensor, s the deviatoric stress of σ, u is the velocity
of the material, p = − 1

3σkk is hydrostatic pressure in the material, ut the velocity
specified on ΓD and t the traction specified on ΓN.

Due to the large deformations during a compression test, elastic strains are
neglected and the rigid-viscoplastic constitutive model is applied: s = 2ηε̇
where ε̇ = 1

2

(
∇u + (∇u)T

)
, ε̇ is strain rate tensor and an effective viscosity

η is described by the Norton-Hoff law [8]:

η(ε̇i) = K
(√

3ε̇i
)m−1

ε̇i =
√

2
3 ε̇ : ε̇ σi = K

√
3 m ∈ [0, 1], (2)

where ε̇i is an intensity of strain rate and σi is stress intensity. Hence one has
obtained the Stokes problem with nonlinear velocity-dependent viscosity.

2.2 Friction Model

Friction on the surface between the material and a tool is described by velocity-
dependent model of Chen and Kobayashi [1]. It defines a friction stress as:

t = −mK
[ 2

π arctan
(us

α

)]
where constant α ≈ ‖us‖

104 , (3)

where us is relative velocity between the material and the tool and m is a friction
factor. Such defined friction is a nonlinear function with respect to the velocity
and has significant influence on the convergence of the procedure of linearization.

2.3 Stabilized Weak Form

The Petrov-Galerkin method for viscoplastic flow, that leads to the SUPG for-
mulation [3], was presented for the first time in [4]. Applying the SUPG method
for the strong form (1) results in the following stabilized weak form:
Find (u, p) ∈ V ×Q such that :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

s : ε̇dΩ −
∫
Ω

p∇ · v dΩ =
∫
ΓN

t · v dΓN ∀v ∈ V0∫
Ω

q ∇ · u dΩ +
∑

K∈Th

∫
K

τ∇q · ∇p dK =
∑

K∈Th

∫
K

τ∇q · (∇ · s) dK ∀q ∈ Q

(4)
where function spaces are defined as: V = H1(Ω)d (d = 2 or 3), Q = H1(Ω),
V0 = {v ∈ V : v|ΓD = 0} and Ω =

⋃
Th
K is a triangulation of Ω. According to

[4], the stabilization coefficient τ is taken as τ = 10−1h2
K

2η where hK = diam (K).
Following [4], a local reconstruction of deviatoric stress tensor in element

nodes is applied to calculate the right-hand side of the 2nd equation in (4) for
higher order elements. The deviatoric stress tensor components are reconstructed
to be a continuous variables, in a local sense, using an L2 projection and then
can be expressed in terms of nodal quantities and FE shape functions.
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2.4 Linearization and Discretization

The system (4) is nonlinear with respect to the velocity u. For simplicity, the
last right-hand side term of the 2nd equation is not linearized and it is treated
as an additional force term acting on the system. Such simplifications allows to
avoid computing of complicated derivatives. Similarly, in contrast to work [4] the
stabilization coefficient τ is considered as a constant which results in symmetric
bilinear form and implies symmetric matrix of the linear system. Thus, one can
use efficient iterative methods based on short three-term recurrences.

The Newton-Raphson method is used for linearization of the system (4). After
linearization, discretization and symmetrization, the linear system is obtained:

A ·
[
δu
p

]
=
[
A BT

B S

]
·
[
δu
p

]
=
[
f
g

]
. (5)

Submatrices and vectors appearing in the system have the following forms:

A =
∂

∂u

⎛
⎝∫

Ω

s : ε̇dΩ −
∫
ΓN

t · v dΓN

⎞
⎠ B = − ∂

∂u

∫
Ω

q∇ · u dΩ

S = −
∑

K∈Th

∫
K

τ∇q · ∇p dK f =
∫
ΓN

t · v dΓN −
∫
Ω

s : ε̇dΩ

g =
∫
Ω

q∇ · u dΩ +
∑

K∈Th

∫
K

τ∇q · (∇ · s) dK.

2.5 Improving the Convergence of the Linearization

The Newton-Raphson method is quadratically convergent to the solution if initial
solution is sufficiently close to the actual one. Three different methods are used
together to overcome instabilities and to accelerate the convergence:

– generation of an initial velocity field based on the specimen geometry and
imposed boundary conditions [8];

– subincrementation method [8] — a new velocity field is calculated as un+1 =
un+γ ·δun+1 where coefficient γ ∈ [0, 1.1] is selected to minimize the residual
norm ‖R(xn + γ · δxn+1)‖ of the solved equations system;

– progressive linearization [4] — starting from linear constitutive model, in
successive linearization steps, the constitutive model is progressively made
more nonlinear.

2.6 Time Step

Having calculated a new solution (un, pn) of (4) one can perform one time step
of the compression test. New coordinates xn of the nodes (mesh distortion) are
obtained by time integration due to one-step θ-approximation scheme:

xn = xo + δt [θun + (1 − θ)uo] θ ∈ [0, 1], (6)

where δt is a time step and index o indicates solutions from the previous step.
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3 Numerical Properties of Tangent Matrix

Considered linear system (5) expresses the discrete linearized Stokes problem
with the block symmetric matrixA, where submatrix A is the tangent matrix for
linear (with respect to v) form a(u;v) =

∫
Ω s(u) : ε̇(v) dΩ−

∫
ΓN

t(u) ·v dΓN, B is

a discrete divergence operator, BT — a divergence’s adjoint — discrete negative
gradient operator and S is a sum of discrete negative Laplacian operators on
elements level.

Matrix B is full-rank matrix except that the vector p = [1, . . . , 1]T , represent-
ing constant hydrostatic pressure, belongs to ker(B). Author proves in [7] that
the bilinear form ∂a(u;v)

∂u is coercive on V0 which implies that A is a symmetric
positive definite (SPD) matrix. Matrix S is a symmetric negative semidefinite
(−S is SPD matrix).

4 Solution and Preconditioning Methods

Following the discussion in [2], we propose to apply a MINRES method with
block-diagonal preconditioner of the form:

M =
[
P 0
0 Q

]
, (7)

where submatrices P and Q are both SPD and are the preconditioners respec-
tively for submatrices A and S. As it was proved in [2], the convergence of the
preconditioned MINRES method is essentially determined by the quality of the
preconditioner P.

We decided to use the following preconditioners:

– Q = −μMJ(S), where MJ is the Jacobi preconditioner for submatrix S and
μ is positive scaling constant;

– P = MSSOR(A), where MSSOR = (DA +ωLA)D−1
A (DA +ωLT

A) is the SSOR
preconditioner for submatrix A; submatrices DA and LA are respectively:
diagonal and strictly lower part of A;

– P = MFSAI(A), where MFSAI(A) is Fast Sparse Approximate Inverse pre-
conditioner (FSAI) for matrix A.

Tests performed for several choices for Q showed that the best results were
obtained for simple Jacobi preconditioner with the coefficient μ = 0.05.

The first choice for the preconditioner P is the SSOR preconditioner. The
main advantage of this preconditioner is such that it does not require any ad-
ditional memory — all preconditioning operations can be performed using the
stored values of matrix A. The main disadvantage of the SSOR preconditioner
is a need of solving two triangular systems for each preconditioning operation,
which makes these operations very difficult to parallelize. However, in sequential
computations, the SSOR preconditioner turned out to be the most effective with
respect to the calculation time (for parameters ω ∈ [1.5− 1.7]).
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The second choice for the preconditioner P is the FSAI preconditioner [5].
For a given SPD matrix A, this metod gives an approximate inverse H = GT G
of matrix A. G is a sparse lower triangular that approximates L−1 (where A =
LLT ). To construct G one has to prescribe a selected sparsity pattern SL ⊆
{(i, j) : 1 ≤ (i < j) ≤ n} and then a lower triangular matrix G can be computed
by calculating G = DĜ where Ĝ is the solution of:

(ĜA)ij = δij (i, j) �∈ SL and D = diag(Ĝ)−1/2. (8)

The main advantages of FSAI metod in comparison to the SSOR are such that:

– preconditioning operation can be performed fully parallel (two sparse matrix-
vector multiplications),

– each row of matrix G can be computed independently: calculation of com-
ponents of G can be performed completely parallel (each row requires the
solution of a relatively small dense SPD linear system of size equal to the
number of nonzeros in that row).

On the other hand, there are two drawbacks of the preconditioner of that type:

– one has to prescribe the sparsity pattern a priori,
– there is a necessity of use of additional memory for storing matrix G (in the

case of parallel computations — also for GT ).

We decided to use the preconditioner FSAI(1) for which a sparsity pattern of
matrix G corresponds to the sparsity pattern of the lower triangular part of ma-
trix A. Additionally, after the computation of G, a sparsification postprocessing
is performed by using dropping strategy to reduce the number of nonzeros of the
preconditioner factors. It results in decreasing the computational complexity of
preconditioning operation.

5 Implementation

2D/3D FE solver for simulation of compression tests is implemented in an object-
oriented manner using C++ language [6, 7]. Continuous velocity/continuous
pressure finite elements are used: P1/P1, Q1/Q1 and Q2/Q1 in 2D, and Q1/Q1
in 3D. Parallelization of the code is performed using OpenMP environment which
minimizes the necessary implementation changes of the sequential code.

6 Numerical Examples

Experimental tests are performed on two supercomputers:

1. IBM Power4 p655 (Regatta) — global shared memory cluster, each node
consists 4 chips (2× IBM Power4 1.5GHz + 1.44MB L2) and 32MB L3, 13
nodes connected using IBM High Performance switch, 16GB RAM;
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(a) Speedup (b) Efficiency (c) Time for different sizes
of meshes

Fig. 1. Results for the SSOR version of the preconditioner on the Regatta computer

(a) Regatta: Speedup (b) Cobalt: Speedup

(c) Regatta: Efficiency (d) Cobalt: Efficiency

Fig. 2. Results for the FSAI(1) version of the preconditioner

2. SGI Altix 3700 (Cobalt) — ccNUMA architecture (SGI NumaFlex/SGI Nu-
maLink, dual plane fat-tree topology), 48 Itanium 2 1.3GHz and 96GB RAM.

All the tests concern the execution of the initial two time steps of compression
test of metallic cube of dimension 15×15×15mm. Highly nonlinear rigid-plastic
constitutive model (sensitivity coefficient in Norton-Hoff equation m = 0) is
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(a) Number of MINRES iterations
for each Newton-Raphson iteration

(b) Average number of MINRES it-
erations for Newton-Raphson pro-
cedure

Fig. 3. Comparison of iteration numbers for different preconditioners (Regatta, the
first time step of compression)

used. Flow stress curve σi = 20 + 370 ε0.38
i MPa and the friction factor m =

0.5 is applied. The constant tool velocity equal 1mm/s is assumed. Structural
homogenous hexahedral meshes with isotropic division (5, 7, 10, 12, 15, 17, 20
and 25 elements in each direction) are used.

Results obtained for the solver using the SSOR preconditioner with overre-
laxation parameter ω = 1.7 are presented in Fig. 1. Results obtained for the
version with FSAI(1) preconditioner are presented in Fig. 2.

One time step of the compression needs carrying out the Newton-Raphson
linearization which implies solution of several linear systems. Fig. 3(a) shows
number of MINRES iterations needed for solution of these system for the first
time step (mesh 15× 15× 15, friction m = 0.5). Fig. 3(b) shows average number
of iterations needed for solution one linear system for different sizes of problem.

7 Conclusions

– Results presented in Fig. 1 confirm that the SSOR preconditioner is very
inefficient in the case of parallel calculations. Maximal speedup (equal ap-
proximately 2.1 for 8 processors) can be observed for the largest problem
size. Such unacceptable low efficiency is a consequence of relatively high
serial fraction coefficient which is approximately equal 0.4− 0.45 [7].

– Results obtained for the solver with implemented FSAI(1) preconditioner are
much better (Fig. 2). The general observation is that the larger size of the
problem, the higher speedup. It is a consequence of more balanced partition
of work between processors. For all the test one achieves efficiency above
50%. In the case of the Regatta machine — even much higher.

– The differences observed for both computers can be explained by different
architecture of the network layer connecting processors and memories and
also by different strategies of the assignment of resources for particular com-
putational tasks.
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– For tests with smaller number of used processor one can observe the satura-
tion of speedup. Such trends for test with greater number of used processors
show a possibility of obtainment better efficiency and speedup for problems
of larger size. This is a consequence of good scalability of the solver.

– Comparison of computing time necessary for solving the problem by solvers
with different preconditioners shows the predominance of the SSOR method,
that runs nearly two times faster. It is a consequence of the absence of a
very time consuming stage as the building sparsity pattern and calculating
coefficients of the FSAI preconditioner is. However, the superiority of the
FSAI preconditioner in the case of parallel computation is clearly evident.

– In the future work we are going to modify sparsity pattern by increasing
the number of nonzeros of the FSAI preconditioners to obtain a better in-
verse approximation of submatrix A. We hope, it results in decreasing of
the number of needed to convergence iterations of Krylov method what in
consequence gives faster solver.
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Abstract. This paper shows methodology, which enables profiling
macro data flow graphs (MDFG) that represent computation and com-
munication patterns for the Finite Difference Time Domain (FDTD)
problem in irregular computational areas. MDFG optimization is per-
formed in three phases: simulation area partitioning with generation of
initial MDFG, macro data nodes merging with static load balancing to
obtain given number of macro nodes and communication optimization to
minimize (balance) inter-node data transmissions, computational cells re-
deployment to take into account computational system restrictions. Effi-
ciency of computations for several communication systems (MPI, RDMA
RB, SHMEM ) is discussed. Experimental results obtained by simulation
are presented.

1 Introduction

There are many numerical problems that can be characterized by unstructured
[9], coarse grain and non-deterministic communication and data patterns. In or-
der to obtain a satisfactory execution time in case of such applications, data
decomposition scheme should be specially designed and adopted to the architec-
tural requirements. As an good example of unstructured problem, considered in
this paper, we present a simulation of electromagnetic wave propagation in irreg-
ular computational area (CA) - Finite Difference Time Domain (FDTD). Such
problems can be also found in many aspects of numerical algebra or VLSI layout
design. In most on these problems, computational dependencies can be given by
data flow graphs. In order to execute them in parallel they must be partitioned
into sub-graphs assigned to processors. There are many methods that enable
graphs partitioning (NP-complete problem [4]) but generally two kinds of such
methods are distinguished: direct techniques [6] (mainly based on min-cut opti-
mization) and iterative improvement techniques [6][7][8][5][2] (extension of the
algorithms proposed by Kernighan-Lin and improved by Fidducia-Mattheyses
(FM )[3]). Generally, the problem discussed in the paper concerns an extension
of the FM algorithm that can be applied to partitioning of the macro data flow
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graphs representing the computations of the FDTD problem. In [12] we presented
an optimization method that produces statically balanced macro data flow graph
representing FDTD computations in irregular simulation area assuming negli-
gible inter-node communication cost due to specific RDMA communication. In
this paper, we extend the algorithm by optimizing a given MDFG for differ-
ent characteristics of communication system with non-negligible communication
cost. The algorithm optimizes total program execution time by redeployment
of elementary computations among macro data flow nodes, which provides bal-
anced communication and computation costs in the entire FDTD program. The
paper is composed of four parts. In the first part, the formulation of the FDTD
problem and its solution according to the macro data flow paradigm is described.
The second part presents a brief description of two main operations: macro node
partitioning and merging, which are used in the first part of the optimization
algorithm. The next part shows an MDFG optimization method that transforms
given macro data flow graph taking into consideration executive system restric-
tions. Experimental results of this optimizations are discussed in the last part
of the paper.

2 FDTD Implementation Based on the Macro Data Flow
Paradigm

The Finite Difference Time Domain method (FDTD) enables simulation of high
frequency electromagnetic wave propagation by solving Maxwell equations (1).

∇×H = γE + ε∂E
∂t , ∇× E = −μ∂H

∂t
(1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
H

n

y (i, j) = H
n−1
y (i, j) +RC · [En−0.5

z (i, j − 1)− En−0.5
z (i, j + 1)]

H
n

x(i, j) = H
n−1
x (i, j) +RC · [En−0.5

z (i− 1, j)− En−0.5
z (i+ 1, j)]

E
n

z (i, j) = CAz(i, j) · E
n−1
z (i, j) + CAz(i, j) · [H

n−0.5
y (i+ 1, j)+

+H
n−0.5
y (i− 1, j) +H

n−0.5
x (i, j − 1) +H

n−0.5
x (i, j + 1)]

(2)

Simulated area is a two dimensional, irregular shape, see Fig. 1. Before sim-
ulation, a whole CA is transformed into a physical mesh. In a two dimensional
FDTD problem, the mesh consists of a specified number of points which con-
tain alternately electric component Ez of electromagnetic field and one from two
magnetic components Hx or Hy (depending on coordinates). After transforma-
tions of two Maxwell equations (1) into a differential form (2), we can formulate
dependencies between Ez, Hx and Hy components. The value of Ez is dependent
on values of four nearest magnetic field components (Hx and Hy). To calculate
the value of magnetic component, we require two nearest electric field compo-
nents. Computational process is divided into a given number of steps. Each step
is divided into two substeps: first - the value of all Ez is computed and later -
the values of Hx and Hy are computed. If the shape of computational area is
regular (e.g. rectangular), the whole computational process can be easily par-
allelized (e.g. by stripe or block partitioning of the computational area). In the
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Fig. 1. Irregular computational area with its MDFG for two computational steps

case of an irregular shape of computational area such decomposition is more
complicated. It is because we have to take into consideration both a proper load
of all processing nodes and the minimal number of data transmissions. To solve
this problem, we have implemented the FDTD method program according to
a macro data flow paradigm. At first, we created a data flow graph of compu-
tations to show basic data dependencies. Next, we use a merging algorithm to
define macro nodes (Mpn, where p is a processor number, a n is a simulation
sub-area number). It is described in details in [12]. The computation macro data
flow graph (for two computational steps) for the hypothetical simulation area is
shown in Fig. 1. Each computations step in each sub-area is represented by one
macro node. A macro node can be executed only if all external input data have
arrived to the physical processor on which this macro node has been mapped.
Data dependencies are given by edges that connect macro nodes. All edges are
weighted by the amount of data, which will be sent from one macro node to
another. It directly depends on the length of the boundary line between two ad-
jacent sub-areas, which correspond to Mpx, and Mpy. Each Mp produces results,
which will be sent to another Mps when its computations are finished.

3 Macro Data Flow Graph Optimization

Our algorithm enables designing optimized program macro data flow graphs for
the FDTD method, which provide execution time reduction. It consists of three
steps: simulation area partitioning, macro nodes merging and computational
cells redeployment. We do not apply here any geometrical analysis of compu-
tational area - it is completely based on the data dependencies existing in the
computational FDTD mesh. The first step enables creating set of ”germs” of
macro nodes (GMN ). GMNs are created in the following way: we choose a given
number of leader points from the mesh of physical points and next we ”stick”
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all the nearest physical points to the leader point. One leader point represents
one macro node. We tested several methods choosing of leaders as described in
[12]. It allows to obtain an initial macro data flow graph that can be used for
further optimizations. The number of GMN is significantly bigger then available
number of computational nodes (processors). For that reason, in the second step
we merge chosen GMN to reduce the number of total GMNs. We also tested
several merging criteria that enable both decreasing total communication time
and balancing computation node. Both of these steps are described in details
in [12]. After execution of these two steps we obtain statically optimized macro
data flow graph that represents FDTD computation in given simulation area.
”Static” means that graph optimization is independent and does not consider
the architecture of the given executive system.

4 Load Balancing by Cell Redeployment Between Macro
Nodes

In the next step of our optimization algorithm, we transform the program macro
flow graph described in previous parts [Fig. 1], so as to reduce program execution
time by load balancing in executive processors for given system configuration.
First, a given MDFG should be transformed into a MNCG (Macro Node Com-
munication Graph). The MNCG describes data dependencies between all macro
nodes, which occurred in the MDFG graph during execution of all steps of the
FDTD algorithm. The structure of a MNCG [Fig. 2a] is simpler than that of a
MDFG [Fig. 1], because it represents its ”concentrated” image of data dependen-
cies. We identify in the MNCG the set of all cliques. A clique is a set of all macro
nodes that are directly connected by edges with one, ”central” macro node, see
Fig. 2b. The general idea of the optimizing algorithm is based on equalizing exe-
cution time among all cliques, so as to minimize a difference between the average
execution time of each step in the MDFG and the average execution time AvgEx-
Time(i) of all macro nodes in each clique i. The AvgExTime(i) is computed as
the average of sums of computation and communication costs (time) of all macro
nodes belonging to clique i. In order to balance AvgExTime(i) for all cliques, we
will redeploy (move) subsets of computational cells between cliques. The maxi-
mal amount of computations to be deployed in a sub-set is determined by the
difference between AvgExTime(i) and average execution time of one step in the
MDFG, Fig. 2b. The whole redeployment phase is governed by execution time
analysis. Our optimizing algorithm takes into consideration relations between
computer system architecture and the macro data flow graph that represents a
computation scheme for a given wave propagation area. There are three input
parameters to the algorithm: a macro data flow graph, the speed of processor
node (we assumed a homogenous system) and the speed of available commu-
nication system. At first, the set of all cliques for MDFG is generated. For all
generated cliques, a maximal clique execution time is computed and all cliques
are marked as unlocked for redeployment. Next, we determine two cliques, one
with the biggest and one with the smallest value of (Bclique-CMp0 ) and we
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Fig. 2. Redeployment operation scheme

determine (Sclique-CMp7 ), the average execution time. For the two chosen
cliques, a redeployment algorithm is performed. It consists of several steps exe-
cuted in sequence. In the first step, we compute differences between the average
execution time of a single step in a given MDFG and the execution time (the
sum of computation and communication times) of each node from Bclique and
Sclique. Based on these differences, we compute a total cost difference that can
be moved between Bclique and Sclique. In the next step, we find a pair of macro
nodes, which will be used in redeployment operation - Mp1 and Mp6. Next, we
extract the sets of computational cells, which will be moved between macro nodes
Mp1 and Mp6. The number of cells strictly depends on the maximal acceptable
part of the execution cost, which can be changed to balance the execution time
of Bclique and Sclique.

In the next part of the algorithm, we find the best path between chosen
macro nodes. Our algorithm is a modification of the Dijkstra’s Shortest Path
algorithm (DSPA) [10]. In order to assure that the communication overhead
will not be increased during the redeployment operation, we have modified a
relaxation operation that is the most important element of the DSPA. In the
standard DSPA algorithm, all nodes in a given input graph are weighted by the
distance of one distinguished node - so-called source node (Mp1 node in our
case). The weight of a node depends on the weights of all input edges of the
node and all predecessor nodes. It is updated during the relaxation operation
successively executed for all nodes on the path from node Mp1 to Mp6, see
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Fig 2c. In our algorithm, the relaxation scheme is identical as in the standard
one, but the weight of node k is determined by the following equation:

weight(nodek) = Min (weight(nodei) + redep(nodei, nodek))
forall predecessorsof nodei

(3)

where: nodei is a predecessor of nodek; weight(nodei) is equal 0; redep(X,Y ) -
the number of Ez cells moved from node Y to node X that caused an increase
of communication cost between these nodes.

The weight of the node k on the redeployment path determines the num-
ber of cells that have induced growth in communication cost up to reaching the
node k in redeployment. If we have found a path between nodes Mp1 and Mp6
with weight(Mp6)=0, it means that if we use this path during redeployment op-
eration, the communication volume will not increase. If the 0-weight path has
not been found, we know that it is impossible to redeploy a required number of
cells without a growth in communication volume and we must reduce the num-
ber of moved cells. After that, the move cells operation is performed for each
consecutive pair of macro nodes on the path connecting Mp1 and Mp6. In this
operation, all computational cells are successively moved [Fig. 2d] through all
consecutive macro nodes belonging to the redeployment path. If after the move
of cells weight(Mp6)¿0, it means that the number of cells has been reduced and
redeployment between Bclique and Sclique must be repeated. After redeploy-
ment operation, we again compute a new value of the execution speedup of
the MDFG, which corresponds to the re-balanced MNCG. If the speedup has in-
creased, we can validate the last, just tested redeployment operation. Otherwise,
last redeployment is cancelled and two given cliques are locked. If redeployment
for two chosen cliques was not successful (the total graph execution speedup did
not increase), the cliques are marked as locked and they will not be used in next
optimization steps. The optimization algorithm will complete in the following
cases:

1. All cliques are marked as locked - it is not possible to perform any new
redeployment operation.

2. The CliqueB parameter equals one, where CliqueB is a value that determines
clique balance in the MNCG graph, computed from the following equation:

CliqueB =
absolute(L− S)

total number of cliques
(4)

where L (S ) is the number of cliques whose maximal execution time is larger
(smaller) than the average execution time for the MNCG.

If none of these conditions is met, next two cliques are chosen and redeploy-
ment step is repeated.

5 Experiment Results

Algorithms described above have been implemented and tested for different
shapes of simulation area and for nine system configurations. We introduce a
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simple architectural model [1] for a homogenous multiprocessor system, which
is described by two values: CompSpeed (processor computational speed) and
CommSpeed (communication performance). In our experiments we have defined
9 types of systems based on various combinations of values of CompSpeed and
CommSpeed, determined by the type of the communication facility applied in a
system:

Symbol CompSpeed of a single node CommSpeed between two nodes
FF Fast - 1 GFlops Fast - Shared memory
FM Fast - 1 GFlops Medium - RDMA RB
FS Fast - 1 GFlops Slow - MPI
MF Medium - 0.3 GFlops Fast - Shared memory
MM Medium - 0.3 GFlops Medium - RDMA RB
MS Medium - 0.3 GFlops Slow - MPI
SF Slow - 0.02 GFlops Fast - Shared memory
SM Slow - 0.02 GFlops Medium - RDMA RB
SS Slow - 0.02 GFlops Slow - MPI

First, we have analyzed values of CliqueB for different system configurations,
Fig. 3a. The CliqueB value is measured when a redeployment operation was suc-
cessful. For small number of processors (64) CliqueB achieved 1 almost for all
configurations. It means that for all cliques, the maximal execution time is either
smaller or larger than the average execution time of the MDFG. Further opti-
mization in this case is not possible. If value of CliqueB is close to 0, it means
that the number of cliques, which can be used in the redeployment algorithm,
is large enough to expect a successful optimization. It means that CliqueB esti-
mates possible adaptation of a MNCG for execution on a given computer system.
In Fig. 3b, the speedup of macro data flow graph execution is presented. We can
observe that independently on the number of processors and on the efficiency of a
single computation node, with or without redeployment of computational nodes,
the best speedup was obtained for the computational systems with shared mem-
ory (FF, MF, SF ) and in two cases with RDMA RB [11] communication (MM,
SM ). For small number of processors (32) almost the linear speedup is obtained.

It is because, in all of these cases inter-node communication cost was almost
negligible. Nevertheless, for configurations with 64 and 256 processing nodes
speedup decrease can be observed. It can be explained by larger number of com-
putational nodes that entails increase of the number of communications that
must be serialized in each computational step. Slightly worse speedup was ob-
tained for a system with RDMA RB communication and with fast computation
nodes (FM ). In this case, the relation between computational and communi-
cation parameters of the system does not match program requirements. It is
especially visible in the case of systems with slow communication where some-
times the speedup decreased dramatically. It happened only for configurations
FS, MS, whereas for SS the speedup is similar to the configuration with shared
memory.
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Fig. 3. a) CliqueB for various computational system configurations, b) MDFG execu-
tion speedup versus single node execution for various computational system configura-
tions

6 Conclusions

A methodology presented in the paper enables designing and profiling macro
data flow graphs that represent computation and communication patterns for
the FDTD problem solved for irregular wave propagation areas. The macro data
flow graph is created in two phases, computational area partitioning and merg-
ing. After that, it is transformed into a macro node communication graph and
load balancing optimization is performed. We defined nine system configurations
with different combinations of computational node speed and communication
system efficiency (MPI, RDMA RB, SHMEM ). It was shown that our MNCG
transformation strategy could optimize execution speed of FDTD applications
with success dependent on system features. This work was sponsored by internal
grants of the PJIIT and ICSPAS.
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Abstract. The aim of this paper is to show that the recently developed
high performance divide and conquer algorithm for finding trigonomet-
ric sums can be applied to improve the performance of the Talbot’s
method for the numerical inversion of the Laplace Transform on modern
computer architectures including shared memory parallel computers. We
also show how to vectorize the first stage of the Talbot’s method, namely
computing all coefficients of the trigonometric sums used by the method.
Numerical tests show that the improved method gives the same accuracy
as the standard algorithm and it allows to utilize parallel processors.

1 Introduction

The problem of the numerical inversion of the Laplace Transform arises in several
areas of scientific computing [1]. One of the most popular algorithm for solving
this problem is the Talbot’s method [9], which was efficiently implemented as
simple Fortran routines [5] for variety of computers. Unfortunately, sometimes
the algorithm requires a big number of function evaluations. Thus, it is clear that
the high performance algorithms for solving our problem should be designed. In
[3] one can find a parallel version of Talbot’s method which is based on the
Reinsch algorithm for computing trigonometric sums defined in terms of linear
recurrences, so such a code cannot be simply vectorized. In this paper we consider
a new parallel version of the Talbot’s method based on the recently developed
method for finding trigonometric sums which can be not only parallelized but
also vectorized what is essential for achieving reasonable performance of modern
processors [4].

2 Talbot’s Method

The idea of the Talbot’s method [9] for the numerical inverse of the Laplace
Transform

F (s) =
∫ ∞

0
e−stf(t)dt, Re s > σ0 (1)
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is to replace the Riemann inversion formula

f(t) =
1

2πi

∫
B

estF (s)ds, B - Bromwhich contour,

with the following integral formula

f(t) =
λeσt

2πi

∫ π

−π

eλtsν(θ)F (σ + λsν(θ))s′ν (θ)dθ, (2)

where λ, σ, ν are called geometrical parameters (chosen automatically by the
method) and sν(θ) = θ cot θ+ iνθ. Using the trapezoidal rule to find the approx-
imate value of (2) we conclude that the Talbot’s approximation to f(t) is given
by

f̃(t) =
λeσt

n

(ν
2
eλtF (σ + λ) + Sn(t)

)
, (3)

where

Sn(t) =
n−1∑
j=1

cj cosφj −
n−1∑
j=1

sj sinφj (4)

and
cj = eρj (αjγj − βjδj), sj = eρj (βjγj + αjδj) (5)

and θj = j π
n , ρj = λtj π

n cot(j π
n ), φj = λtνj π

n , F (σ + λsν(θj)) = αj + iβj ,
1
i s

′
ν(θj) = γj + iδj.
It is clear that the formula (4) is the central part of the method and usually

(see [5, 3]) the Reinsch algorithm for computing the following sums

C(x) =
n∑

k=0

bk cos kx and S(x) =
n∑

k=1

bk sin kx, (6)

is applied to find Sn(t). It can be summarized as follows [6]. We set Sn+2 =
Dn+1 = 0 and if cosx > 0 then we solve{

Sk+1 = Dk+1 + Sk+2
Dk = bk + uSk+1 +Dk+1

(7)

for k = n, n− 1, . . . , 0, where u = −4 sin2 x
2 . If cosx ≤ 0 then we solve{

Sk+1 = Dk+1 − Sk+2
Dk = bk + uSk+1 −Dk+1

(8)

where u = 4 cos2 x
2 . Finally, we compute

S(x) = S1 sinx and C(x) = D0 −
u

2
S1. (9)

Note that in case of the Talbot’s method, namely for computing Sn(t), it is
necessary to use the Reinsch method twice. Firstly to compute

∑n−1
j=1 cj cosφj

and then to find
∑n−1

j=1 sj sinφj .
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The “standard” Reinsch algorithm is equivalent to the problem of solving
a second order linear recurrence system, which is rather difficult to parallelize
and vectorize. The parallel version of the Reinsch algorithm has been presented
in [3], but it cannot be vectorized, because each processor executes a scalar
(non-vectorized) code based on (7) or (8).

3 New Improved Method

In [7] we have introduced a new algorithm for computing trigonometric sums (6)
(based on the high performance algorithm for solving linear recurrence systems
[8]) and discussed its implementation using the operations AXPY and COPY from
the Level 1 BLAS [4]. Unfortunately, it is efficient only for huge values of n, so
it cannot be applied to improve the overall performance of the Talbot’s method.
In this paper we will show how to improve its performance, thus let us briefly
present the method. For the simplicity, let us assume that the number n can be
factorized as n = pq and set

xk =
{
Sn−k/2� for k = 1, 3, . . . , 2n− 1
Dn−k/2 for k = 2, 4, . . . , 2n ,

fk =

⎧⎪⎪⎨
⎪⎪⎩
bn for k = 1
bn−1 − δbn for k = 2
0 for k = 3, 5, . . . , 2n− 1
bn−k/2 for k = 4, 6, . . . , 2n

(10)

and

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−u 1
δ −1 1

δ −u 1
δ −1 1

. . . . . . . . .
δ −u 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ IR2n×2n

with

δ =
{
−1 for cosx > 0
1 for cosx ≤ 0

The solution of (7–8) is equivalent to the solution of the system Lx = f , where
x, f ∈ IR2n. First we find the solution of the block system of linear equations

L(q)(z1, . . . , zp) = (f1, . . . , fp) (11)

where L(q) ∈ IR2q×2q is a sub-matrix of L built from its first 2q rows and columns
and fj = (f2(j−1)q+1, . . . , f2jq)T . Next we compute S1 and D0 applying

(
S1
D0

)
= z

′′
p −

p−1∑
j=1

Mp−jz
′′
j , (12)
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where z
′′
j denotes two last entries of zj and the columns of

M =

(
y
(1)
2q−1 y

(2)
2q−1

y
(1)
2q y

(2)
2q

)
∈ IR2×2

are built from two last entries of the vectors y1 = (y(1)
1 , . . . , y

(1)
2q )T and y2 =

(y(2)
1 , . . . , y

(2)
2q )T which satisfy

L(q)y1 = (δ,0, . . . , 0)T
, L(q)y2 = (−1, δ,0, . . . , 0)T

. (13)

Fortunately, there is no need to solve the systems (13) explicitly. The numbers
y
(1)
2q−1, y

(1)
2q , y(2)

2q−1, y
(2)
2q can be easily computed using the following theorem.

Theorem 1 ([7]). For x �= kπ, k integer, two last entries of the vectors y1 and
y2 satisfy

y
(1)
2q−1 = (δ sin qx+ sin(q − 1)x) / sinx, y(1)

2q = δ cos qx+ cos(q − 1)x+
u

2
y
(1)
2q−1

y
(2)
2q−1 = − sin qx/ sinx, y

(2)
2q = − cos qx+

u

2
y
(2)
2q−1,

where u = −4 sin2 x
2 for cosx > 0 and u = 4 cos2 x

2 for cosx ≤ 0.

In [7] we have discussed the implementation of the algorithm. The values for
p and q should be chosen to minimize the number of floating point operations
(see [7]), thus we set q =

√
3n/2 and p = n/q. The matrix Z = (z1, . . . , zp)

can be found row-by-row using a sequence of calls to the operation AXPY and
this step can be easily parallelized. However, the use of AXPY and COPY as an
auxiliary routine leads to unnecessary data movements, namely after each call
to AXPY the result is stored in the main memory. Thus the performance of the
algorithm can be poor, especially for smaller values of n.

In order to improve the method, let us consider the special sparse structure
of the matrix F = (f1, . . . , fp) ∈ IR2q×p, namely

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

× 0 0 · · · 0 0 0
× × × · · · × × ×
0 0 0 · · · 0 0 0
× × × · · · × × ×
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 0
× × × · · · × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

It consists of 2q rows. Each odd row (except for the first one) comprises zero
entries, while the entries of k-th row (k even) are as follows:

fk, fk+2q, fk+4q, . . . , fk+2(p−2)q, fk+2(p−1)q.
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Using (10) we can observe that this row consists of the coefficients

bn−k/2, bn−k/2−q, bn−k/2−2q, . . . , bn−k/2−(p−2)q, bn−k/2−(p−1)q. (14)

Note that the last coefficient in the k-th row is bq−k/n and the first element in the
second is equal to bn−1−δbn. In case of the Talbot’s method, the coefficients (14)
are calculated using (5). It should be pointed out that the overall performance
of the algorithm can be improved when we vectorize (5). The system (11) can
be solved as follows. The solution overrides the matrix F . First we modify the
element in the first column of the second row using F2,1 ← F2,1 + uF1,1. Next
for every odd row k ≥ 3, we perform

Fk,∗ ← Fk−1,∗ − δFk−2,∗. (15)

Then we update the next (even) row using two previous rows

Fk+1,∗ ← Fk+1,∗ + uFk,∗ − δFk−1,∗. (16)

It should be pointed out that depending on the value of δ, we add or subtract
the vector Fk−2,∗ in (15) and Fk−1,∗ in (16).

4 Implementation and Results

The algorithm presented above can be easily parallelized. First let us observe
that the matrix Z can be found in parallel. Indeed, the system (11) can be
rewritten as L

(
Z1, . . . , ZNp

)
=
(
F1, . . . , FNp

)
, where Np denotes the number of

available processors and then each processor is responsible for computing one
block Z. The sequential part of the algorithm is based on (12).

The original implementation of the Talbot’s method comprises two separate
subroutines TAPAR for finding geometrical parameters of the contour and TSUM
for computing (4) and then (3). In our new implementation TSUM is replaced
with the subroutine PXTSUM, which consists of the following main steps. First
(in parallel, using the OpenMP [2] construct parallel) we calculate coefficients
cj , sj according to (14), store them in one-dimensional arrays (two arrays for cj

Table 1. Itanium: F (s) = 1/s2, f(t) = t, t = 100.0

n t1 t2 e1 e2

15195 0.3422E-02 0.2136E-02 0.5171457929E-10 0.5261526326E-10
16281 0.3666E-02 0.2222E-02 0.4826844702E-10 0.4880135407E-10
16801 0.3783E-02 0.2316E-02 0.4677545462E-10 0.4797456654E-10
17177 0.3868E-02 0.2380E-02 0.4575412049E-10 0.4776751439E-10
17711 0.3987E-02 0.2479E-02 0.4436671475E-10 0.4577358936E-10
17941 0.4039E-02 0.2480E-02 0.4379657526E-10 0.4484462579E-10
17865 0.4022E-02 0.2449E-02 0.4399197451E-10 0.4252370900E-10
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Table 2. Itanium: F (s) = arctan (1/s), f(t) = sin(t)/t, t = 1000.0

n t1 t2 e1 e2

1565 0.6540E-03 0.4010E-03 0.2391931485E-06 0.2391750279E-06
1681 0.6990E-03 0.4220E-03 0.2226849779E-06 0.2226882837E-06
1729 0.7210E-03 0.4182E-03 0.2165089258E-06 0.2165033446E-06
1801 0.7510E-03 0.4539E-03 0.2078623510E-06 0.2078732275E-06
1851 0.7720E-03 0.4790E-03 0.2022340543E-06 0.2022043589E-06
1977 0.8230E-03 0.4809E-03 0.1893500394E-06 0.1893479699E-06
2029 0.8459E-03 0.5062E-03 0.1844935713E-06 0.1845017833E-06
2107 0.8800E-03 0.5372E-03 0.1776737975E-06 0.1776853155E-06
2161 0.9010E-03 0.5391E-03 0.1732306555E-06 0.1732318723E-06
2215 0.9232E-03 0.5641E-03 0.1690140524E-06 0.1690132600E-06

Table 3. Itanium: F (s) = arctan (1/s), f(t) = sin(t)/t, t = 10000.0

n t1 t2 e1 e2

588305 0.2448E+00 0.1504E+00 0.9322757351E-09 0.1160215760E-08
639409 0.2660E+00 0.1607E+00 0.7404149541E-09 0.9956170695E-09
690241 0.2870E+00 0.1778E+00 0.7783544787E-09 0.7003191449E-09
792589 0.3296E+00 0.2042E+00 0.6455896457E-09 0.8114018422E-09
844291 0.3511E+00 0.2183E+00 0.6207029052E-09 0.7159488277E-09
946409 0.3935E+00 0.2390E+00 0.5036515674E-09 0.7211593871E-09
998211 0.4151E+00 0.2580E+00 0.4364697181E-09 0.8877389771E-09

1048435 0.4359E+00 0.2714E+00 0.3644243104E-09 0.3733948982E-09
1100497 0.4577E+00 0.2761E+00 0.4464777616E-09 0.2833087599E-09

Table 4. Pentium 4: F (s) = arctan (1/s), f(t) = sin(t)/t, t = 1000.0

n t1 t2 e1 e2

1565 0.6928E-03 0.5510E-03 0.2391869846E-06 0.2391608295E-06
1681 0.7119E-03 0.5870E-03 0.2226976753E-06 0.2226957623E-06
1729 0.7231E-03 0.6299E-03 0.2078558583E-06 0.2078766382E-06
1851 0.7741E-03 0.7241E-03 0.2022435329E-06 0.2022139956E-06
1977 0.8249E-03 0.6840E-03 0.1893527022E-06 0.1893563987E-06
2029 0.8581E-03 0.7038E-03 0.1844931378E-06 0.1845026485E-06
2107 0.9139E-03 0.7319E-03 0.1776824021E-06 0.1776997465E-06
2161 0.8988E-03 0.7489E-03 0.1732324141E-06 0.1732241612E-06
2215 0.9251E-03 0.7679E-03 0.1690133932E-06 0.1690198610E-06

to store odd and even rows respectively and similarly two arrays for computing
sj) and find solutions of two systems (11), separately for cj and sj . In simple
loops we repeat operations (15) and (16) using the arrays defined above. Also
let us observe that to calculate coefficients cj , sj according to (14) using (5) in a
vectorized way, we need to use auxiliary arrays to store αj , βj , γj , δj , γj and ρj .
Next we calculate the sums (4) using (12). Finally we calculate the approximate
value of f(t) using (3).
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Table 5. Pentium 4: F (s) = arctan (1/s), f(t) = sin(t)/t, t = 10000.0

n t1 t2 e1 e2

588305 0.2524E+00 0.2166E+00 0.9793066881E-09 0.9892222718E-09
639409 0.2733E+00 0.2392E+00 0.8179742423E-09 0.8752334127E-09
690241 0.2948E+00 0.2566E+00 0.9389228568E-09 0.8547164468E-09
742021 0.3171E+00 0.2764E+00 0.6600419638E-09 0.5786208750E-09
792589 0.3383E+00 0.2943E+00 0.7116522225E-09 0.8339686643E-09
844291 0.3614E+00 0.3155E+00 0.6238256932E-09 0.1262315896E-08
895987 0.3836E+00 0.3357E+00 0.6558746249E-09 0.3426053477E-08
946409 0.4048E+00 0.3540E+00 0.2550043358E-09 0.5339774668E-09
998211 0.4302E+00 0.3739E+00 0.5216922980E-09 0.5289859726E-09

1048435 0.4493E+00 0.3926E+00 0.5044154133E-09 0.4610048013E-09
1100497 0.4708E+00 0.4075E+00 0.4693288363E-09 0.4975408007E-09
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Fig. 1. The speedup on Cray X1

The solution to the systems (11) can be done using a sequence of Level 1
BLAS routines [7]. We can repeat one call to the routine COPY and three calls
to AXPY. The total number of vector loads/stores is equal to 11. When we use
(15) and (16) then the total number of vector loads/stores is equal to 7. Also
numerical tests show that such simple loops are up to 15% faster on Intel based
computers.

The method has been tested for the set of test functions proposed in [5] for
various values of t and different desired accuracy on a dual-processor Itanium 2
and Pentium 4 based computers running under Linux with Fortran 95 compiler
provided by Intel, and on Cray X1. The method has been compared with the
original Talbot’s algorithm. The following tables show exemplary results for
F (s) = 1/s2 and F (s) = arctan(1/s), where n denotes number of terms in
(4), t1, e1 the execution time and the accuracy of the original Talbot’s’ method
and t2, e2 execution time (in seconds) and the accuracy of the method described



558 P. Stpiczyński

in this paper. We can observe that on Intel based computers, the speedup of the
new method is about 1.6, even when the execution time (and the value of n) is
very small. The new method is up to 20% faster on Pentium 4. In Figure 1 we
present the speedup on Cray X1. The new method is faster even on one SSP
processor and it scales well for greater number of processors.

We haven’t observed any significant loss of accuracy of our method in com-
parison with the original Talbot’s method, thus we suppose that the method is
numerically stable but it will be a subject of further research.
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Abstract. This paper examines the procedure of mesh adaptation on
plane using the concept of an anisotropic metric. The metric is coupled
with the curvature of the solution surface and it governs the process of
mesh generation. The metric values are determined from the discrete data
from the current simulation step and are stored in the background mesh
with the appropriate interpolation procedure. If the solution is given in
the form of a vector field, each component is treated separately and can
define different metric. In order to combine these metrics, an intersection
procedure is used. Several examples of numerical mesh adaptation are
provided to illustrate the potential of the described method.

1 Introduction

In the numerical simulation of processes, using finite element method, the adap-
tation of the element mesh is an important factor influencing the quality of the
numerical solution. The aim of the mesh adaptation is to adjust size and shape
of elements in order to obtain good approximation of the exact solution with
possibly lowest number of elements. The popular methods of adaptation [1, 2, 3]
perform a sequence of mesh modification, in order to obtain the desired precision
of the simulation results.

In the works describing methods of mesh generation for adaptation, many
authors use the concept of metric[2, 3, 4, 5, 6, 7]. For two-dimensional cases the
metric can be coupled with the curvature of the solution surface. This approach
is often used for generation of meshes on surfaces as well[7, 8].

In this article we consider a scalar function u(x, y) being the solution of an
arbitrary physical problem defined in the bounded domain Ω ⊂ R2. In case of
solving this problem with an approximated method (e.g. FEM), the solution is
given in discrete points (nodes of the mesh). These data are the input for the pro-
cedure of mesh adaptation. Using this information an approximated curvature
of the solution surface can be evaluated which is then used for definition of the
metric. In order to determine the curvature from the discrete information, the
surface can be locally approximated with a polynomial and then the curvature
can be calculated analytically[5, 9]. In the approach proposed by the Authors the
curvature is approximated directly from the discrete data. Differently from the
method proposed in [3] the curvature is not only combined with the Hessian of
solution, but it is determined from the second fundamental form of the surface,
which allows to further improve the process of mesh adaptation.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 559–566, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this article there is also described a procedure of mesh adaptation for
solution given in the form of the vector field. Each of the component of such
vector field can define different surface of solution. The proposed technique allows
to create a uniform metric resulting from the separate surfaces.

2 Metric Definition

The metric, specifying size and shape of elements, is usually defined in the form
of a metric tensor M = RΛR−1, where R is the eigenvector matrix (responsible
for defining main directions) and Λ = diag(λi) is the eigenvalue matrix, defining
the required length of element edges along the main directions.

Using this metric formulation, the distance between two points P1 and P2 in
metric space can be calculated as follows:

lM(−−−→P1P2) =
√
−−−→
P1P2

TM−−−→P1P2 (1)

where M stands for the metric assumed as locally constant for −−−→P1P2. In a sim-
ilar manner, other geometrical formulae used during mesh generation can be
adjusted.

Another approach, which was used in this work, is to introduce the aniso-
tropic metric through the appropriate transformation of the coordinates of the
discretization points, using the transformation matrix :

P ′
i = Mt(Pi)Pi (2)

The relation between the metric tensor and the transformation matrix is given
by formula:

Mt(P )Mt
T (P ) =M(P ) (3)

Using the transformation matrix approach, the distance between two points P1
and P2 can be calculated as follows:

lM(−−−→P1P2) = lE(
−−−→
P ′

1P
′
2) (4)

where lE(
−−−→
P ′

1P
′
2) is the Euclidean distance between the two points P ′

1 and P ′
2 with

transformed coordinates.
During the mesh generation all geometric properties are calculated from the

coordinates transformed with the appropriate transformation matrix. For exam-
ple, for a given mesh to comply with the defined metric field, the length of each
edge in the metric space should be equal to 1.

2.1 Combining Metric with Curvature

At any point on a smooth surface patch (regular, C2) there can be defined the
principal directions in which the normal curvature has minimum and maximum
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values (i.e. principal curvatures κ1 and κ2). Assuming size of elements propor-
tional to the appropriate radii of curvature (r ≈ 1

κ), the components of the direct
form of the metric md = (lx, ly, α) can be calculated as follows:

lxi = max
(

min
(

c

|κi|
, lmax

)
, lmin

)
(5)

where the minimum and maximum element size are introduced in order to avoid
unpracticable metrics. The α is the angle between the principal direction for κ1
and the base vector ẋ.

From the direct form the transformation matrix can be determined:

Mt =
[
m11 m12
m12 m22

]
=

[
1
lx

cos2 α+ 1
ly

sin2 α ( 1
lx
− 1

ly
) sinα cosα

( 1
lx
− 1

ly
) sinα cosα 1

lx
sin2 α+ 1

ly
cos2 α

]
(6)

If the reverse operation is required, the direct form can be calculated using
the following algorithm:

Δ =
√

(m11 −m22)2 + 4m2
12

(lx, ly) =
{

( 2
m11+m22+Δ ,

2
m11+m22−Δ) if |m11| < |m22|

( 2
m11+m22−Δ ,

2
m11+m22+Δ) else (7)

α =

{
arctan

1
lx

−m11

m12
if |m12| > ε

0 else

3 Approximation of Curvature from the Solution Surface

For the purpose of an adaptation, the metric for mesh generation was combined
with the curvature of the solution surface. The required partial derivatives (both
first and second order) are approximated in each mesh node by difference quo-
tients, using linear combinations of values of selected adaptation parameter in
the neighboring nodes (Fig. 1). Details of the method of discrete approximation
of derivatives by difference quotients for arbitrary node configuration in a mesh
are described in [3].

P0

Pi

hix

hiy

Fig. 1. Selection of nodes
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For the second order derivatives and the 2nd order accuracy 9 nodes are
required. The partial derivatives are estimated from the linear combination:

∂2u
∂x2 ≈

∑9
i=1 α

xx
i (ui − u0)

∂2u
∂x∂y ≈

∑9
i=1 α

xy
i (ui − u0)

∂2u
∂y2 ≈

∑9
i=1 α

yy
i (ui − u0)

(8)

The unknown coefficients αi depend from the node configuration and are
calculated from the following sets of equations:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1x h2x · · · h9x

h1y h2y · · · h9y

h2
1x h2

2x · · · h2
9x

h1xh1y h2xh2y · · · h9xh9y

h2
1y h2

2y · · · h2
9y

h3
1x h3

2x · · · h3
9x

h2
1xh1y h

2
2xh2y · · · h2

9xh9y

h1xh
2
1y h2xh

2
2y · · · h9xh

2
9y

h3
1y h3

2y · · · h3
9y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αxx
1 αxy

1 αyy
1

αxx
2 αxy

2 αyy
2

αxx
3 αxy

3 αyy
3

αxx
4 αxy

4 αyy
4

αxx
5 αxy

5 αyy
5

αxx
6 αxy

6 αyy
6

αxx
7 αxy

7 αyy
7

αxx
8 αxy

8 αyy
8

αxx
9 αxy

9 αyy
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
2 0 0
0 1 0
0 0 2
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

For gradient approximation with the same accuracy (2nd order), only five
nodes are required. The linear combinations for partial derivatives:

∂u
∂x ≈

∑5
i=1 α

x
i (ui − u0)

∂u
∂y ≈

∑5
i=1 α

y
i (ui − u0)

(10)

and the sets of equations for the αi coefficients:⎡
⎢⎢⎢⎢⎣

h1x h2x · · · h5x

h1y h2y · · · h5y

h2
1x h2

2x · · · h2
5x

h1xh1y h2xh2y · · · h5xh5y

h2
1y h2

2y · · · h2
5y

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
αx

1 α
y
1

αx
2 α

y
2

αx
3 α

y
3

αx
4 α

y
4

αx
5 α

y
5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦ (11)

Having these operators, the matrices of the first and second fundamental form
can be calculated (12). The coefficient nz is the component of the normal vector,
which can be calculated as orthogonal to the gradient directions or approximated
as an average of the normal vectors of the mesh elements adjacent to the selected
node.

G =

⎡
⎣1 +

(
∂u
∂x

)2 ∂u
∂x

∂u
∂y

∂u
∂x

∂u
∂y 1 +

(
∂u
∂y

)2

⎤
⎦ B = nz

[
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂y

∂2u
∂y2

]
(12)

Solving (13) the principal curvatures κ1 and κ2 can be established:

det(B− κG) = 0 (13)

The eigenvectors v̇i defining the principal directions of curvature satisfy:

(B− κiG)v̇i = 0 (14)
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4 Operation on Metric

During the process of mesh generation some guidance has to be provided to
the mesh generator to specify the size and shape of mesh elements. In a typical
approach, a control space is defined as a covering of the domain responsible for
storing sizing information, e.g. in form of a metric. The control space can be
defined analytically, but in most cases (and especially in the area of automated
and adapted mesh generation) some kind of discrete structure is used (typically
background mesh or quad-tree). In our approach the mesh from the previous
step of the adaptation procedure is taken as a background mesh.

4.1 Metric Interpolation

Since the metric data is stored in the discrete points only, an additional method
of metric interpolation is required in order to provide sizing information in the
whole triangulated domain. Whenever the mesh generator needs the sizing in-
formation at some point P within the triangulated domain, the control space is
responsible for establishing the appropriate metric. This procedure starts with
finding the triangle of the background mesh which contains the given point P .
Than the set V∗ of nodes (natural neighborhood) is selected, which consists of all
vertices of the containing triangle and all vertices of other triangles which have
point P in theirs circumcircles (detailed procedure of using the background mesh
can be found in [10]). From this set of nodes the resulting metric is calculated
as follows:

Mt(P ) =
1∑

Pi∈V∗ ωi

∑
Pi∈V∗

Mt(Pi)ωi (15)

where ωi = d(P, Pi)−2.

4.2 Metric Intersection

If the solution is given in the form of a vector field, each component is treated
separately and can define different surface. From each surface appropriate metric
is approximated giving a vector of metrics for each discrete node of the back-
ground mesh. In order to combine these metrics into one metric, an intersection
procedure is used (Fig. 2).

First the metric M∗
t with the highest stretch ratio is selected and its base

vectors (vx,vy) are calculated (using conversion of transformation matrix into

vx

vy

Mt

M*

(2)

Mt
(1)

Fig. 2. Calculating intersection of metrics
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direct form). Next, the length of these vectors is calculated in all other metrics
and appropriately shortened if greater than 1. Finally these vectors are converted
back to the transformation metric form M∗

t .

5 Application Examples

In this section we present examples of unstructured anisotropic mesh adaptation
intended to illustrate the possibilities of the described method. In each case an
uniform triangular mesh was created for a rectangular domain [−1, 1]× [−1, 1],
as the initial mesh for the adaptation procedure. The values at the nodes of
this mesh were set according to the selected function f(x, y) and it was the only
step where analytical form was used. The whole algorithm of automated metric
recognition uses exclusively discrete approximations.

The first example (Fig. 3) presents results of mesh adaptation (the first step)
for analytical surface of solution f1(x, y) = cos(10(x2 + y2))e−(x2+y2) (Fig. 3(b),
22470 triangles) and f2(x, y) = 2 cos(6y) (Fig. 3(d), 4606 triangles) indepen-
dently. Figure 3(a) shows the initial uniform mesh with 31762 triangles, which
becomes the background mesh for the adaptation. Figures 3(c) and 3(e) present
the matching of the mesh structure to the given surface. In Fig. 3(f) there is

(a) Background regular
mesh

(b) Mesh adapted for f1

surface
(c) Curvature visualiza-
tion

(d) Mesh adapted for f2

surface
(e) Curvature visu-
alization

(f) Mesh adapted for f1

and f2 surfaces

Fig. 3. Results of mesh adaptation for solution surfaces prescribed by analytical func-
tions f1(x, y) = cos(10(x2 + y2))e−(x2+y2) and f2(x, y) = 2 cos(6y)
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(a) Background mesh (b) Mesh adapted for f3

surface
(c) Curvature visualiza-
tion

Fig. 4. First step of dense mesh adaptation for solution surface prescribed by an ana-
lytical function f3(x, y) = 2 sin(3(x − 2y))

(a) Background mesh (b) Mesh adapted for f3

surface (1st step)
(c) Mesh adapted for f3

surface (4th step)

Fig. 5. Subsequent steps of sparse mesh adaptation for solution surface prescribed by
an analytical function f3(x, y) = 2 sin(3(x − 2y))

presented the result of mesh adaptation for f1 and f2 simultaneously (simulat-
ing the performance of the method for solutions with a vector field).

The second example (Fig. 4 and 5) present results of mesh adaptation for
different density of the initial mesh. For dense initial mesh (Fig. 4(a), 31762
triangles) the curvature of solution is properly recognized after the first step
(Fig. 4(b), 7484 triangles). If the adaptation starts with more sparse mesh
(Fig. 5(a), 2028 triangles), several steps of adaptation may be necessary in order
to obtain good results (each time the adapted mesh becomes the background
mesh for the next adaptation step). Figure 5(b) presents the mesh after the first
step of adaptation (with 3874 triangles) and Fig. 5(c) shows the mesh (9272
triangles) after four adaptation steps, when the adaptation procedure converges.

6 Conclusion

The presented method allows to properly adapt the mesh to the curvature of the
solution surface. The initial mesh for adaptation needn’t be very dense, although
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for sparse background meshes several adaptation steps may be required. Since
the used method of curvature recognition by differential quotients in each mesh
node relies on proper selection of set of neighboring nodes for approximation,
the best results are achieved in the interior of the domain. Further work will
concentrate on enhancing the quality of curvature recognition at the boundaries
of the domain as well.
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Abstract. This paper deals with a graph grammar model of cooper-
ation and distribution for generating designs in computer aided design
domain. It is based on earlier research in formal language theory based
models for design, especially graph grammars, and also on the develop-
ments in the theory of grammar systems. The motivation for the idea
presented is given and some possible modes of application are briefly
described.

1 Introduction

Graphs are very useful as a mean to represent complex objects in different do-
mains of computer science [17]. Their ability to represent the structure of an
object as well as the relations of different types between its components makes
them particularly useful in computer aided design. They can represent an ar-
tifact being designed taking into account the inter-related structure of many
design objects i.e. the fact that parts of an object can be related to other parts
in different ways. Designing new artifacts requires a method of generating repre-
senting them graphs as well as an easy method to visualize objects represented
by such structures.

This paper proposes a new approach to graph generation in computer aided
design domain. In our approach cooperation and distribution give a base for
generating designs with the use of graph grammars. It is based on earlier research
in the domain of application of the theory of formal languages to the computer
aided design [7, 8, 10]. In particular the graph based representation jointly with
graph grammars [1, 7, 8, 9, 11, 14], and grammar systems [2, 5, 6] were used as the
inspiration for this research.

The main problem of graph generation with graph grammars lies in the
complexity and size (understood as the number of rules) of grammars needed in
real world problems (that can be encountered in the domains of both engineering
and design). Such grammars are either very difficult to define or, even if they
are relatively easy to define, they are very difficult to implement or results in
very long execution times.

Thus the use of a number of simpler grammars cooperating together is pro-
posed in this paper. Two main types of such systems are considered in the theory
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of formal languages for string grammars. The one that seems to be the most use-
ful in the design domain is described. Some problems that arise with the use of
such formalism are also sketched.

2 Graphs and Graph Grammars

The advantages of graph-based representation, different types of graphs used in
this domain, for example composition graphs and their hierarchical extension,
their formal definitions and application to design can be found in [7, 8, 9]

A graph is defined as a pair (V,E), where V and E are sets of graph nodes
and edges, respectively.

For the needs of a design system a node in a graph may represent either an
object or a group of objects or, more generally, it may be seen as a “container”
for a part of a design that may be designed at later time. For example, in a house
design system a node can represent a floor of a house that in turn will be divided
into rooms. Each node of a graph is labelled by a symbol from a predefined set
(alphabet) that is later used to identify what the given node represents.

Edges represent relations between objects. They are labelled by symbols be-
ing names od the relations. Labels are assigned to nodes and edges by means of
node and edge labelling functions.

Both objects and relations between them may in turn have some features. To
represent them attributing of both nodes and edges is used. Attributes represent
properties (for example size, position, colour or material) of an element repre-
sented by a given node. Attributes are assigned by node and edge attributing
functions. Formally, an attribute is a function a : W → Da, where W is a domain
of the attribute and Da a set of possible values of the attribute.

Let RV and RE be the sets of node and edge labels, respectively. Let A and
B be sets of node and edge attributes and Da and Db sets of possible values of
attributes of nodes and edges, respectively.

Definition 1. A labelled attributed graph LAG over RV ∪ RE is defined as a
6-tuple LAG = (V,E, labV , labE, attV , attE), where

1. (V,E) is a graph,
2. labV : V → RV is a node labelling function,
3. labE : E → RE is an edge labelling function,
4. attV : V → P (A) is a function assigning a set of attributes to each node,
5. attE : E → P (B) is an edge attributing function, i.e. it assigns a set of

attributes to each edge.

In fig. 1 two graphs representing parts of an estate are shown. Nodes represent
parts of house (rooms, halls) and its exterior (for example a garden) and edges
represent communication possibility between them. This graph may be further
developed to add more details, for example each room can be filled with furniture,
doors, windows etc.Attributes defining such parameters like size or distance are
also shown on the picture.
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Fig. 1. Example of a graph representing part of a house design

A labelled attributed graph defined above can represent a potentially infinite
number of designs. The specification consisting of particular numbers of nodes
and edges determines a LAG graph for infinite number of designs having the same
structure. To represent an actual design we must define a graph interpretation.

An interpretation of a graphG is defined as a pair of functions (IV , IE), where
IV assigns geometrical objects to nodes, while IE establishes a correspondence
between edges and relations between these objects. The objects assigned by IV
are usually called primitives. They may be either simple geometrical objects or
more complex objects. The geometry of these objects may be internally repre-
sented by means of any known representation that allows for easy application
of similarity transformations. Geometrical objects used depend on the domain
of application.In a house design system a set of primitives can contain such el-
ements as doors, windows, cabling, different pieces of furniture or elements like
bulbs. When designing pieces of furniture like chairs the set of geometrical ob-
jects could contain boxes and cylinders, or some predefined objects like legs, seats
and other parts of a chair and a set of relations could consist of an adjacency
relation.

The interpretation allows us to define attribute functions for a graph and
then determine its instances. An instance of a graph is a labelled attributed
graph in which to each nodes and edges values of their attributes are assigned.
In a house design system for all rooms we have to specify its size attribute for
example.

When having a graph interpretation we can create a visualisation of a de-
signed object. By changing the set of available primitives the interpretation (and
a resulting design) is changed without any changes made to its graph structure.

The graphs representing designs may be dynamically generated by means of
so called graph grammars [1, 8]. A graph grammar can be designed to allow for
generating only graphs representing the particular class of designs.

Intuitively, a graph grammar is described as a system of graph transforma-
tions consisting of formal rules called productions. Each production is composed
of left-hand side and right-hand side graphs and the first graph is replaced by
the second one only if it appears in the graph to be transformed. A production is
applied to a current graph (starting from the initial one). The sequence of such
replacements, which starts from the initial graph, is called a derivation process.
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The major problem that arises in practice cases [1, 11, 14] is the size and com-
plexity of a grammar needed to generate real world objects. Very often there is
a need to use context grammars, grammars with additional parameters (vari-
ables) or other extensions. Such grammars, while relatively easy to define, are
more difficult to implement. It thus seems advantageous to use a number of
simpler grammars, cooperating in an effort to generate a design, instead of one
complex grammar.

3 Designing with Cooperating Graph Grammar System

A grammar system consists of a finite number of grammars (called components
of the system) which together influence (change) an environment by applying
some operations to it. At a given moment the state of the system is described
by the current environment (sub-environments). The system works by changing
its state.

Two main types of grammar systems are researched: parallel communicating
grammar systems (PC grammar systems) [4, 5, 15] and cooperating distributed
grammar systems (CD grammar systems) [2, 3, 12, 13]. The main difference be-
tween these types of grammar systems consists in the model of environment they
work on.

In PC grammar systems each component operates on its own copy of the
form under derivation and they only exchange information on request.

In case of CD grammar systems the grammars operate on one common form,
one grammar at a time. As in computer aided design domain a single object
is usually developed, the CD grammar systems seem more appropriate here.
They allow for a number of grammars to work together on one object. At any
given time step there is only one graph being generated. Each component gram-
mar operates on this graph according to a communication protocol called the
derivation mode. The protocol may allow a single component to performed a
predefined number of steps or to work until no production of this component
can be applied. The method of selecting which grammar should be used as the
next “active” component is also important. Such cooperating grammars can be
seen as independent cooperating agents solving the same problem by modifying
a common environment. (often compared with the blackboard model in artificial
intelligence) [12].

In this paper we will deal with a modification of CD grammar systems. Yet, in
case of graph grammars the requirement that only one grammar can operate on
a given temporary form (called sentential form ) seems too strong. Moreover in
design systems it would be useful to allow more then one grammar to operate on
the same, common, sentential form. It can be seen an equivalent of many “design
teams” working on different parts of the same design. The only requirement here
seems to be ensuring that no two teams work at the same time on the same part
of the design, i.e no two grammars (components) operate on the same nodes of
the sentential form.
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Moreover, some way of activating particular components must be defined.
Such method, called a cooperation strategy, may either be based on some prede-
fined order - thus leading the system to operate under the control of an “external
supervisor”. Or, it can be based on dynamic activation of components related
to the current state of sentential form. The way a given grammar works (called
derivation mode), i.e. how long it performs its operations must also be defined.
In this paper a so called terminal derivation mode is used, i.e. each grammar
works as long as it contains a production that can be applied to current graph.

Definition 2. A graph grammar system is defined as (n+ 3)-tuple
GGS = (N,T,G1, G2, . . . , Gn, g0), where

– N and T are the sets of non-terminal and terminal symbols, respectively,
– Gi = (Ni, Ti, Ci, Pi), (i = 1 . . . n) are graph grammars such that

• Ni, Ti and Ci are the sets of non-terminal, terminal and communication
symbols for the i− th a component, respectively,

• Ni ∩ Ti ∩ Ci = ∅,
• N =

⋃n
i=1Ni, T =

⋃n
i=1 Ti,

• ∀x ∈ Ci, (i = 1 . . . n) ∃j �= i such that x ∈ Nj,
• ∀x ∈ Ni, (i = 1 . . . n) ∃p ∈ Pi such that its left side graph is labelled by
x,

• Pi is a set of productions GL ⇒ GR where GL and GR, called left side
and right side, respectively, are the labelled attributed graph over Ni ∪
Ti ∪ Ci and |VGL | = 1 ∧ labGL ∈ Ni,

– g0 is an initial graph.

For short nodes labelled with terminal, non-terminal and communication sym-
bols will be called, terminal, non-terminal and communication nodes, respec-
tively.

The language generating by such a grammar system consists of all LAGs over
T =

⋃n
i=1 Ti that can be generated by applying productions from component

grammars starting from the initial graph g0. Thus this language accepts graphs
that contain only nodes labelled by terminal symbols.

Each component grammar contains productions that have only one node on
the left side. Moreover this node is labelled by a symbol from the set of non-
terminals. Actually the set of non-terminals for each grammar is defined as a
set of all symbols used to label nodes of left sides of the productions. The nodes
of the graph on the right side of the production can labeled by any symbol,
terminal, non-terminal or communication one.

The non-terminal nodes can be intuitively understood as representing a part
of a design that is not finished but a given grammar knows how to deal with
it further. Taking this intuition further a communication symbol means that a
particular grammar knows that some part of design is not finished but it is not
“specialist” in this part and thus it “communicates” with other grammar that
knows how to deal with this part. Terminal symbols finally represent part of a
design that is considered to be finished.
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Fig. 2. Selected productions from house design system

The definition of a grammar system guarantees that if any grammar intro-
duces a communication symbol into the sentential form then at least one other
grammar exists such that it contains the same symbol in its set of non-terminals.
It should be noted here that the set of non-terminal symbols of the grammar sys-
tem contains not only all non-terminal symbols from all component grammars
but also all their communication symbols. It means that the communication
symbols are in fact non-terminals symbols, but the grammar that introduces
them does not know what they mean and thus another grammar must be found
that knows how to deal with these symbols.

In fig. 2 some productions of grammars used to design a house are presented.
The grammar G1 is responsible for the general structure like placing a garden
(node labelled G), and house interior (H) and then dividing it into floors (F ).
Then grammar G2 deals with floor layout. Nodes labelled by AS , AL and AC
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correspond to sleeping, living and cooking/eating areas of a floor, hl - to a hall,
dr - dining room, kn - kitchen, br and bh - to bedroom and bathroom. Grammar
G3 is responsible for designing a garden, with fb corresponding to flower beds,
ln - lawn, tr - tree and ph to paths of a garden.

In this example the grammars may be compared to different teams (agents)
building the house. One agent can build walls and divide the house into floors
(grammar G1 in fig. 2). Then another one divides the floors thus creating rooms,
but it may not know how to design elements of the room so it “calls” another
agent that knows how to deal with this particular task. In a graph representation
a floor would be represented by a communication symbol introduced by a gram-
mar responsible for designing the house layout and left for a grammar that is
responsible for designing the floors. Moreover these grammars can work in par-
allel way. When a grammar introduces a communication symbol it “broadcasts”
this information and a grammar that understands this symbol starts working
(i.e. applying its productions). This grammar may in turn activate other gram-
mars. Each grammar is expected to work as long as it has a production that it
can apply to a current graph.

4 Conclusions

In this paper a new idea of intelligent design by cooperating grammar systems
was proposed. This method was illustrated by a simple and easy to understand
problem of house designing. Currently an implementation of a CD graph gram-
mar system is planned. There are problems that have to be addressed of both
theoretical and practical areas.

As nearly all of the theoretical results available now are based on systems
with components being string grammars, it seems important to find whether
at least some of these results could be transferred into graph based systems.
The results concerning the ability of a (small) number of context-free grammars
to generate a language identical with the one produced by non context-free
grammar seems especially desirable. It has already been proved for a special
case of graph grammars [18] but an extension for other types of grammars seems
possible.

From the practical point of view the choice of the most appropriate derivation
mode enabling all grammars to contribute to the final design and the choice of
active grammar are very important. Also the way the components of a system
are defined is very important as it is possible to define several different grammar
systems generating the same language (and thus the same class of designs) but
some systems may be easier to use than others.

In this paper simple graphs and graph grammars were used. Yet in computer
aided design many objects have hierarchical structure so we also plan to research
a possibility of extending this method to hierarchical graph and hierarchical
graph grammars.
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Abstract. Yet, when using a real random number generator (RNG)
with only a hardware component, as required for statistical randomness,
it is quite difficult to create an unbiased and stable random bit stream.
Although the hardware generating processor generates an output bit
stream quickly, if the software filter algorithm is not efficient, the RNG
consumed a relatively large amount of time. This factor becomes the
limiting condition when the RNG is applied. Accordingly, this paper
proposes an adaptive filter approach to ensure the model of software
filtering in the RNG processor of a crypto module. Therefore, an adaptive
model is proposed that applies a filter algorithm, thereby consuming less
time than the conventional filter algorithm scheme.

1 Introduction

At present, ubiquitous computing is advocating the construction of massively
distributed computing environments that sensors, global positioning system re-
ceives [1] [2]. As such, this case is significantly different from those contemplated
by the canonical doctrine of security in distributed.

A H/W random number generator (RNG) uses a non-deterministic source to
pro-duce randomness, and more demanding random number applications such
as cryptography, a crypto module engine, and statistical simulation benefit from
sequences produced by a RNG, i.e., a cryptographic system based on a hardware
component [1]. As such, a number generator is a source of unpredictable, irre-
producible, and statistically random stream sequences. A popular method for
generating random numbers using a natural phenomenon is the electronic am-
plification and sampling of a thermal or Gaussian noise signal. However, since
all electronic systems are influenced by finite bandwidth, 1/f noise, and other
non-random influences, perfect randomness cannot be preserved by any practical
system. Thus, when generating random numbers using an electronic circuit, a
low-power white noise signal is amplified and then sampled at a constant sam-
pling frequency. Yet, when using a RNG with only a hardware component, as
required for statistical randomness, it is quite difficult to create an unbiased and
stable random bit stream.
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The studies reported in [3] [4] [5] show that the randomness of a random
stream can be enhanced when combining a real RNG, a LFSR number gener-
ator, and a hash function. In previous studies about RNG schemes in the field
of security, Fabrizio Cortigiani, et al. (2000) examined a very high speed true
random noise generator and S. Rocchi and V. Vignoli (1999) proposed a high
speed chaotic CMOS true random analog/digital white noise generator. Adel et
al. (2001) approached design and performance analysis of a high speed AWGN
communication channel emulator. A noise based random bit generator IC for
applications in cryptography was also studied (Craig S, et al. 1998 [4]). How-
ever, the randomness of this combined method is still dependent on the security
level of the hash function and the LFSR number generator. Our previous pa-
per proposes a real RNG that combines a RNG and filtering tech-nique that is
not dependent on the security level of the period. Therefore, controlling stable
input voltage for a RNG is an important aspect of the design of the RNG. In
particular, it is important that the hardware RNG offers an output bit stream
that is always unbiased. In a previous study [5], Jin Keun Hong et al. proposed
a combined method of a hardware component and a software filter algorithm.
However, in the case of this algorithm, although hardware generating processor
generates the output bit stream rapidly, if the software filter algorithm is not
efficient, the RNG consumes relatively much time and this factor becomes the
limiting condition when the RNG is applied. Accordingly, this paper proposes
an effective approach to ensuring the method of software filtering in the RNG
processor of a crypto module. Thus, to consistently guarantee the randomness
of an output sequence from a RNG, the origin must be stabilized, regardless of
any change of circumstance elements. Therefore, a RNG is proposed that applies
a filter algorithm, thereby consuming less time than the conventional filter algo-
rithm scheme. Additionally, computational quantity is analyzed when the filter
algorithm is applied in this mechanism.

Hereinafter, section 2 reviews the framework of the RNG in a crypto module.
Then, section 3 examines the filter algorithm of conventional model and intro-
duces the proposed adaptive filter algorithm. Experimental results and conclu-
sions are presented in sections 4 and 5, respectively.

2 Framework of RNG in a Crypto Module

A H/W random number generator includes common components for produc-
ing random bit-streams, classified as follows (in Fig. 1): characteristics of the
noise source, amplification of the noise source, and sampling for gathering the

Noise source generation
Amplification

(OPAMP)
Digital bit pattern detection

(Comparator)
Sampling
(Sampler) FilteringNoise source generation

Amplification
(OPAMP)

Digital bit pattern detection
(Comparator)

Sampling
(Sampler) Filtering

Fig. 1. Process of real random number generator in crypto moduel
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comparator output [4] [6]. The applied noise source uses Gaussian noise, which
typically results from the flow of electrons through a highly charged field, such
as a semiconductor junction [7] [8] [9] [10]. Ultimately, the electron flow is the
movement of discrete charges, and the mean flow rate is surrounded by a dis-
tribution related to the launch time and momentum of the individual charge
carriers entering the charged field.

The Gaussian noise generated in a PN junction has the same mathemati-
cal form as that of a temperature-limited vacuum diode. The noise seems to
be generated by the noise current generator in parallel with the dynamic resis-
tance of the diode. The probability density f(x) of the Gaussian noise voltage
distribution function is defined by Eq. (1).

f(x) =
1√

2πσ2
e(−

x2

2σ2 ) (1)

where σ is the root mean square value of Gaussian noise voltage. However, for
the designed Gaussian noise random number generator, the noise diode is a diode
with a white Gaussian distribution. The power density for noise is constant with
frequency from 0.1Hz to 10MHz and the amplitude has a Gaussian distribution.
Noise comes from agitation of electrons within a resistance, and a lower limit
on the noise present in a circuit is set. When the frequency range is given,
the voltage of noise is decided by the factor of frequency. The crest factor of
a waveform is defined as the ratio of the peak to the rms value. A crest value
of approximately 4 is used for noise. However, for the proposed real random
number generator, the noise diode has a white Gaussian distribution. The noise
must be amplified to a level where it can be accurately thresholded with no bias
using a clocked comparator. The noise must be amplified to a level where it can
be accurately threshold with no bias by a clocked comparator. Although the
rms value for noise is well defined, the instantaneous amplitude of noise has a
Gaussian, normal, distribution.

Vn(rms) =
√

4kTRB (2)

where k is Boltzmann constant (1.38×10E−23J/deg.K), T is absolute temper-
ature (deg. Kelvin), B is noise bandwidth (Hz), R is resistor (Ohms). In Fig. 2,
If 4kT is 1.66 × 10E − 20 and R is 1K, B is 1Hz, then Vn(rms) =

√
4kTB =

4nV/
√
Hz. Noise comes from agitation of electrons within a resistance, and it

sets a lower limit on the noise present in a circuit. When the frequency value is
10MHz, a crest value of rms value, 0.2mV is occasionally occurred.

3 Conventional Algorithm and Proposed Adaptive Filter
Algorithm

3.1 Conventional Filter Algorithm

The conventional filter algorithm is applied in the next process of the output
stream of the sampler to reduce the biased statistical randomness [5]. Establish-
ing the optimum buffer size (32bits) and threshold level (γ) are support unbiased
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Fig. 2. Plot of noise voltage vs. resistor

and stable randomness. In conventional filter model, a static buffer memory of
32bits is used to buffer the pass data in the decision boundary and the threshold
level for the P value is between 0.9995 and 1.0005.

When the static buffer (S) is fixed at 32bits, the half-value of the static length
is 16bits. If the value of (Σ (the number of a pattern 1bit) / the half-value of the
static length within the total length) is included in the threshold level, the deci-
sion will be the state of pass. In step 1, if the condition of pass is decided, this is
added as pass data to the buffer memory. In steps 3 - 4, if fail is decided through
the process of conventional filtering, this is decided into the decision process. The
process is then completed when the size of the desired bit stream is gathered.
The failed bits (32bits) are reduced by conventional filter (for example, the duty
distribution of the bit stream 0 and 1 is normalized). In conventional model,
the output bit stream is expanded by steps of 32bits, evaluated threshold level
simultaneously. If the value of the duty cycle of the collected output bit stream,
P , satisfies the condition of the threshold level, it is added 32bits (S) stream.

If P does not satisfy the condition of the threshold level, it is discarded
32bits stream. Through this filter process, unbiased characteristics of the output
bit stream are guaranteed.

Inp ut  r ea l nu mb e r bi t str ea m

Ge t To ta l_L en g th(T)=V a ria ble _B u ffe r[D ] /2

G et_ T ota l_ Su m =  the  su m o f pa tte rn  “1“ bi t

Ca lc ula te  P  = / T

De ci sio n P  <  ( th res ho ld  v alue )

De fau lt  t he  p as se d b it st rea m (T =T + S)

Ye s

Se t Ini tia l va riab le _b uf fer  v alue  =  25 6

Ev alu at ion  of  p as s pr ob ab ili ty

D ecide  V a ria ble_ bu ffe r va lu e

Fig. 3. Process of proposed filtering algorithm
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3.2 Adaptive Proposed Filter Algorithm

The adaptive filter model is applied in the next process of the output stream
of the sampler to reduce characteristics of biased bit stream. It is an efficient
method to reduce the consumed time.

In Fig. 3, the static buffer (S) size is fixed at 32bits, but the variable buffer
(D) size is variable. When it decide the size of variable buffer, it is used by
the measure throught the evaluation of passed probability during setup time
interval.

4 Experimental Results

A multiple bit stream of consecutive bits as the output from the RNG is sub-
jected to a frequency test, et al. [12]. If any of the tests fail, the module then
enters an error state. The statistical RNG test methods are used, on the basis
of the statistical RNG randomness. When the RNG has an output bit stream
of 256bits, the buffer window size is 32bits, As such, in the case of conventional
filter model, 8 rounds need to be processed for the filter evaluation, as if the
output bit stream (256bits) is divided into a window size of 32bits, this makes 8
fields. If P is not satisfactory for 6 fields out of the 8 fields, i.e., the level of passed
probability is 75%, this can be presented as follow: [window size(discarded blocks
of error state)] = [128(0), 128(2)] = [128(0), 64(0), 64(2)] = [128(0), 64(0), 32(1),
32(1)]

When the failed probability presents a probability that does not satisfy the
significance level in 20 level consisting of 256 bits, the mother node is divided into
the left child node and the right child node consisting of 128bits, respectively. In
the case of two failed fields, two failed fields occur in the right child node, while
zero out of the two failed fields occur in the left child node. If it is assumed that
two of the failed fields in level 22 (64bit units) diverge into a failed field unit in
the left child node and a failed field unit the right child node, in 23 level (32bit
units), four nodes occur that are not failed fields, while two nodes occur as failed
fields. Therefore, the six nodes about the nodes that do not occur as failed fields
are not processed.

Accordingly, in the case of the combined method consisting of a hardware
method and software filtering to create the output bit stream of the RNG,
whereas given in buffer size 256bits, lower bound 32bits in passed probability
50%, conventional model needed 8 rounds to evaluate the 8 fields, the proposed
model take 15 rounds of inefficient range in worst case and 7 rounds in best case.
When increasing the passed probability, the round number of computation itera-
tions is decreased. Also, given in buffer size 128bits, lower bound 32bits in passed
probability 50%, general model needed 8 rounds to evaluate the 8 fields, the pro-
posed model take 14 rounds of inefficient range in worst case and 6 rounds in
best case. As decreasing the buffer size in fixed buffer length, the round number
of computation iteration is decreased. Therefore, if passed probability is high, it
is needed to increase the buffer size.
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Fig. 4. Comparison of evaluation rounds according to passed probability

Table 1. Comparison of filtering loss rate efficiency between conventional model and
proposed model according to passed probability (to obtain 2Mbits)

Lower bound = 32bits
Loss rate and each mode 50 63 75 88

Conventional model buffer size = 32 1.560 1.170 0.780 0.390
porposed model buffer size = 256, 128, 64 1.560 1.170 0.780 0.390

Then it considered that if P value of output bit stream of RNG in evaluation
interval is satisfy the threshold level, i.e., the passed probability is about 88%,
computa-tion quantities for evaluation of threshold level in conventional model
are required 100probability during evaluation interval is reduced, its computation
quantity is increased. Especially, when the passed probability is lower 75%, if
it is decided the buffer size 256, it is not efficient. Therefore, from these results
in Fig. 4, with regard to the passed probability and computation quantity, the
performance of the proposed model is need to decide adaptive buffer size. If
the passed probability is upper to 88%, then it is decided buffer size 256bits.
The comparison of loss rate between conventional model and the proposed filter

Table 2. Comparison of filtering loss rate efficiency between conventional and proposed
model according to passed probability (to obtain 2Mbits)

Lower bound = 64bits
Loss rate and each mode 50 63 75 88

Conventional model buffer size = 32 1.560 1.170 1.560 0.390
proposed model buffer size = 256, 128, 64 3.120 2.340 1.560 0.780
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Table 3. Randomness of output bit stream by filter model (to obtain 2Mbits)

Test items Threshold level value of randomness Pass rate

Frequency test < 3.841 100% (20/20)
Serial test < 5.991 100% (20/20)

T-serial test (3 blk) < 9.488 100% (20/20)
Poker test (3 blk) < 14.067 90% (18/20)

Autocorrelation test < 0.05 100% (20/20)

model is presented in Table 1 and Table 2, where the output bit streams of
RNG are gathered about 2Mbits. In condition of passed probability 88% and
lower bound 64bits, the loss rate is increased than that of conventional model.
But the consumed time of proposed model is less than that of the conventional
model. If the lower bound is decided 64bits and the failed field is existed in 64bits
level, then the 64bits (32bits left and 32bits right field) are discarded. But if the
lower bound is decide 32bits, then the 64bits is evaluated in each 32bits left field
and 32bits right field. Therefore, if the passed probability is lower to 75%, then
it is needed to decide the lower bound 64bits.

Table 3 represents various randomness tests along with their references, typ-
ical pass/fail boundaries, the measured average of iteration tests based on 2MB
samples, and whether the sequence passed all the trial tests. The test results are
extremely positive: i.e. the proposed system passed all the trial tests.

5 Conclusions

The conventional papers are proposed a real RNGs that combine an RNG and
filtering technique that is not dependent on the security level of the period.
Therefore, it is important that the RNG hardware offers an output bit stream
that is always unbiased. Even though the hardware generating processor gener-
ates an output bit stream quickly, if the software filter algorithm is inefficient,
the RNG becomes time consuming, thereby restricting the conditions when an
RNG can be applied. Accordingly, this paper proposes an adaptive method of
software filtering for an RNG processor in a crypto module. Therefore, a RNG
is proposed that applies a filter algorithm that is less time-consuming than con-
ventional filter algorithm scheme. In addition, the computational burden is also
analyzed when applying the filter algorithm.
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Abstract. This paper reports on an application of a large-scale non-
linear optimization model to the analysis of environmental problems. The
authors present first results of the initial stage of the study, a sensitivity
analysis of the model’s input parameters. This analysis is part of the
more comprehensive study Analysis of Economic Implications of Russia’s
Participation in the Kyoto Protocol, undertaken by a collaborative group
of researchers from IIASA and Russian research institutes.

1 Introduction

Following intensive and heated public discussions, the President of the Russian
Federation signed the Federal Law “on the ratification of the Kyoto Protocol to
the United Nations Framework Convention on Climate Change” on 4 November
2004. This law led to the approval and the subsequent ratification of the Protocol
by Russia. Russia’s ratification was the final step of fulfilling all requirements for
the Protocol to enter into force. The 90-day period between the fulfillment and
entering into force — as specified in the Protocol — ended on 16 February 2005,
which therefore marks the date of entry into force. Still, the debate about future
costs and benefits of being a Party to the Kyoto Protocol has all but ended, and
to the present day, the advantages and disadvantages of Russia’s participation in
the Kyoto Protocol are put forward by proponents and opponents respectively.

This situation was the motivation for a collaborative study involving two
IIASA Programs (Energy and Dynamic Systems) and several energy research
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groups of Russia who have set out to examine, in a formal framework, the im-
plications of Russia’s participation in the Kyoto Protocol from an economic and
an environmental perspective.

The aim of IIASA aspiring to contribute to the debate is to formalize the
debate by quantifying the main drivers of economic growth, energy consumption,
and environmental impact. As an instrument, IIASA has selected the MERGE
model [1, 2, 3], one of the most well known and most widely accepted E3 (energy-
economy-environment) models.

In this paper, we focus on the first step of the assessment. This first step is
mainly methodological, i.e., a sensitivity analysis, which is intended to charac-
terize the input parameters by their impact on the output of the model.

Section 2 will be devoted to a brief description of the MERGE model and
its modifications performed at IIASA. Section 3 will describe the approach to
sensitivity analysis, followed by a presentation of the results of the sensitivity
analysis.

2 The MERGE-5I Model

2.1 A “Nutshell” Description of MERGE

The global optimization model MERGE [3] describes the interaction between
macroeconomic production, the energy system (demand and supply), pollutant
emissions, and climate change. The model consists of three logical parts: a macro-
economic module, an energy supply part, and a climate module. It combines a
top-down description of the economy and energy demand with a bottom-up de-
scription of the energy sector.

The macroeconomic module defines an inter-temporal utility function of a
single representative producer-consumer in each of the model’s world regions,
which is then maximized by MERGE subject to given constrains. The main
variables of this module are the production factors capital stock (K), available
labor (L), and energy inputs (electric, EN and non-electric, NN), which together
determine the total output of an economy according to a nested CES (constant
elasticity of substitution) production function.

YN(t,RG) = [a(K(t,RG)KPVSL(t,RG)1−KPVS)ρ +

b(EN(t,RG)ELVSNN(t,RG)1−ELVS)ρ]
1
ρ ,

ρ = 1− 1
ESUB

,

where t — time; RG — region; a — scale parameter; KPVS — share of capital
(capital value share) in capital—labor pair; ELVS — share of electric energy
(electric value share) in the electric—non-electric energy pair; ESUB — elasticity
of substitution between capital—labor and electric—non-electric energy. The
optimal quantities of the production factors are determined by their relative
prices.
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Fig. 1. An overview of MERGE

The core of the energy module is a comparatively simple Reference Energy
System (RES) describing the technological options available to supply the energy
needed as a production factor.

The climate module takes greenhouse gas (GHG) emissions, converting them
systematically into atmospheric GHG concentrations and temperature change.
The equations for calculating the radiative forcing and the temperature change
are derived from the IPCC Third Assessment Report [6]. For CO2, the radiative
forcing is proportional to the logarithm of the ratio of the current to the initial
level of atmospheric concentrations. The outputs of the climate module include
trajectories of GHG emissions, atmospheric concentrations, and temperature
change (Fig. 1).

MERGE was designed as an integrated-assessment model (IAM) to study
global GHG mitigation scenarios and to conduct cost-benefit analysis. For the
given purpose of our analysis, IIASA-ECS amended the original MERGE 5
model. The changes relative to the original MERGE 5 model are described in
the following subsection.

2.2 IIASA Extensions of MERGE

In order to be able to model the important players in the Kyoto Protocol,
the two MERGE regions CANZ (Canada, Australia, and New Zealand) and
EEFSU (Eastern Europe and Former Soviet Union) were split into the four
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regions Canada, ANZ (Australia and New Zealand), EEU (Eastern Europe) and
FSU (Former Soviet Union). The model now includes 11 world regions1.

Also, all six “Kyoto gases” are now included in the dynamics determining
emission permit trade in the First Commitment period, CH4 leakages from nat-
ural gas pipelines have been included, and the limits on sequestration from forest
management as given in the Marrakech Accord were included.

The Clean Development Mechanism (CDM) is one of the Kyoto Protocols
“flexible mechanisms”, designed to reduce the economic costs (and to thus in-
crease the global efficiency) of greenhouse gas abatement. Equations describing
the CDM mechanism and a price-responsive CDM supply were incorporated into
the model. As to quantities and prices of CDM projects, we used an interpolation
of two supply curves reported by Point Carbon [5].

As to model input data, MERGE-I now includes recent information on ex-
pected economic growth and energy consumption of the complying regions. In
the same spirit, the power sector options of these regions were restricted for
the year 2010 (relative to the REF scenario) to avoid the possibilities of unre-
alistically high build-up rates of power plants. For Japan, we have additionally
assumed that no more LNG terminals will be available by 2010 than in the Ref-
erence scenario and that therefore natural-gas imports in 2010 must not exceed
those given by the Reference scenario (see also [4]).

3 Sensitivity Analysis

To analyze the consequences of assuming different geopolitical scenarios guiding
the implementation of the Kyoto Protocol, we formulated two “limiting cases”.
One limiting case is a Reference scenario (REF or R0) without GHG emission
constraints. The costs of GHG abatement are calculated relative to this scenario.
The second limiting case is an extreme compliance scenario (DOM or R1) in
which the Parties to the Kyoto Protocol must comply with their “Kyoto limits”
by domestic measures only. Relative to this scenario, benefits of GHG emission
trading (including CDM) can be calculated. The third limiting case, so called
“Full trade” will be implemented as one of the next steps of the collaborative
group’s work.

In our scenarios, we focus on the Former Soviet Union (FSU), assuming that
Russia’s indicators describe the evolvement of the economy-energy-environment
(E3) system of the whole FSU region with reasonable accuracy. For the future,
we plan to define Russia as a separate region.

We selected the arithmetic difference between realized GDP according to the
reference case (REF) and that of the domestic measures case (DOM) as the most
important result, and we use the term GDPLoss to refer to it.

GDPLoss = RlzGDPREF − RlzGDPDOM.

1 All regions follow the same convention as EIA-USDOE’s International Energy Out-
look (2004), with the only exception that we included the new Baltic EU members
Estonia, Latvia, and Lithuania in EEU (and not in FSU).
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This indicator shows the value of GDP that the country will lose or gain as
a consequence of observing the Kyoto limits. Note that even in the “domestic
measures only” case, realized GDP of the FSU will depend on the development
of the E3 system in other world regions. For example, a possible decrease of
Western Europe’s (WEUR) GDP due to observing the Kyoto constraints would
affect energy imports from the FSU, what in turn will result in a slight decrease
of FSU’s GDP. In general, fluctuations of GDPLoss are expected to occur within
the time horizon of our scenarios. One of the most distinctive results of our model
runs is the point in time, when these fluctuations end and a clear increase in the
GDPLoss function will occur. This point in time describes a situation in which
the FSU will have exhausted its reserves of “hot air”, and measures aimed at a
restructuring of the industry and energy sector towards a low-emission system
will be initiated.

The following model parameters were included in our sensitivity analysis.
The parameters ESUB, KPVS, ELVS, KGDP of the macroeconomic produc-
tion function (described in Section 2); the “autonomous energy efficiency in-
crease” (AEEI); the annual depreciation rate (DEPR); the international oil price
(INTPR); the oil-gas price differential (OGPD); the maximal annual decline
factor for the capacities of electric and non-electric technologies (DECF); the
maximal market share for electric and non-electric technologies (NSHF); the co-
efficients describing the energy-intensive sectors (REIS); and parameters quan-
tifying restrictions on abatement measures, namely, abatement quantity multi-
pliers (ABMLT), abatement limits at alterative cost levels (ABLIM), and limits
on sinks forestration (AppendixZ). All these parameters are defined for each
model region. The parameters AEEI and REIS — in addition to their region-
dependency — also depend on the time period. The parameter ABMLT depends
only on the time period and has four indices: GHG (type of greenhouse gas),
ABX (abatement cost index), TP (time period), and RG (region).

We begin our presentation of results with an illustration of the impact of
changes in one of the most powerful driving factors, the parameters AEEI
(Fig. 2.)

As a rule, each parameter V (where applicable) was varied (for FSU and
simultaneously for the pair of scenarios R0 and R1), within the interval [0.7 ∗
V0, 1.3∗V0] with a step size of 0.1∗V0, which is the initial value of the parameter.
An exception was the parameter DECF, which equals 0.98 in the initial model.
DECF was varied within the interval [0.9, 1.0] with a step size of 0.01. Since
REIS equals 1 for all regions after 2050, this parameter was varied only for the
time periods 2005 through 2050. Let us note in passing that changing PNREF
(reference price of non-electric energy) requires an appropriate change of PEREF
(reference price of electric energy) as well.

For each parameter V , the maximum relative deviation of GDPLoss(FSU)
with respect to the initial configuration of the model was computed at each time
period:

ISV (TP) =
maxi

∣∣∣GDPLossVi(FSU,TP)−GDPLoss0(FSU,TP)
∣∣∣

RlzGDPR0(FSU,TP)
.
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Fig. 2. Dynamics of GDPLoss(FSU) (trln.USD) under variation of AEEI(FSU). The
legend shows the corresponding coefficients applied to all FSU components of the pa-
rameter

Here i reflects the index of observed parameter and IS stands for “instant
sensitivity”, which we use to define the so-called C-norm of ISV in the following
way (NS stands for “continuous-norm sensitivity”):

NSV (t) = ‖ISV (·)‖C[2005,t] = max
TP∈[2005,t]

ISV (TP).

With the help of this formula, we can summarize the results of our sensitivity
analysis as shown in Fig. 3.

Fig. 4 displays the patterns of comparative sensitivity of GDPLoss(FSU) to
variation of the above listed parameters for different time periods. The percent-
age is calculated by the formula:

CSV (t) =
NSV (t)∑

V

NSV (t)
100%.

Here CS stands for “comparative sensitivity”. This diagram may be treated as
cross-sections of the graphs shown in Fig. 3 at certain time moments, and it will
be noticed that the patterns change in time. This means that at different time
periods the model is most sensitive to different parameters.

This sensitivity analysis identifies the degree of influence that the selected
parameters have on the most important model result. Among these parameters,
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Fig. 3. C-norm of maximum relative deviations of GDPLoss(FSU) under variation of
different input parameters

Fig. 4. Pattern of comparative sensitivity of GDPLoss(FSU, 2010) to variation of the
parameters
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the model is most sensitive to variations of AEEI (autonomous energy efficiency
improvement) and KPVS (capital value share). Some of the parameters (such
as ABLIM, ABMLT, AppendixZ, INTPR, ESUB, NSHF, REIS) have either
negligible effects on FSU or no effect at all. The latter case usually reveals those
constraints that are not binding for the region.

In addition to these main results, we have observed some noteworthy behavior
of the model results. For example, our analysis shows that setting DECF = 1.0
(no decline of the technologies) generates a kind of unstable behavior of GDPLoss
that is distinct from all the other values of DECF less than 1.0. This means that
the unit value of DECF is unnatural for the model.

4 Conclusions

The results of our sensitivity analysis carried out in the framework of ongoing
research identify the most sensitive input parameters of the model. This infor-
mation will serve as a basis for future work, especially for setting up of scenarios,
a task that involves the determination of the most accurate values of the input
parameters. One example for which an accurate value is particularly important is
energy efficiency - the most sensitive parameter according to presented above re-
sults. A separate study of the Energy Efficiency in Russia has been initiated with
the aim of estimating the dynamics if this indicator considering technological and
structural changes together with peculiarities of Russia’s E3 (energy-economy-
environment) system. Other parameters, such as the capital value share (KPVS)
and the electricity value share (ELVS), etc. could be estimated on the basis of
statistical data. It is planned to produce additional reporting in more detail on
the results of described research. They will be announced at IIASA website.
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Abstract. Artificial Intelligence (AI) methods are used to build classi-
fiers that give different levels of accuracy and solution explication. The
intent of this paper is to provide a way of building a hierarchical classi-
fier composed of several artificial neural networks (ANN’s) organised in
a tree-like fashion. Such method of construction allows for partition of
the original problem into several sub-problems which can be solved with
simpler ANN’s, and be built quicker than a single ANN. As the sub-
problems extracted start to be independent of one another, this paves a
way to realise the solutions for the individual sub-problems in a parallel
fashion. It is observed that incorrect classifications are not random and
can be therefore used to find clusters defining sub-problems.

1 Introduction

In data mining the given data sets composed of patterns are described with
models. In a predictive model the output variable Y is expressed as a function of
other explanatory variables X . For a categorical Y variable, the task is a classifi-
cation task [2, 11]. The possible approaches, e.g. perceptrons, linear discriminant
models, decision trees, various clustering methods, Naive Bayes model, neural
networks (ANN’s) etc., vary greatly in terms of accuracy and explanatory power.
ANN’s provide high accuracy, but predictions lack any reason why a particular
answer was given, whereas decision trees give answers easy to understand by
humans but do not generalise well. On the other hand it is hard to find an op-
timum ANN architecture for a problem, at least it is a lengthy process whose
successful outcome depends more on experience and luck, than on clear rules.
Clearly there is a need for a classifier easy and quick to build, accurate, with
easy to explain predictions, fit for parallel implementation.

In this paper we aim at proposing a methodology of building a hierarchical
classifier (HC) composed of several small ANN’s, each constituting an easy to
build weak classifier. Composition of weak classifiers’ predictions provides for a
more accurate one [3]. Each such classifier divides the problem into sub-problems
whose training is independent, therefore fit for parallel implementation. From
some of the classifiers (mainly these near the tree root) rules would be extracted
providing for the predictions to be explainable.
� Research was funded by grants KBN Grant 3 T11C 054 26, and Jagiellonian

University’s “Multiagent systems”.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 591–598, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



592 I.T. Podolak, S. Biel, and M. Bobrowski

The paper is organised as follows: first the problem and the model used are
described, then the actual algorithm is depicted, followed with analyses of the
algorithm. We also apply the proposed HC to the problem of electric power
consumption prediction. The paper ends with conclusions.

2 Problem Definition and Model

A classifier may be defined as a function Cl

Cl : X * x −→ p ∈ P (1)

that assigns each example x, defined with a vector of features, to a class p from
a finite number of possible classes P . Cl is a realisation of an unknown function
F (·) that is defined with the training data set D that comprises of pairs (x, p)
where x is a vector of features, and p is the class that x belongs to.

It is possible to build an ANN that realises F (·) with accuracy less than
any ε > 0 [4]. On the other hand, ANN’s that better assign classes to training
examples, need more neurons and have lower generalisation level, which is defined
as the ability of correct classification of examples that where not used during
training. It is possible to construct committee machines in which responses from
several predictors are combined. Each predictor, may have a different starting
point, different training subset, etc., therefore the overall combined answer may
give better generalisation (see [4] for a discussion).

We propose to construct a tree classifier with a classifier Cli at each node

Cli : Di * x −→ p ∈ Pi (2)

where Pi = {pi1, . . . , pik} is the set of classes of examples from Di ⊂ D, and
D is the original set of examples defining the whole problem. To have a quick
algorithm, a small ANN is used to realise Cli, therefore the classifier is a weak
one, i.e. it has not the perfect accuracy, but still a good generalisation rate.
Some of the classes are confused with each other more frequently, therefore they
are combined into groups, using the confusion matrix analysis and a merging
algorithm as described below. If m groups of classes were formed,

Qij = {pil ∈ Pi|l = 1, . . . , nQij} j = 1, . . . ,m (3)

where nQij is the number of classes in Qij and which form a set of groups Qi

Qi = {Qij |j = 1, . . . ,m} (4)

then the original classifier Cli is replaced with classifier Clmod

Clmod : Di * x −→ q ∈ Qi (5)

In other words, the new classifier Clmod answers not with the class from
the original problem, but tells which subset Qij the actual class most probably
belongs to. The data set Di is divided into subsets Dij corresponding to groups
Qij , and new ANN classifiers are built. The leaf node ANN’s classify into original
problem classes. Tree is built recursively and the algorithm stops when satisfying
accuracy is achieved.
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3 The Hierarchical Algorithm

At each levelof the tree classifier, the original problem is subdivided into sub-
problems. At each node an ANN classifier is trained, but to save time and obtain
better generalisation, ANN’s are trained only as weak classifiers, i.e. such that
classify examples only a bit better than the average (minimal correct classifi-
cation rate grows at each level). Thanks to that, the networks in all the nodes
can be kept small resulting in short learning time. The algorithm partitions the
whole input space into sub-problems through analysis of the confusion matrix.

3.1 Confusion Matrix Based Problem Partition

Since classifiers are weak, some of examples are classified incorrectly. Neverthe-
less, we postulate that classification, although incorrect, is not random, i.e. if
an example from class A (a label from the training set) gets classified as, say,
class B, this means that classes A and B are similar. This is a clustering effect.
Therefore, we partition the problem at this node (the problem is given by the
examples used to train the ANN at this node) into sub-problems by selecting
groups of examples which frequently get classified similarly. Each such group
defines a new sub-problem for which a new ANN would be trained.

This is done by inspecting the confusion matrix M generated at the end of
ANN training. Therefore, if we have the set of training examples D

D = {x1, x2, . . . , xN} (6)

and a set of classes K that these examples can be assigned to

P = {p1, p2, . . . , pM} (7)

and functions

ϕ(xi) = pk example xi is from class pk (8)
α(xi) = pk example xi was classified by the ANN as from class pk (9)

then the confusion matrix M can be defined as

M [i][j] = a (10)

where a is the number of examples from class p classified as q, i.e. the number
of elements in the following set

{xi ∈ D | ϕ(xk) = pi ∧ α(xk) = pj} (11)

A perfect classifier would have non-zero elements only on the diagonal of
matrix M . On the other hand, an ANN which is not perfect, but still better
than majority voting type classifier, confuses examples from a group of classes,
while some classes get easily separated. This can easily be seen in the confusion
matrix where the examples from some groups of classes are frequently inter-
classified, and the corresponding elements of M are non zero, while some are
never mistaken and the elements of M are zeroed. This conveys the information
about clusters of examples easily mistaken by an ANN. With that information
the groups can easily be found, see Fig. 1.
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3.2 Construction of the Classifier Tree

For each of the desired output class p, basing on confusion matrix M, we find all
the classes that are mistaken (corresponding to non-zero elements in each of the
matrix M ’s row, see Fig. 1). Each group consists of classes that examples from
desired output class (corresponding to matrix row) are classified as. In this way
groups of classes are produced. In order not to have too many classes in any of
the groups, only k maximum values are taken (k is usually 1/4 of classes).

Definition 1. The generalised accuracy is a function that gives the probability
that examples from a given class p are classified by an ANN into a group that to
which p belongs.

The normally used notion of accuracy, hereafter referred to as standard accuracy,
is a special case of a generalised accuracy in which all the classes are singletons.

If an ANN has the standard accuracy of 50% for examples from a class p1,
but 95% of examples classified as p1 actually belong to a group pi1 ∪pi2 . . .∪pil

,
then by grouping all these examples into one, the generalised accuracy would be
95%. This enables us to construct a strong classifier out of weak ones.

Each of the groups correspond to a new sub-problem which has less output
classes than the original one. Therefore, we postulate that this problem is eas-
ier to solve. A new classifier is constructed for each of the sub-problems. The
objective of each of the sub-classifiers would be to distinguish among classes
that were similar (therefore they were grouped together) and harder to discern
by the original classifier. In this way the classifier tree represents a hierarchical
partition of the original problem. The partition is continued up to the moment
when satisfying accuracy rate is achieved.

During actual classification, an example would be classified recursively by
classifiers at each level. Each classifier would decide to which of the groups the
example does belongs, therefore selecting a sub-classifier that the example is
passed to. Leaf classifiers would return the actual answer.

3.3 Group Merging

With the partition algorithm described, at each tree level a separate class would
be constructed for each of the possible classifications. This would result in an
enormous number of classifiers. Recursive equation for number of classifiers can
be written as:

T (x) = x ∗ T (
1
q
∗ x) (12)

so using “master method” [12] for solving recursive equation we can approximate
number of classifiers as

M log qM (13)

But each of the trained classifiers finds regularities within the training set, i.e.
some classes are similar to other. Therefore we propose to reduce the number
of classes by using a Sequential Agglomerative Hierarchical Nesting (SAHN) [7]
which is a bottom-up clustering algorithm. Each group is represented as a binary
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valued vector with bits set in positions that correspond to classes occurring
in that group. SAHN finds two closest groups, i.e. output class vectors, and
combines them together. Similarity is defined with the Hamming distance

H(x, y) = number of positions that vectors differ on (14)

Groups are merged with SAHN until the number of classes in any of the groups
does not exceed a threshold. For a threshold we use λ∗n where n is the number of
all classes, and λ ∈ (0, 1). We have used λ = 0.5. For higher λ’s we obtain less sub-
classifiers, but with more classes in each of them. Bigger groups would resemble
more the original problem, and therefore less would be achieved by partitioning.
Only for the resulting groups of classes new classifiers would be constructed, i.e.
we decrease the number of them making the whole tree construction feasible.
The resulting hierarchical classifier for the zoo problem [1] is shown in Fig. 1.

Fig. 1. The confusion matrix with cells shaded accordingly to the number of examples
classified, and a hierarchical classifier for the zoo problem [1]

3.4 Rule Generation for Selected Networks

Rule extraction from trained ANN’s algorithm is based on FERNN – Fast
Extraction of Rules from Neural Networks[9]. The following steps need to be
performed to generate a rule classifier (RC):

1. Train a neural network
2. Build a decision tree that classifies the patterns in terms of the network

hidden units activation values
3. Generate classification rules

Neural network training. ANN’s with a single hidden layer is trained to
minimise the augmented cross-entropy error function (15) Each pattern xp is
from one of the C possible classes. tip is the target value for pattern p (p =
1, 2, · · · , P ) at output unit i. Sip is the ANN’s output unit value. J is the number
of hidden units. vij is the weight of the connection from hidden unit j to output
unit i and wjk is the weight of the connection from input unit k to hidden unit j.

The ANN is trained to minimise the augmented cross-entropy error function:

θ(w, v) = F (w, v) −
C∑

i=1

P∑
p=1

[tip logSip + (1− tip)× log(1− Sip)] (15)
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where F (w, v) is a penalty function with positive parameters ε1, ε2, β. It is added
to encourage weight decay.

F (w, v) = ε1

J∑
j=1

(
C∑

i=1

βv2
ij

1 + βv2
ij

+
K∑

k=1

βw2
jk

1 + βw2
jk

)
+ ε2

J∑
j=1

(
C∑

i=1

v2
ij +

K∑
k=1

w2
jk

)
(16)

Penalty function causes irrelevant connections to have very small weights. Con-
nections are cut beginning from the smallest one as long as network error has
acceptable value. As a result the ANN is produced which can be easily converted
to the RC. It is used for some nodes of the HC.

Construction of a decision tree. The decision tree is built using the hidden
unit activations of correctly classified ANN patterns along with the patterns’
class labels. The C4.5 [8] algorithm is used to build the decision tree. In the
construction of the HC, we used WEKA’s [5] J48 decision trees implementation.

Rule generation. A sigmoid function is used for hidden units activation. Node
splitting conditions in the decision tree can be written as follows:

if σ
(∑nj

k=0 wjkxk

)
≤ Sv then LeftNode else RightNode

By computing the inverse of the sigmoid function σ−1(Sv) for all node splitting
conditions in a decision tree, we obtain conditions that are linear combinations
of the input attributes of the data.

Below is a set of rules generated from the root classifier of the HF for the
zoo problem from [1], where the objective is to classify an animal defined with
18 features into one of seven classes (mammals, birds, sea animals, fish, reptiles,
insects, mollusks). One can see that the output of the classifier is frequently not
a single class, but a group of classes found to be similar. Subsequent classifiers
in the HF tree would find the actual classification.

if(+3.03 *"eggs" -2.14 *"milk" -1.0 *"legs" +3.84 *"tail" <= 1.7) {
if(-2.23 *"feathers" +3.56 *"eggs" -2.26 *"milk" +2.55 *"aquatic"

-1.0 *"catsize" <= 2.88) {
class group = "mammal OR sea animal"

} else {
if(-2.23 *"feathers" +3.56 *"eggs" -2.26 *"milk" +2.55

*"aquatic" -1.0 *"catsize" <= 3.88) {
class group = "fish OR insect"

} else {
class group = "reptile OR mollusk"

}
}

} else {
if(+3.03 *"eggs" -2.14 *"milk" -1.0 *"legs" +3.84 *"tail" <= 4.88) {

class group = "bird"
} else {
if(+2.02 *"aquatic" -1.0 *"legs" <= 0.02) {

class group = "mammal OR sea animal"
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} else {
class group = "fish OR insect"

}
}

}

4 Experiments

We have performed a number of experiments using benchmark datasets from the
[1, 6] database and compared them with the results obtained by Rudy Setiono
who used an algorithm that constructed an optimum ANN with one hidden
layer [10]. The results obtained in [10] are from among the best obtained for
these datasets. A comparison with our results is shown in Tab. 1. It can be
seen that the proposed classifier built with several small ANN’s gave better test
results for all training sets.

Table 1. Results of experiments of some files available from the UCI Repository [1, 6]
compared with results of Setiono’s N2CS2 algorithm [10] (arrhythmia is missing from
there). Results with better means are given in boldface.

level 1 level 2 level 3 Setiono
train test train test train test train test

audiology 88.4 90.4 87.1 90.8 91.6 ± 1.08 91.2 ± 3.17 95.5 ± 1.14 79.5 ± 1.61
arrhythmia 88.9 85.2 88.2 85.3 92.2 ± 1.41 90.3 ± 2.91
primary tumor 68.0 67.9 71.3 71.7 78.3 ± 1.45 78.5 ± 2.35 62.1 ± 1.41 46.0 ± 1.37
vowel 82.5 81.9 89.7 89.2 95.9 ± 1.05 95.4 ± 1.48 94.3 ± 1.23 88.9 ± 1.46
zoo 91.7 95.5 97.6 97.1 97.6 ± 1.56 97.1 ± 2.31 100.0 ± 0.00 94.3 ± 1.46

We have also tried to use the proposed methodology to predict electric power
consumption in a week’s time horizon basing on past consumption. Input data
consisted of the day, time, weekday, current consumption, consumption a year
earlier, which coded together gave 127 input neurons. The output power predic-
tion was divided into 57 classes each representing an interval of 250MW. Thanks
to this the approximation problem was changed into a classification one. Only
50 neurons were used in each network.

An HC with 2 levels was trained. There were 6 second layer classifiers, each
with 18 to 28 output classes representing intervals of the same width. The classi-
fication accuracy of the root classifier was only 47%, corresponding to a mean
443MW error. One should bear in mind that most of the incorrect classifications
were into the neighbouring classes represented by a near diagonal confusion
matrix. At the same time, the generalised classification accuracy, which gives
the accuracy of classification examples into groups of classes, each represented
with second layer ANN’s was as high as 97%. The overall accuracy was still only
57% with overall approximation mean error of 353MW. This is better than most
of the single ANN’s we have tried for the same problem which used more input
features, most with a much higher number of hidden neurons and layers.
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5 Conclusions and Future Work

The proposed methodology seems to be promising since experiments show high
accuracy obtained with the benchmark tests. It is possible to build the HC
stepwise starting with a small (in term of the hidden neurons number) root ANN,
then continue with similar ANN’s in subsequent layers. The usual problem of
ANN training is the choice of the correct number of hidden layers and neurons,
but in our solution the whole HC is built with the same ANN’s in all layers,
which saves time needed for experimenting with sizes. All ANN’s in a layer can
be trained independently, therefore the training process is run in parallel.

We want to modify the HC architecture so that classification of a single
example would not follow a single group from a classifier, but the example would
be passed onto all the classifiers in the next layer that include the class assigned
to the example in the previous ANN. In this way a committee would be built to
enhance accuracy.
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Abstract. This article proposes an approach for predicting runtime of
web services (WS) with state - also called stateful web services. Estimat-
ing WS runtime is particularly critical during construction of composite
WS workflows. Each workflow job must be scheduled in a way that the
overall workflow run time will satisfy the overall workflow constrains.
Such workflows are commonly used in Grids for connecting individual
Grid WS to large, complicated and distributed applications. Prediction
of WS run times optimizes scheduling and supports efficient use of grid
resources. In our approach we propose to estimate expected WS run time
based on invocation parameters of WS operations, states of resources
maintained by a WS and properties of resources used as processing in-
puts for a WS. We adopt knowledge based approach where the history
of WS operations is examined and a model is created and updated for
each class and instance of a WS. Such WS run time prediction models
can be then used by workflow schedulers to compute expected run times
of a range of WS for the purpose of identifying the most appropriate WS
for a given job within given constrains.

1 Introduction and State of the Art

This article deals with run time prediction of stateful web services (WS) for the
purposes of optimal WS workflow construction and scheduling. Work presented
in this paper is a part of effort to design a Knowledge Assimilation Agent (KAA)
responsible for WS run time prediction in scope of the 6th IST FP called K-Wf
Grid (Knowledge-based Workflow System for Grid Applications) [3].

At the present it is difficult to predict the behavior of a WS which carries out
a job in a shared distributed computing environment such as Grid. The more
complex the job is the more difficult is to predict the time needed by a web
service to complete the execution. The run time of a WS is influenced by several
aspects: internal WS performance, run times of other services utilized by WS
during its operation and load of Grid resources which are used by WS during
its execution. Additional complexity is introduced when constructing composite
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WS workflows constructed of several interconnected WS. For the purpose of this
article we work with stateful web services, i.e. web services which are stateless
in nature, but which manage resources with state. Such stateful WS are re-
sponsible for creation, maintenance and destruction of WS resources with state.
There have been already attempts to predict application performance in Grids
[6], however existing approaches do not deal with WS prediction in context of
WS workflows. The main difference of our approach is that we investigate the
service performance in dependence of invocation parameters and related resource
properties.

The following chapter introduces the context of our work. We describe the
way in which the WS are selected, planned and executed in Grid environment. In
chapter 3 we describe the approach we use to measure performance of WS. Next
chapter describes our approach to prediction of some WS performance measures.
We conclude with short description of application in which the approach will be
used and with plans for future work.

2 Optimal Construction of Grid Service Workflows

WS workflows are used in the K-Wf Grid project to interconnect separate WS
into logically coherent Grid applications. The construction of workflow is sup-
ported by knowledge in order to optimize grid resource usage and comply with
requirements defined by a user.

The Scheduler is a component of the Grid Application Control layer. It de-
termines which instances of a set of alternative Web Service Operation instances
will be selected in order to be executed in the current workflow execution. As
input, the Scheduler receives the workflow description and searches for nodes
that are mapped to a WS (a list of WS instances). Then, all possible alternative
instances of each WS are compared considering different possible comparison
criteria (metrics) to choose the best one in the given situation. The most impor-
tant criterion used to choose the instance is the execution time. The runtime of
individual WS operations is generated by the KAA using also method presented
in this paper. Some other criteria (e.g., fault tolerance) may also be used. Fi-
nally, one of the instances is returned as output to the GWES - Grid Workflow
Execution Service. Comparison criteria are inserted and taken from the Grid
Organizational Memory (GOM). The criteria are usually experience-based and
are derived from earlier executions of the WSs. The information collected from
the previous runs contains execution time, reliability, availability rate, and other
possible metrics. KAA is the component which extracts experience from historic
data which are used to improve scheduling decisions made by the Scheduler.

It is in general very hard to predict the execution time of a Web Service Call.
The Client is often in situation to decide which instance of WS to use for a certain
computation. In distributed environments it is rare to have full control over all
the computing resources and therefore it is desirable to have an infrastructure
which would be able to measure performance, keep records and make predictions
about WS classes and their individual deployments (instances).
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3 Capturing Information About Web Service
Performance

The performance of a WS is measured exploiting the WS-Notification of the WS-
Resource Framework (WSRF). It is depicted on the figure bellow how we use
WS-Notification to measure duration of certain WS operations based on changes
of WS states. Apart from KAA there are three other entities on sequence diagram
on the figure 1. “Client” is a component which uses WS interface to initialize
and launch required operations of a WS. The “Web Service” implements the ser-
vice itself and uses “WS-Resource” to represent a model of computation carried
out. The WS-Resource has parameters which describe the state of computation.
In this explanatory case the state of the computation is: initialized, started or
finished. Further we assume that the WS is deployed constantly in a container
and is capable of accepting and processing requests (state UP according to [2]).
In the first step KAA subscribes for WS-Notification which notifies about acti-
vation of states “started” and “finished”. Client submits a request to initialize a
computation which will be formally represented as a WS-Resource. Initialization
must include setting of input parameters required for computation, which will
be stored and used as a case for future predictions.

Fig. 1. Sequential graph of WS performance information capture using WS-Notification

4 Prediction of Web Service Runtime

We are proposing an approach of run time prediction for stateful WS based
on past cases in context with used resources and invocation parameters. The
Capture - Capitalization - Reuse (see Figure 2) cycle used in our work is a tradi-
tional knowledge management cycle. The main role of KAA in this cycle is to use
historical data about individual WS instances for WS performance prediction.
KAA formalizes such findings and store them in a format that could be reused
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Fig. 2. The Capture - Capitalization- Reuse knowledge management cycle is used for
capturing and reusing past cases for future predictions

by other agents (human users or computational services) - preferably in seman-
tically described way. Each discovered dependency between a characteristic and
WS Instance (WSI) is used for decision support during a process of selecting a
proper WSI for concrete workflow task execution.

Let’s suppose we have already captured several cases of WS operations during
a certain period of time. Cases are composed of invocation parameters and result
runtimes, stored as records in a database. In order to predict the runtime of an
operation with known parameters for a certain class of WS we need to perform
the following steps:

1. Identify WSI deployments of a chosen WS Class on Grid Resources;
2. Retrieve a history of all relevant executions (cases) based on invocation pa-

rameter similarity;
3. Use adjusted or initialized weights for each parameter.
4. Compute similarity between our concerned case and the selected set of all

relevant cases;
5. Identify the most similar case/cases.
6. Compute an estimate expected runtime using past runtimes of similar cases.

After WS finishes, we can compare our estimates with the measured runtime
values and adjust weights for individual parameters. Representation of whether
an WSI is deployed on a Grid Resource (GR) can be represented by a matrix
where columns represent GR and rows WSI. Value 1 means that WSIy is de-
ployed and value 0 means that is not deployed on GRx. From such matrix above
we can identify for example that WSI2 is deployed on GR1, GR3 and GR4.
Therefore for a WSI2 we would retrieve all relevant historical cases (runtime
information) only from those GR which have WSI2 deployed. For the purpose
of this article let’s consider that we examine performance of WSI2 deployment
on a single GR while predicting runtime of the future WSI2 invocations based
on four invocation parameters.

We need to capture runtime history for our WSI2 deployment for at least
a single operation. We define that runtime duration of an operation is a time
elapsed between transformations from WS state Sstarted to WS state Sfinished.
For each WS we can measure at least one duration of operation which is the
time difference between the WS state “finished” and “started”:
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tWSI2
Oi

= tWSI2
Sfinished

− tWSI2
Sstarted

. (1)

Expression (1) states that runtime of an operation Ox executed by WSI2 can
be computed as difference between the states “finished” and “started”. Overall
WSI runtime is the sum of all operation runtimes:

tWSI =
n∑

i=1

tWSI
Oi

(2)

Cases collected in the capture phase are stored into a database in a form
represented in Table 1.

Table 1. Sample case base

Case p1 p2 p3 p4 R
1 2 2 4 60 175
2 2 2 4 120 328
3 2 2 4 180 472
4 2 2 4 240 638
...
11 2 2 6 60 132
12 2 2 6 120 234
13 2 2 6 180 338
14 2 2 6 240 443
...
21 2 2 8 60 126
22 2 2 8 120 219
...

Let’s suppose our concerned WSI2 invocation is going to be executed with
the following parameters: p1 = 2, p2=4, p3 = 4 and p4 = 300. Our goal is to
predict what will be the runtime of such invocation. Firstly we need to compare
and find most similar cases. In our situation the comparison of cases is based
on a set of four application relevant parameters P’ = p’1, p’2, p’3, p’4 = 2, 4,
4, 300. The parameters and runtimes of past cases are stored in a database and
represent the base of cases. Table 1 shows a portion of such case base. The cases
in table 2 were generated from an experiment, where each case was performed
exactly just once. The similarity of two cases with the initialized case can be
measured by a distance in Euclidean space:

d(P, P
′
) = |P − P ′ | =

√√√√ n∑
i=1

|pi − p′
i| (3)

We will have some parameters more considerable, so we use weights to higher
or lower importance of a certain parameter:

d(P, P
′
) = |P − P

′
| =

√√√√ n∑
i=1

wi|pi − p′
i| (4)
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Where wi is a weight of i-th parameter, i.e. parameters with a lower priority
add bigger distance to the final distance between cases. This type of weights can
be called weight of parameter degradation, i.e. essential parameters remain and
others are depressed. The use of Euclidean distances is not the only one method
how to measure an affinity of two cases. Similarity measuring method usually
depends on the parameters’ domain. If some parameters cannot be compared
due to lack of information, then those parameters are excluded, i.e. are replaced
by zero.

Due to problems that accrue from parameters with very different relative
values and ranges, we compute a so called z score for each concrete parameter.
z score is computed as follows:

zscore
p

Ci
i

=
pCi

i − p̄i

σpi

(5)

The equation (5) states that the zscore value of parameter pi for case Cj is
computed as difference between the measured (actual) value of pi for case Cj
and mean value pi divided by standard deviation of pi. By computing Euclidean
distances we get a set of numbers which represent the degree of similarity between
the initialized cases compared to all other cases from the available case base. The
case with the smallest Euclidean distance is identified as most similar to acase
for which we estimate the runtime. We can see the effect of using weights for
computation of similarities using the distances in Euclidean space by comparing
figures 3 and 4. Firstly we have not used any wages for estimating the similarity.
The result is that the two most similar cases are cases 5 and 35 and very similar
are 4, 6, 34 and 37. Then we initialized the wages using a correlation coefficient
computed for z values of each set of parameters. The result shows that cases 4,

Fig. 3. Graphical representation of the similarity between concerned case and a repre-
sentative set of past cases.
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Fig. 4. Graphical representation of similarities represented by Euclidean distances com-
puted using weights

5 and 6 remained to be evaluated as most similar but cases 34, 35 and 36 were
evaluated as definitely not similar to our case. From the computed results we have
identified, that case 5 is most similar to our case because the Euclidean distance
computed for this case is the lowest among the overall case base. For purposes
of more accurate prediction we estimate the expected runtime as average value
ofrun times of 3 most similar cases. The predicted runtime for our concerned
case was therefore computed as follows:

tC′ =
∑6

i=4 tCi

3
(6)

The result therefore is that a WSI invoked with parameters p1 = 2, p2=4, p3
= 4 and p4=300 will run approximately (638 + 794 + 949)/3 = 793.6 minutes
according to formula (6).

We have invoked the service with P? = 2, 4, 4, 300 and the resulted runtime
was 792.8 minutes. We can see that our prediction using weighted Euclidean
distance provided us with very accurate estimation of the result.

5 Application of the Approach

The K-Wf Grid [3] project deals with knowledge supported Web Service work-
flow construction. Performance prediction of individual Web Service Instances
is crucial for decision making process of both the Workflow Composition Tool
(WCT) and Application Builder Agent. A sample scenario is the use of the plat-
form for the flood prediction platform in the K-Wf Grid project. The system
is responsible for suggesting best workflow composed of several concrete WS
implementations.
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Fig. 5. Architecture of the Knowledge Assimilation Agent (KAA) from the KWf-Grid
EU project

Knowledge Assimilation Agent (KAA) in the flood forecasting application
can be used to discover for instance dependencies between execution time of
a WS and the area for which we make the forecast. The area is stored in a
special file (resource) which must be semantically described. In the simplest
case the semantic description might contain information about the area and the
density of the area grid. When flood prediction will be launched, the KAA will
be notified about invocation parameters used by a WS - which can be the URL
of a file containing a description of the geographical area. The KAA determines
the description of the resource used as input for WS and stores all information
into Grid Organizational Memory (GOM). The KAA will be also notified about
forecast completion and will store information about several such forecasting
computations, thus having a base for successful forecasting. If the KAA discovers
any dependencies between an input resource parameter and WS performance
it stores the model into GOM. Having relevant models, the KAA is able to
predict how a concrete WS will perform, based on the provided input resource
description.

6 Conclusion

In this article we have presented our approach for predicting runtime of state-
ful web services. Our approach is based on computation of similarities using
weighted Euclidean distances. The prediction of the runtime for a concrete WS
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instance is computed as average value of the most similar past cases. Sample
cases used in this paper were collected using experimental invocation of a WS
used in an application for flood forecasting [4]. Invocations were carried out on
a single dedicated PC cluster infrastructure with predefined steps of invocation
parameters. Such conditions of measurements caused relatively smooth and com-
plete results, which could be used for a very accurate prediction of runtime for
a selected property set. Future work will include collection of performance data
from more complicated environments - loaded grid infrastructures - which will
possibly produce very different results for a variety of invocation parameters.
Other challenges for the future comprise inclusion of input data (metadata) de-
scription properties, prediction of other qualitative performance measures (such
as availability or reliability of WS) and adjustment of weights according to
comparison between predicted and really measured results.
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2 Interdisciplinary Center for Mathematical and Computational Modelling,
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Abstract. This paper presents real-time data streaming and client side
visualization which was developed using UNICORE middleware. De-
scribed here IVis system extends UNICORE capabilities and allows for
streaming of the data produced by the running simulations. IVis client
provides user with advanced tools for data visualization and analysis.
The developed software can be also used for remote steering and control.
The important feature of the developed solution is utilization of the UNI-
CORE security infrastructure which allows for data streaming without
opening new holes in the firewall. The performance of the IVis system
has been measured and is presented. We have found that bandwith is
mostly limited by the network speed. Performed tests conformed that
developed tools can be efficiently used for data streaming and on-line
visualization and streaming on the grid.

1 Introduction

Existing grid middleware has been developed with the main focus on the batch
type jobs. Therefore the real-time, on-demand data streaming doesn’t suit par-
adigm of any grid middleware. The reasons of such situation are well known:
a large scale computations are performed as batch jobs which produce data
postprocessed than on the local workstations. A job is submitted, then possibly
queried for status and output is fetched to the local system for postprocessing
and visualization.

The main disadvantage of the grid middleware is large communication over-
head caused by the infrastructure which provides seamless access to the resources
and ensures interoperability between different systems. This overhead results
from transfer quite large amount of metadata and from need to invoke many
metaoperations. Both of them are not needed for main computations but are
mainly caused by the grid middleware itself.

As it has been observed, as systems get more universal and powerful, the grid
middleware is increasing volume of additional communications and operations.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 608–615, 2006.
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This is especially true for forthcoming XML based technologies. Grid tools be-
come extended web services and invocation of even simple service job involves
serious data preparation and processing.

Streaming of the data generated as a result of the remote computations which
run on the grid is not trivial. In particular, there are two main problems to be
solved. The first one is access to the job running in the batch system on the
target computer which allows to fetch data, and the second one is performance
which can be limited by the different components of the grid middleware making
real time streaming unrealistic.

The first problem can be solved by the simulation of the interactive access
using simple batch jobs. There was number of successful implementations of this
approach, for example interactive access tools developed for the UNICORE [1].
Such approach assumes that each interactive command is submitted by a simple
batch job, sometimes called service job. In this way user can mimic interac-
tive access but middleware overhead is large. As consequence, the large amount
of data cannot be transferred and this solution cannot be used for advanced
visualization or real-life steering.

The performance required for the visualization on the grid is usually achieved
by creation of the dedicated connection - directly from the system which pro-
duces data to the visualization client. This connection is initiated by the grid
middleware but is realized using standard network technology bypassing grid
security infrastructure. Therefore user cannot use this mechanism with firewalls
and local networks.

This paper presents true real-time data access and client side visualization
which was developed based on the UNICORE platform [2], however the basic
middleaware has not been modified. The UNICORE offers complete and ready
to deploy solution. Developed extensions benefit from the UNICORE modular
design and flexibility. The detailed description of the UNICORE middleware, its
architecture and basic functionality can be found elsewhere [3, 4].

2 Extensibility of the Core Unicore Software

The UNICORE middleware offers well known plugin infrastructure for the UNI-
CORE Client. Basically, the most of the Client functionality is based on the
plugins: some of them are distributed together with Client’s standard distrib-
ution and some are available as third party add-ons developed for the specific
applications. The UNICORE plugin can be implemented using two schemes:
Task and Extension. The purpose of the task is job creation and its submission
to the target system. The task is incoroprated in the UNICORE workflow and is
part of the job created by the user and executed using UNICORE machanisms.

The extension gives more freedom for developer. Especially it can use dif-
ferent communication schemas offered by the UNICORE Client and even allows
for implementation of whole communication system form the scratch. This func-
tionality has been used previously for example to access databases through their
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HTML interfaces. This schema is therefore naturally suitable for the real-time
streaming needs.

The plugin concept is not limited to the UNICORE Client. The UNICORE
Gateway have similar feature to Client’s plugins. The Gateway can be extended
with new connection handlers. Connection handler is used after initiation of
connection between the Client and the Gateway. The UNICORE Gateway checks
if Client’s certificate was issued by trusted CA — it is the very first step of
security scheme. Every instance of the connection handler is associated with one
of the Network Jobs Supervisors (NJS) registered in the gateway. When Unicore
Protocol Layer (UPL) request comes and is targeted to the NJS1 it is passed as
argument to the handler’s processRequest method. Normally it transfers request
to the NJS, waits for answer, reads it, and forwards to the Client. This schema
is simple but there are two important things to note. In order to send NJS’s
reply to the Client processRequest method has access to the gateway←→client
streams. We must also remember that during interaction with the NJS, sent
reply doesn’t mean that the last job has finished execution. This happens only
for short service jobs like querying for another regular job status2.

The UNICORE Gateway extensions aren’t well known and, as rarely needed,
nearly not used. The one example, besides standard implementation, is alterna-
tive file transfer implementation. This technology is also used for SSH tunneling
through UNICORE gateway in the “Interactive Access” extensions [1].

We have explored this technology as good candidate to implement data
streaming and real-time visualization and steering.

3 IVis Design

The IVis (Interactive Visualization) system [5] consists of three software com-
ponents: IVisServer, IVisGateway and IVisPlugin (see. Fig. 1). The componants
are connected by the IVis protocol used during communication. Elements of the
IVis system are either universal or extendable in many ways. Before going into
details we would like to give overall description of the actual implementation as
a good starting point.

IVisServer is a software component which is deployed together with the
standard, already operational, NJS server. It is used to give access, in the real-
time fassion, to the user working directory (Uspace) on the target system con-
trolled by the NJS. IVisServer is visible in the UNICORE universe as another
Vsite with a special type and protocol3. As any other Vsite (so usually NJSes)
it is designed to communicate directly with the UNICORE Gateway. The NJS
which has corresponding IVisServer available will be called NJS IVis enabled.

1 Conforming to UPL there is one request that is serviced by Gateway itself:
ListVsites. Recent Gateways add one more, ListPorts.

2 Details can be found in [4] in sections regarding UPL modes.
3 Regular UNICORE NJSes have “Unicore AJO and UPL” as its protocol and type

“NJS”.
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Fig. 1. The overall architecture of IVis system. It consists out of three components:
Client’s plugin, Gateway’s extension and standalone server coupled with NJS.

IVisGateway is a middle point of the system. It’s main functionality is
very simple: it forwards (without any processing) the whole traffic from the
server to the client and another way round. There is also other function of the
IVisGateway: it passes client identification data to the server.

The final component of the interactive visualization system is IVisPlugin
which allows to use the UNICORE Client as end user’s platform for real-time
streaming applications. It hides existence of special IVis Vsite4. With the IVis-
Plugin user can choose one of the jobs already submitted to IVis enabled NJS.
The working directory can be accessed and user can pick up file of interest. Than
this file can be processed in the number of ways:

– Mirrored to local file, which grows as remote file grows.
– Monitored with simple text viewer which shows current file contents.
– Parsed and visualized on the fly with the IVisPlugin. In this case the data

format must be recognized by the IVisPlugin.

3.1 Gateway Extension

The IVisGateway is a set of classes with two entry points for the UNICORE
Gateway. Using them Gateway initializes extension with parameters supplied
by the system administrator in the gateway configuration file. In result, an
object ready to handle UPL Requests directed towards it is created. The UNI-
CORE Gateway uses initialized object whenever it receives request for exten-
sion’s Vsite and passes through it request and object streams to and from
client who sent request. The IVisGateway blocks connection to its end (i.e.
the processRequest method returns when streaming is completed). It can be
noted here that purpose of the UPL request sent from the client to the gate-
way is only to signal that proper extension should be used. IVis extension to

4 The IVis Vsite is visible in the client but user doesn’t have to use it in any way.
The only valuable information for him is that this Vsite signifies that corresponding
regular NJS is IVis enabled.
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the gateway performs sanity checks on the received request, e.g. finds if client
is aware that it will talk to the IVisServer. If something goes wrong the stan-
dard UPL reply is sent and session is unblocked. If no problem is detected, the
IVisGateway makes connection to the IVisServer and sends to it the client cer-
tificate. IVisGateway immediately, no waiting for server’s respons switches to
the bridge mode: data is transparently copied between client and server (in both
directions).

There is one important technical implication which results form the fact that
Gateway passes Java Object streams to the IVisGateway. There is no way to come
round polymorphic invocation of write/read methods in the Object streams. This
complicates the process of a simple data forwarding. Because streaming should
be as fast as possible we care not to trigger any (de)serialization what happens if
readObject/writeObject methods are used. Therefore usage of read/write meth-
ods is acceptable solution5 but it has one side effect: IVis gateway extension
cannot forward serialized objects (you simply can’t read byte representation of
serialized object with writeObject method using read on the other end). So any
client/server cannot use write/readObject methods on IVis streams. With lit-
tle more work Java serialized objects can be send: object can be serialized to
the temporary byte array and then this array is sent over the socket’s Object
streams.

3.2 IVis Server

The IVisServer fundamental role is to stream files form the Uspace to the UNI-
CORE client. Because of the possible number of use scenarios, we have made
server’s architecture modular and it has been split into two parts. The base
module receives authentication data from the IVisGateway. Using standard UNI-
CORE tools the received certificate is mapped onto UNICORE User (so called
Incarnated User) using the same UUDB as accompanying NJS uses. Of course
if user’s certificate doesn’t exist in database the connection is refused. Then,
server expects information from the client (recall that IVisGateway just after
sending client’s certificate connects client’s and server’s streams) about protocol
name it uses. If protocol has matching handler (i.e. class that implements it) it
is started. Otherwise connection is refused.

The handler compose second part of the IVis server. This modularity allows
for extensibility and fot tunneling of well established protocols. Of course, client
must send protocol identification string first. Every handler receives information
about (incarnated) user and streams to client. It has also access to the server’s
configuration data.

Currently the dedicated protocol — IVisProtocol — is implemented but an-
other implementations are being prepared.
5 This solution still is not ideal. In the Object streams read and write from the ba-

sic streams are overridden with versions which packs even primitive Java types like
byte arrays into form which can be distinguished from the serialized objects. For-
tunately amount of an extra data and therefore processing overhead is in practice
unnoticeable.
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3.3 IVis Protocol

The IVis protocol was designed as a very simple one to stream both files and
constant portions of files. The most significant feature is possibility to fetch file
as it is growing. The IVis protocol is binary and is based on a request–answer
schema which can be followed by streamed data.

The IVisServer’s module waits for file requests. Requests are formed from
Unicore job identifier and file name. Handler is responsible for assembling proper
real path of the file on the target system. Client does not need to know about
any site specific details like Uspace directory.

Before data transmission starts, handler ensures if user has sufficient rights
to read file. This operation checks for Unix file read permission.6

While session is set up, the file streaming is almost trivial. In the case of a
continuous file streaming efficient algorithm is used for file monitoring, and any
newly written bytes are almost immediately sent to client.

3.4 IVis Plugin

The last part the developed middleware, the IVisPlugin provides feature-rich user
interface. Using IVisPlugin, the end user does not have to possess any informa-
tion on IVisServer or an details of IVis operation. The user pick ups submitted
job, listed in the UNICORE client and to start streaming enters the name of the
file. Additionally, the user selects if he wanted to download current file contents
or mirror the file as it is growing. These possibilities improves significantly the
basic UNICORE Client capabilities which allow for the file transfer after the job
was submitted. The transfer of the files created by the running job has been also
provided by the FilterPlugin [3], however without any streaming functionality.

Fig. 2. The output of a simple 2D visualization. With bottom slider user can control
display range. Graph is updated automatically as new data is produced on the server.

6 Since this task is performed by the simple shell script site administrator can change
it if needed.
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The file picked by the IVisPlugin can be parsed and then presented in the
text or graphic form. Currently text preview of the remote file is available.
Additionally, the files containing data can be plotted live, as they are transferred
to the client workstation (see Fig. 2). Currently column data, for example in the
popular gnuplot format, can be plotted with the help of developed by us advanced
visualization toolkit. Dedicated filter for visualization of the data generated by
the Amber molecular dynamics package [6] has been developed. The additional
filters for example for 3D rendering of the molecular data can be easily added
to the existing IVisPlugin.

In all cases user can interact with visualization. He can refine intervals of
interest which allow to view all data as it is coming or only some parts of it.
New visualization capabilities require only implementation of the data parser
which is able to interpret data and pass them to the visualization tools.

4 Note on Security

The lack of the security or problems to adjust to the existing firewalls and secu-
rity policies is the main problem for the data streaming in the grid environment.

The usage of the UNICORE middleware and possibility to establish con-
nections through Gateway resolves low-level security problems like transmission
confidentiality. Still there is a need for higher-level, grid related security; namely
users authentication and authorization. We put effort to make these tasks as
similar as possible to the UNICORE authentication and authorization [7].

The process of authentication is done once per connection by IVisGateway.
The first request send by the client must be, signed with users private key.
Please note that the the only real constraint here is that the request must be
signed: it’s existence and kind is determined by the way Gateway’s extensions
are used. When the job’s signature is verified (user’s public key is attached to
the request) we can be sure that the job was really generated by user owning
private key. The only security hole here is that possibly any signed document
by this user (which can be publicly available) can be used as “ticket” to the
system. To avoid this we put some magic string in signed AJO which is checked
in Gateway. As jobs containing this cookie are never stored anywhere and send
only within encrypted channel third party can’t take it over. To increase safety
of the system, a timestamp is put into signed AJO and IVisGateway checks if it
is in reasonable period upon job retrieval.

5 Performance Results and Conclusions

Since performance is one of the most important parameters of the data stream-
ing, we have performed number of tests in the different experimental setups.

The throughput measurements are summarized in a table 1. It can be seen
that data transfer speed is limited by the network bandwidth and possibly by
the disk operations. The final transfer exceeds 60% of the theoretical bandwidth
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Table 1. Results of the throughput tests for various configurations

Speed Transfer mode Medium type
7.4 MB/s RAM to RAM 100 Mbit, LAN no routers between
6.4 MB/s HDD to HDD 100 MBit, LAN no routers between
625 kB/s RAM to RAM 11Mbit Wi-Fi + 3 routers (100Mbit

LAN)
614 kB/s HDD to HDD 11Mbit Wi-Fi + 3 routers (100Mbit

LAN)

and is in our opinion good result. One should remember that the transmission is
encrypted and data goes through intermediatory point – UNICORE Gateway.

The another parameter describing quality of the data streaming is communi-
cation latency. In the presented case the latency is not important as far as delay
between start and time first results arrive is small. For the developed software
the delay is unnoticeable assuming that recent hardware and resonable network
connection is used.

In conclusion we can state that the results of the data streaming and in-
teractive visualization using UNICORE infrastructure are very promising. The
presented software proofs that real-time visualization using UNICORE middle-
ware is possible and usable.
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Abstract. Classification deals with discovery of a predictive learning
function that classifies a data object into one of several predefined classes.
We present a novel decision-tree-based classification service which can be
used either autonomously or as a building block to construct distributed
and scalable classifiers that operate on data repositories integrated into
the Grid that typically involve large, complex, heterogeneous, and ge-
ographically distributed datasets. Although classification is considered
as a well-studied problem – a lot of classification methods were pro-
posed for sequential, parallel and distributed environments, so far, to
our best knowledge, no effort was devoted to building classifiers based
on federation of Grid resources. The Grid service described in this pa-
per was fully implemented and integrated into the GridMiner framework
(www.gridminer.org). Scalability and performance of the prototype im-
plementation have been examined and the results are presented.

1 Introduction

Grid Data Mining denotes efforts to utilize data mining and knowledge discovery
techniques leveraging the large-scale computational and storage power offered by
Grid infrastructures. Data preprocessing and data mining algorithms are known
to be both compute and data intensive and therefore appear to be ideal pilot
applications to test whether Grid toolkits hold what they promise.

One of the most important data mining tasks is classification - it deals with
discovery of a predictive learning function that classifies a data object into one of
several predefined classes. The intuition is that by classifying larger datasets, the
accuracy of this function can be improved - this hypothesis has been confirmed
in several studies.

In this paper, we present a novel decision-tree-based classification service
which can be used either autonomously or as a building block to construct dis-
tributed and scalable classifiers that operate on data repositories integrated into
the Grid.
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Decision Trees are representations of classifiers that can be depicted as graphs
[5]. The root node and the inner nodes represent tests and the outgoing edges
represent the outcomes of the test. The leaf nodes are class labels indicating the
group the example belongs to.

Considerable efforts in parallelizing classification algorithms for tightly cou-
pled systems have been undertaken. SLIQ [4] introduced the idea of separate
attribute lists written to files but still requires that a data structure, that grows
in direct proportion to the number of examples in the dataset, stays memory-
resident all the time. SPRINT [7], a follow-up work, extended the attribute list
technique to remove this memory restriction and proposes a parallelization.

So far, to our best knowledge, no effort was devoted to building classifiers
based on federation of Grid resources. Our previous work [3] outlines an idea of a
distributed classification algorithm, denoted as DIGIDT1 that leverages concepts
introduced by SPRINT but uses a different approach to dataset partitioning
and workload and task assignment. DIGIDT not only partitions the workload
optionally row-wise (horizontal), as described in [7] but assigns attributes to
worker nodes, i.e. it performs a column-wise (vertical) partitioning. Column-wise
partitioning allows very interesting applications. Projects such as the traumatic
brain injury project [2] impose very strong restrictions on data security and
privacy. For example the data collected at different institutions must not be
combined into a universal dataset, but a global decision tree classifier should
be constructed. DIGIDT supports such scenarios, where attributes or attribute
groups are located at different worker nodes, each worker node works on its local
data and a master node builds the global classifier. This paper further extends
and implements the DIGIDT ideas in a real Grid environment. The details of
the SPRINT and DIGIDT algorithms are not discussed.

The rest of the paper is organized as follows. Section 2 introduces the in-
ternal architecture of the service and the global communication model of the
distributed solution. The data flow concepts applied in the distributed approach
are discussed in Section 3. The implementation concepts are briefly presented
in Section 4. Section 5 presents the first experimental results. Finally, we briefly
conclude in Section 6.

2 Global System Architecture Design

Building distributed systems is an inherently difficult and complex task. To
reduce complexity, the first goal was to design a sequential version of a Decision
Tree Service [1] (DT Service) based on the SPRINT algorithm. As a target
platform, the Globus Toolkit 3 container was chosen. This sequential version
was completely written in Java and then extended to implement the SPRINT
and DIGIDT concepts in a distributed context.

The main objective for the development of the distributed version was to find
a Grid-enabled solution. The ability to use the Globus Toolkit 3 for transferring
messages via SOAP and files via Reliable File Transfer Protocol matched our
1 DIGIDT stands for Distributed Grid-enabled Induction of Decision Trees.
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Fig. 1. The global communication model. The first requested Node is the master Grid
node, the others are the slave Grid nodes controlled by the master. Each node encap-
sulates the DT Service communicating over SOAP.

needs perfectly. So the distribution mechanism was directly integrated in the
Grid Service extending the DT Service interface, named as DTServicePortType.
The implemented concept is illustrated in Fig. 2. The DTServicePortType inter-
face provides all the functionality needed by other remote DT Service instances
to transfer informations and resources like attribute list files. The distribution
specific methods of the DTServicePortType interface are invoked by the Attribut-
eListAgent class located on another Grid node. Fig. 1 outlines the global commu-
nication concept between the individual Globus Toolkit containers, referenced
as Grid nodes. The Grid node, getting the request to start the DT Service, is
chosen as master managing all the connections to other Grid nodes. These nodes
are called slaves and are used to provide functionality for storing, sorting and
splitting attribute list files as well as for evaluating class histograms2, also called
count matrices.

3 Distributed Data Flow

Using a distributed mechanism for building a decision tree, three approaches for
reading an input dataset can be considered: (1) The input dataset is read on the
master, transforming the records into attribute lists and writing them into files.
If the given attribute lists must be split or sorted, each file is read by another
remote DT Service instance and the resulting split or sorted attribute lists are
2 A data structure counting for each attribute value the occurrence of its classes.
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AttributeListAgent

+startDistribution(fileName:String,sort:BlockSort,container:AbstractRecordContainer): void

+startDistributedSort(fileName:String): void

+startDistributedSplit(fileName:String,fileName4Hashtable:String,newSplitFileNames:String[],
                       container:DistribRecordContainer[]): void

+getDistributedMinimalGini(fileName:String,container:AbstractRecordContainer): double

+createDistributedFileHashtable(fileName:String,hashtable:File,container:AbstractRecordContainer): SprintHashtable

+delete(fileName:String): boolean

<<Interface>>

DTServicePortType

+startDTS(attributes:Attributes): String

+startES(attributes:Attributes): String

+startDistributedSplit(serverId:String,fileName:String,fileNamesArray:StringArray,hashtableAccess:String,
                       hashtableName:String): _DistributedMatrixInformations

+createDistributedFileHashtable(serverId:String,fileName:String,hashtableName:String): SplitInformation

+startDistribution(serverId:String,fileName:String,fileAccess:String,SortInformation:sortInfo,
                   MatrixInformation:matrixInformation,rowCount:long): void

+getDistributedMinimalGini(serverId:String,fileName:String): double

+startDistributedSort(serverId:String,fileName:String): void

+delete(serverId:String,fileName:String)

+registerDistributedService(GSH:String): void

+unregisterDistributedService(GSH:String): void

<<Interface>>

GridService

communicate
1

1

Fig. 2. The interfaces and class, which manage distribution on the Grid. DTPortType
extends the OGSA Grid Service and AttributeListAgent is invoking distributed oper-
ations on an implementation of the DTPortType interface via SOAP. For each Grid
node (see Fig. 1) there is one AttributeListAgent instance referencing to the particular
implemented DTPortType instance on another node.

locally stored on the particular remote nodes; (2) This approach differs slightly
from the previous one in writing the attribute lists not into files but writing them
directly to other Grid nodes using streams; and (3) The involved Grid nodes -
the master and the slaves - read the same input dataset whereas each node writes
another attribute list locally into a file. In the first and second approaches, the
input dataset is only read from one location and each column value is used to
write the attribute lists on the master. Hence, the attribute lists of the master
must then be distributed to its slaves to parallelize the most time-consuming
parts of the decision tree construction like selecting the right splitting point
for each attribute list and splitting the lists. Thus, the advantage in the third
approach is, that the attribute lists don’t have to be transferred from the master
because each slave generates its needed attribute lists locally from the same
read input dataset. However, the big disadvantage over the previous approaches
is, that the whole input dataset must be read by each slave transferring a lot
of unnecessary column data for writing at least one attribute list per slave in
a local file. Comparing the three approaches under assumption of the network
connection and bandwidth of the master node and the node, from where the
input dataset must be read, is equal, the first and the second approach are
the best ones. The DT Service implementation was designed to use the first
approach.
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AbstractRecordContainer

+getID(): String

+getCountMatrix(): Matrix

+getResourceAccess(): ResourceAccess

+getRowCount(): long

+getAttribute(): Attribute

+getClassAttribute(): Attribute

+calculateMinimalGini(): double

+getSplitValue(): double

+getSplitPosition(): long

+writeRecord(record:AbstractRecord): void

+readRecord(): AbstractRecord

+createHashtable(hashtableFile:File,sort:BlockSort): SprintHashtable

+split(hashtable:SprintHashtable,fileNames:String[]): AbstractRecordContainer[]

+sort(sort:BlockSort): void

+getSplits(): int

+...()

BinNomRecordContainer BinNumRecordContainer

DistribBinNomRecordContainer DistribBinNumRecordContainer

DistribRecordContainer

Fig. 3. Overview over the local and distributed containers using SPRINT functionality.
The distributed containers have an additional reference to the AttributeListAgent class
shown in Fig. 2.

Each generated attribute list file is wrapped by a special Container class
which is either distributed, meaning that the attribute list file is on another
Grid node remotely working on it with the help of the DistribRecordContainer
extending classes, or local, in which way the BinNumRecordContainer and Bin-
NomRecordContainer classes are used. Its specification can be found in Fig. 3.
The prefix Bin of the Container classes is highlighting, that they are imple-
mented for building binary split decision trees. Because numerical attribute lists
must be sorted before they can be used for evaluating the right split value as
well as the calculation of the gini index3 of discrete and continuous attribute
lists is slightly different, Container classes for both were implemented using the
inheritance advantage of object oriented programming. These classes provide all
the functionality for the SPRINT algorithm like sorting, calculating the men-
tioned gini index and splitting. Hence, the master uses a local container for
each attribute list file at the beginning. With the help of Grid Service Han-
dlers (GSHs), which are URLs pointing at other DT Services, the distribution
of the attribute list files to other Grid nodes is done. For each GSH an Attribut-
eListAgent class is generated, which communicates with a remote DT Service.
These GSHs can either be specified by the user as parameters or read from a
configuration file. Besides, other Grid nodes can register their DT Service as de-
fault to others. Depending on the given GSHs, parts of the local containers are
converted to distributed containers. Distributed containers are wrappers around
local containers on other slaves. Therefore, each distributed container uses an
AttriubteListAgent class to communicate with other DT Services getting access
to their local containers.
3 A method for finding node split points.
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In order of the conversion from a local container to a distributed container,
the class histogram of the attribute list, the URL for accessing the attribute list
file on the master and the file name, used as identifier of each container, is sent
to the appropriate slave. Because the names of the slaves’ attribute list files are
generated per timestamp by the master and each slave can be used by more
than one master, the file names can not be used to identify attribute list files
uniquely. Two masters must be able to work remotely on files with the same file
name but containing different attribute lists. Thus, the server identifier of the
master is also sent to the slave, which is in fact the IP Address. This ID is used
to identify attribute list files in combination with their file names uniquely on
each slave by creating for each master a directory named after the server ID.
In this directory all the attribute list files are stored controlled by the master’s
distributed containers.

One problem during the development of a distributed service is, how to make
sure, that the distributed containers on the master side are definitely working
on the referenced local containers on the slave side. The solution for this was in
developing a special naming service. If the master sends a request to a slave via
AttributeListAgent class to distribute a file, a local container is created on the
slave using a ResourceAccess class to operate on an URL stream instead of a file.
If the resource is only needed once on a slave, its records are read directly by an
URL input stream. This results in noticeable performance gain because the file
doesn’t have to be transferred to the local file system to be read afterwards and
then deleted. In order to identify the local container uniquely on the slave, it is
bounded with the server ID as root context and the file name as context of the
root context by the naming service. If the master wants to get the gini index of
a distributed attribute list, it sends the appropriate request with the help of the
distributed container, using the AttributeListAgent class for communication on
the Grid, to the DT Service, specifying server ID and file name as parameters.
These values are used by the naming service to get the slave’s local attribute list
container where the appropriate method is invoked returning the gini index to
the master node. The master invokes the same method for getting the gini index
of each attribute list on either a distributed or a local container. If a distributed
container has the minimum gini index, a hash table file, which simply maps
the attribute lists’s record identifiers to attribute list identifiers, is created by
splitting the winning attribute list on the slave and the location and the file
name is sent to the master. In order to evaluate, whether an attribute list has
only one class value or more, the splitting point and the splitting value as well
as the count matrices of the attribute lists, obtained by splitting the winning
attribute list, are also transferred. If one attribute list has reached a certain
precision of predicting the class value, the splitting for this decision tree branch
is stopped and the attribute lists are transformed to a clean leaf node. If there
are more splits to execute, the attribute lists are transformed to an inner node
containing a test on the split value. Additionally, the master sends the hash table
file name, the URL—information how to access the hash table file—its server
ID, the file name of the attribute list, which must be split and the file names
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for the newly split attribute lists to the appropriate slaves. The slaves transfer
the hash table file, if it is not already on their disk, with the help of the given
URL parameter and the hash table file name and split the given attribute list
file using the local container, looked up in the naming service with the server
ID and the file name as identifiers. The new created attribute list files are then
wrapped by local containers on the slaves and by distributed containers on the
master. In order to user the local containers by the distributed containers, they
must be bound by the naming service. Then the gini indices for the partitioned
attribute lists must be calculated again to get the next splitting point.

4 Implementation Notes

The implemented DT Service converts its input dataset, which is given as We-
bRowSet data, to a binary structured decision tree. This tree is either written
as in PMML form into a Xindice database or into a file. The DT Service also
integrates tree pruning, based on the pessimistic error pruning [6], and an Eval-
uation Service, which uses as input PMML data and a testing dataset given as
WebRowSet data. The output is PMML with additional precision values and
is again written either into a Xindice database or into a file. All input data
can be transformed by specifying XSLT data loaded from an URL. Input data
is also loaded by URLs, so the services are not locally limited. The set of ad-
justable features of the sequential as well as of the distributed version includes:
target class attribute name (the attribute whose values should be predicted),
split precision, split mode (binary), amount of records sorted internal, internal
sort algorithms, external sort algorithms, tree writer and evaluation writer, and
transfer protocols.

5 Performance

A set of tests has been created to estimate the basic performance of the distrib-
uted DT Service. All tests have been executed at least thrice and the average
values have been used. As dataset a WebRowSet file4 (weather data) was used
containing 2 numerical and 3 nominal attributes. The tests were executed on 4
computers running Globus Container 3.2 connected by a 100 MBit network:

Master: Sun Solaris 9 on a Sun Fire 880 with 4 Sparc CPUs at 750MHz and 8
GB main memory

Slave1: Sun Solaris 9 on a Sun Blade 1500 with 1 Sparc CPU at 1062MHz and
1.5 GB main memory

Slave2: Sun Solaris 9 on a Sun Blade 1500 with 1 Sparc CPU at 1062MHz and
1.5 GB main memory

Slave3: Sun Solaris 9 on a Sun Blade 1500 with 1 Sparc CPU at 1062MHz and
1.5 GB main memory

4 A XML file containing metadata and records of a dataset.
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Client: Red Hat Linux 9 on a Toshiba Satellite with 1 Pentium 4 CPU at
2200MHz and 512 MB main memory

The performance of the service was also measured using only 1 and 2 nodes. In
the first case, only the Master was used to build the decision tree, in the second
case Master and Slave1 were used. Fig. 4 shows the results of the tests using the
configuration for sorting a maximum amount of 600000 dataset records internal.
For internal sorting, the QuickSort algorithm is used.
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Fig. 4. Average results of response time for 3 runs. The DT Service is configured to sort
a maximum amount of 600000 dataset records in main memory before using external
sorting method.

6 Conclusion

In this paper we described the Grid service for constructing scalable and distrib-
uted classifiers and the components it consists of. We implemented a prototype
of this service based on the Globus 3 toolkit. A set of performance tests was
carried out to analyze behavior of the service. The prototype is an important
intermediate step towards the vision of high-performance data mining in Grid
databases.
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Abstract. We address synchronization issues of some block matrix mul-
tiplication algorithms in a distributed computing environment. We dis-
cuss performance behavior of a client/server implementation of these
algorithms focusing on the most appropriate version which delivers the
minimum synchronization overhead. Numerical experiments are carried
out using the NetSolve distributed computing system.

1 Introduction

Distributed computing aggregates computational resources in order to tackle
problems that cannot be solved on a single system. Depending on the software
and hardware infrastructure, these resources might comprise the majority of the
supercomputers in the country or simply all the workstations within a depart-
ment. Over the last decade, distributed computing received great attention from
the scientific computing communities, thanks to a substantial improvement of
the networks bandwidth, and it is now feasible the use of geographically scat-
tered computers as a single computational resource. A significant example is
the Italian national research network GARR [7], where the backbone bandwidth
has grown from 2Mbit/sec in 1994 up to 2.5Gbit/sec in 2002, a growth factor of
about 1000 in eight years, much more than the Moore’s law about the processors
speed. In general, for computationally demanding problems the exploitation of
parallelism is a key issue in order to compute the solution within a reasonable
time. This means to decompose the given problem into smaller subproblems to
be solved concurrently (data or task decomposition).

However, it is important to underline that distributed computing environ-
ments are composed by heterogeneous computational resources, both from the
static (processors, operating systems, arithmetic,...) and dynamic (workload of
the systems, effective bandwidth of the networks,..) point of view, making very
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difficult an efficient synchronization among the nodes. For this reason, one of the
main approaches towards the development of distributed applications is based
on the client/server programming model where the application is divided into
a large number of essentially independent tasks that are dispatched to several
servers, and a “coordinator” task managed by the client module. In the parallel
computing community these problems are called “pleasingly” or “embarrass-
ingly” parallel.

The most significant example in this sense is the SETI@home project [10].
This project uses idle computers for the analysis of radio signals outcoming
from space to find extraterrestrial intelligence, and it has been able to aggregate
more than 5 millions of computers, achieving a average performance of about 60
Tflops, about the same of today’s most powerful supercomputers [4].

Beyond such example of mere networked computing, new issues arise in the
development of algorithms and software able to run efficiently on such a pervasive
hardware and software infrastructure. Following [5], in this paper we deal with
on-demand computing where remote resources are used to meet short term re-
quirements that cannot be cost effectively or conveniently locally located. These
resources may be hardware, software libraries, data repositories, and so on. In
contrast to traditional supercomputing, these applications are often driven by
cost-performance concerns rather than absolute performance. The challenging of
on demand computing derives primarily from the dynamic nature of resources re-
quirements and the potentially large populations of users and resources. Main is-
sues include middleware related topics like resources brokering and management,
configuration, authentication and security as well algorithm related aspects like
fault tolerance, latency tolerance, heterogeneity management and performance.

In this paper our reference computational environment agrees with a
client/server programming model where:

– the servers do not communicate directly each other but with the client only,
– the selection of the resources is in charge to the underlying computing envi-

ronment by means of their own dynamic allocation strategies.
– the computational information about the servers, including their availability,

load, processor speed, are hidden to the client.

In these years several computing environments have been developed with the
aim to address these topics, allowing, at the same time, a friendly access to re-
mote resources. Among them there are NetSolve [1] and Condor [8]. NetSolve is
the distributed computing environment where we implemented our algorithms.
It has been developed at the University of Tennessee to be a simple-to-use mid-
dleware system that allows users to access computational resources and to use
remote libraries, without the need to locate, configure and install them. How-
ever, for the development of algorithms for distributed computing environments,
a completely different approach with respect to the classical parallel computing
methodologies, is necessary. As case study we consider a block matrix multipli-
cation algorithm because it is a basic linear algebra computational kernel rep-
resentative of similar other computations. On the other hand, it encompasses a
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lot of data movements, so that to minimize the synchronization overhead among
the nodes becomes a challenging task.

The paper is organized as follows: in section 2 we analyze the performance be-
havior of some versions of block matrix multiplication algorithm in a client/server
programming model, in section 3 we describe experiments on two different Net-
Solve systems: a “wide area” system located at the University of Tennessee and
a “local area” system installed in our university campus. Finally, conclusions are
discussed in section 4.

2 A Client Server Block Matrix Multiplication Algorithm

Starting from PUMMA (Parallel Universal Matrix Multiplication Algorithm)
[3], the algorithm on which PDGEMM routine of ScaLAPACK is based, simi-
lar algorithms for block matrix multiplication have been developed in the last
decade. These algorithms are tuned in order to optimize the synchronization
overheads on tightly coupled distributed memory machines by overlapping com-
putations and communications; recently, new issues on heterogeneous networks
of workstations have been addressed; in this case the load balancing of proces-
sors running at different speed is the challenging task (e.g. [2] and [9]). These
implementations are based on the revision of classical parallel algorithms for ho-
mogeneous environments and they suppose that key features of the computing
resources, as the cycle times of the CPUs, are known, so it is possible to dispatch
to each node an amount of work proportional to its computational speed. How-
ever, these algorithms are based on the SPMD programming model, suitable for
distributed memory multiprocessors with a tightly intra node synchronization
but critically liable for the performance decline in a client/server distributed
computing environment.

As an example of revision for the classical parallel block matrix multiplication
algorithms let us assume that A is an (m × n) matrix, B is an (n × p) matrix
and C is an (m× p) matrix divided for simplicity of notations in square blocks
of order r, with n, m and p divisible by r. Then the blocks number of the matrix
are MB = m/r, NB = n/r and PB = p/r.

In Figure 1, three variants of a standard blocks algorithm for the matrix
multiplication C = A×B, obtained by the permutation of the loops indices are

for I=1, MB (in parallel)
for J=1, PB (in parallel)
for K=1, NB
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
a) (I, J, K) ordering

for I=1,MB (in parallel)
for K=1, NB
for J=1, PB (in parallel)
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
b) (I,K, J) ordering

for K=1, NB
for I=1, MB (in parallel)
for J=1, PB (in parallel)
C(I,J)=C(I,J)+
A(I,K)B(K,J)
endfor
endfor

endfor
c) (K, I, J) ordering

Fig. 1. Standard versions of parallel blocks matrix multiplication
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then shown. Note that the other versions are equivalent to these ones and all
versions are based on the same matrix operation:

C(I, J) = C(I, J) +A(I,K)B(K, J) (1)

In a client/server implementation, for given values of I, J and K, this oper-
ation can be computed by sending from the client to a server the three blocks
A(I,K), B(K, J) and C(I, J), then the server can update the block C(I, J) and
it can sends back the result to the client. It is important to note that in all
cases the only possible source of parallelism is along the indices I and J , in the
sense that each block C(I, J) can be computed independently from the other
ones. This is not possible for the index K, because of the risk of “race condi-
tion” accessing a given block C(I, J) for different values of K. Then, in order
to reduce the synchronization overhead the main problem in a client/server im-
plementation is to define which of the orderings in Figure 1 has to be used to
compute the several matrix operations involving the blocks C(I, J), A(I,K) and
B(K, J). For the (I,J,K) ordering (Figure 1.a) the client generates MB × PB
independent threads of computation, each of them managing the sequence along
the index K. For the (I,K,J) ordering (Figure 1.b) the client generates only MB
independent threads of computation, each of them generating PB parallel tasks
at every step of the index K . Finally, for the (K,I,J) ordering (Figure 1.c) at
each step of the index K, the client generates MB × PB parallel tasks, and it
has to wait for the completion of all these tasks before generating new ones.

For a computational cost analysis, let tijk denote the execution time (compu-
tation and communication) needed to perform the operation (1) and T (a), T (b)

and T (c) the total execution times for the three orderings in Figure 1. It is easy
to found that:

T (a) = max
i,j

∑
k

tijk T (b) = max
i

∑
k

max
j
tijk T (c) =

∑
k

max
i,j

tijk

so that:
T (a) ≤ T (b) ≤ T (c)

Then the (I,J,K) ordering is more oriented to a distributed client/server imple-
mentation than the others two orderings. The worst case is the (K, I, J) ordering.
Let us assume, for a while, the ideal case, where the environment is homogeneous
and dedicated to the computation and m = n = p. In this case the execution
time tijk = t, is the same for all the values of I, J , K, and

T (a) = T (b) = T (c) = NB · t

This result shows a linear growth with respect to NB of the total execution
time when the matrix dimension n grows while the block dimension r = n/NB
is kept constant, and that the ideal scaled efficiency when we multiply by α the
matrix dimension n is:

Sα = T (a)
n /T (a)

αn =
n · t/r
αn · t/r =

1
α
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Finally let us compute the communication overhead of each task. In all the cases,
for each value of K, the core instruction (1) is executed MB ·NB · PB times,
each requiring 4 blocks communications of size r2 (C(I, J), A(I,K), B(K, J) and
back the update of C(I, J)) between the client and the servers. This means that
4r2 double precision floating point data, are exchanged between the client and
the servers. Then, the total communication overhead is due to the movement of

CO =
32n2MB · PB

NB
byte.

We implemented the three versions of the block matrix multiplication in the Net-
Solve distributed computing environment. This environment uses a client-agent-
server paradigm aimed to dispatch on the most suitable server those calculations
that require specialized software and, at the same, to minimize the total com-
munication overhead among the nodes of the environment. More precisely, the
agent keeps track of static and dynamic information about all the servers, selects
one of these on the basis of their static (hardware and software) and dynamic
(load balancing, effective networks bandwidth) features and notifies the choice
to the client. The client is then able to send directly to the server the data of the
required task, and the server can use its installed software libraries to perform
the computation on client data. Finally the server sends the results back directly
to the client and the agent is notified of the completion of the task. For instance
the core operation (1) is executed on the servers using the DGEMM routine of
LAPACK library, available with the release 2.0 of NetSolve.

3 Computational Experiments

In this section we discuss experiments that we carried out, aimed to evaluate
performance behavior of the block matrix multiplication algorithms previously
described. For each experiment, the reported total execution times are the aver-
age of 10 runs launched at different day hours in order to use the networks with
different workloads.

To this aim we used two NetSolve infrastructures. The first one is a system
located at our department that we call LAN system, and a second one is the
system located at the University of Tennessee that we call WAN system. For

LAN system WAN system
Client location Dept. Math. and Appl. Dept. Math. and Appl.

Univ. Naples - Italy Univ. Naples - Italy
Agent and Dept. Math. and Appl. Comp. Science dept.
servers location Univ. Naples - Italy Tennessee Univ.
Servers 7 PCs Pentium III and IV > 50 PCs and WS
Measured latency ∼ 200 μsec ∼ 140 msec
and bandwith ∼ 50 Mbits ∼ 1.5 Mbits

Fig. 2. features of the NetSolve systems used for our experiments
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both systems we report in Figure 2 the main features with special regard to the
network. Note the client location is the same in both cases.

A first set of experiments is aimed to verify the effectiveness of the (I,J,K)
ordering of the block matrix multiplication algorithm respect to the other ver-
sions. With this aim we implemented the two orderings (I,J,K) and (K,I,J) in
Figure 1 (namely the best expected version and the worst expected version) on
the WAN NetSolve system with square matrix of order n = 250, 500, 1000, 1500,
2000, and a fixed block size r = 250, thus NB = 1, 2, 4, 6, 8. In Figure 3 we
report the average execution time of the two orderings, where it is evident the
better performance of the (I,J,K) ordering of the algorithm. Actually the (I,J,K)
versione exploits for every test a smaller average execution time, with a gain of
about 50% respect to the (K,I,J) version, because of the smaller syncronization
overhead.

Fig. 3. Average execution time of two orderings of the block matrix multiplication

A second set of experiments is aimed to compare the execution times of the
(I,J,K) ordering of the block matrix multiplication algorithm, on the two different
NetSolve systems. For these experiments the results are reported in Figure 4. For
the same values of n and r used in the previous experiments, we estimate that
on the LAN system the total execution time is about 50% smaller with respect
to the WAN system, because of the smaller latency and the higher bandwidth
of the networks. In order to quantify the performance gain, let us observe the
scaled speed up S2 achieved from n = 1000 up to n = 2000: on the LAN system
S2 = 0.23 whereas on the WAN system S2 = 0.14. These values should be
compared with the ideal scaled efficiency S2 = 0.5. Furthermore, we previously
stated that, in the ideal case, the execution time grows linearly, but in our
experiments we found that the total execution time of the (I,J,K) version grows
roughly as NB2 on the LAN system because of the system overhead. However
this asymptotic rate is still smaller than the asymptotic rate of a sequential
execution, where the total execution time grows as NB3. On the other hand,
when the (I,J,K) version is executed on the WAN system we found the same grow
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Fig. 4. Average execution time for the (I,J,K) of the matrix multiplication algorithms
for the LAN and WAN NetSolve infrastructures

rate NB3 of a sequential execution, then in this case the proposed approach to
the distributed computing is not competitive.

However, in general it is worth to note that efficiency in distributed com-
puting applications is a wrong performance’s measure. Actually, the use of a
distributed computing infrastructure should not be seen as a high performance
computing solution but as a cost / effective solution because it enables the access
to computing resources that cannot be conveniently locally located.

4 Conclusions

The development of cost/effective distributed computing environments is en-
abled by the current advances in networking technologies. The network-based
computing environments provides the computational and storage requirements
for solving distributed applications. Even thought distributed computing envi-
ronments can deliver high performances when lot of computations is needed to do
embarrassingly parallel tasks, the availability of distributed software infrastruc-
ture such as NetSolve and Condor represent a viable and economic solution
when other dedicated resources are unavailable. This often requires detailed un-
derstanding of the underlying architecture and writing parallel or distributed
algorithms needs exploitation of different programming models which are most
suitable for addressing communication and synchronization issues. To this aim,
we discussed performance behavior of a client/server implementation of some
block matrix multiplication algorithms in terms of their synchronization over-
head in order to analyze bottlenecks in the algorithms that critically impact
performance. While in parallel computing we decompose into parts, in distrib-
uted computing we assemble parts [6], and in some cases, composition requires
hard synchronization issues.
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Abstract. Scalable and fine-grained Grid authorization requires the
move away from gridmap-file based access control and 1-to-1 mappings
to individual operating system user accounts. This is recognized and ad-
dressed by virtual organization authorization services and user manage-
ment systems e. g. Virtual Organization Membership Service (VOMS),
Local Centre Authorization System (LCAS), Local Credential MAPping
Service (LCMAPS) and Community Authorization Service (CAS). They
do, however, not address user operating system account management and
isolation/sandboxing requirements, such as flexible pooling of accounts
while maintaining auditing records. In this paper we compare existing
systems which solve the above shortcomings and are currently used in
real production grids.

1 Introduction

The main aim of user management systems is to provide controlled and secure
access to grid resources. Security requires authentication of the user and autho-
rization based on combined security policy from the resource provider and the
virtual organization of the user. Users must be allowed to use the resources to the
extent allowed by the user roles and the policy, while resources must be secured
against unintentional as well as malicious policy breaks. The second important
thing is the possibility of logging user activities for accounting and auditing (se-
curity reasons) and then gathering these data or their aggregates both by the
resource provider and virtual organization of the user. From the user point of
view, an important feature is single sign-on and automatic authorization based
on user identity and his/her privileges and roles. The problem of user manage-
ment is a non-trivial one in an environment of thousands of users participating
in many virtual organizations that provide a huge number of computing and
storage resources and data. The complexity rises from the point of view of time
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required for administration tasks and automation of these tasks. While there
are many attempts to solve the mentioned problem, none of them, according
to our best knowledge, solves it in complex and satisfactory way. The simplest
solutions that are scalable and easy to manage are using anonymous or shared
accounts and similar insecure approaches. Such solutions do not offer isolation
of activities of different users which is necessary for user and resource security
as well as for proper accounting and logging user activities. More sophisticated
solutions use set of accounts that are one-to-one (at the time) mapped to the
users, however the history of mappings is not stored, thus accounting and logging
is still impossible.

Few projects like Perun [1, 2] and VUS (Virtual User System) [3, 4] aim to
overcome most of these deficiencies. However, these projects originated from
different motivations and needs, therefore the concepts and semantics of some
basic ideas differs. In this paper we will present the main ideas and architectural
features of these existing systems running in real production grids.

2 VO Based Access to the Grid

One of the basic concepts in grid theory is Virtual Organization (VO). A VO is a
set of individuals and/or institutions that allows its members sharing resources
in a controlled manner, so that they may collaborate to achieve a shared goal [5].

The first step in obtaining an access to a remote resource is authentication.
From the user point of view, the remote access should be as much as possible
simple and similar to the local access. This may be achieved by single sign-on
and credential delegation features and by integration with local security solu-
tions. These requirements are usually fulfilled by most of already implemented
solutions.

The next important issue is authorization. The security policy should be
combined from few sources, at least from VO and resource providers. This allows
for delegation of some administrative privileges and work to VO, which is more
scalable. The authorization must be fine-grained, which means the user privileges
must be limited according to their VO membership, roles and capabilities.

The system must assure that two different jobs will not interact in unwanted
and unpredictable way, e. g. overwriting each other results. Closely related issue
is security of data and files and protecting them from unauthorized read or write.
Moreover, it must be possible to identify who and when used specific resources,
performed or attempted some actions, which is relevant for accounting, auditing,
and for security reasons. Usually it is not even enough to know who it was
personally, but it is important on whose behalf he acted and in which role.
By the virtual environment we understand such encapsulation of user jobs that
will both guarantee the limited set of privileges and also provides support for
identification of user and organization on behalf he/she acts. Virtual accounts,
sandboxes, and virtual machines are examples of different approaches to the
creation of virtual environments [6, 7, 8, 4].
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Any production grid, especially commercial one, needs an accounting feature.
Before issuing any bills however, the accounting data must be collected (possibly
from several locations) and tied to users and VOs. From the security point of
view, it is important to track user activities (e. g. by analyzing system logs) in
order to detect any rule-breaking. It must be possible to identify the user who
has performed the action. Proper encapsulation of jobs and history of users’
mapping into virtual environment are both necessary to achieve these goals.

3 Perun—from Cluster to VO Management

3.1 Motivation

Project Perun [1] started as a user management tool for the Czech national
Grid—METACentre project—encompassing heterogeneous resources from su-
percomputing centers across Czech Republic. METACentre consists of a mix of
PC IA-32 clusters, SGI and Digital supercomputers and several smaller comput-
ers of various architectures (Itanium, Power5, Opteron).

The design of the system was driven by several rather contradictory require-
ments: e. g. fault-tolerance of managed resources (probability of hundreds of
machines being up and reachable at the same time approaches zero) vs. en-
forcement of integrity constraints (changes of related configuration parameters
should be done simultaneously and atomically), or the configuration repository
being central (easier to manage) vs. distributed (independent control of distinct
administrative domains).

The system itself is not a symmetric component of authorization service. On
the contrary, it provides a repository of complex authorization data, as well as
tools to manage the data. The data are used to generate configuration of the
authorization services themselves (starting from UNIX user accounts to gridmap-
files or VOMS database). In turn, these services are used to enforce authorization
policies. Hence the centralized Perun architecture does not introduce a single
point of failure of the whole Grid authorization infrastructure.

3.2 Architecture

Having analyses the principal requirements (see above) we decided to take the
approach of central configuration repository which models an ideal world, i. e.
how the resources should look like. In this central repository, all the neces-
sary (and possibly very complex) integrity constraints are relatively easy to be
enforced. The repository is complemented with a change propagation mecha-
nism which detects the changes, generates consistent configuration snapshots of
atomic pieces of managed systems, and tries to deliver them to their final des-
tinations, dealing with resource or network failures appropriately. In this way,
the real world is forced to follow the ideal one as closely as possible. Details are
discussed in [2].

The core of the system is completely independent on the structure and se-
mantics of the configuration data, hence the system is easily extensible. In the
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current deployment the managed configuration items include user accounts on
UNIX machines, Kerberos realms, and user home directories on both UNIX
filesystems and AFS.

Security of such system is critical. First of all, compromise of the central con-
figuration repository implies compromise of all the managed resources. Therefore
we attempt to minimize possible impact by following the minimal required privi-
lege principle. In other words, even if a typical update of the managed computer,
e. g. adding users to /etc/passwd, requires root privilege, the system does not
require the credentials of the central server to be granted an unrestricted root
access to the managed computers. On the contrary, only the necessary operation
is allowed. For example, the central server can manipulate only user accounts in
/etc/passwd but it can neither touch system accounts nor modify other files.

The managed resources span different administrative domains. Therefore the
individual administrators must be isolated when accessing the central repository.
Technically this is done by denying direct access to configuration database tables
and allowing it via special database views only. These expose only an appropriate
set of rows, selected dynamically based on the user’s authentication information
and access control lists.

The current implementation uses Kerberos 5 as the primary authentication
mechanism, for both users and inter-service communication. However, X509 cer-
tificates are also supported, being translated to Kerberos identities wherever
required.

Both resource administrators and ordinary users access the system via web
interface for routine tasks, e. g. initial user registration procedure, annual report
submission, temporary locking and unlocking unused accounts etc. In addition,
the administrators may use command-line interface, intended for building ad-
hoc scripts for solving particular tasks. Finally, the administrators are given full
SQL access to the database (applying the security restrictions described above)
to resolve exceptional situations.

3.3 Grid Extensions

With our involvement in international Grid projects GridLab and EGEE, Perun
was extended to cover additional requirements of these. First, support for binding
X509 identities to physical users, and maintenance of a set of trusted certification
authorities were added. The data are used for generating gridmap-files (mapping
of X509 certificate subjects to local user names) directly. The files are either
propagated together with /etc/passwd using standard Perun’s mechanism or
published on a web site from where they are picked by the managed computers
actively.

The EGEE project uses two different authorization services: LCMAPS and
VOMS. The current Perun implementation supports both. For LCMAPS it gen-
erates and publishes LDIF files which are picked by the service and turned into
local gridmap-files. VOMS is controlled directly via its administrative interface.
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3.4 Deployment

METACentre (national Grid). In the METACentre project, the system
manages over 200 nodes of IA-32 clusters, 4 SGI supercomputers, and about
50 other, rather heterogeneous machines. The machines are located in sev-
eral cities in the Czech Republic. There are almost 800 user records in the
database, however, a typical number of users authorized to access a single
resource is less than 300.

Gridlab (EU 5FP project). Perun was used to manage specific GridLab user
accounts on the machines forming the project testbed. In this case, the ma-
chines were spread through the Europe, with some machines even overseas.
This deployment motivated the described introduction of X509 certificate
management and generating gridmap-files.

VOCE (within EU 6FP project). Perun is used for the management of Vir-
tual Organization for Central Europe (VOCE)1 in the EGEE project. Besides
controlling the LCMAPS and VOCE authorization services it also manages
dedicated VOCE user-interface machines.
Deployment in VOCE brought the described authentication of users and
administrators with X509 certificates.

3.5 Further Development

The current integration of Perun and batch system inMETACentre is limited—
the only configuration maintained by Perun is a file with a list of user accounts
on particular machines and clusters, serving as a hint for job planning. We plan
introducing a more general virtual accounts or virtual machines environment,
managed by Perun, more tightly coupled with the batch system.

In a longer timeframe scalability issues should be addressed. The current
bottleneck is the update of managed machines—the server opens a network con-
nection to the machine, and waits until the configuration update is finished. This
is proven to work with hundreds of machines but will not probably scale further.
Instead a hierarchical configuration propagation should be used.

4 Virtual User System

4.1 Motivation

Since 1999 some supercomputing centers in Poland have been connected using
the LSF (Load Sharing Facility) HPC Cluster. It was taken into consideration
that such solutions help distribute jobs across the multicluster, what enables bet-
ter machine utilization. However, the queuing systems doesn’t care of distributed
user account management, and thus Virtual User System was introduced to han-
dle the problem. It was exploited and proved the usefulness of concept. In the
recent years the concept of grid computing becomes more and more popular and
1 http://egee.cesnet.cz/en/voce/index.html
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Globus Toolkit (GT) become a de facto standard in building grids. However, GT
still doesn’t address most of the problems connected to user management, so the
idea of VUS was adopted and VUS was reimplemented in few grid projects.

Virtual User System (VUS [9, 4])2 is an extension to the system that runs
users’ jobs (e. g. scheduling system, Globus Gatekeeper, etc.) and allows running
jobs without having a personal user account on a node. The personal accounts
are replaced by “”virtual” ones, that are mapped to users only for time needed
to fully process a job. In this way, it is no need to maintain user accounts for all
users on each computing node, reducing thus administrative overhead associated
with such environment. VUS addresses most of the problems mentioned above
like user authorization, isolation of work of different users, logging user activities
and accounting.

4.2 Architecture

There are groups of virtual accounts on each computing node. Each group con-
sists of accounts with different privileges, so the fine grain authorization is
achieved by selecting appropriate group by the authorization module. The au-
thentication module is pluggable and may be easily extended or replaced. For
example, the authorization decision may be based on VO-membership of the
user: the plugin may call a remote VO service to ask about the user or get
his VO name from the credential signed by the VO (see VOMS [10]). The VO
manager decides who is member of VO. The grid node administrator (RP) de-
cides which VOs should be authorized, defines connection VO-account group
and configures privileges of accounts. The second plugin may check if the user
is present in a banned users list, maintained by the (site) administrator. This
gives RP enough power while part of this power and most of the administrative
work is delegated to VO manager. In that way security policies of VO and RP
are combined.

The system assumes, that the VOs form DAG-shaped hierarchies. There are
few root-level organizations and they are rather static (long-living). Stepping
down the hierarchy there are more and more sub-organizations and they tend
to be more dynamic. Thus, it is not easy or even possible to keep an up-to-
date picture of the whole hierarchy on each node, so the nodes may reflect only
some part of this hierarchy. A VO, that is not explicitly configured, is considered
to be mapped to the same group of accounts as its parent VO. Note, that this
mapping is similar to the gridmap-file, but is done on a higher level, so it requires
considerably fewer configuration work.

Once the user is authorized, he is mapped to a virtual account from the
group of accounts suggested by the authorization module. The mapping user-
account mechanism assures that only one user is mapped to an account at any
given time. The history of user-account mapping is stored in a database, so
that accounting and tracking user activities are possible. The basic accounting
data types (e. g. CPU, memory, etc.) are the same as offered by the standard

2 http://vus.psnc.pl/



Best Practices of User Account Management 639

operating system accounting and are gathered automatically by VUS, using the
local OS mechanisms. The VUS database is ready for storing also non-standard
accounting, defined by the administrator and stored in the database by calling
API functions by user applications (e. g. it may be time of usage of scientific
equipment in a virtual laboratory driven by the application). VUS offers also
options for summarizing accounting data and presenting it in different views via
webservice to the RP, VO manager and user.

The mapped accounts are released on demand. It is done automatically, when
the account is no longer used (no job is running) and there is currently no free
account to be mapped for a user starting a new job.

4.3 Implementation

The first implementation of VUS was an extension to the queuing systems (e. g.
LSF) and it was successfully exploited a few years ago in the Polish national
cluster which connected several HPC centers in Poland [3]. The current VUS
is a Globus ’gridmap callout’ and it has been implemented from scratch. A
few versions of VUS are used in various configurations in several national and
international projects:

SGIgrid3 (Done in cooperation with Silicon Graphics). In this project VUS
uses Resource Access Decision (RAD) service for authorization. Done with
cooperation with Academic Computer Center in Gdansk TASK. The imple-
mentation is finished, the project is in deployment phase.

Clusterix4 (National Cluster of Linux Systems). In this project, authorization
method will be based on querying VO services about membership of the user.
Done in cooperation with Technical University of Szczecin and Academic
Computer Center in Gdansk TASK. The implementation is matured, but
not completely finished.

GridLab5 (EU 5FP project). VUS uses Grid Authorization Service (GAS) for
authorization. Version implemented in pure C, doesn’t require a database
on the grid node.

Experience from the VUS system development and deployment will be used
for designing the general framework for managing user jobs in grids within the
EU 6 FP Network of Excellence CoreGRID6.

5 Related Work

The simplest solution for scalability and management problems is using anony-
mous or shared accounts, but they do not offer isolation of activities of different

3 http://www.wcss.wroc.pl/pb/sgigrid/
4 http://www.clusterix.pl
5 http://www.gridlab.org
6 http://www.coregrid.net
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users. A bit more sophisticated solution is the pool account system which con-
sists of a set of accounts that are one-to-one mapped to the users. With the strict
one-to-one mapping accounts for users never using the resource must be created
and maintained, increasing the administrative overhead and creating a possible
security hole (never used accounts should be avoided).

Several Grid environments employ the idea of virtual accounts that are tem-
porarily mapped to a pool of physical accounts when needed. Such accounts are
called virtual, scratch, generic, template or shadow accounts. In PUNCH users
have their own logical user-accounts and the system manages its own physical
accounts on remote resources and dynamically recycles them among users as
necessary. Generic accounts can also be used in Condor and Legion, but in both
systems it is recommended that users have their own accounts on every machine.
Condor uses a nobody UID to run jobs for users that do not have an account
in a Condor flock. Legion also manages the pool of generic accounts that are
assigned for Legion use.

Simple “Dynamic Virtual Environments” approach allows creation of the job
environment like e. g. Unix account and gridmap entry for the user on demand.
This solution however requires the client for applying for the account and pro-
vides no automatic mechanism for releasing or recycling of accounts, creating
potentially large account pools where individual accounts are used with very
different frequency.

5.1 VOMS, LCAS and LCMAPS

The most popular system for managing user accounts for VO based access is
VOMS with LCAS and LCMAPS. Virtual Organization Membership Service was
developed in European Data Grid project in order to solve limitations of classic
Globus gridmap-file user management approach. VOMS contains database with
information on the user’s Virtual Organization and group (sub-organization)
membership, roles and capabilities. The service preserves it in a special format—
the VOMS credential. The user, before starting a job must acquire the VOMS
proxy certificate signed by his VO and valid for limited time. The extra autho-
rization data is placed as a non-critical extension in the proxy, so it is compatible
with not VOMS aware services. In order to take advantages of VOMS data, the
Globus Gatekeeper was extended by LCAS and LCMAPS.

Local Center Authorization System (LCAS) is a service used on computing
nodes in order to enforce local security policies. The authorization decision is
based on user proxy certificate and job description and is made by pluggable
authorization modules. VOMS-aware modules use user’s VO membership, roles
and capabilities for making the decision.

LCMAPS maps user to local credentials (UNIX account and group, AFS
and Kerberos tokens), depending on user proxy certificate and job description.
The mapping decision is based on user proxy certificate and job description
and is made by pluggable authorization modules. Similarly to LCAS, VOMS-
aware modules use user’s VO membership, roles and capabilities for making the
decision.
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Some plugins implemented for LCAS and LCMAPS allow for the backward
compatibility with the classic gridmap-file approach. Other ones allow for map-
ping users to accounts from pools of accounts, where the pool is selected de-
pending on VOMS data. The plugins care that the user is always mapped to the
same account and only one user is mapped to an account at the time. The system
doesn’t care of releasing unused accounts and doesn’t address accounting issues.

6 Conclusion

Large scale Grids serving thousands of users need flexible and dynamic user
account management system, that provides virtual environment for running jobs
while securing both users and resource providers from unexpected interactions.
The management of user accounts is closely related to the management of VOs,
as the VO membership and role is the basic information necessary to provide
appropriate virtual environment.

The Perun system provides robust user management database and tools to
create and maintain user accounts on demand and keeps the basic authorization
data (to be used through some authorization service). Although it is a central-
ized system, using consistently the push model with no on-line real-time query
support it has been proved to work smoothly with hundreds of maintained ma-
chines, spread over wide area network. The complex constraint tests on the data
stored in the database together with consistent termination checks on all remote
operations guarantee its high robustness and reliability. The Perun system is VO
neutral, able to support several VOs simultaneously.

On the other hand, the Virtual User System is primary focused on the flexible
and dynamic management of user account pools and collecting accounting infor-
mation. It does not keep data about VO membership, using external services to
provide such checks. To optimize this process, the VUS assumes DAG-shaped VO
hierarchies. Fine grain authorization uses groups of virtual accounts with differ-
ent privileges, to which user identities are mapped by the authorization module.

Both systems represent different approaches to the user account manage-
ment. However, they start with different requirements and even do not use the
basic concepts (like VO or account) in the same way. To some extent they also
cover complementary issues, but their combination and extension is not possible
without a common conceptual and semantics basis (e. g. hierarchy in VOs vs. a
flat VO structure). It is necessary to agree on more precise definitions of VOs,
their membership creation and management, description of roles within VO, in-
teraction of user (account) management system with the authorization systems
(including the scalability and robustness issues), definition and management of
accounting information etc.

Both systems were also build for a specific user communities, with specific
use scenarios. Again, more work is necessary to provide wide coverage of possible
use cases, from which new requirements will be derived. Based on the common
concepts, this will lead to a new, more general architecture of the user account
management system and its interaction with other Grid components. This paper
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is the first step towards the general architecture, that is being build as part of
the Network of Excellence CoreGRID.

Acknowledgment

The support from the NoE CoreGRID (IST-2002-004265) is highly acknowledged.

References
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Abstract. The service-oriented model of the grid offers a wide range
of computational capability that can be shared over the Internet. In
this paper we describe a concept to create and configure execution envi-
ronments that can be dynamically deployed using virtual machines onto
bare hardware. This new paradigm allows more flexible usage of available
hardware and is expected to decrease the efforts needed to configure and
maintain nodes on a grid. A novel aspect of the architecture is the use
of Web Services Resource Framework (WSRF) [4] and other emerging
standards in the grid ecosystem. Based on these standards a prototype
has been implemented that is used to create first results, and figure out
challenges and future work following this new approach.

1 Introduction

The grid computing paradigm has occupied an important place in the computing
world, offering tremendous computing capability. The goal of grid computing is
“to provide flexible, secure, coordinated resource sharing among dynamic collec-
tions of individuals, institutions, and resources” [1].

To make a system available on one of the current grid infrastructures like
Globus [10] or Unicore [11], an administrator would have to install server software
and edit configuration files for the available applications. This kind of static
system configuration limits the usage of existing hardware to the type and version
of operating system and installed applications. Moreover, multiple users from
different organizations may share the same operating system, which leads to
security issues, and the stability of the overall hardware is affected if a user
executes a faulty job.

Virtual Machine Technology [7, 8], which is able to support execution of mul-
tiple guest operating systems answers the above mentioned problem. Technolo-
gies like Xen proved that performance loss of using virtual machines on various
classes of applications is less than 5% [2, 9]. With the Virtual Machine Technol-
ogy and the proven performance impact on the applications in mind, we suggest
creating separate execution environments by mapping a user to an operating
system, instead of mapping multiple users to the same operating system. Vir-
tual machines, which are characterized by strong isolation and serialization can
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run and crash independently, and also encapsulates the data in a protected envi-
ronment. A virtual machine can also be dynamically configured according to the
hardware and software request that has been specified by the user. Advanced
features of virtual machines include migration during run-time, which opens new
ideas for highly flexible resource management: Since, executing a job is no longer
bound to a certain system, execution environments could be migrated to another
system during run-time (For instance, if a system is exclusively needed by a user
with high priority or if it needs to be shut down for maintenance, currently run-
ning jobs may migrate with their execution environments to other systems that
are currently available with appropriate hardware).

The idea behind proposing the solution is to achieve the following: provide an
execution environment in terms of needed software (operating system, applica-
tions) and virtual hardware (main memory, secondary memory), make use of the
isolation [6] property of the virtual machines so that the jobs can be executed in
an isolated manner without affecting the whole system, improve security, sim-
plify the task of the administrator, and open a new idea of resource management
as described above.

The rest of the paper describes our solution and the approach followed to
tackle the above mentioned problems. Section 2 discusses the concept of Man-
ageable Dynamic Execution Environments. Section 3 presents our architecture
of providing execution environments. Section 4 concentrates on the implemen-
tation details of our basic prototype. Section 5 summarizes the whole discussion
and points to the future work.

2 Concept of Manageable Dynamic Execution
Environments

Before going into the underlying principles of manageable dynamic execution
environments, let us have a look at how the interactions with grid are perceived.
Normally, the grid interactions and the problems associated with it are treated
as a single-fold problem: mapping jobs to the available resources. This level of
abstraction restricts the mapping of jobs to the resources, due to the lack of
necessary execution environments, administrative privileges that are needed to
provide the environments, security reasons or due to some special requirements.
This makes the mapping problem more complicated.

To address this issue, we treat the present grid interactions as a two-fold
problem: mapping environments to the resources and in-turn mapping jobs to
the environments. As a solution to this two-fold problem we have introduced the
concept of Manageable Dynamic Execution Environments.

Manageable Dynamic Execution Environments are environments in terms of
software (operating system, applications) and virtual hardware (RAM size, disk
size), which are custom-made for the job, and those that can be managed ac-
cording to the needs of the user. The process of customization in our concept
involves, capturing the requirements of the user and providing an execution en-
vironment for the job. A negotiation [3] may take place during this process. Our
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concept is based on the emerging Web Services and grid standards like WSRF,
JSDL [5] etc. We proceed further by explaining the requirements description and
modeling of execution environments using virtual machines.

2.1 Requirements Description

Identifying the requirements that are needed for the job is the key in providing
an execution environment. In order to achieve this goal, we represent the envi-
ronment that is needed for the job as a Job Submission Description Language
(JSDL) description.

<xsd:element name="JobDescription">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="jsdl:JobIdentification"/>
<xsd:element ref="jsdl:User"/>
<xsd:element ref="jsdl:Applications"/>
<xsd:element ref="jsdl:Resource" maxOccurs="unbounded"/>

. . .
</xsd:sequence>

</xsd:complexType>
</xsd:element>

The pseudo XML schema description that is part of JSDL specifies the needed
execution environment, which includes hardware, operating system, applications
etc. The required hardware and operating system is described as a Resource
element and the needed applications are described as an Application element in
the pseudo XML schema description.

2.2 Virtual Target System (VTS) Properties

Based on WSRF as framework for our virtualization concept, we describe the
execution environments as Web Service Resources [4] by using the following
definitions:

A Target System (TS) resource represents a system that can execute jobs
or perform file operations. Typically each physical machine that is available on
the grid would be represented as a Target System in our approach.

A Virtual Target System (VTS) resource is a virtual machine that hosts
an execution environment for specific job requirements. As such, it is a specific
type of Target System that inherits all Target System properties in addition to
the properties concerned to a virtual execution environment.
Every VTS is defined by the so-called resource property document:

<xsd:simpleType name="VMStateType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="running"/>
<xsd:enumeration value="paused"/>
<xsd:enumeration value="shutdown"/>

</xsd:restriction>
</xsd:simpleType>
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<xsd:element name="VirtualTargetSystemProperties">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="VMState" type="VMStateType" default="shutdown"/>
<xsd:element ref="vts:Name"/>
<xsd:element ref="vts:Description"/>
<xsd:element ref="vts:Storage" maxOccurs="unbounded"/>
<xsd:element ref="vts:Processor"/>
<xsd:element ref="vts:Memory"/>
<xsd:element ref="vts:OperatingSystem"/>
<xsd:element ref="vts:Applications" maxOccurs="unbounded"/>
<xsd:element ref="vts-rl:CreationTime"/>
<xsd:element ref="vts-rl:TerminationTime"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

The properties of the Virtual Target System contain the VMState element
that can be either running, paused or shutdown (VM image containing no run-
ning processes). In addition to the actual hardware resources, virtual hardware
resources like the virtual machine main and secondary memory are described
as Memory and Storage elements. Proceeding further, the description contains
properties related to the operating system (OperatingSystem) and the available
applications (Applications) on the Virtual Target System. Finally, the descrip-
tion contains CreationTime, which describes the time when the Virtual Target
System has been created and TerminationTime, which describes the time when it
will be destroyed. This WS-ResourceLifetime [13] mechanism prevents users from
accidentally blocking valuable hardware resources with their virtual machines.

3 Architecture

Providing execution environments adds a new level of abstraction to interact
with the grid. The way of providing dynamic execution environments that can
be managed, and the way of mapping execution environments to the actual
resources and in turn mapping jobs to the execution environments is sketched
below.

3.1 Providing and Managing Execution Environments

Figure 1 gives an overview of the various components and services involved in
the architecture of providing dynamic execution environments, which can be
managed.

To start with the initial setup, the administrator creates OS Image resources
(WS-Resources) for all the OS Images available in the repository by contacting
the OS Image Factory. During this creation process, the references (qualified
endpoint references [4]) to the OS Image resources and the properties of the OS
Images are stored in the registry.
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Fig. 1. Overview of Manageable Dynamic Execution Environments architecture

1. The client can query the available images on the repository machine with
the help of the registry.

2. In order to create an execution environment for the job, the client sends a
request to the Virtual Target System Factory(VTSF). The request contains
the needed OS, and is specified using the Job Submission Description Lan-
guage, as described in Section 2. The factory is responsible to create the
Virtual Target System resource (WS-Resource).

3. The VTSF analyzes the request and selects the best Target System for the
deployment of VM. A request (Target System, OS, RAM etc) is sent to the
OS Image Repository (service that is available on the repository machine)
for the deployment of the OS Image. A set of pre-configured OS images,
including information about the applications and a configuration file needed
to boot the virtual machine, are maintained on the repository machine.

4. The OS Image repository transfers the OS image and a VM configuration
file to the Target System.

5. After the image and the configuration file are transferred, the OS Image
Repository interacts with the Management Interface to create the VM with
the specified properties and checks its boot status.

6. In case of software request that is not available in the OS image, the required
software is requested from the Software Deployment Service. This service
maintains a repository of packages and configuration files that are needed to
make the software available on the Virtual Target System.

7. The Software Deployment Service deploys (related work in [14]) the software
on the created Virtual Target System through the Management Interface.
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8. After the deployment is completed, the Virtual Target System Factory cre-
ates a WS-Resource that represents the new VTS and returns its reference
to the client. The reference is used to identify and access the new VTS.

9. The Virtual Target System Service is used to submit jobs to the VTS, query
its properties and perform other VTS management operations on it. Every
request to the service contains the reference that has been returned in step
8 so that multiple VTSs can be managed through the same service. If a job
submitted from the client requires software that has not been installed in
the initial deployment step, the service will initiate the installation process
through the Software Deployment Service. Besides migration of VTSs to
other machines, it is also possible to store the configured OS image that
contains the new applications back to the OS Image Repository for later
usage.

10. Finally, the job gets executed using the Target System Interface that is pre-
configured in every OS image, which gets started on every VTS during the
boot sequence.

4 Implementation and Results

This section describes the implementation of the prototype that demonstrates
a tight integration of virtual machines into WSRF-based grid infrastructures.
It is also being used for benchmarking and to discover possible drawbacks and
bottlenecks of the described approach.

4.1 Prototype Implementation

All prototype components have been implemented in Java. The communication
is done through web service protocols and standards. The only component using
Java RMI instead of web services is the Target System Interface. Opting this
way would avoid running a web server on the VM.

The OS images are compressed and maintained on the repository machine.
Each OS image is associated with an XML file that describes the properties of
the corresponding Virtual Target System before it is deployed and booted, and a
configuration file needed to boot the VM. The files are transferred to the Target
System by secure copy protocol. As Virtual Machine Monitor we are using Xen,
because of its para-virtualization architecture and good performance score.

4.2 Experimental Setup and Results

Experiments have been conducted on three IBM M50 machines with the con-
figuration: Intel Pentium 4, 3 GHz, 1 GB RAM and 120 GB IDE disk. The
machines are connected by a 100Mbit/s switched Ethernet network. All the ma-
chines are setup with Xen as the virtual machine monitor. For all the tests, the
Virtual Target System Factory, Virtual Target System Service, OS Image Fac-
tory and the OS Image Repository are setup on one machine and the other two
machines are used for VM instantiation. We have timed the important steps
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Fig. 2. Graph showing the important steps and the time taken for each step before the
job gets executed

involved in our prototype implementation. Figure 2 shows the time elapsed from
the moment Virtual Target System Factory receives a request until the Virtual
Target System is ready for job execution. In the diagram we can observe that
deploying the VM image consumes the most time. Transferring a compressed
VM image with a size of around 1 GB takes nearly 106 seconds and decom-
pressing the VM image takes nearly 192 seconds. This seems to be the main
bottleneck in the overall concept, in comparison to the VM setup and boot time
of 7 sec.

Starting the TSI component at the boot time of a Xen-based virtual ma-
chine takes around 152 seconds, which is a factor of 8 in comparison with the
startup of the TSI on a machine where Xen is not involved. We observe that
TSI object to be available in the RMI registry on a Xen-based virtual machine
takes more time (factor of 8), which led to the ongoing discussion with the Xen
community [12].

5 Conclusion and Future Work

We have described the architecture of “Manageable Dynamic Execution Environ-
ments” using virtual machine technology. We have mentioned how we modeled
the execution environments using virtual machines by assigning properties and
treating them as Web Service resources that can be managed.

Integrating virtual machines into the grid definitely offers flexibility, efficient
utilization of resources and improved security, but also points to the middleware
challenges. As we have seen, instantiation of virtual machines doesn’t take much
time once all the needed data (VM disk, configuration file) is available on the
Target System. With this point in mind we have identified the need for efficient
techniques to transfer and decompress large virtual machine images which are
in the order of gigabytes.

This paper focuses only on the virtual machine instantiation. The directions
for future work include deploying the needed environments for the jobs onto the
virtual machines, resource scheduling, networking and security.
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Abstract. The work presents a solution to abstract workflow composi-
tion in a semantic Grid environment. Along with analysis of the prob-
lem of workflow composition and the description of related research in
that matter, we present the Workflow Composition Tool. The tool is
designed to provide descriptions of abstract (i.e. not executable) work-
flows of service-based Grid applications. The tool applies novel semantic
techniques to deliver meaningful discovery and matching of ontologically
described resources. WCT is a part of larger workflow composition and
execution system being developed in the K-WfGrid project – the short
description of the entire system is also included.

Keywords: scientific workflow, workflow composition, grid services,
semantic matchmaking.

1 Introduction

Scientific workflows are an interesting field of research in modern computer sci-
ence. Projects such as myGrid [9], GriPhyN [5] or Kepler [7] use a workflow-based
solution to some scientific, computation and data intensive problems. Here we
present the Workflow Composition Tool (WCT)designed to search for solutions
for a given problem in form of application workflow.

This paper describes which mechanism of abstract and dynamic workflow
composition we employ and how our tool is designed. According to our defini-
tion, abstract workflows represents a Grid application, its internal structure and
data/control flow on a functional level with no execution details. By dynamic
workflow we mean an application described through data and/or control flow
structures which is executed by a dedicated engine but the internal structure
of which may change during execution. That does not only involve choosing
another computational resource to run software when the original one is not
available – such dynamic workflow rescheduling may provide the functionality
to rethink some parts of workflow which are not executable at the moment in
order to devise a better strategy to obtain the demanded results.

This paper is organized as follows: in Section 2 we describe the tool in the
context of the K-WfGrid project, in Section 3 the WTC tool is described, and
we summarize in Section 4.
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1.1 Similar Work

There are several approaches that aid in application composition. First of them
is the idea of code generation tools being able to automatically construct a
working workflow for a given problem. Applications of these solutions appear
for in the Web services related technologies [3, 14] and in distributed component
architectures [8]. The later proposition for automatic workflow generation in
the Common Component Architecture (CCA) is applicable together with the
concept of application factories which provide ad-hoc application execution in
distributed environment as a computational service [12].

Similar research initiatives are providing algorithms for automating service
construction based on various algorithms like AI planning [2] or situation calcu-
lus [16]. The important feature of these solutions is the semantic service interface
description: nowadays scientists tend to use ontological descriptions to add a cer-
tain meaning to parts of a service description [1, 11].

There are two main standardization projects in the field of semantic web
service description, namely OWL-S [15] and WSMO [10] and both of them are
related to the Semantic Web initiative.

2 Scientific Grid Workflows in K-WfGrid Project

In the K-WfGrid project colored Petri nets are used for workflow representation.
This representation supports data and control flow, it enables dynamic changing
of the flow during runtime, and it also allows several levels of abstraction.

2.1 K-WfGrid Workflow Environment

The K-WfGrid workflow environment was designed to take control over all steps
of workflow construction and execution. The main module is the Grid Workflow
Execution Service (GWES), which interacts with the user by means of a portal.
GWES uses WCT, the Automatic Application Builder (AAB) [6] and the Sched-
uler components to assist in composition, refinement and execution of workflows
in subsequent steps. WCT (Workflow Composition Tool) is used to build an ab-
stract workflow from initial requirements provided by user. Subsequently, AAB
maps each of abstract service class operations into a list of concrete Web ser-
vice operations, providing variants of concrete workflows. Such a workflow is
then executed with the help of the Scheduler, which selects the best Web service
operation from the list, based on some policy-defined metrics (cost, speed, etc.).

2.2 Levels of Workflow Abstraction

Fig. 1 shows the transformations of workflow abstraction levels during the
composition and refinement process in the K-WfGrid environment. The initial
version of a workflow denotes very basic facts about future workflows like a de-
scription of desired result – such a basic requirement is wrapped into Petri-net
notation with a single transition of abstract activity (operation). The first step,
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performed by WCT and marked by the grey box in Fig 1, transforms this highly-
abstract operation into an abstract workflow, built of abstract operations on Web
service classes. In the next step, AAB maps the Web service class operation into
a list of concrete WS operations that match the specified class. Subsequently,
the Scheduler is responsible for selecting the concrete Web Service operation,
concretizing this part of the workflow, which can now be executed.

The service class may be associatted with a service interface. It declares a set
of operations, their input and output data and provides the semantic meaning of
each (see Sect. 3.3). The operation of a service class thus gives a full description
of the functionality but it contains no information on implementations of that
functionality.

Fig. 1. Stages of workflow
construction in K-WfGrid

The process of transformation of abstraction
levels is performed in a dynamic way, so differ-
ent parts of the workflow at a given time may
reside on different abstraction levels. Such an ap-
proach is called deferred planning, which means
the activities in a workflow remain abstract until
they are brought to execution once their prede-
cessors are successfully completed. This also al-
lows for dynamic refinement of a workflow when
completing some activity may result in alternate
subworkflows.

The introduction of different levels of workflow abstraction is caused by the
opportunity of workflow reuse. Referring back to Fig. 1 the gray rectangle en-
compasses the states of workflow which are reusable. The fully-defined abstract
workflow produced by WCT is a de-facto description of an application with no
details about execution parameters: e.g. it lists operations which are to be in-
voked but it does not decide which service instance should be contacted in order
to use that operation. This means the workflow in its abstract form remains
useful for a longer period of time, even taking into account the ever-changing
nature of the Grid environment.

2.3 Use of Knowledge

In the K-WfGrid system, all semantic data is stored in the Grid Organizational
Memory (GOM) [13], which contains OWL-based descriptions of service class
functionality, instance properties and performance records. Fig. 2 sketches the
flow of knowledge within the system during workflow construction and execution.

The conditions for the initial workflow are specified within a portal with the
User Assistant Agent. WCT uses the knowledge on services class functional-
ity, supplied to GOM by service providers. Subsequently, AAB uses information
on service properties which result from the activity of a Knowledge Assimila-
tion Agent, analyzing the monitoring data of resources. Workflows containing
multiple possibilities of operations are then executed with the Scheduler, which
depends on the knowledge gathered by performance analysis services.
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Fig. 2. Circulation of knowledge in K-WfGrid

During the execution of the service, online monitoring data and all events
generated by workflow execution are gathered by respective agents, enriching the
knowledge base stored inGOMandproviding online status information to the user.

3 Workflow Composition Tool

3.1 Purpose of the Tool

The Workflow Composition Tool is a part of the dynamic workflow construction
and orchestration environment being built in the K-WfGrid project. WTC trans-
forms the very sketchy requirements provided by the user into a full description
of an application workflow in its abstract form (more information on different
levels of abstraction can be found in Sect. 2.2).

Fig. 3. WCT interfaces

Fig. 3 details the location of WCT inside the K-
WfGrid architecture pictured in Fig. 2. There are two
main interfaces where the tool connects to other parts of
the system. First of all, WCT exposes an IWfConstruc-
tion interface which provides the main functionality of
workflow composition. It is used by the Grid Workflow
Execution System (GWES) when there is a necessity to
construct a workflow.

Fig. 3 shows also how the tool depends on an ex-
ternal source of knowledge. The role of the source is
attributed to the Grid Organizational Memory, a so-
phisticated ontology registry dedicated to knowledge
storage and publication. The main interface is through
a query-based interface which WCT uses in order to
search through the GOM store of knowledge. The
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queries are formulated using RDQL which is a query language designed for in-
formation stored in RDF form. Using that interface WCT tries to find out the
published (i.e. available) classes of services needed in the context of certain work-
flows. More details on how this knowledge is used during the composition process
are in the subsequent section.

3.2 Abstract Workflow Composition

In the K-WfGrid project there are various levels of workflow abstraction (as
explained in Sect. 2.2). The purpose of the WCT process is to provide an abstract
workflow so the execution engine may apply it (see the second stage pictured in
Fig. 1). For explanation purposes let us assume that the Workflow Composition
Tool is invoked with a sample workflow, still containing some parts that haven’t
been fully analyzed (e.g. just half of it is defined by the user and the other half
is left for the system to generate).

The first step is to identify every section of the input workflow which needs
further attention of WCT – the sections where no composition has ever taken
place. In terms of our Petri net-based approach these are transitions denoting
abstract “activity”. The role of WCT is to transform these most abstract “ac-
tivities” into subworkflows of service class operation invocations. The composer
finds out the dependencies of these uncertain parts. Most of these places denote
dependencies – for instance they may describe what kind of data the “activ-
ity” shall produce or accept. Having those requirements the tool forms a proper
RDQL query and sends it to the Grid Organizational Memory (GOM) module.
GOM parses the query, searches its internal ontology stores and issues a response
listing every class of service which declares the required functionality through
some operation.

What follows is the analysis of that response and the search for the most
suitable solution. Afterwards the chosen service class operation is incorporated
in the workflow description and the next iteration of the construction algorithm
may take place. If there are several different operations chosen (e.g. all of them
have the same suitability factor), all of them may be inserted into the workflow
by means of the XOR-split/merge construct – a workflow pattern [17] designed
specifically for that purpose.

The next iteration is needed as there can be new requirements generated
by the insertion of a new service class operation into the workflow. The whole
process ends when there are no more parts of the workflow with no proper
service operation found or if there are no suitable service classes published in
the registry which may fulfill the lasting dependencies. In the latter case the
workflow becomes incomplete and cannot be fully executed, but it may still
be stored as there is a possibility of completion in the future (where there are
different service classes available) – or it may be executed with some assistance
from other tools or the user.
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3.3 Resource Semantics Used by Composition Process

The description of the knowledge flow in the K-WfGrid environment pictured
in Fig. 2 (see Sect. 2.3) shows that WCT uses service class functionality in the
course of its operation. That knowledge is based on semantic descriptions of
service classes published by service developers and provided in the Grid environ-
ment. The service class is described with the OWL-S semantic web standard [15]
which allows for description of different aspects of a service, including its inter-
face and its invocation scheme.

Fig. 4. Correspondence of some OWL-S and WSDL description elements

In Fig. 4 one may note a correspondence between a typical WSDL description
of a web service and its counterpart in the ontology-based OWL-S standard. A
rough equivalent of a port type in WSDL terminology is a profile element of the
OWL-S description: it contains information on the functionality provided by a
service.

The most important part for the WCT composer is the one with operation
parameters of four possible types: condition, result, input and output. That
quadruplet is a direct application of the IOPE (Input-Output-Prerequisites-
Effects) paradigm and describes the semantics of input data consumed by an
operation, the semantics of the output data produced by an operation and a list
of conditions and effects needed or generated by an operation. By taking all that
pieces of information into consideration, the tool is able to decide which service
class operation is applicable in a certain workflow context.

3.4 Ontology-Based Comparison

The comparison of several possible solutions is a crucial part of the WCT inter-
nal workflow composition algorithm. The necessity of a choice of service class
operation arises when there are many responses to a query returned by the
GOM registry (see Sect. 3.2 for details). The decision on which service class to
prefer is based on careful comparison of semantic descriptions of the obtained
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services classes and the matching of the abilities of the classes with the actual
requirements.

There are several parts of an operation description where the suitability
of solutions may be compared: purpose (type) of an operation in terms of a
certain taxonomy, input and output parameters of an operation and effects which
take place during the operation execution. WCT is concerned mainly on two
former options. Both the type of an operation and the semantic types of its I/O
parameters may be compared to the requirements and a certain metric can be
defined which computes the suitability level for a particular problem-solution
pair. That metric (considered to be a method of computation rather than a
metric in the mathematical meaning of the term) is based on certain rules of
similarity between two distinct ontological instances. Many different rules can
be applied here and as yet no decision has been made on which to use in the
K-WfGrid environment – however from our previous experience [3] we prefer
rules based on similarity of types and similarity of property value sets. The
former rules compare the ontological classes of both entities and prefer the one
semantically nearer to the perfect match – for instance, a member of a subclass
is more suitable that a member of a superclass, as the former is necessarily
inside the preferred class while the latter one isn’t. The rules from the second
set compare instance properties and find out which one has values more similar
to preferred ones. Please note that the comparison of properties may be applied
only to members of sufficiently similar classes.

4 Summary

In this paper we present our solution to the problem of workflow composition
in a Grid environment. A description of the problem is provided along with a
related work section. We also provide an explanation of the K-WfGrid workflow
execution system and we picture where our Workflow Composition Tool is used,
along with the purpose of the tool and how it provides the abstract workflow
construction functionality.

The development of the solution presented in that work is not yet finished,
however it is now past its design phase and the implementation of the tool is
ongoing. According to the K-WfGrid schedule the first prototype release should
be available in the fourth quarter of 2005. The tool is being developed in the Java
programming language with the use of modern ontology-based reasoning engine
Jena. WCT is devised to work with the mose recent Web service technology
standards and in the future it will interface with the WSRF [4] standard and its
Grid imlementation, i.e. Globus Toolkit 4.
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Abstract. Contemporary Grid environments are featured by an increas-
ingly growing virtualization and distribution of resources. Such situations
impose greater demands on load-balancing and fault-tolerant capabilities.
The checkpoint-restart mechanism seems to be the most intuitive tool that
can fulfill the specific requirements. One of the goals of the CoreGRID Net-
work of Excellence is to define the high-level checkpoint-restart Grid Ser-
vice and to locate it among other Grid Services. We aim to define both the
abstract model of that service and the lower layer interface that will allow
the service to cooperate with the diverse existing and future checkpoint-
restart tools. The paper is the first step leading to achieving this goal.
It includes the overall sketch of the architecture of the considered service
and its connection with the actual checkpoint-restart tools. Additionally,
the work on low-level checkpoint restart tools to be used in the “proof of
concept” implementation and integration is mentioned.

1 Introduction

Until now there have been few checkpointing systems that can do computing
processes’ checkpoints, for instance: psncLibCkpt[1], Altix C/R[2], Condor[3],
libCkpt[4] and others. Additionally, the checkpointing functionality is shipped
together with IRIX and UNICOS operating systems. These checkpointing sys-
tems always have different capabilities and interfaces and are specifically linked
to a particular OS and hardware platform. Mainly, for the historical and tech-
nical reasons, the development of checkpointing systems is inherently difficult.
Also in case of distributed computing the very strong semantics problems ap-
pear. Hence the additional challenge is to checkpoint distributed applications
based on the PVM/MPI communication models[5]. Therefore checkpointing sys-
tems are not widely used and the existing ones always have some limitations
which vary for different systems.

One can try to employ the aforementioned checkpointing systems in the
Grid environment. Unfortunately, contrary to the Grid properties1 expressed by
1 Here we mean mostly the following: transparent and reliable, open to wide user and

provider communities, pervasive and ubiquitous, easy to use and program, persistent,
scalable, easy to configure and manage.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 659–666, 2006.
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experts within NGG[6] and NGG2[7] such integration would impose high com-
plexity. Then, if we want to use checkpointing functionality in Grids, we have
to figure out an abstract Checkpoint Restart Grid Service (CRGS) that hides all
the complexity and underlying checkpointing systems. Moreover, that service has
to fit into the more general architecture which will allow bringing into play the
diverse existing and future checkpointing systems. The idea of such CRGS and
associated Grid Checkpointing Architecture (GCA) is presented in this paper.

We strongly believe that the emergence of such well-defined architecture and
associated services will contribute to the popularization of the existing check-
pointing systems. Moreover, it should prompt research and industry community
to work out checkpointing systems for new platforms and to extend the func-
tionality of the existing ones. So, thanks to the GCA the lack of the wide use of
checkpointing systems can be overcome.

Please note that we are not concerned with the efficiency and effectiveness
issues at the moment. We simply claim that checkpointing can be found very
helpful and rational but we do not force anyone to employ checkpointing in every
use case.

2 Grid Checkpointing Architecture

2.1 Architecture Outline

The architecture we are going to define comprises four layers. These layers are
depicted in Fig. 1. Individual layers are separated by dotted lines. The top layer
is composed of two parts. The first is Other Grid Services that can be any
Grid Service which wishes to use the checkpointing functionality exposed by the
Checkpoint Restart Grid Service (CRGS). The part, as such, is not defined by
the Grid Checkpointing Architecture (GCA). The second part of the top layer
is the End User Applications part which also, as such, is not defined by GCA.
As it is shown in Fig. 1, End User Applications can take advantage of CRGS

Fig. 1. Grid Checkpointing Architecture (GCA)
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directly or through the Other Grid Services. If any part of the top layer wants
to use the CRGS directly, it has to know the interface of this service.

The Checkpoint Restart Grid Service (CRGS) layer exposes the abstract
checkpointing functionality to the whole world. The interface of this layer is
defined by GCA. It is described in more depth in section 2.2. The Checkpoint
Restart Provider Interface (CRPI) is designed for hiding the actual checkpointing
systems under the abstract interface of the upper layer. The interface of CRPI
is defined by GCA. This interface allows the incorporating of any actual check-
pointing system to the set of systems that can be accessed through the CRGS.
The last layer of GCA is made of the actual checkpointing systems that are
collectively called as Checkpoint Restart Functionality Providers (CRFP). The
first emphCRFPs that will be employed in GCA are presented in section 4.2.

2.2 Checkpoint Restart Grid Service

Even though the GCA can contain many CRFP (i.e. actual checkpointing sys-
tems), all are exposed by the unified interface of the Checkpoint Restart Grid
Service (CRGS). Since the number of distinct CRFPs with different semantics
and interfaces can potentially be infinite, the CRGS’s interface has to be flex-
ible and general enough to encompass all these cases. Furthermore, the service
has to provide access to ontology-based knowledge about the underlying CRFPs
and nodes that host them. The knowledge should also be available through
dedicated, external information services. Therefore the CRGS is obliged to co-
operate with these information services. The CRGS should be able to report
some checkpointing-related events and information associated with them. For
instance, one can be interested in the notification of each checkpoint that has
been done and also in the sizes of the images that contain these checkpoints.

The CRGS has to reveal the do checkpoint() function which, if it is only
possible with the given CRFP, does checkpoint of the involved job. If the given
CRFP does checkpoints independently of any external requests, then the appro-
priate information of that behavior has to be available. Regarding the recovering
functionality, the CRGS offers two approaches. Depending on the ontology of the
underlying CRFPs, the CRGS can provide information to external services on
how to recover any given job, or can do it on its own in the do recover() function.

It is also important to explicitly state what CRGS is not responsible for.
The service does not execute the jobs that are to be checkpointable and does
not manage images of checkpointed jobs. Thus, if any job has to be executed with
some special argument to activate the checkpointing mechanism, the module or
service that is responsible for the jobs executing has to obtain information about
the required arguments from the CRGS. Similarly, if any service or module wants
to replicate or archive checkpointing images, it cannot ask the CRGS. The CRGS
can only give the information on how to obtain the recent image or images.

2.3 Checkpoint Restart Provider Interface

It is obvious that to achieve a general and unified interface for all different
CRFPs, some kind of mediator or translator is required. Then this role can
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be given to the Checkpoint Restart Provider Interface (CRPI). Providing that
we deal with a modern object-oriented programming language, the CRPI can
provide a set of abstract classes or interfaces that are associated with the ap-
propriate abstract functions of the CRGS. To incorporate a new CRFP the new
classes that inherit from suitable abstract classes or implement adequate inter-
faces have to be created. The way the classes are implemented is not defined and
strictly depends on the properties of any considered CRPI.

2.4 Checkpoint Restart Funcionality Provider

The actual checkpointing systems used within the GCA are called Checkpoint
Restart Functionality Providers (CRFP). The assumption is that it can be any
system regardless of how it was implemented and what platforms and function-
ality it supports[8]. They can vary from some kernel-level checkpointing systems
to some highly specialized, application- or user-level solutions for MPI or PVM
applications. In fact the CRFPs do not have to be aware of the CRGS existing.
They can be completely independent products that are incorporated to the GCA
by means of CRPI (i.e. the upper layer). Three checkpointing systems that are
to be employed as CRFPs in the “proof of concept” implementation of GCA are
presented in section 4.2.

3 Surrounding Environment

Modern Grid environments are composed of at least a few interacting services.
Individual parts of such systems become meaningful only in the context of other
ones. Distinct services often offer some functionality and simultaneously take
advantage of the functionality of other services. The semantics of CRGS is
similar.

The envisioned relationships between CRGS and the external Grid Services
within the GCA are depicted in Fig.2. The circles denote the external services.
The CRGS is represented by the suitably labeled rectangle and the arrows rep-
resent interactions between those services (or other involved elements). As the
figure expresses only a general idea, most of the arrows are not labeled here.
According to the figure, CRGS will cooperate with Grid Services of the follow-
ing functionality: Storage and Transfer, Information Service, Event Handling
and some kind of Scheduler or Broker which will further employ the Execu-
tion Module. Moreover, the Authorization and Authentication service will be
utilized by the Storage and Transfer and Scheduler / Broker services. What is
important, the figure implies that external Grid Services are aware of the co-
operation with GRGS and have to adhere to the interfaces and rules defined in
advance.

In short, the aforementioned elements work together as follows: the CRGS
installed on the Compute Resource registers the ontology of all available and
supported underlying checkpointing systems with the Information Service. When
the Scheduler wants to execute the job that is to be checkpointable, it has to
find out suitable Compute Resource with appropriate CRGS. To do this, the
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Fig. 2. Relations between WPs

Scheduler asks the Information Service about Compute Resources that fulfill
the required capabilities (i.e. about Compute Resources with CRGS and ap-
propriate CRFP). Further the Scheduler chooses a proper Compute Resource
and launch the job on it. Potential knowledge of how to make the job check-
pointable is acquired from the Information Service. Depending on the par-
ticular CRFP the checkpoints can be triggered by the job itself or by the
Scheduler which can issue appropriate commands to the CRGS. After check-
point is done the Event Handling service should be notified about it. Thanks
to that, this event can be further delegated to the Scheduler which using the
Storage and Transfer service, can do some replicas and do some bookkeeping
activities.

We take an assumption that possible failures are detected by the Event Han-
dling service, which sends to the Scheduler the re-queue request in such case.
After receiving that request, the Scheduler has to find a new (or use the same)
Computing Resource and recover the job. The Storage and Transfer service can
be required in order to deliver checkpoint images into an appropriate place. The
Information Service is used to find the new Computing Resource, localize the
required checkpointing images and to provide knowledge of how to recover a job
(e.g. what additional parameters are required to make the job being recovered
and not executed from the beginning).

Fig.2 shows the Authorization and Authentication service. It was not explic-
itly mentioned earlier, but that service is used to manage access to the checkpoint
images and to determine if the given subject has adequate rights to the given
checkpoint image.
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4 Proof of Concept Implementation

4.1 Grid Service

The Global Grid Forum (GGF) community has worked out the Open Grid
Service Architecture (OGSA) specification. Nowadays it seems to be the most
acceptable and usable specification for the architecture of the Grid environ-
ment. The OGSA specification is recommended by the EU’s experts in NGG[6]
and NGG2[7] papers. The OGSA is based on other well-known, accepted and
managed standards like Web Services, WSDL, SOAP and others. As the OGSA
provides the general rules and vision according to Grid Services, the Open
Grid Service Infrastructure (OGSI) defines the actual interfaces, behaviors and
schema for these services. The OGSI uses the WSDL to define the environment
adhering to the OGSA. There are a few products that implement the OGSI and
provide a framework for building Grid systems. One such product is the open
source and Java-based Globus Toolkit.

Since we plan that our “proof of concept” implementation will be compliant
with the EU experts’ recommendations, we want to utilize the Globus Toolkit.
Thanks to that our CRGS will be based on the OGSA specification and will be
ready to cooperate with the most up-to-date Grid systems.

4.2 Integration with CRFP

One of the main features of GCA is its open architecture. The GCA has to be able
to work together with all types of the existing, future and potential checkpointing
systems (i.e. with CRFPs). Since the CRGS makes no sense without at least one
CRFP, the “proof of concept” implementation of CRGS will cooperate with some
CRFPs. The first one will be the checkpointing system designed for CONDDOR-
PVM applications managed by the P-GRADE environment. The second one will
be a general checkpointing tool, named TotalCheckpoint supporting sequential
and parallel applications running under Linux 2.4 and 2.6. The third one will
be the checkpointing system for applications running on IA64 processors under
the Linux 2.6 operating system. This checkpointing system will be developed as
part of our effort in the CoreGRID project.

P-GRADE. The Parallel Grid Run-time and Application Development En-
vironment [10][11] developed by MTA SZTAKI is a graphical tool to create
applications using the message-passing paradigm. In its editor the application
topology and the communication-related parts of the processes are graphically
expressed by icons, while the rest is the normal C code. The attached com-
piler produces a parallel application based on PVM or MPI. The novelty in its
integrated checkpointing system is that all checkpoint-related support is built
in the application itself and no co-operation of the surrounding modules of
the execution environment is necessary. While the application is running, the
termination of any child process causes the built-in checkpoint module to acti-
vate, and checkpoint files are produced before termination. With this feature the
P-GRADE parallel applications behave like a sequential one, since simple jobs



Towards Checkpointing Grid Architecture 665

with a built-in checkpointing library can also be saved just by delivering the
appropriate signal.

The first prototype is currently available for PVM applications scheduled
by the Condor job manager, where Condor is unaffected, not even aware of
the application being checkpointed. The application might be monitored using
Mercury during migration, too. This solution best fits for Grid environments
containing heterogeneous job managers or in cases the checkpointing support is
a missing part.

TotalCheckpoint. The well-seen disadvantage of the previous solution is that
only parallel applications developed by P-GRADE can be checkpointed. MTA
SZTAKI has moved forward to develop a general checkpointing environment
called TotalCheckpoint. It operates on a single sequential job as well as parallel
applications. It is based on a single process checkpointer, named Ckpt, developed
at the University of Wisconsin.

TotalCheckpoint requires setting up a coordination process (one per cluster
or site) running as a daemon in the background and relinking of the user applica-
tion. Files are also saved, and as a result of a checkpointing action, an application
description XML file is also produced to let the upper layers know about the
internals of the application, for example, the list of working files. Through this
description the renaming of the working files for a migrating application and the
site migration is also supported.

The TotalChekpoint tool is prototyped and introduced to support the Hun-
garian nationwide ClusterGrid infrastructure maintained by the National Infor-
mation Infrastructure Development Office. ClusterGrid is built by PC clusters
provided by academic institutes and universities.

IA64-Linux Checkpoint Restart Package. The Linux operating system
is increasingly gaining popularity in production-grade systems. Simultaneously,
higher interest in IA64 CPUs is noticeable. Therefore, the development of the
IA64-Linux Checkpoint Restart Package (IA64-LCRP), the new kernel level
checkpointing system for Linux 2.6 OS running on the IA64 platform makes
good sense. The functionality of that checkpointing system will be similar to
that of Altix C/R [2], but IA64-LCRP will be aimed at a newer kernel version
and will be more portable between different Linux distributions. Additionally,
the IA64-LCRP will support checkpointing of multi-threaded applications. The
resources virtualization mechanism described in [9] will also be included.

5 Conclusion

The Grid Checkpointing Architecture and its layers have been presented in a very
general way. The forthcoming work includes more in-depth studies on checkpoint-
ing ontology, and a precise definition of the interface of the Checkpoint Restart
Grid Service. Next, on the road to the OGSI compliant “proof of concept” im-
plementation of the checkpointing service, the interface will be written in the
WSDL language and finally implemented by means of the Globus Toolkit. At
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the same time, the Checkpoint Restart Provider Interface layer has to be defined
in a more formal way. Additionally, we believe that thanks to the open architec-
ture of the presented solution, and due to the widely accepted and recommended
technologies (OGSA, OGSI) we are going to use, the Checkpoint Restart Grid
Service can become a very useful and widespread tool.
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Abstract. In this paper, we present a peer-to-peer (P2P) system with
remote method invocations, combining RMIX and JXTA technologies,
and underpinning the H2O distributed resource sharing platform. We
show that the integration of RMIX and JXTA was possible due to ex-
tensibility of the former, which allowed to plug in the JXTA-based socket
implementations. The result of this integration is a fully operational RMI
implementation running on top of the JXTA P2P network, where meth-
ods can be invoked on remote objects located behind firewalls or NATs.
We present results of tests showing that our implementation can be used
to connect peers in different LANs that cannot interact directly, while
in the case of direct connection the performance is comparable to that
of RMI using standard sockets.

1 Introduction

Scientists and companies are looking for new ways of accessing the computa-
tional power needed for solving large-scale computing problems. This issue is
addressed by Grid systems development which provides middleware for running
applications on distributed resources shared between institutions. On the other
hand, huge potential computing power is located inside millions of computers
connected to the Internet. These resources can be used in a Peer-to-Peer (P2P)
fashion, as was demonstrated by the SETI@home [1] project. The common fea-
ture of Grid and P2P systems is the resource sharing and distributed nature of
the environment. However, large administrative effort is required to set up the
Grid infrastructure and to establish virtual organization security. On the other
hand, P2P systems are more suitable for ad-hoc collaborations, characterized by
more dynamic participation patterns than those observed in Grid systems.

Avoiding the administrative burden related to using Grid systems was one of
the goals of the H2O [2] resource sharing platform. H2O proposes and implements
the model, where the roles of resource providers, service deployers and users
can be separated. In this model, providers can independently offer the CPU
power of their machines by running H2O kernels, but the responsibility of service
(application) deployment is delegated to others. This makes resource sharing
easier for providers, in the spirit of the P2P model. Communication in H2O is
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facilitated by RMIX, which is an extensible RMI-based framework offering the
RMI programming model to H2O-based distributed applications.

In order to enhance the H2O with the ability to operate within a P2P en-
vironment, we are integrating H2O with JXTA P2P system. The goal of this
work is to exploit JXTA mechanisms in order to enable resource sharing among
peers which may be hidden behind NAT or firewalls, and which may dynam-
ically join and leave the P2P network, possibly changing their locations. Our
approach decomposes into two separate tasks: (1) enabling communication in
the P2P environment and (2) enabling resource discovery in the P2P network.
In our previous paper [3], we presented the basic concepts of our solution. In this
paper, we describe in detail the RMIX-JXTA integration, which brings the RMI
programming model to P2P systems and provides foundations for peer-to-peer
resource sharing via the H2O framework.

This paper is organized as follows: First, we give the background on RMI
as a programming model for distributed computing and RMIX as its specific
instance. Next, we overview P2P technologies and JXTA as the proposed stan-
dard. Subsequently, we describe our approach of integrating RMIX with JXTA
and we present results of preliminary tests.

2 RMI as a Successful Programming Model and RMIX

The diversity of distributed programming approaches results in multiplicity and
heterogeneity of distributed computing infrastructures. Remote Procedure Calls
paradigm, exemplified e.g. by ONC-RPC and XML-RPC [4], gained popularity
as it is based on common and well-understood function invocation semantics.
Similarly, recent systems such as CORBA [5] or Java RMI [6] extend the notion
of object-oriented programming to distributed environments via the concept of
distributed objects whose methods can be invoked from remote locations.

Such Remote Method Invocation (RMI) model is natural and convenient
in object-oriented languages such as Java. However, interoperability between
different environments becomes an issue. For example, standard Java RMI im-
plementation is based on the Java Remote Method Protocol (JRMP) that is
sophisticated and full-featured, but limited in practice to pure Java systems.
There are some other Java RMI implementations based on other protocols (e.g.
RMI-IIOP [7] that enable connectivity with CORBA or JAX-RPC [8] using
SOAP/HTTP for Web services connectivity) but usually these solutions sacrifice
functionality. In these circumstances the RMIX project [9] has been initiated.

The main objective of the RMIX communication library is to enable us-
ing multiple, independent RMI protocol service providers within a single, RMI
paradigm-based framework. RMIX is flexible and extensible, allowing integra-
tion of existing RMI implementations. Service provider implementations are
pluggable at run-time and hot-swappable. Additionally, RMIX features sev-
eral general-purpose enhancements over Java RMI, including dynamic stubs,
SSL support, runtime binding and customizable virtual endpoints that allow the
same remote object to be accessed via different protocols such as SOAP, JRMP,



Enabling Remote Method Invocations in Peer-to-Peer Environments 669

SunRPC. The framework opens up a possibility of dynamic access control - the
interceptor allows or denies method invocations depending on custom-defined
logic. RMIX provides a set of new features in the method invocation model
providing an asynchronous calls and a one-way calls [10], with precise semantics.

Importantly from the P2P environment point of view, RMIX communica-
tion library enables pluggability also at the byte transport level, via potentially
user-supplied socket factories. RMIX socket factory model is more generic than
the one defined by standard Java RMI, naturally supporting non-IP networks.
This makes it possible to plug in a transport which uses non-host-port based
addressing scheme, such as the JXTA P2P overlay.

3 P2P Networks and JXTA P2P Network
Implementation

One of the first incarnations of the P2P paradigm was the Napster applica-
tion [11], used for file sharing purposes. Next generations of P2P networks tried to
avoid centralized servers, and they provided mechanisms for distributed lookup
(Gnutella [12]), also introducing the concept of peer hubs for more efficient
operation (Morpheus [13]).

The idea of exchanging files in a Peer-to-Peer manner inspired people to share
free CPU cycles and resources, since it has been realized that there are millions
of mostly idle machines that could be linked and used as one big supercomputer.
Example projects which tried to tap on that resources are SETI@home [1], GPU
Project [14], JNGI [15] and Parabon [16].

There exist many libraries allowing to create custom Peer-to-Peer systems
but most of them are platform- or protocol-dependent. They are tailored for
specific types of networks and applications, such as e.g. file sharing, and thus
lack the necessary flexibility to serve as a general purpose sharing middleware.
That is why JXTA [17] has been introduced. JXTA is designed to be a set
of open, language independent protocols that allows any connectible devices,
from cell phones, PDAs, and notebooks to big servers, to communicate witch
each other as peers [18]. Currently, implementations of JXTA protocols exist in
PERL, C and, of course, Java.

A peer is a central JXTA abstraction. When a peer connects to the network,
it publishes its interface (the endpoint) for communication with the outside
world. Peers can collect information about the network, available resources, and
services. They may also gather in peer groups to form controlled and focused
collaborations. A peer may belong to multiple groups at any given time.

One of the most important features of JXTA are its communication capabil-
ities. Peers can create communication channels called pipes, which are used in
the JXTA network to exchange messages. These virtual channels do not require
a direct connectivity between the participating peers. For instance, if peers are
behind NATs or firewalls, they can still communicate with the help of special
routing peers that propagate necessary messages. Pipe messages can carry any
type of data, such as e.g. text messages, binary data, or even Java objects. In
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the Java implementation of JXTA, pipes are unidirectional. Peer endpoints can
include multiple network interfaces, and JXTA tries to use the best one avail-
able. For instance, when peers are in the same subnetwork, pipes typically use
direct TCP connections which greatly increases efficiency.

JXTA pipes are very useful, but they represent a relatively low level of ab-
straction. However, in the recent versions of JXTA, the socket API very similar
to that of standard Java sockets has been implemented on top of pipes.

4 Advantages of a P2P System for Distributed
Computing

Distributed resource sharing systems like H2O can draw many advantages from
using a P2P RMI framework. In particular, such approach allows to extend
resource sharing to environments spanning networks with NATs and firewalls.
This is achieved by using flat addressing type in P2P systems. Moreover, inde-
pendence between object address and its host IP address opens up a possibility
of location-independent resource references, supporting mobility and dynamic
load balancing. These new features in P2P distributed application frameworks
will yield new possibilities for building global computing systems:

– simplicity in deploying distributed applications (no need of specialized con-
figurations of routers or firewalls),

– wider distributed application range (users from private networks can partic-
ipate in any distributed application),

– clients can use resources independently from their location,
– enabling ad-hoc collaborations and virtual computing groups (using peer

groups in P2P network).

Motivation for using RMIX and JXTA technologies stem from the flexibility
and genericity of JXTA on the one hand, and from the RMIX features, facilitat-
ing the integration with the P2P environment, on the other hand. Furthermore,
since the JXTA Socket API is similar to Java Socket API used at the RMIX
transport level, integration of both systems can be achieved relatively easily,
bringing the advantages presented above.

5 Integration of RMIX with JXTA

The integration of JXTA and RMIX is achieved by implementing client socket
factory and server socket factory interfaces defined by the RMIX communication
library. By using JXTA Sockets abstraction in the mentioned socket factories,
RMIX framework will be communicating on to of the P2P network.

To denote RMIX endpoint address in the P2P environment we have decided
to use the following addressing model:

<string endpoint address>[@<group>[(param-1;param-2;...;param-n)]]

In its simplest form, an address can be a simple string such as rmixEndpoint.
Such addresses belong to JXTA NetPeerGroup and are accessible globally.
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Fig. 1. RMIX communication library in P2P environment

Alternatively, the address can be narrowed to a user-specified group, by pro-
viding two optional parts - the first defining a group name and the second
providing additional parameters used when joining the group. This approach
enables flexibility (e.g. custom security controls) at the group membership level,
by supporting groups using custom implementations of Membership Service. For
example, address myEndpoint@cGroup denotes an RMIX endpoint with address
myEndpoint that is located in the cGroup JXTA group, with no security control.
When one would like to use group with the security control, a valid address of
RMIX endpoint may look like myEndpoint@cGroup(groupInterfaceImpl;p1;p2).
Here, when joining cGroup, the custom security control defined in groupInter-
faceImpl implementation of our JxtaGroupInterface interface will be used.

From the RMIX user’s point of view, the JXTA functionality is completely
hidden. The user responsibility is limited to provide the JXTA socket address
(usually embedded into a serialized stub received from a naming service or
from another method invocation). The RMIX recognizes the endpoint as JXTA-
specific and delegates transport-related activities to JXTA socket factories. The
system automatically connects to the JXTA network (becoming a JXTA peer),
joins a group (if needed), manages rendezvous status of the current JXTA peer,
and connects to the JXTA socket specified via the provided address.

The approach to combining RMI and P2P paradigms, described in this sec-
tion, creates a possibility of using the RMIX semantics in a P2P environment
(as shown on Fig. 1). We argue that this approach creates new possibilities for
developing distributed applications, by providing a simple remote method invo-
cation model that can be used across any firewalls, NATs or private networks,
in a location-independent fashion.

6 Experimental Evaluation

We have executed a simple benchmark to measure the performance of the RMIX
communication framework in the P2P environment. We measure the round-trip
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(a) Configuration that uses only a
Local Area Network

(b) Configuration that uses the JXTA
network spanning several Local Area
Networks

Fig. 2. Test configurations of the JXTA Socket Factories
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Fig. 3. Test results of RMIX using JXTA

time of a remote method call
that accepts one argument of
type byte[], and returns a
String object. The size of the
byte array argument is a para-
meter of the benchmark. For
each table size, we invoke the
method 50 times and take the
arithmetic average. The mea-
surement was performed for
two JXTA network configura-
tions. In the first one (shown
in Fig. 2(a)) JXTA network
connects two computers from
the same LAN. In this situa-
tion JXTA Sockets use direct
TCP connections. The sec-
ond test configuration 2(b) as-
sumes that JXTA spans three
LANs. Two of them contain
the client and the server of our
benchmark, while the third
LAN contains a JXTA ren-
dezvous peer providing con-
nectivity between the client

and the server. Additionally, to compare JXTA Socket with TCP socket per-
formance, we run the same test using RMIX plain socket factories.

Results for JXTA Socket performance in a single LAN (the configuration
shown in Fig. 2(a)) indicate linear increase of invocation time as a function
of payload, which suggests that the communication is throughput-bound. Fur-
ther experiments, illustrated in Fig. 2, show JXTA results for different setups,
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compared with invocation times for plain RMIX socket factories in two config-
urations: the first one is for two hosts inside a single Local Area Network, the
second involves a host within a LAN connecting to a server that is somewhere
on the Internet. Note that the chart presented in Fig. 3(b) has logarithmic scales
for better clarity.

As could be expected, when the payload is large, JXTA Sockets are consis-
tently slower than plain sockets. The reason is that despite using direct socket
communication, there is still overhead induced by JXTA pipes and their messag-
ing layer. Surprisingly, however, we observed that for smaller data sizes, JXTA
Sockets performed faster than plain sockets. We attribute this phenomenon to
the connectionless nature of of the HTTP 1.0 protocol used by the Apache
AXIS (SOAP 1.1 implementation used by RMIX), incurring a TCP handshake
overhead on each method call. In contrast, JXTA pipes internally use TCP
connection pools, reducing the connection establishment overhead. This trend is
reversed when we use a connection- oriented RMI protocol, such as JRMP/TCP.
Nonetheless, we point it out as an interesting observation that performance
of widely used communication technologies and implementations (such as the
Apache AXIS) can sometimes be improved by inserting an additional layer into
the invocation protocol stack.

On the other hand, we observed a significant drop of JXTA communication
performance a “three-LAN” communication scenario. The causes of this over-
head are twofold: 1) routing through an intermediary, and 2) necessity to perform
additional HTTP 1.0 tunneling to traverse firewalls.

7 Summary

In this paper we discussed the role of a P2P-enabled RMIX communication
library in the context of distributed resource sharing, and the H2O platform
in particular. The need for a generic platform allowing to run arbitrary code
on resources shared via a P2P network can be satisfied by the combination of
H2O and JXTA technologies. Since RMIX is an underlying communication sub-
strate of H2O, exploiting JXTA communication capabilities in H2O reduces to
integrating them with RMIX. We have shown that this integration is possible
because of the RMIX extensibility which makes it possible to use JXTA sockets
as the transport mechanism. The result of this integration is the fully opera-
tional RMI implementation running over JXTA P2P network, where methods
can be invoked on remote objects located behind firewalls or NATs, which is not
possible in traditional RMI systems. Preliminary test results show that our im-
plementation can be indeed used to connect peers in different LANs that cannot
interact directly, while maintaining performance at near-native level when direct
connectivity is achievable.

The proposed RMI over JXTA implementation provides a foundation to
enable H2O resource sharing in a P2P environment. In particular, it exploits
the P2P connectivity and allows H2O services to be accessible via JXTA. Our
current work is focused on the complementary discovery aspects. By reusing
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decentralized P2P lookup mechanisms, coupled with global addressing and uni-
versal connectivity, powerful general-purpose P2P-enabled distributed comput-
ing platform can be enabled.
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Abstract. The paper presents various transparency issues that have
to be considered during development of object-oriented Grid applica-
tions based on virtual repositories. Higher-level transparencies, such as
location, heterogeneity, fragmentation, replication, redundancy, index-
ing and service provider transparency assure new information processing
culture greatly supporting the development, operation and maintenance
of Grid database applications. The paper discusses some requirements
for a virtual repository that is a kernel of a Grid database and a gen-
eral architecture of such systems. The architecture is based on object-
oriented updatable database views that serve, in particular, as adapters
of local servers and integrators/mediators on the level of a global vir-
tual repository. Finally, some issues of the development of Grid database
applications are presented.

1 Introduction

In distributed businesses digital data is scattered across different file systems,
content repositories, databases, legacy applications and web sites, making it dif-
ficult to discover, reuse and integrate into content enabled processes [2,8]. In
situation when global client software may need to access thousands of distrib-
uted resources, their complexity may undermine feasibility of business software
goals. In addition, conceptual simplification has direct impact on various vi-
tal business factors, such as the cost, time and manpower necessary for soft-
ware manufacturing, the quality of service (reliability, stability, effectiveness,
etc.), the quality and size of software source and documentation, the software
maintenance/change cost and others [7].

The mentioned effective data usage problems might be greatly simplified by
transparent integration of resources and hiding technical details. Higher forms
of transparency assure new information processing culture, where the client of a
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system may concentrate his/her effort on just services and abstract from techni-
cal and business peculiarities of particular service providers and contracts with
them. Transparency has various forms, in particular:

– hardware, operating system, communication/transport protocol, file system
and database management system transparency – users have no need and
no possibility to involve these features into their programs,

– data/service location and access transparency – users need not care for the
geographical location of data and services,

– concurrency transparency – users can access resources simultaneously and
need not know about the existence of other users,

– heterogeneity transparency – users do not see local data structures and local
system implementation but operate on higher and common form of informa-
tion,

– scaling transparency – servers, data and services may be added or removed
without impact on the applications and the users,

– fragmentation transparency – users need not be aware that data is parti-
tioned; the fragments are integrated automatically,

– replication transparency – users need not be aware that data is replicated;
replicas may be transparently added or removed to improve the efficiency of
processing,

– redundancy transparency – users are isolated from redundant data that may
exist among all local systems,

– site or connection failure transparency – most users can still work after some
of the nodes or communication links are broken,

– migration transparency – data and services can be moved without any impact
on the applications and users,

– optimization transparency – indexing, query cashing and rewriting, pipelin-
ing, decomposition and other optimizations are done on the level invisible
for users,

– service provider transparency – users are interested in just services, service
providers are hidden or are shifted to a secondary scene.

Typical approaches to Grid technologies consider some limited forms of trans-
parency, from the above list. The current tendency is, however, to achieve ad-
vanced transparency forms that will simplify and unify the access of the user of
global applications to the entire resources of the organization. Full heterogene-
ity, fragmentation, replication, redundancy, migration, optimization and service
providers transparencies are considered in the context of virtual data/service
repositories rather than in classical grid-oriented literature. However, achieving
all the advanced forms of transparency is a big challenge for developers. Usually
existing systems do not solve it to satisfactory degree. Some of transparency
forms, although conceivable to achieve, may result in compromising the per-
formance of applications, thus tradeoffs between performance and transparency
might be required.

Usually, systems integrating heterogeneous resources propose kind of a mid-
dleware solution that could be a basis for achieving many forms of transparency.
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The main goal is to create a new layer of abstraction, which could seamlessly in-
tegrate any technology - data and service, and perform additional administrative
operations in a way invisible for end-users. Fig. 1 presents the general approach
to transparency that is already implemented in many systems (CORBA, RMI,
WebServices, etc). It is usually realized by an architecture employing three or
more layers.

Transparency achieved by virtual repositories has two organizational aspects.
The first one could be called functional and focuses on generating virtual data
reflecting real, concrete resources in a form acceptable for clients. This must be
done according to certain business goals. The design is created by an involved
consortium (called a Virtual Organization [3]). Complexity of this task may vary
in different applications. Thus, business analysts, Grid designers and managers
play a key role here. The second aspect may be called operational (or administra-
tive) and it must assure proper operation of the virtual repository. This part of
the system is independent of the chosen data structures and business goals. It is
responsible for automatic performing repository reconfiguration, meta-database
modification, indexing, caching and other operations in dynamically changing
environment.

Both of these aspects accomplished by the system simultaneously may guar-
antee proper integration of distributed heterogeneous databases. If such a system
offers transparency on a satisfactory level, we call it a Grid Database. In this
paper, we discuss basic issues of Grid databases such as common (canonical)
data model that is to be introduced on the Grid global level, the architec-
ture and general design phases of a Grid database creation. These issues are
currently investigated in our prototype implementation ODRA (Object Data-
base for Rapid Application development), which is based on the Stack-Based
Approach to object-oriented query/programming language, the language SBQL
and updatable views defined in SBQL. ODRA is assumed to be a platform for
enhanced Web Services and advanced Grid applications.

The rest of the paper is as follows. Section 2 discusses some issues of a virtual
repository - a kernel of Grid database applications. Section 3 is devoted to the
architecture, based on the concept of object-oriented updatable database views.
Section 4 presents generalities of the creation of a Grid database. Section 5
concludes.

2 Virtual Repository in a Grid Database

A big advantage of virtual repositories is that data and services need not to
be copied, replicated and maintained on the global applications side: they live
on their autonomous sites and are locally supplied, stored, processed and main-
tained. In many businesses copying data (in any form) is not allowed due to local
security policies. Virtuality of data, however, requires automatic mechanisms al-
lowing one to access the data as easily as if they resided inside one machine.
This property is extremely difficult to achieve if virtual data are to be updated
and mappings from stored to virtual data are a bit more sophisticated.
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Many virtual repositories are already implemented and operating. Usually,
they are proprietary solutions; no general standard or conceptual frame is ob-
served. The repositories differ in end-user or programmer interface, security ca-
pabilities, forms of transparency and other aspects.

A little step forward was done by Web Services [12] but their capabilities
in the field of transparently distributed systems are limited, what was already
observed by the OGSA standard [3]. In fact, they achieve only basic forms
of transparency. Global applications based on distributed, heterogeneous and
redundant data/service resources databases require technical features much
beyond the current capabilities of Web Services.

2.1 Common Data Model – Functional Aspect

Transparency can also be considered as a higher abstraction level over distrib-
uted, heterogeneous and redundant data and services. From the functional point
of view, the abstraction means a common canonical data model, which is uni-
versal, simple and minimal. From among many approaches (data models) that
can be considered as candidates to build canonical models we have chosen the
Stack-Based Approach (SBA) and a corresponding query language SBQL [8, 10].
SBA introduces (as the main notions): complex objects, classes, methods, inher-
itance, dynamic object roles, encapsulation and other concepts of the object-
orientedness. Each object has an internal identifier, external name and may
contain a value, a link or a set of objects. The major difference between SBA
and other object-oriented database models is that it is based on a fully-fledged
query/programming language with precisely defined formal operational seman-
tics. A programmer writes queries and updating statements based on queries,
which may manipulate objects in repositories: create new objects, remove, up-
date and insert into other objects, call their methods, create and assign new
roles, etc. Queries have all well-known capabilities plus some more advanced like
transitive closure. One of the most important features of the SBA data model is
virtual objects (updateable views), which from the programmer’s point of view
are undistinguishable from stored objects. Virtual objects do not exist in any real
data storage but are determined by view definitions. A view definition establishes
two kinds of mappings: (1) from stored objects into virtual ones; (2) from any op-
erations on virtual objects (reading, updating, deleting, inserting, etc.) into op-
erations on stored objects. This mechanism of updatable views makes it possible
to achieve many transparency forms mentioned in the introduction, in particular,
location, fragmentation, indexing, replication and redundancy transparency.

RDBMS XMLDBMS
Web

Service
Hardware

Tools

Virtual Resources

...

AdapterAdapterAdapterAdapter

Fig. 1. General approach to transparency
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Mappings of stored objects into virtual ones are also known from other ap-
proaches, for example, SQL views in relational databases. In all such solutions,
however, the programmers must face the problem of reverse mappings if one
would like to update information delivered by a virtual object [6, 11]. Some sys-
tems simply forbid such possibilities. Other, like Oracle and MS SQL Server,
require so called INSTEAD OF triggers. Our updatable object views define five
generic operations, which must be defined for each virtual object kind in or-
der to achieve full transparency between stored and virtual objects. These are:
on update, on insert, on delete, on retrieve and on create (on create pointer).
They cover all generic operations that may be performed on objects. Explaining
all subtleties of this data model is beyond the scope of this paper; please refer
to [5, 6, 10] and other references to SBA and SBQL.

Similarly to normal objects, virtual ones are identified by virtual identifiers.
Their construction allows the system to distinct them from normal identifiers
and use dedicated methods, while a programmer is not aware of their virtual
nature.

2.2 Operational Aspect of Transparency in Grids

Apart from establishing a common data model, which is used in a virtual reposi-
tory, a Grid Database must also implement features assuring proper operation of
the whole system. The general idea is to make such features as invisible as possi-
ble for the users. This allows the system to achieve a higher level of transparency,
which is the main benefit for administrators, programmers and end users.

However, some solutions, even if very useful, may be very expensive while
other may be too complex. A consortium planning to create a virtual repository
based on a Grid Database should always carefully analyze possible advantages
and drawbacks, finding a reasonable tradeoff between higher forms of trans-
parency, satisfactory performance, programmers/user efficiency and the costs
of development, operation and maintenance. Simplified, abstract, encapsulated
and better organized data structures usually require additional operations per-
formed by the system behind them. Many stages of data transformations on
the way to a client may produce additional and sometimes unacceptable per-
formance overhead. There is obviously the need for automatic optimizers [4], in
particular, parallelization of computations [1], indexing techniques, query rewrit-
ing mechanisms and special physical data organizations. There may be also the
need for special ,,golden rules” for programmers (c.f. Oracle SQL) encouraging
or discouraging using some features of the system and its languages.

3 Grid Database Architecture

In our approach, a Grid Database consists of independent but cooperating data-
base systems, which share data: publish and process objects. Clients use its vir-
tual repository, which transparently integrates data and accomplishes a higher
abstraction level. The repository is based on two kinds of specialized views: con-
tributory views defined on local servers and global views defined on the global
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level. Fig. 2 on the left presents possible (nested) architectures of a Grid data-
base. Local servers (smallest rings) can be integrated into the first-level Grid
(larger rings); then these Grids can be integrated into the global Grid (the
biggest ring). Because virtual objects delivered by virtual repositories are not
distinguishable from stored objects, the number of nesting levels of the Grid
is (theoretically) unlimited. Each Grid node has the same conceptual architec-
ture. If only desirable for the consortium, data integration process may also be
divided into several stages. Fig. 2 on the right presents the architecture of a Vir-
tual Repository Layer realized by stateless Global Views (GV) supported by a
Grid Coordinator and a resources’ Adapters Layer implemented by Contributory
Views (CV).

A contributory view (sometimes called wrapper, mediator or adapter) is a
view by means of which a node shares its own resources with the others. Its
main task is to hide heterogeneity of local database systems (object, relational,
etc.) within the consortium, by transforming local data models into unified data
model specific for the consortium and to control access rights and hide data,
which should not be published.

GV

CV Node 1

CV Node 2

to data source 1

to data source 2
to clients

CV Node 3 to data source 3

Virtual Repository Layer Addapters Layer

Grid
Coordinator

GVto clients

CV Node 4 to data source 4

CV Node N to data source N

Fig. 2. Architecture of a Grid database

A Grid view (sometimes called mediator, integrator or fuse) is a view de-
livering virtual objects to users. Through this view, a user sees Grid resources
adapted to his/her particular needs. All data transformations, optimizations and
additional operations are hidden behind this view. Users see only resulting vir-
tual objects created according to the established consortium’s schema. Virtual
objects created by the view do not exist in any concrete repository place, but
are materialized on the fly, when needed upon distributed resources. Some opti-
mizations (notably query modification [9]) cause that in fact some virtual objects
may be never materialized.

A Grid coordinator plays additional role of a global coordination and global
information administration. Generally, it is dedicated to: support system-wide
optimizations (like query caching, indexing, query decomposition); control global
access rights (which probably should not be decentralized due to security re-
quirements) and meta-database coordination (sending additional update infor-
mation to distributed Global Views). There are many ways to organize this global
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coordination to be feasible and optimal for all users. It may be centralized, clus-
tered or distributed according to the particular cost, time, complexity and other
constraints.

4 The Process of a Grid Database Creation

The two mentioned aspects, functional and operational, reflect in the whole
process of Grid database modeling and construction. The first one influences
Updatable Object Views modeling and implementation, while the second one
focuses on configuration of a Grid Coordinator. Especially the functional aspect
is dependent on certain business strategy and cannot be accidentally solved. For
this reason, we are skeptical about the feasibility of ad-hoc (or dynamic) integra-
tion solutions (except for perhaps very simple data structures) especially in the
context of higher forms of transparency. Thus, for a serious project, a full devel-
opment cycle is to be initiated by a consortium and precise rules obliging every
participant are required. We assume the following Grid construction scenario:

1. Strategic phase, when the decision on creating a Grid is made and an initial
analysis of the required content and potential participants are performed.

2. Analysis phase, when the existing resources are elaborated and confronted
with the information requirements for the integrated service. The issues such
as data heterogeneity, redundancy or incompleteness should be identified.

3. Design phase, which results in the precise definition of the global virtual
schema and contributory schemes for each participant. The task of trans-
forming local resources to the agreed contributory schema is delegated to an
adapter of a particular node. On the other hand, the specification of map-
ping the contributions into the global schema needs to be specified as an
integral part of the Grid design.

4. Finalization phase, when participants sign the final agreement formaliz-
ing the obligations coming from contributory schemes’ specifications. Each
participant gets unique identification and authorization codes.

5. Implementation phase, when the necessary data adaptation described by
contributory schemas and global schema are implemented. Depending on the
heterogeneity between a given node’s data and global schema, such node may
require either appropriate wrapper or may require in-depth restructuring of
its original design.

The resulting specifications determine the required form of data provided both
by the global virtual repository (the Grid itself), as well as by each of the partic-
ipants. The task of adjusting local data into the form required by the Grid can
be distributed between participants (that is, the administrators and developers
of local systems) and the integrator (that is, the developer of the system serving
global, integrated data view). Although different ways of balancing this respon-
sibility are possible, we assume that in order to simplify the integration itself,
local sources should be obliged to adapt their contribution as far as possible,
based on the knowledge of their local resources.
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5 Conclusions

Updatable views allow us to reconsider architecture and transparency in distrib-
uted databases. Fully operable virtual objects present new quality among many
approaches to virtual repositories. Unlimited composition of Contributory Views
and Global Views allows us to achieve full transparency of data location, het-
erogeneity, fragmentation, indexing, replication and redundancy. More forms of
transparency are possible if the system is provided with additional global coordi-
nation. That means migration, failure and optimizations transparency. Indepen-
dence of local databases and distributed query evaluation based on additional
meta-information provides concurrency transparency and scaling transparency
(in case of horizontal fragmentation).

The presented architecture is currently being implemented in an experimen-
tal system ODRA, an object-oriented database management system devoted to
rapid development of web and Grid applications.
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Abstract. Grid environments provide now variety of middleware solu-
tions that are supposed to help manage resources available in the Grid
environment. In this paper, the need for a more uniform way of defining
metadata in the Grid is presented. A proposition for using ontologies as
a formalism for unified representation of various kinds of metadata in
the Grid is given. Also description of basic requirements that every Grid
metadata approach should address and how these requirements can be
fulfilled with ontologies is provided. Finally, a brief decription of example
of such an approach taken in EU K-Wf Grid Project is described.

1 Introduction

As Grid computing gains more and more attention and grows mature, the
need for unification and consequently standardization of basic technologies used
throughout the Grid environments is becoming obvious. This was exactly the
situation with the OGSA architecture, which brought a uniform way of access-
ing virtual resources accessible in the Grid by means of emerging Web Services
technology, a couple of years ago. Since Grid technology has recently gained
substantial attention within the computer science community, vast amount of
various solutions in all aspects of Grid computing have been proposed. As of
now, there is no standard way of managing distributed hardware resources, no
standard way of monitoring the Grid infrastracture and no standard way of
defining and accessing metadata, a crucial part of every Grid enviroment. Most
current metadata solutions for the Grid have been developed independently of
each other for particular purpose, thus leading to serious limitations in finding
all necassary information in a uniform and standard way. This issue has been
already raised in a few papers [1, 2].

Since metadata of any kind are basically sets of facts about some domain,
it is clear that it is possible to find a unified way of describing them. One of
the solutions for this problem lies in the use of ontologies. Ontology-enhanced
software systems have gained throughout the last years at least as much attention
as Grid computing and lots of research has been done in this field that could be
reused.
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The Grid and Semantic Web have been developed for the last years as in-
dependent technologies, so while trying to merge them a question arises: Should
Grid environment enhance the way knowledge is managed in some organization
or rather should Grid environment benefit from the semantic description? We
believe that to some extent both of these statements are true, but in this paper
we would like to focus mainly on the latter one. None of these technologies has
fully matured yet, and so their too early integration may bring some difficulties.

The basic rationale behind the use of ontologies in the Grid, is to make Grid
easier to use for administrators, application developers and end-users and to
allow the possibility of seamless integration of future Grid deployments with
each other. At the moment, several new research projects address these issues,
like InteliGrid [3], OntoGrid [4] or K-Wf Grid [5] to name only few. In this paper
we present the ideas and some early achievements of the K-Wf Grid project in
this area.

The following sections of this paper provide brief overview of metadata solu-
tions used within Grid systems, a rationale behind using ontologies for providing
common metadata representation and finally an example of such approach taken
in K-Wf Grid project.

2 Metadata in the Grid

Grid systems are by definition composed of large amount of geographicaly dis-
tributed and possibly replicated, heterogenous resources not subject to central-
ized control. Due to this fact the need for robust searching and choosing between
them becomes a critical issue. This can be addressed properly only when suffi-
cient methods for describing these resources exist within the Grid.

In every Grid application we can distinguish two disparate uses for meta-
data. First one is about describing common, real world concepts and those re-
lated with the Grid middleware itself, thus providing a general set of metadata
scheme reusable for a particular Grid middleware, independently of the partic-
ular deployment of that Grid system. Another use for the metadata is allowing
particular virtual organization users to extend the schema and thus let them
describe entities that could have not been predicted during the Grid system
development or even deployment. This separation is very general, as it cuts
the space of possible concepts into the generic ones (that can be used by any
application or the Grid middleware itself) and to domain specific ones.

Another possibility of separation is a strictly existential one, which means it
is concerned with what these entities in fact are. Here the concept space could
be divided into sets describing application related entities, resources composing
the Grid, data managed by the Grid’s data management subsystems as well as
services registered and accessible from the Grid.

Currently available solutions are usually designed with only one of these
dimensions in mind. For instance MDS [6] is mostly concerned with managing
hardware and software resources throughtout the Grid while UDDI [7] provides
service for registering and locating web services. If at some point, a need for
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composing the facts stored in both of these registries arises, the client is forced
to create two different queries using two different protocols and query languages.
Thus it seems obvious that a need for a general way of describing all of the Grid
metadata exists.

3 Ontology as Uniform Representation of Metadata

One of the possibilities to unify the metadata representation is the use of on-
tology. The ontologies seem particularly interesting due to the fact, that special
tools called reasoners can even generate facts that were not introduced into the
system directly, but are logical consequences of the asserted statements. The ba-
sic idea of unification model of metadata representation in the Grid is presented
briefly in Fig. 1.

Fig. 1. Current metadata solution versus unified ontological approach

However, to ensure that semantic description is particularly useful for this
purpose, the following requirements should be satisfied. First of all, some con-
cepts of the ontology must be fixed (not subject to change) in order to allow
Grid middleware developers to depend on it. It means that if some of these basic
concepts would change, a modification in the middleware layer might be neces-
sary, which could mean redeployment of many of the systems basic components.
This requirement implies the neccessity of minimal possible ontological commit-
ment of the ontology provided with the middleware itself, which means that the
ontology should have only a minimal impact on how users understand the sys-
tem (more users means bigger differences in understanding). These consequently
bring the need for allowing the knowledge base extensions by the users of the
Grid during its normal usage, maybe with respect to some security constraints,
while assuring its consistency. Furthermore, an important issue is to allow au-
tomatic generation of some metadata, e.g. through regular logical reasoning but
also by using some more refined AI learning algorithms. The metadata reposi-
tories themselves, must provide ways for creation and extensions of the schema
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(classes of entities and possible relations between them) as well as of the registries
(particular instances of these classes).

4 Semantic Approach to Metadata in K-Wf Grid Project

The issues mentioned in the section above are at the core of semantic research
performed within the K-Wf Grid project [8]. The first and important choice faced
when designing an ontology-based system, is the choice of ontology language.
Many good solutions already exists, like WSML [9] and OWL [10]. In the K-Wf
Grid project the decision was made to use the OWL, as it is already a W3C
recommendation and there is a substantial amount of ontologies already defined
that can be easily reused with OWL’s import mechanism.

Another problem is the high level design of the ontology, which should enforce
maintainability and extensibility. The main idea taken here, was to separate
ontology into components organized into two dimensions.

The vertical dimension cuts the concept space into a set of generic ontologies,
a set of domain specific ontologies and a set of individuals registries. These reg-
istries are responsible for managing the individuals originating from particular
ontology. Since these individuals represent entities like users, hardware or files,
it can be foreseen that their number will grow significantly throught the life of
a particular Grid deployment, so the registries design must be able to cope with
this requirement. The generic ontology components set forms a K-Wf Grid core
ontology, the same for any application that K-Wf Grid will be used for (e.g.
the same for Traffic Monitoring, Flood Crisis Management and ERP, which are
the main pilot applications for the project). Although the ontology components
mentioned here will be developed particularly for the K-Wf Grid, this separation
scheme is general and could be introduced in any Grid middleware system. This
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ontology set can be considered as an intrinsic part of K-Wf Grid middleware.
The domain specific one will be created specifically for the needs of particular
application while allowing the users of that particular virtual organization to
extend it during the utilization of the system. The Individuals Registry com-
ponents will hold information about instances of metadata concepts organized
according to a scheme set by generic and domain specific ontologies.

The horizontal dimension provides concept separation boundaries within the
generic or domain specific ontology sets and registries. The main rationale behind
this idea is to make the ontology maintainable as a whole by means of creating
a logical dependency structure of otherwise very large concept space. While this
separation might seem as a constraint at first, in our point of view it should
make users understand better the structure of knowledge underlying the system
and more importantly keep it reasonably maintainable.

An overview of the ontology separation scheme within the K-Wf Grid is pre-
sented in Fig. 2. The arrows between components represent the import closure.

The horizontal dimension contains the following categories of ontologies:

– Application ontology - contains concepts that are a basis for defining con-
cepts in all other components. It can be considered as an ontology describing
the environment to which particular Grid deployment is applied, that is in
the generic application ontology we can declare for instance spatio-temporal
concepts like Time Period or Location, while in the domain specific we should
define the physical entities that relate to physical objects and processes spe-
cific to a particular domain and that indirectly influence the Grid higher
level services. Examples of general ontologies that could be reused within
this component are OWL-Time [11], SUMO [12] and DOLCE [13]. However
such decision taken on the generic level which is fixed from the point of view
of the middleware forces large ontological commitment.

– Resource ontology - this set of components contains concepts that relate to
entities that can be directly controlled by the Grid or that generate events
directly processed by the Grid. Thus this ontology contains description of
both hardware and software resources within the computing domain, and all
kinds of sensors or controllers within the particular application domain (e.g.
SurveillanceCamera in traffic management application). The registry could
store both the entire hardware and software configuration of the Grid, or
just support existing solutions like MDS.

– Data ontology - this ontology is one of the most challenging since, on the
generic level, it should allow integration of variety of different data manage-
ment systems. The main idea here was to avoid a dominant decomposition of
data (e.g. file in Unix operating system) in order to introduce the possibility
of describing data independently of its format and storage mechanism. Thus,
we have introduced a concept of DataObject which contains three basically
independent aspects: Data - What kind of data it contains?, StorageObject.
- How it is stored and how can it be accessed? and Format - How is the data
structured within the StorageObject? The registry allows for storing all kinds
of data source like files, databases, etc.
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– Service ontology - these ontologies are concerned with a semantic descrip-
tion of Grid services. In most part it is based on the OWL-S standard [14],
as up to now the most mature solution for this purpose (another similar
is WSML). The generic component provides a hierarchy of Profiles that al-
lows for functional classification of services (e.g. KWFMiddlewareService).
Additionaly, it has an extended description of Input/Output concepts, in
order to allow matchmaking of services into workflows for instance with re-
spect to DataObject concept, to allow passing data virutally (e.g. by LFN).
The registry will allow registration of service instances and thus provide the
functionality of current solutions analogical with UDDI.

– Workflow ontology - the last ontology set is specified for describing work-
flows, an essential part of the whole K-Wf Grid project. On one hand, the
workflows can be described at a general level, with concepts like Execution
Time, Author and on the other hand their internal structure can be also
defined semantically to make some more advanced reasoning possible, for
instance measuring similarity between particular workflow instances. The
registry will hold all past workflows to allow reusing them in the future.

The example presented in Fig. 3 shows a simplified ontology with generic
concepts, domain specific (traffic monitoring) and some individuals within the
registries. This simple scenario shows semantic description of all aspects of a
Grid environment supporting basic use cases in the Grid. In this example, the
workflow Wf001 contains a service that requires on its input a video sequence
from ViaGaribaldi street from some period of time in MPEG format. During
the composition of the workflow, it turns out, that the video sequence with
requested data exists, that is the data from surveillance camera SC0004 located
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on the street in question, but it is in different format - AVI. Now the system
could try to find a service that is be able to tranform some aspects of the
existing DataObject into the needed one (here it is conversion of Format aspect
from AVI to MPEG by service AVI2MPEGService). Thanks to the semantic
description, this conversion can be included in the workflow without any user
intervention.

In parallel with the ontology development process, within the framework of
K-Wf Grid project, a special software component is being developed called Grid
Organizational Memory [15]. This component will play the role of a universal
knowledge base, able of storing and publishing the whole presented ontology
scheme along with the registries.

5 Future Work

The main area of further research on this approach, will be concerned with excer-
sising the concepts and relations contained in the generic ontology components
with more real world scenarios, to ensure its extensibility for any purpose a Grid
environment could be used. Also, integration at the level of generic ontologies of
common Grid standards like OGSA-DAI [16] will be considered.

Another problem that needs more attention is that of security constrains.
One approach could be based on introducing the security within the ontology
itself, for instance by attaching some general property (e.g. AccessRights) with
every concept in the ontology, however this may lead to some major incosisten-
cies within the knowledge base. Different approach is that of restricting access
to some users for reading or modifying on the basis of the whole ontology com-
ponents, which could be effective enough when the level of separation between
the components is high.

6 Conclusions

Grid middleware and applications that use it, can strongly benefit from semantic
technology. The most natural application of this technology in the Grid is defin-
ing and storing of all kinds of metadata, thus making them uniform in terms of
the representation language, but also in terms of protocols used to access it. The
main problems, that seem to delay this solution, include:

– Still immature tools for manipulating ontologies and for building efficient
and scalable repositories of ontological data.

– Until recently, little understanding of semantic technologies within the Grid
community and vice-versa.

We believe, that with time, as both technologies become more mature, and
their understanding increases, the benefits, like those shown in this article, will
drive the work towards the standardization of such integrated Grid architectures.
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Abstract. Grid portals build upon the familiar Web portal model to
offer virtual communities of users a single point of access to computa-
tional resources. The Grid Portlets web application, developed by the
GridSphere Project, builds upon the core features in the GridSphere
Portal Framework to provide developers with a framework for developing
Grid portals.

1 Introduction

The Web has proven to be an effective means for delivering information, busi-
ness services, and commercial applications to virtual communities of users. Web
portals [1], like Yahoo [2] or MSN [3], offer users a single point of access to a
wide variety of services and technologies. Grid portals build upon this successful
model to provide a single point of access to computational resources: clusters,
data servers, applications, scientific instruments and computing services.

2 The GridSphere Project

The GridSphere Project [4] was created by the GridLab Project [5] to leverage
the most relevant standards, best-practices and technologies to offer a framework
for developing Grid portals. One of the most exciting standards to gain adoption
by the general community is the Portlet Java Specification Request (JSR 168)
[6]. The Portlet JSR defines an application programming interface (API) and
model for packaging and presenting Web content as portlets. Portlets are Java
classes that have a clearly defined interface and life cycle. Portlets are hosted by
a portlet container and can be presented in a Web page in any manner supported
by the portlet container. The Portlet JSR makes it possible to distribute and
share Web applications more easily, creating a means for collaborating on Web
portal development on a much larger-scale.
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3 Grid Portlets Web Application

The Grid Portlets web application, released for the first time in June 2005,
builds upon the core features in the GridSphere Portal Framework [7] to provide
developers with a framework for developing Grid-enabled portlets.

Fig. 1. Grid Portlets has a layered architecture

Grid Portlets has a layered architecture. At the top-most presentation level,
Grid Portlets provides a collection of simple, easy-to-use, well integrated portlets
that can be used on their own or in conjunction with third-party web applica-
tions to provide a complete Grid portal solution. These portlets are built upon
reusable Java Server Pages (JSP) [8] based user interface components, called ac-
tion components. The Job Submission Portlet, for example, utilizes the File List
Component to enable users to “browse” for executable files, directories in which
to run the executables, where to save job output and so on. The same compo-
nent is also employed by the File Browser Portlet to display two “file browsers”
in one window for searching for files and transferring files from one location
to another. At the next layer down Grid Portlets offers developers a collection
of portlet services, Java components, for performing tasks on the Grid. These
portlet services define an API for interacting with Grid resources. Finally, the
resource layer binds the portlet service layer to particular Grid infrastructures
and technologies.

4 Grid Portlet Services

The portlet services contained in Grid Portlets offer a high-level API and model
of the Grid, enabling developers to reuse the functionality offered in Grid Portlets
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to develop custom Grid portal web applications. The Grid Portlet Services API
is a collection of Java interfaces and base classes that:

– Abstracts developers from particular Grid technologies and infrastructure.
– Can be supported with Globus Toolkit 2 (GT2), GT3, GT4 and other service-

oriented technologies. [9] [10] [11]
– Provides support for persisting information about resources and tasks per-

formed by users on the Grid.
– Is extensible, builds upon simple concepts to provide more complex services,

resources and tasks.

4.1 Resources

Central to the Grid Portlet Services API is the notion of a resource. Grid Portlets
defines a resource as “anything that can be utilized”. Resources have a distin-
guished name within the context of Grid Portlets, contain a set of resource at-
tributes, and can contain other child resources. This very simple concept is quite
useful and easy to extend. Grid Portlets defines several key resource concepts
that extend from this base definition:

– Hardware resource - A hardware resource represents a particular host on the
Grid. Hardware resources contain service resources, software resources and
hardware accounts, all of which are described below.

– Service resource - A service resource is a resource that represents a “service”
that is accessible over a network. All service resources have at least one
“port” associated with them, through which they can be invoked by clients,
and a “protocol” for communicating with the service.

– Software resource - A software resource is a resource that represents a “soft-
ware”. At minimum, a software resource has a “path” on a given hardware
resource.

– Resource account - A resource account represents an “account” on a re-
source. For example, a hardware account represents an account on a partic-
ular hardware resource.

4.2 Key Portlet Services

Grid Portlets defines several portlet services interfaces, some of which are de-
scribed here.

Resource Registry Service. The Resource Registry Service is responsible for
making resources available to portlets and other portlet services, where resource
descriptions are maintained in the Grid Portlets database. Resource descrip-
tions are registered in the database through one of two means, with a file called
Resources.xml, located in the WEB-INF directory of the Grid Portlets web appli-
cation context, and with resource provider services, described below. At startup
time, the Resource Registry Service will delete any hardware resource entries cur-
rently stored in the Grid Portlets database, save the hardware resource entries
described in Resources.xml to the database, then activate the resource provider
services that have been registered with Grid Portlets.
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Resource Provider Services. Grid Portlets supports the ability to discover
and monitor resources with resource provider services, where resource provider
services are responsible for querying (or registering Grid Portlets for notification)
the various information resources that have been registered with Grid Portlets.
Several resource providers can be active at any one time. Grid Portlets is dis-
tributed with an MDS2 Resource Provider Service that will periodically query
Grid Resource Information Service (GRIS) [13] resources registered with Grid
Portlets for information about the hardware resources on which they are hosted.

Credential Manager Service. The Credential Manager Service is responsible
for managing credential contexts and making active Generic Security Service
(GSS) [14] credentials that are registered for those contexts available to portlets
and other portlet services. A credential context associates a distinguished name
(DN) with a portal user, records the last time an active credential with that DN
was registered with the Credential Manager Service and other useful information
about credentials with that DN. A DN can be registered with only one user,
while a given user can be associated with multiple DNs. Essentially, Grid Portlets
supports the use of multiple credentials, allowing users to gain access to resources
from multiple virtual organizations.

Credential Retrieval Service. Grid Portlets supports the ability to retrieve
GSS credentials from remote credential repository resources, such as MyProxy
[15], with the Credential Retrieval Service. The Credential Retrieval Service is
responsible for managing credential retrieval contexts. A credential retrieval con-
text associates information for retrieving a credential with a particular DN to
a portal user. A portal user can be associated with multiple credential retrieval
contexts, thereby allowing a user to retrieve multiple GSS credentials.

File Browser Service. The File Browser Service provides methods for creating
file browsers to remote file resources. A file browser represents a stateful connec-
tion to a file resource and provides methods for listing files, changing directories,
creating directories, transferring files between locations and other basic file op-
erations. The File Browser Service is employed by the File Browser Portlet and
other portlet services for gaining access to remote files.

Job Submission Service. The Job Submission Service is a service for submit-
ting jobs to remote job resources and monitoring their status. Job resources are
service resources that provide access to one or more job schedulers, where job
schedulers define one or more job queues to which jobs can be submitted. The Job
Submission Service can support job submission to multiple types of job resources
at runtime. The GridSphere Project and contributors to the GridSphere code
base have developed support for job submission to Globus Gatekeeper (GT2)
[12], Master Managed Job Factory Service (MMJFS) [16], and the Grid Re-
source Management Service [17]. Users of the job submission service can opt to
allow the job submission service to determine which type of job resource to use
for a given job specification or choose on their own.
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5 Grid Portlets

The portlets contained in the Grid Portlets web application leverage the Grid
portlet services described above to provide a generic, yet powerful set of user
interfaces for using resources on the Grid.

5.1 Resource Registry Portlet

Grid Portlets is essentially configured through the Resource Registry Portlet.
Here, portal administrators can specify the set of resources their Grid portal
makes available to its users by editing the Resources.xml file online.

Fig. 2. Edting the resource registry with the Resource Registry Portlet

5.2 Resource Browser Portlet

The Resource Browser Portlet enables users to view information about the hard-
ware resources that have been registered with Grid Portlets, including the ser-
vices, job queues and accounts that are available on those resources.

5.3 Credential Manager Portlet

The Credential Manager Portlet enables users to delegate credentials to the
portal from credential repositories, such as MyProxy, and monitor the status of
those credentials. When a user defines a new credential retrieval context, they can
specify whether to enable that credential for single sign-on. When single sign-on
is enabled, the next time a user logs into the portal, if they enter their credential
retrieval password, then their credential will be automatically delegated to the
portal on their behalf.

5.4 File Browser Portlet

Users can browse for files on remote file systems with the File Browser Portlet.
The File Browser Portlet displays two file browser user interfaces side-by-side,
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Fig. 3. Viewing resources with the Resource Browser Portlet

enabling users to transfer files and directories between locations. The file trans-
fers are performed asynchronously, so that control returns immediately to the
user after starting a file transfer. Users can then monitor the progress of the
transfer with the File Activity Portlet, described below. The File Browser Port-
let also supports the ability to create new directories, delete files and directories,
edit text files online, upload files to remote file systems and download files to a
user’s local host, so long as the files aren’t too large.

5.5 File Activity Portlet

The File Activity Portlet allows user to monitor the progress of file tasks, such
as file copy tasks, file move tasks, and file upload tasks.

5.6 Job Submission Portlet

The Job Submission Portlet enables users to submit jobs to remote job schedulers
and monitoring their status. Because the Job Submission Service employs the
Job Submission Service, it supports the ability to submit jobs to multiple types of
job resources. If more than one job resource is registered with Grid Portlets, then
Grid Portlets will make each job resource type available as a “job submission
service” selection when a user clicks on the New Job button.

Fig. 4. Selecting files to transfer with the File Browser Portlet
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Fig. 5. Selecting a job submission service with the Job Submission Portlet

6 Conclusion

The GridSphere Project is proud to offer the Grid Portlets web application to
the general community. This paper covers only a subset of the features Grid
Portlets offers, which includes support for logical files, support for plugins for
viewing resources and editing jobs, and much more. We have many plans in store
for Grid Portlets, including future co-releases of GT3 Portlets and GT4 Portlets
projects which offer GT3 and GT4 implementations of the Grid Portlets Services
API respectively.

Acknowledgments

The authors wish to thank Ian Kelley for his valuable thoughts and input to the
GridSphere Project over the past years. We give special thanks to Dr Ed Seidel
and Dr Gabrielle Allen without whom the GridSphere Project would not have
been possible. We also would like to thank Dr Ian Foster, Dr Carl Kessleman
and Steve Teucke for creating the Globus Toolkit and founding the field of Grid
computing. Finally, we would like to acknowledge the contributions and ideas of
Jean-Claude Cote, Robert Parrott and many others who have helped to evolve
the Grid Portlets web application. The GridSphere Project was supported by the
Albert-Einstein-Institut under the GridLab Project, an European Commission
5th Framework program (grant IST-2001-32133), from May 2002 to April 2005.

References

1. Web Portals. A Word Definition from Webopedia. http://www.webopedia.com/
TERM/W/Webportal.html

2. Yahoo! Personalized content and search options. Chatrooms, free e-mail, clubs, and
pager. http://www.yahoo.com/

3. MSN. Features personalization, channels of content sites like Carpoint, and inte-
gration with Hotmail e-mail. http://www.msn.com/

4. GridSphere Project. http://www.gridsphere.org/
5. GridLab: A Grid Application Toolkit and Testbed. http://www.gridlab.org/
6. Java Community Process: JSR 168 Portlet Specification. Project Website. Dec 1,

2004. http://www.jcp.org/jsr/detail/168.jsp



698 M. Russell, J. Novotny, and O. Wehrens

7. J. Novotny, M. Russell, O. Wehrens. “GridSphere: An Advanced Portal Framework,
EUROMICRO, 2004

8. Java Community Process: JSR 152 Java Server Pages 2.0 Specification.
http://www.jcp.org/en/jsr/detail?id=152

9. Globus Toolkits. http://www.globus.org/toolkit/
10. I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

11. I. Foster, J. Frey, S. Gram, S. Teucke, C. Czajkowski, et al. Modeling Stateful
Resources With Web Services http://www-128.ibm.com/developerworks/library/
ws-resource/ws-modelingresources.html, March 5, 2004.

12. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S.
Tuecke. A Resource Management Architecture for Metacomputing Systems. Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing,
pg. 62-82, 1998.

13. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services
for Distributed Resource Sharing. Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press,
August 2001.

14. RFC 2853 - Generic Security Service API Version 2 : Java Bindings http://
www.faqs.org/rfcs/rfc2853.html

15. J. Novotny, S. Tuecke, V. Welch. An Online Credential Repository for the Grid:
MyProxy. Proceedings of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

16. V. Silva. The Master Managed Job Factory Service (MMJFS): A custom GRAM
client for the Globus Toolkit 3.x. http://www-106.ibm.com/developerworks/grid/
library/gr-factory/

17. K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak, J. Pukacki. Improving Grid
Level Throughput Using Job Migration and Rescheduling Techniques in GRMS.
Scientific Programming, IOS Press. Amsterdam The Netherlands 12:4 (2004)
263-273



A Grid Service for Management of Multiple
HLA Federate Processes

Katarzyna Rycerz1, Marian Bubak1,2,
Maciej Malawski1, and Peter M.A. Sloot3

1 Institute of Computer Science, AGH, al. Mickiewicza 30,30-059 Kraków, Poland
2 Academic Computer Centre – CYFRONET, Nawojki 11,30-950 Kraków, Poland
3 Faculty of Sciences, Section Computational Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{kzajac, bubak, malawski}@uci.agh.edu.pl, sloot@science.uva.nl

Tel.: (+48 12) 617 39 64, Fax: (+48 12) 633 80 54

Abstract. The subject of this paper is a Grid management service
called HLA–Speaking Service that interfaces an actual High Level
Architecture (HLA) application with the Grid HLA Management
System (GHMS). HLA–Speaking Service is responsible for execution of
an application code on the site it resides and manages multiple federate
processes. The design of the architecture is based on the OGSA concept
that allows for modularity and compatibility with Grid Services already
being developed. We present the functionality of the Service with an
example of N–body simulation of dense stellar system.

Keywords: HLA, Grid, distributed interactive simulations, federate
management, N-body simulation.

1 Introduction

Distributed simulations often require extensive computing resources. The Grid
[2, 3] is a promising means of solving this problem as it offers the possibility to
use resources which are not centrally controlled and are under different adminis-
trative policies. Simulations built with an implementation of the High Level Ar-
chitecture (HLA) system [6] allow for merging geographically-distributed parts
(called federates) of simulations (called federations) into a coherent entity. The
High Level Architecture is explicitly designed as support for interactive distrib-
uted simulations, it provides various services required for that specific purpose,
such as time management, useful for time-driven or event-driven interactive sim-
ulations. It also takes care of data distribution management and enables all ap-
plication components to see the entire application data space in an efficient way.
On the other hand, the HLA standard does not provide automatic setup of HLA
distributed applications and there is no mechanism for migrating federates ac-
cording to the dynamic changes of host loads or failures, which is essential for
Grid applications. Therefore, there is a need for a system that would manage
HLA-based simulations on the Grid. The Grid Services concept provides a good
starting point for building the Grid HLA Management System (GHMS) for that
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purpose, as described in [12]. In this paper we focus on the HLA management
service called HLA–Speaking Service that interfaces actual HLA application with
GHMS and is responsible for execution of application code on the site it resides.
The service manages multiple federate processes and is based on experience
obtained from its prototype for single processes[15]. We also show how the dis-
tributed N–body simulation of a dense stellar system can benefit from the Grid
by using this service. Such simulations remain a great challenge in astrophysics
[17] and there is a need for a computer infrastructure that will significantly im-
prove their performance. We believe that the Grid is a promising environment
for such requirements, since it offers the possibility of accessing computational
resources that have heretofore been inaccessible.

The paper is organized as follows: in Section 2 related works are presented,
in Section 3 we describe the HLA–Speaking Service. Section 4 presents the ap-
plication for the N–body simulation and shows how this application is run with
GHMS. In Section 5 we present the migration overhead and improvement of
performance of N-body simulation resulting from GHMS, and we conclude the
paper in Section 6.

2 Related Works

Execution and management of HLA–based simulation on the Grid is a very
interesting and important problem. [1] describes design and implementation of
a load management system for running large-scale HLA simulations in a Grid
environment based on Globus Toolkit 2. These authors also present a framework
where the user can design parallel and distributed simulations without prior
knowledge of HLA/RTI [13]. In [14] they presented a protocol that supports
efficient checkpointing and federate migration for dynamic load balancing. In
order to facilitate the usage of this protocol, an additional layer between HLA
and the actual application was proposed[13]. Although this approach presents a
more efficient migration protocol, it is not sufficient for porting HLA legacy code
to the Grid. In [16] a framework for executing large-scale distributed simulations
using Grid services was presented. Currently, this framework addresses dynamic
discovery of HLA federates. The approach assumes that each federate is a simu-
lation model encapsulated in a Grid Service. These solutions are complementary
to the approach presented in this paper. In [16] there is an assumption that a user
is able to build a simulation from existing Grid Services (which encapsulate func-
tionality of HLA federates) or can wrap federates into Grid Services (the paper
does not, however, describe how to wrap a federate into a Grid Service, which is a
nontrivial issue). This paper describes a HLA–Speaking Grid Service that allows
a user to simply load legacy federates and manage execution of the simulation.
The useability of these approaches depends on simulation requirements.

3 HLA–Speaking Service

The role of HLA–Speaking service in GHMS is illustrated in Fig.1. The
group of main GHMS services consists of a Broker Service which coordinates
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Fig. 1. The HLA–Speaking Service in the context of GHMS architecture

management of the simulation, a Performance Decision Service which decides
when the performance of any of the federates is not satisfactory and therefore
migration is required, and a Registry Service which stores information about the
location of local services. On each Grid site supporting HLA there are local ser-
vices for performing migration commands on behalf of the Broker Service as well
as for monitoring of federates and benchmarking. The HLA–Speaking Service is
one of the local services interfacing federates running on its site to the GHMS
system.

3.1 Multiple Processes Support

The HLA Speaking Service encapsulates various HLA implementations that are
thought of as resources found in a Grid environment. The service is one of the
most important parts of GHMS, as it manages the execution of the federates on
a particular site. The service starts the execution of a federate code on its site,
saves the application state and restores it from a checkpoint file. An HLA-specific
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Fig. 2. Conceptual view of HLA Speaking Service for multiple federate processes
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Fig. 3. Sequence diagram describing federate migration for multiple federates

API is hidden in the RTI library functionality and is not exposed as a service
interface. Experience gained with HLA Speaking Service for single processes[15]
has enabled us to design support for multiple federates (see Fig. 2). In this
approach, we designed the control federation for forwarding requests from the
Grid Service layer to the actual user federates. The Grid Service layer can request
saving and restoring specific processes. The user code communicates with the
control federate by means of a Grid HLA Controler Library (GHCL). The user
federates communicate with each other also using RTI, but this takes place in
the scope of user-defined federations.

The operations of the HLA–Speaking Service PortType are modified to sup-
port multiple federates and use the Resource Specification Language (RSL) from
Globus GRAM [4] for description of federate processes to be run and include
functions for running, saving and restoring of HLA federates.

3.2 Migration Scenario

The scenario of migration is shown in Fig 3. If there is a need to migrate, the
GHMS informs the Broker Service which decides that the HLA federate from
site A has to be migrated to site B and triggers the Migration Service to perform
this migration. The Migration Service creates the HLA Speaking Service on the
new site, then asks for creation of a control federate that creates the control
federation. When this is done, the GHMS asks the HLA–Speaking Service on
site A to save the state. The HLA Speaking Service forwards this request with
the identifiers of federates that have to be saved to all federates it controls by
means of GHCL. The federates invoke an HLA API for federation saving [6]
which suspends the other federates. The federates know (by their identifiers)
if there is a request to save the state of their federations and resign from them
Subsequently, user data is saved in a checkpoint file and the appropriate federates
resign from the federations defined by the user (application federations) as well
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as from the control federation. Next, the GHMS invokes the takeAndSubmit
operation of the HLA-Speaking Service on site B which triggers it to fetch the
user codes and checkpoint files from site A to site B and restore federates from
the available checkpoint files. The federates join the control federation as well
as user-defined (application) federations and invoke the GHCL library which
restores user–specific data and uses the HLA API [6] for restoring the application
federation RTI internal state.

4 Feasibility Study with N—Body Simulation

The N -body simulation is part of the virtual laboratory called Gravitylab [7]
which is a powerful software environment for experiments concerning the dy-
namics of dense stellar systems. The algorithm of the simulation uses a direct
method, where the gravitational force acting on a particle is computed by sum-
ming up the contributions from all other particles according to the Newton’s
law

Fi = mi ∗ ai = −Gmi

j=N∑
j=1,j �=i

mj(ri − rj)
|ri − rj |3

The numerical method is based on the Hermite [8] scheme, where higher-order
derivatives are explicitly computed in order to construct interpolation polynomi-
als of the force. The performance analysis of different parallelization schemes for
direct code used in the simulation of astrophysical stellar systems for different
computer architectures, including the Grid, can be found in [5].

The application consists of two modules: the MPI N–body simulation mod-
ule and the integrated visualization–interaction module. The modules commu-
nicate using the HLA RTI bus which connects visualization/interaction federate
with the MPI root process of the simulation federate. Those federates form the
application federation. Additionally, HLA is used for control of MPI simula-
tion processes on the Grid site as described in Section 3.1. Therefore, all MPI
processes join the control federation together with the control federate in the
HLA–speaking service. For connection with the control federate, all processes
use the GridHLAController library.

5 Results

We have performed two different experiments to show the overhead of vari-
ous migration stages and its impact on simulation performance. The experi-
ments were performed on the DutchGrid DAS2 testbed infrastructure and at
CYFRONET, as shown in Table 1. Because the bandwidth available for testing
was broad (10Gbps), communication did not play an important role and calcu-
lations were the most time–consuming part of the execution. In order to create
conditions in which migration would be useful, we increased the load of the Grid
site where the simulation was executed (Amsterdam) by submitting nonrelated,
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Table 1. Grid testbed infrastructure

Operating System RedHat Enterprise Linux Advanced Server, version 3
Network 10 Gbps (DAS2) + 155 Mbps (DAS2-Cyfronet)

Role Name CPU RAM
Migration source DAS2 Nikhef Pentium III 1 GHz 1 GB
Migration dest DAS2 Delft Pentium III 2GHz 2 GB

Interation federate Cyfronet Krakow 2.40 GHz Xeon 1 GB
RTIexec Cyfronet Krakow 2.40 GHz Xeon 1 GB
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Table 2. Execution time of various migration stages

x̄ [s] σ [s]
save time 6.4 1.3

application resign time 3.7 0.5
transfer time 0.4 0.05

GRAM 2.5 0.1
PBS waiting time 8.5 0.7

application join time 12.9 1.9
restore time 8.2 0.8

computationally–intensive jobs. Next, we imitated a Resource Broker and mi-
grated the simulation to another site which was not overloaded (Delft). The
experiments were performed at night in order to avoid interference with other
users and repeated 10 times to check if they are reproducible.

Migration time. Fig. 4 shows migration time as a function of the number of
MPI processes in the federation. For our tests, we used GT v3.2 and HLA RTI
1.3v5. The number of stars used in the simulation was 5000. The results were
obtained as an average of 10 measurements. The error bars indicate estimated
standard deviation denoted by σ. The time includes phases as shown in Fig. 3
in Section 3.2. The overhead of particular phases is shown in Fig. 4 (activities
dependent on the number of MPI processes) and Tab. 2 (activities independent
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of the number of MPI processes). As can be observed, the largest overhead in
the case of the tested application is for rejoining the control federation. This is
due to the fact that in the RTI implementation we used, every federate has to
open a TCP connection to every other federate in the control federation. Reliable
multicast [9] would significantly decrease this overhead. Other activities, such as
saving and restoring the state of the federation application, joining and resigning
the federation application, transferring files (GridFTP overhead), GRAM and
PBS induce overhead which does not depend on the number of MPI federates
since only one root MPI process is actually joining the application federation in
order to communicate with the visualization federate, as shown in Tab. 2.

Impact of migration on performance. As in the previous experiment, for
our tests we used GT v3.2 and HLA RTI 1.3v5. The simulation consisted of 20
MPI processes calculating 3D position and velocity of 24000 stars. Fig. 5 shows
the time as a function of number of interactive steps in the loop with a human (for
the first 13 steps) In each step, the simulation calculates data and sends them to
the visualization and interaction module using HLA. The dashed line shows what
would happen if the network stayed busy for some time and the responses took
longer. In this situation it is better to spend some time on migration to the other
site, which offers better response times as shown by a solid line in the figure. Fig.
5 shows that the user can gain access time between steps 5 and 6 independently
of the time lost on migration(performed between steps 3 and 4).

6 Summary and Conclusions

This paper presented the HLA–Speaking service which enables efficient manage-
ment of the execution of HLA code on the Grid. The service is a part of the
GHMS system described in [12] and it is used for running, saving and restoring
one or more federate processes on the Grid site on which it resides. We have also
presented a sample application managed by our service – N–body simulation of
a dense stellar system. Our solution gives the ability to not only apply the HLA
standard on the Grid, but also to easily adapt legacy HLA applications to the
Grid environment in a robust and efficient way.
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Abstract. Replication methods can be used for shortening the data ac-
cess time in Grid environment with heterogeneous storage resources. In
this paper we describe the algorithms for automatic replication imple-
mented by us in two grid projects having different requirements concern-
ing data storage.

1 Introduction

In Grid environments, data sets are stored in special nodes called storage el-
ements (SEs). The SEs are usually different and this heterogeneity introduces
variations of data access time. Optimization of data access is necessary to keep
the access time as low as possible. Data replication is one of the methods coping
with the problem of data access optimization. It attempts to solve the network
bandwidth limitation problem, as well as allows to balance the storage load
between many sites and increases the data protection level.

Data management systems developed in previous grid projects offer limited
support for data replication so called static replication. In the case of static
replication, the decision about creation or removal of a replica is made by the
user or by the system administrator. This method is not suitable especially for
the future invisible grid environments, which size, dynamics and heterogeneity
successfully prevent any human from optimal data management. In the case of
automatic (also called dynamic) replication the decision about a replica creation
and removal is done by a dedicated grid component – Replica Manager (RM) –
usually a part of the data management system.

We have already implemented an automatic replication method in two Grid
projects, SGIgrid and Clusterix [1, 2], having different requirements concerning
the data storage. Automatic replication algorithms, some implementation details
and review of test results are presented in this paper.

The rest of the paper is organized as follows: Section 2 presents state of the
art. Sections 3,4,5 give description of the proposed algorithms. Test results are
presented in Section 6. Section 7 concludes the paper.
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2 State of the Art

Ranganathan and Foster in [3] evaluate, using simulations, different dynamic
replication strategies for managing large data sets in a high performance data
grid. Their research has been done within the framework of the GriPhyN project
[4]. They define six different replication strategies and test them by generating
three different kinds of access patterns. They show how the bandwidth saving and
latency differ with these access patterns depending on the applied strategy. The
best strategies according to this paper are Fast Spreading and Cascading with
Caching, but in the same time these strategies are the most storage consuming
ones.

Park et al. in [5] present a simulation based study of a dynamic replica-
tion method called BHR (Bandwidth Hierarchy Replication). The BHR strategy
takes advantage of the network-level locality which does not always fit to the
geographical one. They show that their strategy outperforms other strategies in
the case when hierarchy of bandwidth appears in the Internet.

Lamehamedi et al. in [6] investigate the use of highly decentralized dynamic
replication services for improving the access time and bandwidth consumption of
the overall system. They have assumed a two-tier data grid. They have tested two
replication strategies: replicating to level 1 nodes (closer to tier 0) and replicating
to level 2 intermediate nodes (closer to clients). Their simulation results show
that the performance gains increase with the size of the data.

Izmailov et al. in [7] propose the parallel replicas propagation methods for
the Grid environment. The Fast Parallel File Replication tool is presented. The
tool creates multiple distribution trees by pipelining point-to-point GridFTP
transfers and optimizes the file replication time to multiple sites. Four algorithms
for creation of replicas distribution tree are discussed: hierarchical, iterative DFS,
iterative BFD and iterative shortest-widest. The performance results show a
significant speed up of up to five times using the proposed tool, as compared to
the basic point-to-point GridFTP usage.

3 Algorithms for Automatic Data Replication

Automatic replication is a complex task, which requires a set of algorithms con-
cerning the creation, removal, selection and coherency of replicas as well as
replica update propagation algorithm.

The replica creation algorithm is responsible for automatic creation of new
replicas. This algorithm has to choose files, which need to be replicated and to
decide, where to place replicas. Some information is necessary to perform these
tasks. The algorithm needs a list of file access read and write requests, infor-
mation about SEs, like their capacity, type (HDD, HSM, DB) and performance.
The information about network, like bandwidths between clients and SEs, is also
very important.

The replica removal algorithm is responsible for replicas removal intended to
save storage space. There are a lot of replica removal strategies. The most plain
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strategy is to remove replicas, which were not used for some, specified time. Also
the algorithm can remove replicas, which reside on SEs with small amount of
free space. The algorithm can dynamically adjust its parameters depending on
the available storage space and replica usage.

The replica selection algorithm is necessary to take a performance gain from
replication. The algorithm is responsible for optimal replica selection for the
specific read or write operation. Without this algorithm, the only advantage of
the replication is the protection from data loss. In the process of optimal replica
selection information about current system state is needed, concerning especially
network bandwidth that is available between endpoints and SEs. Generally the
replica selection algorithm minimizes the cost of data access. The definition of
the cost function depends on the implementation and the available information.

The problem of replica coherency is a complex one and it is similar to the
cache coherency problem. The strong coherency model assures, that only up-to-
date replicas can be accessed. The weak coherency model allows access to older
versions of replicas.

The replica update propagation algorithm is responsible for updating out-
of-date replicas. The method used for the update task should provide a balance
solution between the system load and the time needed to perform replica up-
dates.

The next sections describes the algorithms for automatic data replication
implemented in the projects Clusterix and SGIgrid.

4 Clusterix Data Management System

The Polish grid project Clusterix [2] – National Cluster of Linux Systems –
is designed for use with computational and data intensive applications. The
purpose of the project is to develop a set of tools and procedures allowing to
built a productive grid environment based on local PC clusters (64bit or 32bit)
located in independent supercomputing centers. The project uses Pionier [8]
infrastructure as a network layer.

The Clusterix Data Management System (CDMS) takes advantage of the dy-
namic replication. Three kinds of replication are used: initial replication, repli-
cation on demand and replication based on statistic analysis.

4.1 Algorithms

Replica selection algorithm. The replica selection algorithm is used for selec-
tion of optimal SE for data accessing. Elaboration of this algorithm is necessary,
to achieve the desired performance gain. By our definition the optimal SE can
deliver the data to a destination node in the shortest time. The algorithm takes
into account the current system state, obtained from the Network Monitoring
System and the JMX-based Infrastructure Monitoring System.

The optimal SE is the element, so, for which W (so, d) = maxs W (s, d), where
the weight function

W (s, d) = min[(1− Lnet(s))Bnet(s, d), (1 − Lstor(s))Bstor(s)] (1)
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and s - storage element; d - destination node; Lnet(s) - s network interface load;
Bnet(s, d) - available bandwidth between s and d; Lstor(s) - storage system load;
Bstor(s) - storage system bandwidth.

The weight function finds the bottleneck between SEs and destination node.
It takes the smaller value from between the available network and storage band-
widths.

Automatic replication algorithm. The automatic replication is based on the
statistical data describing historical file access patterns. The algorithm takes into
account the gain from replication G(), the cost of replica creation C(), the cost
of replicas update U() and the administrative factor A().

For every file and every SE (with sufficient free space) the replication profit
P () is computed:

P (d,R, S, f) = G(d,R, S, f)− α1C(d,R, f)− α2
Sw

Sr
U(d,R, S, f) +A(d, f) (2)

where: d - storage element, which profit is computed for; f - considered file; R -
set of SEs containing replicas of f ; S - statistical data - history of file usage; Sw,
Sr - number of writes, reads of f ; α1, α2 - tuning coefficients, specified empirically
by the administrator.

The replication is performed, if the profit P () is grater then some threshold
value. The function G() prescribes the gain from replication in respect of time.
The gain function is defined as follows:

G(d,R, S, f) =
∑
s∈S

size(f)
Bavg(opt(R, s), s)

−
∑
s∈S

size(f)
Bavg(opt(R ∪ d, s), s)

(3)

where: size(f) - size of file f ; s - node, which have accessed f ; opt(R, s) - optimal
SE from R for node s; Bavg(d, s) - average bandwidth between nodes d and s.

The function computes the time for file transfers before replication and the
hypothetical time, which would be spent on the file transfer if the file had been
replicated. The gain is a difference between these two time values.

The function C() prescribes the cost of replica creation in respect of time.
The cost function is defined as follows:

C(d,R, f) =
size(f)

Bavg(d, opt(R, d))
(4)

The function computes the time, which would be spent to transfer the replica
to a new location.

The function U() prescribes the cost of replicas update in respect of time.
The cost function is defined as follows:

U(d,R, f) =
(n− 1) · size(f)
Bavg(d, opt(R, d))

(5)

where n is the number of replicas of file f . The function computes time, which
would be spent to update all of the replicas of file f .
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The administrative factor is set for every SE and allows to control the value
of the profit function. It can be used to encourage or discourage the replication
to given SE.

Replica removal algorithm. Automatic replication without replica removal
can cause high storage usage, so an appropriate replica removal algorithm has to
be specified. There are three cases in the CDMS, when a replica can be removed:

1. the profit function for the replica is less than the settled minimum,
2. the free space on storage system is low and the profit function for the replica

is less than the average (or other threshold value),
3. the free space on storage system is at critical level.

5 Virtual Storage System for SGIgrid

The SGI Grid project [1] provides services for remote access to expensive sci-
entific equipment, backup computational center and remote data-visualization
service. Scientific experiments often produce large amount of data, which have
to be stored or archived. Data archivization aspects are addressed by Virtual
Storage System (VSS), which main goal is to integrate storage resources dis-
tributed among computational centers into a common system. VSS can use a
variety of storage resources, like databases, file systems, tertiary storage (tape
libraries and optical jukeboxes managed by HSM systems). In order to optimize
the access to so different storage resources the automatic replication methods
have been implemented in the VSS.

5.1 Algorithms

Replica selection algorithm. The selection of optimal replica is performed
using information about network latency between each data container and the
client. Because there is none network monitoring system in the SGIGrid project,
the network latency is measured by a simple service using traceroute utility. The
SGIGrid support variety of storage systems, which have different performance
and their data access time can vary from milliseconds to ten of minutes, thus the
additional information about access time and read/write performance is taken
under consideration. The estimated access time is provided by a specialized
service. The read/write performance test are performed on every data container.

The optimal replica is the one, which is stored on the container with the
minimal weight function d:

d(c, u, f) = n(c, u) + r(c) + w(c) + eta(f), (6)

where: n(c, u) - network latency between data container c and user location
u, r(c) - storage read performance test, w(c) - storage write performance test,
eta(f) - storage latency estimation for file f .
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Automatic replication algorithm. Automatic replication in SGIGrid is
based on statistic data, extracted by the Log Analyzer from system logs.
These data contain information about the following events: file creation/removal,
replica creation/removal, read/write access.

For each file, which fulfills initial constraints (file size, number of replicas,
etc.) a list of pairs (ui, wi) is created. ui is the ip address of requesting node and
wi is the weight, associated with the file usage from this ip address, defined as:

wi =
∑

a∈Lr(ui)

f(ta), (7)

where: Lr(ui) - set of read events performed from ui address, ta - timestamp for
the read event, f(ta) - function which controls the influence of the timestamp
on the value of the weight.

For each ui for which wi > Wmin an optimal data container, ki, is selected
from the set of containers K. Wmin is a threshold value. The selection algorithm
is similar to the optimal replica selection algorithm (see Section 5.1. The only
difference is, that the estimated access time is not taken under consideration. As
the result the triples (ui, wi, ki) are produced. The triples are grouped in UKj

sets, where j = 1..m and m is the number of containers. These sets are defined
as follows:

UKj = {(ui, wi, ki), i = 1..n : ki = Kj}, (8)

where n is the number of triples. Next a set indexes IUKj
is defined:

IUKj
= {i : (ui, wi, ki) ∈ UKj}, (9)

and for each data container Kj, a weight zKj is computed:

zKj =
∑

l∈IUKj

wl, (10)

The weight represents the level of usage of the replica from this container. Then
the container with maximal weight is chosen to store the new replica.

Replica removal algorithm. To maintain moderate storage usage, VSS re-
moves unused replicas. The algorithm removes replicas, which have been created
by RM and have not been used for some (configurable) time. Replicas created
manually by the users are not removed.

Replica coherency algorithm. The algorithm is used, when a user updates
an existing file, which has been replicated. The algorithm outlines as follow:

1. The user requests file update.
2. RM selects the optimal replica for update and sets its state to IN_TRANSFER,

all remaining replicas states are set to STALE.
3. User performs update (file transfer).
4. The state of updated replica is set to READY, RM sends a list of stale replicas

and the location of updated replica to RM.
5. RM updates the stale replicas using the updates propagation algorithm.
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Updates propagation algorithm. We defined two sets: S - set of up-to-date
replicas, initially contains one replica, andD - set of out-of-date replicas, initially
contains all replicas but the updated one.

While D is not empty:
Create pairs (si, dj), si ∈ S, dj ∈ D. si and dj can belong to one pair only.

For each pair the file transfer si → dj is started. After each file transfer, dj is
moved from D to S.

When the D set is empty, all replicas are updated.

6 Test Results

Clusterix and SGIgrid are not large-scale grids with about 5-10 SEs located in
Poland. Clusterix uses homogeneous optical network with bandwidth of 10 Gb/s,
while SGIgrid uses heterogeneous network with bandwidth between 10 Mb/s and
1 Gb/s. More detailed information about the tests can be found in [9].

Clusterix. CDMS is still in development, thus the real system tests were not
possible. Presented results were obtained from CDMS simulator, which has been
developed to test algorithms. The typical applications running on Clusterix are
simulations which are run many times using the same data set but with different
simulation parameters. That is why the case of running grid applications oper-
ating on their constant input data files has been tested. The tests have shown
that using automatic replication in this case causes a 12% increment of storage
usage and a 15% decrement of the overall data access time in compare with the
case with only initial replication.

SGIgrid. SGIgrid is already in production, so the tests have been done on the
real system. Anyway the assumptions are different from the Clusterix ones. SGI-
grid is focused on accessing unique scientific equipment in a virtual laboratory as
well as on the further accessing of the data produced during experiments in the
laboratory. In this case scientists from different locations access the data files.
As a result some data files are more frequently accessed for a given time period.

The performance tests of automatic replication for SGIgrid were done by
generating file access requests from different locations. The file access pattern
represented the Zipf-like distribution. The result have shown that the increment
of storage usage in this case is 49% and the decrement of the overall data access
time is 64%.

7 Conclusions

In this paper we have presented automatic replication algorithms for Grid en-
vironment. Some implementation details and review of test results for two grid
projects Clusterix and SGIgrid have been presented. For these types of grids the
tests indicate that the automatic replication can cause decrement of total data
access time. The test results have shown that in the case of Clusterix despite
the high bandwidth homogeneous network (which makes the gain smaller) and
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the initial replication, the automatic replication can bring some profit for the
simulation experiments run on a typical computational grid. The gain is due to
the better load balancing of the storage elements. In the case of SGIgrid, which
is a kind of data grid with heterogeneous network connections and SEs, the gain
from automatic replication is higher.
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Abstract. One approach to Grid application programming is to implement ser-
vices with often-used functionality on high-performance Grid hosts. Complex
applications are created by using several services and specifying the workflow be-
tween them. We discuss how the workflow of Grid applications can be described
easily as a High-Level Petri Net (HLPN), in order to orchestrate and execute dis-
tributed applications on the Grid automatically.

Petri Nets provide an intuitive graphical workflow description, which is easier
to use than script-based descriptions and is much more expressive than directed
acyclic graphs (DAG). In addition, the workflow description can be analysed
for certain properties such as deadlocks and liveness, using standard algorithms
for HLPNs. We propose a platform-independent, XML-based language, called
Grid Workflow Description Language (GWorkflowDL), and show how it can be
adapted to particular Grid platforms. As two example target platforms, we discuss
Java/RMI and the current WSRF standard.

1 Introduction

An approach to Grid programming that receives much attention is the use of remotely
accessible services which are implemented on Grid hosts and provide commonly used
functionality to applications running on clients. Popular examples of Grid middleware
following the paradigm of the Service-Oriented Architecture (SOA) are the OGSI-
compliant Globus Toolkit 3 [1] and the Web Services Resource Framework (WSRF)
standard [2] with several implementations, such as Globus Toolkit 4 and WSRF.net.

Grid applications for service-based systems are usually composed of several ser-
vices working together in an application-specific manner. An application developer has
to decide which services offered by the Grid should be used in the application, and he
has to specify the data and control flow between them. We will use the term workflow
to refer to the automation of both – control and data flow – in Grid applications.

In order to simplify Grid programming, it should be possible to describe an ap-
plication workflow in a simple, intuitive way. Script-based workflow descriptions (e.g.
GridAnt [3], BPEL4WS [4]) explicitly contain a set of specific workflow constructs,
such as sequence or while/do, which are often hard to learn for unskilled users. Purely
graph-based workflow descriptions have been proposed (e.g. for Symphony [5] or Con-
dor’s DAGman tool [6]) which are mostly based on Directed Acyclic Graphs (DAGs).
Compared to script-based descriptions, DAGs are easier to use and more intuitive: com-
munications between different services are represented as arcs going from one service
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to another. However, DAGs offer only a very limited expressiveness, so that it is often
hard to describe complex workflows, e.g. loops cannot be expressed directly. High-
Level Petri Nets (HLPNs) allow for nondeterministic and deterministic choice, simply
by connecting several transitions to the same input place and annotating edges with
conditions. Similarly, since DAGs only have a single node type, data flowing through
the net cannot be modelled easily. In contrast, HLPNs make the state of the program
execution explicit by tokens flowing through the net.

We propose a Grid Workflow Description Language (GWorkflowDL) [7] based on
HLPNs. The novelty of our approach is that we do not modify or extend the original
HLPN model in order to describe services and control flow: we use the HLPN concept
of edge expressions to assign a particular service to a transition, and we use conditions
as the control flow mechanism. The resulting workflow description can be analysed for
certain properties such as deadlocks and liveness, using standard algorithms for HLPNs.
The language itself is platform-independent and provides platform-specific language
extensions to adapt the generic workflow to a particular Grid platform. In this paper,
we present a Java/RMI as well as a WSRF extension. The GWorkflowDL is intended
to provide a common approach for the whole life-cycle of Grid applications, consisting
of the workflow orchestration, scheduling, enactment, execution, and monitoring. The
GWorkflowDL is currently the basis for the K-Wf Grid project [8], and the Java Grid of
the University of Muenster. The Fraunhofer Resource Grid [9] uses a similar approach.

The structure of the paper is as follows: In the next section, we present the under-
lying Grid infrastructure and describe an example application. In Section 3 we give
a brief introduction to High-Level Petri Nets and discuss how HLPNs are used to
model service-based Grid applications. Section 4 presents the basic features of the Grid
Workflow Description Language and the specific extensions for WSRF and Java/RMI
platforms. We conclude our paper in the context of related work.

2 Grid Architecture and Application Example

We assume a Grid system architecture as shown in Fig. 1, where application pro-
grams are constructed using a set of services which are implemented on remote high-
performance hosts. Services are invoked from a client on remote Grid hosts using a
remote method invocation mechanism such as Java/RMI or SOAP. We will use the term
service for any remotely accessible functionality which transforms a number of input
parameters into one or several result values.

As an application example (also shown in Fig. 1), we use the complex convolution
function often used for linear filters in signal processing. The convolution function can
be computed efficiently using the Fast Fourier Transform (FFT ) and its inverse FFT−1

as follows:
f (n,n)
conv (a, b) = FFT−1

2n (FFT 2n(a)× FFT 2n(b)) (1)

where× denotes pointwise complex multiplication.
We express the convolution according to (1) using three different services: two

services for FFT and FFT−1 respectively, and a third service, called zip, for point-
wise complex multiplication. When program (1) is executed on the client, the different
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Fig. 1. Prototype Grid architecture

services (FFT , zip and FFT−1) are called remotely on (potentially different) Grid
hosts, with parameters a and b being sent across the network.

In the remainder of the paper, we develop a workflow for our application example
and show how it can be described using HLPNs.

3 Using Petri Nets for Describing Workflows

Our graphical notation for Grid workflow is based on High-Level Petri Nets (Petri Nets
with individual tokens), which allow to compute the value of output tokens of a transi-
tion based on the value of the input tokens. An introduction to the theoretical aspects of
HLPNs can be found, e.g., in [10]. Van der Aalst and Kumar [11] give an overview
of how to describe different workflow patterns using Petri Nets.

Petri Nets are directed graphs, with two distinct sets of nodes: transitions (repre-
sented by thick vertical lines or rectangles) and places (denoted by circles). Places and
transitions are connected by directed edges. An edge from a place p to a transition t is
called an incoming edge of t, and p is called input place. Outgoing edges and output
places are defined accordingly. Each place can hold a number of individual tokens that
represent data items flowing through the net. A transition is enabled if there is a token
present at each of its input places. Enabled transitions can fire, consuming one token
from each of the input places and putting a new token on each of the output places. The
number and values of tokens each place holds is specified by the marking of the net.
Consecutive markings are obtained by firing transitions.

Each edge can be assigned an edge expression. For incoming edges, variable names
are used, which assign the token value obtained through this edge to a specific variable.
Additionally, each transition can have a set of boolean condition functions. A transition
can only fire if all of its conditions evaluate to true for the input tokens.

In the next section, we discuss how individual services can be represented as tran-
sitions in High-Level Petri Nets, and show how applications built from services are de-
scribed by more complex nets. We will discuss the workflow concepts using an abstract
mathematical notation for edge expressions and show concrete examples for Java/RMI
and WSRF in Section 4.2.



718 M. Alt et al.

3.1 Convolution Example

We will now illustrate the representation of Grid workflows as HLPNs using the con-
volution example from equation (1). The resulting net is shown in Fig. 2. Individual
services, such as the zip and FFT services are represented by single transitions. Tran-
sitions loada , loadb and save represent local methods used to load the parameter values
and save the result.

The service name is written above the transition, variables for the formal parame-
ters and results are represented as places, with parameter names (e.g. x and y for zip)
shown as edge expressions on the incoming edges. The edge expressions for outgoing
edges specify which value should be placed on the corresponding output place when
the transition fires. Usually, this is the result of the invoked service, but it can also be
an error value. In addition to the service itself, a set of conditions may be associated
with a transition. For example, the zip service (for pointwise complex multiplication
of two arrays, see Sect. 2) is only allowed to be executed if the two input lists are of
the same length, which is expressed by |x| = |y|. The conditions are shown below the
corresponding transition.

r x

xr r

r
y

x
xr r

r = load a()

r = load b() r = FFT (x)

r = FFT (x)

r = zip(x, y) r = FFT−1 (x)

x

save(x)

|x| = |y|

Fig. 2. Petri Net representation of convolution program

In addition to the places and edges for input and output data of transitions, the appli-
cation developer has the possibility to introduce additional control places to the graph.
A control place holds simple tokens which do not carry any value. Accordingly, input
edges connecting a control place to a transition (control edges) have no associated vari-
ables, and the token values are not used as parameters for the associated service. Control
edges just synchronize the firing of a transition with the corresponding control place.
As example, consider the transitions loada and loadb in Fig. 2. Because the methods for
loading the parameters do not have any input parameters, a control input edge is intro-
duced for each of them. The control places initially contain a single control token which
is consumed when parameters are loaded. This ensures that the corresponding transi-
tions are executed only once. Similarly, the save transition has an outgoing control edge
which signals the completion of the save service.

Conditions can be used to check whether the input data of the service meets certain
requirements. Additionally, the application programmer can use conditions to realise
standard control flow structures, such as conditions and loops. For example, FFT im-
plementations often can only be used on input lists of length n = 2i. This should be
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a

|a| = 2i

a a

|a| �= 2i

r = pad(a)

r = load()

r

r

Fig. 3. Conditional padding of the input data realised with user-defined conditions

checked by a condition provided with the FFT service. However, to use the convolu-
tion program in equation (1) for input lists of lengths that are not a power of two, the
lists can be zero-padded to the appropriate length.

Figure 3 shows a subgraph for loading list awith padding to the required length. The
padding transition calls a service to transform the input list, which is only necessary
if the list does not have the correct size. Therefore, the user-defined condition n �= 2i

is used to prevent unnecessary padding. If the list already has the correct length, it
is passed through the second transition which has no associated service and does not
change its input.

4 Grid Workflow Description Language

The GWorkflowDL is being developed as an XML-based language for Grid workflows,
based on HLPNs as described in the previous section. It consists of a generic part, used
to define the structure of the workflow, and a platform-specific part (extension) defining
how to execute the workflow in the context of specific Grid computing platforms.

4.1 GWorkflowDL – XML Schema

Figure 4 graphically represents the XML Schema of GWorkflowDL. The root element
is called <workflow>, which contains the optional element <description> with
a human-readable description of the workflow, and several occurrences of the elements
<transition> and <place> that define the Petri Net of the workflow.

The element <transition> may be extended by platform specific child el-
ements, such as <WSRFExtension> and <JavaRMIExtension>, which rep-
resent special mappings of transitions onto particular Grid platforms. Elements
<inputPlace> and <outputPlace> define the edges of the net. Edge expres-
sions are represented as attribute edgeExpression of JavaRMIExtension and
WSRFExtension tags.

4.2 GWorkflowDL – Platform Extensions

To adapt a generic workflow description to a particular Grid computing platform, we
use extensions, which describe the meaning of a generic net in the context of a partic-
ular platform. We will now present two example extensions, for WSRF and Java/RMI.
Platform extensions define: (1) the platform-specific service to be invoked; (2) how
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workflow

*

transition + outputPlace

ID

placeID ? edgeExpression

placeID ? edgeExpression+ inputPlace

? description

*
? WSRFExtension

condition

? operation

* condition

? method
? JavaRMIExtension

? description

description?

* token
place

capacity?ID

Fig. 4. Graphical representation of the XML schema for GWorkflowDL. Boxes denote elements,
rounded boxes represent attributes. Legend: ? = 0, 1; ∗ = 0, 1, 2, . . . ; + = 1, 2, 3, . . .

conditions are evaluated; (3) how edge expressions are evaluated. The GWorkflowDL
document for the zip service shown in Fig. 2 is as follows:

<workflow>
<place ID="P1"/> <place ID="P2"/> <place ID="R"/>
<transition ID="ZIP">
<inputPlace placeID="P1" edgeExpression="x"/>
<inputPlace placeID="P2" edgeExpression="y"/>
<outputPlace placeID="R" edgeExpression="result"/>
<JavaRMIExtension>
<method name="result = Zip.execute(x,y)"/>
<condition name="Zip.checkLength(x,y)"/>

</JavaRMIExtension>
<WSRFExtension>
<operation name="zip" owl="gom.kwfgrid.net/zip.xml">
<WSClassOperation name="zipXY" owl="kwfgrid.net/zipXY.xml">
<WSOperation name="zipXY@first" owl="first.fhg.de/zip.xml"/>
<WSOperation name="zipXY@iisas" owl="savba.sk/zip.xml"

selected="true"/>
<WSOperation name="zipXY@cyfro" owl="agh.edu.pl/zip.xml"/>

</WSClassOperation> </operation>
</WSRFExtension>

</transition>
</workflow>

Note that this code is not intended to be written by the programmer, but instead
can be generated automatically from Java or WSDL interfaces, or by workflow orches-
tration tools for combining several services. For the Java extension, edge expressions
assign variable names, and the method element captures services and describes how
the methods and conditions should be called. The condition elements provide condi-
tions which contain a Java expression that depends on the input variables and yields a
boolean value. The code also shows the abbreviated GWorkflowDL representation of
the zip using the WSRFExtension as used in K-Wf Grid. The edge expressions and
conditions may be specified as XPath queries. The operation element captures several
levels of abstraction of web service operations: operation describes an very abtract op-
eration without any details, WSClassOperation specifies a operation on specific class
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of Web Services described by their interfaces and functionality, and WSOperation are
the concrete instances of Web Service operations that match the class. The owl attribute
links to external semantic descriptions.

4.3 Workflow Orchestration and Execution

To design a Grid program, the application developer first selects the services required
for the application and creates an abstract workflow, such as the net shown in Fig. 2. The
resulting abstract workflow description can already be analysed for certain properties
such as deadlocks and liveness, using standard algorithms for HLPNs (see e.g. [12]).

After selecting an appropriate service-based Grid computing platform, the applica-
tion developer has to adapt the abstract Petri Net to the particular platform by assigning
particular services and platform-specific edge expressions to transitions. E.g., for the
Java platform, a Java method of a remote interface is assigned to each transition, and
variable names are assigned to the input and output edges. The resulting specific HLPN
for the desired workflow can then be executed on the Grid by assigning an executing
host to each service, either manually (to execute the application on a user-selected set
of hosts) or automatically, using a scheduling strategy to select hosts.

Execution then starts by selecting an enabled transition. The tokens on the input
places are collected and the transition’s conditions are evaluated. If all conditions yield
true, the corresponding service is invoked, with the data related to the tokens on input
places as input parameters. The result is then placed as token on the output places. If
any condition evaluates to false, the input tokens are returned to their respective input
places. Then the next enabled transition is selected. This process continues until each
terminal place holds at least one token, or no enabled transitions remain.

5 Conclusions

We have presented our approach for expressing Grid application workflows as High-
Level Petri Nets and described GWorkflowDL, an XML-based language for Grid work-
flows. Petri nets are widely used for modelling and analysing business workflows in
workflow management systems (e.g. [13]). The use of Petri Nets for Grid workflow has
first been proposed as Grid Job Definition Language (GJobDL) [14] for job-based Grid
systems, where a Grid application is composed of several atomic Grid jobs which are
sent to the hosts for execution. The GJobDL language is similar to the GWorkflowDL,
but it uses a modified HLPN where transitions contain input and output ports, repre-
senting parameters and results, and edges connect places to ports instead of transitions.

In contrast, our GWorkflowDL specifies Grid workflow as a standard HLPN (as
defined e.g. in [10]), using conditions for control flow and edge expressions to assign
parameters and results. Adhering more strictly to the standard model of HLPNs allows
us to make use of standard algorithms for analysing Nets, e.g. for deadlocks.

The HLPN representation of a workflow serves four main purposes: (1) It is an
intuitive graphical description of the program, making communication between services
explicit and allowing users to develop programs graphically without having to learn
a specific workflow language. (2) Because applications are developed as unmodified
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HLPNs, the application’s HLPN can be used for analysis and formal reasoning based on
the results of previous research in High-Level Petri Nets. (3) The same GWorkflowDL
description can be used to monitor and inspect running and finished workflows. (4)
Because the GWorkflowDL is divided into an abstract and a platform-specific part, it
can be used with different service implementations and Grid platforms.

As future work, we plan to implement a set of tools for workflow orchestration,
execution, monitoring, and analysis, based on the GWorkflowDL. For example, we in-
tend to implement performance prediction of Grid applications by using time values as
tokens and service functions that add the expected performance of particular services
(which can be obtained using an approach discussed in [15]) to the input tokens.
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Abstract. Grid systems enable the sharing of a large number of geogra-
phically-dispersed resources among different communities of users. They
require a mapping functionality for the association of users requests ex-
pressed in terms of requirements and preferences to actual resources. This
functionality should deal with a potentially high number of similar re-
sources and with the diversity of the perceived satisfactions of users. We
propose XMatch, a query language enabling the expression of the user
request in terms of the expected satisfaction over XML-based represen-
tation of available resources. This language improves the expressiveness
of queries and supports aggregation of an high number of elementary
satisfactions.

1 Introduction

Grid systems follow a new paradigm of distributed computing enabling the shar-
ing of resources and services that are not subject to centralized control, are geo-
graphically dispersed and can dynamically join and leave virtual pools [1]. Users
typically express their requests as constraints and preferences using a well-known
set of terms defined in an information model and describing the resource char-
acteristics. A resource request may involve different types of resources or more
items of the same resource, thus requiring the capability of expressing inter-
dependencies among them. Given the large number of possible attributes and
the need for making an automatic selection, we need mechanisms for the efficient
evaluation of the degree to which resources satisfy the request.

In our previous work [2], we have proposed a model for the rigorous represen-
tation of service characteristics, for the association of each of their possible values
with the user satisfaction and for the aggregation of the single satisfactions in
an overall score using a particular logic. In this paper, we propose XMatch, a
query language enabling the expression of the user requirements and preferences
based on the defined model. This language is inspired by XQuery [3] reusing a
set of constructs useful for our goal and providing clauses based on our service
evaluation model.
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The paper is structured as follows: in Section 2 we present the background
of the service selection in Grid systems and we describe a number of possible
approaches; in Section 3, we introduce the XMatch language with a number of
examples; in Section 4, we use the language in a use case part of the Grid com-
puting area; in Section 5, we draw up our conclusions and plan for future work.

2 Background on Service Selection

As mentioned in the introduction, a key functionality of a Grid system is the capa-
bility of mapping users requests to available resources. As a matter of fact, current
production Grid systems offer to users the mechanisms to describe their expecta-
tions in terms of constraints and preferences. Such descriptions are used by the
selection service provided by the Grid middleware that implements the mapping
functionality of abstract resources to physical ones. This service typically is in
charge of the optimization of the workload among the available resources.

The description submitted by Grid users rely on a set of terms defined in
an information model (e.g., [17, 16]). The formal definition of such terms are
expected to comply with the empirical perception of the users. This requirement
is presented and discussed in [2]. Users may express expectations over a large
number of terms. These expectations may involve not only the values the terms
take, but also how much is important that they are satisfied during the selection
process.

An approach widely used in Grid systems (e.g., [7]) for the selection of ser-
vices is based on the Classified Advertisement (ClassAd) language [13, 14]. This
language has been designed in the context of the Condor distributed computing
system [15] where it is used for discovery and allocation of resources. Its use
consists of the following phases: (1) providers of computing resources submit
advertisements describing their capabilities and declaring constraints and pref-
erences for jobs that they are willing to run (constraints are boolean expressions
involving constants or ClassAd attributes, while preferences are encoded in a
rank that consists in defining an arithmetic expression synthesizing values used
for sorting the services satisfying the constraints); (2) consumers submit adver-
tisements describing their jobs and the desired execution environment in terms
of constraints and preferences; (3) a matchmaker process matches the resource
and consumer request advertisements.

It is worth to mention two important works in the databases community.
They are relevant in our context because they propose extensions to query lan-
guages for the support of preference expressions. Chomicki proposed a logical
framework for formulating preferences as strict partial orders by using arbitrary
logical formulas [12]. In order to embed such formulas into relation algebra, a
single winnow operator that can be parameterized by a preference formula was
defined. This enables the rewriting of preference formulas as SQL queries. Our
language is targeted at semi-structured data and our approach has been to define
a new language. Kießling proposed a formal language for formulating preference
queries based on the Best-Matches-Only (BMO) query model [8, 9]. It developed
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a set of constructors and combinators that can be used to write preference ex-
pressions. An algebra modeling such operators was defined and extensions for
both SQL (Preference SQL [10]) and XPath (Preference XPath [11]) were pro-
posed. In our work, we focused on the XML data model and we have proposed
a new language based on XQuery.

As regards the first work, we observe that in general it is difficult to define
a rank expression aggregating values from different attributes. As regards the
second work, the theoretical preference framework is mapped into the relational
data model and the SQL query language. Concerning the third work, the the-
oretical preference framework is mapped into 1) the relational data model and
the SQL query language and 2) the XML data model and XML path language
(XPath). Our goal is to provide a query language enabling the expression of the
user requirements and preferences over resource description based on the XML
data model. This language should also support the simultaneous selection of a
set of different resources. In the next section, we propose XMatch, a language in-
spired by XQuery with extensions enabling the expression of attribute relevance
and perceived satisfaction based on the model defined in our previous work [2].

3 XMatch: The Language

In this section, we introduce the XMatch language enabling to express queries
over XML-based representations of Grid resources by considering also the satis-
faction degree that a user perceives as regards the possible values of the attributes
of interest. The grammar rules are given only for symbols starting with the pre-
fix XM; the other symbols are taken from the XQuery W3C specification [3]. The
core part of the XMatch language is an expression represented in the grammar
by the symbol XMExpr:

Rule 1
XMExpr ::= XMForClause XMLetClause+ XMatchWhereClause XMatchReturnClause

The rule defining this symbol is inspired by the FLWOR (For-Let-Where-Order
by-Return) expression of the XQuery language. The clause XMForClause gener-
ates an ordered sequence of tuples of bound variables, called the tuple stream.
This is a simplified version of the XQuery ForClause, where only the basic
constructs are maintained to select elements from an XML document and to
generate set of elements by using joins. For each XMatch expression, only one
XMForClause is allowed with one or more variables to be bound to different types
of nodes. The URILiteral is defined in the XQuery specification and should refer
to a URI that can be resolved to a file containing the data in XML format from
which the set of important fragments are extracted. The OrExpr is also part of
the XQuery specification.

Rule 2
XMForClause ::= <"for" "$"> VarName "in" XMDocCall ("," "$" VarName "in" XMDocCall)*
XMDocCall ::= "doc(" URILiteral ") XMPathExpr? XMPredicate?
XMPathExpr ::= ("/" Literal)+
XMatchPredicate ::= "[" OrExpr "]"
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The symbol XMLetClause is the fundamental construct to define the elementary
criteria of satisfaction as presented in our previous work [2]. As mentioned above,
the three main categories are: an enumeration of all possible values returned by
a measurement of an attribute, an absolute classification of these values and a
relative classification [5]. This clause is designed according to this classification.

Rule 3
XMLetClause ::= ( XMSimpleEnum | XMCompEnum | XMRange )
XMSimpleEnum ::= XMPathExpr ValueComp XMElement "satisfies" XMSatLiteral

( "," XMElement "satisfies" XMSatLiteral )*
XMCompEnum ::= XMPathExprList ValueComp XMElementList "satisfies"

XMSatLiteral ( "," XMElementList "satisfies" XMSatLiteral )*
XMRange ::= XMPathExpr "in" XMElement "to" XMElement "satisfies" "with"

( "linear" "increment" | "linear" "decrement" | "around")
XMPathExprList ::= "(" XMPathExpr ( "," XMPathExpr )+ ")"
XMElementList ::= "(" XMElement ( "," XMElement )+ ")"
XMElement ::= ( Literal | XMPathExpr | XMFunctionCall )
XMSatLiteral ::= ( "0"? "." Digits | "1" )
XMFunctionCall ::= ("max"|"min"|"avg"|"sum"|"count") "(" XMPathExpr ")"
XMPathExpr ::= ("/" Literal)+

The first category of elementary criterion of satisfaction can be used when the
number of possible values for which the user wants to express an explicit satis-
faction is finite. For instance, a user may want to express a number of acceptable
possibilities for the operating system type where its job should be executed; the
most preferred one is Scientific Linux, but RedHat Enterprise Linux is ac-
ceptable with less satisfaction. This could be expressed as in Example 1 by using
the XMSimpleEnum clause.

Example 1. let $e1 := $CS/OSName eq "Scientific Linux" satisfies 1,
"RedHat Enterprise Edition" satisfies 0.8

A more complex use case supported in XMatch is the association of an ele-
mentary satisfaction by enumeration to a compound comparison predicated. For
instance, if a user wants to express a satisfaction associated to both the name
and version of an operating system, this can be done as in Example 2 by using
the XMCompEnum clause.

Example 2. let $e1 := ($CS/OSName, $CS/OSVersion) eq ("Scientific Linux", "3")
satisfies 1, ("RedHat Enterprise Edition", "3") satisfies 0.8

The second category of elementary criterion of satisfaction can be used when
the expression of satisfaction is based on parameters independent from attribute
values under investigation. The possible functions that map the range of values
into a satisfaction are infinite. Our choice is to express in the language construct
three meaningful of them. They are linear and capture an increasing satisfaction,
a decreasing satisfaction or a satisfaction centered around a value. The first
function (linear increment) can be used, for instance, when a user requires a
storage service offering at least 50 gigabytes of available disk space with an
increasing satisfaction up to 70 gigabytes. After that, everything is considered
to be equal and fully satisfying. This can be captured in XMatch as in Example 3
by using the XMRange clause. The satisfaction is 0 if the value of the attribute is
less than or equal to the lower bound of the range, while it is 1 if the value of
the attribute is equal to or greater than the upper bound.
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Example 3. let $e2 := $SS/FreeSpace in 50 to 70 satisfies with linear increment

The second linear function (linear decrement) is similar to the previous function,
except that for values less than or equal to the lower bound, the satisfaction is 1
and for values equal to or greater then the upper bound, the satisfaction is 0. For
attribute values in the range, the satisfaction linearly decreases. For instance, let
us consider a user that is fully satisfied if the response time of a service is less
than or equal to 5 ms, but he will accept values up to 30 ms (see Example 4).

Example 4. let $e3 := $CS/EstimantedResponseTime in 5 to 30 satisfies with linear
decrement

The last function should be used when a high satisfaction is associated to values
close to the one reputed to be the optimum. For instance, let us consider a user
requiring a bandwidth for a network service around 200 Mbit/s with a 10%
tolerance (see Example 5).

Example 5. let $e4 := $NS/Bandwidth in 180 to 220 satisfies with around

The third category of elementary criterion refers to a relative comparison among
the attribute values of all entities in the evaluation context. This criterion re-
quires the introduction of aggregation functions (e.g., min or max). They can
be used in both the first and second elementary criteria given above. For in-
stance, let us consider a user requiring the storage service offering the highest
free storage capacity (see Example 6).

Example 6. let $e5 := $SS/FreeSpace eq max($SS/FreeSpace) satisfies 1

The use case of a relative elementary criterion concerning a range of values can
be expressed by enabling the possibility of using aggregation functions to define
the range bounds. For instance, a user may be fully satisfied when he is assigned
for the service with the lowest response time among the available ones, but his
satisfaction linearly decreases up to 0 when the highest is given.

Example 7. let $e6 := $CS/EstimantedResponseTime in min($CS/EstimantedResponseTime)
to max($CS/EstimantedResponseTime) satisfies with linear decrement

Finally, we remark the assumption that the structure of the XML element that
can be bound to a variable of the XMForClause must not contain in the same
level elements with the same qualified name. This requirement will be removed
in future evolution of the XMatch language. By means of the XMWhereClause, we
explain how the association of a relevance category to an elementary satisfaction
is modeled in the XMatch language. Potentially, the relevance categories can be
infinite, but only three of them are introduced as they are sufficient for mean-
ingful use cases. They are defined in the XMatch language grammar by using
the following string literals: essential, desirable and optional. The advan-
tage of such a definition is the improvement of the legibility of XMatch queries.
A possible approach to generalize the language to an high number of relevance
classes is to use natural numbers to label the relevance categories. The lower is
the natural number associated to a relevance category, the more important is
the satisfaction.
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Rule 4
XMWhereClause ::= XMRelevanceExpr ("and" XMRelevanceExpr)*
XMRelevanceExpr ::= ( "$" VarName "is" | XMVarNameList "are" )

( "essential" | "desirable" | "optional" )
XMVarNameList ::= "(" "$" VarName ( "," "$" VarName )+ ")"

Given a set of XMLetClause expressions defining elementary satisfactions, each of
them can be associated with its relevance category by using the XMWhereClause.
This provides the meaningful information for building the aggregation pattern.
Weight and power parameters used in the aggregation pattern [2] are considered
to be part of the query processor. The last rule introduced is XMReturnClause
and describes how the result of the query is constructed and returned:

Rule 5
XMReturnClause ::= "return" "top" digits ( "with threshold" XMSatLiteral )?

Our decision is to define a clause that does not provide any transformation
capability. If it is needed, the result can be transformed in a postprocessing
phase using languages like XQuery or XSLT. The XMReturnClause returns an
XML document with a predefined structure as presented in Example 8.

Example 8.
<Results> <Result E="0.94">
<Result E="0.98"> ...
... ... </Result>
</Result> </Results>

Each Result element contains a set of elements as generated by the XMForClause
and an attribute named E with the overall satisfaction associated to the solution.
The number of results can be limited in two ways: by asking the ‘Top K’ results
and by dropping all solutions that do not reach a minimum overall satisfaction.

4 Use Case

In this section, we present a meaningful use case in the area of Grid computing.
We consider a simplified scenario where core services referring to computing,
storage and network resources are defined as follows: the computing service is
a uniquely identified Grid service that can provide a user software application
for computing power in a certain execution environment; the storage service
is a uniquely identified Grid service that manages storage extents to be used
for permanent data; the network service is a uniquely identified service that
offers unidirectional communication capability between network domains that
are meant as sets of services sharing the same connectivity (we refer to the model
defined in [6]). The following XML fragments represent a computing, a storage
and a network service. They are based on a schema and represent the mapping
to a formal relational system. In a real scenario, a broker service maintains and
continuously updates a cache with the representation of the available services [7].
The broker also receives requests from users and, based on their requirements and
preferences, performs the matchmaking phase during which suitable solutions are
prepared and one is selected.
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<data> <Type>NS</Type>
<CS> <SourceDomainURI>/INFN/CNAF</SourceDomainURI>
<URI>https://...</URI> <DestDomainURI>/INFN/MI</DestDomainURI>
<DomainURI>/INFN/CNAF</DomainURI> <Bandwidth Unit="Mbit/s">300</Bandwidth>
<Type>CS</Type> <RoundTripTime Unit="ms">3</RoundTripTime>
<OSName>SL</OSName> </NS>
<OSVersion>3.0.3</OSVersion> <SS>
<ProcFamily>IA32</ProcFamily> <URI>https://...</URI>
<AssignedJobSlots>30</AssignedJobSlots> <Type>SS</Type>
<WaitingJobs>10</WaitingJobs> <DomainURI>/INFN/MI</DomainURI>
<RunningJobs>30</RunningJobs> <Durability>0.6</Durability>
<FreeJobSlots>0</FreeJobSlots> <AvSpace Unit="GB">300</AvSpace>

</CS> <DataAvl>0.8</DataAvl>
<NS> </SS>

<URI>/NS/1</URI> </data>

Let us consider a user that requires a computing service offering the Scientific
Linux (SL) operating system in its version 3.0.3, but also RedHat Enterprise
Server (RHES) version 3.0.3 is acceptable with less satisfaction. Then, the user
requires an Intel Architecture 32 bit (IA32) processor family. The application
is expected to store permanent data for around 200 gigabytes in a storage
service with a possible variation of 10%. A network service with around 70
Mbit/s of bandwidth and a small RTT (round trip time) is desirable. Finally,
the minimization of the waiting time at the computing service is optional. A
possible XMatch query can be written as follows:

for $NS in doc("data.xml")/data/NS,
$CS in doc("data.xml")/data/CS[DomainURI=$NS/SourceDomainURI],
$SS in doc("data.xml")/data/SS[DomainURI=$NS/DestDomainURI]

let $e1 := ($CS/OSName, $CS/OSVersion) eq ("SL", "3.0.3") satisfies 1,
("RHES", "3.0.3") satisfies 0.8

let $e2 := $CS/ProcFamily eq "IA32" satisfies 1
let $e3 := $SS/AvSpace in 180 to 220 satisfies with around
let $e4 := $NS/Bandwidth in 50 to 100 satisfies with linear increment
let $e5 := $NS/RoundTripTime in 0 to 10 satisfies with linear decrement
let $e6 := $CS/FreeJobSlots in 0 to max($CS/FreeJobSlots) satisfies with linear increment
where ( $e1, $e2, $e3 ) are essential and ( $e4, $e5 ) are desirable and $e6 is optional
return top 10 with threshold 0.6

Each let clause is used to express an elementary criterion of satisfaction, while
the where clause describes a specific instance of the general aggregation pattern
given in [2]. Together, they have an equivalent equation based on the weighted
power mean.

5 Conclusions

Grid systems require a mapping functionality for the association of users requests
expressed in terms of requirements and preferences to actual resources. Our work
started by proposing a model for the evaluation of the satisfaction perceived by a
potential user for a set of services. In this paper, we have presented a mapping of
such a model to a language for querying XML-based representations of available
resources. This language provides a bi-directional mapping with our model, thus
offering a tailored solution for its application. Future work will be targeted at
defining a method for rewriting XMatch in terms of XQuery in order to exploit
the available XQuery processor implementations. Another important aspect is
to remove the requirement concerning the structure of the input data.
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10. Kießling, K., Köstler, G.: Preference SQL - Design, Implementation, Experiences.
In Proceedings of 28th International Conference on Very Large Databases (VLDB),
Hong Kong, China, Aug 2002.

11. Kießling, W., Hafenrichter, B., Fischer, S., Holland, S.: Preference XPATH: a
Query Language for E-Commerce. In Proceedings of 5th Internationale Tagung
Wirtschaftsinformatik, Augsburg, Germany, Sep 2001.

12. Chomicki, J.: Preference Formulas in Relational Queries. ACM Transaction on
Database Systems, 28(4):427–466, 2003.

13. Solomon, M.: The ClassAd language reference manual. Computer Sciences
Department, University of Wisconsin, Madison, WI, Oct 2003.

14. Litzkow, M. J., Livny, M., Mutka, M. W.: 2003, ‘Policy Driven Heterogeneous Re-
source Co-Allocation with Gangmatching’. In: Proceedings of the 12th IEEE Inter-
national Symposium on High-Performance Distributed Computing (HPDC 2003),
Seattle, WA, USA, June 2003.

15. Litzkow, M., Livny, M., Mutka, M. W.: 1988, ‘Condor - a Hunter of Idle Worksta-
tions’. In: Proceedings of the 8th International Conference on Distributed Comput-
ing Systems (ICDCS 1988), San Jose, CA, USA, June 1988.

16. Anjomshoaa, A., Brisard F., Drescher, M., Fellows, D., Ly, A., McGough, S.,
Pulsipher, D., Savva, A.: 2005, ‘Job Submission Description Language (JSDL)
Specification, Version 1.0’. (GGF Working Draft, 15 June 2005)

17. Andreozzi, A., Burke, S., Field, L., Fisher, S., Balazs, K., Mambelli, M., Schopf,
J.M., Viljoen, M., Wilson, A.: ‘GLUE Schema 1.2’. (GLUE Collaboration, Working
Draft, 24 Sep 2005)



HMM: A Static Mapping Algorithm to Map
Parallel Applications on Grids

Ranieri Baraglia1, Renato Ferrini1, and Pierluigi Ritrovato2

1 ISTI - Institute of the Italian National Research Council
{ranieri.baraglia, renato.ferrini}@isti.cnr.it

2 CRMPA - University of Salerno
ritrovato@crmpa.unisa.it

Abstract. In this paper we present a static mapping heuristic, called
Heterogeneous Multi-phase Mapping (HMM), which allows a subop-
timal mapping of a parallel program onto a metacomputer to minimize
the program execution time. HMM allocates parallel tasks by exploiting
the information embedded in the parallelism forms used to implement
an application. Moreover, it uses a local search technique together with
the tabu search meta-heuristic. The experimental results show that the
proposed approach performs well promising a significant potential to
develop efficient mapping solutions for metacomputers.

1 Introduction

Heterogeneous Computing (HC) consists in the use of machines with different
capabilities, connected by high-speed networks, as a single heterogeneous distrib-
uted system [1]. HC is also known as Metacomputing [2] or as Grid Computing
[3]. To exploit the full potential of a metacomputing environment an application
has to be decomposed into components, and each component has to be allocated
on a machine most suitable for its execution. To efficiently assign application
tasks to computing resources it is an important goal to minimize the execution
time of an application running on a HC system. The general problem of mapping
tasks to machines is NP-complete, and mapping algorithms are usually classi-
fied as static or dynamic [4]. This paper deals with static graph-based mapping
algorithm. In its general form static algorithms model a parallel application by
a directed acyclic graph (DAG) in which nodes and edges represent application
tasks and intertask data dependencies, respectively. Moreover, it is assumed that
task communication and computation costs, and task dependencies are known
before the task execution.

In the past several static graph-based mapping heuristics for HC environ-
ments have been developed and evaluated to approximate optimal solution.
In [5] an augmented Cluster-M mapping algorithm is described. It is an ex-
tension of Cluster-M which is suitable for heterogeneous computing. It takes
into account both the decomposition of a parallel application into a number of
tasks with different forms of parallelism, and also the different types of paral-
lelism available in a heterogeneous architecture. Its time complexity is O(MP ),

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 731–740, 2006.
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where M is the number of tasks belonging to an application graph, and P =
max(M,N), with N numbers of processors belonging to a metacomputer
graph.

A Max-Flow Min Cut algorithm was proposed in [6]. It finds mappings of
task modules on heterogeneous processors in O(M2N |Ep|logM) time, where M ,
N and Ep are the number of task modules, processors and communication links
among the processors, respectively. This algorithm presents two main drawbacks:
it has a high time complexity and it does not manage the task data dependencies.

In [7] C. Shen and W. Tsai propose the A∗ Searching algorithm which is
a Branch & Bound algorithm. Therefore, due to the complexity of these algo-
rithms, A∗ Searching algorithm is suitable for small problems.

In [8] a modified Levelized-Min Time (LMT ) Algorithm based on the list
scheduling heuristic is proposed. The algorithm is structured according to two
phases. The time complexity of LMT O(n2 × p2) where n and p are the number
of tasks and the number of processors, respectively.

In [9] Haluk Topcuoglu et al. propose a list scheduling-based algorithm, called
Heterogeneous Earliest-Finish-Time (HEFT) to map parallel applications, mod-
eled by DAGs, on a bounded number of heterogeneous processors. HEFT has
time complexity equal to O(e× p) (e number of edges and p number of proces-
sors). For dense application graphs, where the number of edges is proportional
to O(n2), with n is the number of the tasks, HEFT time complexity is equal to
O(n2 × p).

In this paper we describe Heterogeneous Multi-phase Mapping (HMM), a
static mapping algorithm, which finds a suboptimal mapping solution of a par-
allel program onto a metacomputer by minimizing the program execution time.
HMM allocates parallel tasks by exploiting the information embedded in the
parallelism forms used to implement an application, and considering an affinity
code-machine parameter [5] identifying which machine in the metacomputer is
most suitable for executing a component of a parallel application. Moreover, it
uses a local search technique together with the tabu search meta-heuristic [10].
Most parallel applications are designed using parallelism forms (farm, pipeline,
geometric, etc.) [11] which can be used by adopting unrestricted programming
model [12] and also restricted programming model [13]. The use of parallelism
forms allows the implementation of parallel applications in which the communi-
cation patterns are structured and well defined. The tasks inside a parallelism
form can be seen as naturally grouped in a cluster that can be allocated on
processors of the same machine to reduce task communication costs. Each clus-
ter can embed one or more nested parallelism forms to be handled in a top-
down manner. This permits us to find the size of the application grain that
better exploits the computation and communication characteristics of the target
metacomputer.

This paper is organized as follows. Section 2 sets out the problem, and
Section 3 describes our algorithm. Section 4 outlines and evaluates the
experimental tests. Finally, we summarize our work in Section 5.
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2 Description of the Problem

A parallel application, composed by N parallel tasks, is represented with a DAG
denoted as AG. It is assumed that task computation and communication costs
are known before the application execution. These costs can be obtained by
estimation using source code profiling information [14].

Each AG’s node ti, with 0 ≤ i ≤ (N − 1), represents an atomic node (a
sequential module) or a hierarchical node (a parallel module). Atomic nodes are
indivisible units of execution and they have an associated weight representing
its computational cost. Hierarchical nodes are set of atomic and/or hierarchical
nodes represented with a DAG as well. The structure of a hierarchical node
respects the order in which the parallelism forms are used in a parallel program.
Parallelism forms can be nested each other. From the task mapping point of
view a hierarchical node is considered to be atomic. Each edge of AG denotes
the precedence relations between parent and child nodes, and it has an associated
weight representing the amount of data exchanged between them.

An application DAG is considered structured in S layers representing the
depth of nested levels. The DAG representing a layer is denoted as AGs with
1 ≤ s ≤ S. In the first layer AGs consists of only a hierarchical node which
is considered to be atomic, in the next layers it could consist of atomic and/or
hierarchical nodes, and in the last layer all nodes are atomic. In Fig. 1 an example
of a three-layer expansion of a hierarchical node is given. The first layer consists
of one hierarchical node including all the nodes; the second layer is represented
by a task graph of four nodes, two atomic and two hierarchical (a pipeline and
a task-farm), and in the last layer the task graph includes ten atomic nodes. An
atomic and/or hierarchical node belonging to a graph AGs is identified by is

with 1 ≤ i ≤ Ns where Ns is the number of nodes at layer s.
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Fig. 1. AG graph representing a parallel application

Managing the layers in top-down order permits us to find the layer at which
the application grain size that better exploits the computation and communica-
tion characteristics of the target metacomputer corresponds to. The mapping of
this layer guarantees the shortest execution times of the nodes in it contained. To
reduce the mapping complexity,AGs are horizontally divided into F levels, called
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phases, which are executed sequentially (top-down). The nodes in the first phase
do not have parents, and the nodes in phase f , with 2 ≤ f ≤ F , are those that
have at least one parent among the nodes in phase k with 1 ≤ k ≤ f − 1. Struc-
turing AGs into phases the mapping problem is simplified because HMM finds
the initial suboptimal mapping solution by operating on each phase separately.
The initial problem is thus decomposed into more manageable subproblems. A
node in a phase is executed when all its predecessors have been completed and
it has received all the data needed for its execution. The node in a phase can be
executed in parallel.

A metacomputer is represented by a fully connected indirect graph denoted
as MG. Each node of MG represents a metacomputer machine which is denoted
asm with 1 ≤ m ≤M , whereM is the number of machines in the metacomputer.
To each node is associated a number which specifies the machine computational
power, and each edge, representing a link between two machines, has an asso-
ciated value which represents its communication bandwidth. To identify which
machine in the metacomputer is most suitable for executing a task of a paral-
lel application an affinity parameter was used. The affinity parameter is useful
to characterize both applications and metacomputer machines by relating them
to some real-world parameters. In this work, without loss of generality, we asso-
ciate to each node the computational model adopted for its implementation (e.g.
SIMD, MIMD, sequential), and the amount of memory and software required
for its execution. The same parameters are used to characterize a hierarchical
node. A hierarchical node has also associated the number of processors needed
to run its atomic nodes in parallel. We assume that these parameters can be
specified by the programmer and/or provided by the programming tools used to
implement a parallel application.

3 Algorithm Architecture

The HMM algorithm is structured according to three main steps: Initial setting,
Estimation of the initial mapping solution Sinit, and Refinement of Sinit.

Initial setting. In order to find the best machine to execute a node, the affinity
code-machine parameter Aff(is,m) is computed for all the is nodes belonging
to each layer with respect to all the M machines. For each node, Aff(is,m)
is computed by considering both the required computational resources and the
adopted computational model. When a machine m does not provide the memory
and/or software requirements as well as the computational model to run a node
is, Aff(is,m) is set equal to 0. Otherwise, it assumes a value in the range 0÷ 1
computed as ratio between the number of the processors available on m and the
number of the processors required to run is. The algorithm ends if at least one
atomic node has affinity equal to 0 with all the metacomputer machines.

Estimation of the initial mapping solution. To do this a AGs is divided
into F phases. All nodes in a phase f of a AGs are sorted in descending order
with respect to their computational workload. Then, according to this order a
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node is is selected and applying formula (1) the most suitable machine for its
execution is found. In (1)Wm is the workload due to the previous allocated tasks,
Cis is the computational workload of is and Sm is the computational power of
m. Dc(is, īs) is the communication cost of is with īs (parent with the highest
communication cost) belonging to its backward star BS(is). Dc(is, īs) is zero if
the nodes is and īs can be allocated on the same machine, otherwise it is equal
to the amount of data exchanged between is and īs. Bm,n is the bandwidth of
the communication link connecting the machines m and n selected to allocate
is and īs, respectively.

min(
Wm + Cis

Aff(is,m)× Sm
+ max

{
Dc(is, īs)
Bm,n

}
) (1)

m ∈ {1, 2, ..,MAff} and n ∈ {1, 2, ..,M} and ∀ īs ∈ BS(is)

The machine which the minimum value computed by (1) corresponds to is se-
lected to allocate is. When the minimum value corresponds to several machines,
HMM selects the machine m which the smallest value of the ratio Wm

Sm
corre-

sponds to. If no machine is found, the node is is flagged “not allocated”, and
the next node is analyzed.

On the selected machine the execution time of is is computed according to
the expression (2), where Tw(is,m) and Tx(is,m) are the wait before executing
and the execution time of is on m, respectively.

Te(is,m) = Tw(is,m) + Tx(is,m) (2)

If is is a hierarchical node, to compute its execution time the equation (2) is
recursively applied to all the atomic nodes in it contained. When the list of
nodes to analyze is empty, it is checked if there are some nodes flagged “not
allocated”. If there are, the search for the most suitable machine to allocate a
not yet allocated node starts from the first layer for which there is a machine
that can execute each task belonging to it.

Elaborated all the nodes the process ends by carrying out the initial partial
solution of the phase analyzed, and the execution continues to elaborate the next
phase. All initial partial mapping solutions are analyzed to find the layer com-
pletion time which corresponds to the last AGs node ending its execution. The
layer completion time is then compared with the best initial mapping solution
Sinit carried out in a previous layer. The best one becomes the new Sinit, and
execution continues to analyze the next layer. When all the layers have been
processed, HMM carries out the initial solution Sinit. This solution was found
by keeping the tasks communication cost as low as possible.

Refinement of Sinit. To improve the quality of Sinit, a local search algorithm
which exploits the tabu search technique was adopted. This algorithm considers
all the nodes in the Sinit as atomic, and analyzes the neighborhood of Sinit.
We say that the neighborhood of a solution is the set of solutions obtainable by
moving a node of the AGs’s critical path, to which Sinit corresponds to, from the
machine of current allocation to another machine. The new machine is selected
using the following criterion.
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max {Aff(is,m)× Sm} with m ∈ {1, 2, ..,MAff}

If several machines are selected, the one with the smallest value of the frac-
tion Wm

Sm
is selected. If there is no machine able to allocate is, the node is not

moved, and the process continues by selecting the next node in the critical path.
Otherwise, if the selected node is moved, HMM estimates the cost of a new so-
lution. This cost represents the application execution time, and it is obtained
by adding the computing and communication times of the nodes belonging to
the critical path associated with the new solution. When all the nodes on the
critical path have been analyzed the local search algorithm carries out the new
solution Solnew. If Solnew is better than the initial solution, it becomes Solinit.

The search for a suboptimal solution is an iterative process. HMM ends by
returning the solution Solbest, when one of the following conditions is verified: 1)
the total number of iterations performed reaches a user-defined threshold, 2) the
number of iterations performed without improving Solinit reaches a user-defined
threshold.

In the average case (the worst case in which the number of the layers is
equal to the number of atomic nodes is rare) in which each AGs is structured in
log2N+1 layers and each layer includes 2(i−1) nodes with 1 ≤ i ≤ log2N+1, the
algorithm complexity is equal to O(N3). For more details about the calculation
of the algorithm complexity see [15].

4 Experimental Results

To evaluate HMM we conducted some experiments by running the algorithm on
several tests. In this paper we describe three of the most interesting ones, the
other ones can be find in [15]. The first test was conduced to analyze the HMM’s
behavior when mapping a structured application. In the second test HMM was
compared with Augmented Cluster-M Mapping (ACM), Lo’s Max-Flow/Min-Cut
(MFMC), and Shen and Tsai’s A∗ Searching (AS) algorithms 1. Moreover, HMM
was compared with an exhaustive mapping algorithm (EMA). In the third test
HMM was compared with theHeterogeneousEarliest−Finish−T ime (HEFT)
and the Levelized−MinT ime (LMT) algorithms when used to map an applica-
tion implemented using the task farm parallelism form on clusters of workstations.

In the following figures the produced results are shown in a Gantt chart for-
mat. Each Gantt shows, for each task ti, both the machine processor pj on which
it was allocated and the unit of time required for its execution (the numbers at
the top of the chart).

Test 1. In Fig. 2(a) and 2(b) the AG and the MG graphs used in tests 1 are
shown, respectively. The application contains two parallelism pattern: a farm
identified by the hierarchical node t10 and a pipeline identified by the hierarchical
node t11. In this test the application was mapped onto three different HC systems
by using HMM and the results were compared with those obtained by running

1 The application DAGs and metacomputer graphs are taken from [5].
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Fig. 2. Application DAG (a), metacomputer graph (b), and Gantts (c) of the test 1

EMA. In two cases HMM computed the optimal mapping solution (Fig. 2(c)
and Fig. 2(e)) while in the last case (Fig. 2(d))the HMM mapping solution was
worse than the EMA solution by about 2 %.

Test 2. Fig. 3(a) and 3(b) show, respectively, the application and the meta-
computer graphs used in test 2. The application consisted of a MIMD code and
a vector code. The metacomputer used in the test models both an MIMD and
vector machines. As in [5] we performed HMM so that the MIMD code was
allocated on the MIMD machine and the vector code on the vector machine.
We put together in the same Gantt the execution time of both the code types,
even if MFMC, AS and EMA do not treat heterogeneity in computation and
machine types. Their mapping results were obtained by mapping separately the
MIMD and Vector codes onto the correspondent type of machine. To map the
MIMD code HMM converged to the suboptimal solution by analyzing only 21 of
the 19,683 possible mappings. The HMM’s suboptimal solution corresponding
to a total application execution time of 20.5 units with a worsening of 3.6% with
respect to the optimal mapping. The HMM and EMA executions required 0.2
and 19.75 seconds, respectively. To map the vector code, HMM converged to the
suboptimal solution by analyzing only 19 of the 16,384 possible mappings. The
HMM’s suboptimal solution corresponding to a total application execution time
of 25.17 units with a worsening of 1.6% with respect to the optimal mapping.
HMM executions required 0.51 seconds, the EMA execution required 47.92 sec-
onds. As shown in Fig. 3(c), the mapping carried out by HMM and ACM led
to the same total application execution time. However, the mapping carried out
by HMM reduces the execution time of the MIMD code leading to a better
utilization of the MIMD machine.
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Fig. 3. Application DAG(a), metacomputer graph (b), and Gantts (c) of the test 2
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Fig. 4. Bar chart of the test 3

Test 3. This test was conducted to compare HMM, LMT and HEFT when used
to map an application implemented by using the task farm parallelism form.
The number of the slaves has been increased from 100 to 1000, and computation
and communication costs were randomly generated varying the Communication
Computation Ratio (CCR) from 0.1 to 1 with an increment step of 0.1. For each
CCR value ten application graphs were generated. Therefore, several hundred
graphs were mapped in each run, and the related average values were reported
on the bar chart of Fig. 4. The system used in the test consisted of two clusters
with the following configurations: (a) 3 workstations with processor power of
65, 20 and 20 Mflop/s connected by a 1 Mbit/s Ethernet, (b) two workstations
with processor power of 25 and 15 Mflop/s connected by a 1 Mbit/s Ethernet.
The clusters were considered to be connected by a 0.25 Mbit/s LAN. Although
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in [9] it was showed that HEFT performs better than the Critical Path-based
mapping algorithm, on this kind of applications, HMM obtained better results
than both HEFT and LMT.

All the experiments were run on an HP 9000/700 workstation.

5 Conclusions

In this paper we have presented a new static mapping algorithm, which allows
us to find a suboptimal mapping of a parallel application onto a metacomputer
in order to minimize the application execution time.

The experimental results show that our algorithm is able to allocate the appli-
cation tasks in a way that optimizes the execution of the parallelism forms used
within a parallel application. The comparisons with other leading techniques
show that our algorithm reaches good mapping solution. This is promising a sig-
nificant potential to develop a more efficient mapping solutions for heterogeneous
system.
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Abstract. Grid resource allocation is a complex task that is usually
solved by systems relying on a centralized information system. In order
to create a lightweight scheduling system, we investigated the potential
of auctions for resource allocation. Each resource provider runs an agent
bidding on the execution of software with respect to local restrictions.
This way, the information system becomes obsolete. In addition, each
provider can implement different bidding strategies in order to reflect
his preferences.

1 Introduction

Grid Computing as a way of virtualizing computational resources is becoming
more relevant in research and industry [1]. It can be foreseen that grid com-
puting will become important in a commercial scenario: service providers will
sell computational power and storage. Users will buy the required amount of
processor cycles and disk capacity on a per-use basis.

In the Fraunhofer Resource Grid (http://www.fhrg.fhg.de), we have a
strong bias towards commercial grid applications. Our goal is to provide users
from both industry and research with a stable, general purpose grid infrastruc-
ture. As a part of this effort, we developed a prototype of Calana, an agent-based
grid scheduler.

The paper is organized as follows: section 2 provides an overview of the
related work. In section 3, we introduce the architecture and design principles of
Calana. Section 4 discusses the results from experiments which have been done
to evaluate the system. Section 5 concludes with discussing the advantages of
the architecture.

2 Related Work

The problem of grid scheduling is often referred to as resource management. In
addition to the five challenges of resource management [2], another challenge
arises from the different stakeholder’s objectives: a grid user wants to calculate
fast and cheap, but a resource provider’s interest is to earn money or utilize the
unused computing power of his own resources [3][4].

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 741–750, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Currently, many projects include the development of a grid scheduler. Globus
Toolkit 4.0 integrates the Community Scheduler Framework (CSF) created by
Platform Computing [5]. Other schedulers include Condor [6] and Gridbus [7],
which is the successor of Nimrod-G [8]. However, the projects mentioned do
not tackle two very important issues: Currently, resource information is pushed
periodically in information systems like the Globus Meta Directory Service [9].
During scheduling, potentially outdated information is used by the scheduler.
Furthermore, stakeholders are not able to express complex preferences and adjust
their strategies quickly, which is a strong prerequisite in order to establish a
computational economy [10]. In real economies, these problems are solved by
the established market structures [11].

Ernemann and Yahyapour describe an architecture based on economic princi-
ples in order to solve the problem of different stakeholders’ objectives [12]. They
use objective functions in order to find an equilibrium of interests. Although it
should be possible to implement complex strategies within this system in gen-
eral, they do not discuss it. Furthermore, this system allows various forms of
collusion which may not be tolerated.

Various authors have discussed the use of auctions for resource allocation
problems [13][11][12]. Although Wolski and colleagues [14] prefer commodities
markets over auctions, the common understanding of most authors is that auc-
tions are capable of solving a multicriteria resource allocation problem. The setup
of Wolski et al. is not applicable to this work: They separated processor and disk
allocation, reducing the auction’s reliability to allocate all needed resources.

Taking the stakeholder’s objective problem into account, we believe that eco-
nomic scheduling provides a suitable solution to the grid scheduling problem. As
we show in the remainder of the paper, we can incorporate different prefer-
ence structures and eliminate the need for a centralized information system for
dynamic information.

3 The Architecture of Calana

The design goal of Calana is to provide a lightweight and flexible scheduling
system. Basically, the architecture consists of two software components: The
broker and the agent. Each resource runs a small software agent. The agent
registers itself to the broker. When a job needs to be scheduled, the broker uses
an auction to determine which resource is available. The registered agents receive
a request to bid on the application execution. They need to check the feasibility
of the request:

1. The auction announcement includes a link to the software’s description. The
agent may now compare the application’s prerequisites with its resources
specification. If all prerequisites are fulfilled, the job can be further consid-
ered by the agent.

2. Then, the agent checks the local resource usage directly by trying to get an
advance reservation for the job. The local resource system usually optimizes
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the reservation details, e.g. by using a backfilling algorithm [15]. The result
are fixed start- and end-times for the job.

3. The reservation can be used to create a bid in the auction. The process of
bid creation is influenced by the provider’s strategy.

After the auction ends, the broker determines which bid fulfills the user’s re-
quirements best. Each resource provider can implement own agents, enabling
them to specify all kinds of strategy and integrate various local resources.

In the following sections, we will describe the scheduling process in detail.

3.1 Using Auctions for Resource Allocation

Auctions can be classified as multilateral negotiations [16]. An auction is always
based on a well-defined scheme: During the bidding phase, all bidders submit bids
to the auctioneer. During the transaction phase, the auctioneer uses the scoring
rule to evaluate all bids and select the best. This makes the implementation of
a software system for auctions easy [11].

There are many different auction types. Each one has certain rules for both
bidding and transaction phase and a certain impact on the fairness of the market.
For the prototype implementation, we use a first-price sealed-bid auction [17]:
the bids are not visible to other bidders. The best bid wins the auction, and the
price of the auction is also determined by the best bid. Another possible auction
is the vickrey auction which is known to deliver pareto-optimal allocations as
well as it prevents some forms of collusion [17][16][18].

In order to consider all stakeholder’s preferences, resource selection must im-
plement a multi-criteria optimization as defined by Kurowski et al [19]. We use
multicriteria bids: a bid may contain multiple values [16]. In general, all auc-
tions can be adopted to work with multicriteria bids: An announcement of valid
properties of a bid has to be made. For the comparison of bids, the auctioneer
can use a scoring rule that delivers a relative value of a bid. The bid with best
relative value will win the auction.

A serious problem of auctions is collusion: a bidder may try to break auction
rules in order to increase his benefit. Although a bidder may only submit bids
for himself, there are ways to influence the market [18]: Pools of bidders may
influence auctions, the auctioneer may trade with information in sealed-bid auc-
tions and offerors can use phantom bids to increase the market’s competition.
Creating fair auctions is a complex task. Basically, the use of sealed bid auctions
in combination with a trusted auctioneer seems to be reasonable [16]. Further
research concerning auction design for computational markets is needed.

3.2 The Calana Prototype

An overview is given in figure 1. The broker works as an auctioneer for scheduling
requests, while the agent submits bids for the auctions. The agents are located
at the provider’s sites, while the broker must be hosted by a trusted third party.
The user accesses the broker not directly but by using a portal or a workflow
tool, e.g. the GridJobHandler [20].
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Fig. 1. Overview of the architecture: the user workflow tool uses the broker component
to create a valid schedule (1). Resource providers use an agent in order to connect
their local scheduling systems to the architecture (3). The broker and agents interact
to create the schedules (2).

For each job, the user’s tool calls the broker to retrieve a schedule. Each call
consists of a description of the software, possibly the size of the datasets and
some weights for the scoring function in order to reflect the user’s preferences.
One may also consider scoring functions completely specified by the user.

The broker receives the request and creates a new auction. A call for bids is
sent to each registered agent. This call contains a software description, provided
by the manufacturer of the software, and the auction deadline. The software
description contains a description of the runtime behaviour, along with other
properties such as the number of cluster nodes the software should run on. The
agent can use this information to predict the overall runtime of the applica-
tion. Of course, this prediction is not reliable, only for certain types of software
the runtime may be calculated, e.g. depending on the input data [21][22]. As a
fallback, user-specified walltimes can be used.

Based on this information, the agent composes a bid. This can be influenced
by the local bidding strategy: Jobs may be cheaper on weekends or promotions
during holidays may be considered. A bid consists of the estimated job finish
time tf and a monetary price p for the execution. When a bid is submitted, an
advance reservation for the software must be made in order to be able to satisfy
an auction won.

When the auction deadline has passed, the broker judges all bids by applying
a scoring rule. This enables the broker to consider user preferences modeled as
weights for the scoring rule. For the value v of a given bid, the broker calculates
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the scoring rule with the parameters given by the users. For example, the value
of the bid i, 0 ≤ i ≤ n, may be calculated as follows:

vi = f(pi, t
f
i) = g · pi

pmax
+ (1− g) · tfi

tfmax

(1)

with a weight g for the price preference, 0 ≤ g ≤ 1 ∈ , maximum finish time
tfmax = max{tfi|0 ≤ i ≤ n} and maximum price pmax = max{pi|0 ≤ i ≤ n}. The
best bid b is the bid with the minimal value:

b = min{vi|0 ≤ i ≤ n} (2)

This way, a user has the opportunity to express even fuzzy personal preferences,
like “I want my results fast, but I don’t want to pay that much.” In this example,
one may choose g = 0.2. The scoring rule can be generalized in order to consider
more variables or to respect user thresholds like ”I prefer fast execution, but it
should not cost more than e 11.2”.

Finally, after a scheduling decision has been made, the broker notifies the
user’s tool, which may use the advance reservation to execute the job. In par-
allel, all agents that haven’t succeeded will be notified to cancel the advance
reservation. If a notification is not received, the agents drop reservation after
a timeout. Since all transactions are made by a central broker, an accounting
service may also be provided.

The providers register themselves at the broker. There must be an announce-
ment of available brokers, but since their number is comparatively low, this
should not have negative effects. The auction announcement is broadcasted to
all registered agents. Only the interested agents answer, and only these will re-
ceive a message about the auction result. Agents may also choose to resend a
bid, e.g. if they didn’t win an auction at another broker. When a sealed auction
is used, the current bid must not be broadcasted to all agents. If n agents are
attached, we expect the number of messages to be propotional to n. Compared
to a system with a central information system, more messages are needed during
scheduling.

But when comparing to other schedulers, the periodical messages to update
the dynamic information in centralized information system are often not taken
into account. In this architecture, no centralized dynamic information is needed:
since the agents reside beneath the resources, they can directly access the batch
queues, getting up-to-date information.

The amount of messages can be reduced further by the introduction of a tree-
like hub structure: The broker announces all auctions to its hub peers, which have
the resources attached. They propagate the auction request to the resources and
collect the bids. Finally, results are handed back to the broker. This infrastruc-
ture can also be used to reduce information: for example, a hub peer might
choose only to propagate the pareto-dominant bids and drop the rest. This way,
the messages of the broker are proportional to logn. Note that all hubs must
belong to a trustworthy institution in order to avoid collusion.
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4 Experiments

Unfortunately, there is no common benchmark for grid schedulers so far. Lacking
a common model for workload creation [23], we used parallel workload sets from
the Cornell Theory Center (CTC)[24] and created our own job sets for non-
parallel workloads. A model for grid resources has been proposed by Kee and
colleagues [25]. In future work, we will use this information to define and run
further experiments. In addition to our prototype, we developed an event-based
simulation with Gridsim [26] which we use to run most experiments. We denote
if we used the prototype. We use two measurements for the evaluation: The total
completion time and the overall price. The total completion time C provides the
time needed to run n jobs in total, including queuetime and runtime of each
individual job:

C =
n∑

i=1

(queuetimei + runtimei) (3)

The overall price is the sum of the prices of all single software executions.

4.1 Comparison to Other Schedulers

The lack of a common benchmark makes the comparison of schedulers diffi-
cult. Since the CTC workload is freely available and delivers the decisions of a
centralized scheduler based on backfilling, we can directly compare our parallel
simulation runs, see figure 2a: We compared the allocation of the CTC scheduler
with three runs of the prototype. In the first run, one agent was responsible for
a cluster as big as the 420 node CTC cluster. In the second and third run, we
added agents that managed one (114 node) resp. two smaller (56 node) clusters
in addition to a cluster with 306 nodes managed by the first agent. This is nec-
essary because the biggest job in the CTC’s workload needs 306 nodes. As the
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Fig. 2. The left figure shows a comparison of the total completion time for the CTC
scheduler and Calana, on the right side results of our non-parallel workload test are
shown
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figure shows, the runtimes are almost the same, independent of the number of
attached agents. Therefore, we do not expect centralized scheduling systems to
perform better in general.

4.2 Scalability of the Architecture

Our prototype was able to handle 500 concurrent agents, bidding on parallel
jobs. Since the EGEE project has about 150 sites, we would be able to schedule
more than three times the EGEE project with a single broker. Lacking a model
to create appropriate workload, we used the CTC workload as input. Of course,
the workload is too low to utilize this number of sites, so the queuetime was zero
for all runs. For the following experiments, we used a synthetic workload which
contains nonparallel jobs. We simulated successively 1 to 20 agents, see figure 2b.
Since each agent manages a non-parallel resource, the total completion time for
the workload decreases continuously until all jobs can be processed instantly.

4.3 Influence of User Preferences and Provider Strategies

In our basic model, we assume each job has a fixed setup price ps and a constant
price pt for each CPU-second. The price p of a computation running f t seconds
can be calculated as p = ps + f t · pt. A provider may now choose different values
of ps and pt. At the same time, the user wants to specify his own preferences.
In order to show Calana’s ability to deal with this, we ran an experiment with
two agents.

The first agent uses a setup price ps
1 which is half of the setup price of the

second agent (2ps
1 = ps

2), but the computation cost is more expensive: the price
per CPU-second pt

1 is twice times of the second (pt
1 = 2pt

2). As figure 3a shows,
the overall price drops while the total completion time increases when the user’s
preference changes to cheaper execution. When the price preference reaches 70 %
(g ≥ 0.7), the values doesn’t change any more: The price dominates the broker’s
decisions.
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Fig. 3. Influence of user preferences and bidding strategies on the allocation. When the
price component of the bids become more important, the behaviour of Calana changes.
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Of course, this experiment raises the question how a resource provider can
adjust its agent to the market. We used the settings above to evaluate a third
agent that generates pt

3 based on the last auctions: It uses exponential smoothing
(α = 0.15) to wheight the last 10 winning bid’s amount p̂ and uses this value to
create a bid:

pt
3 = α

10∑
i=0

(1 − α)i · p̂i (4)

As shown in figure 3b, the third agent dominates the scenario completely if the
price influence becomes important.

5 Summary

In this paper, we presented an auction-based grid scheduler that is capable of
taking both user and resource provider preferences into account. No central
information system for dynamic data is necessary, providing a major advantage
compared to other schedulers. A provider may implement all kind of strategies
and change them frequently. By creating a bid, it is possible to reflect local
restrictions. User preferences can be taken into account by using multicriteria
bids.

The architecture is scalable, portable and extensible. In general, the software
can be adopted to fit other environments. The architecture will be developed
further so that it will be usable with other grid setups. In future, the architecture
will be evaluated in a real industry setup and enhanced to include more market
aspects. An evaluation of different agent strategies will be made, along with a
production-ready implementation in the Fraunhofer Resource Grid.
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Abstract. The main objective of the Intelligent GRID Scheduling Sys-
tem (ISS) project is to provide a middleware infrastructure allowing a
good positioning and scheduling of real life applications in a computa-
tional GRID. According to data collected on the machines in the GRID,
on the behaviour of the applications, and on the performance require-
ments demanded by the user, a heuristic cost function is evaluated by
means of which a well suited computational resource is detected and al-
located to execute his application. The monitoring information collected
during execution is put into a database and reused for the next resource
allocation decision. In addition to providing scheduling information, the
collected data allows to detect overloaded resources and to pin-point
inefficient applications that could be further optimised.

1 Introduction

The development of GRID technology for computational purposes is promising.
By harnessing a great number of different systems in a transparent manner, a
user can have access to the computer architectures that are well suited to the
constraints of his applications.

The different communication needs of applications demand a GRID that can
offer different parallel computer architectures: SMP and/or NUMA machines
for shared memory parallel applications, a NoW interconnected by a bus for em-
barassingly parallel applications, scalable but cost-effective networked clusters
for applications dominated by point-to-point communications, and more expen-
sive machines with faster networks for communication intensive applications.

There is currently little feedback about applications that are not adapted to
the hardware infrastructure, and little incentive to do so: if for instance a user
notices that the network is too slow and hampers the performance of its applica-
tion, he may try to find another machine to run it. On the other hand, when he
runs an embarassingly parallel application on a costly NUMA machine, he will
probably not recognise this as a problem. In the future, one would like to choose
a well suited hardware for the application, and this in a most automatic manner.
The ISS project is precisely aimed at solving this latter problem. The ISS mid-
dleware will be built on top of existing GRID middleware infrastructures such as
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Globus [1], Unicore [2], EGEE (http://egee-intranet.web.cern.ch/egee-intranet),
or GridLab [3]. The information on the behaviour of the application during exe-
cution is collected and put into a database. Scheduling decisions are then made
in an automatic manner, taking constantly the monitored data into account. The
accumulated data can later be interpreted statistically to recognise overloaded
resources that have to be complemented. The long term goal is to determine the
suitability of a platform using a more general cost function, which would not be
restricted to computation costs. Other indirect costs could include for instance
the waiting time of an engineer, or the licence of a commercial application.

Within this paper, we present ideas on how to parameterise the GRID hard-
ware and the parallel applications [4], and how to use these parameters to decide
on which machine a given application is to be executed. Moreover, a first statis-
tical study on the CPU usage of the Pleiades.epfl.ch cluster is presented together
with two application profiles coming from CFD and plasma physics. Such mea-
surements will be used to automatically parameterise the applications in the
next phase of the project.

2 Parameterisation of Clusters and Applications

2.1 Different Types of Machines in a GRID

Let us consider a cluster with P computational nodes, each node has a processor
peak performance of R∞ [Gflops/s], and a peak main memory bandwidth of M∞
[Gwords/s] (1 word = 64 bits). The nodes are interconnected by a communication
network with a total peak bandwidth of C∞ [Gwords/s]. Then, one can define
the following quantities

VM =
R∞
M∞

(1)

VC = P
R∞
C∞

.

These two parameters measure the number of floating point operations the
processor can make during the transfer time of an operand from main mem-
ory to cache (VM ) or from one computational node to another one (VC).

Some typical machines are listed in Table 1, with their respective parameters
in Table 2. The data corresponds to machines with one (NoW, Pleiades, Horizon)
or two (Mizar, Blue Gene) processors per node. Specifically, the parameter VM

distinguishes between a vector machine (VM ≈ 1) and a RISC processor (VM ≈
7). One also sees that the quantity VC can vary from 1 for a vector machine
to 100000 or even more for a bus-based machine. The cost of a machine often
increases with decreasing values of VC .

2.2 The Γ Parameter

In the following analysis, we will assume that the tasks of a parallel application
are well balanced, and that computations and communications do not overlap.
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Table 1. Some typical clusters

Cluster Vendor node procs/ network network
node 1 2

NoW Pentium 4 1 FE bus
Pleiades1 Logics Pentium 4 1 FE switch
Pleiades2 DELL Pentium 4 1 GbE switch
Mizar Dalco Opteron 2 Myrinet
Blue Gene IBM Power 4 2 Grid network Fat Tree
Horizon Cray Opteron 1 3D Torus
SX-5 NEC vector 1 Switch

Table 2. Characteristic parameters of some clusters

Cluster P R∞ M∞ VM C∞ VC

[Gflops/s] [Gwords/s] [Gwords/s]
NoW 25 6.4 0.8 8 0.0016 100000
Pleiades1 132 5.6 0.8 7 0.2 3600
Pleiades2 120 5.6 0.8 7 1.8 360
Mizar 160 9.6 1.6 6 5 300
Blue Gene 4096 8 1 8 192 170
Horizon 1100 5.2 0.8 6.5 1760 3.3
SX-5 16 8 8 1 128 1

Let assume that the execution time T on each computing node can be divided
in two parts:

T = TP + TC , (2)

where TP is the time spent to compute and TC the time spent to communicate
and synchronise on each processor. Thus the speedup A of an application running
on P processors can be expressed as:

A =
PTP

TC + TP
=

P

1 + 1
Γ

= eP (3)

and e is the average CPU usage of the application or the efficiency (e=A/P).
We define Γ as the ratio TP /TC and decompose TP and TC into application and
hardware specific parameters. This allows to separate the two contributions:

Γ =
TP

TC
=
O/ra
S/b

=
O/S

ra/b
=

γa

γM
. (4)

The quantity O denotes the number of operations per processor [flops] one
has to perform during the execution of the application, and S is the amount of
data (in 64-bit words) that has to be sent through the internode network by each
processor [words]. The quantities b and ra measure the peak effective bandwidth
of the network for each processor [Gwords/s], and the peak performance of the
application per processor [Gflops/s], respectively. If the data can be kept in
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cache, the value of ra can be close to the peak performance R∞ of a processor,
or ra can be related to the main memory bandwidth if the data has to be
continuously loaded from main memory to cache or stored back to memory. In
scientific applications, ra varies between 10% and 100% of R∞. The smaller
ra/R∞, the bigger Γ , and the communication needs diminish.

We thus see that Γ is a parameter which expresses how a given hardware is
suitable to efficiently run a given parallel application. For instance, a value of
1 means that the application spends as much time in communications than in
processing, and is equivalent to a speedup of P/2, or e = 0.5. Γ should thus be
as large as possible but experience shows that a value greater than 1 (around
2 or 3) corresponds to an acceptable match between the application and the
hardware. Let us describe a few cost-effective application/machine combinations
with values of Γ > 1.

2.3 The Γ of the Different Application/Machine Combinations

Embarassingly parallel applications. Embarassingly parallel applications
are dominated by master/slave communications. No data is exchanged between
slave nodes. In this case, TP >> TC and thus Γ >> 1. As a consequence,
very high γM communication networks such as a bus or the Pleiades1 cluster
(see Table 2) can be used. A typical example is the seti@home project that
collects computational cycles over the Internet. Other examples are massive data
interpretation as it occurs in high energy physics, or the sequencing algorithms
in genomics and proteomics.

Applications with point-to-point communications. Point-to-point com-
munications typically appear in finite element or finite volume methods when a
huge 3D domain is decomposed in subdomains [5] and an explicit time stepping
method or an iterative matrix solver is applied. If the number of processors grows
with the problem size, and the size of a subdomain is fixed, γa is constant, and,
consequently, Γ does not change. The per processor performance is determined
by the main memory bandwidth. The number O of operations per step is directly
related to the number of variables in a subdomain times the number of opera-
tions per variable, whereas the amount of data S transfered to the neighboring
subdomains is directly related to the number of variables on the subdomain sur-
face. For huge point-to-point applications using many processing nodes, Γ << 1
for a bus, 2 < Γ < 10 for the Pleiades1 cluster with a Fast Ethernet switch,
10 < Γ < 50 for the Pleiades2 and Mizar clusters, and Γ >> 100 for Horizon.
Hence, that kind of applications can run well on a cluster with a relatively slow
and cost-effective communication network.

Applications with multicast communication needs. The parallel 3D FFT
algorithm is a typical example with important multicast communication needs.
Here, γa decreases when the problem size is increased, and the communication
network has to become faster. In addition, ra = R∞ for FFT, γM is big, and,
as a consequence, the communication paramater b must be big to satisfy Γ > 1.
Such an application has been discussed in [4]. It has been showed that with a
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Fast Ethernet based switched network, the communication time is several times
bigger than the computing time, even when the problem size is small. Such an
application needs a faster switched network such as an efficient GbE, a Myrinet,
a Quadrics, or an Infiniband network. If thousands of processors are needed, a
special vendor specific machine such as Horizon or Blue Gene might be required.

3 Monitoring Data from Parallel Applications

Each application has its own well suited parallel machine. This characteristic will
in future be used to decide on which machine an application should be executed,
which implies that the behaviour of an application has to be monitored for each
run. To verify our model, data on the CPU usage was collected on the Pleiades1
cluster using the sysstat tool (http://perso.wanadoo.fr/sebastien.godard/). The
gathering was made during the first 3 months of 2005, with snapshots being
taken on each node every 10 minutes.

The top part of Fig. 1 shows the histogram of the 1682806 collected snapshots.
The 10% zero CPU usage is due to non-allocated processors when the scheduler
blocks resources for a large job, to resources that are reserved for interactive
testing and not used, to lost cycles due to a blocking in a parallel application,
or to intensive I/O operations. The 100% usage peak is mainly due to single
processor applications that represent about 20% of the total CPU time.

Parallel jobs running on Pleiades1 share their time between computations and
MPI and I/O communications, and use on average 10 processors. The average
utilization of CPUs is 64%, with two peaks around 55%, and 82%. This can be
considered as a fair score by a low-cost cluster with a Fast Ethernet switch with
VM=3600 (see Table 2).

For the application analysis, we chose two user applications that consumed
17% and 9% of the total computing time during the considered period. Fig. 1
shows the distribution of CPU usage for one run of each application. The first
application (middle of Fig. 1) comes from fluid dynamics. It used 32 processors
and ran for 5570 minutes, leading to a profiling with 17824 (=557*32) snapshots.
About 10% of the snapshots show a CPU usage of 0%, and 15% show a 100%
usage. This application shows an average CPU usage of e=0.56, i.e. following
eq. 3 a Γ of 1.27. It could run more efficiently on a machine with a better in-
ternode communication system, but we would need to determine whether the
price/performance ratio would improve when going on a more expensive ma-
chine.

The second application (bottom graph of Fig. 1) comes from plasma physics.
It also used 32 processors and ran for 1690 minutes, giving 5408 (=169*32)
snapshots. Processors were idle for about 15% of the time. The efficiency was
75.5%, i.e. Γ = 3.1. This is a typical application that contributes to the peak
around 82% CPU usage in the upper graph. The Pleiades1 cluster seems to be
a well-suited machine for this application.

In the future, we shall need characteristic CPU usage profiles such as those
given in Fig. 1 for each parallel application and machine in a GRID. Together
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Fig. 1. Up: CPU usage of all the 132 processors of the Pleiades1 cluster (VM=3600)
during the first 3 months in 2005. Average CPU usage was collected for each processor
every 10’. The overall average CPU usage is 64%. Center: Profile of one job of a CFD
application. Low: Profile of one job of a plasma physics application.

with additional data on the behaviour of the applications, coming for instance
from accounting data collected by the resource management system, we believe to
be able to automatically parameterise them. We can then define a cost function
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based on these parameters through which it will be possible to decide on where
to submit each application.

We have to mention that the zero CPU usage peak of the upper graph in
Fig. 1 aggregates contributions from different sources: although I/O is the most
frequent one, MPI message passing and idle processors in unbalanced jobs must
be taken into account as well. In pathological cases, one task of a parallel job
dies, and the other processors remain idle until the job is killed by the scheduling
system.

These first results show that improvements must be made: the Γ model must
include I/O, and being able to distinguish between the sources of inefficien-
cies would be most welcome. Monitoring already had a positive impact: badly
behaving applications have already been detected and improved.

4 Conclusions

The goal of the ISS project is to make it possible to automatically detect the
type of hardware that is well suited for a given application. We described a
parameterisation of parallel machines and applications that allows to tailor a
computational GRID to a set of applications, and checked the validity of the
parameters against real executions. Although it is in its initial stage, the ISS
project already has an interesting side-effect: badly behaving applications can
already be detected and improved. Future work includes extending the current
model to correct the weaknesses that were described, and using the data collected
during job execution to improve the scheduling decision. This will enable us to
constantly adjust a computational GRID to the needs of the applications.
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Abstract. In this work authors discuss the various aspects and prob-
lems connected with interactive jobs’ management in the grid environ-
ment. The specific nature of scheduling the interactive experiments is
closely analyzed, revealing the complex approach that has to be taken
into account in order to consider many new, scientific-domain schedul-
ing factors. Diagrams for submission, launching, prolonging and end-
ing the interactive sessions are proposed. Presented idea is generic and
can be used in many grid-based systems. The grid broker e.g. Grid Re-
source Management System (GRMS) is required in our conception and
we assume its presence in the environment.

1 Introduction

There are two main kinds of jobs in the grid systems: regular (batch) jobs and
interactive/visualization tasks (the ones performed in the real time, directly by
the users - via the GUI). The main difference (and difficulty) between those types
is that - in the interactive jobs - the time slot reserved for running a job on a
computational machine must be synchronized with user preferences, considering
specific work hours, daily schedule etc. Moreover, there are also maintenance
periods, when a resource is unavailable.

Middleware systems for interactive jobs’ invocation in the grid-based systems
are in the initial state. It is very hard to find general solution for the wide
spectrum of applications due to different users and software requirements [1].

In the paper general conception of interactive jobs invocation is presented. It
is assumed that the Grid Resource Management System (GRMS) [4] is present
in the computing environment. The VNC Manager and the VNC server are
installed on every machine. Moreover, the Interactive Applications Manager re-
sponsible for managing information about running interactive jobs is also given.
All services rely on Globus.

Presented solution can be used by many client applications. The Virtual
Laboratory (VLab) [6] system can be an exemplary client of this solution. Ma-
jority of applications used in virtual labs are interactive ones. There are used for

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 758–765, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Running Interactive Jobs in the Grid Environment 759

performing experiment, controlling lab devices, analyzing postprocessing data,
etc.

The VLab is not a standalone system. It was designed to cooperate with many
other grid systems, providing only the purpose-specific functionality and relay-
ing on well known and reliable grid solutions. The most important system the
VLab cooperates with is the Globus Toolkit - in the scope of scheduling compu-
tational tasks, software services and libraries for resource monitoring, discovery,
and management. All computational tasks submitted in the VLab system are
transferred to the Globus via the GRMS module. Among other external systems
used by the Virtual Laboratory are: the VNC system, DMS (Data Management
System) [7], Authentication module and GAS [5] authorization system.

2 Grid Resource Management System

2.1 Overview

GRMS is an open source meta-scheduling system for large scale distributed com-
puting infrastructures [3]. Based on the dynamic resource selection, mapping and
advanced grid scheduling methodologies, it has been tailored to deal with job and
resource management challenges in Grid environments, i.e. load-balancing among
clusters, setting up execution environments before and after job execution, re-
mote job submission and control, file staging, and more. GRMS was developed
entirely in Java and thus can be installed on various kinds of operating systems
and resources. GRMS is infrastructure independent and can be easily integrated
with various Globus versions. In the described installation GRMS works with
Globus Toolkit 2.2.4 and uses its services deployed on resources. GRMS provides
job and resource management mechanisms on the top of Globus Core Services.
In particular, GRMS uses GRAM, GridFTP and GRIS/GIIS services. One of
the main assumptions for GRMS is to perform remote jobs control and man-
agement in the way that satisfies Users (Job Owners) and their applications
requirements [2].

The main GRMS functionality includes: queuing submitted job, finding the
best resource, staging in/out files, submitting job to computational resource, job
migration, job canceling, logging.

Fig. 1 shows a more detailed view of GridLab GRMS with all its main mod-
ules and the GridLab specific services, like Replica Management, File Movement
and Adaptive Components.

As it is shown on fig. 1. GRMS consists of a set of modules. These include:

– Broker Module - responsible for job submission control,
– Resource Discovery Module - responsible for querying available infor-

mation services,
– Job Manager Module - monitors the status of a running job,
– Job Queue - maintains the main GRMS queue,
– Job Registry is responsible for maintaining the database of all jobs sub-

mitted to GRMS and all information concerning those jobs.
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Fig. 1. Detailed view of GridLab GRMS

2.2 Time Slot Reservation

All information related to time requirements of interactive jobs is passed to the
system during the job submission process as a part of job description. Every job
to be submitted can have an optional section that defines in a formal way the
time requirements for the job to be computed. This gives a user the possibility
to build descriptions of advanced execution schedule in a simple and flexible
way. The “execution time" section consists of three subsections defining follow-
ing requirements: optional slot within the day when a job must be executed,
mandatory execution time and optional time period when a job must be exe-
cuted. The slot within the day is specified by start time of the slot and optionally
end time of it or time duration. Specifying this time slot a user can determine
that the job must be started after some time and not later then some other time
of day, for example that its execution must be started between 10AM and 12AM.
Mandatory information concerning the duration of the job execution determines
length of the period when a resource reservation is needed for a job. It is the only
time characteristic that can be changed by the user after the job was submitted.
If it doesn’t violate the schedule it is possible to extend the execution time of
the previously submitted and running job. Planing the job execution a user can
specify time period when a job must be executed. The presented job description
(see fig. 2) illustrates usage of aforementioned functionality specifying liberal
requirements that the job should be executed within the first ten days of May,
but except Saturdays and Sundays.
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Fig. 2. Exemplary job description for interactive task

3 Managing Interactive Jobs

In this paragraph we will focus on both, batch and interactive computational
jobs. Interactive jobs need a definitely more sophisticated approach. The time
when the application GUI is performing the job (or in other words: job start and
finish time) has to be synchronized with user work-time preferences and should
be known by the user in advance. The mechanism responsible for displaying
the interface has to be carefully designed, to address authorization and security
issues.

A special module responsible for managing interactive-related data is needed
to put into practice the idea of running interactive jobs in the grid. This module
has to keep information about choosing application server for running the job,
about port number where VNC server will listen, about password needed for con-
nection and finally about current job status. In our conception this functionality
will be met by the Interactive Application Manager (IAM).

Due to necessity of managing information about interactive connections, VNC
server and target applications on the application server side - VNC Manager was
developed. One instance of the VNC Manager is run for each application. First, it
is looking for free port number (from the range specified by administrator), next
it generates password, valid for this session only. All these data are sent to IAM
and then VNC server with interactive application are launched. When application
finishes VNC Manager kills previously run applications.

All operations connected with interactivity are transparent for GRMS. It
manages interactive tasks in the same way like other ones. Reservation for a
given session is stored in the Reservation Manager. Limitation for the number of
interactive sessions in the same time per machine are necessary due to avoiding
server overload. It can be changed dynamically by administrator.
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Fig. 3. Interactive job submission

All operations performed on interactive tasks are presented in the following
paragraphs. Diagram for the batch job is not presented here. On diagrams data
storing element is omitted. It is assumed that data is staged in to the application
server before the interactive job starts and staged out after it from/to any file
server (e.g. DMS). It is GRMS that is responsible for file staging.

3.1 Job Submission

Interactive jobs are submitted into the system in a same manner as the batch
ones. Each consecutive step on the diagram was marked (see figure 3). The
detailed description is given below.

1. Job is sent by a user to the Interactive Applications Manager.
2. Next, job is sent to the GRMS and the IAM registers for notifications.
3. GRMS asks the Information System about available computational machines

at the moment, which fulfil requirements (e.g. desired application must be
installed there).

4. GRMS checks where the user can run his jobs for the sake of the user’s
privileges (rights).

5. GRMS checks where the user has accounting limits for computation (for a
given period of time).

6. GRMS checks available resources (e.g. port number) on machines for the
interactive job.

7. GRMS makes a decision about the best machine for the user’s job and re-
serves resources in the Reservation Manager.

8. Information about decision (machine and running time) is passed to the
IAM.

9. The user is informed (e.g. via e-mail) about the job running time.
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3.2 Establishing a Secure Connection

The interactive job is submitted to the system and the VNC session is scheduled.
The next step is to prepare the proper environment for the given job, launch it
and wait for connection establishment from the user (figure 4).

Fig. 4. Establishing a secure VNC connection

This operation describes following steps:

1. The GRMS launches scheduled job.
2. VNC Manager reports the port number in use and dynamically-generated

password to the IAM.
3. The IAM is notified when everything is ready and when the session can be

established.
4. The user starts the SVNC Viewer which takes all connection parameters

from the IAM.
5. Secure connection is established to the VNC server.

3.3 Prolonging the Session

Any interactive job can be scheduled for the certain amount of time. The time
period is specified by the user during task definition and submission. When the
reservation period is about to expire, the client application (e.g. SVNC viewer
with extended functionality) displays the appropriate warning and the user is
given the possibility to request the session prolongation. After evaluation of the
actual session state (Reservation Manager, etc.) the prolonged access is granted
or the request is refused (figure 5).

Prolonging the VNC session step by step:

1. The user requests about session prolonging is sent to the IAM.
2. Further, it is forwarded to the GRMS.
3. GRMS asks the Information System about machine availability.
4. GRMS checks the user rights validity.
5. GRMS checks user’s accounting limit.
6. GRMS checks available resources for the next time period.
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Fig. 5. Prolonging the VNC Session

7. GRMS makes a decision about the prolonging and change reservation in
Reservation Manager.

8. Information is passed to the IAM.
9. User is informed about the decision (e.g. via e-mail).

3.4 Finishing the VNC Session

The VLab user has the ability to end an active VNC session at any time after
the session has been started (figure 6a)).

The procedure is explained below:

1. The request concerning finishing the session is sent to IAM.
2. Next it is forwarded to GRMS.
3. The GRMS system sends the appropriate signal to the instance of VNC Man-

ager responsible for a given application. Application is closed and resources
are released.

4. GRMS updates the Resource Manager - registration is removed.

Fig. 6. Ending the VNC session: a) by the user b) by the system
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5. The GRMS sends notification about job finishing to IAM.
6. The user is informed about job being finished.

Furthermore, an active VNC session can be terminated by the system (e.g.
GRMS) when the reservation period expires, or for any other reason. The proce-
dure is very similar to the one described above, with a difference in steps 1 and
2. In that case, GRMS sends a signal to stop the application (via VNC Manager)
when the reservation time expires (figure 6b)).

4 Summary

Possibility of launching interactive jobs in the grid environment is undoubtedly
very important for many users. In the paper a general concept from this area was
presented. Thanks to its universality the idea can be implemented for many ap-
plications and adapted to many clients. The solution presented was implemented
experimentally in the Virtual Laboratory system.
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Abstract. In this paper, we demonstrate and discuss the economical
results of applying a fixed, a dynamic and a stochastic approximation
based pricing policy in a free commodity market model designed for
computational grids. We present the pricing policies and our economy-
driven scheduling heuristic as a part of our market model in which we
assume resource owners desire to profit or recover their costs, and users
desire to execute their jobs within the limits of their budget and time.
The comparison experiments revealed that our dynamic pricing policy is
more successful as a means for achieving social welfare in the market.

1 Introduction

Computational grids have emerged to exploit geographically dispersed resources
to solve large-scale computational and data demanding scientific problems [1]. To
make use of a computational grid, an efficient scheduling mechanism is needed
in order to assign each job to the most appropriate resource [2]. Real-world
market models have been thought as a very natural way to manage large dis-
tributed resource allocation problems and consequently have been applied to
solve the scheduling problems in the distributed computing framework including
grid systems [3]. However, attaining the optimal resource allocation has not been
considered as the only motivation behind applying market-based mechanisms in
grid computing. Since there is no strong motivation to make people share their
resources in the current grid systems, it has been considered that market mod-
els in which users pay for resources, would give resource owners incentive to
share their resources making the computing power economically available that
the society requires [4].

In this work, we consider three pricing policies (fixed, dynamic and stochastic
approximation based [5]) that the resource owners may use in a free commodity
market model. We performed simulation-based comparison experiments to eval-
uate the policies in terms of achieving social welfare, which is the utility of all
market agents considered in aggregate.

The rest of the paper is organized as follows: Section 2 reviews the market-
based distributed resource allocation studies. Section 3 describes the market
model and the pricing policies. The experimental results and discussion is
presented in Section 4. Finally, Section 5 makes some concluding remarks.
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2 Related Work

In a real-world market, there exist a variety of economic models for determining
the price of a commodity or a service, based on supply and demand [4]. Several
approaches of these real market models have been applied to conventional dis-
tributed systems before grid systems have emerged. However, all these studies
[6],[7],[8] adapted market mechanisms only to get optimal scheduling results. Set-
ting up a real computational market seems to be more specific to grid computing.

Various real grid resource allocation systems that employ market structures
have been developed and are being progressed such as Nimrod-G [9], Mariposa
[10] and Compute Power Market [11]. Referring to the current interest on this
subject we can assert that such systems will be widely used in the near future.

3 The Market Model

In this market model, we assume that self-interested resource owners desire to
profit or recover their costs allocating their resources to the most profitable jobs,
and self-interested users desire to solve their problems considering their budget
and time constraints.

In the market model, the economy driven scheduling heuristic that we have
proposed in [12], determines users’ preferences; it can optimize time, cost or both
of them taking account the budget and deadline constraint of a user. In this work,
we only consider scheduling parameter sweep type of applications that involve
the execution of various independent tasks over a choice of parameters [13]. Gen-
erally speaking, the heuristic assigns the biggest jobs to the cheapest resources if
the application is cost limited, it assigns the biggest jobs to the fastest resources,
if the application is time limited, and for other cases, it assigns the biggest jobs
to the resources that offer the best value in terms of performance per money. Be-
sides, we should note that we have made the following assumptions for the heuris-
tic; each resource comprises identical processing elements, speed of a processing
element is defined in Million Instructions per Second (MIPS) rating and size of
a job is known a priori and represented in Million Instructions (MI) rating.

In a free commodity market, resource owners are free to determine a pricing
policy and competitive users take prices as given. We consider three pricing poli-
cies that the resource owners may use; a fixed pricing policy that actually does
nothing but preserve the initial prices, a dynamic pricing policy that adjusts
prices according to the supply-demand dynamics, and a stochastic approxima-
tion based policy [5], which was actually proposed to be used in the e-commerce
applications. For all pricing policies, we assume that each resource owner in-
dividually specifies a minimum price per unit time that she is not willing to
execute jobs any price lower than this.

3.1 The Dynamic Pricing Policy

In this pricing policy, resource owners can enter the market with a price above
than or equal to the minimum price determined in advance, and they adjust the
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prices over time according to the demand on their resources. The demand on a
resource, at a time instant, is assumed to be the utilization of the resource, i.e.
the fraction of the resource’s total capacity that is being used.

Algorithm 1. DynamicPrice(Pinit, Pmin, μ, T )

1. Set initial price p = Pinit

2. Set previous utilization rate ExUr = 0
3. for i : 1 to ∞ do
4. Wait for a period of T
5. Ur = getCurrentUtilization()
6. if Ur > μ and Ur > ExUr then
7. Δp = Ur − μ
8. Update the current price p = p ∗ (1 + Δp)
9. else if Ur < μ then

10. Δp = μ − Ur
11. Update the current price p = p ∗ (1 − Δp)
12. if p < Pmin then
13. p = Pmin

14. endif
15. endif
16. ExUr = Ur
17. endfor

By Algorithm 1 each resource owner calculates a new price-per-unit-time; p.
In the algorithm, Ur (0 < Ur < 1) denotes the utilization and Δp is the price
increment or decrement percentage. We assume that resource owners interpret a
utilization below than a ratio that they consider (i.e. μ, 0 < μ < 1) as a decrease
and a higher ratio as an increase on the demand.

If the utilization is over μ, owners increase the price only when the utilization
changes (line 6-8), i.e. when new jobs are accepted or some running jobs are
completed to prevent continuous price increase; however, they decrease the price
at each predetermined time interval if the utilization is under μ (line 9-11), in
order to attract the users. Naturally, price of a resource do not fall below the
minimum price that the owner has specified (line 12-13). Moreover, once a job is
accepted, it is charged with the agreed price. Further price changes do not affect
the running or the queued jobs.

3.2 The Pricing Policy Based on Stochastic Approximation

Given a reasonable initial price, the policy (illustrated in Algorithm 2) simply
tries to converge to a local optimal price, p, that is expected to maximize the
revenues [5]. Using a step size, Δ, determined as a decreasing function of the
number of trials so far, I, such as I−1/3 (line 4), the policy conducts sales at
both prices p+Δ (line 5) and p−Δ (line 7) for a certain period of time, T , and
based on the number of received jobs during these periods (in its original form
this is the number of commodities that has been sold), S(p + Δ) (line 6) and
S(p−Δ) (line 8), it calculates the profits (revenues) obtained for the respective
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prices (line 10-11). Then it updates the current price as shown in the line 13.
Here, A is the update interval that is set as a decreasing function of the trial
number such as 1/I. Finally, the resulting price is prevented to be lower than
the minimum price, Pmin (line 14-15), and further price changes do not affect
the running or the queued jobs, in this policy as well.

Algorithm 2. StochPrice(Pinit, Pmin, T )

1. Set initial price p = Pinit

2. Set trial number I = 1
3. for I : 1 to ∞ do
4. Set step size Δ = I−1/3

5. For a period of T, set the price to p + Δ
6. Let S(p + Δ) be the amount of jobs received during this time
7. For a period of T, set the price to p − Δ
8. Let S(p − Δ) be the amount of jobs received during this time
9. Calculate the obtained profit as follows:

10. P (p + Δ) = S(p + Δ) ∗ (p + Δ)
11. P (p − Δ) = S(p − Δ) ∗ (p − Δ)
12. Set the update interval A = 1/I

13. Update the current price p = p + A
Δ

∗ P (p+Δ)−P (p−Δ)
2T

14. if p < Pmin then
15. p = Pmin

16. endif
17. endfor

4 Experimental Results and Discussion

The attributes of the simulated resources are given in Table 1. In all of the ex-
periments, users submit applications within a 10000 time unit interval, based
on a Poisson arrival process. The experiments were repeated 10 times for each
average arrival rate value, λ, that was varied from 5x10−4 to 5x10−3 with a

Table 1. Attributes of the simulated resources

Resource Number MIPS Rating Resource Min. Price per
Name of PEs of each PE Management MI in G$

R1 32 10 Time-Shared 0.35
R2 36 12 Time-Shared 0.391
R3 48 13 Time-Shared 0.4
R4 24 15 Time-Shared 0.42
R5 36 20 Time-Shared 0.45
R6 16 12 Time-Shared 0.383
R7 24 11 Time-Shared 0.372
R8 40 10 Time-Shared 0.36
R9 24 10 Time-Shared 0.34
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Table 2. Variation intervals for job parameters

Number of Jobs Size of a Job Input File Output File
in an Application Size Size

50-150 1000-10000 MI 250-750 B 2.5-7.5 KB

5x10−4 step size. The variation of the parameters related to jobs are given in
Table 2. For deadline and budget of each user, a relaxed and a tight (limited)
value are computed considering the size of the application, and the minimum
prices of the resources. Subsequently, from the tight-relaxed distributions a ran-
dom budget and a random duration (time-constraint) are assigned to the user.
Resource owners enter the market with the minimum prices. The sale period
of the stochastic approximation based pricing policy, T , and the price update
interval of the dynamic pricing policy is set to 5 time units, and the desired
utilization rate parameter, μ, is set to 0.5.

Fig. 1 demonstrates the average income distribution of resource owners. Un-
der the fixed pricing policy R5 holds the 74% of the total market gain, leaving
only small shares to the other resources. This is because R5 is the most preferable
resource in terms of time and time-cost optimization. Since prices are constant in
the fixed pricing policy, resources are not able to adjust their prices to attract the
users. However, all of the resources have been able to earn money under the dy-
namic and stochastic approximation (SA) based policies, breaking the monopoly
of R5. The SA based policy can quickly converge to a local optimum price; how-
ever, after a certain amount of time (as A/Δ ratio increases) it behaves like the
fixed price policy. Therefore, it is not versatile as the dynamic policy in adapting
to the demand variations. This is clearly the reason for the income difference.

There cannot be an equilibrium point for the prices in this market since re-
sources are not identical and preferences differ among users. As Fig. 2 illustrates

Fig. 1. Average income distribution under the fixed (the chart on the left), the dynamic
(the chart on the middle), and stochastic approximation based (the chart on the right)
pricing policies
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Fig. 2. Average price-per MI of the resources under the pricing policies

Fig. 3. Average utilization of the resources under the pricing policies

Price Per MI values varies among the resources. However, identical or compa-
rable resources in terms of speed, have similar prices under the dynamic and
SA based policies. Therefore, we can claim that these policies achieve a partial
equilibrium in the market.

The average utilization of all resources under the fixed, dynamic, and SA
based policies are 28%, 35%, and 34% respectively. As Fig. 3 shows, the average
utilization of the resources are more balanced under the SA based and dynamic
policies than that of the resources under the fixed policy.

Fig. 4 shows the average percentage of the applications completed without a
budget shortage or a deadline violation. It can be seen that more applications
are completed under the dynamic pricing policy. This is because it makes users,

Fig. 4. Average application completion percentages under the pricing policies
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Fig. 5. Average duration usage percentages under the pricing policies

rapidly, tend to less loaded and cheaper resources when the formerly suitable
resources became loaded and consequently their prices are increased. As Fig. 5
demonstrates, under the fixed and SA based policies, users’ deadlines expire as
the demand on the resources increases; hence, application completion percent-
ages decreases.

To sum up, considering the experimental results we can assert that the dy-
namic pricing in which prices are adjusted with respect to the real-world market
dynamics yields better social outcomes than the other pricing policies.

5 Conclusion

In real-world free markets, there is no and can be no any globally accepted
method for price adjustment; each producer or vendor applies an individual
pricing policy. Accordingly, we devised a rational dynamic pricing policy for
computational grid markets such that resource owners can adjust the prices
according to the demand on their resource. Then we have performed experiments
that compares our policy with a fixed and a stochastic approximation based
pricing policy and discussed the results both from users’ and resource owners’
point of view.
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Abstract. We address parallel jobs scheduling problem for computa-
tional GRID systems. We concentrate on two-level hierarchy scheduling:
at the first level broker allocates computational jobs to parallel comput-
ers. At the second level each computer generates schedules of the par-
allel jobs assigned to it by its own local scheduler. Selection, allocation
strategies, and efficiency of proposed hierarchical scheduling algorithms
are discussed.

1 Introduction

Recently, parallel computers and clusters have been deployed to support compu-
tation-intensive applications and become part of so called computational grids
(C-GRIDs) or metacomputers [10, 8]. Such C-GRIDs are emerging as a new para-
digm for solving large-scale problems in science, engineering, and commerce [15].
They comprise heterogeneous nodes (typically, clusters and parallel supercom-
puters) with a variety of computational resources. The efficiency of scheduling
policies is crucial to C-GRID performance. The job scheduling solutions for a sin-
gle parallel computer significantly differs from scheduling solution in such a grid.
The scheduling problem becomes more complicated because many computers of
different sizes are involved with different local scheduling policies [11, 12, 13, 14].
One possible solution is to consider two-level scheduling schemes: at the first
level jobs are allocated to parallel computers by a GRID resource broker and
then local schedulers are used at each computer. Typically, the broker is respon-
sible for resource discovery, resource selection, and job assignment to ensure that
the user requirements and resource owner objectives are met. The broker acts
as a mediator between users and resources using middleware services. It is re-
sponsible for presenting the grid to the user as a single, unified resource. One of
the broker’s major responsibilities is to provide centralized access to distributed
� This work is partly supported by CONACYT (Consejo Nacional de Ciencia y Tec-
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Basic Research),grants 05-01-00798 and 03-07-00198.
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resources. This simplifies the use of the computational GRID aggregating avail-
able computational resources, and collecting information on the current state of
these resources.

In this paper, we discuss several scheduling policies for two level hierarchy:
at the first level the broker allocates computational jobs to C-GRID node ac-
cording to some selection criteria taking parameters of jobs and computers into
consideration. At the second level, each node generates schedules by its own lo-
cal scheduler. We present scheduling strategies based on combination of some
selection strategies and scheduling algorithms. We limit our consideration to the
scenario where jobs are submitted to the broker from a decentralized environ-
ment of other brokers, and can be processed into the same batch. The main
objective of the paper is to compare different scheduling strategies and estimate
their efficiency. In Section 2, we present a brief overview on two level hierarchy
scheduling strategies, and compare their the worst case behavior in Section 3,
followed by concluding remarks in Section 4.

2 Scheduling Strategies

2.1 Model

Let we have n jobs J1, J2, ..., Jn, and m uniform C-GRID nodes N1, N2, ..., Nm,
characterized by M = [m1,m2, ...,mm], where mi is the number of identical
processors of the node Ni. We assume that there is no inter-communications
between jobs, that they can be executed at any time, in any order, and on any
node.

Each job is described by 2-tuple (sj , p
j
sj

), where sj is a job size that is referred
to as the job’s degree of parallelism or number of processors required for Jj , pj

sj

is the execution time of job Jj on sj processors. The job work also called job area
is Wj = pj

sj
· sj . Each job can be executed at a single node, so the maximum size

of a job is less than or equal to the maximum number of processors in a node.
This means that system resources are not crossed, and co-allocation problem
is not considered. All strategies are analyzed according to their approximation
ratio. Let Copt(I) and CA(I) denote makespans of an optimal schedule and of
a strategy A for a problem instance I, respectively. The approximation ratio
of the strategy A is defined as ρA = supI CA(I)/Copt(I), and we call A an ρ
approximation algorithm.

In this paper, we restrict our analysis to the scheduling systems where all jobs
are given at time 0 and are processed into the same batch. This means that a set
of available ready jobs is executed up to the completion of the last one. All jobs
which arrive in the system during this time will be processed in the next batch.
A relation between this scheme and the scheme where jobs arrived over time,
either at their release time, according to the precedence constraints, or released
by different users is known and studied for different scheduling strategies. Using
results [6] the performance guarantee of strategies which allows release times is
2-competitive of the batch style algorithms.
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2.2 Two Level Hierarchy Scheduling

The scheduling consists of two parts: selection of a parallel node for a job and
then local scheduling at this node.

Selection Strategies. We consider the following scenario. On the first stage,
to select a node for the job execution the broker analyzes the job request, and
current C-GRID resources’ characteristics, such as a load (number of jobs in
each local queue), parallel load (sum of jobs’ sizes or jobs’ tasks), work (sum of
jobs work), etc. The parameters of the jobs already assigned to nodes and known
by the broker are used only. All nodes are considered in non decreasing order of
their sizes mi, m1 ≤ m2 ≤ · · · ≤ mm. Let first(Jj) be the minimum i such that
mi ≥ sj. Let last(Jj) be the maximum i such that mi ≥ sj . If last(Jj) = m we
denote the set of nodes Ni, i = first(Jj), ..., last(Jj) as the set of available nodes

M-avail. If last(Jj) is the minimum r such that
r∑

i=first(Jj)
mi ≥ 1

2

m∑
i=first(Jj)

mi,

we denote the set of nodes Ni, i = first(Jj), ..., last(Jj) as the set of admissible
nodes M-admis. The broker selects node for a job request using the following
strategies:

– Min-Load (ML) strategy takes the node with the lowest load per processor
(number of jobs over number of processors in the node).

– Min-Parallel-Load (MPL) strategy takes the node with the lowest parallel
load per processor (the sum of job sizes over number of processors in the
node).

– Min-Lower-Bound (MLB) strategy chooses the node with the least possible
lower bound of completion time of previously assigned jobs, that is the node
with the lowest work per processor. Instead of the actual execution time of
a job that is an offline parameter, the value provided by the user at job
submission, or estimated execution time is used.

– Min-Completion-Time (MCT). In contrast to MLB, the earliest possible
completion time is determined based on a partial schedule of already as-
signed jobs [9, 7]. For instance, Moab [3] can estimate the completion time
of all jobs in the local queue because jobs and reservations possess a start
time and a wallclock limit.

Local Scheduling Algorithms. We address the space sharing scheduling prob-
lem, hence scheduling can be viewed as a problem of jobs packing into strips of
different width. In such geometric model each job corresponds to a rectangle of
width sj and height pj

sj
. One known strategy for packing is the Bottom-Left(BL).

Each rectangle is slid as far as possible to the bottom and then as far as possible
to the left [16]. It is known that for some problems BL can not find constant
approximation to the optimal packing, but a successful approach is to apply
BL to the rectangles ordered by decreasing sizes that is referred as Bottom Left
Decreasing(BLD) or Larger Size First(LSF). In this paper we use LSF for local
scheduling.
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3 Analysis

The LSF has been shown to be a 3-approximation [2]. Some results about asymp-
totic performance ratio of different strategies for this problem and improvements
are presented in [1, 4, 5].

Below we will consider LSF for local scheduling and the following se-
lection strategies: Min-Load(ML), Min-Load-admissible(ML-a), Min-Parallel-
Load(MPL), Min-Parallel-Load-admissible(MPL-a), Min-Lower-Bound(MLB),
Min-Lower-Bound-admissible(MLB-a), Min-Completion-Time(MCT), and Min-
Completion-Time-admissible(MCT-a).

3.1 (ML, ML-a, MPL, MPL-a)-LSF

The simple example below shows that ML, ML-a, MPL, MPL-a selection strate-
gies combined with LSF cannot guarantee constant approximation in the worst
case. It is sufficient to consider m nodes of width 1 and the following list of
jobs: m − 1 jobs J1, then J2, then m − 1 jobs J1, etc., where J1 = (1, ε),
J2 = (1, E). Suppose n = rm, where r ∈ IN. Note that C(ML,MPL)−LSF = rE

and Copt ≤ � (m−1)r
m �ε + � r

m�E. If E/ε → ∞, m → ∞, and r → ∞ then
ρ(ML,MPL)−LSF →∞.

3.2 MCT-LSF

In the following two theorems we prove that constant approximation for MCT-
LSF strategy is not guaranteed and that MCT-a-LSF is a 10 approximation
algorithm.

Theorem 1. For a set of grid nodes with identical processors and for a set of
rigid jobs the constant approximation for MCT-LSF strategy is not guaranteed
(in the worst case).

Proof. Let us consider grid nodes and jobs that are divided into groups according
to their sizes. Let there are k + 1 groups of nodes and k + 1 sets of jobs. The
number of nodes in group i is equal Mi = 2i for 0 ≤ i ≤ k. The number of jobs
in a set i is equal ni = (i+1) ·2i. The size of the nodes in group i is equal to the
job size in the set i, si = mi = 2k−i. The execution time (height) of jobs in the
set i is pi = 1

i+1 . Since pinisi/Mimi = 1
i+1 (i+ 1)2i/2i = 1, obviously Copt = 1.

However, nisi = 2k−i(i+ 1) · 2i = (i+ 1) · 2k =
i∑

j=0
Mjmj =

i∑
j=0

2j2k−j . Hence,

any set of jobs may completely fill one layer of available nodes, and if jobs come

in increasing order of their sizes CMCT−LST =
k∑

j=0

1
j+1 ∼ lnk that means that

the ratio CMCT−LSF/Copt may be arbitrary large. ��

3.3 MCT-a-LSF

Theorem 2. For any list of rigid jobs and any set of grid nodes with identical
processors the MCT-a-LSF is a 10 approximation algorithm.
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Proof. Let the maximum completion time is achieved at the kth node, Ja be the
job that has been received last from the broker by this node, and f = first(Ja),
l = last(Ja). Let Yf , . . . , Yl be the sets of jobs that were allocated on the nodes
f, . . . , l (admissible for Ja), just before getting the job Ja. Because the job was
sent to the kth node, then the completion time of the node Ci + pa ≥ Ck +
pa ≥ CMCT−a−LSF ∀i = f, ..., l. Let in the node Nk the job with maximum
completion time be Jc. Over all jobs with maximum completion time the job
with largest processing time is chosen. Let tc be the time when this job has
started the execution, and let rc = tc − pa. We have tc + pc ≥ CMCT−a−LSF,
rc + pa + pc ≥ CMCT−a−LSF

l∑
i=f

mirc + pa ·
l∑

i=f

mi +
l∑

i=f

mip
c ≥ CMCT−a−LSF ·

l∑
i=f

mi (1)

Before the time tc the kth node is filled at least half (the property of the
BLD algorithm) [2], hence Wk ≥ 1

2 ·mk · rc.
Let Jb be the job which requires minimal number of processors among the

jobs allocated on nodes f, ..., l, and let f0 = first(Jb). Then all jobs allocated on
nodes f, ..., l cannot be allocated on nodes Ni with i < f0. Since Jb is allocated

on one of the nodes f, ..., l then last(Jb) ≥ f ⇒
f−1∑
i=f0

mi ≤ 1
2

m∑
i=f0

mi ⇒
m∑

i=f

mi ≥

1
2

m∑
i=f0

mi. Since l = last(Ja), then
l∑

i=f

mi ≥ 1
2

m∑
i=f

mi and

m∑
i=f0

mi ≤ 2
m∑

i=f

mi ≤ 4
l∑

i=f

mi (2)

Thus, Copt ·
m∑

i=f0

mi ≥ S(
l⋃

i=f

Wi) ≥ 1
2

l∑
i=f

miri, where S(
l⋃

i=f

Wi) denote the sum

of jobs’ areas allocated at nodes f, . . . , l. By (2)

l∑
i=f

miri ≤ 2 · Copt ·
m∑

i=f0

mi ≤ 8 · Copt ·
l∑

i=f

mi (3)

The inequalities Copt ≥ pj, ∀j, (1) and (3) imply

8 · Copt ·
l∑

i=f

mi + pa ·
l∑

i=f

mi +
l∑

i=f

mip
i ≥ CMCT−a−LSF ·

l∑
i=f

mi,

8Copt ·
l∑

i=f

mi + pa ·
l∑

i=f

mi + Copt ·
l∑

i=f

mi ≥ CMCT−a−LSF ·
l∑

i=f

mi,

8Copt + pa + Copt ≥ CMCT−a−LSF, 8Copt + Copt + Copt ≥ CMCT−a−LSF,

and, finally CMCT−a−LSF ≤ 10 · Copt ��
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3.4 MLB-LSF

Theorem 3. For a set of grid nodes with identical processors, and for a set of
rigid jobs the constant approximation for MLB-LSF strategy is not guarantied
(in the worst case).

The proof is similar to the proof of Theorem 1, so we omit it here.

3.5 MLB-a-LSF

The strategy is similar to MLB-LSF with only one difference: only admissible
nodes are considered for the selection. Selecting admissible nodes prevents nar-
row jobs filling wide nodes causing wide jobs waiting for execution. It also allows
us to find a constant approximation for the algorithm.

Theorem 4. For any list of rigid jobs and any set of grid nodes with identical
processors the MLB-a-LSF is a 10 approximation algorithm.

Proof. Let the maximum completion time be at the kth node when algorithm
terminates. Let the job Ja be the last job with the execution time pa that was
added to this node, and f=first(Ja), l=last(Ja). Let Yf , . . . , Yl be the sets of jobs
that had been already allocated at nodes Nf , . . . , Nl admissible for Ja before
adding Ja, and let Wi be the total area of all jobs of Yi, (i = f, . . . , l). Since Ja

was added to the kth node of width mk,
Wk

mk
≤ Wi

mi
, ∀i = f, . . . , l. Therefore,

l∑
i=f

Wi =
l∑

i=f

Wi

mi
mi ≥

l∑
i=f

Wk

mk
mi =

Wk

mk

l∑
i=f

mi (4)

Let in packing by the LSF (BLD) algorithm, the set of rectangles corre-
sponding to jobs allocated at the kth strip be Yk

⋃
{Ja}, JT be a job with

maximum completion time, and tT be the time when this job has started the
execution, hence CMLB−a−LSF = tT + pT , where pT is the processing time of
JT , and CMLB−a−LSF is the completion time of the MLB-a-LSF algorithm. Let
rk = tT − pa. Then

CMLB−a−LSF = rk + pT + pa (5)

By the property of the LSF(BLD) algorithm [2]

Wk ≥
1
2
mkrk ⇒ rk ≤

2Wk

mk
. (6)

Let Jb be the job having the smallest size among rectangles that packed at
strips and let f0 = first(Jb). Hence any of the rectangles packed at Nf , . . . , Nl

cannot be packed at a strip with number < f0. As far as Jb is packed at one of the

strips f, . . . , l, last(Jb) ≥ f ⇒
f−1∑
i=f0

mi ≤ 1
2

m∑
i=f0

mi ⇒
m∑

i=f

mi ≥ 1
2

m∑
i=f0

mi. Since

l = last(Ja) and
l∑

i=f

mi ≥ 1
2

m∑
i=f

mi, we obtain
m∑

i=f0

mi ≤ 2
m∑

i=f

mi ≤ 4
l∑

i=f

mi.
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Then, clearly Copt

m∑
i=f0

mi ≥
l∑

i=f

Wi. Substituting (4) in this formula, we have

Copt

m∑
i=f0

mi ≥ Wk

mk

l∑
i=f

mi ≥ 1
4

Wk

mk

m∑
i=f0

mi. Taking into account (6) we obtain

rk ≤
2Wk

mk
≤ 8Copt (7)

As far as Copt ≥ pj , ∀j, (5) and (7) imply 8Copt + Copt + Copt ≥ CMLB−a−LSF
and, CMLB−a−LSF ≤ 10 · Copt. ��

4 Concluding Remarks

In this paper, we discuss approaches and present solutions to multiprocessor
job scheduling in computational Grid hierarchical environment that includes a
resource broker and a set of clusters or parallel computers. The selection and
allocation strategies are discussed. We show that our strategies provide efficient
job management with constant approximation guarantee despite they are based
on relatively simple schemes. The comparison of MLB-a-LSF and MCT-a-LSF
strategies shows that MLB-a-LSF has the same worst case bound as MCT-
a-LSF, however the MCT selection strategy is based on a partial schedule of
already scheduled jobs and requires more computational effort than MLB strat-
egy that based only on the job parameters from the list of assigned job. With
MLB-a-LSF the broker can select appropriate node without feedback about the
schedule from the node. The results are not meant to be complete, but give
an overview on the methodology and some interesting relations. These results
motivate finding approximation bounds of other two level hierarchy scheduling
strategies. Another interesting question is how fuzzy execution time affects the
efficiency. It seems important also to study moldable (or malleable) jobs hierar-
chical scheduling when the number of processors for a job is not given explicitly
by a user but can be chosen by a broker or a local scheduler. Simulations are
planned to evaluate proposed strategies considering real and synthetic workload
models.

References

1. B. Baker, D. Brown, H. Katseff, A 5/4 algorithm for two-dimensional packing, J.
of Algorithms, 1981, v. 2, pp. 348-368.

2. B. Baker, E. Coffman, R. Rivest, Orthogonal packings in two dimensions, SIAM
J. Computing, 1980, v. 9, 4, pp. 846-855.

3. www.clusterresources.com
4. K. Jansen, Scheduling malleable parallel jobs: an asymptotic fully polynomial-time

approximation scheme, Euro. Symp. on Algorithms, 2002.
5. C. Kenyon, E. Remila, A near optimal solution to a two dimensional cutting stock

problem, Math. of Operations Res., 25 (2000), 645-656.



Two Level Job-Scheduling Strategies for a Computational Grid 781

6. D. Shmoys, J.Wein, D.Williamson. Scheduling parallel machines on-line. SIAM J.
Comput., 24:1313-1331, 1995.

7. S.Zhuk, A.Chernykh, N.Kuzjurin, A.Pospelov, A.Shokurov, A.Avetisyan,
S.Gaissaryan, D.Grushin. Comparison of Scheduling Heuristics for Grid Re-
source Broker. PCS2004 Third International Conference on Parallel Computing
Systems (in conjunction with ENC’04), IEEE, p. 388-392. 2004

8. Foster, C. Kesselman, editors. The Grid: Blueprint for a future computing
infrastructure, Morgan Kaufmann, San Fransisco, 1999.

9. G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan, Scheduling of Parallel Jobs
in a Heterogeneous Multi-Site Environment, in the Proceedings of the 8th Inter-
national Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
2003.

10. L. Smarr and C. Catlett. Metacomputing. Communications of the ACM, 35(6):
44-52, June 1992.

11. S. S. Vadhiyar and J. J. Dongarra, "A Metascheduler for the Grid," Proc. of 11-
th IEEE Symposium on High Performance Distributed Computing (HPDC 2002),
July 2002.

12. J. Gehring and A. Streit, "Robust Resource Management for Metacomputers," In
Proc. HPDC ’00, pages 105-111, 2000.

13. V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of Job-
Scheduling Strategies for Grid Computing. R. Buyya and M. Baker (Eds.) In Proc.
Grid 2000, LNCS 1971, pp. 191-202, 2000.

14. A. James, K. A. Hawick, and P. D. Coddington, "Scheduling Independent Tasks
on Metacomputing Systems," In Proc. Conf. on Parallel and Distributed Systems,
1999.

15. The Grid Forum, http://www.gridforum.org/
16. E. Hopper, B. C. H. Turton, An empirical investigation of meta-heuristic and

heuristic algorithms for a 2D packing problem, Europian Journal of Operational
Research, 2001.



A Meta-scheduling Service for Co-allocating
Arbitrary Types of Resources
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Abstract. The Grid paradigm implies the sharing of a variety of re-
sources across multiple administrative domains. In order to execute a
work-flow using these distributed resources an instrument is needed to
co-allocate resources by reaching agreements with the different local
scheduling systems involved. Apart from compute resources to execute
the work-flow the co-ordinated usage of other resource types must be
also guaranteed, as there are for example a network connectivity with
dedicated QoS parameters or a visualisation device. We present a Web
Service-based MetaScheduling Service which allows to negotiate a com-
mon time slot with local resource management systems to enable the
execution of a distributed work-flow. The successful negotiation process
results in a formal agreement based on the WS-Agreement recommen-
dation that is currently specified by the GRAAP working group of the
Global Grid Forum. As a use case we demonstrate the integration of this
MetaScheduling Service into the UNICORE middleware.

1 Introduction

To successfully execute distributed applications or work-flows, usually different
resources like compute nodes, visualisation devices, storage devices, or network
connectivity with a defined QoS are required at the same time or in a certain se-
quence. Orchestrating such resources locally within one organisation represents
only a minor task, whereas the orchestration of resources on a Grid level re-
quires a service that is able to solve the same problems in an environment that
may stretch across several administrative domains. Additional conditions have
to be taken into account, like the compliance with site-specific policies or the
protection of a site’s autonomy.

In this paper we first describe in Section 2 an environment where co-allocation
of resources is of vital importance, the requirements for the MetaScheduling Ser-
vice that provides the required co-allocation means, and related work. In a next
step we characterise the functionality of the MetaScheduling Service (Section 3),
followed by a description of the current implementation. Then, in Section 5, we

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 782–791, 2006.
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present the integration of the scheduling system into the UNICORE Grid mid-
dleware [1]. The performance of the the whole system is evaluated in Section 6,
and the last section contains conclusions and an outlook to future work.

2 Scope, Requirements, and Related Work

The subject we are dealing with is scheduling and resource management in Grids
and our primary focus is the co-allocation of different resources needed for the
execution of a distributed application or a work-flow. Today’s Grid-aware appli-
cations benefit more and more from using heterogeneous hardware that allows
to optimise the performance of the applications. However, to make use of such
distributed resources a tool or service is required that is capable of dealing
with multiple policies for the operation and usage of resources. Furthermore,
the scheduling systems that manage these resources will usually not be altered
when the resources, in addition to local utilisation, are made available for us-
age in a Grid environment. Taking into account heterogeneity, site autonomy,
and different site policies, a common approach for co-scheduling [2] of resources
is not available so far. However, there have been several approaches over the
last years ranging from commercial products like those from the Load Shar-
ing Facility (LSF) family [3], to project-specific implementations like MARS [4]
(a meta-scheduler for Campus Grids), GridFlow [5] (supporting work-flows in
the DataGrid), or developments of the GrADS or the GriPhyN project. Other
approaches like the one in Condor-G [6] or Legion’s JobQueue [7] are limited
to the underlying middleware environment. The Community Scheduler Frame-
work (CSF) [8] is a global scheduler that interfaces with local schedulers such
as OpenPBS [9], LSF or SGE [10], but it requires the obsolete Globus Toolkit
3.0 [11]. Finally there is GARA [12], an API supporting co-scheduling of, inter
alia, network resources in a Globus middleware environment.

All the approaches mentioned above are to some extent limited and not suit-
able to be adopted to the needs of a common meta-scheduling service, because of

– their commercial nature,
– their limited support for different types of resources,
– their restriction to the needs of a specific project,
– their limitation to a particular middleware environment, and
– the use of proprietary protocols.

The work presented in the following sections of the paper tries to overcome
the limitations by providing an extensible service that is not restricted to the
needs of a particular project, that implements evolving standards, and that is
able to support arbitrary types of resources.

3 Required Functionality of the MetaScheduling Service

To achieve co-allocation of resources managed by multiple, usually different
scheduling systems, the minimal requirement these systems have to fulfil is to
provide functions to
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1. schedule a single reservation some time in the future (e.g. “from 5:00 pm to
8:00 pm tomorrow”) and to

2. give an aggregated overview of the usage of the managed resources between
now and a defined time in future.

Once a reservation is scheduled the starting time for it is fixed, i.e. it may not
change except for the reservation being cancelled. This feature is called advance
reservation. There are at least two possibilities to realise such advance reser-
vation. The first possibility is to schedule a reservation for a requested time,
called fixed time scheduling. The second possibility is to schedule a reservation
not before a given time, which means a scheduling system tries to place the
reservation at the requested time, otherwise it will be scheduled for the earliest
possible time after the one requested. This results in a first fit reservation. The
implementation of the MetaScheduling Service described in this paper interacts
with, but is not limited to, scheduling systems that implement the first fit be-
haviour. The main function of the MetaScheduling Service is to negotiate the
reservation of network-accessible resources that are managed by their respective
local scheduling systems. The goal of the negotiation is to determine a common
time slot where all required resources are available for the requested starting
time of the job. The major challenges for a meta-scheduler are

– to find Grid resources suitable for the user’s request,
– to take security issues like user authentication and authorisation into ac-

count,
– to respect the autonomy of the sites offering the resources, and
– to cope with the heterogeneity of the local scheduling systems.

We do not address the problem of finding suitable resources here, this task
is usually delegated to a Grid information system or a resource broker. Security
issues are only considered here with respect to user authentication and autho-
risation as the MetaScheduling Service has to reserve on behalf of the user’s
respective identity at the sites that he wants to use resources from. The im-
plementation described in the next section addresses both site autonomy and
heterogeneity.

4 Implementation of the MetaScheduling Service

To interact with different types of scheduling systems we decided to use the
adapter pattern approach. The role of such adapters is to provide a single inter-
face to the MetaScheduling Service by encapsulating the specific interfaces of the
different local scheduling systems. Thus the MetaScheduling Service can negoti-
ate resource usage using a single interface. The adapters are connected to both
the MetaScheduling service and the scheduling systems and may therefore be
installed either at the site hosting the MetaScheduling Service, the (remote) sites
where the scheduling systems are operated, or at any other system accessible
through a network. Currently adapters are available for two scheduling systems:
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EASY and a proprietary scheduling system. Two more adapters will be be avail-
able late summer 2005: one for the Portable Batch System Professional (PBS
Pro) and another one for ARGON, the resource management system for network
resources that is currently under development in the VIOLA project [16].

4.1 Negotiation Protocol

In this section we describe the protocol the MetaScheduling Service uses to nego-
tiate the allocation of resources with the local scheduling systems. This protocol
is illustrated in Fig. 1. The user specifies the duration of the meta-job and ad-
ditionally - for each subsystem - reservation characteristics like the number of
nodes of a cluster or the bandwidth of the connections between nodes. In the
UNICORE based VIOLA testbed the UNICORE client is used to describe the
request of the user. The client sends the job description to the MetaSchedul-
ing Service using the Web Services Agreement (WS-Agreement) protocol [14].
Based on the information in the agreement the MetaScheduling Service starts
the resource negotiation process:

1. The MetaScheduling Service queries the adapters of the selected local sys-
tems to get the earliest time the requested resources will be available. This
time possibly has to be after an offset specified by the user.

2. The adapters acquire previews of the resource availability from the individual
scheduling systems. Such a preview comprises a list of time frames during
which the requested QoS (e.g. a fixed number of nodes) can be provided. It
is possible that the preview contains only one entry or even zero entries if
the resource is fully booked within the preview’s time frame. Based on the
preview the adapter calculates the possible start-time.

Local Scheduling System

MetaScheduling Service

Resources

create

resource

list

calculate

timeslot

schedule 

resources
check

reservation

reservation

succeeded

Schedule

submit

schedule 
resource

Terminate

cancel reservation

free resources

Resource preview

create preview 

lookup local
schedule

Resource properties

local resource 
properties

(effective start time)

lookup local
schedule

get

reservation

properties reservation

failed

Fig. 1. The negotiation process
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3. The possible start times are sent back to the MetaScheduling Service.
4. If the individual start times do not allow the co-allocation of the resources,

the MetaScheduling Service uses the latest possible start time as the earliest
start time for the next scheduling iteration. The process is repeated from step
1. until a common time frame is found or the end of the preview period for
all the local systems is reached. The latter case generates an error condition.

5. In case the individual start times match, the MetaScheduling Service checks
the scheduled start times for each reservation by asking the local sched-
ulers for the properties of the reservation. This step is necessary because in
the meantime new reservations may have been submitted by other users or
processes to the local schedulers, preventing the scheduling of the reservation
at the requested time.

6. If the MetaScheduling Service detects one or more reservations that are not
scheduled at the requested time, all reservations will be cancelled. The latest
effective start time of all reservations will be used as the earliest start time
to repeat the process beginning with step 1.

7. If all reservations are scheduled for the appropriate time the co-allocation of
the resources has been completed.

8. The IDs of the MetaScheduling Service and the local reservations are added
to the agreement and a reference to the agreement is sent back to the
UNICORE client.

4.2 Hosting Environment and Command Line Interface

For the hosting environment of the MetaScheduling Service we use Sun Java
1.3.1 JRE with Apache Tomcat 3.3.2 as a servlet engine. In addition we make
use of the Apache SOAP Framework 2.3 for sending and receiving SOAP [13]
messages. The interface between the adapter and the local scheduling systems
is implemented as a simple CGI module, which is hosted at the Apache web
server and wraps the local scheduling system’s commands. The communication
between Apache and the adapters is secured by using HTTPS.

A simple Command Line Interface (CLI) is also available to access the
MetaScheduling Service. It enables users to submit a meta-scheduling request, to
query job details related to a certain reservation, and to cancel a given reserva-
tion. To submit a request a user may specify the duration of the reservation, the
resources needed per reservation (number of nodes, network connectivity, ...),
and the executable for each site.

The current CLI implementation does not contain integrated security means
to provide single sign-on, as e.g. the UNICORE client does. Instead the CLI
user has to enter a valid login and password for every requested resource. The
credentials are stored by the CLI, passed to the MetaScheduling Service, and
used for authentication at the local systems. Please note that this is an interim
solution and that the meta-scheduling framework will provide a concise security
solution at a later implementation stage.
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4.3 Interface Between MetaScheduling Service and Adapter

The interface/protocol between the MetaScheduling Service and the adapters
is implemented using Web Services and it basically provides the four functions
couldRunAt(), submit(), state(), and cancel().

These functions cover the whole negotiation process described in Section 4.1.
The Web Services interface/protocol as implemented is not standardised, but the
GRAAP [15] working group at the Global Grid Forum (GGF) is currently dis-
cussing to address the standardisation of a protocol for the negotiation process.
Once such a recommendation is available we plan to implement it instead of the
current one.

4.4 Implementation of the Agreement

The development of the MetaScheduling Service includes, as already mentioned
in Section 4.1, an implementation of the WS-Agreement specification [14]. The
client submits a request using an agreement offer (a template provided by the
MetaScheduling Service and filled in with the user’s requirements by the client)
to the MetaScheduling Service. It then negotiates the reservation of the resources
in compliance with the QoS defined in the agreement template. As a result of
the successfully completed negotiation process a valid agreement is returned to
the client, containing the scheduled end times of the reservation, the reservation
identifier, and further information.

5 Integration into the UNICORE Middleware

The first generation meta-scheduler architecture developed in the VIOLA project
[16] focuses on the scheduling functionality requiring only minimal changes to
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UNICORE
Server
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Fig. 2. The meta-scheduling architecture
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the UNICORE system (please refer to [1] for an in-depth description of the
UNICORE models and components). As depicted in Fig. 2, the system com-
prises the adapter, the MetaScheduling Service itself [17], and a MetaScheduling
plug-in (which is part of the client and not pictured separately). Before sub-
mitting a job to a UNICORE Site (Usite), the MetaScheduling plug-in and the
MetaScheduling Service exchange the data necessary to schedule the resources
needed. The MetaScheduling Service is then (acting as an Agreement Consumer
in WS-Agreement terms [14]) contacting the adapter (acing as an Agreement
Manager) to request a certain level of service, a request which is translated by
the Manager into the appropriate local scheduling system commands. In case
of VIOLA’s computing resources the targeted system is the EASY scheduler.
Once all resources are reserved at the requested time the MetaScheduling Ser-
vice notifies the UNICORE Client via the MetaScheduling plug-in to submit the
job. This framework will also be used to schedule the interconnecting network,
but potentially any resource can be scheduled if a respective adapter/Agreement
Manager is implemented and the MetaScheduling plug-in generates the neces-
sary scheduling information. The follow-on generation of the meta-scheduling
framework will then be tightly integrated into UNICORE.

6 Experiences and Performance Evaluation

We set up different tests to evaluate the performance of the MetaScheduling
Service. All tests were performed on a PC Cluster where multiple local scheduling
systems and MetaScheduling services were deployed across the compute nodes.
We executed the following two types of performance tests:

1. Reservations with multiple adapter instances (Fig. 3).
2. Reservations with multiple MetaScheduling Service instances (Fig. 4).

In the first test series we used a single MetaScheduling Service instance to co-
allocate resources across six different local schedulers. This implied that six par-
tial reservations were generated for six different local scheduling instances that
were randomly chosen from a pool of 160 instances. The queue of each local
scheduler was randomly initialised to simulate a certain load per system. In the
second test series we realised a layered approach: The MetaScheduling Service
that received the reservation request from the user (the topMSS) delegated the
reservations to other MetaScheduling Services which then negotiated with the
local schedulers. As in the first test a reservation consisted of six partial reser-
vations. Apart from the topMSS three MetaScheduling Services were used, each
being responsible for the co-allocation of resources managed by two local sched-
ulers. The topMSS instance negotiated the complete reservation with these three
instances which for the topMSS take the role of adapters as in the first test using
the same protocol for the inter-MetaScheduling Service communication.

Both tests indicate that the co-allocation approach selected is reasonable: a
complete schedule is delivered in less than 20 seconds (30 seconds in the case
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Fig. 3. Performance of a MetaScheduling Service negotiating with multiple adapters
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of layered MetaScheduling Services). Fig. 3 and 4 indicate a slight increase of
the total reservation time in case the local systems’ load increases and thus
the number of lookups needed for identifying free slots and for scheduled reser-
vations also increases. The total number of iterations indicates how often the
co-allocation process had to be restarted due to reservation inconsistencies at
the local schedulers (see Section 4.1, step 7.). In the two tests series this value
was constant since there were no additional scheduling activities (apart from
those initiated by the MetaScheduling Service) carried out that could interfere.
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7 Conclusions and Future Work

In this paper a meta-scheduling framework has been described which is capable
of co-allocating arbitrary types of resources by means of adapters that abstract
the different interfaces of the local scheduling systems. An implementation has
been presented that may be used via a command line interface or integrated into
a Grid middleware. As a use case a first approach to an WS-Agreement-based
integration into the UNICORE Grid system has been shown. Future work will
concentrate on several improvements of the service and focus, e.g. on:

– implementing adapters for additional scheduling systems,
– implementing the WS-Negotiation protocol as it is evolving at the GGF,
– integrating the MetaScheduling Service into OGSA/WSRF-based UNI-

CORE [18] and Globus [19] systems,
– providing resource broker capabilities,
– integrating the Intelligent Scheduling System (ISS) for selection of resources

best fitted to execute an specific application [21], and
– integrating a Grid Scheduling Ontology [20].
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Abstract. Scheduling is a key concern for the execution of performance-
driven Grid applications. In this paper we comparatively examine
different existing approaches for scheduling of scientific workflow appli-
cations in a Grid environment. We evaluate three algorithms namely
genetic, HEFT, and simple “myopic” and compare incremental work-
flow partitioning against the full-graph scheduling strategy. We demon-
strate experiments using real-world scientific applications covering both
balanced (symmetric) and unbalanced (asymmetric) workflows. Our re-
sults demonstrate that full-graph scheduling with the HEFT algorithm
performs best compared to the other strategies examined in this paper.

1 Introduction

Scheduling of scientific workflow applications on the Grid is a challenging prob-
lem, which is an ongoing research effort followed by many groups. Deelman [7]
distinguishes several workflow processing strategies covering trade-offs between
dynamicity and look-ahead range in workflow processing. In [3] Deelman pro-
posed a scheduling strategy based on initial partitioning of the workflow into
sequential subworkflows, that are scheduled sequentially one after another. Pro-
dan [8] applied genetic algorithms to schedule the whole workflow at once, and
rescheduling it many times during the execution. These approaches were not
compared against each other.

In this paper we examine three scheduling algorithms to evaluate their perfor-
mance for scheduling scientific workflows in Grid environments. The scheduling
algorithms comprise a genetic algorithm similar to the one presented in [8], the
well-known HEFT algorithm [12], and a “myopic” algorithm. HEFT is a simple
and computationally inexpensive algorithm, which schedules workflows by cre-
ating an ordered list of tasks out of the workflow, and mapping the tasks to the
resources in the most appropriate way. The last algorithm we applied is a simple
“myopic” algorithm, similar to the Condor DAGMan [10] resource broker, which
schedules the next task onto the best machine available without any long-term
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optimization strategy. The Grid model applied by us in the experiments assumes
high availability rate and good control over the resources by the scheduler.

Additionally, we compared different scheduling strategies including full graph
scheduling and incremental workflow partitioning strategy [3]. The Myopic algo-
rithm can be considered as a just-in-time scheduling strategy, as the scheduling
decisions made by the algorithm are optimized for the current time instance.

In the remainder of this paper, we evaluate the scheduling approaches through
a series of experiments. We show that the HEFT algorithm applied with the full-
ahead scheduling strategy performs best compared to other approaches evaluated
by us. We also prove the efficacy of this approach for a specific class of strongly
unbalanced (asymmetric) workflows.

2 Experimental Environment

The scheduling experiments have been performed in ASKALON environment [5],
which a Grid environment for scientific workflow applications. The environment
consists of many components responsible for composition and execution of the
applications. The enactment engine supervises the reliable and fault tolerant
execution of the tasks and transfer of the files. The resource broker and the
performance predictor are auxiliary services which provide information about
the resources available on the Grid, and predictions about expected execution
times and data transfer times.

Scientific workflows executed in the ASKALON environment are based on the
model described in the AGWL specification language [11]. AGWL documents
can express simple DAGs as well as more sophisticated workflow graphs contain-
ing loops and conditional branches which impose control flow decisions that can
only be decided at runtime. Special workflow structures (conditional branches
if-then or switch, loops, or parallel loops) can be evaluated in various ways for
different executions. To cope with such uncertainties the scheduler makes as-
sumptions about the actual evaluation of the workflow, and makes the schedule
for the graph predicted as result of such assumption. If an assumption fails, the
scheduler transforms the workflow once again in the proper way and resched-
ules it. This approach may bring about considerable benefit if the structure of
the workflow is predicted correctly (especially, when a strong unbalance in the
workflow is detected). If the conditions are predicted incorrectly, the workflow ex-
ecution time is the same as in the case of a just-in-time strategy which schedules
only those parts of the workflow that are resolved at the moment of scheduling.
Fig. 2(a)- 2(d) show two such workflow transformations applied to real Grid
workflow applications (see Section 5).

3 Scheduling Algorithms

The scheduling algorithms under consideration map tasks as part of workflows
onto Grid sites (clusters). Each Grid site consists of a set of CPUs, each of which
is considered as a single computational resource. If a task is executed on a CPU,
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no other tasks can use the same CPU at the same time. Execution times of tasks
and data transfers generated by the performance predictor are given as input
data to the scheduler.

3.1 HEFT Algorithm

The HEFT algorithm that we applied consists of 3 phases:

1. Weighting assigns the weights to the nodes and edges in the workflow;
2. Ranking creates a sorted list of tasks, organized in the order how they should

be executed;
3. Mapping assigns the tasks to the resources.

The weights assigned to the nodes are calculated based on the predicted
execution times of the tasks. The weights assigned to the edges are calculated
based on predicted times of the data transferred between the resources. In het-
erogeneous environments, the weights must be approximated considering differ-
ent predictions for execution times on different resources, and for different data
transfer times on different data links. Several approximation methods were pro-
posed and compared [9]. Each of them provides different accuracy for different
cases. We chose the arithmetic average.

The ranking phase is performed traversing the workflow graph upwards, and
assigning a rank value to each of the tasks. Rank value is equal to the weight
of the node plus the execution time of the successors. The successor execution
time is estimated, for every edge being immediate successor of the node, adding
its weight to the rank value of the successive node, and choosing the maximum
of the summations. A list of resources is arranged, according to the decreasing
rank values. In the mapping phase, consecutive tasks from the ranking list are
mapped to the resources. For each task, the resource which provides the earliest
expected time to finish execution is chosen.

3.2 Genetic Algorithms

The idea of the Genetic Algorithms is to encode possible solutions of the problem
into a population of chromosomes, and subsequently to transform the popula-
tion using standard operations of selection, crossover and mutation, producing
successive generations. The selection is driven by an established fitness func-
tion, which evaluates the chromosomes in terms of accuracy of the represented
solutions. Crossover and mutation respond to standard biological operations of
mutual exchange of a part of body within a pair of chromosomes, and of change
of some elements (so-called genes) in the chromosomes randomly selected from
the population. The end condition of a genetic algorithm is usually the con-
vergence criterion which checks how much the best individual found changes
between subsequent generations. A maximum number of generations can also be
established.

Genetic Algorithms are a good general purpose heuristic, which is able to
find the optimal solution even for complicated multi-dimensional problems. The



Comparison of Workflow Scheduling Strategies on the Grid 795

challenge might be to correctly encode solutions of the problem into the chromo-
somes, which is not always feasible. Prodan in [8] encoded the actual mapping
of tasks to the resources without specifying the order of execution of indepen-
dent tasks (not linked through control and data flow dependencies) that are
scheduled on the same CPU. Therefore this execution order cannot be a sub-
ject to optimization. Moreover, Genetic Algorithms tend to be computationally
extensive.

3.3 Myopic Algorithm

To compare the scheduling algorithms described so far, we developed a simple
and inexpensive scheduling algorithm, which makes the planning based on lo-
cally optimal decisions. In analyses every task separately, traversing the workflow
in the top-down direction, and assigns it to the resource which seems to be the
most optimal in the given moment. The algorithm represents a class of schedulers
covering for instance the Condor DAGMan resource broker which employs the
matchmaking mechanism [10]. The Myopic algorithm can produce reasonably
accurate results for rather simple workflows given accurate performance predic-
tions. But it does not provide any full-graph analysis and does not consider the
order of task execution.

4 Scheduling Strategies

Different scheduling strategies [7] can be applied, considering the trade-off be-
tween dynamicity and look-ahead range in workflow processing. At one extreme
we have just-in-time strategy, in [7] referred to as in-time local scheduling,
consisting in mapping the tasks to the resources, always choosing the most ap-
propriate solution for the current step. At the other extreme, we have full-ahead
planning where the full-graph scheduling is performed at the beginning of ex-
ecution. Those two strategies represent the most dynamic and the most static
approach, respectively. Intermediate solutions try to reconcile workflow planning
with Grid dynamism, and to find an approach which considers both the work
flow structure and the Grid behavior. One of the possible solutions is the work-
flow partitioning applied in the Pegasus system [3]. In this approach the workflow
is initially partitioned into a sequence of subworkflows, which are subsequently
scheduled and executed. Each partitioning can be characterized by the width
of a slice. The width of a slice is expressed as maximal number of node layers
within each slice. Any element of the sequence can be scheduled and executed
only if the immediate predecessor has already finished its execution.

Full-graph scheduling, however, can also be applied in a dynamic way, if
we do not consider the initial scheduling as the ultimate decision but we al-
low rescheduling of the workflow during its execution. One of the workflows we
applied in our experiments belongs to a specific class of strongly unbalanced
workflows, which seems to require full-graph analysis for proper scheduling. The
workflow contains a parallel section and some of the branches take longer to
execute than the others (see Fig. 2(d)). The tasks that belong to the longer
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branch should, therefore, execute with higher priority than the ones that belong
to the shorter branches. One important goal of our experiments was to inves-
tigate how the scheduling results depend on the workflow strategy applied for
strongly unbalanced workflows.

In our experiments we assumed high availability rate and good control over
the resources. In particular, we assumed that the scheduler always has pre-
cise information about the resources, so that the execution of the workflow is
performed in the same way as it was planned by the scheduler.

5 Experimental Results

In our experiments we compare the HEFT algorithm with a genetic algorithm
similar to the one proposed in [8], and with the Myopic algorithm described in
Section 3.3. We also compare the full-graph scheduling with the workflow parti-
tioning strategy. As results, we show execution times of the scheduled workflow
applications (execution times), and the times spent in preparing the schedules
(scheduling times). The execution times were measured for two scenarios of work-
flow execution. In the first scenario, we do not provide to the scheduler any per-
formance predictions, so the scheduler has to assume that all the execution times
are equal for all tasks on all the resources (scheduling without performance guid-
ance). In the second scenario, the scheduler is provided with experience-based
performance predictions derived from historical executions (scheduling with per-
formance guidance). The predictions were provided to the scheduler in a two-
dimensional array, containing the execution time of each task on each computer
architecture available in our Grid. The assumption was that each task takes the
same execution time on every machine that belongs to the same type (i.e, has
the same CPU model, CPU speed and total RAM size).

Fig. 1. Performance of Grid clusters used
in the experiments

Experiments were performed incor-
porating seven Grid sites (clusters) of
the Austrian Grid [2] infrastructure
with 116 CPUs in total (not all Grid
sites were used in all the experiments).
In Fig. 1 we present the performance
of the individual clusters, where each
cluster shows the average execution
time of all the workflow tasks executed
on a single CPU. As we can see, the
fastest cluster is more than three times
faster than the slowest one.

Similarly to execution time predic-
tions, the execution times of the tasks on the sites were measured on the Austrian
Grid during a test phase. Time consumed by data transfers between two tasks
connected with a data link was considered as constant. We also fixed the mid-
dleware overhead introduced by the Globus GSI security [6] and the queuing
system to 30 seconds.
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(a) WIEN2k, original workflow (b) Invmod, original workflow

(c) WIEN2k, transformed workflow (d) Invmod, transformed workflow

Fig. 2. Workflows of the applications

In our experiments we used two real-world applications, WIEN2k [1] and
Invmod [4]. WIEN2k workflow (Fig. 2(a)) is a fully-balanced workflow which
contains two parallel sections with possibly many parallel tasks, and an external
loop. For our tests we considered the workflow with one iteration of the loop,
and 250 parallel tasks in each section (Fig. 2(c)). We used the Invmod workflow
(Fig. 2(b)) to simulate the common case of strongly unbalanced workflow. If
the loops in individual workflow threads have different numbers of iterations
(and the iteration numbers are predicted correctly), then the threads may differ
significantly with regard to their expected execution times. The workflow used
for these experiments (Fig. 2(d)) contains 100 parallel iterations one of which
contains 20 iterations of the optimization loop. The remaining 99 iterations
contain 10 optimization iterations each. It means, that one of the threads takes
approximately twice as much execution time as all others.

The genetic algorithm that we applied is based on the population of 100
chromosomes transformed in 20 generations. Probability of crossover was fixed
by us to 0.25, and mutation rate to 0.01. We performed workflow partitioning by
dividing the workflow into slices with well-defined width (see Section 4). For the
WIEN2k workflow (consisting of five layers) we applied a three-layer partioning,
and for Invmod workflow (which consists of 44 layers) we applied three different
partitionings, with 10, 20 and 30 layers.
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(a) WIEN2k executed in heteroge-
neous environment, execution time

(b) WIEN2k executed in heteroge-
neous environment, scheduling time

(c) Invmod executed in heteroge-
neous environment, execution time

(d) Invmod executed in homoge-
neous environment, execution time

Fig. 3. Experimental results

The first conclusion we draw from the results (Fig. 3(a)-3(c)) is that per-
formance prediction is very important in heterogeneous Grid environments. For
both workflows, the results achieved with performance guidance are in the best
case nearly two times better that the results achieved without performance guid-
ance. Performance estimates are clearly important even if they are not highly
accurate.

Comparing the results measured for the WIEN2k workflow we can notice
that HEFT produces much better results than the other algorithms. Execution
time of the workflow is 17% shorter than for the genetic algorithm, and even
21% than for the Myopic. The simple solution applied in Myopic appears to be
insufficient for large and complicated workflows, and the algorithm produces the
worst results. Also the genetic algorithm appears to be not a good method to
deal with our problem. Comparing the scheduling times of individual algorithms
we can see that the genetic algorithm executes two to three orders of magnitude
longer than the others.

The results measured for the Invmod workflow present how individual algo-
rithms deal with strongly unbalanced workflows. As expected, the Myopic algo-
rithm provides the worst results of all, approximately 32% worse than HEFT.
The genetic algorithm produces quite good results, however it was not able to
find the best possible solution, since the order of execution (of independent tasks
scheduled to the same CPU) was not considered for optimization. In the work-
flows scheduled without an established task order, the tasks are executed in an
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arbitrary order chosen by the runtime system. For a strongly unbalanced work-
flow, however, the runtime system has to be guided to assign higher priority to
the tasks that execute in iterations of the parallel loop with longer execution
times. Scheduling strategies based on the workflow partitioning were also not
able to find the optimal solution, although their results are still better than the
one found by the Myopic algorithm. Since all of the algorithms (except for the
genetic algorithm) execute really fast (less than 20 seconds for large and compli-
cated workflows), there is no reason to apply the partitioning strategy in place
of the full-graph analysis.

Fig. 3(d) presents the execution results of the Invmod workflow on a homo-
geneous environment (three nearly identical Grid sites). As expected, there is
now almost no difference between the scheduling with and without performance
guidance, as the execution on each cluster takes the same time. Again, HEFT
produces the best results, 24% better than Myopic.

6 Conclusions

Scheduling applications on the Grid is of paramount importance to optimize non-
functional parameters such as execution time. In this paper we compared three
different algorithms examining aspects such as incremental versus full-graph
scheduling for balanced versus unbalanced workflows.

Based on two real world Grid workflows we observed that the HEFT al-
gorithm appears to be a good and computationally inexpensive scheduling
algorithm that performs better than the other 2 candidates discussed in this
paper.

We also investigated a specific class of strongly unbalanced workflows. We
demonstrated that any just-in-time scheduling strategy is likely to produce poor
results for workflows of this class. Also the workflow partitioning strategy used in
Pegasus system [3] appears to have no advantage over the full-graph scheduling,
and may produce less efficient results for unbalanced workflows.

We implemented the HEFT algorithm in the ASKALON environment for
scheduling scientific workflow applications on the Grid. In the future we will try
to make our strategy more efficient for heterogeneous environments. We will
also examine more carefully different network issues and their influence on the
performance-oriented scheduling.
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Abstract. We present a web computing library (PUBWCL) in Java
that allows to execute strongly coupled, massively parallel algorithms in
the bulk-synchronous (BSP) style on PCs distributed over the internet
whose owners are willing to donate their unused computation power.

PUBWCL is realized as a peer-to-peer system and features migration
and restoration of BSP processes executed on it.

The use of Java guarantees a high level of security and makes PUBWCL
platform independent. In order to estimate the loss of efficiency inherent
in such a Java-based system, we have compared it to our C-based
PUB-Library.

1 Introduction

Motivation. Bearing in mind how many PCs do exist distributed all over the
world, one can easily imagine that all their idle times together represent a huge
amount of unused computation power. There are already several approaches
geared to utilize this unused computation power (e. g. distributed.net [6], Great
Internet Mersenne Prime Search (GIMPS) [8], Search for Extraterrestrial Intelli-
gence (SETI@home) [15]). A common characteristic of most of these approaches
is that the computational problem to be solved has to be divided into many small
subproblems by a central server; clients on all the participating PCs download a
subproblem, solve it, send the results back to the server, and continue with the
next subproblem. Since there is no direct communication between the clients,
only independent subproblems can be solved by the clients in parallel.

Our contribution. We have developed a web computing library (PUBWCL) that
removes this restriction; in particular, it allows to execute strongly coupled, mas-
sively parallel algorithms in the bulk-synchronous (BSP) style on PCs distrib-
uted over the internet. PUBWCL is written in Java to guarantee a high level
of security and to be platform independent. PUBWCL furthermore features mi-
gration and restoration of BSP processes executed on it in order to provide for
load balancing and to increase fault tolerance. A systematic evaluation of load
balancing strategies for PUBWCL is described in [10].
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Related work. Like PUBWCL, Oxford BSPlib [3] and Paderborn University BSP
Library (PUB) [12, 13] are systems to execute strongly coupled, massively par-
allel algorithms according to the BSP model (see Section 2). They are written
in C and are available for several platforms. These BSP libraries are optimized
for application on monolithic parallel computers and clusters of workstations.
These systems have to be centrally administrated, whereas PUBWCL runs on
the internet, taking advantage of Java’s security model and portability.

The Bayanihan BSP implementation [2] follows the master-worker-paradigm:
The master depacketizes the BSP program to be executed into pieces of work,
each consisting of one superstep in one BSP process. The workers download a
packet consisting of the process state and the incoming messages, execute the
superstep, and send the resulting state together with the outgoing messages back
to the master. When the master has received the results of the current superstep
for all BSP processes, it moves the messages to their destination packets. Then
the workers continue with the next superstep. With this approach all commu-
nication between the BSP processes passes though the server, whereas the BSP
processes communicate directly in PUBWCL.

Organization of paper. The rest of the paper is organized as follows: In Sections
2 and 3, we give an overview of the used parallel computing model and the
Java thread migration mechanism. In Sections 4 and 5, we describe our web
computing library and evaluate its performance. Section 6 concludes this paper.

2 The BSP Model

In order to simplify the development of parallel algorithms, Leslie G. Valiant has
introduced the Bulk-Synchronous Parallel (BSP) model [18] which forms a bridge
between the hardware to use and the software to develop. It gives the developer
an abstract view of the technical structure and the communication features of
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the hardware to use (e. g. a parallel computer, a cluster of workstations or a set
of PCs interconnected by the internet).

A BSP computer is defined as a set of processors with local memory,
interconnected by a communication mechanism (e. g. a network or shared mem-
ory) capable of point-to-point communication, and a barrier synchronization
mechanism (cf. Fig. 1 (a)).

A BSP program consists of a set of BSP processes and a sequence of su-
persteps – time intervals bounded by the barrier synchronization. Within a su-
perstep each process performs local computations and sends messages to other
processes; afterwards it indicates by calling the sync method that it is ready for
the barrier synchronization. When all processes have invoked the sync method
and all messages are delivered, the next superstep begins. Then the messages
sent during the previous superstep can be accessed by its recipients. Fig. 1 (b)
illustrates this.

3 Thread Migration in Java

As the available computation power of the computers to be used by our library
permanently fluctuates, the execution time of a parallel program can be signif-
icantly improved if it is possible to migrate its processes at run-time to other
hosts with currently more available computation power.

There are three ways to migrate threads in Java: modification of the Java Vir-
tual Machine (VM) [5], bytecode transformations [4, 11], and sourcecode trans-
formations [16, 17]. Modifying the Java VM is not advisable because everybody
would have to replace his installation of the original Java VM with one from a
third party, just to run a migratable Java program.

Inside PUBWCL, we use JavaGo RMI [16, 9] which is an implementation
of the sourcecode transformation approach. It extends the Java programming
language with three keywords: migrations are performed using the keyword go
(passing a filename instead of a hostname as parameter creates a backup copy of
the execution state). All methods, inside which a migration may take place, have
to be declared migratory. The depth, up to which the stack will be migrated,
can be bounded using the undock statement.

The JavaGo compiler jgoc translates this extended language into Java source-
code, using the unfolding technique described in [16]. Migratable programs are
executed by dint of the wrapper javago.Run. In order to continue the execution
of a migratable program, an instance of javago.BasicServer has to run on the
destination host.

Since the original implementation of JavaGo is not fully compatible with the
Java RMI standard, we use our own adapted version JavaGo RMI.

4 The Web Computing Library

People willing to join the Paderborn University BSP-based Web Computing Li-
brary (PUBWCL) system, have to install a PUBWCL client. With this client,
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Fig. 2. The architecture of PUBWCL

they can donate their unused computation power and also run their own parallel
programs.

Architecture of the system. PUBWCL is a hybrid peer-to-peer system: The exe-
cution of parallel programs is carried out on peer-to-peer basis, i. e., among the
clients assigned to a task. Administrative tasks (e. g. user management) and the
scheduling (i. e. assignment of clients and selection of appropriate migration tar-
gets), however, are performed on client-server-basis. Clients in private subnets
connect to the PUBWCL system via the proxy component. The interaction of
the components is illustrated in Fig. 2.

Since the clients may join or leave the PUBWCL system at any time, the
login mechanism is lease-based, i. e., a login session expires after some timeout
if the client does not regularly report back at the server.

Though a permanent internet connection is required, changes of dynamically
assigned IP addresses can be handled. This is accomplished by using Global
Unique Identifiers (GUIDs) to unambiguously identify the clients: when logging
in, each client is assigned a GUID by the server. This GUID can be resolved into
the client’s current IP address and port.

Executing a parallel program. If users want to execute their own parallel pro-
grams, they must be registered PUBWCL users (otherwise, if they only want to
donate their unused computation power, it is sufficient to use the guest login). To
run a BSP program, it simply has to be copied into a special directory specified
in the configuration file. Then one just needs to enter the name of the program
and the requested number of parallel processes into a dialog form. Optionally,
one may pass command line arguments to the program or choose a certain load
balancing algorithm.
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Fig. 3. Executing a BSP program in PUBWCL

The server then assigns the parallel program to a set of clients and sends a list
of these clients to the user’s client (cf. Fig. 3). From now on, the execution of the
parallel program is supervised by the user’s client. On each of the assigned clients
a PUBWCL runtime environment is started and the user’s parallel program is
obtained via dynamic code downloading. The output of the parallel program and,
possibly, error messages including stack traces are forwarded to the user’s client.

All processes of parallel programs are executed in an own PUBWCL runtime
environment in a separate process, so that it is possible to cleanly abort single
parallel processes (e. g. in case of an error in a user program).

The programming interface. User programs intended to run on PUBWCL have to
be BSP programs. Thereto the interface BSPProgram resp. BSPMigratablePro-
gram must be implemented, which contains the BSP main method. The following
BSP library functions can be accessed via the BSP resp. BSPMigratable interface
which is implemented by the PUBWCL runtime environment:

– sync() enters the barrier synchronization; the migratable version syncMig()
additionally creates backup copies of the execution state and performs mi-
grations if suggested by the load balancing strategy.

– With the send() method family messages can be sent or broadcasted to an
arbitrary subset of the BSP processes. A message can be any serializable
Java object.

– Messages sent in the previous superstep can be accessed with the getMes-
sage() method family.

– Calling abort() terminates all processes of the BSP program.
– Any file in the BSP program folder of the user’s client can be read using the

getResourceAsStream() method.
– Furthermore, there are methods to obtain the number of processes of the

BSP program, the own process ID, and so on.
– In migratable programs, there is also a method mayMigrate() available

which may be called to mark additional points inside a superstep where
a migration is safe (i. e. no open files etc.).
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Security aspects. The Java Sandbox allows to grant code specific permissions
depending on its origin. For example, access to (part of) the file system or
network can be denied. In order to guarantee a high level of security, we grant
user programs only read access to a few Java properties which are needed to
write completely platform independent code (e. g. line.separator etc.).

5 Performance Evaluation

In order to determine the performance drawback of PUBWCL in comparison
to a BSP implementation in C, we have conducted benchmark tests with both
PUBWCL and PUB under the same circumstances: We used a cluster of 48 dual
Intel Pentium III Xeon 850 MHz machines, that were exclusively reserved for
our experiments, to avoid influences by external work load. The computers were
interconnected by a switched Fast Ethernet. The used benchmark program was
a sequence of 10 equal supersteps. Per superstep, each BSP process did a number
of integer operations and sent a number of messages. We performed tests using
every possible combination of these parameters:

– 8, 16, 24, 32, 48 BSP processes
– 10, 20, 30 messages per BSP process and superstep
– 10 kB, 50 kB, 100 kB message size
– 0, 108, 2 · 108, 3 · 108, . . . , 109 integer operations per BSP process and

superstep
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Fig. 4. Results of the benchmark tests
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Selected results of the benchmark tests are shown in Fig. 4. As you can see,
both BSP libraries scale well, and there is a performance drawback of a factor
3.3. Note that the running time of this benchmark program is dominated by
the sequential work. Communication tests with no sequential work showed a
performance impact of a factor up to 8.7.

When porting existing BSP programs to PUBWCL, you cannot directly com-
pare the running times due to the overhead of the Java memory management. For
example, we ported our C-based solver for the 3-Satisfiability-Problem (3-SAT),
which is a simple parallelized version of the sequential algorithm in [1], to PUB-
WCL. As in the case of the benchmark program, the algorithm is dominated by
the sequential work. But in contrast to the benchmark program, it continuously
creates, clones, and disposes complex Java objects. This is much slower than
allocating, copying, and freeing structures in the corresponding C-program and
has led to a performance drawback of a factor 5.4.

6 Conclusion

We have developed a web computing library that allows to execute BSP programs
in a peer-to-peer network, utilizing only the computation power left over on the
participating PCs. It features migration and restoration of the BSP processes
in order to rebalance the load and increase fault tolerance because the avail-
able computation power fluctuates and computing nodes may join or leave the
peer-to-peer system at any time.

Due to security and portability reasons one has to use a virtual machine
like Java’s one, so a performance drawback cannot be avoided. The slowdown
depends on the type of the BSP algorithm.

We have already implemented and analyzed different load balancing strate-
gies for PUBWCL. A detailed description and comparison of them can be found
in [10].

In order to further improve PUBWCL, work is in progress to realize PUB-
WCL as a pure peer-to-peer system in order to dispose of the bottleneck at the
server, and to replace Java RMI in PUBWCL with a more efficient, customized
protocol.

To protect PUBWCL against attacks by malicious users, securing the system
with a public key infrastructure, encrypted communication tunnels, and access
control lists are conceivable.
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Abstract. Service discovery and matchmaking in a distributed environment has
been an active research issue since at least the mid 1990s. Previous work on
matchmaking has typically presented the problem and service descriptions as free
or structured (marked-up) text, so that keyword searches, tree-matching or sim-
ple constraint solving are sufficient to identify matches. We discuss the problem
of matchmaking for mathematical services, where the semantics play a critical
role in determining the applicability or otherwise of a service and for which we
use OpenMath descriptions of pre and post-conditions. We describe a matchmak-
ing architecture supporting the use of match plug-ins and describe four kinds of
plug-in that we have developed to date.

1 Introduction

There has been an increase in the number of services being made available by many
Grid projects – generally through the use of Web Services technologies (examples in-
clude BioInformatics services, Mathematical services, and recently data mining ser-
vices). Identifying suitability of such services in the context of a particular application
remains a challenging task. Humans typically use Google, but they can filter out the
irrelevant and spot the useful. Although UDDI (the Web Services registry) with key-
word searching essentially offers something similar, it is a long way from being very
helpful. Consequently, there has been much research on intelligent brokerage, such as
Infosleuth [3] and LARKS [8]. This approach is generally referred to as “Matchmak-
ing”, and involves potential producers and consumers of information sending messages
describing their information capabilities and needs. These descriptions are unified by
the matchmaker to identify potential matches. Existing literature in this area focuses
on architectures for brokerage, which are as such domain-independent, rather than con-
crete or domain-specific techniques for identifying matches between a task or problem
description and a capability or service description. Approaches to matching in the lit-
erature fall into two broad categories: (1) syntactic matching, such as textual compar-
ison or the presence of keywords in free text. (2) semantic matching, which typically
seems to mean finding elements in structured (marked-up) data and perhaps addition-
ally the satisfaction of constraints specifying ranges of values or relationships between
one element and another. In the particular domain of mathematical services the actual
mathematical semantics are critical to determining the suitability (or otherwise) of the
capability for the task. The requirements are neatly captured in [2] by the following
condition:

Tin ≥ Cin ∧ Tout ≤ Cout ∧ Tpre ⇒ Cpre ∧ Cpost ⇒ Tpost

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 809–816, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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where T refers to the task, C to the capability, in are inputs, out are outputs, pre are
pre-conditions and post are post-conditions. What the condition expresses is that the
signature constrains the task inputs to be at least as great as the capability inputs (i.e.
enough information), that the inverse relationship holds for the outputs and there is
a pairwise implication between the respective pre- and post-conditions. This however
leaves unaddressed the matter of establishing the validity of that implication. Agents
play key rôles within the matchmaking framework: (1) Provider agents: offer (a) spe-
cialist service. (2) Requester agents: consume services offered by provider agents in
the system and create tasks. (3) Matchmaker agents: mediate between both for some
mutually beneficial cooperation. Each provider must register their capabilities with the
matchmaker. Every request received will be matched with the actual set of advertise-
ments. If matches are found a ranked set of appropriate provider agents is returned to the
requester agent. In the MONET [4] and GENSS [9] projects the objective is mathemati-
cal problem solving through service discovery and composition by means of intelligent
brokerage. Mathematical capability descriptions turn out to be both a blessing and a
curse: precise service description are possible thanks to the use of the OpenMath [5]
mathematical semantic mark-up, but service matching can rapidly turn into intractable
(symbolic) mathematical calculations unless care is taken.

2 Description of Mathematical Services

2.1 OpenMath

In order to allow mathematical objects to be exchanged between computer programs,
stored in databases, or published on the Internet, an emerging standard called OpenMath
has been introduced. OpenMath is a mark up language for representing the semantics
(as opposed to the presentation) of mathematical objects in an unambiguous way. It
may be expressed using an XML syntax. OpenMath expressions are composed of a
small number of primitives. The definition of these may be found in [10], for instance:
OMA (OpenMath Application), OMI (OpenMath Integer),OMS (OpenMath Symbol) and
OMV (OpenMath Variable). Symbols are used to represent objects defined in the Content
Dictionaries (CDs), applications specify that the first child is a function or operator to be
applied to the following children whilst the variables and integers speak for themselves.
As an example, the expression x+ 1 might look like:1

<om:OMA>
<om:OMS cd="arith1" name="plus"/>
<om:OMV name="x"/>
<om:OMI> 1 </om:OMI>

</om:OMA>

where the symbol plus is defined in the CD arith1. CDs are therfore definition
repositories in the form of files defining a collection of related symbols and their mean-
ings, together with various Commented Mathematical Properties (for human consump-
tion) and Formal Mathematical Properties (for machine consumption). The symbols

1 Throughout the paper, the prefix om is used to denote the namespace: http://
www.openmath.org/OpenMath
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may be uniquely referenced by the CD name and symbol name via the attributes cd
and name respectively, as in the above example. Another way of thinking of a CD is as
a small, specialised ontology.

2.2 Matchmaking Requirements

To achieve matchmaking we want sufficient input information in the task to satisfy the
capability, while the outputs of the matched service should contain at least as much
information as the task is seeking. This is achieved when the capability pre-conditions
are a subset of the task pre-conditions, while the task post-conditions are a subset of the
capability post-conditions. These constraints reflect work in component-based software
engineering and are, in fact, derived from [11]. We find that in certain situations infor-
mation required by a capability may be inferred from the task, or from widely excepted
conventions. Examples include assuming the lower limit of integration is zero for a nu-
merical integration, or the dependant variable of a symbolic integration of a univariate
function. Conversely, a numerical integration routine might only work from 0 to the up-
per limit, while the lower limit of the problem is non-zero. A capability that matches the
task can be synthesized from the subtraction of two invocations of the capability with a
fixed lower limit of 0 in order to achieve the required task. Clearly the nature of the sec-
ond solution is quite different from the first, but both serve to illustrate the complexity
of this domain. Furthermore, we believe that given the nature of the problem, it is only
very rarely that a task description will match exactly a capability description and so
a range of reasoning mechanisms must be applied to identify candidate matches. This
results in two requirement: (1) A plug-in architecture supporting the incorporation of an
arbitrary number of matchers. (2) A ranking mechanism is required that takes into ac-
count technical (as discussed above in terms of signatures and pre- and post-condition)
and quantitative and qualitative aspects (if there are multiple matching service found).

2.3 Matchmaking Architecture

Our matchmaking architecture is shown in Figure 1 and comprises the following:

1. Client interface: employed by the user to specify their service request.
2. Matchmaker: which contains a reasoning engine and the matching module.
3. Matching Algorithms: where the logic of the matching is defined.
4. Mathematical ontologies: such as OpenMath CDs, etc.
5. Registry service: where the mathematical service descriptions are stored.
6. Mathematical Web Services: available on third party sites, accessible over the Web.

Both a graphical interface and an Application Programming Interface are supported.
The interactions of a search request are as follows: (i) the user contacts the matchmaker,
then (ii) the matchmaker loads the matching algorithms specified by the user; in the case
of an ontological match, further steps are necessary (iii) the matchmaker contacts the
reasoner which in turn loads the corresponding ontology (iv) having additional match
values results in the registry being queried, to see whether it contains services which
match the request, and finally (v) service details are returned to the user via the match-
maker. The parameters stored in the registry are service name, URL, taxonomy, input,
output, pre and post-conditions.
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Fig. 1. Matchmaking Architecture

The Client GUI2 allows the user to specify the service request via entry fields for
pre and post-conditions. The matchmaker returns the matches in the table at the bottom
of the GUI listing the matched services ranked by similarity. Subsequently the user can
invoke the service by clicking on the URL.

Currently four complementary matching algorithms have been implemented within
the matchmaker: structural match, syntax and ontological match, algebraic equivalence
match and value substitution match. The structural match only compares the OpenMath
symbol element structures (e.g. OMA, OMS, OMV etc.). The syntax and ontological match
algorithm goes a step further and compares the OpenMath symbol elements (OMS ele-
ments) by comparing the values of the cd and name attributes of the OMS elements. If
a syntax match is found, which means that the cd and name values are identical, then
no ontology match is necessary. If an ontology match is required, then inclusion rela-
tionships are considered to attempt to form a match. The algebraic equivalence match
and value substitution match use mathematical reasoning. In the ontological match
OpenMath elements are compared with an ontology [7] representing the OpenMath
elements. The matchmaking mechanism allows a more effective matchmaking process
by using mathematical ontologies such as the one for sets shown in Figure 2. OWL-
JessKB [1] was used to implement the ontological match. It involves reading Ontology
Web Language (OWL) files, interpreting the information as per the OWL and RDF lan-
guages, and allowing the user to query on that information. To give an example the user
query contains the OpenMath element <om:OMS cd=’setname1’ name=’Z’/>
(the integers) and the service description contains the OpenMath element <om:OMS
cd=’setname1’ name=’P’> (the prime numbers). One way of determining the
distance between these (set valued) concepts is to count the number of arcs between
their representatives in the ontology (which in this case represents an inclusion graph)
Figure 2. The query finds the nodes labelled Z and P, and determines the similarity

2 http://agentcities.cs.bath.ac.uk:8080/genss_axis/
GENSSMatchmaker.jsp
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Fig. 2. Set Ontology Fragment

<om:OMOBJ><om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMA>
<om:OMS cd="arith1" name="power"/>
<om:OMV name="x"/>
<om:OMI>2</om:OMI>

</om:OMA>
<om:OMA>
<om:OMS cd="arith1" name="power"/>
<om:OMV name="y"/>
<om:OMI>2</om:OMI>

</om:OMA></om:OMA>
</om:OMOBJ>

<om:OMOBJ><om:OMA>
<om:OMS cd="arith1" name="times"/>
<om:OMA>
<om:OMS cd="arith1" name="plus"/>
<om:OMV name="x"/>
<om:OMV name="y"/>

</om:OMA>
<om:OMA>
<om:OMS cd="arith1" name="minus"/>
<om:OMV name="x"/>
<om:OMV name="y"/>

</om:OMA></om:OMA>
</om:OMOBJ>

Fig. 3. x2 − y2 (left) and (x + y)(x − y) (right) in OpenMath

value depending on the distance between the two entities (inclusive, on one side) which
in this case is SV = 1

n = 0.5, where n is the number of arcs separating the two nodes,
which also gives a good measure of the separation of the concepts defined by the corre-
sponding ontology.

For both the ontological and structural match, it is necessary that the pre- and post-
conditions are in some standard form. For instance, consider the algebraic expression
x2 − y2, this could be represented in OpenMath as on the left of Figure 3, however,
x2−y2 = (x+y)(x−y), leading to the ontologically and structurally different markup
on the right of Figure 3. In order to address the above observation, we must look deeper
into the mathematical structure of the expressions which make up the post-conditions.
Most of the conditions examined may be expressed in the form: Q(L(R)) where:

– Q is a quantifier block, e.g. ∀x∃y s.t. · · ·
– L is a block of logical connectives, e.g. ∧,∨,⇒, · · ·
– R is a block of relations, e.g. =,≤,≥, �=, · · ·

Processing the Quantifier Block: In most cases, the quantifier block will just be a range
restriction. Sometimes it may be possible to use quantifier elimination to replace the
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quantifier block by an augmented logical block and many computer algebra systems,
e.g. RedLog in Reduce, provide quantifier elimination facilities.

Processing the Logical Block: Once the quantifier elimination has been performed on
the query descriptions and the service descriptions, the resulting logical blocks must
be converted into normal forms. The query logical block will be transformed into dis-
junctive normal form:

∨
i,̃i(
∧

j QTij ∧
∧

j̃ QTĩj̃
). The service description block will be

transformed into conjunctive normal form:
∧

i,̃i(
∨

j STij ∨
∨

j̃ STĩj̃
).

Hence we may perform a match by taking any one of the conjunctions
∧

j QTij (or∧
j̃ QTĩj̃

) and looking for the case that each one of the QTij (or QTĩj̃
appears in sep-

arate STij (or STĩj̃
). Non matches may be detected if one of the QTij matches one of

the STĩj̃
or if one of the QTĩj̃

matches one of the STij .

Processing the Relations Block: We now have a disjunction of terms which we are
matching against a set of conjunction of terms. It is useful to note that a term is of the
general form: TL , TR where , is some relation i.e. a predicate on two arguments.
If TL and TR are real valued, we have two terms we wish to compare QL , QR and
SL , SR, we first isolate an output variable r, this will give us terms r , Q and r , S.
There are two approaches which we now try in order to prove equivalence of r , Q
and r , S:

– Algebraic equivalence: we attempt to show that the expression (Q− S = 0) using
algebraic means. There are many cases were this approach will work, however it
has been proved [6] that in general this problem is undecidable. Another approach
involves substitution of r determined from the condition r , S into r , Q, and
subsequently proving their equivalence.

– Value substitution: we attempt to show that (Q − S = 0) by substituting random
values for each variable in the expression, then evaluating and checking to see if the
valuation we get is zero. This is evidence that (Q− S = 0), but is not conclusive,
since we may have been unlucky in the case that the random values coincide with
a zero of the expression.

3 Case Study

For the case study we consider the four matching modes. The Factorisor service we
shall look at is a service which finds all prime factors of an Integer. The Factorisor has
the following post-condition:
<om:OMOBJ>

<om:OMA>
<om:OMS cd =’relation1’ name =’eq’/>
<om:OMV name =’n’/>
<om:OMA>

<om:OMS cd =’fns2’ name =’apply_to_list’/>
<om:OMS cd =’arith1’ name =’times’/>
<om:OMV name =’lst_fcts’/>

</om:OMA>
</om:OMA>

</om:OMOBJ>

where n is the number we wish to factorise and lst_fcts is the output list of factors.
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As the structural and ontological modes compare the OpenMath structure of queries
and services, and the algebraic equivalence and substitution modes perform mathemat-
ical reasoning, the case study needs to reflect this by providing two different types of
queries.

For the structural and ontological mode let us assume that the user specifies the
following query:
<om:OMOBJ>

<om:OMA>
<om:OMS cd =’fns2’ name =’apply_to_list’/>
<om:OMS cd =’arith1’ name =’plus’/>
<om:OMV name =’lst_fcts’/>

</om:OMA>
</om:OMOBJ>

For the structural match, the query would be split into the following OM collection:
OMA, OMS, OMS, OMV and /OMA in order to search the database with this given pattern.
The match score of the post-condition results in a value of 0.27778 using the equations
described earlier.

The syntax and ontology match works slightly different as it also considers the
values of the OM symbols. In our example we have three OM symbol structures. There
are two instances of OMS and one of OMV. First the query and the service description
are compared syntactically. If there is no match, then the ontology match is called for
the OMS structure. The value of the content dictionary (CD) and the value of the name
are compared using the ontology of that particular CD. In this case the result is a match
score of 0.22222. If the OM structure of the service description is exactly the same as the
query then the structural match score is the same as for the syntax and ontology match.
The post-condition for the Factorisor service represents:

n =
l∏

i=1

lst fctsi where l = |lst fcts| (1)

Considering the algebraic equivalence and the value substitution, a user asking for a
service with post-condition:

∀i|1 ≤ i ≤ |lst fcts| ⇒ n mod lst fctsi = 0 (2)

should get a match to this Factorisor service.
To carry out the algebraic equivalence match we use a proof checker to show that:

1. equation (1) ⇒ equation (2): This is clear since the value of n may be substituted
into equation (1) and the resulting equality will be true for each value in lst fcts.

2. equation (2)⇒ equation (1): A slightly stronger version of equation (2) which says
that there are no other numbers which divide n.

To compute the value substitution match we must gather evidence for the truth of equa-
tions 1 and 2 by considering a number of random examples, we proceed as follows.
We first need to decide on the length of the list for our random example. A good basis
would be to take |lst fcts| = �log2(n)�, this represents a bound on the number of
factors in the input number. We then collect that number of random numbers, each of
size bounded by

√
n. Then we calculate their product, from equation (1), this gives a

new value for n. We may now check equation (2). We see that it is true for every value
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in lst fcts. If we try this for a few random selections, we obtain evidence for the
equivalence of equations (1) and (2).

4 Conclusion and Further Work

We have presented an approach to matchmaking in the context of mathematical seman-
tics. The additional semantic information greatly assists in identifying suitable services
in some cases, but also significantly complicates matters in others, due to the inherent
richness of mathematical semantics. Consequently, we have put forward an extensi-
ble matchmaker architecture supporting plug-in matchers that may employ a variety of
reasoning techniques, including theorem provers, as well as information retrieval from
textual documentation of mathematical routines. Although our set of test cases is as
yet quite small, the results are promising and we foresee the outputs of the project be-
ing of widespread utility in both the e-Science and Grid communities, as well as more
generally advancing semantic matchmaking technology. Although the focus here is on
matchmaking mathematical capabilities, the descriptive power, deriving from quantifi-
cation and logic combined with the extensibility of OpenMath creates the possibility
for an extremely powerful general purpose mechanism for the description of both tasks
and capabilities.
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3 Physics Department, Western University of Timişoara, Romania
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Abstract. In this paper we discuss an application of a modified version
of a graph partitioning-based heuristic load-balancing algorithm known
as the Largest Task First with Minimum Finish Time and Available Com-
munication Costs, which is a part of the EVAH package. The proposed
modification takes into account the dynamic nature and heterogeneity
of grid environments. The new algorithm is applied to facilitate load
balance of a known CFD code used to model crystal growth.

1 Introduction

Computational fluid dynamics codes are computationally demanding, both in
terms of memory usage and also in the total number of arithmetical operations.
Since the most natural methods of improving accuracy of a solution are (1) refin-
ing a mesh or/and (2) shortening the time step, either of these approaches result
in substantial further increase of both computational cost and total memory
usage. Therefore, a tendency can be observed, to use whatever computational
resources are available to the user and, particularly among researchers working
in the CFD area, there exist an almost insatiable demand for more powerful
computers with ever increasing size of available memory. One of possible ways
to satisfy this demand is to divide up the program to run on multiple processors.
In the last twenty years several codes have been introduced to facilitate parallel
computational fluid dynamics.

Parallel CFD codes have been typically developed assuming a homogeneous
set of processors and a fast network. Recent ascent of grid technologies requires
re-evaluation of these assumptions as the very idea of computational grids is
based on combining heterogeneous processors and using substantially slower net-
works connections (typically the Internet or a corporate LAN). This makes the
environment much different than parallel computers or clusters of workstations
connected using a fast switch. Furthermore, the migration process of CFD codes
designed for parallel computing architectures towards grids must take into ac-
count not only the heterogeneity of the new environment but also the dynamic
evolution of the pool of available computational resources. At the same time we
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have to acknowledge that to be able to fully rewrite the existing codes is usually
not a viable option (e.g. because of the cost involved in such an endeavor).

In this context let us note that large body of research has been already
devoted to dynamic load balancing in heterogeneous environments, and more re-
cently in grid environments (e.g. in [2] dynamic load-balancing in a grid
environment is used for a geophysical application).

Approaches to load-balancing in distributed systems can be classified into
three categories: (1) graph-theoretic, (2) mathematical programming based, and
(3) heuristic. Graph-theoretic algorithms consider graphs representing the inter-
task dependencies and apply graph partitioning methodologies to obtain approx-
imately equal partitions of the graph such that the inter-node communication is
minimized. A CFD simulation using such an approach is described in [5]. The
mathematical programming method, views the load-balancing as an optimization
problem and solves it using techniques originating from that domain. Finally,
heuristic methods provide fast solutions (even though usually sub-optimal ones)
when the time to obtain the exact optimal solution is prohibitive. For example
in [1] a genetic algorithm is used as an iterative heuristic method to obtain near
optimal solutions to a combinatorial optimization problem that is then applied
to job scheduling on a grid.

When approached from a different perspective, we can divide load manage-
ment approaches into (1) system level, and (2) user-level. A system-level cen-
tralized management strategy, which works over all applications uses schedulers
to manage loads in the system. It is typically based on rules associated with job
types or load classes. An example of the the user-level individual management of
loads in a parallel computing environment is the Dynamic Load Balancing (DLB
[8]) tool that lets the system balance loads without going through centralized
load management and, furthermore, provides application level load balancing for
individual parallel jobs. Here, a CFD test case was used as an example. System
load measurement of the DLB is modified using average load history provided
by computing systems rather than by tracking processing of tasks.

The EVAH package [3] was developed to predict the performance scalability
of overset grid applications executing on large numbers of processors. In par-
ticular, it consists of a set of allocation heuristics that consider the constraints
inherent in multi-block CFD problems.

In this paper we analyze and modify a graph partitioning-based heuristic
algorithm available within the EVAH package, the Largest Task First with Min-
imum Finish Time and Available Communication Costs (LTF MFT ACC). The
main drawback of this algorithm is that it assumes that grid-available resources
are homogeneous. For instance, to show its efficiency tests performed on an
Origin2000 system and were reported in [3]. We propose a modification of the
LTF MFT ACC algorithm that can be applied in the case of a heterogeneous
computing environment (such as a typical grid is supposed to be). Inspired by
the DLB tool, our algorithm takes into account (1) the history of the computa-
tion time on different nodes, (2) the communication requirements, and (3) the
current network speeds. To study the robustness of the proposed improvements,
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the modified LTF MFT ACC algorithm is used to port an existing CFD code
into a heterogeneous computing environment.

The paper is organized as follows. Section 2 describes the CFD code and
its parallel implementation. Section 3 presents the modified LTF MFT ACC
algorithm. Section 4 discusses the results of our initial test.

2 Crystal Growth Simulation

Materials processing systems are often characterized by the presence of a num-
ber of distinct materials and phases with significantly different thermo-physical
and transport properties. Understanding of the complex transport phenomena in
these systems is of vital importance for the design and fabrication of various de-
sired products as well as optimization and control of the manufacturing process.
It is well known that numerical simulation prove to be an effective tool for the
understanding of the transport mechanisms. However, in computational prac-
tice, three-dimensional simulations are necessary to yield a reliable description
of the flow behavior. Usual computational methods applied to these problems
include finite difference, finite volume, finite element, and spectral methods.

In particular, let us consider the Czochralski process [11] of bulk crystal
growth that features a rod holding an oriented seed crystal which is lowered
through the top surface of the molten liquid contained in a crucible. With thermal
control to maintain the upper surface of the fluid at the melt temperature, growth
begins on the seed and when the crystal reaches a specified diameter, the rod
is slowly withdraw to continue growth (Figure 1.a). The flow in the melt, from
which the crystal is pulled, is transient and, depending on the size of the crucible,
mostly turbulent.

The silicon melt flow into a rotating crucible is governed by the three-
dimensional partial differential equations describing mass, momentum, and heat
transport. Solution methods that employ finite volume (see e.g [4]) require gen-
eration of the solution grid that conforms to the geometry of the flow region
(a grid of small volume elements for which the average values of flow quantities
are stored). An important issue for the quality of the numerical simulations is
the choice of the (discretizing) grid. Here, both the numerical resolution and
the internal structure of the grid are very important. The second item can be
seen, is the refining of the grid towards the walls of the melt container, which is
necessary to properly resolve the boundary layers of the flow.

As far as the solution was concerned, a matched multiblock method was used
in our simulations (here, the grid lines match each other at the block conjunc-
tion). Here, a multiblock structured grid system [13] uses advanced linear solvers,
for the inner iteration, and a multigrid technique for the outer iterations. Fur-
thermore, the computational domain is divided into blocks consisting of control
volumes (from hundreds to millions; see Figure 1.b).

More specifically, the finite volume code STHAMAS 3D (developed partially
by the second author at the Institute of Materials Science in Erlangen) allows
three-dimensional time-dependent simulations on a block-structured numerical
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Fig. 1. Crystal growth: (a) device; (b) control volumes; (c) blocks of control volumes;
(d) code outputs – isoterms and animation frames

grid. SIP (Stone’s strongly implicit procedure [12]) is used to solve the system of
linear equation resulting from the discretization of PDEs for three-dimensional
problems (it is applicable to seven-diagonal coefficient matrices that are ob-
tained when central-difference approximation is used to discretize the problem).
SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations, [9]) is
used for the pressure correction and the implicit Euler method is applied for time
integration. The SIP and the SIMPLE were studied and compared (in [6]) with
other solvers and shown to be very robust. A simple example of the graphical
output of the code is presented in Figure 1.d.

Time-dependence and three-dimensionality coupled with extensive parameter
variations require a very large amount of computational resources and result in
very long solution times. The most time-consuming part of the sequential code
STHAMAS 3D is the numerical solution obtained, using the SIP, on different
blocks of CVs. In order to decrease the response time of STHAMAS 3D, a
parallel version was recently developed by the first two authors and compared
with other similar CFD codes (see [10]). It is based on a parallel version of the
SIP solver, where simultaneous computations are performed on different blocks
mapped to different processors (different colors in Figure 1.c). After each inner
iteration, information exchanges are performed at the level of block surfaces
(using the MPI library). Thus far, the new parallel STHAMAS 3D was tested
only utilizing homogeneous computing environments, in particular, a clusters of
workstations and a parallel computer.
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For completeness it should be noted that a different parallel version of a
crystal growth simulation has been reported in [7]. It utilizes a parallel version
of the SSOR preconditioner and the BiCGSTAB iterative solver.

3 Load Balancing Strategy

In the Largest Task First with Minimum Finish Time and Available Communi-
cation Costs (LTF MFT ACC) algorithm from the EVAH package [3] a task is
associated with a block in the CFD grid system. The size of a task is defined as
the computation time for the corresponding block. According the Largest Task
First (LTF) policy, the algorithms first sorts the tasks in a descending order by
their size. Then it systematically allocates tasks to processors respecting the rule
of Minimum Finish Time (LTF MFT). The overhead involved in this process,
due to data exchanges between neighboring blocks, is also taken into account.
The LTF MFT ACC utilizes approximations of communication costs, which are
estimated on the basis of the inter-block data volume exchange and the inter-
processor communication rate.

Input:
Current distribution of the N blocks on P processors: p(i) ∈ {1, . . . , P}, i = 1, . . . , N
Output:
New distribution of the N blocks on P processors: p′(i) ∈ {1, . . . , P}, i = 1, . . . , N

Preliminaries, using the current distribution:
Record the computation time for each block: Ti, i = 1, . . . , N
Record the quantity of data to be send/receive between blocks: Vj,k, j, k = 1, . . . , N
Estimate communication time between each pair of processors depending on the

quantity of transmitted data: Send(p, q, dim), Recv(p, q, dim), p, q = 1, . . . , P, p �= q
Record the time spent to perform a standard test: cp, p = 1, . . . , P
Compute the relative speeds of computers: wp ← cp/minp=1,...,P cp, p = 1, . . . , P
Normalize computation time for each block: ti ← Ti/wp(i), i = 1, . . . , N

To do:
Sort ti, i = 1, N in descending order
Set costs Cp = 0, p = 1, . . . , P
For each ti, i = 1, . . . , N do

Find the processor q with minimum load: ?q, Cq = minp=1,...,P Cp

Associate block i with processor q, p′(i) ← q
Modify the costs: Cq ← Cq + wqti

For each processor o �= q having assigned a task j sending a message to task i,
Co ← Co + Send(o, q, V (j, i))
Cq ← Cq + Recv(q, o, V (j, i))

For each processor o �= q having assigned a task j receiving a message from task i,
Co ← Co + Recv(o, q, V (i, j))
Cq ← Cq + Send(q, o, V (i, j))

Fig. 2. Modified LTF MFT ACC algorithm
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In the LTF MFT ACC algorithm described in [3] for the homogeneous case,
the estimated computational time for block i, ti does not vary with the processor
power. To take into account the variation of the computational power of the
heterogeneous resources, we have modified the LTF MFT ACC (Figure 2) as
follows. When the load balancing procedure is activated before a specific inner
iteration of the simulation, several counters are started and they stop only at
the end of the inner iteration. Those counters are measuring:

– the computer power, conceptualized as the time of performing a single cycle
involving floating point operations; this information is further used to rank
the resources;

– the computation time spent working on each block at an inner iteration; this
information and the relative computer power are used to assume what will
be the time spent working on a given block by other processor(s);

– the required volume of data to be exchanged between neighboring blocks
(number of elementary data items);

– samples of communication times between each pair of processors collected
for several volumes data (further time values are estimated by a linear in-
terpolation).

The DLB tool [8] uses as inputs for the load balance strategy also the timing
of computation for parallel blocks and the size of the interface of each block with
its neighbors. Those times are not referring to a specific inner iteration of the
CFD simulation, but to an average load history provided by computing systems
that are part of the grid that is used to solve the problem.

4 Tests

The initial LTF MFT ACC algorithm was applied in [3] to a selected CFD prob-
lem, a Navier-Stokes simulation of vortex dynamics in the complex wake of a
region around hovering rotors. The overset grid system consisted of 857 blocks
and approximately 69 million grid points. The experiments running on the 512-
processor SGI Origin2000 distributed-shared-memory system showed that the
EVAH algorithm performs better than other heuristic algorithms.

The CFD test case from the [8] used a three-dimensional grid for a heat
transfer problem. The grid consisted of 27-block partitions with 40x40x40 grid
points on each block (1.7 millions of grid points). For a range of relative speeds of
computers from 1÷ 1.55 a 21% improvement in the elapsed time was registered.

In our tests we have considered a three-dimensional grid applied to the crystal
growth simulation using STHAMAS 3D with 38-block-partitions with a variable
number of grid points: the largest one had 25x25x40 points, while the smallest
one had 6x25x13 points (total of 0.3 millions of grid points in the simulation).

We considered two computing environments:

– a homogeneous one a Linux cluster of 8 dual PIV Xeon 2GHz Processors
with 2Gb RAM and a Myrinet2000 interconnection (http://www.oscer.edu);
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– a heterogeneous one – a Linux network of 16 PCs with variable computa-
tional power, from an Intel Celeron running at 0.6GHz, with 128Mb RAM
to an Intel PIV running at 3GHz and with 1Gb RAM; these machines were
connected through an Ethernet 10 Mbs interconnection (http://www.risc.
unilinz.ac.at).

Thus, the interval of the relative speeds of computers used in the second case
reached 1÷ 2.9.

Initially blocks of the discretization were distributed uniformly between the
processors (e.g. in the case of two processors, first 19 blocks were send to the
first processor, and the last 19 blocks were send to the second processor).

Due to the different number of grid points in individual blocks, the ini-
tial LTF MFT ACC algorithm running in the homogeneous environment rec-
ommended a new distribution of the nodes. Also the modified LTF MFT ACC
algorithm made such a recommendation. For example, a reduction of 6% of
the computation time required by an inner iteration was registered by applying
both algorithms (the original one and the modified one) in the case of using 4
processors (Figure 3.a).

In the case of the heterogeneous environment, the LTF MFT ACC algorithm
performs better: we observe a reduction ranging from 14% to 20% of the time
spent by the CFD code in the inner iteration. A further reduction of the time
was obtained when applying the modified LTF MFT ACC algorithm — varying
from 20% to 31% (Figure 3.b). Comparing the time results with the ones for the
initial distribution, a total reduction time obtained in our experiments varies
from 33% to 45%.

Fig. 3. Load balancing results : (a) in the case of 4 processors of the homogeneous
environment, the LTF MFT ACC algorithm reduces the differences between the com-
putation time spent by each processor in the inner iteration; (b) in the case of 2, 4,
8 and 16 processors of the heterogeneous environment, the LTF MFT ACC reduces
the time per inner iteration, but a further significant reduction is possible using the
modified LTF MFT ACC algorithm.
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5 Further Improvements

The proposed load balancing technique shows to be useful in the considered case,
a version of a CFD code running within heterogeneous or grid environments.
Tests must be further performed to compare several dynamic load balancing
techniques with the proposed one, not only in what concerns the influence of
the computer power variations as in this paper, but also of the network speed
variation. A particular grid testbed running MPICH-G2 applications will be used
in the near future to perform such tests.
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Abstract. The paper discusses parallelization of codes and algorithms
used in Computational Fluid Dynamics. A theoretical model is presented
for parallelization based on domain decomposition. This model allows
for quantitative prediction of acceleration and efficiency. Finally, certain
unresolved problems related to grid environment are reported.

1 Introduction

Finite-volume or finite-element methods are routinely used in Computational
Fluid Dynamics for discretization of Euler/Navier-Stokes equations which govern
the fluid flow.

As a result, simulations consist of a long sequence of consecutive iterations
which aim to solve a very large system of nonlinear algebraic equations. Typical
computational meshes contain millions of cells, but even such detailed spatial
resolution is still not sufficient to effectively predict certain phenomena.

Reduction of computational time is possible (at the present level of algorithm
development) only through application of parallel processing.

The present paper deals with parallelization based on domain decomposi-
tion [3]. This means, that prior to the actual calculations, the computational
mesh is divided into parts each of which is served by a different processor. The
exchange of boundary information (on fictitious interfaces) occurs at every non-
linear iteration step of the main solution algorithm. This exchange is limited
to the information available in the immediate neighborhood of the fictitious
boundary.

In the present paper parallel efficiency is discussed. The model allows for
quantitative predictions of acceleration and efficiency (as a function of both the
problem size and the number of processors used).

The results and conclusions are formulated for the particular CFD problem, it
is evident however that they remain valid for many physical problems described
by nonlinear partial differential equations.
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2 Parallel Algorithm

The parallel algorithm considered here, consist of the following steps:

1. Each node initializes calculations reading its own grid and restart files (the
latter only in the restart mode) as well as the configuration file.

2. Communication is initialized by preparing and exchanging information about
the size of the future data packets (for each pair of neighboring nodes).

3. Each node performs separately one (or more) iteration(s) of the local non-
linear solver (on its own part of the mesh).

4. The interfacial boundary information is exchanged between all neighboring
nodes. The boundary conditions at each node are updated.

5. The convergence criterion is checked at each node, subsequently reduced
(using logical AND) and the result is scattered to all nodes. If FALSE is
returned, the control goes back to step 3.

6. Execution is terminated after each node stores the corresponding restart and
solution output files.

In the above, the neighborhood is understood in the sense of mesh partition
topology. The nodes are considered as neighbors if their meshes have a common
interface (or if the meshes overlap as it was the case in [3]).

The main computational effort corresponds to the step 3 of the algorithm.
This effort can be assumed proportional to the number of mesh cells, perhaps
with the exception of the vicinity of the physical boundary, where the compu-
tational cost can be higher (this however will be disregarded in the analysis
below).

The main communication effort is located in step 4 and is proportional to
the length of the data packet (the latency is not significant in this case). The
communication present in step 5 can be neglected as its volume is not significant.

The workload of each processor is proportional to the number of cells present
in its local mesh. Thus with N denoting the total number of mesh cells and
assuming ideal load balancing we can estimate the computation time on the
L-processor system by:

τCOMP[L] =
A ·N
L

· (1)

where A stands for the proportionality factor (which can depend both on the
algorithm as well as on the processor speed).

3 Communication Models

Two possible communication models are considered here.
The first bases on the master-worker concept. In this approach one of the

nodes, master is responsible for gathering, re-calculating and scattering data
that is exchanged between nodes (workers) (see Fig. 1).

In contrast neighbor to neighbor approach assumes that communication ex-
ists between these nodes which have common interface, without the need for
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Fig. 1. Master-worker communication
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Fig. 2. Neighbor to neighbor communica-
tion

a centralized control (see Fig. 2). Here simultaneous exchange of data between
various nodes allows for significant reduction of communication overhead. Both
approaches can be rooted in the solution algorithm. Yet the success of imple-
mentation heavily depends on the communication hardware.

In particular in popular clusters, the computing nodes are in fact connected
via a single switching device. Therefore efficiency of neighbor to neighbor com-
munication will be limited by the switch ability to simultaneously transmit data
between separate pairs of nodes. This hardware arrangement typical for clusters
is present also in some shared memory architectures where fast switching devices
connect computing nodes with separate memory banks (e.g., Compaq ES40).

For grids [1], which are built out of separate clusters, the analysis is more
complicated due to the heterogeneous nature of the connection topology (in
particular when computations are distributed over a number of local clusters).

4 Performance Analysis

The performance of algorithm described in Section 2 can be evaluated by con-
sidering average time τ [L] necessary to perform single iteration (steps 3, 4, 5) (L
denotes number of processors). In the present analysis, it is tacitly assumed
that the overall computational effort and total number of iterations do not
significantly depend on the number of processors.

4.1 Communication Time

Communication time depends on the range of factors and in particular on:

– Numerical Algorithm
– Dimension of the computational problem (2D or 3D)
– Quality of partition into subdomains (is the communication volume equally

distributed and minimized)
– Communication model master-worker or neighbor to neighbor
– Hardware properties.

All of these issues cannot be reasonably included into the present analysis.
Instead we aim at obtaining some optimal estimation, e.g., when partition into
subdomains minimizes and evenly distributes the communication volume.
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We assume that the communication volume assigned to each processor is
proportional to the number of interfacial (boundary) cells in each local mesh.
In particular in 2D, the checker-board partition of a rectangular domain results
in a number of interfacial cells (per computing node) proportional to

√
N/L. In

contrast, partition into stripes increases this result to
√
N .

In 3D the partition of the cubic domain into smaller cubes gives the number
of interfacial cells (per computing node) proportional to (N/L)3/2. Again this
partition can be regarded as optimal.

The communication time can thus be estimated as:

τCOMM[L] = Bd,μ

(
N

L

) d−1
d

Lμ + τLAT

where in the above: (i) τLAT stands for latency, (ii) d = 2, 3 denotes the dimension
of the problem, (iii) μ is equal 0 in case of the successful neighbor to neighbor
model and is equal 1 for the master-worker model, (iv) Bd,μ is a proportionality
constant depending both on the space dimension as well as on the communication
model.

It is worth stressing that for master-worker approach the communication
time depends on the total communication volume (hence μ = 1) whereas for
the neighbor to neighbor model only local communication has to be taken into
account (hence μ = 0).

4.2 Parallel Efficiency

Taking into account all considered subcases parallel efficiency can be estimated
as:

η[L] =
1
L

τCOMP[1]
τCOMP[L] + τCOMM[L]

=
1

β[L] + L
AN

[
BN1−1/dLμ−1/d + τLAT

] (2)

where for clarity reasons subscripts of the proportionality constantB are dropped.
For large problems when latency is negligible and by assuming ideal load

balancing one obtains a simple formula for efficiency:

η[L] =
1

1 + L1+μ−1/dN−1/d · B/A (3)

Formula 3 allows in turn to evaluate the size of the problem (represented here
by N) required to preserve a prescribed efficiency on an L-processor system

N [η, L] =
(
B

A

)d

Ld(1+μ)−1
(

η

η − 1

)d

(4)

In particular, for the master-worker model keeping fixed efficiency is possible
by increasing problem size N proportionally to L3 in 2D and to L5 in 3D. For
the neighbor to neighbor model the same effect is obtained if problem size grows
as L1 in 2D and to L2 in 3D. This is why the latter seems so attractive from the
point of view of the parallel program design.

The current formulas (3) and (4) form a generalization of the one presented
and verified in [3] for d = 2, μ = 1 and for L = 2, . . ., 21.
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5 Parallelization in Grid Environment

Traditional parallelization is characterized by the requirement to distribute com-
putations over separate processors belonging to a single system. In such system
the RAM memory is often divided and accessible only locally. MPI library [2]
facilitates the necessary exchange of data.

In contrast in grid environment not only RAM but also a disk memory is
distributed over two or more local systems. This itself is not a major drawback
since Broker is designed to replicate and gather all data for the user.

Fig. 3. File system used by the HADRON code both for checkpointing as well as to
facilitate restart mechanism

Fig. 4. Regular and restart modes on system with common disk memory

When computations, however, take a very long time to complete, the appli-
cation is usually equipped with some restart mechanism (see Fig. 3 presenting
the file system used by the CFD code HADRON). This means (as described
in Section 2) that each processor stores to its own file, in regular intervals, a
huge amount of data – while the file name is often parameterized by the process
number (See Fig. 4). When the computations are terminated (either by acci-
dent, or because of encountering error or by the action of the user) these files
are gathered by the Broker and transferred to a single location.

When the user decides to restart the computations the Broker should perform
the inverse operation. In order to operate correctly each new process should have
its own restart file available locally (the name of the file should match the process
number). This number however is neither available in advance to the Broker, nor
can be guessed by the application itself. As a consequence the application will
not work correctly in the restart mode (See Fig. 5).

It is of course possible to add a mechanism to the application, which recog-
nizes existing files and re-numbers computing nodes. This however is not very
practical and should be solved in a different way.
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Fig. 5. Regular and restart modes on system with distributed disk memory (grid) –
dashed lines describe incorrectly positioned files

Still other issue that remains open is related to the control of the running
application. This usually requires checking the inspection files, while the program
is running. In the grid environment the temporary inspection files, are as rule
not accessible for the user - so the only possibility seems to be to redirect the
data flow to the standard output.

On the other hand the code itself has its own checkpointing mechanism (see
Fig. 3). Namely the code creates a tiny file alert at the beginning of computations.
During execution the program checks regularly whether this file still exists. If it
does not (the user may have just deleted the alert file to stop further execution)
the code terminates its activity by writing down all restart and output files,
enabling subsequent restarting without any data loss.

Again in the grid environment this action is not always supported, since this
particular alert file can neither be accessed nor deleted by the user.
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Abstract. This paper describes the execution of a Bioinformatics appli-
cation over a highly distributed and heterogeneous testbed. This testbed
is composed of resources devoted to EGEE and IRISGrid projects and
has been integrated by taking advantage of the modular, decentralized
and “end-to-end” architecture of the GridW ay framework. Results show
the feasibility of building loosely-coupled Grid environments based only
on Globus services, while obtaining non trivial levels of quality of service.
Such approach allows a straightforward resource sharing as the resources
are accessed by using de facto standard protocols and interfaces.

1 Introduction

Different Grid infrastructures are being deployed within growing national and
transnational research projects. The final goal of these projects is to provide
the end user with much higher performance than that achievable on any single
site. However, from our point of view, it is arguable that some of these projects
embrace the Grid philosophy, and to what extent. This philosophy, proposed by
Foster [1], defines a Grid as a system (i) not subject to a centralized control
and (ii) based on standard, open and general-purpose interfaces and protocols,
(iii) while providing some level of quality of service (QoS), in terms of security,
throughput, response time or the coordinated use of different resource types.
In current projects, there is a tendency to ignore the first two requirements in
order to get higher levels of QoS. However, these requirements are even more
important because they are the key to the success of the Grid.

The Grid philosophy leads to computational environments, which we call
loosely-coupled Grids, mainly characterized by [2]: autonomy (of the multiple
administration domains), heterogeneity, scalability and dynamism. In a loosely-
coupled Grid, the different layers of the infrastructure should be separated from
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each other, being only communicated with a limited and well defined set of
interfaces and protocols. This layers are [2]: Grid fabric, core Grid middleware,
user-level Grid middleware, and Grid applications.

The coexistence of several projects, each with its own middleware develop-
ments, adaptations or extensions, arise the idea of using them simultaneously
(from an user’s viewpoint) or contribute the same resources to more than one
project (from an administrator’s viewpoint). One approach could be the devel-
opment of gateways between different middleware implementations [3]. Other
approach, more in line with the Grid philosophy, is the development of client
tools that can adapt to different middleware implementations. We hope this
could lead to a shift of functionality from resources to brokers or clients, al-
lowing the resources to be accessed in a standard way and easing the task of
sharing resources between organizations and projects. We should consider that
the Grid not only involves the technical challenge of constructing and deploying
this vast infrastructure, it also brings up other issues related to security and
resource sharing policies [4] as well as other socio-political difficulties [5].

Practically, the majority of the Grid infrastructures are being built on proto-
cols and services provided by the Globus Toolkit1, becoming a de facto standard
in Grid computing. Globus architecture follows an hourglass approach, which
is indeed an “end-to-end” principle [6]. Therefore, instead of succumbing to the
temptation of tailoring the core Grid middleware to our needs (since in such case
the resulting infrastructure would be application specific), or homogenizing the
underlying resources (since in such case the resulting infrastructure would be a
highly distributed cluster), we propose to strictly follow the “end-to-end” prin-
ciple. Clients should have access to a wide range of resources provided through
a limited and standardized set of protocols and interfaces. In the Grid, these are
provided by the core Grid middleware, Globus, just as, in the Internet, they are
provided through the TCP/IP protocols. Moreover, the “end-to-end” principle
reduces the firewall configuration to a minimum, which is also welcome by the
security administrators.

One of the most ambitious projects to date is EGEE2 (Enabling Grids for
E-sciencE), which is creating a production-level Grid infrastructure providing a
level of performance and reliability never achieved before. EGEE currently uses
the LCG3 (LHC Computing Grid) middleware, which is based on Globus. Other
much more modest project is IRISGrid4 (the Spanish Grid Initiative), whose
main objective is the creation of a stable national Grid infrastructure. The first
version of the IRISGrid testbed is based only on Globus services, and it has been
widely used through the GridW ay framework5.

For the purposes of this paper we have used a Globus-based testbed to run a
Bioinformatics application through the GridW ay framework. This testbed was

1 http://www.globus.org
2 http://www.eu-egee.org
3 http://lcg.web.cern.ch
4 http://www.irisgrid.es
5 http://www.gridway.org
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built up from resources inside IRISGrid and EGEE projects. The aim of this
paper is to demonstrate the application of an “end-to-end” principle in a Grid
infrastructure, and the feasibility of building loosely-coupled Grid environments
based only on Globus services, while obtaining non trivial levels of quality of
service through an appropriate user-level Grid middleware.

The structure of the paper follows the layered structure of Grid systems, from
bottom-up. The Grid fabric is described Section 2. Section 3 describes the core
Grid middleware. Section 4 introduces the functionality and characteristics of
the GridW ay framework, used as user-level Grid middleware. Section 5 describes
the target application. Finally, Section 6 presents the experimental results and
Section 7 ends up with some conclusions.

2 Grid Fabric: IRISGrid and EGEE Resources

This work has been possible thanks to the collaboration of those research cen-
ters and universities that temporarily shared some of their resources in order
to set up a geographically distributed testbed. The testbed results in a very

Table 1. IRISGrid and EGEE resources contributed to the experiment

Testbed Site Resource Processor Speed Nodes RM

IRISGrid RedIRIS heraclito Intel Celeron 700MHz 1 Fork
platon 2×Intel PIII 1.4GHz 1 Fork
descartes Intel P4 2.6GHz 1 Fork
socrates Intel P4 2.6GHz 1 Fork

DACYA-UCM aquila Intel PIII 700MHz 1 Fork
cepheus Intel PIII 600MHz 1 Fork
cygnus Intel P4 2.5GHz 1 Fork
hydrus Intel P4 2.5GHz 1 Fork

LCASAT-CAB babieca Alpha EV67 450MHz 30 PBS
CESGA bw Intel P4 3.2GHz 80 PBS
IMEDEA llucalcari AMD Athlon 800MHz 4 PBS
DIF-UM augusto 4×Intel Xeon� 2.4GHz 1 Fork

caligula 4×Intel Xeon� 2.4GHz 1 Fork
claudio 4×Intel Xeon� 2.4GHz 1 Fork

BIFI-UNIZAR lxsrv1 Intel P4 3.2GHz 50 SGE

EGEE LCASAT-CAB ce00 Intel P4 2.8GHz 8 PBS
CNB mallarme 2×Intel Xeon 2.0GHz 8 PBS
CIEMAT lcg02 Intel P4 2.8GHz 6 PBS
FT-UAM grid003 Intel P4 2.6GHz 49 PBS
IFCA gtbcg12 2×Intel PIII 1.3GHz 34 PBS
IFIC lcg2ce AMD Athlon 1.2GHz 117 PBS
PIC lcgce02 Intel P4 2.8GHz 69 PBS

� These resources actually present two physical CPUs but they appear as four logical
CPUs due to hyper-threading.
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Fig. 1. Geographical distribution and interconnection network of sites

heterogeneous infrastructure, since it presents several middlewares, architec-
tures, processor speeds, resource managers (RM), network links, etc. A brief
description of the participating resources is shown in Table 1.

Some centers are inside IRISGrid, which is composed of around 40 research
groups from different spanish institutions. Seven sites participated in the exper-
iment by donating a total number of 195 CPUs. Other centers participate in
the EGEE project, which is composed of more than 100 contracting and non-
contracting partners. Seven spanish centers participated by donating a total
number of 333 CPUs.

Together, the testbed is composed of 13 sites (note that LCASAT-CAB is
both in IRISGrid and EGEE) and 528 CPUs. In the experiments below, we lim-
ited to four the number of jobs simultaneously submitted to the same resource,
with the aim of not saturating the whole testbed, so only 64 CPUs were used at
the same time. All sites are connected by RedIRIS, the Spanish Research and
Academic Network. The geographical location and interconnection links of the
different sites are shown in Figure 1.

3 Core Grid Middleware: Globus

Globus services allow secure and transparent access to resources across multiple
administrative domains, and serve as building blocks to implement the stages of
Grid scheduling [7]. Table 2 summarizes the core Grid middleware components
existing in both IRISGrid and EGEE resources used in the experiments. In the
case of EGEE, we only used Globus basic services, ignoring any higher-level
services, like the resource broker or the replica location service.
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Table 2. Core Grid middleware

Component IRISGrid EGEE

Security
Infrastructure

IRISGrid CA and manually
generated grid-mapfile

DATAGRID-ES CA and
automatically generated
grid-mapfile

Resource
Management

GRAM with shared home
directory in clusters

GRAM without shared
home directory in clusters

Information
Services

IRISGrid GIIS and local
GRIS, using the MDS
schema

CERN BDII and local
GRIS, using the GLUE
schema

Data
Management

GASS and GridFTP GASS and GridFTP

We had to introduce some changes in the security infrastructure in order
to perform the experiments. For authentication, we used a user certificate is-
sued by DATAGRID-ES CA, so we had to give trust to this CA on IRISGrid
resources. Regarding authorization, we had to add an entry for the user in the
grid-mapfile in both IRISGrid and EGEE resources.

4 User-Level Grid Middleware: GridW ay

User-level middleware is required in the client side to make it easier and more
efficient the execution of applications. Such client middleware should provide the
end user with portable programming paradigms and common interfaces.

In a Globus-based environment, the user is responsible for manually perform-
ing all the submission steps [7] in order to achieve any functionality. To overcome
this limitation, GridW ay [8] was designed with a submit & forget philosophy in
mind. The core of the GridW ay framework is a personal submission agent that
performs all scheduling stages and watches over the correct and efficient execu-
tion of jobs on Globus-based Grids. The GridW ay framework provides adaptive
scheduling and execution, as well as fault tolerance capabilities to handle the
dynamic Grid characteristics.

A key aspect in order to follow the “end-to-end” principle is how job execu-
tion is performed. In EGEE, file transfers are initiated by a job wrapper running
in the compute nodes, therefore they act as client machines, so needing net-
work connectivity and client tools to interact with the middleware. In GridW ay,
however, job execution is performed in three steps by the following modules:

1. prolog : It prepares the remote system by creating a experiment directory
and transferring the input files from the client.

2. wrapper: It executes the actual job and obtains its exit status code.
3. epilog : It finalizes the remote system by transferring the output files back

to the client and cleaning up the experiment directory.
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This way, GridW ay doesn’t rely on the underlying middleware to perform prepa-
ration and finalization tasks. Moreover, since both prolog and epilog are submit-
ted to the front-end node of a cluster and wrapper is submitted to a compute
node, GridW ay doesn’t require any middleware installation nor network con-
nectivity in the compute nodes.

Other projects [9, 10, 11, 12] have also addressed resource selection, data man-
agement, and execution adaptation. We do not claim innovation in these areas,
but remark the advantages of our modular, decentralized and “end-to-end” ar-
chitecture for job adaptation to a dynamic environment.

In this case, we have taken full advantage of the modular architecture of
GridW ay, as we didn’t have to directly modify the source code of the submission
agent. We extended the resource selector in order to understand the GLUE
schema used in EGEE. The wrapper module also had to be modified in order
to perform an explicit file staging between the front-end and the compute nodes
in EGEE clusters.

5 Grid Application: Computational Proteomics

One of the main challenges in Computational Biology concerns the analysis of
the huge amount of protein sequences provided by genomic projects at an ever
increasing pace. In the following experiments, we will consider a Bioinformatics
application aimed at predicting the structure and thermodynamic properties of
a target protein from its amino acid sequence [13].

The algorithm, tested in the 5th round of Critical Assessment of techniques
for protein Structure Prediction (CASP5)6, aligns with gaps the target sequence
with all the 6150 non-redundant structures in the Protein Data Bank (PDB)7,
and evaluates the match between sequence and structure based on a simplified
free energy function plus a gap penalty item. The lowest scoring alignment found
is regarded as the prediction if it satisfies some quality requirements. In such
cases, the algorithm can be used to estimate thermodynamic parameters of the
target sequence, such as the folding free energy and the normalized energy gap.

We have applied the algorithm to the prediction of thermodynamic properties
of families of orthologous proteins, i.e. proteins performing the same function in
different organisms. The biological results of the comparative study of several
families of orthologous proteins are presented elsewhere [14].

6 Experiences and Results

The experiments presented here consist in the analysis of a family of 80 ortholo-
gous proteins of the Triose Phosphate Isomerase enzyme (an enzyme is a special
case of protein). Five experiments were conducted in different days during a
week. The average turnaround time for the five experiments was 43.37 minutes.
6 http://PredictionCenter.llnl.gov/casp5/
7 http://www.pdb.org
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Fig. 2. Testbed dynamic throughput during the five experiments and theoretical
throughput of the most powerful site

Figure 2 shows the dynamic throughput achieved during the five experiments
alongside the theoretical throughput of the most powerful site, where the prob-
lem could be solved in the lowest time, in this case DIF-UM (taking into account
that the number of active jobs per resource was limited to four). The throughput
achieved on each experiment varies considerably, due to the dynamic availability
and load of the testbed. For example, resource ce00 at site LCASAT-CAB was
not available during the execution of the first experiment. Moreover, fluctuations
in the load of network links and computational resources induced by non-Grid
users affected to a lesser extent in the second experiment, as it was performed
at midnight.

7 Conclusions

We have shown that the “end-to-end” principle works at the client side (i.e.
the user-level Grid middleware) of a Grid infrastructure. Our proposed user-
level Grid middleware, GridW ay, can work with Globus, as a standard core
Grid middleware, over any Grid fabric in a loosely-coupled way. The smooth
process of integration of two so different testbeds, although both are based on
Globus, demonstrates that the GridW ay approach (i.e. the Grid way), based on
a modular, decentralized and “end-to-end” architecture, is appropriate for the
Grid.

Moreover, loosely-coupled Grids allow a straightforward resource sharing
since resources are accessed and exploited through de facto standard proto-
cols and interfaces, similar to the early stages of the Internet. This way, the
loosely-coupled model allows an easier, scalable and compatible deployment.
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Abstract. We compare different load balancing strategies for Bulk-
Synchronous Parallel (BSP) programs in a web computing environment.
In order to handle the influence of the fluctuating available computation
power, we classify the external work load.

We evaluate the load balancing algorithms using our web computing
library for BSP programs in Java (PUBWCL). Thereby we simulated
the external work load in order to have repeatable testing conditions.

With the best performing load balancing strategy we could save 39%
of the execution time averaged and even up to 50% in particular cases.

1 Introduction

Utilizing the unused computation power in a web computing environment, one
has to deal with unpredictable fluctuations of the available computation power
on the particular computers. Especially in a set of strongly coupled parallel
processes, one single process receiving little computation power can slow down
the whole application. A way to balance the load is to migrate these “slow”
processes. For this approach, we have implemented and analyzed four different
load balancing strategies for the Paderborn University BSP-based Web
Computing Library (PUBWCL).

The rest of the paper is organized as follows: In Sections 2 and 3, we give
a short overview of PUBWCL and describe the implemented load balancing
strategies. In Section 4, we analyze the external work load. In Section 5, we
discuss the results of the experiments we have conducted. Section 6 concludes
this paper.

2 The Web Computing Library

The BSP model. The Bulk-Synchronous Parallel (BSP) model [7] has been in-
troduced by Leslie G. Valiant in order to simplify the development of parallel
algorithms. A BSP computer is defined as a set of processors with local memory,
connected by a network capable of point-to-point communcation, and a barrier
synchronization mechanism.
� Partially supported by DFG-SFB 376 “Massively Parallel Computation”.
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A BSP program consists of a set of BSP processes and a sequence of super-
steps separated by the barrier synchronization. Within a superstep each process
performs local computations and sends messages to other processes; these mes-
sages can be accessed by their recipients after the barrier synchronization, i. e.,
in the next superstep.

PUBWCL. The Paderborn University BSP-based Web Computing Library
(PUBWCL) [1, 2, 5] is a library for parallel algorithms designed according to
the BSP model and intended to utilize the unused computation power on com-
puters distributed over the internet. Participants willing to donate their unused
computation power have to install a PUBWCL client. Whenever a user wants
to execute a BSP program, the system chooses a subset of these clients to run
the program.

To provide for load balancing, PUBWCL can migrate BSP processes during
the barrier synchronization (and additionally at arbitrary points specified by the
developer of a BSP program). This is accomplished using JavaGo RMI [6, 4].
We also use this technique to backup the program state once per superstep by
migrating into a file. Thus BSP processes can be restarted on other clients, when
a PC crashes or disconnects from the internet unexpectedly. This feature is also
used to enable load balancing strategies to abort a BSP process if it does not
finish within some deadline, and restart it on a faster client.

3 The Load Balancing Strategies

We can derive the following constraint from the properties of a BSP algorithm:
Since all the BSP processes are synchronized at the end of each superstep, we
can reduce the scheduling problem for a BSP algorithm with n supersteps to n
subproblems, namely scheduling within a superstep.

We assume that we only have to deal with “good” BSP programs, i. e., all of
the p BSP processes require approximately the same amount of computational
work. Thus the scheduler has to assign p equally heavy pieces of work.

Finally, we have another restriction: Due to privacy reasons we cannot access
the breakdown of the CPU usage, i. e., we especially do not know how much
computation power is consumed by the user and how much computation power
is currently assigned to our BSP processes.

Parameters for scheduling. Since we cannot directly access the breakdown of
the CPU usage, we have to estimate (1) how much computation power the BSP
processes currently assigned to a client do receive, and (2) how much compu-
tation power a BSP process would receive when (additionally) assigned to a
client.

As from the second superstep on, the first question can simply be answered
by the ratio of the computation time consumed during the previous superstep
and the number of concurrently running BSP processes.

In order to answer the second question, all clients regularly measure the
Available Computation Power (ACP). This value is defined as the computation
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power an additionally started BSP process would receive on a particular client,
depending on the currently running processes and the external work load. We
obtain this value by regularly starting a short simulation process and measuring
the computation power it receives. Though it is not possible to determine the
CPU usage from the ACP value, this value is platform independent and thus
comparable among all clients.

Since the first approach is more accurate, we will use it wherever possible, i. e.,
mainly, to decide whether a BSP process should migrate or has to be restarted.
The ACP value will be used to determine the initial distribution of the BSP
processes and to choose clients as migration targets and as hosts for restarted
BSP processes.

3.1 The Load Balancing Algorithms

We have implemented and analyzed the following four load balancing strategies,
among them two parallel algorithms and two sequential ones.

Algorithm PwoR. The load balancing algorithm Parallel Execution without Re-
starts (PwoR) executes all processes of a given BSP program concurrently.

The initial distribution is determined by dint of the ACP values. Whenever
a superstep is completed, all clients are checked whether the execution of the
BSP processes on them took more than r times the average execution duration (a
suitable value for r will be chosen in Section 5); in this case the BSP processes are
redistributed among the active clients such that the expected execution duration
for the next superstep is minimal, using as little migrations as possible.

Algorithm PwR. Using the the load balancing algorithm Parallel Execution with
Restarts (PwR), the execution of a superstep is performed in phases. The du-
ration of a phase is r times the running time of the �s · p∗�-th fastest of the
(remaining) BSP processes, where p∗ is the number of processes of the BSP pro-
gram that have not yet completed the current superstep. Suitable values for the
parameters r > 1 and 0 < s < 1 will be chosen in Section 5. At the end of a
phase, all incomplete BSP processes are aborted. In the next phase, they are re-
stored on faster clients. Whereas too slow BSP processes are migrated only after
the end of the superstep using the PwoR algorithm, they are restarted already
during the superstep using PwR.

At the end of each (except the last) superstep, the distribution of the BSP
processes is optimized among the set of currently used clients by dint of the
processes’ execution times in the current superstep. The optimization of the
distribution is performed such that the number of migrations is minimal.

Algorithm SwoJ. While the two load balancing strategies PwoR and PwR exe-
cute all BSP processes in parallel, the load balancing algorithm Sequential Exe-
cution without Just-in-Time Assignments (SwoJ) executes only one process of a
BSP program per client at a time; the other BSP processes are kept in queues.

Like PwR, SwoJ operates in phases. At the end of a phase all uncompleted BSP
processes are aborted and reassigned. Thereby the end of a phase is reached after



842 O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide

r times the duration, in which the x-th fastest client has completed all assigned
BSP processes, where x is a fraction s of the number of the affected clients.

At the end of a superstep, the distribution of the BSP processes is optimized
like in PwR.

Algorithm SwJ. Like SwoJ, the load balancing algorithm Sequential Execution
with Just-in-Time Assignments (SwJ) executes only one process of a BSP pro-
gram per client at a time and keeps the other processes in queues, too. The
main difference, however, is that these queues are being balanced. More pre-
cisely, whenever a client has completed the execution of the last BSP process
in its queue, a process is migrated to it from the queue of the most overloaded
client (if there exists at least one overloaded client). Thereby a client is named
“overloaded” in relation to another client if completing all but one BSP processes
in the queue with the current execution speed of the particular client would take
longer than executing one BSP process on the other client. Thereby the execu-
tion speed of a client is estimated by dint of the running time of the BSP process
completed on it most recently.

BSP processes are aborted only if the corresponding queues on all affected
clients are empty and if the processes do not complete within r times the duration
of a process on the x-th fastest client, weighted by the number of BSP processes
on the particular clients; thereby, again, x is a fraction s of the number of the
affected clients.

4 The External Work Load

In order to understand the fluctuation of the external work load, we have ana-
lyzed totaling more than 100 PCs in altogether four departments of three Ger-
man universities over a period of 21 resp. 28 days. The CPU frequencies varied
from 233 MHz to 2.8 GHz. The installed operating systems were Debian Linux,
RedHat Enterprise Linux, and SuSE Linux.

While analyzing the load, we have noticed that the CPU usage typically
shows a continuous pattern for quite a time, then changes abruptly, then again
shows a continuous pattern for some time, and so on. The reason therefore is that
many users often perform uniform activities (e. g. word processing, programming,
and so on) or no activity (e. g. at night or during lunch break).

A given CPU usage graph (e. g. of the length of a week) can thus be split
into blocks, in which the CPU usage is somewhat steady or shows a continuous
pattern. These blocks typically have a duration of some hours, but also durations
from only half an hour (e. g. lunch break) up to several days (e. g. a weekend)
do occur.

Based on the above observations we have designed a model to describe and
classify the external work load. We describe the CPU usage in such a block by
a rather tight interval with radius α ∈ R (α < 1

2 ) around a median load value
λ ∈ R (0 ≤ λ − α, λ + α ≤ 1), as illustrated in Fig. 1. The rates for the upper
and lower deviations are bounded by β+ ∈ R resp. β− ∈ R (β+, β− < 1

2 ). We
will refer to such a block as a (λ, α, β+, β−, T )-load sequence in the following.
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Fig. 1. A three-load-period-long interval of a load sequence

In order to describe the frequency and duration of the deviations, we subdi-
vide the load sequences into small sections of length T , called load periods. The
values β+ and β− must be chosen such that the deviation rates never exceed
them for an arbitrary starting point of a load period within the load sequence.

Given that T is much shorter than the duration of a superstep, we can obtain
this result:

Theorem 1. If a superstep is executed completely within a (λ, α, β+, β−, T )-
load sequence, the factor between the minimal and maximal possible duration is
at most q′ ∈ R

+ with:

q′ :=
1− (1 − β−)(λ − α)

1− (β+ + (1− β+)(λ+ α))

For q ∈ R
+, q ≥ q′ we call a (λ, α, β+, β−, T )-load sequence q-bounded.

The proof can be found in [3]. This result guarantees that the running times of
BSP processes, optimally scheduled based on the execution times of the previous
superstep, differ at most by a factor q2 within a load sequence. This fact will be
utilized by the load balancing strategies.

Evaluating the collected data. When sectioning a given CPU usage sequence
into load sequences, our goal is to obtain load sequences with a q-boundedness
as small as possible and a duration as long as possible, while the rate of unusable
time intervals should be as small as possible. Obviously, these three optimization
targets depend on each other. We have processed the data collected from our
PCs described in the beginning of this section (over 6.8 million samples) with
a Perl program which yields an approximation for this non-trivial optimization
problem.

The results. The average idle time over a week ranged from approx. 35% up to
95%, so there is obviously a huge amount of unused computation power.

Time intervals of less than half an hour and such where the CPU is nearly
fully utilized by the user or its usage fluctuates too heavily, are no candidates for
a load sequence. The rate of wasted idle time in such intervals is less than 3%.
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Choosing suitable values for the parameters of the load sequences, it was
possible to section the given CPU usage sequences into load sequences such that
the predominant part of the load sequences was 1.6-bounded.

On most PCs, the average duration of a load sequence was 4 hours or even
much longer. Assuming the execution of a process, started at an arbitrary point
during a load sequence, takes 30 minutes, the probability that it completes within
the current load sequence is thus 87.5% or higher.

A detailed analysis of the results in each of the four networks can be found
in [3].

Generating load profiles. In order to compare the load balancing strategies under
the same circumstances, i. e., especially with exactly the same external work load,
and to make the experimental evaluation repeatable, we have extracted totaling
eight typical load profiles from two of the networks, each using these time spans:
Tuesday forenoon (9:00 a.m. to 1:00 p.m.), Tuesday afternoon (2:00 p.m. to 6:00
p.m.), Tuesday night (2:00 a.m. to 6:00 a.m.), and Sunday afternoon (2:00 p.m.
to 6:00 p.m.). Besides, we have generated four artificial load profiles according
to our model, using typical values for the parameters. A detailed discussion of
the load profiles can be found in [3].

5 Experimental Evaluation

We have conducted our experiments on 15 PCs running Windows XP Profes-
sional, among them 7 PCs with 933 MHz and 8 ones with 1.7 GHz. The PUB-
WCL server and the client used to control the experiments ran on a seperate PC.

We have simulated the external work load according to the load profiles
mentioned above and run the clients with the /belownormal priority switch, i. e.,
they could only consume the computation power left over by the load simulator.

The experiments were performed using a BSP benchmark program consisting
of 80 equally weighted processes and 8 identical supersteps. Per superstep, each
BSP process did 2 · 109 integer operations and sent (and received) 64 messages
of 4 kB size each.

Results using PwoR. First we have to choose a suitable value for parameter r:
At the beginning of a superstep the BSP processes are (re-) distributed over the
clients such that they should complete execution at the same time. Supposing
that, on any of the involved PCs, the current (q-bounded) load sequence does
not end before completion of the superstep, none of the BSP processes should
take longer than q times the average execution time. That means, choosing
r = q = 1.6 guarantees that BSP processes are not migrated if the available
computation power only varies within the scope of a q-bounded load sequence.

In comparison to experiments with no load balancing algorithm (i. e. initial
distribution according to the ACP values and no redistribution of the processes
during runtime), we could save 21% of the execution time averaged and even up
to 36% in particular cases.

Comparing the execution times of the particular supersteps, we noticed that
the execution time significantly decreases in the second superstep. The reason
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therefore is that the execution times of the previous superstep provide much
more accurate values for load balancing than the estimated ACP values.

Results using PwR. Our experiments with the PwR algorithm resulted in no-
ticealby longer execution times than those with the PwoR algorithm. We could
obtain the best results with the parameters set to r = 2 and s = 1

8 ; other choices
led to even worse results.

On the one hand, this result is surprising as one would expect that PwR per-
forms better than PwoR because it restarts BSP processes after some threshold
instead of waiting for them for an arbitrarily long time. But on the other hand,
restarting a BSP process is of no advantage if it would have completed on the
original client within less time than its execution time on the new client. Our
results show that the external work load apparently is not ‘sufficiently malicious’
for PwR to take advantage of its restart feature.

Results using SwoJ. Like with the PwR algorithm, r = 2 and s = 1
8 is a good

choice for the parameters because: In Section 4 we showed that a load sequence
does not end inside a superstep with a probability of 87.5% or more. Thus the
probability that a new load sequence with more available computation power
starts inside a superstep is about 1

16 or less. As we will use the normalized BSP
process execution time on the x-th fastest client (where x is a fraction s of the
number of affected clients) as a reference value for the abortion criterion, we
ensure that no new load sequence has begun on this client with high probability
by setting s = 1

8 (instead of s = 1
16 ). Provided that no new load sequence begins

during the superstep, the factor between the fastest and the slowest normalized
BSP process execution time on the particular clients is at most q2. For a q-
boundedness of q = 1.6 this yields q2 = 2.56. We have actually chosen r = 2
because of our defensive choice of s.

Using these parameters, we could save 14% of the execution time averaged
and even up to 25% in particular cases in comparison to the experiments with
the PwoR algorithm; the savings in comparison to the experiments with no load
balancing algorithm were even 32% averaged and up to 45% in isolated cases.

Results using SwJ. For the choice of the parameters, the same aspects as in the
SwoJ case apply. In comparison to our experiments with the SwoJ algorithm
we could save another 10% of the execution time averaged and even up to 27%
in isolated cases; the savings in comparison to the experiments with no load
balancing algorithm were even 39% averaged and up to 50% in particular cases.

6 Conclusion

The load balancing strategy SwJ performs better than SwoJ which, in turn,
performs better than PwoR (cf. Fig. 2). In comparison to using no load balancing,
we can save up to 50% of the execution duration using SwJ.

In order to achieve even better results, we are working on an extension of
PUBWCL which allows redundant execution of BSP processes, i. e., processes
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Fig. 2. Running times depending on the load balancing algorithm

are started redundantly, but only the results of the fastest one are committed
whereas the remaining processes are aborted when the first one completes. This
will allow us to improve the load balancing strategies by starting additional
instances of slow BSP processes on faster clients instead of just restarting them.
Since, using the SwJ algorithm, typically only a very small fraction of the BSP
processes was restarted, this would mean only a low overhead but significantly
reduce the probability that they would have to be restarted another time.

Furthermore, work is in progress to realize PUBWCL as a pure peer-to-peer
system in order to dispose of the bottleneck at the server.
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Abstract. Optimum divisible load processing in heterogeneous star sys-
tem with limited memory is studied. We propose two algorithms to find
multi-installment load distribution: Exact branch-and-bound algorithm
and a heuristic using genetic search method. Characteristic features of
the solutions and the performance of the algorithms are examined in a
set of computational experiments.

1 Introduction

Divisible load model represents computations with fine granularity, and negligi-
ble dependencies between the grains of computations. Consequently, the compu-
tations, or the load, can be divided into parts of arbitrary sizes, and these parts
can be processed independently in parallel. Divisible load theory (DLT) proved
to be a versatile vehicle in modeling distributed systems [3, 4, 10].
In this paper we assume a star communication topology. Heterogeneous

processors (or workers, clients) receive load from a central server (or an orig-
inator, master) only. The load is sent in multiple small chunks, rather than in
one long message. Since the amount of processor memory is limited, the accumu-
lated load cannot exceed the memory limit. The problem is to find the sequence
of processor communications, and the sizes of the load chunks such that the
length of the schedule is minimum. We propose two algorithms for this problem.
Exact branch and bound algorithm, and a heuristic based on genetic search.
Similar problems have already been studied. Multi-installment distribution

was proposed in [2, 3], but the sequence of communications was fixed, and mem-
ory limits were not considered. Memory limitations and single installment com-
munications were studied in [5, 6, 7, 9]. For a fixed communication sequence a
fast heuristic was proposed in [9], and an optimization algorithm based on linear
programming was given in [5]. A hierarchic memory system was studied in [6].
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A multi-installment load distribution with a fixed communication pattern was
proposed to overcome out-of-core memory speed limitations. It was shown in [7]
that finding optimum divisible load distribution in a system with limited mem-
ory sizes and affine communication delay is NP-hard. In [11] multi-installment
divisible load processing with limited memory was studied, but the computer
system was homogeneous and communication sequence was fixed. In this paper
we assume that the sequence of communications can be arbitrary. The load is
processed in multiple chunks by a heterogeneous system. To our best knowledge,
none of the already published papers addressed the exact problem we study.
The rest of the paper is organized as follows. In Section 2 problem is formu-

lated, in Section 3 solution methods are outlined, and results of computational
experiments are reported in Section 4.

2 Problem Formulation

A set of processors {P1, . . . , Pm} is connected to a central server P0. By a proces-
sor we mean a processing element with CPU, memory, and communication hard-
ware. Each processor Pi is defined by the following parameters: communication
link startup time Si, communication transfer rate Ci, processing rate Ai, and
memory limit Bi. The time to transfer x load units from P0 to Pi is Si + xCi.
The time required to process the same amount of load is xAi. Let n denote
the number of load chunks sent by the originator to the processors. We will
denote by αj the size of chunk j. The total amount of load to process is V .
Hence,

∑n
j=1 αj = V . The problem consists in finding the set of used proces-

sors, the sequence of their activation, and the sizes of the load chunks αj such
that schedule length Cmax, including communication and computations, is the
shortest possible. For the sake of conciseness we will mean both selecting the
set of processors and their activation sequence while saying activation sequence.
The optimum activation sequence must gear to the speeds of the processors, and
available memory. Let dj be the index of the destination processor for load chunk
j, and d = (d1, . . . , dn) a vector of processor destinations.
It is assumed that the amount of memory available at the processor is limited.

If the new chunks arrive faster than the load is processed, then the load may
accumulate in the processor memory. The method of memory management has
influence on the conditions that must be met to satisfy memory limitations.
Below we discuss some options. In all cases we assume that memory is allocated
before the communication with the arriving load starts.
1) When load chunk j starts arriving, a memory block of size αj ≤ Bdj is al-

located. After processing chunk j the memory block is released to the operating
system. This approach was assumed in the earlier papers [5, 6, 7, 9, 11]. Unfor-
tunately, though each chunk uses less memory than Bdj , the total accumulated
memory consumption may be bigger. Hence, this method is not very effective in
the case of multi-installment processing.
2) When load chunk j starts arriving, many small blocks of memory are

allocated from the memory pool. The size of each small block is equal to the size
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of the grain of parallelism. The total allocated memory size is αj . As processing
of the load progresses, the memory blocks are gradually released to the operating
system. This method of memory management is illustrated in Fig.1a.
3) As in the first case, memory block of size αj is allocated when chunk j

starts arriving. It is released after processing chunk j. However, it is required
that the total memory allocated on the processor never exceeds limit Bdj . This
method of memory management is illustrated in Fig.1b.
For the sake of simplicity of mathematical representation, in this work we

use the second method of memory management. For the same reason we as-
sume that: the time of returning the results of computations is negligible, and
that processors cannot compute and communicate simultaneously. Consequently,
computations are suspended by communications. We assume that the sequence
of processor destinations d is given. Hence, we know number ni of load chunks
sent to processor Pi, and function g(i, k) ∈ {1, . . . , n} which is the global number
of a chunk sent to processor Pi as k-th for k = 1, . . . , ni. Let tj denote the time
moment when sending load chunk j starts. We will denote by xik the amount of
load that accumulated on processor Pi at the moment when communication k to
Pi starts. The problem of the optimum chunk size selection can be formulated
as the following linear program:

min Cmax

tj + Sdj + αjCdj ≤ tj+1 j = 1, . . . , n− 1 (1)

xi,k−1 + αg(i,k−1) −
tg(i,k) − (tg(i,k−1) + Si + Ciαg(i,k−1))

Ai
≤ xik

i = 1, . . . ,m, k = 2, . . . , ni (2)

xik + αg(i,k) ≤ Bi i = 1, . . . ,m, k = 1, . . . , ni (3)

tg(i,ni) + Si + Ciαg(i,ni) +Ai(αg(i,ni) + xini ) ≤ Cmax i = 1, . . . ,m (4)
n∑

j=1

αj = V (5)

xi1 = 0, xik ≥ 0 i = 1, . . . ,m, k = 2, . . . , ni (6)

tj , αj ≥ 0 j = 1, . . . , n (7)

In the above formulation inequality (1) guarantees that communications do not
overlap. The amount of load accumulated on Pi at the moment when chunk k
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starts arriving must satisfy inequality (2). By inequality (3) memory limit is not
exceeded. Computations finish before the end of the schedule by constraint (4),
and the whole load is processed by equation (5). The above formulation can be
adjusted to the case when simultaneous receiving a new load chunk and compu-
tation on the previous one is possible. In such a situation the following constraint
should be added: xik ≥ αg(i,k−1)− 1

Ai
(tg(i,k)− (tg(i,k−1) +Si +Ciαg(i,k−1))). We

conclude that the optimum load distribution can be found provided that the
sequence of processor communications d is given. In the next section we propose
two methods of constructing d.

3 Selecting Processor Activation Sequence

3.1 Branch and Bound Algorithm

Branch-and-bound (BB) algorithm is an enumerative method that generates
and searches the space of possible solutions while eliminating these subsets of
solutions which are infeasible or worse than some already known solution.
The search space consists of possible sequences d. Solutions are generated

expanding partial sequence d(i) = (d1, . . . , di), for i < n, by adding all possible
destinations di+1 ∈ {1, . . . ,m}, until obtaining complete sequences of length n.
The generation of the sequences can be imagined as a construction of a tree
with at most mn leaves. Some branches of the tree can be pruned. Therefore, for
each partial sequence d(i) a lower bound on the length of all d(i)’s descendants
is calculated. The lower bound is Cmax obtained from linear program (1)-(7)
by assuming that each load chunk i + 1, . . . , n is sent to an ideal processor.
An ideal processor Pid has all the best parameters in the processor set, i.e.
Aid = minm

i=1{Ai}, Cid = minm
i=1{Ci}, Sid = minm

i=1{Si}, Bid = maxm
i=1{Bi}. If

the lower bound is greater than or equal to the length of some already known
solution then there is no hope that any of d(i) descendants will improve the
schedule. If the resulting linear program (1)-(7) is infeasible then it means that
volume V is greater than the available processor memory. In both cases d(i) is
not expanded, and in this way the search tree is pruned.

3.2 Genetic Algorithm

Genetic algorithm (GA) is a randomized search method which implicitly discov-
ers the optimum solution by randomly combining pieces of good solutions [8].
Here we present basics of our implementation of GA only.
A set of G solutions is a population. Solutions are encoded as strings d =

(d1, . . . , dn) of chunk destinations. The quality of solution d is the schedule length
Cmax(d) obtained as a solution of the linear program (1)-(7) formulated for d.
Solutions of the population are subject of genetic operators. We used three

operators: crossover, mutation, and selection. Single-point crossover was applied.
The number of offspring generated by the crossover is GpC , where pC is a tunable
parameter which we will call crossover probability. Mutation changes GnpM

randomly selected chunk destinations in the whole population. pM is a tunable
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parameter which we call mutation probability. In the selection operation a new
population is assembled. The best half of the old population solutions is always
preserved. For the second half of the population some solution dj is selected with
probability 1

Cmax(dj)
/
∑G

j=1
1

Cmax(dj)
. The populations are modified iteratively.

The number of iterations is bounded by an upper limit on the total number
of iterations, and an upper limit on the number of iterations without quality
improvement.

4 Computational Experiments

4.1 Experiment Setting

BB and GA were implemented in Borland C++ 5.5 and tested in a set of com-
putational experiments run on a PC computer with MS Windows XP. Linear
programs were solved using simplex code derived from lp solve [1]. Unless
stated otherwise the instance parameters were generated with uniform distri-
bution from ranges [0, 2] for parameters A,C, S, and [0, 2V

n ] for parameter B.
Infeasible instances with (nmaxm

i=1{Bi}) < V were discarded. We applied the
following GA tuning procedure. 100 random instances with m = 4, and n = 8
were generated and solved by BB and GA. The average relative distance of GA
solutions from the optimum calculated by BB was a measure of the tuning qual-
ity. First, population size G = 40 was selected as increasing G beyond 40 did not
improve solution quality significantly. Second, crossover probability pC = 50%,
and then mutation probability pM = 5% were selected for which best quality
was obtained in minimum number of iterations. Finally, the limits of iteration
numbers 100 (without quality improvement), and 1000 (in total) were selected
for which solution distance from optimum was better than 0.1%.
Now let us discuss features of the optimum solutions. In Fig.2 an optimum

schedule constructed by BB algorithm is presented. It is a typical situation that
memory buffers are filled to the maximum capacity. We observed that if the num-
ber of messages is small then memory buffers were empty when a new message
arrived (i.e. xik = 0). With the increasing number of messages n we observed
an increase in the number of the optimum solutions in which the old load is
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Fig. 2. Solution for m = 2, n = 6, V =2E6, A1 = A2 = 8.98, C1 = C2 = 7.39, S1 =
2.01, S2 = 3.02, B1 =5E5, B2 =3E5
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for m = 4, n = 8, V = 1E6

not completely processed on the arrival of the new load (xik > 0). Intuitively,
this seems reasonable because when n is small each message must carry nearly
a maximum load. If a message sent to processor Pi carries maximum load Bi,
then the old load must be completely processed before receiving a new chunk.

4.2 Running Times

Dependence of the BB and GA execution times on n, B are shown in Fig.3, Fig.4,
respectively. Each point in these diagrams is an average of at least ten instances.
The worst case number of leaves visited in a BB search tree is mn. Thus, the
execution time of BB is exponential in n for fixed m (Fig.3). The execution time
of GA grows with n because the length of the solution encoding and sizes of
linear programs increase with n (Fig.3). GA running time dependence on m is
weaker: 10-fold increase of m resulted in 60% increase of the execution time.
In Fig.4 dependence of the running time on memory size is shown. For this
diagram processor memory sizes (Bi) were generated with uniform distribution
from range [0, κ 2V

n ], where κ is shown along horizontal axis. With growing κ the
size of available memory is growing on average. Consequently, more solutions are
feasible, less branches can be cut in BB, and BB execution time grows. When κ
is big, infeasibility of a solution becomes rare, and it is not limiting BB search
tree. Hence, dependence of BB execution time on κ levels-off.

4.3 Quality of the Solutions

We observed that GA is very useful in deriving optimum, and near-optimum
solutions. Over 55% of the instances were solved to the optimality by GA. The
biggest observed relative distance from the optimum was 1.2%.
In Fig.5, Fig.6 we show dependence of the solutions quality on the range of

C,B, respectively. Along the vertical axis a relative distance from the optimum
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of memory sizes, m = 4, n = 8, V = 1E6

is shown for three kinds of solutions: an average for the genetic algorithm (de-
noted GA), an average for a randomly selected sequence of destinations (RND),
and for the worst case sequence ever observed (WORST). Load distributions for
RND, WORST sequences were found from (1)-(7). A dedicated axis is used for
the relation WORST. RND, and WORST are indicators of the characteristic fea-
tures inherent in the problem itself. For Fig.5, the communication rates Ci were
generated from range [1−λC , 1+λC ]. The remaining parameters were generated
as described above. Thus, with growing λC heterogeneity of the communication
system was growing. Values of λC are shown along the horizontal axis. As it can
be seen in Fig.5 with growing heterogeneity of parameter C the quality of both
random and the worst case solutions is decreasing. Note, that this dependence is
growing especially fast when C variation (λC) is big. For Fig.6 the memory sizes
were generated from range [2V

n − λB ,
2V
n + λB ], for fixed value of V . The value

of λB is shown along the horizontal axis. A trend of decreasing solution quality
can be observed for growing λB . Note that in Fig.6 the distance from the opti-
mum of RND, and WORST solutions is bigger than in Fig.5. Similar distance
has been observed in the case of varying A. This demonstrates that narrowing
the diversity of the system parameters simplifies obtaining a good solution, and
communication rate C is a key parameter in performance optimization. Further-
more, the distance between WORST, RND, and GA or BB solutions can be used
as an estimate of the gain from finding the optimum, or near-optimum, sequence
of processor activations. It can be inferred that this kind of gain is ≈ 10-40% on
average (RND), and ≈ 10-fold in the worst case.

5 Conclusions

In this paper we studied optimum multi-installment divisible load processing in
a heterogeneous distributed system with limited memory. A linear programming
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formulation has been proposed for a fixed processor activation sequence. Two
algorithms were proposed to find an optimum, or near optimum processor ac-
tivation sequences. The algorithm running times, and quality of the solutions
were compared in a series of computational experiments. It turned out that the
proposed genetic algorithm is very effective in finding near-optimum solutions.
The impact of the system heterogeneity on the solution quality has been also
studied. It appears that with growing system heterogeneity good solutions are
harder to be found. Especially small communication speed diversity simplifies
obtaining good solutions.
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Abstract. We address a generalization of the classical 1- and 2-processor
UET scheduling problem on dedicated machines. In our chromatic model
of scheduling machines have non-simultaneous availability times and
tasks have arbitrary release times and due dates. Also, the versatility
of our approach makes it possible to generalize all known classical crite-
ria of optimality. Under these constraints we show that the problem of
optimal scheduling of sparse instances can be solved in polynomial time.

1 Introduction

In recent years, a number of new approaches to the problem of parallel computer
systems have been proposed. One of them is scheduling of multiprocessor task
systems [6]. According to this model any task may require for its processing
more than one processor at a time. There are two main classes of problems
in multiprocessor task scheduling. In the first class of problems, it is assumed
that the number of simultaneously required processors is important [2, 15] and a
task requires a certain prespecified number of processors. In the second class of
multiprocesor scheduling problems, the set of simultaneously required processors
is assumed to be important [1, 3, 13, 14]. In this case either a certain fixed set of
processors, or a family of processor sets on which the task can be executed is
given. This paper is concerned with a fixed set scheduling problem.

Furthermore, we assume that for each task the above-mentioned fixed set is
either 1-element or 2-element. In other words, we assume that each task is either
uniprocessor (it requires a single dedicated processor) or biprocessor (it requires
two dedicated procesors simultaneously). For brevity, we will name uniprocessor
tasks as 1-tasks and biprocessor tasks as 2-tasks.

Since the problem of scheduling 2-tasks is NP-hard subject to all classical
optimality criteria, in this paper we are concerned with a special case that the
duration of every task is the same. We will call such tasks unit execution time
(UET) tasks. Consequently, all data are assumed to be positive integers and

� This research was partially supported by KBN grant 4T11C 04725.
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deterministic. Later on we will see that such a restriction, although remain-
ing NP-hard instances in general, does allow for polynomial-time algorithms in
numerous special cases.

The third important assumption concerns availability constraints. Namely,
we assume that the availability of tasks is restricted and, in addition, some ma-
chines are available only in certain intervals called time windows. Time windows
may appear in the case of computer breakdowns or maintenance periods. More-
over, in any multitasking computer system and in hard real-time systems in
particular, urgent tasks have high priority and are pre-scheduled in certain time
intervals, thus creating multiple time windows of availability. Scheduling in time
windows was considered in e.g. [1, 2, 8].

The model of scheduling considered in this paper is justified by various tech-
nological and efficiency reasons. For example, in fault-tolerant systems tasks may
be duplicated to obtain results surely [7]. Mutual testing of processors needs two
processors working in parallel [12]. The same can be said about file transfers,
which require two corresponding processors simultaneously: the sender and the
receiver [4]. Another example is resource scheduling in a batch manufacturing
system, where jobs require two dedicated resources for processing [5].

The remaining of this paper is organized as follows. In Section 2 we set up the
problem more formally and model it as a list edge-coloring problem. Section 3
is devoted to the case when there are fewer tasks than processors. We show that
our problem can be solved efficiently by a tree coloring technique. In Section 4
we generalize these results to the case when the number of tasks is O(1) greater
than the number of processors.

2 Mathematical Model

A collection J = {J1, . . . , Jj , . . . , Jn} of n tasks has to be executed by m identical
processorsM1, . . . ,Mi, . . . ,Mm ∈M . Each task Jj requires the simultaneous use
of a set fixj of one or two prespecified (unique) processors for its execution but
each processor can execute at most one such task at a time. Repetition of tasks
is not allowed. Task Jj , j = 1, . . . , n requires processing during a given time
pj . All tasks are independent, nonpreemptable and of the same length. For the
sake of simplicity we assume that pj = 1 for j = 1, . . . , n. Time is divided into
unit-length time slots. Due to availability constraints, each task Jj has a list
L(Jj) of time slots during which the task is available for processing. Each slot
on list L(Jj) has its own weight (cost), independent of other weights of slots of
all the lists. Our aim is to check whether a solution exists, and if the answer is
affirmative, we are interested in finding a schedule with the minimum total cost.
This criterion of optimality generalizes all known classical criteria: Cmax, Lmax,
Tmax, F ,

∑
wjCj ,

∑
wjLj ,

∑
wjTj ,

∑
wjUj, etc.

Using the three-field notation we can describe our problem as P |win, pj =
1, |fixj| ≤ 2|criterion, where we add a word win in the second field since time
windows are imposed on tasks rather than machines. The word criterion in the
third field is used to emphasize the versatility of our approach.
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The problem considered here can be modeled as list edge-coloring of a pseudo-
graph G = (V,E). There is a one-to-one correspondence between the vertex set
V = {v1, . . . , vm} and the processor set M as well as the edge set E = {e1, . . . ,
en} and the task set J , in the sense that a loop ej = {vi} ∈ E corresponds to
1-task Jj to be executed onMi, and edge ej = {vi, vk} ∈ E corresponds to 2-task
Jj to be executed on machines Mi and Mk. Such a pseudograph will be called a
scheduling graph. To each edge e of G there is assigned a list L(e) ⊆ N (where N
is the set of positive integers) specifying which slots (colors) are available to e.
Moreover, to each e ∈ E there is assigned an arbitrary (not necessary increasing)
cost function fe : L(e) → N ∪ {0} specifying the cost of coloring edge e with a
particular color i ∈ N . The functions fe are assumed to be computable in O(1)
time. The sum of costs among all edges is the cost of coloring of graph G. We
will attempt to minimize this parameter. It is easy to see that any solution to the
P |win, pj = 1, |fixj| ≤ 2|- is equivalent to a list edge-coloring of the associated
scheduling graph G. Therefore, from here on we will speak interchangeably of
colorings and schedules.

Illustration of the above concepts is given in Fig. 1. We show over there an
example of problem instance, the corresponding scheduling graph and its optimal
coloring as well as Gantt diagram of the optimal solution. As already mentioned,
we will consider sparse scheduling graphs, i.e. with |E| = |V |+O(1), since such
graphs allow polynomial-time scheduling algorithms. In terms of scheduling this
means that we restrict instances to those in which the number of tasks n is O(1)
greater than the number of processors m. More precisely, the scheduling graphs
that we consider may have two kinds of cycles: short 1-edge cycles (loops), and
long cycles of 3 or more edges. In the next section we consider scheduling graphs
without long cycles. Section 4 is devoted to scheduling graphs with few long
cycles.

3 Scheduling Graphs Without Long Cycles

In the following by γ(G) we denote the cyclomatic number ofG, i.e. |E|−|V |−λ+
l, where λ is the number of loops and l is the number of connected components of
G. In this section we consider forests, i.e. scheduling graphs with γ(G) = 0. The
case of graphs with γ(G) ≤ k will be considered in the next section. Suppose
that a scheduling graph G is in shape of forest, i.e. it is a collection of trees
T1, T2, . . . . In this case we can color the forest by coloring each Ti separately.
For this reason it suffices to consider the problem of coloring the edges of a tree
T . Accordingly, let T be a tree on m vertices with λ ≤ m loops ei1 , ei2 , . . . , eiλ

.
We replace each loop eij = {vl} by a pendant edge eij = {vl, vm+j}, j = 1, ..., λ,
thus obtaining a new tree with the same number of edges and λ new vertices,
but now there are no loops at vertices. Such a transformation is polynomial and
does not change the problem, i.e. optimal coloring of the new tree is equivalent
to optimal coloring of T .

The authors showed in [10] the following



858 K. Giaro and M. Kubale

(a) M = {M1, M2, M3, M4}

J = {J1, J2, J3, J4, J5}

J1 M1 L(J1) = (1,2) f1(x) = x

J2 M2 L(J2) = (1,3) f2(x) = 5x

J3 M1, M3 L(J3) = (1,2,3) f3(x) = 5|x – 2|

J4 M2, M3 L(J4) = (2,3,4) f4(x) = x

J5 M3, M4 L(J5) = (1,3) f5(x) = 4x

1

2 3

1

v1 v3 v2

v4

1

optimal cost = 13

(b)

M1

M2

M3

M4

J4

J3
J1

J2

J5

t

(d)

1 2 3

J3

Fig. 1. Example: (a) problem instance; (b) scheduling graph; (c) Gantt diagram

Lemma 1. For every fixed k the cost edge-coloring problem with increasing cost
functions for graphs G with the cyclomatic number at most k can be solved in
time O(mΔ1.5+k log(mC)), where C = maxe∈E(G) fe(2Δ−1) and Δ ≤ m stands
for the maximum vertex degree in G. �

We will show that Lemma 1 can be generalized to list cost coloring of such
graphs with arbitrary cost functions. Our approach develops a technique for
finding optimal edge sum coloring of trees [9] and uses an improvement useful
in reducing its time complexity [16].

Theorem 1. An optimal list cost coloring of the edges of tree T can be found
in time O(mΔ2 log(mC)), where C = maxe∈E(G),i∈L(e) fe(i).
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Proof. First of all, we say that a collection of lists L is exact for a graph G if
∀{u,v}∈E |L({u, v})| = deg(u)+deg(v)− 1. It is easy to see that there is a simple
polynomial time reduction of a general list-cost coloring problem to its subcase
of exact lists L (in this reduction we only have to delete the most expensive
colors from lists “too long” and add appropriate new “very expensive” colors to
lists “too short”). So in the following we can assume that L is exact.

We shall sketch a procedure for determining the minimum cost of list coloring
of a tree T . One can easily extend it to finding the corresponding coloring. For a
pair of adjacent vertices v and v′ letH stand for the largest subtree of T such that
{v, v′} belongs to H and v is a leaf. Function V al(v, v′) : L({v, v′})→ {0} ∪N
is defined so that V al(v, v′)(i) is the minimal cost of L|E(H)-list coloring of the
edges of H with the same cost functions as in T , in which edge {v, v′} gets
color i. If we recursively find the values of V al(u, u′) for a leaf u of T , then the
requested optimal cost will be equal to mini∈L({u,u′}) V al(u, u′)(i).

If H contains only one edge {v, v′} then obviously V al(v, v′) = f{v,v′}. So
suppose that in the succeeding step of the procedure we have a subtree H as
shown in Fig. 2 and the functions V al(v′, wl), l = 1, .., k are already known.

v

v

w1 w2 wk

T1 TkT2

...

v'

Fig. 2. Tree H and its subtrees

To find the value of V al(v, v′) we construct a bipartite graph Kv,v′
whose

vertices in the first partition arew1, ..., wk and the vertices in the second partition
are colors L({w1, v

′})∪· · ·∪L({wk, v
′}). There is an edge {wl, x} in Kv,v′

if and
only if x ∈ L({wl, v

′}) and then we put the weight V al(v′, wl)(x) on it. In
that case V al(v, v′)(j) is equal to the weight of the lightest k-edge matching in
subgraph Kv,v′−{j} (i.e. the cost of coloring of T1, . . . , Tk) plus f{v,v′}(j), since
edge {v, v′} has to be given color j.

Finding the value of V al(v, v′) requires prior calculating the weights of k-edge
matchings in all graphs Kv,v′ − {j} for j ∈ L({v, v′}). By using the algorithm
mentioned in [11] for graph Kv,v′

, for which the numbers of vertices and edges
are O(degT (v′)Δ(T )), we can do this in polynomial time O(degT (v′)3/2Δ(T )3/2

log(mΔ(T )C)). We get the overall complexity of the coloring algorithm by sum-
ming up among all vertices v′, which results in O(mΔ2 log(mC)). �
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Reformulating Theorem 1 in terms of scheduling and introducing the symbol
G = forest to mean that the associated scheduling graph of the system is a
forest, we obtain the following easy instance of our basic problem.

Theorem 2. The P |win, pj = 1, |fixj| ≤ 2, G = forest|criterion problem can
be solved in polynomial time, where ‘criterion’ stands for any of the following:
Cmax,

∑
wjCj, Lmax,

∑
wjLj, Tmax,

∑
wjTj,

∑
wjUj, etc.

Proof. We will show how to minimize the solution subject to the first two crite-
ria: Cmax,

∑
wjCj . Finding an optimal solution with respect to the remaining

criteria can be accomplished similarly.

Case 1: criterion =
∑
wjCj . For each edge e ∈ E(G) we set fe(i) = iwe, i =

1, 2, . . . . Next we find an optimal coloring of the forest G by repeatedly
finding an optimal coloring of its trees.

Case 2: criterion = Cmax. For each edge e ∈ E(G) we set fe(i) = i, i ∈ N .
We find an optimal coloring of the forest G. Let l be the length of this so-
lution. We remove colors s ≥ l from all lists L(e1), L(e2), . . . and invoke the
procedure for optimal list edge-coloring of G once more. If it fails, the previ-
ous solution is the best possible. If not, we continue the process of shrinking
a schedule, possibly using a binary search to speed up the procedure. �

4 Scheduling Graphs with Few Long Cycles

In this section we assume that n−m = O(1). As previously, suppose that graph
G is loopless and connected, and the cyclomatic number γ(G) ≤ k. Under these
assumptions we have the following

Theorem 3. For every fixed k there is a polynomial-time algorithm of complex-
ity O(mΔ2+k log(mC)), where C = maxe∈E(G),i∈L(e) fe(i) for a list cost coloring
of the edges of G with the cyclomatic number at most k.

Proof. Let G(V,E) be a graph with γ(G) = k, L its exact lists and let A =
{e1, ..., ek} be a set of the edges whose deletion form G results in a spanning tree.
Moreover, let U = ∪e∈Ae be the set of all vertices incident with the edges of A.
All we need is an O(mΔ(G)2 log(mC))-time procedure which for a given L|A-list
coloring d : A → N ∪ {0} of graph (U,A) finds its cost optimal extension to an
L-list edge-coloring of G. We will use the algorithm of Theorem 1. On the basis of
graph G, the collection of lists L and cost functions we build a tree T , as follows.

Step 1: Delete the edges of A from G.
Step 2: For each deleted edge {u, v} ∈ A introduce two new pendant edges
{u, unew}, {v, vnew} with 1-element lists of the form: LT ({v, vnew}) =
LT ({u, unew}) = {d({u, v})}. Next, define two cost functions for them,
namely: one fT

{v,vnew} = f{v,u}, and the other fT
{u,unew} = 0.

Step 3: Leave costs and lists of the remaining edges unchanged.
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The optimal cost of list edge-coloring of T and the extension of function d to
list cost coloring of G are equal: edges {u, unew} and {v, vnew} correspond to the
’halves’ of split edge {u, v} and 1-element lists of these pendant edges enforce
the validity of the extension of d.

As far as the complexity considerations are concerned note that the number
of edge-colorings of graph (U,A) is less than (2Δ)k, which is O(Δk) since k is
fixed. Moreover, |V (T )| = |V (G)|+ 2k and Δ(T ) = Δ(G), which completes the
proof. �

As previously, on the basis of Theorem 3 we get the following easy instance of
our scheduling problem.

Theorem 4. For every fixed k the P |win, pj = 1, |fixj| ≤ 2, G = k-cyclic|
criterion problem can be solved in polynomial time. �

Can the chromatic approach presented in the paper be extended to other in-
stances of the UET multiprocessor tasks scheduling? Consider the same problem
but with 1-tasks, 2-tasks and 3-tasks. Now 3-tasks can be modeled by hyper-
edges consisting of three vertices. Thus our pseudograph becomes a hypergraph
with 3 kinds of hyperedges: loops, edges and triangles. Clearly, no two hyper-
edges having a vertex in common can be colored the same. If, in addition to
general sparseness of the system, the number of such triangles is constant, then
we may apply the same technique as that used in the proof of Theorem 3. Con-
sequently, we arrive at a polynomial-time algorithm for optimal scheduling of k-
processor (k ≤ 3) UET tasks on dedicated processors with arbitrary availability
constraints.
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Abstract. A new program structuring algorithm for dynamically look–
ahead reconfigurable multi–processor systems is presented in the paper.
The presented algorithm uses a new kind of graph representation of par-
allel programs with conditional branches (Branching Task Graph, BTG).
The BTG captures the data–flow and control–flow properties of parallel
programs. It extends the scope of parallel programs optimized for exe-
cution in look–ahead reconfigurable systems beyond static DAG graphs.
The new program graph structuring algorithm for BTG graphs is based
on a two–phase approach. It consists of a new list task scheduling heuris-
tics, which incorporates branch optimization techniques such as detec-
tion of mutually–exclusive subgraphs and scheduling of most–often–used
paths based on branch probabilities. In the second phase, program par-
titioning into sections executed with the look–ahead created connections
is done, based on the modified iterative clustering heuristics.

1 Introduction

This paper extends the scope of the program scheduling algorithms designed
for the look–ahead configured systems so far [3, 4] and presents new program
scheduling algorithms which contain conditional branches. These algorithms use
new parallel program graph representations, which allow for expression of both
data and control dependencies among program tasks. Based on these represen-
tations, new heuristics that encounter the existence of conditionally executed
computations and communication have been proposed for task scheduling and
graph partitioning. The proposed algorithms extend the algorithmic methods
based on list scheduling and iterative task clustering assumed in [3, 4], with
heuristics influenced by the most–often–used–path approach [7]. The algorithms
determine at the compile time the program schedule, the partition into sec-
tions and the number of crossbar switches that provide time transparency of
inter–processor connection reconfiguration.

The look–ahead dynamic connection reconfiguration is based on anticipated
connection setting in some redundant communication resources provided in the
system. These redundant resources can be link connection switches (crossbar
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switches, multistage connection networks), processor sets and processor link sets.
In the paper, we investigate a system with multiple crossbars as redundant com-
munication resources. The new parallel program graph representation, which
captures both data and control flow, extends the scope of parallel algorithms
that could be optimized and executed in such a kind of environment.

The paper consists of three parts. The first part describes the look–ahead
dynamically reconfigurable system and parallel program model. In the second
part, we introduce new program graph representations used for new formulation
of the program scheduling problem. The third part presents program structuring
algorithms for the assumed architecture.

2 Parallel Program Representation

In the paper we investigate a multiprocessor system with distributed memory
and with communication based on message passing, Fig. 1. Inter–connections
between processors P1 . . . PN are set in crossbar switches S1 . . . SX by a reconfig-
uration control subsystem (RCS ) in parallel with program execution (including
communication) and remain fixed during section execution. RCS collects mes-
sages on the section execution states in worker processors sent via the Control
Communication Path. A hardware Synchronization Path synchronizes the states
of processors which will execute next program sections. At section boundaries,
relevant processor’s communication links are switched to the crossbar switch(es)
where the connections had been prepared.

Program scheduling and partitioning algorithms for the look–ahead reconfig-
urable system presented so far [3, 4] use static, directed acyclic graphs (DAGs)
as a representation of application programs. Application programs often contain
both data and control statements and thus cannot be effectively represented by
a classic DAG. This problem has been noticed and several parallel program rep-
resentations, which capture data and control dependencies have been proposed,
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Fig. 1. Look–ahead reconfigurable system with multiple connection switches
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especially in the system synthesis area [5, 6]. In the paper we present the BTG
graph, a new effective representation of data and control flow in parallel pro-
grams. The BTG makes it possible to extend parallel program optimizations for
execution in look–ahead reconfigurable systems, which are now not limited to
classical DAG graphs with fully static control.

A Branching Task Graph (BTG) of a parallel program is a weighted directed
acyclic graph G(V, VC , E). The BTG consists of two kinds of nodes. Node ni ∈ V
represents a task, an atomic unit of execution. The weight of the node represents
the task execution time. Node ck ∈ VC , VC ⊂ V , represents a conditional branch,
in which the control flow of a program forks according to the value of a control
statement, computed in the node. Tasks execute according to the macro–dataflow
model. A directed edge ei,j ∈ E represents communication that corresponds to
data or control dependencies among nodes ni and nj . The weight of an edge
is the communication cost. Alternative paths starting from a conditional node
meet in a conditional merge node cm ∈ VC . Such paths can not be connected to
any other subgraphs of a program. A merge node is activated after data from
one of the alternative paths have arrived.

We assume the BTG graph is static and deterministic. The probability distri-
bution of different values of each conditional statement is known prior to the pro-
gram execution. A BTG of an exemplary program is shown in Fig. 2. Task nodes
are shown as circles, conditional nodes are shown as diamonds. Execution times
are written below node’s numbers. Edge’s labels show the communication costs.

A schedule is defined as task–to–processor and communication–to–link as-
signment, with specification of starting time of each task and each communica-
tion. In the look–ahead reconfigurable environment, the schedule also
consists of program partition into sections, executed with the look–ahead created
connections. In the presented algorithms, a program with a specified schedule

1 
25

2 
5 

3 
40 

6 
60 

7 
35 

12 
30 

15 
5 

4 
40

8 
60

9 
35 

13 
30

5 
30 

10 
50

11 
40 

14 
25 

16 
15

25 25 

25
25 

25 

25 

15 

15

15

15 

15 

15 

15

15

15 

10 

10

10

10 

10 

Fig. 2. An example of BTG



866 E. Laskowski and M. Tudruj

1 

11 

16 

14 

15 

2 

P1 P2 P3 P4

a 

b’ 

c 

b 

d 

f 

e
c’ 

4 3 
5

6 8 7 9 

12 

10 

13 

(a) expressed in the form of the
XAPG graph

a 

b b’ 

c c’ e 

d 

f 

(b) Extended Communication
Activation Graph partitioned
into sections

Fig. 3. A schedule of an exemplary BTG from Fig. 2

is expressed in terms of an Extended Assigned Program Graph (XAPG), see
Fig. 3(a). The XAPG is based on the APG representation, introduced in [3].
XAPG assumes the synchronous communication model (CSP–like). There are
two kinds of nodes in an XAPG: code nodes (which correspond to tasks in BTG,
shown as rectangles in Fig. 3(a)) and communication nodes (circles in Fig. 3(a)).
Activation edges are shown as vertical lines in Fig. 3(a), communication edges
as horizontal lines. Each processor has activation paths built of activation edges
and nodes, which are scheduled on this processor. Activation paths can fork.
The conditional fork and join points in the XAPG (solid diamonds in Fig. 3(a))
correspond to the conditional and merge nodes in the BTG, respectively.

The Extended Communication Activation Graph (XCAG) is used in the
program graph partitioning into sections. This graph is composed of nodes,
which correspond to communication edges of the XAPG program graph, and
of edges, which correspond to activation paths between communication edges
of the XAPG, Fig. 3(b). The fork and join nodes (shown as solid diamonds in
Fig. 3(b)) represent the fork and join points from the XAPG, respectively. Pro-
gram sections are defined by identification of such subgraphs in the XAPG or
XCAG that the following validity conditions hold:

a) Each vertex of the XCAG graph belongs to one and only one section.
b) The edges, which connect nodes contained in a section subgraph define a

connected subgraph when considered as undirected.
c) All nodes on each path, which connects two nodes belonging to a section

subgraph belong to the same section.
d) Processor link connections inside section subgraphs do not change.
e) Fork nodes don’t belong to any section. Nodes incoming to or outgoing from

the fork node are always section boundaries.
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3 Program Structuring Algorithms

Program structuring algorithms, presented in the paper, exploit control flow
properties of BTG to detect mutually exclusive tasks and communications. It
allows effective sharing of processors and processor links in the look–ahead re-
configurable environment, and thus, leads to reduction of total program exe-
cution time. The presented algorithm uses a two–phase approach to obtain the
schedule and partition of a program graph [3,4]. In the first phase, a list schedul-
ing algorithm is applied to obtain a program schedule with reduced number of
communications and minimized program execution time. In the second phase,
scheduled program graph is partitioned into sections.

The scheduling algorithm is based on the ETF (Earliest Task First) heuris-
tics [1]. Our algorithm introduces new communication model: instead of fixed
inter–processor network topology, as in the original ETF, we investigate sys-
tem with look–ahead dynamically created connections. We take into account a
limited number of links, link switches and links contention.

The second improvement consists of the new methodology for conditional
branch scheduling. It includes the detection of mutually–exclusive paths [6] and
scheduling of most–often–used paths based on branch probabilities [7].

In our modified ETF heuristics, we use the new formula for evaluation of
the earliest starting time of a task (Ready(ni, Pi) procedure, which returns the
time when the last message for task ni arrives at processor Pi, see [1]), Fig. 4.
In this procedure, additional overhead (cR in Fig. 4) is introduced into total
communication time when network topology should be changed and there is
no sufficiently long time gap after last communication to do reconfiguration
in advance without delaying program execution. This link reconfiguration time
overhead is minimized by reduction of the number of link reconfigurations.

In program graph schedules, tasks and communications belonging to sub-
graphs implied by mutually exclusive conditional branch paths can share the
same resources. It is accomplished by their overlapping assignments in the same
time slot on a target system resource. The algorithm for detection of mutually
exclusive nodes and edges is based on the branch labeling method (see [6] for

Procedure Ready(ni, Pi) 
Time := 0 
For each nj ∈ Predecessors ni 

TArrive := finishing time of task nj 
Pj := processor which task nj is  
      scheduled on 

If Pj ≠ Pi Then 
 TArrive := TArrive + cj,i  
 {cost of communication from Tj to Ti} 
 If Pi and Pj are connected Then 
  send := link of Pj connected to Pi 
  recv := link of Pi connected to Pj 
 Else 
  send := last recently used link of Pj 
  recv := last recently used link of Pi 
  If time since last use of link 
   Lj,send or link Li,recv in  
   previous configuration < cR  

   Then 
     TArrive := TArrive + cR 
   EndIf 
  EndIf 
  Allocate temporarily communication 
  ej,i on links Lj,send and Li,recv 
  (sharing the links with mutual   
    exclusive communications, if possible) 
  EndIf 
 If Time < TArrive Then 
  Time := TArrive 
 EndIf 
EndFor 
 

Allocate temporarily task ni on processor Pi 
(sharing the time slot with mutual exclusive 
tasks, if possible) 
 

Return Time 

Fig. 4. The Ready procedure used in scheduling algorithm
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details). An exemplary schedule for program from Fig. 2 is shown in Fig. 5. The
algorithm detected two exclusive branches (nodes 3, 6, 7, 12 and 4, 8, 9, 13).
Communications b, c and b’, c’ share the same link since their time slots are
overlapping and they are scheduled on the same processor link.

To improve schedule quality, the structuring heuristics is based on the most–
often–used paths approach [7]. The most–often–used path is a subgraph starting
from a conditional node, whose execution probability is above the given threshold
pMOU. Nodes belonging to such paths have always the highest priority among
ready nodes, including critical path of the graph (paths that are traversed less
frequently have little impact on the average program execution time so they
can be allowed to execute longer). When there is no most–often–used path in a
conditional branch (i.e. paths have uniform or close probabilities), selection of
the nodes for scheduling behaves according to the standard ETF paradigm.

The second phase of the program structuring is the graph partitioning al-
gorithm into sections [3, 4]. The goal of this phase is to find program graph
partition into sections executed with pre–configured inter–processor connections
and to assign a crossbar switch to each section, Fig. 6. At the beginning of the
algorithm, each section is built of a single communication, all sections are as-
signed to the same crossbar switch. In each step, the algorithm selects a vertex
of XCAG and it tries to include this vertex to a union of existing sections deter-
mined by incoming edges of the current vertex. The heuristics tries to find such
a union of sections, which doesn’t break rules of graph partitioning. Nodes be-
longing to subgraphs implied by different conditional paths (or from conditional
and unconditional paths) are placed in separate sections, thus the deadlock con-
dition during program execution is avoided. The union, which gives the shortest
program execution time is selected or, when there is no execution time improve-
ment, the section of the current vertex is left untouched. The vertices can be
visited many times. The algorithm stops when all vertices have been visited
and there hasn’t been any program execution time improvement in a number of
steps.
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Begin 
B := initial set of sections, each section is 
composed of single communication and assigned to 
crossbar 1 
curr_x := 1  {current number of switches used} 
finished := false 
While not finished 

Repeat until each vertex of XCAG is visited 
  and there is no execution time 
  improvement during last β steps {1} 
 v := vertex of CAG which maximizes the  
   selection function and which is not  
   placed in tabu list 
 S := set of sections that contain   
   communications of all predecessors of v 
 M := Find_sections_for_clustering(v, S) 
 If M ≠ ∅ Then 
 B := B - M 

   Include to B a new section built of v and 
    communications that are contained in  
    sections in M 
  Else 
   s := section that consists of   
           communication v 
   Assign crossbar switch (from 1..curr_x) 
            to section s 
   If reconfiguration introduces time overheads 
   Then 
    curr_x := curr_x + 1 
    Break Repeat 
   EndIf 
  EndIf 
 EndRepeat 
 finished := true 
EndWhile 
End 

Fig. 6. The general scheme of the graph partitioning algorithm

Estimation of the program execution time is based on simulated execution of
the partitioned graph in a look–ahead reconfigurable system. For this purpose,
a XAPG graph with a valid partition is extended by subgraphs, which model
the look–ahead reconfiguration control. Weights of the graph nodes correspond
to latencies of respective control actions, such as crossbar switch reconfigura-
tion, bus transfer latency, and similar. During simulated execution of a XAPG,
we assume that, at the conditional fork points, the most–often–used conditional
paths are selected for execution. If there is no most–often–used path (equal or
similar path probabilities), all outgoing paths are simulated, and the worst (the
longest) execution time is selected. During program execution, the connection
reconfiguration subsystem first creates connections for the section, which con-
tains the most–often–used path. The connections for sections from less probable
paths are created in descending order of their execution probabilities. For equal
or similar path probabilities the reconfiguration selection order is arbitrary.

Taking as an example the graph shown in Fig. 2, we have compared sched-
ules obtained with our algorithm with schedules based on the generally known
ETF heuristics adapted by a “brute force” method. To deal with conditional
branches in the program meant for execution in the look ahead reconfigurable
environment, this ETF method maps conditional program subgraphs in whole
to separate processors. Compared with the standard ETF list scheduling algo-
rithm, which uses DAGs as program representation, our structuring algorithm
allows for more fine–grain analysis of parallel program and thus leads to better
(shorter) program execution times. We expect that this property can be general-
ized and will hold also for larger programs. Some comparison results of program
structuring by both methods are shown in the table below:

algorithm: “brute force” ETF proposed in the paper
program representation DAG BTG
nb. of communications 4 6
nb. of link reconfigurations 2 3
schedule length 215 185
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4 Conclusions

A new kind of the program graph structuring algorithm for the execution in
the look–ahead reconfigurable multi–processor system with redundant commu-
nication resources has been presented in the paper. It enables task scheduling
of programs, which include conditional branches in application programs. The
new graph representation of programs captures data and control dependencies
between tasks. The presented algorithm is based on improved list scheduling
and iterative section clustering heuristics, which have been shown to give better
results than the one with greedy vertex selection heuristics and have the same
time complexity. The new representation enables applying new branch optimiza-
tion techniques based on detection of mutually–exclusive paths in programs and
the heuristics scheduling according the most–often–used paths approach based
on branch taking probabilities. It allows efficient processor and processor links
sharing in the look–ahead reconfigurable environment for execution of exclusive
program parts. Thus, reduction of total program execution can be achieved.
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Abstract. The paper presents an algorithm for scheduling parallel tasks
in a parallel architecture based on multiple dynamic SMP clusters, in
which processors can be switched between shared memory modules at
runtime. Memory modules and processors are organized in computational
System–on–Chip (SoC) modules of a fixed size and are inter–connected
by a local communication network implemented in a Network–on–Chip
technology (NoC). Processors located in the same SoC module can com-
municate using data transfers on the fly. A number of such SoC modules
can be connected using a global interconnection network to form a larger
infrastructure. The presented algorithm schedules initial macro dataflow
program graphs for such an architecture with a given number of SoC
modules, assuming a fixed size of a module. First, it distributes program
graph nodes between processors. Then it transforms and schedules com-
putations and communication to use processor switching and read on the
fly facilities. Finally, it divides the whole set of processors into subsets
of a given size, which then are mapped to separate SoC modules.

1 Introduction

The paper deals with the problem of scheduling program graphs in a system
with dynamic processor switching and data transfers on the fly. The architec-
ture of such system is based on SMP clusters, which connect processors to shared
memory modules. Processors and memory modules are grouped in blocks and
implemented as “system–on–chip” modules [5]. A system is built of a number
of such modules, connected via a global network connecting all processors with
all memory modules. Every SoC module includes a number of processors and
a number of shared memory modules. Every memory module has its own, ded-
icated memory bus. At a time, every processor in a SoC can be connected to
some of these memory modules. A set of processors connected to the same shared
memory module constitutes a cluster. Inside SoC modules, processors can be dy-
namically switched between clusters at runtime, enabling dynamic distribution
of computations and communication between processor clusters. The collective
communication capabilities of an intra–cluster communication network allow to
use data reads on the fly for efficient intra–cluster data transfers. This technique
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consists in parallel reads of data which are written or read to/from a memory
module through an internal data exchange network, by many processors in this
cluster [3, 4].

In general, program scheduling for parallel systems is NP–hard. In the pre-
sented architecture it must take into account such problems as cache–driven
macro dataflow execution principle, which imposes constraints on processor
data caches, as well as multi–level communication methods (transferring data in
processors’ data caches between nodes, standard and on the fly data transfers
via local memory buses and communication through a global interconnection
network). Some scheduling algorithms for unbounded number of resources have
already been presented [6, 7]. The paper presents an algorithm, which takes
into account both the number of SoC modules in a system and the number of
processors in a single SoC module. The algorithm works in three phases. First,
all computing nodes of the program graph are distributed between all avail-
able processors in the system, regardless their placement in actual SoC modules.
Then, the graph is structured to convert all possible data transfers to reads on
the fly. Finally, the whole set of processors, together with program graph nodes
mapped to them, is distributed between all available SoC modules.

The paper is composed of 3 parts. In the first part, the assumed system
architecture is outlined. The second part presents an extended macro dataflow
program graph notation. The third part describes the scheduling algorithm for
the assumed architecture and its application to exemplary program graph of a
numerical algorithm.

2 SMP Architecture with Processor Switching and Data
Transfers on the Fly

The general structure of the assumed system is presented in Fig.1a. The ba-
sic system module consists of a number of processors (P) and shared memory
modules (M) connected via a local interconnection network (Local Network),
implemented as a system–on–chip (SoC) module. A number of such modules is
connected via global interconnection network (Global Network), which allows
every processor to read data from any memory module in the system.

The structure of a single SoC module is presented in Fig.1b. A SoC module
consists of a number of processors and shared memory modules. Every memory
module has its own, dedicated local network. Every processor has a multi–ported
data cache memory. It can be connected to many memory modules at a time via
their local networks. A set of processors connected to the same local memory
network constitutes a cluster. A processor can be dynamically switched between
clusters on demand. This architecture is based on the idea presented in [3, 4]
with assumption, that a single module has a limited number of processors and
memory modules. This is derived from the fact, that memory bus, which is
assumed here as a local network, has a limited throughput.

A local memory bus allows multiple, simultaneous reads of the same data by
many processors connected to this bus. This feature is used for a very efficient
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a) b)

Fig. 1. General system structure (a) and architecture of a single SoC module (b)

intra–cluster communication method called read on the fly. It consists in parallel
reads of data, which are being read from or written to the shared memory module
by many processors, which need this data for their computations.

Each local memory bus is supervised by its arbiter, which manages all data
transfer requests and processor switching operations. Each processor is equipped
with a Bus Request Controller (BRC), which is connected to all memory bus
arbiters. It manages local queues of processor’s memory access requests and
performs data transfers on the fly.

In order to avoid uncontrolled data cache reloads during program execution
we have introduced a new program execution principle called cache–driven macro
dataflow model. According to it, each block of a program (corresponding to
computation node in the program graph) is constructed in such a way, that it
can be executed without data transfers to or from shared memory, using only
the information stored in processor’s data cache. Therefore, before a block can
be executed, all data required for it must be read from shared memory. After
the block is completed, all the results required for other processors must be
transferred back to the shared memory module.

3 Extended Macro Dataflow Graph Program Notation

The presented algorithm uses a program graph structure based on a standard
macro dataflow graph program notation. In order to model additional opera-
tions (processor switching, synchronization, data reads on the fly), the graph
is expanded by new nodes end edges. An exemplary extended macro dataflow
program graph (EMDG) is shown in Fig. 2a. Basic nodes are the computation
(rectangles) and communication nodes (circles). A computation node represents
a sequence of computation instructions in the program. According to cache–
controlled execution principle, it is performed without any data transfers from
or to data cache during execution. All data required for this operation are read
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a) b)

Fig. 2. Nodes of the program graph (a) and communication subgraphs (b)

before execution of the node and held in processor’s data cache. The results
required for other nodes are written back to the shared memory module after
the node execution is finished. Basic communication nodes are write and read
nodes. They represent data transfers from processor’s data cache to a memory
module or from a shared memory module to a data cache respectively. Such an
operation consists in placing a proper request in processor’s BRC and waiting
for a data transfer completion. In the graph, these operations are denoted by
circles. All the nodes are marked with labels of processors, which execute them.

Processor switching is denoted as a crossed rectangle with a label of the
memory module, to which a processor is switched (if a processor can be simulta-
neously connected to many local memory buses, the label consists of the pair —
from which bus to disconnect and to which to connect a processor). Processor
switching includes a communication between a given processor and bus arbiters.
First communication aims in disconnecting a processor from a bus). Second one
is for connecting the processor to a new bus (by a proper arbiter). Switching can
take place only, when there is no traffic on an appropriate bus. Synchronization
(barrier operation) is denoted by a parallel line crossing some (at least two) of
the paths in the graph. It is also marked with barrier’s label (i.e. B1). Rounded
polygons marked with memory module’s label mean a set of nodes executed
using the same shared memory module, i.e. in the same processor cluster.

In order to model a read on–the–fly operation, read nodes should have differ-
ent meaning than the standard ones described above. In the situation, like shown
on Fig.2a, they should be considered as just placing requests in processors’ BRCs
with the read from the memory bus performed after a barrier, executed by a
processor. Curved edges mean actual data transmission. While data are written
from the writing processor’s (P1) data cache with instruction W1, processors P2
and P3 read the data to their data caches using read on–the–fly technique based
on bus snooping. If such data transmission is preceded by processor switching
of the writing processor, communication on–the–fly is performed.

In a standard macro dataflow program graph, an edge corresponds to commu-
nication, composed of both data send and receive operations. In a shared memory
system, both writing data from processor’s data cache to a shared memory mod-
ule and reading them back to data cache of another processor, constitute separate
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operations. They may include additional synchronization and interaction with
bus arbiters. Therefore, it is necessary to introduce to an EMDG an equivalent
of the “communication edge”. It is called “communication subgraph”, which is
a subgraph containing a read node, a write node which precedes this read in the
graph and nodes of arbiters, which control both transmissions (together with all
additional edges and nodes between them, see Fig.2b).

4 Scheduling Algorithm

The presented algorithm aims at finding a time–optimal schedule of the input
program graph in the assumed architecture. It includes three following steps:

– First, nodes of the initial program graph are mapped to processors in a sys-
tem. This step assumes a simplified architecture model, in which all the
processors are inter–connected with a fully connected network and data
transfers are performed using simple point–to–point communications. A stan-
dard macro dataflow program graph notation is used.

– The second step transforms communication in such a way, that it is per-
formed using data transfers on the fly. It also assumes such constraints as
the number of local memory buses, to which a processor may be simultane-
ously connected. In this step, all the processors are still inter–connected by
one large interconnection network, which is now a bus–based network with
local and global memory buses connecting processors with shared memory
modules. Here, the extended macro dataflow program graph notation is used.

– In the third step, the structured program graph obtained in previous steps
is mapped to a target system, in which the whole set of processors is divided
into subsets and each such subset is mapped to a separate SoC module.

4.1 Distribution of Nodes of a Program Between Processors

At the beginning, all the computation nodes of the initial program graph are
distributed among all the processors in the system. In this step, a standard
macro dataflow notation of the program is used, in which program graph nodes
correspond to computations and edges correspond to communications. It is as-
sumed that all N processors communicate with each other via a fully connected
network. If two adjacent computing nodes are mapped to the same processor,
communication between them has cost 0. Otherwise, the cost is equal to the
weight of an edge between these nodes. This is similar to a standard clustering
technique [2] and corresponds to transformation of data transmissions via shared
memory modules to transfers of data in processors’ data caches. The nodes–to–
processors distribution is performed using a list scheduling algorithm with ETF
heuristics [1].

4.2 Structuring a Mapped Program Graph

In this step a scheduled program graph is structured to convert as much com-
munication between processors as possible into data transfers on the fly. This
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process is based on atomic subgraphs and their basic transformations, as de-
scribed in [6]. The algorithm consists in traversing a program graph, selecting
basic structures in it and transforming them into equivalent forms, in which
all possible data transfers are performed on the fly. The traversal of the pro-
gram graph is performed using heuristics based on a Dominant Sequence. A
basic structure is a local subgraph corresponding to one of the following com-
munication schemes: one to many communication scheme (broadcast), many to
one communication scheme (reduction), many to many communication scheme
(butterfly).

For a given program graph, the presented algorithm calculates a dominant
sequence using simulated execution of a graph. Then, it selects the heaviest
unexamined communication subgraph on this path. Next, a basic structure is
selected, which contains this subgraph. Finally, this structure is a subject to
proper transformation. As a result, an equivalent program graph is obtained, in
which the most important (the heaviest) communication is transformed from a
communication via shared memory to data transfers on the fly. Transformations
try to convert standard data transfers into reads and communication on the fly
by introducing barriers, converting standard read nodes to proper read on the
fly nodes and adding processor switchings, if required [6].

4.3 Distribution of Processors Between SoC Nodules

The aim of the third part of the algorithm is to distribute a set of processors
between SoC modules, together with tasks scheduled on them. After the first
and the second part of the algorithm, it is assumed that all processors can be
connected to any local memory bus in the system via a local network, which
is hardly possible to be achieved due to technical limitations. Therefore, all the
processors are divided into subsets of the size not greater than the size of a SoC
module. Then, each such subset is mapped to a separate SoC module. Before
this distribution, almost all communication was performed using local memory
buses. After distribution, a part of communication must be executed using a
global interconnection network. One of the goals of the third step is to minimize
the cost of such communications.

This part of the algorithm on based on a genetic approach. Each chromo-
some in a population corresponds to one distribution scheme. A chromosome
is a sequence of N integers (a1 . . . aN ) (N is the number of processors), where
ai ∈ (1 . . .M) (M being the number of available SoC modules). Each ai deter-
mines a placement of processor i in the SoC module ai. It also determines the
placement of the shared memory module i in the same SoC module. Because
the size of a SoC module is fixed and such module may contain not more than
K processors and K memory modules (N = M ×K), for every module m, the
number of indexes i such that ai = m is not greater then K. According to such
placement, for every pair of processors i and j, if ai �= aj all communication be-
tween these processors is performed through the global interconnection network.
If ai = aj , then communication between these processors use local communi-
cation networks, which implies, that they can be executed using data transfers
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on the fly. For a given chromosome, the structured graph determined by this
chromosome, is described as follows:

– Each processor i is mapped to the module ai, together with all program graph
nodes mapped to it in step 1 of the algorithm, with structuring determined
in step 2.

– Each communication between processors i and j is executed in a way deter-
mined in step 2 of the algorithm, if ai = aj . For ai �= aj , communications
are converted to use the global interconnection network and are executed in
a standard way.

The fitness function. The value of a fitness function Fit for a chromosome C
is determined by the following equation:

Fit(C) = const− T (C)

where T (C) is the execution time of a structuring determined by the chromosome
C and const is a constant, such that Fit(C) > 0 for every possible C (it can
be for instance the product of the number of all processors N and the sum of
weights of all the program graph nodes).

The crossover operator. The crossover operator for two chromosomes A =
(a1 . . . aN ) and B = (b1 . . . bN) is defined as follows:

– The index 1 < n < N is chosen at random to determine the position, at
which the initial chromosomes will be divided.

– From the initial chromosomes A and B two new are obtained, according to
the following scheme:

X ′ = (x′1 . . . x
′
N ) = (a1 . . . anbn+1 . . . bN )

Y ′ = (y′1 . . . y
′
N ) = (b1 . . . bnan+1 . . . aN )

– Finally, the chromosomes X ′ and Y ′ must be repaired to obey the rule, that
the number of processors mapped to each of the SoC modules is not greater
than K. It is obtained by distribution of extra processors (chosen at random
from all mapped to the considered module) among other SoC modules, which
are not full yet. This selection is done according to the “Best Fit” rule and
tries to place as many processors as possible in the same module.

As the result, two new chromosomes X and Y are obtained, which define the
new mappings of processors to SoC modules.

The mutation operator. The mutation operator consists in exchange of map-
ping of two processors randomly chosen from two different SoC modules. Such
transformation obeys constraints on the number of processors in SoC modules,
so no further chromosome reparation is required.



878 L. Masko

5 Conclusions

The paper presents an algorithm for scheduling programs given as macro dataflow
graphs in parallel architecture based on dynamic SMP clusters with communi-
cation on the fly. The algorithm schedules the initial program graph taking into
account constraints on the number of SoC modules in the target system, as well
as the number of processors inside a single SoC module. The scheduling algo-
rithm has three phases. In the first one, nodes of a program graph are distributed
among all available processors. Then, the mapped program graph is structured
to transform standard communication between processors using shared memory
to reads on the fly. Finally, the processors are distributed among available SoC
modules. As a result, an extended macro dataflow program graph is obtained,
which is transformed and scheduled for the target system. The algorithm sched-
ules program graphs to a system with a bounded number of both SoC modules
and processors. It reduces global communication by converting it into reads
on the fly and data transfers in processors’ data caches. Further works include
introduction of additional constraints on the size of processor’s data cache.
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Abstract. The paper presents an algorithm for scheduling parallel pro-
grams for execution in a parallel architecture based on dynamic SMP
processor clusters with data transfers on the fly. The algorithm is based
on the concept of moldable computational tasks. First, an initial pro-
gram graph is decomposed into sub–graphs, which are then treated as
moldable tasks. So identified moldable tasks are then scheduled using an
algorithm with warranted schedule length.

1 Introduction

The paper concerns task scheduling in parallel programs based on the notion of
moldable computational tasks. A moldable task (MT) is a computational task,
which can be executed using an arbitrary number of parallel processors. Such
tasks have been used as atomic elements in program scheduling algorithms with
warranty of schedule length [1, 2]. Parallel execution cost of MTs for variable
number of executing processors is characterized by its penalty function, which
determines task execution efficiency versus an ideal parallel execution on the
given number of processors. For program execution, a special shared memory
system architecture is used. It is based on dynamic processor clusters, orga-
nized around shared memory modules. Data reads on the fly are provided in
these clusters which means that processors in a cluster can read data, which are
written or read to/from a memory module through an internal data exchange
network. Processors can be switched between clusters with data in their data
caches. After switching, a processor can write data from its cache to the memory,
allowing the data to be read on the fly by other processors in the cluster. Dy-
namic shared memory (SMP) clusters are organized inside integrated system on
chip (SoC) modules [8] which are connected by a central global interconnection
network. The global network enables direct global communication between all
processors in the system and all memory modules. The presented algorithm aims
at minimization of the program execution time. It assigns tasks to processors
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a) b)

Fig. 1. General system structure (a) and the structure of a SoC module (b)

and inter–task shared memory communication to dynamic processor clusters.
It converts standard communication into reads on the fly. Communication is
analyzed at the level of data exchanges between processor data caches.

The paper is composed of two parts. First, the assumed system architecture
is outlined. Then the algorithm for scheduling an application program graph in
SoC modules containing dynamic SMP clusters using MT approach is described.

2 Dynamic SMP Clusters and Communication on the Fly

General structure of the assumed SMP system is presented in Fig.1a. A system
consists of multiprocessor SMP modules containing processors (P) and shared
memory modules (M) connected via local interconnection networks (Local Net-
work), implemented as system on chip integrated modules (SoC). A number of
such modules is connected via a global interconnection (Global Network).

The structure of a single SoC module is presented in Fig.1b. A module con-
sists of a number of processors and shared memory modules. Every memory
module has its own, dedicated local network. This architecture is based on the
idea presented in [5] with assumption, that a single module has a limited number
of processors and memory modules. This constraint is derived from limited com-
munication efficiency of a memory bus for a bigger number of processors. Every
processor has a multi–ported data cache memory. It can be connected to many
memory modules at a time via local networks. A set of processors connected to
the same local network (memory bus) constitutes a cluster. A processor can be
dynamically switched between clusters on demand. Inside a cluster, a very effi-
cient intra–cluster communication method called reads on the fly is provided. It
consists in parallel reads of data by many processors connected to the same mem-
ory bus, while the data are read from or written to a shared memory module.
All data transfers as well as processor switching between busses are supervised
by memory bus arbiters. On processors’ side, data transfers are organized by
processors’ Bus Request Controllers (BRC). The BRCs communicate with all
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memory bus arbiters, supervise local queues of processor’s requests and organize
data transfers between data caches and memory modules. This includes man-
agement of processor switching and data reads on the fly. The details of the
assumed cluster architecture are given in [5, 6].

For adequate modeling of program execution in the assumed architecture, an
Extended Macro Dataflow Program Graph notation (EMDG) was introduced [5].
It extends a standard macro dataflow program graph with new types of nodes
and edges, which allow modeling of such operations as processor switching, reads
on the fly and synchronization.

3 The Scheduling Algorithm

We are given a program macro data–flow graph and an executive system of in-
terconnected dynamic SMP clusters, with N processors and M memory modules.
We want to determine the time–optimal schedule of the graph in the assumed
SMP system. The proposed scheduling algorithm consists of the following steps:

1. Definition of MTs inside the program graph. This part is based on a standard
Dominant Sequence Clustering (DSC) algorithm [3]. The basic assumption
is that the nodes which correspond to the same MT are mapped to the same
SoC module. The size of such task depends on the size of a SoC module. All
defined MTs also fulfill certain conditions on their external communication.

2. Determining the penalty function for each moldable task. This step consists
in scheduling the obtained MTs for a range of available resources. For each
number of available processors the best scheduling of each MT is found.

3. Assignment of resources (allotment) to each MT and their scheduling. In
this step both processors and memory buses are assigned. So obtained tasks
are then scheduled using a modified list scheduling algorithm assuming that
all processors which are assigned to a task belong to the same SoC.

3.1 Step 1 – Definition of Moldable Tasks

In this step, the initial program graph is divided into subgraphs corresponding
to moldable tasks. Every such task can be characterized by the following rules:

1. The smallest task subgraphs consist of only one computation node.
2. All external reads can be performed only at the beginning of the task: for any

node v from the considered MT, if the task subgraph includes any predecessor
u of the node v, it must include all predecessors of v.

3. All external writes can be performed only at the end of the task: for any
node u from the considered MT, if the task includes any successor v of
the node u, it must include all successors of u.

4. A single MT is executed entirely inside a single SoC module, which means,
that global communications can exist only between separate MTs.
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The algorithm is based on task clustering. In the initial structuring, all the
nodes from the macro dataflow program graph constitute separate MTs. To-
gether with precedence constraints imposed by initial program graph, they form
an initial moldable task graph (MT graph is a graph, in which nodes corre-
spond to MTs, while edges denote precedence dependencies between them).
It is assumed, that all data transfers between separate MTs are executed via
global communication network. The algorithm creates new larger MTs by merg-
ing smaller tasks. The reduction in execution time is obtained by transforming
global communication between separate small tasks into local communication
performed inside a larger task. Such local communication may be executed on
the fly, which reduces its execution time.

Everytime a set of MTs is merged to create a larger MT, all the nodes from
this set are substituted by one single “meta–node” representing the new task.
This node must remember its internal structure, which is used in case of further
mergings. The weight of this meta–node is equal to optimal execution time of
the subgraph which it represents. In order to obtain MTs, which obey rules 2
and 3 described above, a new “merging” operation of MTs must be defined. The
proposed algorithm which merges two MTs is presented as Algorithm 1.

In a standard DSC algorithm, merging of two parallel clusters and mapping
them onto the same processor reduces communication between the clusters (edge
weights become 0), while all computation nodes have to be performed sequen-
tially. In the presented algorithm, mapping parallel subgraphs onto the same
SoC module means only, that these subgraphs are executed using the same set
of processors. If this set is large enough, these tasks can be still executed in
parallel. This introduces a new problem – how to decide, whether two parallel

Algorithm 1
Input data: MTs graph G and its two nodes u and v. There exists an edge from u
to v in G. Assign boolean attributes d and p to every node of G and mark both of
them as not checked.
Create two empty sets D and P . Insert u into D and mark it as visited.
T = ∅ is a subgraph, which will contain the result of merging of u and v.
while any of sets D and P is not empty do

for each element t of D do
add t to the task subgraph T , mark its d attribute as checked.
insert all unvisited descendants of t, which have their p attribute unchecked,
into set P and remove t from D.

end for
for each element t of set P do

add t to the task subgraph T , mark its p attribute as checked.
insert all unvisited predecessors of t, which have their d attribute not checked,
into set D and remove t from P .

end for
end while
Subgraph T defines a new MT, which merges initial tasks u and v. Find execution
time of T by symbolic evaluation of a subgraph, which corresponds to it.
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subgraphs should be mapped onto the same SoC module. The decision depends
on the graph as well as on the number of resources available inside the SoC mod-
ule (i.e. processors and memory modules). A set of MTs can be merged to create
a new MT only if a resulting task can be scheduled on a single SoC module in
an efficient way, therefore the size of a single MT must be limited, depending on
both computations and communication. The constraints on a number of required
processors can be easily checked using symbolic execution of a macro dataflow
graph of a task assuming, that all communication is performed on the fly. In
order to check communication constraints, a Communication Activation Graph
(CAG, see Fig.2c) is defined in the following way:
– All the communication inside a task is performed using reads on the fly.

Only initial data reads from the shared memory and final writes to the
shared memory are executed in a standard way.

– The nodes in a CAG correspond to communications (subgraphs of the trans-
fers on the fly or standard communication edges). The weight of each node
is equal to execution time of its corresponding subgraph (or a single com-
munication in case of standard data transfers).

– Edges in a CAG correspond to computation paths between communications
in EMDG. Their weights are equal to path execution times.

For a given task T , two following functions are defined:

• FT
comp(t) — this function describes the number of potentially concurrent com-

putation nodes, which are executed at time point t. It is determined by projection
of execution times of computation nodes of task T on a time axis.
• FT

comm(t) — this function describes the number of concurrent communications
on the fly, which are executed at time point t. It is determined by projection of
execution times of nodes in a CAG of task T .

The execution time of a CAG can be determined in parallel with execution
time of nodes and edges in a standard macro dataflow program graph. The

a) b) c)

Fig. 2. Example of a task graph (a), its EMDG (b) CAG (c)
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algorithm assumes, that, for any task T , at any moment of its execution, these
functions fulfill the following constraints:

FT
comp(t) ≤ N, FT

comm(t) ≤M

whereN is a number of processors andM is a number of shared memory modules
(memory busses) in a SoC module (in the paper it is assumed, that N = M).
This implies, that all potentially parallel computations and communications of
task T will have enough resources to be executed in parallel.

The first part of the scheduling algorithm is presented as Algorithm 2. After
it is executed on the initial program graph, the set of computation nodes is
divided into subsets. These subsets will constitute Moldable Tasks for further
steps of the presented scheduling algorithm.

3.2 Step 2 – Determining the Penalty Function for Defined MTs

The goal of this step is to determine the penalty function for each MT created
in the previous step. For every MT, this operation consists in finding the best
schedule of this task for a range of processors n ∈ (1 . . .N), where N is the
number of processors in a SoC module. For a given pair (T, n) (T is an MT, n
is a considered number of processors), the 2–step algorithm is used, which first
maps all computation nodes of this task to n processors inside a SoC module,
and then finds a structuring of so mapped nodes, which gives the best execution
time. It assumes, that all initial communication coming into a considered MT
is ready and may be executed. It also assumes, that all final data transfers to
shared memory modules can be executed as soon as the data are ready.

Distribution of program nodes between processors. In the first phase
of step 2, nodes of a program graph of the considered moldable task T are

Algorithm 2
Define the Moldable Task graph G from the initial macro dataflow program graph.
Mark all edges in G as unvisited.
while there exists an unvisited edge in G do

Find a critical path of the graph using its symbolic execution.
Select the heaviest unvisited edge from the critical path. If there is no such edge,
select the heaviest edge from the other unvisited edges in G. The selected edge
defines two nodes u and v from G, which it connects.
Find a new MT T by “merging” nodes u and v using Algorithm 1.
Determine communication activation graph from the EMDG of T . Determine func-
tions F T

comp(t) and F T
comm(t).

if for all t, F T
comp(t) ≤ N and F T

comm(t) ≤ N then
Create a new MT graph G′ from G, in which all the nodes corresponding to
task T are substituted by node of task T . Assign G := G′

else
Reject task T . Mark the selected edge as visited.

end if
end while
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mapped onto a limited number of processors. This step assumes a standard
macro dataflow program graph notation. It also assumes a simple architectural
model, in which all processors are interconnected by a fully connected network
and data transfers are performed using point–to–point communication. If two
adjacent computing nodes are mapped to the same processor, communication
between them has cost 0. Otherwise, it is equal to the weight of an edge between
these nodes. This is similar to a standard clustering technique [3] and corresponds
to transformation of data transmission via shared memory modules into transfers
of data through processors’ data caches. The distribution is performed using a
list scheduling algorithm with ETF heuristics [4].

Structuring a mapped program graph. In the second phase of step 2, a
scheduled task program graph is structured to convert as many communications
between processors as possible into data transfers on the fly. This step is based
on atomic subgraphs and their basic transformations, as described in [7].

The algorithm consists in traversing a program graph, selecting basic sub-
graphs in it and transforming them into equivalent forms, in which all possible
data transfers are performed on the fly. The traversal of the program graph is
performed using a heuristic based on an Extended Dominant Sequence, which
consists not only of computation and communication nodes, but it also includes
interaction of processors with arbiters (both data transfers and processor switch-
ing between memory modules) and synchronization. Communication subgraph
in an EMDG is an equivalent of a communication edge in a standard macro
dataflow program graph. It includes a read node, a write node which precedes
this read in the graph and nodes of arbiters, which control both transmissions
(together with all edges connecting these nodes).

The algorithm consists of the following steps executed in a loop:

– An extended dominant sequence is determined in a considered MT using
simulated execution of its EMDG. Then, the heaviest unexamined commu-
nication subgraph on the dominant sequence is chosen.

– Next, a basic structure is selected, which contains this subgraph. A basic
structure is a local EMDG subgraph corresponding to communication pat-
terns such as: broadcast, reduction and many to many communication.

– Finally, the selected subgraph is subject to proper transformation. As a
result, an equivalent program graph is obtained, in which the heaviest com-
munication is transformed from a transfer via shared memory into a data
transfer on the fly. The transformations try to convert standard data trans-
fers into reads and communications on the fly by introducing barriers, con-
verting standard read nodes to proper read on the fly nodes and adding
processor switchings, if required.

The algorithm terminates when there is no unexamined communication subgraph
on the dominant sequence of the scheduled graph.
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3.3 Step 3 – Resources Allotment for MTs and Final Scheduling

In this step, every MT obtained in previous steps is assigned a number of re-
sources which will be used for its execution. It can be performed with the al-
gorithm described in [2]. In this algorithm, allotment is found using dynamic
programming in polynomial time. Definition of MTs from previous steps as-
sures, that every task will be assigned to no more processors than the size of a
SoC module. As a result, a MT graph is transformed into a standard task graph
with each node structured for execution on a fixed number of processors. To
schedule it, a modified list scheduling algorithm is used [1, 2].

After the MT graph has been structured, every computation node is assigned
to a processor and all communication is assigned to intra–cluster (communication
between MTs mapped to the same SoC module) or inter–cluster communication
networks (communication between MT mapped to different SoC modules). Fi-
nally, communication between consecutive MTs mapped to the same SoC module
should be converted back to data transfers on the fly.

4 Conclusions

The paper has presented an algorithm for scheduling parallel programs given in
a form of task graphs for a parallel architecture based on dynamic SMP proces-
sor clusters with data transfers on the fly. The algorithm uses the concept of
moldable tasks. It decomposes an initial program graph into sub–graphs, which
correspond to optimally defined moldable tasks. It is done according to commu-
nication layout in the program graph, trying to reduce global communication
between SoCs. So defined MTs are scheduled using an algorithm with warranty
of schedule length.
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Abstract. The evolution of technologies is enabling the integration of
complex platforms in a single chip, called a System-on-Chip (SoC). Mod-
ern SoCs may include several CPU subsystems to execute software and
sophisticated interconnect in addition to specific hardware subsystems.

Designing such mixed hardware and software systems requires new
methodologies and tools or to enhance old tools. These design tools must
be able to satisfy many relative trade-offs (real-time, performance, low
power consumption, time to market, re-usability, cost, area, etc).

It is recognized that the decisions taken for scheduling and mapping
at a high level of abstraction have a major impact on the global design
flow. They can help in satisfying different trade-offs before proceeding to
lower level refinements.

To provide good potential to scheduling and mapping decisions we
propose in this paper a static scheduling framework for MpSoC design.
We will show why it is necessary to and how to integrate different schedul-
ing techniques in such a framework in order to compare and to combine
them. This framework is integrated in a model driven approach in order
to keep it open and extensible.

1 Introduction

As compared to previous small embedded controllers designing, the designing
complexity of today’s embedded system (SoC, MpSoC, etc) has grown exponen-
tially. This complexity rise has been seen due to complex integration of multiple
resources (DSP, GPP, FPGA, etc) on a single die, the miniaturization of elec-
tronic and mechanical devices, the changes in the approaches to design as deter-
mined by the cognitive complexity of the task, the massive use of test automation
tools, and the pervasive use of embedded system in all kinds of applications.

Real-time systems, beside high performance computing, are about strict tim-
ing constraints (deadline, periodicity), application-specific design, and high re-
liability (fault tolerance). The current trend of using multiple processor (SoC,
MpSoC etc) has been promoted to satisfying the real-time systems needs. This
trend has made real-time systems a special case of chip level high performance
distributed computing. Using multiple processors is an attractive solution be-
cause of its price-performance ratio, locality constrains (data processing must
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take place close to sensors or actuators), reliability (replicating of computing re-
sources provides fault-tolerance), high throughput (parallel task execution) and
high schedulability (many scheduling possibilities).

Scheduling and mapping optimization is at the core of the design process of
such systems. It is recognized that scheduling and mapping at the highest ab-
straction level has the most important optimization potential compared to low-
level optimizations. Furthermore, as time-to-market constraints become tighter
and tighter, one should take these decisions as earlier as possible in the design
flow in order to start software and hardware development concurrently and the
earliest. These decisions should be definitive as a late modification would in-
duce a too long re-engineering process that would cause to miss time-to-market
constraints.

Theses scheduling and mapping optimizations have to take into account many
factors such as real-time constraints, power consumption, various costs (area,
fabrication, verification, etc), re-usability, adaptability, etc.

As stated scheduling and mapping optimizations are one of the key factors
of the whole co-designing process. Keeping all the above mentioned problems in
mind we propose here a framework for scheduling and mapping optimization.
This framework will be used and integrated within our project Gaspard2 [11],
a model driven co-design environment for computation intensive embedded sys-
tems. As we focus on intensive applications, we limit ourselves to static schedul-
ing. Dynamic scheduling is another class of problems that we do not handle for
the moment.

In the past many attempts has been made to devise scheduling and map-
ping frameworks or tools for real-time embedded system. As stated about the
current and future trends of embedded systems, among them many of the tools
were not designed to cope with the rising complexities. For instance, tools such
as [2, 15, 1, 16, 13, 12] etc,implement a collection of common scheduling algo-
rithms and protocols for communication and resource access. Among them tools
like [1, 16, 13] provides a GUI with their own modeling language and one has used
UML base modeling [15]. Here some have focused on desired behavior of the sys-
tem rather than implementation choices, such as which scheduling policy to use.
Further, most of the existing frameworks are not considering multi-criteria con-
strains, flexibility and scalability to apply different newly or existing scheduling
and mapping techniques [2, 17, 8, 14, 12] etc.

In contrast to tools or framework listed above, Our framework in addition, is
targeted to certain required futuristic features, which makes it unique to the best
of our knowledge. It applying scheduling and mapping algorithms on a global
task graph with three approaches first simultaneously, second iteratively, third
with user concerns. It evaluates, compare and merges their relative results while
respecting different constraints (multi-objective).

It will provide the flexibility of plug-ins and interoperability with legacy
tools and with new methods/formats as and when they appear for scheduling
and mapping related optimization in MpSoC research domain.
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The rest of this paper is structured as follows: in section 2, we discuss the
need for a model driven scheduling and mapping framework; in section 3, we
present the common extensible graph structure that will allow cooperation be-
tween several scheduling and mapping heuristics; then in section 4, we will give
heuristic integration examples; we will finally conclude in section 5.

2 Why a Framework?

2.1 Variety of Problems and Solutions

Some proposed scheduling and mapping algorithms are mono-objective, most
of them minimize latency; some others take into account several parameters
such as computation time, communication time and power consumption. Others
give answer to only part of the problem such as mappability for core selection.
Another class of algorithms targets some restricted application domain, such as
loop nests, for which they are more efficient than generic ones. In order to benefit
from the strength of all these heuristics, we need to integrate them in a single
framework.

To be able to combine them and to compare their solutions, we need a com-
mon application and hardware platform description, based on which we can feed
the optimization algorithms their inputs and integrate their results. We propose
such a graph based description in section 3.

Furthermore, in order to use different integrated scheduling and mapping
algorithms, the problem of algorithm selection, for which part of the applica-
tion (data or task parallelism. . . ) and for what objective (fast execution, low
power. . . ) is a highly critical issue.We propose different approaches to this prob-
lem in section 4, the goal being to give to the designer of a complex heterogeneous
SoC some help in making one of the most crucial decisions of its design that no
current tool provides.

2.2 Model Driven Engineering

What are the benefits of using a model driven approach for building this kind of
framework? One is purely technical, the other is user friendliness. Indeed, model
driven engineering (MDE) is really about interoperability and abstraction.

Interoperability. MDE is becoming a more and more used approach to develop
software. Thus many tools are becoming available to handle models, metamod-
els and model transformations. These tools often rely on standards that allow
interoperability between them. Using model transformation tools, it is relatively
easy to extract part of a common model to generate the input file format of a
given scheduling tool. Many software libraries exist to manipulate models; we
leverage all these to build our framework.

Abstraction. The other strong point of MDE is abstraction. Indeed, models
are built to be more readily understandable to humans than programs. The user
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can design its application, hardware and their association in a piecewise way,
using a top-down or bottom-up approach or a combination thereof, as he wishes
and reuse part of previous designs easily.

Obviously, to be able to integrate different scheduling and mapping heuristics,
one has to share common models for the application, the hardware architecture
and their association. These models have to be extensible to allow for adaptation
of future techniques. MDE helps in this aspect by allowing very easily to extend
models. We describe in the next section what should these models be like.

3 Graph Based Input Models

3.1 Hierarchical Graphs

Most scheduling and mapping heuristics work on graph based description of the
application and the architecture. In order to be able to handle large and complex
systems, we should have a hierarchical description of, at least, the application. It
is also important to have a hierarchical description of the hardware architecture
in order to accommodate different granularity views. One can thus start with a
coarse grain optimization and then refine it by going deeper in the hierarchy to
reveal more details.

Another required structure of these models is some kind of compact way of
representing repetition, such as loops in the application or SIMD units in the
hardware. Indeed such a compact representation helps a lot in generating efficient
code for these repetitive structures. In this way, we are able to benefit from both
task parallelism and data parallelism. Depending on the optimization algorithm
used to map and schedule these repetitive structures they may be seen as an
indivisible entity or a structured (regular) repetition or even an unstructured
(irregular) set of tasks.

We have proposed such repetitive, hierarchical graph models to describe
computation intensive embedded applications and SoC hardware platforms in
[9, 10, 4]. These models are based on UML2 profiles and are incorporated in the
Gaspard2 co-modeling tool [11].

3.2 Characterization

In order to completely define the application and hardware architecture para-
meters, the graph models need to be characterized. These characteristics are
attributes of the nodes and edges of the graphs.

Some of these characteristics are application specific, as real-time constraints
of needed computing power. Some are architecture dependent, as instruction set
of processors, operating frequency range, power consumption, memory size, com-
munication bandwidth, etc. And some characterize the association of applica-
tion components to architecture components such as execution time estimations
(worst-case or average)1 or mapping constraints. These are represented as links
1 Finding good approximations is beyond the scope of this paper and is a research

problem in itself.
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between application graph elements (nodes or edges) and architecture graph
elements.

3.3 Handling Optimization Results

As the optimization results have to be combined, we need a repository to store
them. The model driven approach helps us in this prospect as a model is in
itself a repository of concepts and links between concepts. We keep a set of
models representing partial optimization results. These results are represented
as mapping constraints, for the mapping, and as artificial dependencies (links
between nodes of the application) for the scheduling. Some specific constructs
are used to keep a compact representation of repetitive (or cyclic) schedules
and mappings of data-parallel application components onto repetitive hardware
(grids of processors, SIMD units or FPGAs).

4 Integration of Techniques

4.1 Framework Usage Schemes

Our framework is environment-sensitive and configurable for applying and se-
lecting scheduling and mapping algorithms. It means, after analyzing application
and platform all together the user can follow either of approaches (A),(B) or
(C) below.

Fig. 1. Simultaneously scheduling and mapping approach (GILR)

(A) Combine different scheduling and mapping algorithm on different hierarchi-
cal (see figure 1) nodes of the global application model. Here the decision
drawn for selecting specific scheduling and mapping algorithms is based on
past stored simulation results or on the structure of the application and ar-
chitecture models or even on results provided by some existing research work.
We have already presented this approach as the GILR (Globally Irregular
and Locally Regular) heuristic [5]. Here we have shown the combined use of
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Fig. 2. Iterative scheduling and mapping approach

a list heuristic on a global task graph, and if we find loops on any node, we
applied data parallel scheduling and mapping algorithms for loops and map
them on the available repetitive hardware components.

(B) Compare different scheduling and mapping algorithms on the same hierar-
chical nodes of the application model. Consider text written in figure 2 as
an explation of techniques (Area, Communication & Power Aware etc). Here
we are not sure of the quality of results, and we do not have related informa-
tion in database. Here we spend more time but comparison supports us to
find best scheduling and mapping algorithm. The results of scheduling and
mapping will be saved in a repository for future considerations.

(C) User specific, In this approach the user is fully allowed to take all decisions
to select among different scheduling and mapping algorithms, iteratively or
simultaneously.

Our repository based approach will allow us to choose the most adapted
algorithm for each level of the hierarchy in function of the application structure,
available hardware, available characteristics or even optimization criteria.

As a global solution we are expecting to help satisfying multi-criteria prob-
lems. This framework will also provide built-in decision capabilities to select one
or more scheduling and mapping techniques at a time.

4.2 Implementation

The framework is implemented as a set of common metamodels and APIs. The
metamodels define the graph based models described in section 3. The APIs
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facilitate the manipulation of the models and the use of existing scheduling and
mapping algorithms and the implementation of user specific required schedul-
ing and mapping optimizations. The framework will be flexible and extensible
enough to implement newly available scheduling and mapping algorithms in the
research domain of MpSoC.

Frameworks like Simgrid [7] and GridSim [6] exists in the field of distrib-
uted GRID computing. Such frameworks shares some common basic aspects for
scheduling and mapping compared to on-chip distributed computing (MpSoC).
Scheduling and mapping algorithms such as list scheduling, critical path schedul-
ing, genetic algorithms, communication scheduling, etc, are common. Where as
comparing the architecture platform, MpSoC typically consist of heterogeneous
processors among them some nodes can be homogeneous (SIMD) array of proces-
sors. Communication networks (NoC) [3] consist of Switches and Routers. But
in this communication platform nodes of SoCs are physically close to each other,
have high link reliability and low latency.

5 Conclusion

We have sketched2 in this paper a scheduling and mapping framework for mul-
tiprocessor system-on-chip design. This framework aims at integrating various
scheduling and mapping heuristics handling part of the optimization problem,
either part of the objectives or part of the application domain. In this quest, a
recurring issue has been how to apply multiple optimization concepts to the spe-
cific problem at hand. Moreover, optimization theory often neglects that aspect
which is crucial for the success, namely the models. Therefore, the first step, be-
fore any algorithmic properties can be considered, is to establish a model capable
of expressing the problem accurately enough.

We have presented common graph based models which are at the heart of
the framework. This framework is based on model driven engineering, allowing
it to be user friendly and expandable. Several usage schemes of the framework
have been proposed.

More precise experiments on the integration of different specific heuristics is
underway. In the end, for real-time system design more cost-effective solutions
can be found and developed. Furthermore, the design process will be shorten
which results in reduced development cost.
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Abstract. The ARTiS system, a real-time extension of the GNU/Linux
scheduler dedicated to SMP (Symmetric Multi-Processors) systems is
proposed. ARTiS exploits the SMP architecture to guarantee the pre-
emption of a processor when the system has to schedule a real-time task.

The basic idea of ARTiS is to assign a selected set of processors to
real-time operations. A migration mechanism of non-preemptible tasks
insures a latency level on these real-time processors. Furthermore, spe-
cific load-balancing strategies allows ARTiS to benefit from the full power
of the SMP systems: the real-time reservation, while guaranteed, is not
exclusive and does not imply a waste of resources.

ARTiS have been implemented as a modification of the Linux sched-
uler. This paper details the evaluation of the performance we conduct
on this implementation. The level of observed latency shows significant
improvements when compared to the standard Linux scheduler.

1 Real-Time Scheduling on Linux SMP

Nowadays, several application domains require hard real-time support of the
operating system: the application contains tasks that expect to communicate
with dedicated hardware in a time constrained protocol, for example to insure
real-time acquisition. Many of those same real-time applications require large
amount of computational power. A well known and effective solution to face this
requirement is the usage of SMP (Symmetric Multi-Processors).

Furthermore, to ensure the durability of application developments, one may
prefer to target an operating system that conforms to standards. Despite the
definition of a standard POSIX interface for real-time applications [3], each ven-
dor of real-time operating system comes with a dedicated API. From our point
of view, this segmented market results from the lack of a major player in the
real-time community. To face this situation, we believe in the definition of an
Open Source operating system that may federate the real-time community. An
real-time extension of the well established GNU/Linux operating system is an
attractive proposition. Additionally, it will allow the cohabitation of real-time
and general purpose tasks in the system.
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At a first glance, real-time properties relies on the proposition of a dedicated
scheduling policy. Three kinds of modification to the Linux scheduler have been
proposed. One consists in running the real-time tasks in a special designed ker-
nel running in parallel, this is what does RTAI [2]. The drawback is that the
programming model and configuration methods are different from the usual one:
Linux tasks are not real-time tasks and real-time activities can not benefit of
the Linux services.

The second way taken is to directly modify the Linux scheduler to minimize
the path from a blocking context to the re-scheduling of a real-time task. This
is, for instance, the base of the work that Ingo Molnar currently carries on. The
patch, called “preempt-rt”, focuses on hard real-time latencies (which is new, as
all the patches before only focused on soft real-time constraints). The objective is
to allow every part of the kernel to be preempted, including critical sections and
interrupt handlers. The drawback is the degradation of performance for some
system calls as well as the high technical difficulty to write and verify those
modifications.

The third approach relies on the shielded processors or Asymmetric Multi-
Processing principle (AMP). On a multi-processor machine, the processors are
specialized to real-time or not. Concurrent Computer Corporation RedHawk
Linux variant [1] and SGI REACT IRIX variant [8] follow this principle. How-
ever, since only RT tasks are allowed to run on shielded CPUs, if those tasks
are not consuming all the available power then there is free CPU time which is
lost. The ARTiS scheduler extends this second approach by also allowing normal
tasks to be executed on those processors as long as they are not endangering the
real-time properties.

2 ARTiS: Asymmetric Real-Time Scheduler

Our proposition is a contribution to the definition of a real-time Linux exten-
sion that targets SMPs. Furthermore, the programming model we promote is
based on a user-space programming of the real-time tasks: the programmer uses
the usual POSIX and/or Linux API to define his applications. These tasks are
real-time in the sense that they are identified with a high priority and are not
perturbed by any non real-time activities. For these tasks, we are targeting a
maximum response time below 300μs. This limit was obtained after a study by
the industrial partners concerning their requirements.

To take advantage of an SMP architecture, an operating system needs to
take into account the shared memory facility, the migration and load-balancing
between processors, and the communication patterns between tasks. The com-
plexity of such an operating system makes it look more like a general purpose
operating system (GPOS) than a dedicated real-time operating system (RTOS).
An RTOS on SMP machines must implement all these mechanisms and consider
how they interfere with the hard real-time constraints. This may explain why
RTOS’s are almost mono-processor dedicated. The Linux kernel is able to effi-
ciently manage SMP platforms, but it is agreed that the Linux kernel has not
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been designed as an RTOS. Technically, only soft real-time tasks are supported,
via the FIFO and round-robin scheduling policies.

The ARTiS solution keeps the interests of both GPOS’s and RTOS’s by
establishing from the SMP platform an Asymmetric Real-Time Scheduler in
Linux. We want to keep the full Linux facilities for each process as well as the
SMP Linux properties but we want to improve the real-time behavior too. The
core of the ARTiS solution is based on a strong distinction between real-time and
non-real-time processors and also on migrating tasks which attempt to disable
the preemption on a real-time processor.

Partition of the Processors and Processes. Processors are partitioned into
two sets, an NRT CPU set (Non-Real-Time) and an RT CPU set (Real-Time).
Each one has a particular scheduling policy. The purpose is to insure the best
interrupt latency for particular processes running in the RT CPU set.

Two classes of RT processes are defined. These are standard RT Linux
processes, they just differ in their mapping:

– Each RT CPU has one or several bound RT Linux tasks, called RT0 (a real-
time task of highest priority). Each of these tasks has the guarantee that its
RT CPU will stay entirely available to it. Only these user tasks are allowed
to become non-preemptible on their corresponding RT CPU. This property
insures a latency as low as possible for all RT0 tasks. The RT0 tasks are the
hard real-time tasks of ARTiS. Execution of more than one RT0 task on one
RT CPU is possible but in this case it is up to the developer to verify the
feasibility of such a scheduling.

– Each RT CPU can run other RT Linux tasks but only in a preemptible state.
Depending on their priority, these tasks are called RT1, RT2... or RT99. To
generalize, we call them RT1+. They can use CPU resources efficiently if
RT0 tasks do not consume all the CPU time. To keep a low latency for the
RT0 tasks, the RT1+ tasks are automatically migrated to an NRT CPU
by the ARTiS scheduler when they are about to become non-preemptible
(when they call preempt_disable() or local_irq_disable()). The RT1+
tasks are the soft real-time tasks of ARTiS. They have no firm guarantees,
but their requirements are taken into account by a best effort policy. They
are also the main support of the intensive processing parts of the targeted
applications.

– The other, non-real-time, tasks are named “Linux tasks” in the ARTiS termi-
nology. They are not related to any real-time requirements. They can coexist
with real-time tasks and are eligible for selection by the scheduler as long
as the real-time tasks do not require the CPU. As for the RT1+, the Linux
tasks will automatically migrate away from an RT CPU if they try to enter
into a non-preemptible code section on such a CPU.

– The NRT CPUs mainly run Linux tasks. They also run RT1+ tasks which
are in a non-preemptible state. To insure the load-balancing of the system,
all these tasks can migrate to an RT CPU but only in a preemptible state.
When an RT1+ task runs on an NRT CPU, it keeps its high priority above
the Linux tasks.
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ARTiS then supports three different levels of real-time processing: RT0,
RT1+ and Linux. RT0 tasks are implemented in order to minimize the jitter
due to non-preemptible execution on the same CPU. Note that these tasks are
still user-space Linux tasks. RT1+ tasks are soft real-time tasks but they are able
to take advantage of the SMP architecture, particularly for intensive computing.
Eventually, Linux tasks can run without intrusion on the RT CPUs. Then they
can use the full resources of the SMP machines. This architecture is adapted
to large applications made of several components requiring different levels of
real-time guarantees and of CPU power.

Migration Mechanism. A particular migration mechanism has been defined.
It aims at insuring the low latency of the RT0 tasks. All the RT1+ and Linux
tasks running on an RT CPU are automatically migrated toward an NRT CPU
when they try to disable the preemption. One of the main requirement is a
mechanism without any inter-CPU locks. Such locks are extremely dangerous
for the real-time properties if an RT CPU have to wait after an NRT CPU. To
effectively migrate the tasks, an NRT CPU and an RT CPU have to communicate
via queues. We have implemented a lock-free FIFO with one reader and one
writer to avoid any active wait of the ARTiS scheduler based on the algorithm
proposed by Valois [9].

Load-Balancing Policy. An efficient load-balancing policy allows the full
power of the SMP machine to be exploited. Usually a load-balancing mecha-
nism aims to move the running tasks across CPUs in order to insure that no
CPU is idle while tasks are waiting to be scheduled. Our case is more complicated
because of the introduction of asymmetry and the heavy use of real-time tasks.
To minimize the latency on RT CPUs and to provide the best performances for
the global system, particular asymmetric load-balancing algorithms have been
defined [7].

3 ARTiS Current Implementation

A basic ARTiS API has been defined. It allows the deployment of applications
on the current implementation of the ARTiS model, defined as a modification
of the 2.6 Linux kernel. A user defines its ARTiS application by configuring the
CPUs, identifying the real-time tasks and their processor affinity via a basic
/proc interface and some system calls (sched_setscheduler()...).

The current implementation[5] first consists of a migration mechanism that
ensures only preemptible code is executed on an RT CPU. This migration relies
on a task FIFO implemented with lock-free access [9]: one writer on the RT CPU
and one reader on the NRT CPU.

The load-balancer implementation was carried out by improving or specializ-
ing several parts of the original Linux one. The main modification was to change
from a “pull” policy to a “push” policy: it is the over-loaded CPUs which send
tasks to the under-loaded ones. Although it slightly decreases performances be-
cause idle CPUs might spend more time idle, this permitted the removal of
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inter-CPU locks. The load estimation of a processor has also been enhanced in
order to correctly estimate a load of a real-time task (which will never share
CPU power with other tasks). This enhancement permit better equity among
Linux tasks. Additionally, the designation criteria has been modified to favor the
presence of RT1+ (resp. Linux) tasks on RT CPUs (resp. NRT CPUs) because
that is where latencies are the smallest. Similarly, tasks which are unlikely to
block the interrupts soon (according to statistics about their previous behavior)
will be preferred for going to an RT CPU.

A specific tool was designed to test the load-balancer correctness. It allows
to run a specific set of tasks characterized by properties (CPU usage, scheduler
priority, processor affinity...) to be launched in a very deterministic way. Some
statistics about the run are provided but the interpretation of the results is
not straightforward. Additional studies need to be done on the load-balancer
implementation.

4 Performance Evaluation

While implementing the ARTiS kernel, some experiments were conducted in
order to evaluate the potential benefits of the approach in terms of interrupt
latency. We distinguished two types of latency, one associated with the kernel
and the other one associated with user tasks.

Measurement Method. The experiment consisted of measuring the elapsed
time between the hardware generation of an interrupt and the execution of the
code concerning this interrupt. The experimentation protocol was written with
the wish to stay as close as possible to the common mechanisms employed by
real-time tasks. The measurement task sets up the hardware so it generates
the interrupt at a precisely known time, then it gets unscheduled and wait for
the interrupt information to occur. Once the information is sent, the task is
woken up, the current time is saved and the next measurement starts. For one
interrupt there are four associated times, corresponding to different locations in
the executed code (figure 1):

– t′0, the interrupt programming,
– t0, the interrupt emission, it is chosen at the time the interrupt is launched,
– t1, the entrance in the interrupt handler specific to this interrupt,
– t2, the entrance in the user-space RT task.

We conducted the experiments on a 4-way Itanium II 1.3GHz machine. It
ran on a instrumented Linux kernel version 2.6.11. The interrupt was generated
with a cycle accurate precision by the PMU (a debugging unit available in each
processor [6]).

Even with a high load of the computer, bad cases leading to long latencies are
very unusual. Thus, a large number of measures are necessary. In our case, each
test was run for 8 hours long, this is equivalent to approximately 300 million
measures. Given such duration, the results are reproducible.
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Interrupt Latency Types. From the three measurement locations, two values
of interest can be calculated:

– The kernel latency, t1 − t0, is the elapsed time between the interrupt
generation and the entrance into the interrupt handler function. This is the
latency that a driver would have if it was written as a kernel module.

– The user latency, t2 − t0, is the elapsed time between the interrupt gen-
eration and the execution of the associated code in the user-space real-time
task. This is the latency of a real-time application entirely written in user-
space. In order to have the lowest latency, the application was notified via a
blocking system call (a read()).

The real-time tasks designed to run in user-space are programmed using the
usual and standard POSIX interface. This is one of the main advantage that
ARTiS provides. Therefore, within the ARTiS context, user latency is the most
important latency to study and analyze.

Measurement Conditions. The measurements were conducted under four
configurations. Those configurations were selected for their relevance toward
latency. First of all, the standard (vanilla) kernel was measured without and with
load. Then, a similar kernel but with the preemption activated was measured.
When activated, this new feature of the 2.6 Linux kernel allows tasks to be
rescheduled even if kernel code is being executed. Finally, the current ARTiS
implementation was measured. Only the first kernel is also presented when idle
because the results with the other kernels are extremely similar.

In the experiments, the system load consisted of busying the processors by
user computation and triggering a number of different interruptions in order to
maximize the activation of the inter-locking and the preemption mechanisms.
Five types of program corresponding to five loading methods were used:

– Computing load: A task that executes an endless loop without any system
call is pinned on each processor, simulating a computational task.

– Input/output load: The iodisk program reads and writes continuously
on the disk.

others tasks

monitoring task

kernel
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hardware

t’0

t0
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time

Fig. 1. Chronogram of the tasks involved in the measurement code
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– Network load: The ionet program floods the network interface by execut-
ing ICMP echo/reply.

– Locking load: The ioctl program calls the ioctl() function that embeds
a big kernel lock.

– Cache miss load: The cachemiss program generates a high rate of cache
misses on each processors. This adds latencies because a cachemiss implies
a full cache line is read from the memory, blocking the CPU for a long time.

Observed Latencies. The table 1 summarizes the measurements for the differ-
ent tested configurations. Two values are associated to each latency type (kernel
and user). “Maximum” corresponds to the highest latency noticed along the 8
hours. The other column displays the maximum latency of the 99.999% best
measures. For this experiment, this is equivalent to not counting the 3000 worse
case latencies.

Table 1. Kernel/User latencies of the different configurations

Kernel User
Configurations 99.999% Maximum 99.999% Maximum

standard Linux idle 1μs 6μs 5μs 78μs
standard Linux loaded 6μs 63μs 731μs 49ms
Linux with preemption loaded 4μs 60μs 258μs 1155μs
ARTiS loaded 8μs 43μs 18μs 104μs

The study of the idle configuration gives some comparison points when mea-
sured against the results of the loaded systems. While the kernel latencies are
nearly unaffected by the load, the user latencies are several orders bigger. This
is the typical problem with Linux, simply because it was not designed with real-
time constraints in mind. We should also mention that for all the measurement
configurations the average user latency was under 4μs.

The kernel preemption does not change the latencies at the kernel level. This
was expected as the modifications focus only on scheduling faster user tasks,
nothing is changed to react faster on the kernel side. However, with regard to
user-space latencies, a significant improvement can be noticed in the number
of observed high latencies: 99.999% of the latencies are under 238μs instead of
731μs. This improvement is even better concerning the maximum latency, which
is about forty times smaller. This enhancement permits soft real-time with better
results than the standard kernel, still, in our case (latencies always under 300μs),
this cannot be considered as a hard real-time system.

The ARTiS implementation reduces again the user latencies, with a maxi-
mum of 104μs. The results obtained from the measurements of the current ARTiS
should not change as the additional features will only focus on performance
enhancements, not on latencies. Consequently, the system can be considered
as a hard real-time system, insuring real-time applications very low interrupt
response.
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5 Conclusion

We have proposed ARTiS, a scheduler based on a partition of the multiprocessor
CPUs into RT processors where tasks are protected from jitter on the expected
latencies and NRT processors where all the code that may lead to a jitter is
executed. This partition does not exclude a load-balancing of the tasks on the
whole machine, it only implies that some tasks are automatically migrated when
they are about to become non-preemptible.

An implementation of ARTiS was evaluated on a 4-way IA-64 and a maxi-
mum user latency as low as 104μs can be guaranteed (against latencies in the
1100μs range for the standard 2.6 Linux kernel). The implementation is now
usable. The ARTiS patches for the Linux 2.6 kernel are available for Intel i386
and IA-64 architectures from the ARTiS web page [4].

A limitation of the current ARTiS scheduler is the consideration of multiple
RT0 tasks on a given processor. Even if ARTiS allows multiple RT0 tasks on one
RT processor, it is up to the programmer to guarantee the schedulability. We plan
to add the definition of usual real-time scheduling policies such as EDF (earliest
deadline first) or RM (rate monotonic). This extension requires the definition
of a task model, the extension of the basic ARTiS API and the implementation
of the new scheduling policies. The ARTiS API would be extended to associate
properties such as periodicity and capacity to each RT0 task. A hierarchical
scheduler organization would be introduced: the current highest priority task
being replaced by a scheduler that would manage the RT0 tasks.
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Abstract. We propose an efficient method of extracting knowledge when
scheduling parallel programs onto processors using an artificial immune
system (AIS). We consider programs defined by Directed Acyclic Graphs
(DAGs). Our approach reorders the nodes of the program according to
the optimal execution order on one processor. The system works in either
learning or production mode. In the learning mode we use an immune
system to optimize the allocation of the tasks to individual processors.
Best allocations are stored in the knowledge base. In the production mode
the optimization module is not invoked, only the stored allocations are
used. This approach gives similar results to the optimization by a genetic
algorithm (GA) but requires only a fraction of function evaluations.

1 Introduction

Parallel computers, ranging from networks of standard PCs to specialized clus-
ters, supercomputers and the Grid, are becoming very popular and widely used.
However, such systems are more difficult to use than the standard ones. Es-
pecially, mapping and scheduling individual tasks of a parallel program onto
available resources is, excluding some very bounded conditions, NP-hard.

Heuristic approaches to scheduling have been extensively studied [7] [6]. How-
ever, usually those algorithms are not very robust and work well only on certain
types of programs. Search-based methods, which employ some global optimiza-
tion meta-heuristics, were also used [10]. Nevertheless, those algorithms suffer
from a large execution time which usually does not compensate the increased
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a) b)

Fig. 1. An example system (a) and program (b) graphs. On the program graph, the
top number shows the label of the task, the bottom one – the time necessary for
computation. Vs = {P0, P1}; Es = {P0 ↔ P1}; Vp = {0, 1, 2, 3}; Ep = {0 → 1, 0 →
2, 2 → 3}.

quality of the solutions [9]. Certainly a fast scheduler which could adapt to the
conditions on a particular system would be more efficient.

In this paper we propose a novel approach to scheduling parallel programs
based on AIS. Our system performs population-based optimization in order to
find an approximation of the optimal schedule. It also extracts the knowledge
from individual schedules, stores it and uses it later to provide near-optimal
schedules for similar parallel programs without running the optimization module.

This paper is organized as follows. Section 2 gives a description of the schedul-
ing problem considered. Section 3 outlines the concept of AIS. In Section 4 we
present a scheduler which uses AIS. Experiments and results are described in the
Section 5. We conclude the paper and present some directions of further works
in Section 6.

2 Scheduling Parallel Programs

The architecture of the system on which the program is scheduled is described
by a system graph, Gs = (Vs, Es) (Figure 1a). The nodes Vs, called processors,
represent processing units. The edges Es represent connections between proces-
sors. We assume homogeneous model – the time needed for computation of a
task is the same on each processor.

The parallel program to be scheduled is represented by a directed acyclic
graph (DAG), Gp = (Vp, Ep), where Vp = {vp} is a set of n ≡ |Vp| nodes
representing individual, indivisible tasks of the program (Figure 1b). Later we
will use the terms node and task interchangeably. The weight of a node vi gives
the time needed for the computation of this task. Ep = {ei,j} is the set of
edges which represent dependencies and communication between the nodes. If
the nodes vi and vj are connected by an edge ei,j , the task vj cannot start until
vi finishes and the data is transmitted. During the execution of the program
a task vj is called a ready task, if all such vi are finished. The weight of an
edge ei,j defines the time needed to send the data from the task vi to vj if
those two tasks execute on neighboring processors. If those tasks execute on
the same processor we assume that the time needed for the communication is
neglectable. If there is no direct link between the processors, the time needed
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for communication is a product of the edge’s weight and the minimum number
of hops (distance) between processors. We assume that, once task’s execution
has begun, it cannot be interrupted until the task finishes (i.e. non-preemptive
model). We also assume that each task is executed on exactly one processor – we
do not allow task duplication.

Our system minimizes the total execution time (makespan) T of the pro-
gram. We assume that T is a function of allocation and scheduling policy:
T = f(alloc, policy). The scheduling policy determines the order of the exe-
cution of conflicting tasks on processors. Firstly, it ranks the tasks according
to some criteria based on the program graph, such as the size of the sub-tree
of the node (which will be used later in our experiments), the sum of compu-
tation costs on the longest path between the node and the sink node (s-level),
or others [8]. If, during the program’s execution, two or more tasks assigned
to the same processor are ready, the one with higher rank is chosen. We con-
sider that the policy is given a priori. The allocation is a function which deter-
mines the processor on which each task of a program will be executed: alloc :
Vp → Vs. Given the allocation and the policy it is trivial to schedule tasks onto
processors.

3 Artificial Immune Systems

Biological immune systems can be viewed as a powerful distributed informa-
tion processing systems, capable of learning and self-adaptation [2]. They have a
number of interesting features [4], which include totally distributed architecture,
adaptation to previously unseen antigens (molecules foreign to the system), im-
perfect detection (system detects antigens which match receptors even partially)
and memory. They are a source of constant inspiration to various computing sys-
tems, called Artificial Immune Systems (AIS). Some of the previous attempts
to use an AIS to solve computing problems include binary pattern recognition,
scheduling [5], or intrusion detection in computer networks.

AIS act upon a population of antibodies (responsible for antigen detection
and elimination) which are modified in function of the affinity between antibodies
and antigens [3]. In pattern recognition, the degree of affinity is proportional
to the match between an antibody and an antigen, randomly chosen from a
set of patterns to recognize. In optimization, where there is no explicit antigen
population, antibody represents a point in the search space, so its affinity is
related to the value of the objective function for this point. The antibodies which
match the antigen best (which have highest affinity) are cloned. The number
of clones produced is proportional to the affinity of the antibody. Then the
clones undergo a process called hypermutation, with the probability of mutation
inversely proportional to the parent’s affinity. The clones are then evaluated and
some of the best ones replace their parents, if they have better affinity. The worst
antibodies are replaced by new ones, either randomly initialized or created by
immunological cross-over [1].
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4 Immune-Based Scheduler

In real-world applications, similar programs are presented to the scheduler re-
peatedly. This can be caused by typical development cycle (run – debug – mod-
ify), or by running the same program on similar datasets. This suggests that one
can store previous solutions to the scheduling problem and try to use it when
scheduling new programs.

Immune-based scheduler (IBS) is composed of the coding module, the knowl-
edge base (KB) and the optimization module. The coding module encodes the
DAG of every program entering the system by reordering individual tasks accord-
ing to the schedule produced for a single processor by a list scheduling algorithm.
The system then acts on encoded programs. KB stores the information about
previous allocations, so it can be reused when allocating similar programs. The
optimization module is responsible for searching the possible allocation space
and delivering the approximation of the optimal allocation.

Our system works in either learning or production mode. The learning mode
can be viewed as a vaccination of the system by new antigens – programs to be
allocated. The system learns how to deal with the antigen (how to allocate it)
by producing antibodies (possible allocations) and evaluating them. The shorter
the schedule produced by allocating the program with the antibody, the better
the affinity of the antibody. The best antibody found is then saved in the KB. In
the production mode the system does not have time to perform the optimization.
Based on the knowledge stored in KB, it must quickly provide an immunological
answer (an allocation) for a given program.

4.1 Learning Mode

When a new program (containing of n ≡ |Vp| tasks) is presented to the system
running in the learning mode, after the initial encoding, the optimization module
is invoked. We use an artificial immune system to find an approximation of the
optimal allocation. One can, however, use any global search method, such as a
GA, which returns an approximate optimal allocation of a given program.

In our implementation, each individual represents a possible allocation of the
program. The kth gene of the individual determines the allocation of the kth
encoded task (a task vj which would be executed as kth on a single processor).
Such an encoding does not produce any unfeasible individuals.

The initial population of solutions is either totally random or formed partly
by random individuals and partly by individuals taken from the knowledge base
(adjusted to the length of the program by the algorithm described in the next
section). Firstly, the algorithm computes the makespan Ti for each individual i
by simulating the execution of the program with the allocation encoded in the
individual i. Then the population is ranked – the best individual (the one with
the shortest makespan) is assigned the rank r = 0. Then, a following optimization
algorithm is run:

repeat until endAlgorithm
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1. clonal selection: the best I individuals are cloned. The number of clones
Ci produced for the individual i is inversely proportional to the rank r of the
individual: Ci = C0

2r , where C0, the number of clones for the best individual,
is a parameter of the operator.

2. hypermutation: each clone is mutated. The mutation ratio of the individ-
ual i is inversely proportional to the rank r of the clone’s parent. The number
k of genes to mutate is given by
k = round (P0 ∗ (1 +ΔP ∗ r) ∗ n) ,
where P0 is the average probability of gene’s mutation in the best individual,
increased by ΔP for each following individual. The algorithm then randomly
selects k genes and sets them to a random value.

3. clones’ evaluation: the makespan T is computed for each clone.
4. merging: K best clones are chosen. Each one of them replaces its parent in

the population if the length of the clone’s schedule is less than parent’s.
5. worst individual replacement: L worst individuals from the population

are replaced by randomly initialized ones.
6. immunological cross-over:M worst individuals of the population (exclud-

ing those modified in the previous step) are replaced by individuals created
in the cross-over process. Each new individual has three parents, randomly
chosen from the population and sorted by their ranks. If the best two parents
have the same value of a gene, it is copied to the child. If they differ, the
value for the gene is selected at random from the values of this gene in two
best parents. However, the value equal to the value of this gene in the worst
(third) parent has much smaller probability.

We end the algorithm after a limited number of iterations or sooner if the best
individual does not change for a certain number of iterations. The result of
the algorithm is the best allocation found for a given program. The individual
representing the best allocation is then stored in the KB.

4.2 Production Mode

In the production mode when a new program enters the system the optimiza-
tion module is not invoked. Firstly, the program is encoded. Then a temporary
population of allocations is created. The system copies to the temporary popu-
lation each allocation from the KB adjusted to the length of the program. If the
length k of the allocation taken from the KB is equal to the number n of tasks in
the program, the unmodified allocation is copied to the temporary population. If
k > n, the allocation in the temporary population is truncated – the first n genes
are taken. If n < k, the system creates CloneNum ∗ ((n− k) + 1) allocations
in the temporary population (CloneNum is a parameter of the algorithm). In
each newly created allocation the old genes are shifted (so that every possible
position is covered). Values for the remaining n − k genes are initialized ran-
domly. In the next step the system finds the best allocation in the temporary
population. The execution of the program is simulated with each allocation and
the resulting makespan T is computed. The allocation which gives the minimum
makespan T is returned as the result.
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Table 1. Comparison of the IBS running in the learning mode, the EFT and the GA

program Tbest Tavg evaluations [∗103]
graph ETF GA IBS GA IBS GA IBS
tree15 9 9 9 9 9 10.2 17.6
g18 46 46 46 46 46 10.2 17.6

gauss18 52 44 44 44.3 44 11.4 19.9
g40 81 80 80 80 80 10.4 17.8

g25-1 530 495 495 495 495 11.1 18.6
g25-5 120 97 97 97.8 97 11.6 23.5
g25-10 78 62 62 70.2 65.4 12.8 27.1
g50-1 938 890 890 890 890 12.1 19.9
g50-5 235 208 210 213.3 215.1 19.7 39.9
g50-10 181 139 139 146.4 148.4 16.6 44.4
g100-1 1526 1481 1481 1481 1481 11.9 20.2
g100-5 460 404 415 409.7 421.1 32.7 43.1
g100-10 207 176 177 178.3 180.9 20.3 42.3

5 Experimental Results

We tested our approach by simulating the execution of programs defined by
random graphs and graphs that represent some well-known numerical problems.
The name of the random graph contains an approximate number of nodes and the
communication to computation ratio (CCR). We focused on the two-processor
system. We compared our approach (IBS) with a list-scheduling algorithm (EFT,
homogeneous version of HEFT [9]) and a GA. The GA we used operates on the
same search space as the IBS and is a specific elitist GA, with cross-over only
between the members of the elite. We used sub-tree size as the scheduling policy
in both the GA and the IBS. The parameters of the GA were tuned for the most
difficult problem we considered (g100-1 ). The IBS parameters where then fixed
so that both algorithms perform a similar number of function evaluations in one
iteration. The parameters of the IBS are as follows: PopulationSize = 200,
I = 60, C0 = 75, P0 = 0.10, ΔP = 0.05, K = 60, L = 70, M = 75. In
the production mode, only one allocation was produced for each possible shift
(CloneNum = 1). Both algorithms were ended if the best individual was the
same during NoChangeIter = 50 iterations, but not later than after 1000
iterations.

We run each algorithm on each program graph ten times. The shortest
makespan found in ten runs Tbest and the average from the ten makespans Tavg

are presented. We also present the average number of function evaluations in ten
runs, as this value gives a good estimation of the run time of the algorithm.

In the first set of experiments we compared the results of the GA and the
IBS running in the learning mode (Table 1). As the values returned by both
algorithms are very similar, we suppose that the search space is explored well
by both approaches. On the easier graphs (tree15,g18 ) both algorithms found
the optimal values in the first or the second iteration. However, in the harder
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graphs (e.g. g100-1 ) when we tried to limit the number of function evaluations
performed by the IBS algorithm (for example by reducing the NoChangeIter
parameter), the values returned were deteriorating quickly. When comparing the
results with the EFT algorithm, we observed that on harder graphs the difference
in the length of schedules produced is about 5% to 30%. One can see that the
higher the CCR, the longer makespan is produced by the EFT. The results of
this experiments show that the global search method we use in the learning
mode efficiently scans the search space and delivers results as good as a GA.
They do not, however, show that our search algorithm performs better that the
GA, because our algorithm performs twice as many function evaluations.

Table 2. Comparison of the IBS running in the production mode, the EFT and the GA

program Tbest Tavg evaluations [∗103 ]
graph ETF GA IBS GA IBS GA IBS

tree15→g18 55 55 55 55 55.7 10.4 0.1
g40→g18 127 126 127 126 129.4 11 0.3

g40→g18→tree15 136 135 138 135 139.4 11.5 0.4
g25-1→g50-1 1468 1385 1424 1385.2 1436 18.7 0.6

g25-1→gauss18 582 539 550 541.7 565.9 14.8 0.2
g40→g50-1 1019 970 978 970 988 15.1 0.7

g25-1→g100-1 2056 1976 2002 1976.5 2025.4 19.7 1.1
g50-1→g50-5 1173 1102 1146 1106 1156.1 35.4 0.9

In the second set of experiments we tested the immunological features of
our system. Firstly we had run the IBS system in the learning mode on all the
graphs. The best allocation found for each graph had been stored in the KB.
Then we prepared some new graphs by joining all the exit nodes of one program
graph with all the entry nodes of the other graph with edges with 0 communica-
tion costs. Table 2 summarizes the results obtained. We can see that our system
is able to store knowledge and reuse it to schedule efficiently new programs.
The results returned by the IBS running in the production mode are very close
to those obtained by the GA. However, the IBS needs only a fraction of func-
tion evaluations needed by the GA. One can argue that the function evaluations
“saved” in the production mode are used in the learning phase. We cannot agree
with this. In the typical parallel systems schedulers are invoked repeatedly and
with very tight time limits. Such a system really needs a fast scheduler in order
not to waste too much processor time just to preprocess users’ programs. The
other factor is that the overall load of the system is very uneven. On one hand,
there are peaks, when many jobs are waiting in the queue (e.g. before a deadline
of an important conference). On the other, periods (e.g. normal weekends) when
most of the processors are unused. System administrator can use those free pe-
riods to run the learning phase of the IBS. Comparing the IBS and the EFT
results, our system performs constantly better on harder graphs, even when tak-
ing into account the average from the length of schedule returned. Nevertheless,
the advantage the IBS had in learning mode (5% to 30%) is reduced to 2%–5%.
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6 Conclusion and Future Work

This paper presents a new approach for scheduling programs given by a DAG
graph. The most important result presented here is the ability to extract the
knowledge from previous schedules and to use it when scheduling new, poten-
tially similar, programs. After the initial phase of learning our system can provide
a near-optimal schedule for previously unseen problems quickly.

The results presented here open very promising possibilities for further re-
search. We plan to construct new schedules from the knowledge base more care-
fuly. We also plan to deconstruct both the system and the program graph. Instead
of storing schedules of complete programs on the whole system, we would like
to schedule parts of graphs on locally-described parts of system.
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Abstract. Unified Parallel C is a parallel language extension to standard C. Data
in UPC are communicated through shared arrays, which are physically distrib-
uted. Thus, data regions have locality, or affinity, to particular threads of exe-
cution. This affinity concept engenders a non-uniformity in shared memory ac-
cesses by a particular thread. Affinity should be considered when building data
structures in algorithms and applications, but UPC provides limited tools for data
locality management. We propose the creation of an application support layer to
support a wide variety of common data decompositions and programming idioms.
We present here a first step for this layer with a selection of mapping functions
and packages for numerical computation and dense matrix operations. These are
driven by specific algorithms from linear algebra and numerical computation, and
could be readily incorporated in such an application support layer.

1 Introduction

Virtual shared memory programming offers the advantages of shared memory pro-
gramming in terms of programmer ease and reduced man hours with the promise of
performance competitive with message passing schemes. Global Address Space pro-
gramming languages, including Unified Parallel C, Co-Array Fortran, and Titanium,
provide language extensions to C, Fortran, and Java, respectively, to add explicit par-
allel constructs [7, 11, 15]. These implementations rely on runtime and compiler sup-
port to achieve good performance relative to MPI. Our work focuses on Unified
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Parallel C, which has seen wide endorsement, with compilers available from most
major parallel system vendors and active research at national laboratories and
universities.

A barrier to more widespread acceptance of UPC is the lack of library support for
algorithm developers. UPC uses a simple data structure – a shared array accessible to
all threads of execution – for parallel data sharing. Management of data accesses to
minimize remote accesses and achieve good data decomposition is necessary to get
the maximal performance out of a UPC program. UPC requires the programmer to
explicitly manage mapping of data to the UPC shared array structure. We propose the
development of an application support layer to provide useful abstractions and provide
a ready toolkit for UPC developers to focus on developing solutions to problems instead
of the underlying physical data layout.

Application support layers are quite common in MPI. Several domain-specific sup-
port libraries have been developed: PLAPACK is a dense matrix manipulation library
for MPI that takes an algorithm-driven approach to data decomposition [13]. METIS
provides graph manipulation and decomposition packages; its ParMETIS package is
a parallel graph partitioning library built on top of MPI [9]. More general-purpose li-
braries have been developed, such as Zoltan, a lightweight library for data decomposi-
tion and parallelization [1]. Zoltan places few restrictions on the algorithm data struc-
tures, instead providing a handful of interface functions to be defined by the application
programmer, and places a wrapper over all MPI communications to hide explicit mes-
sage passing and data movement. Framework projects, like Trilinos, include specific
application service libraries as well as support for data decomposition and manage-
ment built on MPI [8]. Recent work has focused on more elaborate and dynamic data
structure support for MPI with automatic load balancing [12].

We present here a first step toward an application support layer for UPC: static
decompositions for dense matrix operations. We present mapping functions for ma-
nipulation of one-dimensional arrays. As an added bonus, these harmonize the view of
shared array structures between UPC and Co-Array Fortran. We then provide algorithm-
motivated decompositions of two-dimensional, shared arrays and conclude with an ex-
tended example of how these can be used to manage locality of data accesses. These
can be made standard tools; this added expressiveness would make UPC a more at-
tractive environment and help performance by providing structured communication
and seeking to make clearer the separation between local and remote data in shared
objects.

The mapping functions are presented as an add-on library. Recent work (e.g., [4])
has focused on improving the performance of UPC shared pointers with local look-up
tables and other private data structures. The proposal presented here is compatible with
improved shared pointers, as it allows programmers to write code that respects data
locality, saving on communication costs incurred after shared pointer dereferencing.

The rest of the paper is organized as follows. Section 2 includes constructs for ma-
nipulation of one-dimensional, shared arrays in UPC. In Sect. 3, we extend these to
two-dimensional arrays. We discuss an extended example, iterative solvers, in Sect. 4.
In Sect. 5, we conclude with some final remarks and a discussion of future work.
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2 Mapping Functions for One-Dimensional Arrays

We first consider two mapping functions useful for manipulating one-dimensional ar-
rays in UPC. UPC shared one-dimensional arrays are accessed by a single global offset,
and the runtime is responsible for determining the owning thread and the offset on that
thread [7]. By contrast, Co-Array Fortran views a shared array as mirrored across the
threads of execution, indexed by selecting a thread (using the co-array extensions) and
then an offset in the array [11]. This alternate view is useful, for example, in having
threads that update only their local portions of the shared array. UPC provides limited
support for writing such code with the upc forall loop, with its affinity statement.
We present two mapping functions, ThreadView and ReverseThreadView, that support
addressing the UPC shared array by a thread identifier and offset pair.

2.1 ThreadView

ThreadView is a formula for accessing a shared array by addressing the offset on a
particular thread. The result is a global shared array index. With a fixed block size
and using the THREADS constant, we have an exact translation from co-array-style
addressing by offset on a particular thread to a UPC-style shared array index.

function: index j = ThreadView(thread t, offset i, block size b, thread count P )
note: We use operationsdiv and mod as described in 6.3.4 of [7], here and throughout.
formula: j ← (i div b) ! P ! b+ t ! b + (i mod b)

2.2 ReverseThreadView

We provide the reverse map as well: given a global array index, we produce a thread
identifier and offset on that thread for a given block size and number of threads.

function: ( thread t, offset i ) = ReverseThreadView(index j, block size b, thread count
P )

formula: t← (j div b) mod P
i← (j mod b) + ((j div b) div P ) ! b

3 Two-Dimensional Layouts: Tiles, Rows, and Blocks

Like ANSI C, UPC supports rectangular, multidimensional arrays [7, 10]. Further, like
ANSI C, UPC multidimensional arrays are in fact linear memory regions with automatic
linearization of multidimensional coordinates [7, 10]. Thus, we adopt the approach of
providing the multidimensional interface in our mapping functions, and assume an un-
derlying one-dimensional data structure. This allows us to leverage our one-dimensional
mapping functions and operations. We now present two application-driven layouts, and
then a generalization that encompasses them both.

3.1 Motivation

The textbook example of a parallel algorithm (see, for example, [5]) is that of itera-
tively solving a differential or difference equation on a rectangular region. With fixed
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boundary values, and assuming convergence, the problem can be solved numerically by
iteratively updating from a template, where each location’s value depends on its pre-
vious value and those of its neighbors. This update step can be parallelized, and the
best static decomposition for minimizing the communication-to-computation ratio is to
divide the array into square or nearly-square submatrices, assigning one to each proces-
sor. Similar block structures are observed in algorithms from linear algebra [3], and
support for these has been a question in UPC discussion circles.

Consider next the problem of computing a vector x ofN elements from some source
M -element vector y and an N ×M arrayA. If we use the “owner-writes” heuristic for
decomposition, we would assign the computation of xi, the ith element of x, to the
thread with affinity to xi. To minimize remote access, we would also assign affinity
of row i of A to that same thread. This decomposition, shown in Fig. 1(b), leads to a
natural decomposition of x into blocks of size N/P , and A into sets of N/P rows,
where P is the number of threads.

Thread 0 Thread 1

Thread 3Thread 2

Thread 0

Thread 1

Thread 3

Thread 2

(a) Decomposition by Tiles (b) Decomposition by Rows

Fig. 1. Example of two-dimensional decompositions for four threads of execution. Image is a
logical view of the affinity regions for decomposition: (a) by tiles (b) by rows.

3.2 A Generalization: Decomposition by Rectangular Blocks

The above decompositions are special cases of a more general pattern: decomposition
of a rectangular array into regular rectangular subarrays. Consider an N ×M array A
and P = Q × R threads of execution. We envision the threads assigned to processors
in a mesh layout, so that the threads are arranged into Q rows of R threads each. We
divideA into P submatrices,Aq,r, of size N/Q×M/R, arranged in the same layout as
the threads so that Aq,r is assigned to the thread in row q, column r of our mesh layout.
Requiring M = N and Q = R gives our mapping by tiles, and requiring R = 1 gives
our mapping by rows. An example is shown in Fig. 2. We assume throughout that Q
dividesN and R divides M evenly.

BlockView. We provide the forward mapping of a two-dimensional array index pair
(i, j) mapped to a thread identifier t and an offset d.

function: ( thread t, offset d ) = BlockView(row i, column j, row count N , column
count M , processor row count Q, processor column countR)

formula: t← (i div (N/Q)) ∗R+ j div (M/R)
d← (i mod N/Q) ∗M/R+ j modM/R
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ReverseBlockView. We now provide the reverse map, starting from a thread identifier
t and offset d and expanding back to global two-dimensional array indices i and j.

function: row i, column j = ReverseBlockView(thread t, offset d, row count N , col-
umn count M , processor row count Q, processor column count R)

formula: i← (t div R) ∗N/Q+ d divM/R
j ← (t mod R) ∗M/R+ d modM/R

We observe that, as an added benefit of the ReverseBlockView map, we could pro-
vide an interface, ThreadBlock, that treats the subarray with affinity to a particular
thread as a private two-dimensional array.
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Thread
3

Thread
7

Thread
11

(a) Logical Mesh of Threads (b) Decomposition by Blocks

Fig. 2. (a) We view the threads of execution arranged logically as a mesh of threads. In our figure,
we assume twelve threads of execution, arranged in a 3 × 4 mesh. (b) We decompose the array
into rectangular affinity regions, arranged in the same pattern.

4 An Application to Iterative Solvers

Returning to our example of an iterative equation solver, we consider how to better
support this application and use the affinity regions of shared memory in UPC. At a
high level, the serial algorithm is:

1. Compute an error term and check whether it is within tolerance limits.
2. If the solution is not within tolerance, update each entry using the previous values

of the location and its neighbors. Go to the first step.

Considerations for any parallel solution are:

– Deterministic Solution: The first version may be developed in serial code, which is
then parallelized. A deterministic parallel solution will not rearrange computation,
and hence will agree with the serial code.

– Convergence Properties: There exist several patterns for iterating through the values
in the array. Such choices affect the convergence properties of the solution.

– Communication of Boundary Values: Reduction operations can be used to deter-
mine whether the desired tolerance has been achieved. However, the decomposition
of the array for parallel update operations can lead to boundary values that must be
exchanged with neighboring threads.
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– Simplicity: The algorithm is iterative, and thus a performance concern is to make
the innermost part of the loop as simple as possible.

We will not address the first two directly, but will instead focus on the latter two con-
cerns. We first ask whether our BlockView and related mapping functions are sufficient.
The iterative update could be written as:

For each row r to update in my block
For each column c to update in my block

Update block using ThreadBlock and BlockView

Given that BlockView will properly map requests that fall off the edges of the
thread’s affinity region, we have a working solution. However, this solution has the
undesirable properties of not being deterministic and using fine-grained accesses to
neighboring affinity regions. We now present a solution that will make clear that the
neighboring values come from the previous iteration and that uses a global “ghost
cell exchange” collective communication operation that allows for both synchroniza-
tion only as needed for the collective and the potential for aggregation of data requests.
We will assume throughout that the template used for the update access neighboring
positions that differ in at most one unit in each coordinate, allowing for an eight-point
stencil. The generalization to wider stencils follows immediately.

4.1 Overview of a UPC Solution

We propose the following for support of ghost cell communication in UPC. We pro-
vide the programmer with a logical view of an N ×M array, partitioned among P =
Q×R processors in regular-sized blocks so that the processors and affinity regions are
arranged as a Q × R mesh. We then provide mapping functions that enforce this view
of the data region, allow for access to a thread’s block and ghost cells for the iteration,
and a collective operation for exchanging ghost cells at the start of each iteration.

We first allocate a region of memory that holdsN×M+(2N/Q+2M/R+4)×P
items. This adds 2N × R + 2M × Q + 4R × Q items of storage overhead. We view
this as a two-dimensional array divided into (N/Q + 2) × (M/R + 2)-sized blocks
arranged as for the BlockView. Each thread’s affinity region now space for the array
plus the ghost cell region. This is illustrated in Fig. 3.

We consider the following building blocks:

– GCBlockView: A mapping function that translates a global index pair (i, j) to mask
the interleaved ghost cell region. This is a wrapper for BlockView.

– ReverseGCBlockView: The reverse map to GCBlockView that post-processes the
result of ReverseBlockView to include the ghost cell region.

– ThreadGCBlock: A wrapper for ThreadBlock that provides a thread to iterate over
its logical piece of the array in a straightforward manner.

– GCExchange: Collective communication to exchange boundary values.

The parallel algorithm first allocates a new array of sizeN×N+(2N/Q+2M/R+
4)× P , places data into it with GCBlockView, then loops:
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Thread 0 Thread 1

Thread 3Thread 2

Thread 0 Thread 1

Thread 2 Thread 3

(a) Logical View of Blocked Array (b) Memory Allocation with Added Buffers

Fig. 3. Overview of Solution for Iterative Solver. (a) We continue to present a blocked view of the
array to the application through the GCBlockView interface. (b) We allocate additional memory
in each thread’s affinity region to construct a boundary for storing ghost cell data and accessing
these via the ThreadGCBlock mapping function.

1. Using proposed collective operations such as upc all reduce [14], collect the
error estimates from each thread for a global error estimate and return this to the
threads. If the error estimate is within tolerance, stop.

2. All threads execute GCExchange and prepare the array for the update step.
3. Each thread iterates over its affinity region (regions of the array for which a thread is

responsible) using two nested for loops, using ThreadGCBlock to read and write
its data elements, to compute the next iteration of updates.

The inner loop of the code is tight as the use of the mapping functions avoids the
need for conditionals or special packing and unpacking – this is done only once at the
start of the algorithm. GCExchange separates communication and computation steps,
making the communication step explicit for potential optimization.

5 Conclusion

We presented here a first step toward an application support layer with support for var-
ious dense matrix decomposition strategies and a detailed discussion of support for
a particular class of algorithms, iterative solvers on rectangular domains with fixed
boundary conditions. Future work will include several additional useful support func-
tions, as well as performance measures of the gain from using these functions. Based on
work in [6], we developed a physically-based matrix decomposition scheme, allowing a
more problem-directed decomposition of dense matrices. We have included these in [2].
Similar efforts are needed to expand support for other scientific and parallel algorithm
building blocks in UPC, similar to the wide range of projects to provide application
support and communication encapsulation for MPI. As we have seen here, the built-
in features of UPC for data locality management are limited, but they can be used to
construct more useful and elaborate data locality management tools. Our results are an
example of these. UPC today is similar to MPI without its various support libraries and
frameworks. A good support library will allow for broader acceptance of UPC.
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Abstract. We present a data-list management library that both sim-
plifies parallel programming and balances the workload transparently to
the programmer. We present its use with an application that dynami-
cally generates data, such as those based on searching trees. Under these
applications, processing data can unpredictably generate new data to
process. Without load balancing, these applications are most likely to
imbalance the workload across processing nodes resulting in poor per-
formance. We present experimental results on the performance of our
library using a Linux PC cluster.

1 Introduction

Today the ubiquity of PC clusters and the availability of a number of parallel
programming libraries have made the use of parallelism ready to hand. Pro-
gramming with message passing or shared memory is still widely used because
of its general applicability, despite the need for the programmer both to divide
the workload, to assign it to the processors and to specify communication for
processors to share data or to synchronise their tasks [1, 6, 8, 11]. Shared abstract
data-types (SADTs) are shared objects (such as queues) that appear local to
each processor; concurrent access to them is transparent to the programmer
through SADTs relevant functions (such as enqueue and dequeue) [7]. Hence
the programmer does not need to divide and assign the workload, nor to spec-
ify communication. However, the programmer is responsible to represent the
application data as one or more of the shared object(s) available.

Skeletons are pre-packaged parallel algorithmic forms, or parallel code pattern
functions. The programmer has only to assemble the appropriate skeletons to
solve the problem at hand. However, not all practical problems can be simply
represented with the skeletons proposed so far, and some skeletons require a
relatively large number of parameters complicating their use [4, 5, 10].
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In this paper we present a data list management library (DLML) for parallel
programming in clusters. DLML is useful to develop parallel applications whose
data can be organised into a list, and the processing of each list item does not
depend on other list items. The programming is almost sequential and, at run
time, load balancing takes place transparently to the programmer. DLML lists
are similar to SADTs queues [7] both in organisation and use (we describe DLML
use in this paper). SADTs queues follow the FIFO policy on inserting/deleting
items, DLML follows no order. The motivation of DLML was to provide trans-
parent load balancing to parallel applications running on clusters. SADTs queues
were designed first for parallel programming on shared memory platforms, and
later for distributed memory platforms. For the latter, load balancing was also
integrated.

An earlier version of DLML was designed to help to improve the execution
time of a parallel evolutionary algorithm [3]. Another version was tested with a
divide-and-conquer algorithm [9]. These two kinds of algorithms manage a total
amount of data that is known in advance. The version presented in this paper is
simpler to use, uses a more efficient load balancing policy based on distributed
workpools, and can be used with applications that dynamically generate data in
unpredictable ways.

With our library, the data list must be accessed using typical list functions,
such as get and insert, provided by our environment. Although the use of these
functions is typical, internally they operate on several distributed lists, one in
each processing node. When a processor finds its local list empty, more data is
asked from remote processing nodes, thus balancing the workload dynamically
and transparently to the programmer.

In Section 2 we present the Non-Attacking Queens problem as an example
of applications that dynamically generate data. In Section 3 we show this ap-
plication using our data list-management library. In Section 4 we present the
organisation of the load balancing policy of our library. In Section 5 we dis-
cuss empirical results on the performance advantage of using our programming
environment. We offer some conclusions and describe future work in Section 6.

2 The Non-attacking Queens Problem

In this section we present the Non-Attacking Queens (NAQ) problem [2] as a
sample application that dynamically generates data organised into a list. It con-
sists of finding all the possibilities of placing N queens on an N ×N chessboard,
so that no queen attacks any other. The search space of NAQ can be modeled
with an N degree searching tree. We implemented a looping version of NAQ
managing such tree as a list, which, at any time, contains only leaves that rep-
resent possible solutions to explore. For N = 4, Figure 1 shows the only two
solutions (left), the search space (middle) and part of its list management trace
(right) by our list-management library.

A queen position can be specified with two coordinates in a two-dimensional
array. However, in our implementation, a queen placed on row i (1 <= i <= N)
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is represented by i itself, while the column it is placed in is given by the vector
element chessboard[i]. A list item B is a structure with two information fields:
B.queen is the number of queen to be placed, and B.chessboard is an N-size
vector with the position of the queens placed so far.

2 3 4

3 4

List management

1 2 3 4

2 3 41 1 43

1 4

2 4

2 4

2

1

32 41 3 142 4 13 24

2,4 3,1

3,1,4,2

Solutions Search space

2 3 41

1,3 1,4

1,4,2

4,1 4,2

4,1,3

2,4,1,3

2,4,1 3,1,4

Solutions

Fig. 1. NAQ: solutions, search space and our list representation for N = 4

In our sequential code below, functions Create_element(), Insert() and
Get() are used to manage the list. Function Attacked(B.queen, column, B.-
chessboard) returns True if B.queen can be placed in column, taking into ac-
count previously placed queens in B.chessboard; otherwise returns False. An
element taken from the list with Get() is discarded but possibly generates new
elements to insert into the list. The algorithm finishes when the list becomes
empty. (Get() function returns False).

function Non-attacking-queens(List *L) {
queen = 1; chessboard[1<=i<=N] = 0; nr_solutions = 0;
q = Create_Element(queen,chessboard); //Initial element to

//place the queen 1
Insert(&L, q);
while( Get(&L, &B) ) {

for(column=1;column <= N; column++ ) { // generate elements
if (! Attacked(B.queen,column,B.chessboard) )

if (B.queen < N) { // where B.queen
B.chessboard[B.queen] = column; // is not attacked
q = Create_Element(B.queen+1,B.chessboard);
Insert(&L,q);

} else
nr_solutions= nr_solutions +1; //one more solution

} // N-queens have been placed
}
return nr_solutions;

}
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3 Integrating DLML

In this section we show how to modify the sequential version of NAQ shown
above to use our data list-management library, or DLML. The DLML version
runs in parallel, under the SPMD (Simple Program Multiple Data) model, i.e.,
a data list is managed in each node running the application. The DLML version
also runs with transparent dynamic load balancing.

The code below shows the DLML version, wherein the data list functions are
those of DLML. Note that, under the SPMD model, the functions DLML_Create_
First_Element() and DLML_Insert_First() will be called in each node; their
implementation is, however, such that they will return immediately in all nodes
except in the master node (0), where it is actually executed.

DLML_Get() tries to get a data element from the local list, or a remote list if
that one is empty, into its second parameter. It returns False if no data element
is found locally and remotely; otherwise return True.

DLML_Reduce_Add() will also be called in each node, but is only actually
executed by the master processor. It is in charge of gathering and adding the
partial results in each node.

function Non-attacking-queens(List *L) {
queen = 1; chessboard[1<=i<=N] = 0; nr_solutions = 0;
q = DLML_Create_First_Element(queen,chessboard);

DLML_Insert_First(&L, q);
while( DLML_Get(&L, &B) ) {

for(... ) {
...
q= DLML_Create_Element(B.queen+1,B.chessboard);
DLML_Insert(&L,q);
...

}
}
final_result= DLML_Reduce_Add( nr_solutions );
return final_result;

}

4 DLML Architecture

At run time the DLML architecture consists of one application process and a
load balancing DLML process on each node running a parallel application, see
Figure 2. These processes communicate through message-passing; DLML
processes in different nodes communicate likewise. They follow a protocol with
the types of messages shown in that figure: Local data, Insert data, Get data,
Request node info, Node info, Request data, Remote data, and No items.

A data list is managed in each node. When an application process tries to
get a data element and its local list is not empty, an element therein is given
to the application. When the list is empty, the peer DLML process is activated
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Request node info

Request data

Node info

Local data

application application

DLML DLML

NodeNode

Insert data
Get data

Remote data

No−items

Fig. 2. Load balance protocol messages

to ask remote DLML processes more data, following a bidding policy [12]; i.e.,
asking all the length of their list, and selecting the node with the greatest list
length to ask it more data.

All request data messages received by a node are stored in a queue. To satisfy
these requests, the data list is evenly divided into the total number of requests
plus one to count in that node, thus trying to balance the workload. If the number
of requests exceeds the data list length L, only L − 1 requests are satisfied. If
the list becomes empty before satisfying the requests, the response message no
items is sent, and the DLML process asking for data starts again the bidding
policy.

5 Performance Evaluation

To evaluate the performance of DLML, we ran the sequential version and the
DLML version of the non-attacking queens (NAQ) problem (shown in Sections
2 and 3 ), for different problem sizes: chessboards of size N×N , for 8 ≤ N ≤ 17.
The sequential version was run on an Intel Pentium IV 3.4 GHz processor with
2 GB RAM memory under Linux. The DLML version (implemented with MPI),
was run on a dedicated, 17-node homogeneous PC cluster, each node configured
with: 1 Pentium IV 2.8 GHz processor, 512 MB RAM memory and Linux. All
nodes are interconnected through a Fast Ethernet 3COM switch.

5.1 Sequential vs DLML

Figure 3 shows the execution time of sequential NAQ (SEQ) and DLML-NAQ
(DLML). The x axis shows the size of the problem N , and the y axis shows
execution time in seconds in log10 scale. For small problem sizes (not shown
in that figure), SEQ performs better than DLML. Partly, this is because the
sequential version runs on a faster processor. But also because, in the parallel
version, processors asks for data throughout the run, and some requests arrive
after the master processor has finished processing all the data.
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Fig. 3. NA-Queens SEQ vs DLML

DLML performs better than SEQ for problems of size N ≥ 13 because the
number of possible solutions explored was much greater, and parallelism did help
in these runs. For N = 12, there are 14,200 solutions. For N equal to 13 and
17, there are 73,712 and 95,815,104 solutions, respectively. For N = 17, the
execution time in minutes for SEQ was 180.6 and for DLML 13.7.

5.2 DLML vs DLML Without Load Balancing

To evaluate the performance of the load balancing strategy of DLML, we also
run the DLML version but with DLML load balancing policy deactivated. We
refer to this version as DLML-NLB (for no load balancing).

Before comparing DLML vs. DLML-NLB, we describe some aspects of their
operation. Under DLML-NLB the master node starts processing data. When
all data requests from other nodes arrive, the master partitions and distributes
data evenly among all nodes. However, the processing of each data item can, or
cannot, generate more data items to explore. Thus some processors may do more
work than others. In DLML, there is no initial data partitioning; processors ask
for work throughout the run when they find their list empty.

Figure 4 shows the execution time of DLML and DLML-NLB. The x axis
shows the size of the problem N , and the y axis shows execution time in seconds
in log10 scale. All times correspond to runs on 17 processors. DLML shows better
performance in all runs because of its load balancing policy. For N = 17, the
execution time in minutes for each version was 46.2 and 13.7, respectively.

Figure 5 shows the amount of data items processed by each processor under
both DLML (shaded boxes) and DLML-NLB (on 17 processors), for N = 17.
The x axis plots the identification number of each processor, and the y axis plots
the number of data items processed by each processor in millions. In DLML,
despite the individual dynamic data generation of each processor, work was
distributed more evenly. In DLML-NLB the amount of work was not nearly
evenly distributed among the processors.
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 1

 10

 100

 1000

 10000

 12  13  14  15  16  17

T
im

e 
(s

ec
)

N-Queen size

Homogeneous

"DLML"
"DLML-NLB"

Fig. 4. Execution time under DLML vs. DLML-NLB, for different problem sizes, 12 ≤
N ≤ 17, on homogeneous nodes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17

Ite
m

s 
pr

oc
es

se
d 

(m
ill

io
ns

)

Node identifier

Homogeneous

DLML
DLML-NLB

Fig. 5. Load distribution by processor for N = 17 queens, under DLML and DLML-
NLB both on 17 homogeneous nodes

6 Conclusions and Future Work

We have presented DLML a list-management library that simplifies the program-
ming of applications whose data can be organised into a list. Programming under
DLML is almost sequential, but the execution is parallel and with transparent,
dynamic load balancing. Using the non-attacking queens problem as sample ap-
plication that dynamically generates data, we showed the ease of use of DLML
and also its performance benefit on a homogeneous PC cluster.

We are currently improving the design of the DLML interface to include more
list manipulation functions other than the ones presented here (insert, get and
reduce). We are also improving both the communication between the application
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process and the DLML process in each node through shared memory, and the
load balancing policy to make it more scalable.
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Easing message-passing parallel programming through a data balancing service. In
Recent Advances in Parallel Virtual Machine and Message Passing Interface, vol-
ume 3241 of Lecture Notes in Computer Science, pages 295–302. Springer-Verlag,
September 2004.

10. David B. Skillicorn and Domenico Talia. Models and languages for parallel
computation. ACM Computing Surveys, 30(2):123–169, June 1998.

11. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI: The Complete Reference, The MPI Core, volume 1. MIT Press, second
edition, August 1998.

12. J. A. Stankovich and I.S Sidhu. An adaptive bidding algorithm for processes,
clusters, and distributed ups. In Inter. Conf. on Distributed Computing Systems,
pages 49–59. IEEE, 1984.



SILC: A Flexible and Environment-Independent
Interface for Matrix Computation Libraries

Tamito Kajiyama1,2, Akira Nukada1,2, Hidehiko Hasegawa1,3,
Reiji Suda1,2, and Akira Nishida1,2

1 CREST, Japan Science and Technology Agency, Saitama 332–0012, Japan
2 The University of Tokyo, Tokyo 113–8656, Japan

{kajiyama, nukada, reiji, nishida}@is.s.u-tokyo.ac.jp
3 University of Tsukuba, Tsukuba 305–8550, Japan

hasegawa@slis.tsukuba.ac.jp

Abstract. We propose a new framework, named Simple Interface for
Library Collections (SILC), that gives users access to matrix computa-
tion libraries in a flexible and environment-independent manner. SILC
achieves source-level independence between user programs and libraries
by (1) separating a function call into data transfer and a request for
computation, (2) requesting the computation by means of mathematical
expressions in the form of text, and (3) using a separate memory space
to carry out library functions independently of the user programs. Using
SILC, users can easily access various libraries without any modification
of the user programs. This paper describes the design and implemen-
tation of SILC based on a client-server architecture, and presents some
experimental results on the performance of the implemented system in
different computing environments.

1 Introduction

Solutions of systems of linear equations and other matrix computations take
a major proportion of execution time and memory resources in many large-
scale scientific applications. As a result, a large number of matrix computation
libraries have been developed [1, 2, 3] to facilitate the rapid development of user
programs. Each library offers a different set of solvers and matrix storage formats
and has its own application programming interface that is incompatible with
other libraries.

The traditional way to use matrix computation libraries, i.e., through func-
tion calls, makes user programs dependent on the libraries. Users of a library have
to prepare input matrices in a specific storage format and to make a function
call using a library-specific function name together with a number of arguments
in a prescribed order. Although such function calls are plain and intuitive, they
result in source-level dependency on the library, making it difficult to replace
one library with another.

There are various computing environments, such as personal computers, sym-
metric multiprocessor (SMP) systems, high-end supercomputers, and clusters,
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each of which has its own highly optimized libraries. Therefore, users must mod-
ify their user programs significantly in order to port them from one computing
environment to another. Moreover, there are various solvers and matrix stor-
age formats, the best combination of which varies according to the computing
environment in use and the problem to be solved. However, because of the source-
level dependency resulting from the use of a solver and matrix storage format in
the form of conventional function calls, users who want to find the most efficient
solver and matrix storage format must make considerable modifications in the
user programs to change solvers and matrix storage formats.

To address those issues that arise from the source-level dependency on spe-
cific libraries, we propose a new framework that allows users to easily utilize ma-
trix computation libraries in a flexible and computing environment-independent
manner. The framework, named Simple Interface for Library Collections (SILC),
is based on the following three design decisions.

– To separate a function call into data transfer (to and from a separate memory
space) and a request for computation.

– To request the computation by means of mathematical expressions in the
form of text.

– To use the separate memory space to carry out library functions indepen-
dently of user programs.

In our framework, a function call occurs through three steps: sending in-
put data (i.e., arguments), requesting computation by means of mathematical
expressions, and receiving the results of the computation. The operators that
comprise the expressions are translated into a series of function calls and are
carried out in a separate memory space. The results of the computation are sent
back only when they are required by user programs.

The main benefits of employing SILC are as follows.

– User programs will be free of source-level dependency on specific libraries,
so that users won’t need to modify their programs when changing libraries
according to the computing environment and the problem to be solved.

– Users need to prepare only the smallest amount of data. Temporary memory
space used for carrying out library functions is automatically allocated before
the library functions are called.

– A variety of computing environments and programming languages can be
used, since computation is requested by means of mathematical expressions
in the form of text.

2 Design and Implementation

We have been developing a SILC system for shared-memory parallel computing
environments. Figure 1 shows an architectural overview of the SILC system. It
is based on a client-server architecture. The SILC server and user programs can
run either on the same machine or on different machines on a network.

A user program connects to the SILC server and utilizes the features of matrix
computation libraries by sending three types of requests described below.
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Fig. 1. Architectural overview of SILC

PUT deposits data such as matrices and vectors, together with names for later
reference. The data are converted and transferred into the server’s memory
space, which is independent of the user program. The deposited data remain
there until deleted explicitly.

EXEC requests computation by means of mathematical expressions in the form
of text. The names defined by preceding PUT requests are used in the ex-
pressions to refer to the deposited data. The computation is carried out on
the server asynchronously. The results of the computation and names defined
by the expressions are retained in the server’s memory space.

GET fetches data from the server. Names are used to specify the data to be
fetched, and those data are sent back into the memory space of the user
program. The data are kept undeleted on the server.

In case a user program is written in C, the following three client routines are
used to issue the PUT, EXEC, and GET requests, respectively:

– SILC PUT(〈name〉, 〈data〉)
– SILC EXEC(〈expr〉)
– SILC GET(〈data〉, 〈name〉)

where 〈name〉 is a data name and 〈expr〉 is a mathematical expression (whose
syntax is described later), each specified by a string. 〈data〉 is a pointer to the
silc envelope t structure that is used for data communications between the
user program and the SILC server.

The requests from the user program are received by the interface thread in
the SILC server. PUT and GET requests are handled by the interface thread,
while EXEC requests are stored in the request queue and processed by the
execution thread one after another. The user program and the interface thread
run synchronously, while the execution thread runs asynchronously.

Figure 2 (a) shows a user program that calls a library function ssi cg [3]
to solve a system of linear equations Ax = b with the CG method [4]. The
input data of the library function are matrix A and vector b as well as some
solver-specific parameters, while the output is the solution x. These data are
represented by library-specific data structures and are passed to the library
function through its arguments in a prescribed order. On the other hand, in the
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SSI MATRIX A;
SSI SCALAR *b, *x, work[N*6], params[2];
int options[6], status;

/* Create matrix A and vectors b and x */
status = ssi cg(b, x, work,

params, options, &A, NULL);

(a)

silc envelope t A, b, x;

/* Create matrix A and vectors b and x */
SILC PUT("A", &A);
SILC PUT("b", &b);
SILC EXEC("x = A \\ b"); /* Call a solver */
SILC GET(&x, "x");

(b)

Fig. 2. Comparison between the two ways of using a library function. (a) is a user
program that makes use of a library function in the traditional manner. (b) is another
user program written in the framework of SILC.

framework of SILC, the same computation can be achieved as shown in Fig. 2 (b).
In this framework, the input data are deposited by two separate calls of the client
routine SILC PUT. After the input data are deposited, computation is requested
by the SILC EXEC routine. This routine’s argument is a mathematical expression
in the form of text that instructs the solution of the system of linear equations
using an appropriate library function (e.g., ssi cg). Finally, the output data are
fetched by SILC GET. The source code shown in Fig. 2 (b) does not contain any
code that is specific to the actual library to be used for the computation.

The SILC system is equipped with a simple command language to represent
a request for computation in the form of mathematical expressions. The unit
of computation that is carried out at once is a statement, which is either an
assignment or a procedure call. The left-hand side of an assignment statement
is a variable name, which can be used without declaring a data type. The right-
hand side of the assignment statement is an expression, which consists of variable
names, operators, and function calls. Some of the operators are binary arithmetic
operators (+, -, *, /, %), solutions of systems of linear equations (e.g., A \ b
obtains the solution x as in Ax = b), complex conjugates (A~), and conjugate
transposes (A’). There is no control statement in the command language; loops
and conditional branching are achieved by the programming languages in which
user programs are written.

Every operator, function, and procedure1 that appears in a mathematical ex-
pression is translated into a call of a library function with the help of a wrapper
that actually calls the library function. The wrapper provides a unified interface
to the library function so that the SILC server can invoke all library functions
in the same manner. Related wrappers are grouped into an arithmetic mod-
ule, and all modules are dynamically loaded into the SILC server at startup.
When loading arithmetic modules, the server constructs a mapping table that
relates operators, functions, and procedures to certain wrappers. The server then
handles each of the operators, functions, and procedures used in a given mathe-
matical expression by invoking a corresponding wrapper, which results in a call

1 Functions return values, while procedures do not. Moreover, procedures can change
the values of arguments, whereas functions cannot. The distinction between func-
tions and procedures is introduced to eliminate ambiguities from mathematical
expressions.
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Table 1. Four server configurations used for preliminary experiments

Environment Specifications Thread(s)
(a) A notebook PC CPU: Intel Pentium M 733 1.1 GHz, –

Memory: 768 MB, OS: Fedora Core 3
(b) SGI Altix 3700 CPU: Intel Itanium 2 1.3 GHz × 32, Memory: 32 GB, 1

OS: Red Hat Linux Advanced Server 2.1
(c) IBM eServer CPU: IBM Power5 1.65 GHz × 2 (4 logical CPUs), 4

OpenPower 710 Memory: 1 GB, OS: SuSE Linux Enterprise Server 9
(d) SGI Altix 3700 Same as (b) 16

of a particular library function. Matrix storage formats are implemented in a
similar way, and their wrappers are grouped into a storage format module.

Support for a new matrix storage format can be incorporated into the SILC
system by providing a storage format module coupled with an arithmetic module.
Both arithmetic and storage format modules are parallelized with OpenMP in
shared-memory parallel computing environments.

To assess the performance of SILC servers in different computing environ-
ments, we conducted preliminary experiments using the four configurations of
SILC servers summarized in Table 1. The three computing environments of the
notebook PC, Altix 3700, and OpenPower 710 were interconnected via a 100
Base–TX network. We used the user program shown in Fig. 2 (b), which solves
a system of linear equations Ax = b using the CG method, where A is an N×N
tridiagonal matrix of double precision in the Compressed Row Storage (CRS)
format [4]. An arithmetic module that includes a wrapper for the library func-
tion ssi cg was used to solve the system of linear equations. The user program
was carried out on the notebook PC for all cases. Since the server to which the
user program connects is specified in a configuration file, the same user program
was used without any modification during the experiments. Figure 3 shows the
results of the experiments, with dimension N on the horizontal axis and execu-
tion time in seconds (including communication time for establishing connection
and transferring data) on the vertical axis. The experimental results proved that
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Fig. 3. Experimental results with the four server configurations shown in Table 1
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(1) the computing environment that achieves the best performance varies accord-
ing to dimension N , and (2) the execution times in the cases of (c) and (d) are
much shorter than those in the case of (a) even at the cost of depositing matrix
A and vector b and fetching the solution x through the relatively slow network.
Since communication time is roughly on the order of O(N) while computation
time is on the order of O(N2), the observation (2) agrees with the expectation
that the communication time will take a smaller fraction of the whole execution
time as dimension N increases.

3 Usability and Benefits

3.1 User Programs

User programs in the framework of SILC are independent of the computing
environment in which a SILC server runs. This allows users to develop their
programs without being concerned about the details of various computing en-
vironments. Users can port their programs from one computing environment to
another without any modification to the programs.

SILC separates data transfer from a request for computation, permitting
PUT, EXEC, and GET requests to be sent from different user programs sepa-
rately. Moreover, a SILC server accepts connections from multiple user programs,
allowing those programs to use the server as an in-memory database through
which they exchange data. Therefore, in the framework of SILC, separate user
programs can be easily combined in such a manner that a mesh generation
program issues PUT requests, a solution program sends EXEC requests, and a
visualization program uses GET requests.

Since data transfer and requests for computation in the form of text are rela-
tively lightweight tasks, less-powerful computing environments, such as personal
computers and mobile environments, will suffice to run user programs for SILC.
This characteristic allows combinations in which, for example, a personal com-
puter is used to control computations on high-performance parallel computers.

3.2 Libraries

An exchange of libraries is required mainly in either of two situations: (1) users
wish to change computing environments or (2) users wish to use different solvers
and matrix storage formats provided in other libraries. There are a variety of
optimized matrix computation libraries that are only available in a particular
computing environment. Moreover, the most efficient solver and matrix storage
format depend strongly on the computing environment to be used as well as on
the problem to be solved. Aside from the considerable costs of modifying user
programs in order to switch libraries, it is burdensome for users to maintain
multiple versions of the same program, each of which is written for a specific
computing environment and a problem based on a specific combination of a
solver and matrix storage format. In the framework of SILC, on the other hand,
users can easily change libraries either by using different SILC servers running
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in other computing environments or by modifying the mapping table in a SILC
server so that different library functions are used.

In addition, a SILC server has a separate memory space, which enables the
server to convert deposited matrices into different storage formats independently
of user programs. For example, it can be easily achieved that a user program
uses the CRS format to deposit and receive matrices, while the server uses
the Jogged Diagonal Storage (JDS) format [4] to carry out computations on
them. Although conversion of storage formats takes some time and space ac-
cording to the sizes of the matrices, there are cases where better performance is
achieved if the matrices are converted into an appropriate storage format before
the computations on them. Moreover, the conversion of storage formats allows
users to choose solvers and storage formats from among a wide range of matrix
computation libraries.

3.3 Programming Languages

In SILC, computation is requested by means of mathematical expressions in the
form of text. In addition, the client routines of SILC to be linked with user
programs are small and easy to implement. Therefore, various programming
languages can be used to develop user programs. At the moment, three sets of
client routines for C, Fortran, and Python are available. The main requirements
for a programming language to implement the client routines are the capabil-
ities of numerical computation, text processing, and socket-based interprocess
communications; the major programming languages meet these requirements.

SILC permits various combinations of matrix computation libraries and pro-
gramming languages. For example, user programs written in Python can easily
make use of libraries written in C or Fortran in the same way.

4 Related Work

To improve the usability of matrix computation libraries, various approaches
have been proposed based on Remote Procedure Call (RPC) [5, 6] and code
generation techniques [7, 8, 9]. NetSolve [5] and Ninf–G [6] are middleware for
realizing RPC in Grids. In these systems, RPCs are requested in a manner simi-
lar to traditional function calls. In contrast, SILC employs simple mathematical
expressions to request matrix computations, allowing users to ignore compli-
cated matters between user programs and matrix computation libraries. CMC
[8] is a compiler that translates a user-defined function in MATLAB [10] into a
subroutine in Fortran 90. CMC provides support for several sparse matrix stor-
age formats and carries out a variety of source-level optimizations. Both CMC
and SILC pursue the same goal of enhancing the utility of matrix computations.
Whereas CMC focuses on the generation of optimized Fortran subroutines from
MATLAB functions, SILC focuses on the use of various matrix computation
libraries in a language-independent manner.
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5 Concluding Remarks

The traditional manner of using matrix computation libraries through function
calls usually results in source-level dependency on the libraries, making it im-
possible to switch libraries without modifying user programs. To address this
issue, we have proposed a new framework for using matrix computation libraries
in a flexible and environment-independent manner. In this paper, we presented
the design and implementation of the proposed framework for shared-memory
parallel computing environments based on a client-server architecture. We also
reported the results of preliminary experiments assessing the performance of the
implemented system, and discussed the usability and benefits of our proposal.

We plan to provide modules for major matrix computation libraries, allowing
users to easily switch libraries and compare the performance of user programs
with respect to different solvers and matrix storage formats. Implementation of a
scripting language for SILC, run-time optimization of mathematical expressions,
and MPI-based parallelization of the SILC system are also in our future plans.
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Abstract. mpF is a new parallel extension of Fortran 90. It was devel-
oped on base of experience of development and use of the mpC parallel
programming language. The paper compares programming models of
mpC and mpF.

1 Introduction

Network of computers is the most common architecture for parallel computing. In
general it is a set of diverse computers interconnected via diverse communication
equipment. For programming high performance computations on such heteroge-
neous networks the mpC parallel programming language and its programming
environment was developed in the Institute for System Programming, Russian
Academy of Sciences in the end of 1990s under the direction of A. Lastovetsky
[1, 2]. mpC is a parallel extension of C with explicit parallelism. The main idea
underlying mpC is that an mpC application explicitly defines an abstract net-
work and distributes data, computations and communications over the network.
The mpC programming environment uses in run time this information as well as
information about any real executing network in order to map the application to
the real network in such a way that ensures efficient execution of the application
on this real network. A proper choice of the level of constructs and the use of
the explicit approach to parallel programming enables mpC to achieve a high
expressive power and efficiency, which are characteristic of low-level tools like
MPI [3], with the convenience, which is characteristic of high-level languages like
HPF [4]. The experience in using mpC [5] showed that the efficiency of mpC pro-
grams is comparable with that of such high-quality specialized parallel libraries
as ScaLAPACK [6] on homogeneous systems and is greater on heterogeneous
computer systems.

Fortran still remains the main programming language for scientific and engi-
neering computations. This encouraged us to develop an mpC like extension of
the Fortran called mpF [7]. Computational experiments showed that efficiency
of mpF applications is practically the same as of its MPI counterpart [8]. While
design the language we took into account experience of using mpC and made
some modifications in its concepts. Those modifications are in the focus of this
paper. We will describe main concepts of the mpF and show their relations to
the concepts of the mpC.
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The rest of the paper is organized as follows. In Section 2, we outline prin-
ciples of the computing space management. In Section 3, we discuss the distrib-
ution of data and computations among regions of the computing space. Section
4 is devoted to the extension of assignment statement. In Section 5, we discuss
structure of the program. Section 6 concludes the paper.

2 The Computing Space Management

In mpF, the concept of the computing space is introduced. It is defined as the
set of virtual processors (nodes), which can have different performance. It is
assumed that all nodes of the computing space are connected with each other.
Subsets of the computing space (called regions of the computing space) are used
to distribute data, evaluate expressions, and execute statements. The computing
space is managed using network objects or simply networks in the way similar
to that used for memory management. The only conceptual difference is that a
node of an existing network, which is called its parent, must initiate the creation
of a new network.

Two intrinsic networks are always available:

– SPACE represents the entire computing space;
– HOST represents the network consisting of the single node associated with

the console.

Network objects are declared in the way similar to Fortran arrays; the user
can treat network as array of nodes. The network declaration introduces the
name of network and its attributes. The rank or the rank and shape of the
network are specified by DIMENSION attribute. The network with the ALLO-
CATABLE attribute is one for which the computing space is allocated by an
ALLOCATE statement. Also two new attributes are introduced in mpF - the
POWER attribute specifies performances of the nodes, and the PARENT at-
tribute specifies the parent node. The simplest network declaration is

NETWORK SIMPLE(N)
It describes network SIMPLE consisting of N nodes. By default, all nodes have
the same performance, and the parent node of this network is HOST.

The intrinsic network SPACE is treated as if it were declared in a explicit
network declaration

NETWORK SPACE(TOTAL_NODES())
where TOTAL_NODES() is the intrinsic function that returns the number of nodes
in the computing space. The SPACE’s parent is HOST.

A more complicated network declaration is
NETWORK, DIMENSION(N,M), POWER(POW), &

PARENT(SIMPLE(K)) :: HETERONET
It describes two-dimensional networks consisting of N×M nodes. Parent of this
network is the node of network SIMPLE with the coordinate K. The relative
performance of the node HETERONET(I,J) is POW(I,J), where POW should be an
integer array with attribute DIMENSION(N,M).
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As we mentioned above networks are considered as arrays of nodes. One may
define sections or elements of the array of nodes called subnetworks:

SUBNET(SIMPLE) S1(2:4), S2(1::2)
Here, two subnetworks of the one-dimensional network SIMPLE are declared:
subnetwork S1 comprising nodes 2-4 and subnetwork S2 consisting of the nodes
with odd indexes.

The statement
SUBNET(HETERONET) S3(I,:)

declares the subnetwork of the two-dimensional network HETERONET that
consists of the I-th row of HETERONET.

2.1 The Differences from mpC

In mpC computing space is not considered as network. This keeps logical consis-
tency of the program model - we do not allocate network inside another network;
but complicates it. We will point below to the simplification followed from con-
sidering the computing space as a network.

In mpC the network is not considered as array of nodes. The user has to
describe the network type before to declare a network object. The network type
declares coordinate variables for node specification. For example the following
declarations are needed to declare the SIMPLE network in mpC:

nettype SimpleNet(N) { coord i=N; };
net SimpleNet(n) SIMPLE;

Here i is an integer coordinate variable ranging from 0 to N-1. The declarations
of the subnets S1 and S2 in mpC could be declared as follows:

subnet [SIMPLE:i>0 && i<4) S1, [SIMPLE:I%2==0] S2;
(Note, that in mpC coordinates are ranging from 0 instead 1 in mpF).

Though mpC approach to defining computing space regions is more general
than in mpF, but for Fortran users the familiar array syntax is more convenient.

3 The Distribution of Data and the Evaluation of
Expressions

The distribution of the data and computations in mpF is conceptually the same
as in mpC. A variable that is distributed over a region of the computing space
consists of components of the same type: one per node of this region. Data objects
can be distributed over a network, a subnetwork, the entire computing space,
or can be assigned to a particular node of the computing space. A distributed
object is called replicated if the values of all its components are identical.

In mpF, the DISTRIBUTION and REPLICATED attributes are added to the
declaration statements, and the DISTRIBUTION and REPLICATED specification
statements are added.

The statement
INTEGER, REPLICATED, DISTRIBUTION(SPACE) :: N

declares the integer replicated variable N distributed over the entire computing
space.
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The statements
REAL MAT_ROW
DIMENSION(N) :: MAT_ROW
DISTRIBUTION(W) :: MAT_ROW

declare the real array MAT_ROW of the shape (1:N) distributed over the network W.
An expression can be evaluated by a single node (including the host proces-

sor) or by a region of the computing space. In the latter case, the expression is
called distributed, and the region on which the expression is evaluated is called
the expression distribution region. The value of a distributed expression also can
be distributed over a network or subnetwork. This network (or subnetwork) must
be a subregion of the expression distribution region. The region over which the
value is distributed is called the value distribution region.

There are two important properties of distributed expressions. First, the
expression may be asynchronous or synchronous. An asynchronous expression
does not require any communication between the nodes of the computing space
for its evaluation. A synchronous expression requires the communication between
the nodes of the computing space for its evaluation. Second, value of expression
can be either replicated or not. All components of replicated expression value
are equal.

A new primary expression called the cutting expression is introduced. The
cutting expression is determined by the specifier of a network or subnetwork
that must be a subregion of the region of distribution of the operand value. The
result is the corresponding segment of the distributed value of the operand. The
cutting expression is evaluated asynchronously.

To get node coordinates in region of the computing space, the binary oper-
ator .COORDOF. is introduced. The right-hand operand of .COORDOF. specifies
the region of the computing space, and the left-hand operand specifies the di-
mension of the right-hand operand. The result of .COORDOF. is the distributed
integer value with the components equal to the corresponding coordinate of the
node that stores these components. .COORDOF. is an asynchronous operator. This
operator is slightly different from its mpC analog. In mpC the left-hand operand
specifies the name of the coordinate variable. The set of intrinsic Fortran func-
tions is extended by the distributed reduction functions by analogy with the
intrinsic functions in Fortran 90 designed for operating on arrays.

4 Extension of the Assignment Statement

There are three types of distributed assignment statement: asynchronous, broad-
cast, and the parallel-send assignment. In the case of the broadcast and the par-
allel assignment the types of the variable that is assigned a value and the value
of the expression to be assigned must be identical; i.e., no type conversion is
allowed.

If the region of distribution of a variable coincides with the region of dis-
tribution of the value to be assigned, the assignment is executed asynchro-
nously and component-by-component; i.e., each component of the distributed
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variable is assigned the value of the distributed expression belonging to the same
node.

If the region of distribution of the variable in the assignment operator includes
more than one node and the region of distribution of the expression value consists
of a single node, the value of the expression is broadcasted over the region of
distribution of the variable and is assigned to its every component. We call such
assignment broadcast.

If the variable and the expression value are distributed over different sub-
regions of the same network or subnetwork and both subregions consist of the
same number of nodes, a one-to-one mapping between the nodes is established,
which is specified by a linear order. The components of the distributed expres-
sion value are passed to the corresponding nodes of the variable distribution
region and assigned to the components of this variable. We call such assignment
parallel-send assignment.

The following program fragment includes assignment statements of all three
types.

NETWORK NET(N)
DISTRIBUTION (NET) K
INTEGER, REPLICATED, DISTRIBUTION (NET) :: I,J
...
K = 1.COORDOF.NET ! asynchronous assignment
K = HOST(K) ! broadcast assignment
NET(I)(K) = NET(J)(K) ! parallel-send assignment

Here, the network NET consisting of N nodes and the variable K distributed over
this network are described. The first assignment is asynchronous; all nodes be-
longing to NET execute it independently and concurrently. The value of the com-
ponent of the variable K at a node of the network NET is equal to the coordinate
of this node in the network. Because of cutting expression HOST(K) the value of
expression in the second assignment belongs to single node HOST. The statement
assigns to all components of the variable K the value of its component on HOST.
The last statement assigns to the components of K on the node with the coor-
dinate I in NET the value of its component on the node with the coordinate J.
It is important that expressions in subnetwork specifiers in the broadcast and
parallel-send assignment statements (in the example above, these are the vari-
ables I and J) must be replicated. For example, this makes it possible to avoid
a frequent error (when programming in MPI) when processes incorrectly (differ-
ently) compute the coordinates of other processes involved in the assignment.

4.1 The Differences from mpC

There are two main differences in extension of assignment statement in mpC and
mpF. The first one follows from considering the computing space as a network
in mpF. In mpC the only distributed assignment allowed on computing space is
broadcast. In mpF the parallel-send assignment is allowed as well.

In mpF there are three types of distributed assignment statement: asyn-
chronous, broadcast, and the parallel-send assignment. In mpC there are two
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additional types: gather and scatter. Let us consider the following example of
mpC code:

net SimpleNet(N) w;
int [host]a[N], [w]b;
b = a[]; // scatter
a[] = b; // gather

Scatter. The left operand is distributed over some region of the computing space
(network w in our example) and the right operand belongs to some node (host
in our example). The value of the right operand belongs to a processor node of
the network. The value of the right operand is a vector, whose elements may be
assigned without a type conversion to components of the left operand, and the
number of elements of the vector is equal to the number of components of the
left operand. The execution of the operator consists in sending i-th element of
the vector to i-th (in the natural numeration) node of w, where the element is
assigned to i-th component of the left operand for all i from 0 to N-1.

Gather. The value of the right operand is distributed over some region of the
computing space (network w in our example), and the left operand belongs to
some node (host in our example). The left operand is an lvector whose length
is equal to the number N of components of the value of the right operand, and
the type of members of the lvector is compatible in relation to assignment with
the type of components of the value of the right operand. The execution of
the operator consists in sending i-th (in natural numeration) component of the
value of the right operand to host, where it is assigned to i-th member of the
left operand for all i from 0 to N-1.

The main disadvantage of those scatter and gather is rather complex seman-
tics. Moreover if number of nodes in the computing space region and length of
the vector are computed in run time those scatter and gather may be the source
of hard to detect errors.

We did not include those types of distributed assignment statement because
they can be easily replaced with loop and parallel-send.

5 Structure of the Program

There are two classes of procedures in mpF: nodal and distributed.
All subroutines and functions of Fortran 90 (including the intrinsic ones)

are nodal procedures in mpF. Nodal procedures are executed by individual
nodes of the region of the computing space where the values of the actual
arguments are located. If the actual arguments are distributed expressions, then
the nodal procedure is independently executed by the nodes of the region of
distribution of these expressions’ values; no communications within the nodal
procedure are allowed, and the creation of nets or subnets is prohibited. If all
the actual arguments are asynchronous, then the call to the nodal procedure is
an asynchronous expression.
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Distributed subroutines and functions are executed by nodes of a certain
region of the computing space. Syntactically, distributed procedures do not differ
from nodal ones. The difference is that the distribution of the name of such a
procedure must be explicitly specified; the other difference is in the list of formal
parameters.

In addition to the parameters with the names interpreted in the conventional
(for Fortran) way, any distributed subroutine or function must have exactly one
networkparameter.The name of this parametermust be the name of a user-defined
(in the scope of the procedure or outside it) network or an intrinsic network.

The procedure is distributed over the region of the computing space deter-
mined by the network parameter. The formal parameters of such a procedure
must be described (explicitly or implicitly) as distributed over the network pa-
rameter or as belonging to the parent node of the network parameter. If the pro-
cedure has no explicit interface, its formal parameters by default are distributed
over the region of the computing space determined by the network parameter.

If the specification section of the distributed procedure contains the DISTRI-
BUTION statement that contains the name of the function in its list, then this
statement defines the region of distribution of the value returned by the function.
The following program fragment defines the distributed procedure INPUT_DATA
that is rigidly connected to the network HOST and the function PAR_MXM dis-
tributed over the network LINE. Some formal parameters of this function and
function value are distributed over the parent of the network LINE.

SUBROUTINE INPUT_DATA (HOST,N,X,Y)
...
END
FUNCTION PAR_MXM (LINE,N,MDIM,A,B)

NETWORK LINE(N)
REPLICATED N
DISTRIBUTION(PARENT(LINE)) :: PAR_MXM,A,B,MDIM
...

END FUNCTION PAR_MXM

5.1 The Differences from mpC

In mpC there are three classes of functions: nodal, network and basic. The net-
work and basic functions are analog of distributed procedures in mpF. The dif-
ference between network and basic functions is that the basic function is rigidly
connected to the entire computing space. Because entire computing space is
not considered as a network in mpC basic functions forms a separate class of
functions.

6 Conclusions

Because mpF is the parallel extension of Fortran and mpC is the parallel exten-
sion of C those two languages are different. But the main concepts of the parallel
extension are similar for the both mpC and mpF.
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We started the mpF project with about 8 years of development and using
mpC in mind. While keeping the mpC parallel programming model in general,
we have slightly reduced and simplified it. As a consequence the distinction from
Fortran 90 is minimal thereby decreasing efforts needed for mastering mpF by
Fortran users.

mpF is aimed at parallel programming on a variety of platforms ranging from
shared memory machines and specialized clusters to commodity heterogeneous
local networks. It provides a good balance between ease of use for a programmer
and parallel efficiency.
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Abstract. The paper presents a Java byte–code optimization algo-
rithm, which determines an initial distribution of objects among virtual
machines (JVMs) so as to decrease direct inter–object communication
and balance loads of the virtual machines. The proposed optimization
algorithm is based on a graph representation of control and data de-
pendencies between methods in Java programs. These dependencies, ex-
pressed in the form of conditional macro–dataflow graphs, are discovered
by a static analysis of program byte–code.

Object placement optimization is performed before a Java program
is executed in a parallel system. The optimization methods are based on
the Dominant Sequence Clustering (DSC) approach. First, macro nodes
are clustered on an unlimited number of processors (logical JVMs) to
reduce the total program execution time. Next, clusters are merged and
scheduled to adjust the number of logical JVMs to the number of real
processors. The presented approach is supported by branch optimiza-
tion techniques, which include detection of mutually–exclusive paths and
scheduling of most–often–used–paths based on branch probabilities.

1 Introduction

The paper presents a new optimization technique for multithreaded Java pro-
grams, executed on a set of distributed JVMs. The motivation of this work comes
from current practice of object oriented computing, where objects are usually
placed using arbitrary assignment to available system JVMs. Such a strategy
can result in an unbalanced execution of programs at run time. A solution for
the problem can be an optimization algorithm, performed before a Java program
is executed in a parallel system, which will determine the best distribution of
program elements on virtual machines.

An optimization algorithm, presented in this paper, is based on a static pre–
optimization method applied to the byte–code generated by the Java compiler.
First, it constructs a data flow graph of the Java program based on data and
control dependencies in the byte–code. Next, a fine grain analysis of the data flow
graph is done, which results in the design of a macro data flow graph (MDFG).
The graph depicts data and control dependencies between the sequential code
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macro data flow nodes identified inside threads and methods of a sequential
program. In particular, it includes branch nodes, which transfer control in the
program in a data dependent way. The branch nodes are annotated with the
probabilities of taking the constituent output paths. This graph is transformed
into a parallel version distributed on a set of processors (JVMs) in a way, which
reduces program execution time. Clustering and scheduling heuristics are ap-
plied to the macro nodes of the generated graph to decrease inter–processor
data communication and balance processor computation loads. The heuristics
are based on the use of the most–often–used–path approach and exploitation of
mutually–exclusive paths in program graphs [6, 7].

The paper is composed of 4 parts. The first part explains how macro data
flow graphs are generated from program byte–code. In the second part, we dis-
cuss the node clustering and scheduling technique applied to the macro data
flow graphs. The third part explains management and execution of distributed
threads corresponding to nodes of scheduled Java program graphs on JVMs. The
fourth part presents an example of optimization of a Java parallel program for
matrix multiplication based on recursive data decomposition.

2 Parallel Program Representation

Presented optimization algorithms use graph representations of Java pro-
grams [1]. These dependence graphs are the result of the analysis of the pro-
gram byte–code. The analysis identifies control and data dependencies between
byte–code instructions. There are several program tools [1], which are able to
generate such graph representations of programs in an automated way.

We introduce two intermediate program graph representations: MTCG and
CDDG graphs. The nodes in a Method/Thread Call Graph (MTCG) repre-
sent methods of program objects, the edges represent method calls. Each called
method has its own Control/Data Dependence Graph (CDDG). The nodes in
the CDDG graph correspond to sequences of byte–code instructions that appear
inside a method byte–code (basic blocks of byte–code). The edges correspond
to control and data flow between byte–code instructions of a method. Data de-
pendence edges connect byte–code instructions, which result in data exchange
between methods. An example of MTCG and CDDG graphs, with data and
control dependence edges between CDDG of methods, is shown in Fig. 1(a).

We annotate MTCG and CDDG graphs with statistics gathered during pro-
gram execution for sets of representative data (profiling). During profiling, the
number of mutual method calls and thread spawns is measured. Also the way in
which branch and loop instructions are executed is registered. The profiling re-
sults for all created objects in each class, all called methods, all spawned threads,
including statistical parameters of all branch and loop instructions, are stored
in trace files. We use a profiling tool, which is similar to that used in ADAJ
environment [2].

The final result of the analysis of program byte–code and trace files is a
Macro Data Flow Graph (MDFG) of a program. The MDFGs are obtained by the
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 class Main 

method call 

thread spawn 

run() 

do() 

main() 

run() 

class C2 

class C1 

data dependency 

CDDG graph 

Legend 

(a) A MTCG graph

 

PAR 

COND 

(b) A MDFG for MTCG
from Fig. 1(a)

Fig. 1. Example graph representations of a Java program

transformation of the control/data dependence graphs. It is done by agglomerat-
ing in macro nodes all sequential byte–code instructions, which are separated by
method calls, thread spawning, accesses to remote object data fields and branch
(loop) instructions. Control and data dependence edges between boundary byte–
code instructions in adjacent macro nodes are replaced by data dependence edges
between macro nodes. The nodes have weights equal to their execution time. The
weights of edges correspond to the serialization and transmission time of data,
which are necessary to execute the target macro nodes on a remote JVM.

The obtained MDFG graphs can include conditional branch macro nodes.
Branch nodes correspond to sequential byte–code instructions ending with a
conditional jump instruction (i.e. if icmple, if icmpne or other opcodes) or a
switch instruction (i.e lookupswitch opcode). A branch macro node can have
several outgoing paths: two – for a branch instruction or several – for a switch
instruction. Loops in the MDFG graph are subject to unrolling. If the number
of iterations in a loop cannot be estimated, we form a macro node encapsulating
the whole loop. We assign execution probability to each outgoing path of a
conditional branch macro node based on an analysis of the program execution
traces. Fig. 1(b) shows the exemplary MDFG graph of a part of a program.

3 Program Optimization Algorithm

The presented algorithm is based on static program graph optimization methods
that lead to a reduction of the total program execution time in a set of parallel
JVMs. These optimization methods are applied to the described macro data
flow graph (MDFG) of Java programs. The first step of optimization consists of
clustering of macro nodes on unlimited number of processors (logical JVMs) to
reduce the execution time of the clustered nodes. Next, the clusters are merged
and scheduled with simultaneous load balancing to reduce the number of logical
JVMs to the number of real processors in the system.

We use modified clustering algorithms based on a dominant sequence
approach (DSC heuristics) extended by trace scheduling approach [5] and
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most–often–used–path optimization method [7]. The priority of nodes determines
the selection order for clustering. In our modified algorithm, the priority of a
node n is the sum of tlevel(n) and blevel(n), where the tlevel(n) is the length of
the longest path from the entry graph node to n (excluding n) and the blevel(n)
is the length of the longest path from node n to an exit node. At each cluster-
ing step, the algorithm selects a node with the highest priority from the set of
ready nodes (BR in Fig. 2), i.e. such nodes, whose parents have all been analyzed
(visited) and which belong to the currently analyzed subgraph – CS. If there is
no ready node in CS, the algorithm selects another outgoing path of a recently
visited branch macro node to determine the new current subgraph. These paths
are selected in descending order of their probabilities, i.e. most–often–used–path
optimization is used. When the algorithm meets a branch macro node in the cur-
rent subgraph, a outgoing path with the highest probability becomes the new
current subgraph and the node is put into the stack of visited branch nodes BS.
The branch node is removed from the top of BS when all nodes in its outgoing
trees have been visited. Then, a recently considered tree of a branch node from
the top of BS becomes the current subgraph.

 Input: B – set of all macro nodes of the program graph 

Assign each b ∈ B to a separate cluster 

For each b ∈ B 

Find blevel(b) 

tlevel(b0)= 0 

BU = B    /BU – set of unvisited nodes of the program graph/ 

BS = ∅ 

Set outgoing sub-graph of b0 as current sub-graph – CS 

While BU ≠ ∅ 

Find set of “ready” nodes BR ⊂ BU in CS 

Find bR ∈ BR with the biggest priority PRIO(bR) 

If bR is not first node in CS then merge bR with: 

1) the cluster of the preceding node for which tlevel(bR) after 

merging decreases to the maximal degree 

2) all clusters of preceding nodes, which have bR as the only 

child and produce a decrease of tlevel(bR) after merging 

(if there are no such nodes as in 1 or 2, leave bR in its cluster) 

BU = BU – {bR}   /mark bR as visited/ 

Update PRIO values for nodes in BU 

If bR is branch node then 

Store bR on top of branch stack BS with the state of its CS 

Select sub-graph of outgoing path of bR with the highest 

probability as the new CS 

If all nodes in all outgoing CSs of the branch node on top of BS 

have been visited then 

Remove the node on top of BS 

If the top of BS is not empty then 

Set the unvisited CS of the node on top of BS as the new CS

EndWhile 

Fig. 2. Outline of the clustering algorithm for MDFGs with branches
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Assign priorities to nodes   /priority of node n: blevel(n)/ 

Detect mutually exclusive branch sub-graphs 

While not all nodes have been scheduled 

While there is ready node and free processor list is not empty 

For each free processor p and each ready node n 

Compute est(n, p) – earliest starting time of node n on  

processor p, 

Schedule node n to a processor p, which minimizes est(n, p) 

EndWhile 

Move time to the point in which a processor becomes free 

Update the list of free processors 

Update ready node list 

EndWhile 

Fig. 3. Outline of the macro nodes scheduling algorithm

Fig. 4. Scheduling of mutually–exclusive paths

The scheduling algorithm of clusters for MDFG with branches, Fig. 3, is
based on modified earliest task first (ETF) heuristics [8]. The algorithm employs
detection of mutually–exclusive paths optimization method [6]. The algorithm
selects for scheduling a cluster n and a processor p, which assure the lowest
value of earliest starting (execution) time est(n, p). When node n is scheduled
on processor p, it can be inserted in parallel with nodes from mutually exclusive
paths of branches if they are assigned to this processor, otherwise the node n is
appended as the last node on processor p.

An example of scheduling of mutually–exclusive paths of a program graph
is shown in Fig. 4. Nodes 1, 2, 3, 4 of MDFG on the left side of Fig. 4 have
already been scheduled. The scheduling algorithm has to decide where to place
task 5. In a standard ETF approach, this task would be placed on JVM1 (gray
rectangle in Fig. 4). The proposed algorithm detects mutually–exclusive paths,
thus task 5 can share the JVM0 with task 4, since these tasks will never be
executed together. The total length of the schedule has been reduced.

4 Runtime Support for Execution of Schedules

Macro nodes of the scheduled macro data flow graph (MDFG) of the program
will be executed in general on different JVMs. Some nodes of the macro data
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flow graph will be executed on a different JVM than the initial JVM of the
spawning thread. Such nodes have to be transformed into distributed threads.
We construct distributed threads out of portions of method byte–code. For this,
we can follow the technique applied in JavaParty [3] or in the Brakes tool [4],
which enables dynamic thread distribution between JVMs. Such technique is
new, comparing standard strategy for object assignment to processors, where all
methods of an object are allocated to the same virtual (or real) processor.

The scheduled macro data flow graph (MDFG) of the program is executed
on standard (unmodified) Java Virtual Machines. A distributed thread manager
daemon process is installed on each virtual machine used. This process is pro-
vided with special supervisor methods, which update the application program
object context concerned with the thread execution and load the code of the
created thread and a static copy of the object that the thread cooperates with.
The transmission of serialized objects is used for this purpose. After remote exe-
cution of the distributed thread corresponding to a macro data flow graph node,
the return to the parent node (thread) can take place by sending back to the
parent virtual machine the serialized context of the next thread, which is to be
executed. The applied technique is similar to that explained in [3, 4].

5 Example

In this chapter, we present an example of the scheduling process of a simple
parallel program containing conditional branches. The program consists of two
parallel tasks (TASK1 and TASK2 in Fig. 5(a)), which are spawned from the
main method of the program (MAIN in Fig. 5(a)). Each task performs matrix
addition and then spawns two threads for parallel execution of matrix multi-
plication. Depending of the value of a conditional variable (flag in Fig. 5(a)),
matrix addition and multiplication operate on different input matrices.

MAIN 
    do in parallel 

TASK 1 
if flag == true then 

A = A + B 
do in parallel 

Res1 = A x C 
Res2 = B x D 

else 
A = A + C 
do in parallel 

Res1 = A x B 
Res2 = C x D 

endif 
TASK 2 

if flag == true then 
E = E + F 
do in parallel 

Res3 = E x G 
Res4 = F x H 

else 
E = E + G 
do in parallel 

Res3 = E x F 
Res4 = G x H 

endif 

(a) Pseudocode

 class Main 

method call 

thread spawn 

run() 

main() 

go() 

run() 

run() 

class NumOperTask 

class Mult 

class Mult 

• • • 

data dependency 

TASK1: (A + B) x C or (A + C) x D

CDDG graph 

Legend 

TASK2: (E + F) x G or (E + G) x H 

(b) The MTCG graph

Fig. 5. An examplary parallel Java program
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   0 aload_0 
  1 getfield #8 <MatrixMult/NumOperTask.flag> 
  4 ifeq 93 (+89) 

  7 aload_0 
  8 getfield #4 <MatrixMult/NumOperTask.A> 
 11 aload_0 
 12 getfield #4 <MatrixMult/NumOperTask.A> 
 15 aload_0 
 16 getfield #3 <MatrixMult/NumOperTask.B> 
 19 invokestatic #12 <MatrixMult/MatrixOps.add> 

 22 new #13 <MatrixMult/SingleMul> 
 25 dup 
 26 aload_0 
 27 getfield #5 <MatrixMult/NumOperTask.O> 
 30 aload_0 
 31 getfield #4 <MatrixMult/NumOperTask.A> 
 34 aload_0 
 35 getfield #2 <MatrixMult/NumOperTask.C> 
 38 aconst_null 
 39 invokespecial #14 <MatrixMult/SingleMul.<init>> 

  

        •  •  • 

3 

6 

9 

data 
dependencies 
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Fig. 6. Part of CDDG graph of TASK1 main method
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Fig. 7. The results of the optimization

The presented program optimization algorithm assumes that a system library
of arithmetic operations performs matrix addition and multiplication methods.
These library methods are treated as single, atomic operations, thus their byte–
code is not subject to an analysis and scheduling. The distinction between the
program and the system objects is based on recognition of package names.

After the analysis of the program byte–code and the trace file, generated
during program profiling, a MTCG graph is constructed (Fig. 5(b)). A part of
the CDDG graph of one of program methods is shown in Fig. 6.

The MTCG, along with the attached CDDGs for each node, is the basis
for the macro–dataflow graph of the program (MDFG). Our exemplary MDFG
graph contains conditional branch macro nodes, since the flow of control depends
on the value of flag variable. During the clustering phase, clustered macro–
nodes are constructed from macro–nodes of the MDFG. In the clustered MDFG
(Fig. 7(a)), conditional nodes are shown as circles with outgoing edges marked
with “COND” label (edges marked with “PAR” represent thread spawning).

The result of the mapping phase is shown in Fig. 7(b). Macro nodes of the
MDFG have been scheduled onto a set of JVMs. Macro nodes implied by mu-
tually exclusive conditional branches are mapped in parallel on the same JVM,
which provides reduction of program execution time.
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6 Conclusions

A Java program optimization algorithm has been proposed in the paper. The
proposed algorithm assumes representation of Java programs as macro data flow
graphs, generated on the basis of the program byte–code. The algorithm contains
several optimization steps, which can deal with conditional nodes and loops
in program graphs. These steps include the most–often–used path scheduling
and the trace–based approach during the clustering phase. A modified ETF
list scheduling heuristics, combined with detection of mutually exclusive paths
optimization method is used in the mapping phase. The scheduled Java programs
distributed on a set of JVMs, provide reduction of program execution time.
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Abstract. In this paper we present how a problem of a vertex-magic to-
tal labeling of a graph may be expressed in terms of constraint program-
ming over finite domains (CP(FD)) in the Mozart system. A program
representing the problem is easily transformable into a parallel version,
which can be executed on distributed machines. We describe the results
of experiments for estimating a speedup, a work granularity and an over-
head of a parallel version in comparison with sequential computations.

1 Introduction

Graph labeling is a well-known and intensively investigated problem in graph
theory (e.g. [2]). In general, it consists in assigning numbers to vertices or edges
of a given graph in the way it meets some detailed conditions. A particular case
of graph labeling is called a vertex-magic total labeling [3]. It allocates subsequent
numbers (beginning from 1) to vertices and edges of a graph, so a sum of the
vertex label and the labels of all edges incident to it is equal for every vertex. It
should be noted that the considered labeling does not exist for every graph.

A general problem of constructing a vertex-magic total labeling can be solved
by algorithmic methods. As one of them we consider a constraint programming
over finite domains (e.g. [1], [4], [6]). In this approach a program is a set of formu-
las (i.e. constraints) with variables ranging over some initial finite domains, which
are usually represented by sets of non-negative integers. A constraint solving con-
sists in finding a variable assignment which satisfies all considered formulas. This
effect is achieved by performing two operations on the constraint set, namely a
propagation and a distribution. In general, a propagation successively narrows
the range of the variables according to the semantics of particular constrains.
This activity aims to determine the variables, that is to restrict their domains to
one-element sets. The propagation may also reach a fixed point although not all
variables are determined. In such a case, a distribution is performed which con-
sists in creating two new sets of constraints, to wit C ∪{x = l} and C ∪{x �= l},
where C represents a current set of constraints, x is one of undetermined vari-
ables and l is a value from the actual domain of x. Rules of selection x and l
form a distribution strategy. A propagation alternating with a distribution are
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performed until all variables are determined or until the constraint set becomes
contradictory (e.g. it contains both x = l and x �= l). This process may be mod-
eled by a search tree which vertices are the constraint sets created during the
distribution.

A great advantage of the constraint programming methodology is that a pro-
gram may be executed in sequence as well as in parallel practically without any
modifications of the code. This is caused by the fact, that the way in which the
computational process is performed depends only on a strategy deciding how the
search tree is explored, which has no impact on the program. In particular, the
search tree may be decomposed into subtrees, which are explored independently.
This approach may significantly reduce the computation time if the search tree
consists of an appropriate number of subtrees of the similar height.

The concept of a parallel constraint solving on distributed machines was im-
plemented in the Mozart system [7], which is a computational environment for
the Oz language [5]. The system contains special objects, the so-called search
engines, intended for exploring a search tree in various ways including the dis-
tributed parallel search.

The paper is organized as follows. In section 2 we show that the problem of
a vertex-magic total labeling of a graph may be easily denoted as a program in
the Oz language with constraints, which are predefined in the Mozart system.
In section 3 we describe the results of our experiments aimed at comparing the
efficiency of a program execution concerning the sequential and, respectively, the
parallel exploration of the search tree. Section 4 contains some final remarks.

2 Formulating the Problem

Let G = 〈V,E〉 be a simple graph consisting of a set of vertices V and a set of
edges E, let Ev ⊆ E denote a set of all edges, incident to a vertex v ∈ V and let
”| · |” symbolize the cardinality of a set. A vertex-magic total labeling of a graph
G ([3]) is an injective mapping f from V ∪E to the set of integers ranging from 1
to |V ∪E|, such that for every two vertices u and v, f(u)+f(d1)+ . . .+f(dm) =
f(v) + f(e1) + . . .+ f(en), where m = |Eu|, n = |Ev|, di ∈ Eu for i = 1, . . . ,m
and ei ∈ Ev for i = 1, . . . , n.

The problem of searching for a vertex-magic total labeling of a graph may be
reduced to solving the set P of diophantine equations and inequalities, which is
described below. Let X be a set of all unknowns appearing in P . Every unknown
represents a label assigned to an element of the set V ∪E; it should be observed
that |X | = |V ∪E|. The elements of the setX are denoted by xi for i = 1, . . . , |X |.
Moreover, we assume that the unknown which symbolizes a label of a vertex
v may be also indicated by xv while the symbols xv,i for i = 1, . . . , |Ev| are
alternative denotations for unknowns representing labels of the edges incident
to a vertex v. The set P contains equations and inequalities of the following
three types.

xv + xv,1 + . . .+ xv,n = s where n = |Ev| (1)
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1 ≤ xi ≤ |X | for 1 ≤ i ≤ |X | (2)
xi ≤ xj for 1 ≤ i < j ≤ |X | (3)

Every equation of the form (1) corresponds to one vertex v from the set
V . A left-hand side of this equation is called a sum of labels at a vertex v. A
subset of P , containing all equations (1), represents the condition stating that
the sum of labels must be the same at every vertex and equal to some constant
s. Every inequality of the form (2) restricts the range of one unknown from the
set X , which stands for the assumption that every label belongs to the interval
1, . . . , |V ∪ E|. The inequalities of the form (3) express the demand that the
function f is an injective mapping.

Below, we give an example of constructing a vertex-magic total labeling of a
simple graph depicted in Fig. 1. The symbols assigned to vertices and edges are

Fig. 1. A graph with unknowns representing labels

unknowns from the set P , which in this case consists of the following equations:
x8 + x1 + x2 = s, x2 + x3 + x4 = s, x4 + x5 + x6 = s, x6 + x7 + x8 = s and the
following inequalities: 1 ≤ xi ≤ 8 for 1 ≤ i ≤ 8 and xi �= xj for 1 ≤ i < j ≤ 8. A
vertex-magic total labeling of the graph form Fig.1 is any solution of the set P ;
in one of them, the vector 〈x1, . . . , x8〉 equals 〈4, 2, 7, 3, 8, 1, 5, 6〉 and s = 12.

As said before, the set P may be transformed into a program in the Oz
language using the constraint programming paradigm. The program has to create
a set of variables representing unknowns from the set X and impose appropriate
constraints on them. For this purpose the function MagicColor is defined. It
takes ETab – the adjacency matrix of an input graph as an argument and it
returns a procedure which creates a set of variables with constraints imposed on
them. The symbol $ standing for a procedure name in line 2 and in line 6 causes
that the expression denoting the procedure becomes its identifier.

fun {MagicColor ETab} % 1
proc {$ Sol} % 2

Constr % 3
in % 4

{MakeConstr ETab Constr Sol} % 5
{ForAll Constr proc {$ L} {FD.sum L ’=:’ S} end} % 6
Z = {List.length Sol} % 7
Sol ::: 1#Z % 8
{FD.distinct Sol} % 9
{FD.int ({MinDeg ETab}+1)#({MaxDeg ETab}+1)*Z S} % 10
{FD.distribute ff Sol} % 11

end % 12
end % 13
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In the first step (line 5) the procedure MakeConstr is called; it takes the
adjacency matrix ETab and returns two lists called Constr and Sol. The list
Constr consists of lists Li for i = 1, . . . , |V | which are used for the creation
of constraints corresponding to equalities of the form (1). Every list Li con-
tains variables representing unknowns which appear on the left-hand side of one
equation. In other words, an element of the list Constr which corresponds to a
vertex v ∈ V has the structure

[
x′v x

′
v,1 . . . x

′
v,n

]
, where n = |Ev| and the sym-

bols x′v, x′v,1, . . . , x
′
v,n stand for Oz variables representing unknowns from the set

X . On every list Li for i = 1, . . . , |V |,a constraint is imposed stating that the
sum of variables contained in the list must be equal to a variable S denoting a
constant s from (1). This is done by the predefined procedure FD.sum called in
line 6, which is applied to every element of the list Constr.

As said before, the list Sol consists of variables representing unknowns from
the set X . The length of the list (counted in line 7) equals to the cardinality
of this set. In lines 8 and 9, two kinds of constraints are imposed on every
element of Sol corresponding to inequalities of the form (2) and (3), respectively.
The predefined procedure FD.distinct, called in line 9, expresses the condition
according to which all elements of the list Sol have to get distinct values.

Additionally in line 10, the domain of the variable S is narrowed in order
to reduce the computational time, since the sum of labels at every vertex from
the set V satisfies the condition MinD + 1 ≤ s ≤ |V | · (MaxD + 1), where the
symbols MinD and MaxD denote the minimal and, subsequently, the maximal
vertex degree in the graph V .

However, a basic impact on the efficiency of the computational process has
a distribution strategy. The procedure constructed by the function MagicColor
uses (line 11) the strategy called First Fail (in abbreviation: ff ), which is prede-
fined in the Mozart system. We have found experimentally that for most exam-
ples of the input data, it generates smaller search trees than any other predefined
strategy. The ff strategy works as follows: it selects a leftmost undetermined el-
ement from the given list of variables (in this case, the list Sol) for which the
current domain has the minimal size. Hence, the order of elements of the list
Sol has an influence on the efficiency of the computational process. Regarding
this, we have observed that the best results are obtained when the variables
corresponding to edge labels precede the variables which represent vertex labels.
It follows from the fact that every unknown standing for a vertex label in the
set P appears only in one equation (1), while every unknown denoting an edge
label is a member of two equations of this form. For this reason, the distribution
applied to edge labels generally leads to stronger effects of the propagation in
comparison to the vertex label distribution.

As we have already said in section 1, the solution of a given problem in
the constraint programming paradigm is obtained by the exploration of a search
tree. In the Mozart system, this process is performed by search engines which are
instances of various subclasses of the class Search. Every subclass implements a
particular strategy of the search tree exploration. In the experiments described in
section 4, a sequential exploration of the tree is accomplished by an object from
the class Search.object. Below, we quote a fragment of the program, where
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the first line creates an appropriate object and the second line sends a message
to it demanding the next solution of the given problem, which is represented by
the list of variables Y.

E = {New Search.object script({MakeMagic IncTab})}
{E next(Y)}

The objects from the class Search.parallel are used for the parallel explo-
ration of the search tree. The creation of this kind of object initiates the process
called a manager, which controls all the computations. The manager designates
so-called workers, that is, processes intended for exploring the tree. It also de-
termines the number of workers and indicates the computers where particular
workers are to be run. For example, the following command

E1 = {New Search.parallel init(a:1#ssh b:1#ssh)}

states, that the search tree will be explored in parallel by two workers, one of
them runs on the computer called a and the other one on the machine b. The
manager communicates with workers using the remote command interpreter ssh.
The demand for the solution is expressed in a similar way as in the sequential
exploration. Additionally, one can specify whether all the solutions have to be
found or just one of them.

3 Evaluation

As said before, the experiments presented in this section were aimed at evalu-
ating the efficiency of the parallel execution of the program described above in
comparison with the sequential processing. We considered the following criteria,
similar to those suggested in [4]:

– a time overhead, introduced by the method of distributing the task on indi-
vidual computers,

– a speedup, caused by parallelization of the computational process,
– a work granularity, i.e., a degree of the dispersion of the search tree on

particular machines.

It should be underlined that all measurements given in this paper are approx-
imations due to the heterogeneity of the computational environment, which is
described in the sequel.

All tests consisted in finding one example of a vertex-magic total labeling
of graphs shown in Fig. 2. The graphs were chosen under the basic condition
that for each of them the time of sequential computations was restricted to the
range of 20 to 200 sec. for every machine. The symbols We8, K4,3, Pet and T3,3,
which appear in Fig. 2, denote individual graphs; in particular, the symbol Pet
indicates the Petersen graph, well-known in graph theory. The numbers assigned
to vertices and edges are an example of a vertex-magic total labeling. It should
be noted that a labeling of this type does not exist for the graph T3,3.

The computational environment used for the tests consisted of six machines
powered by the Mozart system 1.3.1; their parameters are given in Table 1.
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Fig. 2. Test graphs with a vertex-magic total labeling

Table 1. The parameters of machines which form the computational environment

Name Processor RAM Ethernet Operating system
W1 Celeron, 433 MHz 192 MB 100 MBit Win. 2000 Prof.
W2 Pentium III, 433 MHz 256 MB 100 MBit Win. NT Workstation 4.0
W3 Pentium III, 433 MHz 256 MB 10 MBit Win. NT Workstation 4.0
W4, W5 Pentium III, 866 MHz 256 MB 100 MBit Win. NT Workstation 4.0
M Pentium IV, 1.8 GHz 256 MB 100 MBit Win. 2000 Prof.

In the tests performed for the speedup and for the work granularity, we
considered various configurations of the computational environment, containing
from one to five computers on which the workers were run (one worker on one
computer). The symbol M denotes a machine on which only the manager was
executed. The machines processing the workers (W1, . . . ,W5) were introduced to
the environment according to their order given in Table 1. For example, a variant
of the configuration with two workers was compounded of the machines called
M, W1 and W2, while a variant with three workers consisted of M, W1, W2 and
W3. For the sake of simplicity, when it does not lead to misunderstanding, we
identify the computer M with the manager and the computers W1, . . . ,W5 with
the workers in the sequel. For every test, a computational time is a wall time
(i.e. a system clock time) taken as an arithmetic mean of seven runs.

Time overhead. A test concerning the time overhead for every computer W1,
. . . , W5 and every graph consists of two steps. In the first step of our exper-
iments, the time of sequential computations T was taken. Then, the parallel
computations were performed for the same input data in which both the man-
ager and one worker were run on the given computer. The time overhead is
regarded as an increment of the computational time ΔT , which appeared when
the test was run in parallel. The results of the tests are given in Table 2.

Table 2. The time overhead ΔT [sec.] for computers W1,. . . , W5 in comparison with
the time of sequential computations T [sec.]

W1 W2 W3 W4 W5

Graph T ΔT T ΔT T ΔT T ΔT T ΔT

Pet 52.06 6.96 46.98 5.33 47.19 3.96 23.3 4.85 23.35 4.84
T3,3 87.96 7.17 79.48 1.44 79.73 0.79 39.46 2.58 39.52 1.28
K4,3 135.94 17.25 122.04 6.41 122.62 6.48 60.73 4.28 60.82 3.61
We8 181.40 19.66 163.32 4.33 163.96 1.19 81.05 4.18 81.13 4.25
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It should be noted that the time overhead for W1 differs significantly from
the results obtained for the other computers (particularly for the graphs K4,3
and We8). This effect might have been caused by some factors independent from
the method of parallelization. Hence, we neglect these results in further consid-
erations. In the remaining cases, one may observe a general regularity that the
time overhead ΔT depends mainly on the tested graph and, to a much smaller
extent, on the time T . This indicates that the time overhead is determined not
as much by the computational power of a machine as by the communication effi-
ciency of the computational environment. In addition, a relatively small spread
of the ΔT values may suggest that a significant part of ΔT for the tested graphs
is the time necessary to establish the connection using the remote shell ssh.

Speedup and work granularity. A speedup of computations is defined as a
quotient of the time of computations performed in the environment consisting of
the manager and one worker, and in the environment with subsequently growing
number of workers. The results of tests for the speedup are given in the bar
chart located on the left side of Fig. 3. The bars depict the speedup achieved for
individual graphs. A pattern of the bar denotes the number of workers in the
computational environment according to the legend which is on the right side of
the chart.

For the graph T3,3 one can observe a practically linear increment of the
speedup while the subsequent workers are embodied into the environment. In
other cases, some irregularities can be noted depending on the one hand on
super-linear speedup (as in case of We8) and on the other hand on lengthening
the computational time (e.g. for the graphs K4,3 and Pet when the number of
workers changes from four to five). These anomalies generally follow from the
nature of the problem as well as from the nondeterministic algorithm of solving
it. It should be remarked that partitioning the search tree into fragments, which
are to be explored in parallel, is an example of a so-called embarrassingly parallel
problem. This means that no particular effort is needed to segment the tree and
it can be done in many ways. The program considered in this paper stops after
finding one solution, in other words, one vertex in the search tree. Hence, the
computational time remarkably depends on the way the tree is fragmented and
on the localization of the vertex containing a solution in the particular fragment
of the tree. In consequence, the computational time may seriously decrease if
an appropriate vertex appears in an initial part of one of the currently created

Fig. 3. Speedup and work granularity
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subtrees. On the other hand, the time may increase if the tree is divided in a
less advantageous manner. These effects do not take place in case of the graph
T3,3, which cannot be labeled in the way considered in this article, therefore it
demands the exploration of the whole search tree. A practically linear speedup
of computations, which has been observed for this graph, proves the efficiency
of the task decomposition strategy implemented in the Mozart system. This
observation is confirmed by the results of tests shown in the pie chart on the right
side of Fig. 3. The chart considers the computational environment consisting of
five workers. The work granularity is measured by the number of vertices of the
search tree explored by one worker in relation to the total size of the tree. The
result for every test is taken as an arithmetic mean of seven runs.

It turns out, that in the given environment, the work granularity almost
exclusively depends on the computational power of workers and it is nearly not
affected by the input data. For every test graph, the work granularity taken for
each worker does not differ from the results given in the chart by more than 2%.
This indicates that the task decomposition strategy, that is, the strategy of the
search tree exploration implemented in the Mozart system may efficiently adapt
a load of the individual worker to its computational capabilities.

4 Final Remarks

We show that the problem of a vertex-magic total labeling of a graph is easily
expressible by constraint programming paradigm in the Mozart system. The
program may be executed both in sequence and in parallel. The transition from
the sequential to the parallel version practically does not need any modifications
of the code and it noticeably decreases the computational time. This work was
supported by Poznań University of Technology, the grant DS 45-083/2005.
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Abstract. This paper describes a parallel numerical library based on
Co-array Fortran syntax in combination with the object-oriented fea-
tures of Fortran 95. It defines distributed data structures based on an
abstract object called a vector map. It uses co-array syntax, embedded
in methods associated with distributed objects, for communication be-
tween those objects based on information in the vector map. It applies a
finite difference operator to the shallow water equations to illustrate how
to use the library to calculate solutions for partial differential equations.

1 Introduction

This paper describes how to combine the parallel extensions of Co-array For-
tran [15, 16, 18] with the object-oriented features of Fortran 95 [1] to implement
a class library of distributed objects with a set of associated parallel methods. Al-
though Fortran 95 is not a true object-oriented language, it nevertheless includes
many object-oriented features that allow the programmer to emulate object-
oriented techniques. Many programmers have used these techniques for serial
codes [1, 4, 7, 6, 11, 12, 13]. When compilers become available for Fortran 2003,
the latest standard for the language [5, 17], more programmers will use them
because Fortran 2003 contains additional object-oriented features. Furthermore,
co-arrays have been added to the next standard, beyond Fortran 2003 [16], which
will make them available to everyone on every platform.

This paper extends the object-oriented techniques used for serial codes to
parallel codes. It defines distributed objects based on a new object called a
vector map, which keeps track of the relationship between the global view of
a distributed object and the local view of the same object. Co-array syntax
provides communication between distributed objects based on the information
contained in the vector map. Distributed objects are derived types that are
organized into modules, which also contain related procedures, so that they
resemble classes. The programmer declares an object, by name and type, and
creates a specific instance of that object by calling a constructor. Constructors
have alternative interfaces that provide different data distributions depending
on the actual arguments presented to them.

Figure 1 shows vector maps at the center of the library. Vector maps together
with vector and matrix objects combine to build distributed objects called block

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 960–969, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Parallel Numerical Library for Co-array Fortran 961

Grids
Differential
Operators

Fields

Block
Vectors

Vector
Maps

Block
Matrices

Vectors
Linear
Algebra Matrices

Fig. 1. The Library’s Structure. At the base are vector and matrix objects, funda-
mental objects for building more complicated structures like block-vector objects and
block-matrix objects. Vector maps, the central objects of the library, contain informa-
tion describing the relationship between the global view and the local view of block-
vector objects and, by extension, of block-matrix objects. Grid and field objects extend
block-vector and block-matrix objects. Parallel procedures for linear algebra and finite
difference operators use co-array syntax for communication.

vectors and block matrices. These objects, in turn, combine together to build grid
and field objects suitable for solving differential equations. Procedures provided
in the library, such as linear algebra operations for vector and matrix objects
or halo exchange operations for field objects, use information in the vector map
and co-array syntax to perform communication operations between objects.

The library encapsulates the details of data decomposition inside construc-
tors with procedure interfaces based on named derived types. Although the For-
tran language is not case-sensitive, the library adopts a naming convention that
roughly follows the convention used in some object-oriented languages, such as
Java [19, Appendix A]. The names of derived types begin with uppercase let-
ters. For long names containing more than one noun, each noun starts with an
uppercase letter. For example, vector maps are objects based on a derived type
named VectorMap; a block vector, with eight-byte precision, is an object based
on a derived type named BlockR8Vector. A procedure name begins with a low-
ercase letter, usually with a suggestion of its function, followed by the name of
the object to which the procedure applies. For example, the constructor for a
block vector has the name newBlockVector.

Fortran 2003 includes a way to associate procedures directly with objects
[5, 17], but Fortran 95 does not. The library uses the first argument of each
procedure to make the association, a convention adopted almost universally by
Fortran programmers [1]. The library enforces the association through generic
interfaces.
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2 Vector Maps

The most important object in the library, as implied by its central position in
Figure 1, is the vector map [14]. A vector map is an abstract description of the
relationship between the global view of a vector and the local view of the same
vector. It holds none of the data associated with the vector nor any information
about how work should be performed on the data.

v1 v2 vi vj vm

vm vj v2

b11 b21

vi v1

b1k b2k b3k

Fig. 2. A Vector Map. The top horizontal strip represents a global vector v cut into
blocks labeled by a global block index, vi, i = 1, m. The second horizontal strip rep-
resents the global blocks permuted into some other order. The third horizontal strip
represents the assignment of these permuted global blocks in groups to images (proces-
sors), pk, k = 1, P . Each image contains its own collection of local blocks labeled by
local block indices. In this example, image p1 holds two global blocks, vi, v1, relabeled
as local blocks b11, b21. Image pk holds three global blocks, vm, vj , v2, relabeled as local
blocks b1k, b2k, b3k.

Figure 2 shows the general form of a vector map. The top horizontal strip
represents a vector v(:) of length n, the global view of the vector. A vector map
cuts the global vector into a set ofm blocks, vi, labeled with a global block index,
i = 1,m. These blocks are vectors, vi(:), of length ni such that

∑
i ni = n.

The vector map reorders the global blocks according to some permutation,
provided by the programmer, as represented by the middle horizontal strip. It
assigns a fixed number of these blocks to each program image, as specified by
the programmer, taking them in order from the permuted set. Each program
image pk owns a set of local blocks, {b1k,b2k, . . . }, relabeled with two indices,
the local block index first and the image number second. Each local block is a
vector bik(:) with length nik such that

∑
ik nik = n. The programmer retrieves

information about the relationship between the global view at the top of Figure 2
and the local view at the bottom through a set of inquiry functions associated
with the map.

Vector maps are general enough to describe any distribution the programmer
might like to use. For example, the number of global blocks may equal the number
of images and the permutation may be the identity. Then each image owns a
single block with the global block number equal to the image number. Or the
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programmer may want to use a block-cyclic distribution with a round-robin
distribution of the blocks among the images. In that case, the number of blocks
equals the number of images, and the global block size equals the vector length
divided by the number of images. If the global block size is one, the map assigns
the elements of the global vector one by one to the images in a round-robin
fashion. Or the permutation might reverse the global indices so that the map
distributes the elements back to front. The global blocks need not be the same
size, and each image can own a different number of local blocks. In fact, some
images may own none or one image may own them all.

All the components of a vector map are private to the data structure. The
programmer creates a vector map by calling a constructor that builds a map for
a particular decomposition. For example, one form of the constructor has the
interface,

call newVectorMap(map,n,k,p)

It generates a map corresponding to the important special case of block-cyclic
distribution [9]. The global vector length is n, the global blocks are of size k, and
the number of images is p.

Vector maps induce maps for higher objects. For example, the library builds
distributed matrix objects using one vector map for the row dimension and
another vector map for the column dimension [8, 9, 10, 14].

3 Vector and Matrix Objects

Although the Fortran language represents vectors and matrices as intrinsic types,
there are good reasons to define derived types for these objects. For example,
the library includes the precision of the data in the name of the object. The class
R8Vector contains eight-byte real data compared with the class C4Vector with
four-byte complex data. The object contains information about the upper and
lower bounds of the vector and information about halo cells added to each end.
The data structure can also hold information about the nature of the object, its
color or spin, for example, related to particular field properties.

The library defines objects as named derived types and provides a set of well-
defined procedures for the programmer to manipulate the objects. The Vector
Class, for example, has the following data structure,

type XXVector
real(kind=XX),allocatable,target :: vector(:)
type(VectorBounds) :: bounds

end type XXVector

Data is contained in the array component vector(:) with precision represented
by the symbol XX in the set {R4,R8,C4,C8,I4,I8}. The data structure

type VectorBounds
private
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integer :: lowerBound,upperBound,haloWidth
end type VectorBounds

has private components to prevent the programmer from corrupting the object.
To create a vector object, the programmer must use a constructor, for

example,

call newXXVector(v,n1,n2,w)

The constructor sets bounds%lowerBound to n1, bounds%upperBound to n2, and
bounds%haloWidth to w. It allocates the vector array component with dimensions
v%vector(n1-w:n2+w) and sets the array to zero, including the halos.

To manipulate a vector object, the programmer uses procedures associated
with the object to obtain information about it. For example, to obtain a copy of
the internal data in vector object v, the programmer might write

n1 = getLowerBound(v)
n2 = getUpperBound(v)
vCopy(n1:n2) = v%vector(n1:n2)

Or the programmer may request a pointer into the data without making a copy,

vPtr => getPointerToData(v)

which allows the programmer to manipulate the data directly without the over-
head of an extra copy.

The Matrix Class has an obvious structure that mimics the Vector Class,

type XXMatrix
real(kind=XX),allocatable,target :: matrix(:,:)
type(MatrixBounds) :: bounds

end type XXMatrix

A call to the constructor,

call newXXMatrix(a,m1,m2,n1,n2,w1,w2)

creates a matrix object with bounds m1,m2 for the row dimension, n1,n2 for the
column dimension, and two halo widths, w1,w2, for the rows and columns. The
constructor allocates, and sets to zero, the two-dimensional array component
a%matrix(m1-w2:m2+w2,n1-w1:n2+w1), and sets the appropriate values in the
MatrixBounds component.

Vector and matrix objects may be co-arrays, for example,

type(R8Vector) :: v[*]
type(R8Matrix) :: a[*]

Each image calls its own constructor to build its own local vector or matrix
object independent of the other images. The programmer supplies appropri-
ate synchronization before reading or writing remote data. To read data from
another image, the programmer can write something like,
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x(:,:) = a[q]%matrix(:,:)

which makes a local copy x(:,:) of the data contained in a%matrix(:,:) from
image [q].

4 Block Vectors and Block Matrices

The library’s power resides in objects called Block Vectors and Block Matrices,
which combine vector and matrix objects with vector maps. They are distributed
data structures that contain within themselves not only a description of the
data distribution but also a collection of associated procedures, which allow the
programmer to manipulate the objects and to handle communication between
objects on different images.

The Block Vector object contains a VectorMap to describe the data distrib-
ution and a Vector to hold the data itself,

type BlockXXVector
type(VectorMap) :: map
type(XXVector),allocatable :: block(:)
!-other components-!

end type BlockXXVector

A call to the constructor,

call newBlockXXVector(v,n,k,p,w)

creates a block vector of global length n across p images with block size k.
The lower global index is one, by default, and the upper global index is n.
The constructor builds an internal vector map using a constructor that, for this
case, corresponds to a block-cyclic distribution. Each image holds some number,
perhaps zero, of local blocks. The constructor allocates an array of vector objects
v%block(:), one for each local block owned by an image, and allocates space
for each local blockblock(k)%vector(:) according to the block size. The lower
index for each local block is one and each block has its own upper index. Each
local block has extra halo cells of width w on both sides. The constructor sets
all local blocks to zero, including the halos.

The internal vector map contains all the information necessary to describe
the relationship between the global view and the local view of a vector. A vector
is an abstract tensor object, v, with global elements, vi, whose numerical values
are determined by the choice of global basis vectors [14]. A block vector converts
a global vector with just one index to a collection of local vector with three
indices [8, 9],

v(i)↔ v(j, b, q)

representing the assignment of element i of the vector to element j in block b on
image q. In co-array syntax, this mapping has the transparent representation,

v(i)↔ v[q]%block(b)%vector(j)
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In the same way, the Block Matrix object,

type BlockXXMatrix
private
type(VectorMap) :: rowMap
type(VectorMap) :: colMap
type(XXMatrix),allocatable :: block(:,:)
!-other components-!

end type BlockXXMatrix

contains two internal vector maps, one for the row indices and one for the column
indices. A call to the constructor,

call newBlockXXMatrix1(a,m,n,k,l,p,q,w1,w2)

creates a block-cyclic distribution in both the row and column directions in the
same way as for block vectors. The constructor builds the internal vector maps
to represent the row and the column decompositions. The argument m is the
global row dimension, which is cut into blocks of size k and distributed across
p images. The argument n is the global column dimension, which is cut into
blocks of size l and distributed across q images. The lower bounds are one by
default for both global and local indices. Argument w1 is the halo width added
to both ends of the column dimension for each local block. Argument w2 is the
halo width added to both ends of the row dimension for each local block.

After invocation of the constructor, each image holds its own collection of
local blocks, as an array of matrix objects a%block(:,:), with space for local
block (b,c) allocated in a%block(b,c)%matrix(:,:). The programmer can de-
termine how many local blocks each image holds and how they are related to
each other by invoking a set of procedures, which provide access to the compo-
nents of the data structure. If the block matrix a is a co-array, all images must
call the constructor before any remote data references are made. The program-
mer supplies appropriate synchronization before trying to move data from one
image to another.

5 Field Objects

The library supports distributed Field Objects, at the top of Figure 1, based
on block-vector and block-matrix objects at lower levels. The application of a
finite difference scheme to solve the one-dimensional shallow water equations
illustrates how to use the library. The partial differential equations, defined by
Cahn [2] and by Arakawa and Lamb [3], for the surface height h(x, t) and the
two velocity components u(x, t) and v(x, t), as functions of the space variable x
and the time variable t, are the equations [3, eqs. 23-25, p. 183]

∂u

∂t
− Fv +G

∂h

∂x
= 0

∂v

∂t
+ Fu = 0
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∂h

∂t
+H

∂u

∂x
= 0.

In these equations, F is the Coriolis frequency, G is the acceleration of gravity,
and H is the mean height of the surface, which is assumed to be small relative
to the width of the space interval.

The fields u,v,h are block vectors declared as co-arrays:

type(BlockR8Vector),dimension[*] :: h,u,v
call newBlockVector(h,n,k,p,w)
call newBlockVector(u,getVectorMap(h))
call newBlockVector(v,getVectorMap(h))
call setBlockVector(h,h0)

The first call to the constructor creates the field h with the number of grid points
n needed to represent the finite difference operator, with a block size k, and with
the number of images p over which to distribute the field. The halo width w equals
one, wide enough for a two-point stencil for the first-order difference operator.
A call to an alternative form of the constructor, one that accepts a predefined
vector map as a second argument, creates the fields u and v. The procedure
getVectorMap(h) returns the map created by the constructor for field h. Use of
the second form of the constructor avoids the overhead of building the map more
than once and guarantees that all three fields have the same distribution. The
procedure setBlockVector(h,h0) sets the field h from the input array h0(:),
which contains its initial values.

Having created field objects, the programmer decides to let each image per-
form work on the local blocks that it owns. For each of its local blocks, an image
obtains the length of the block and a pointer into the block, with or without
halos depending on how it is used in the difference formula. Each image performs
the appropriate finite difference operation independently of the others. Synchro-
nization among images occurs within the halo exchange operation, which uses
co-array syntax internally to update overlapping halo regions. With a loop over
some predetermined number of time steps, tMax, the code might look like the
following:

do t=1,tMax
do b=1,getNumLocalBlocks(u)
m = getLocalBlockLength(u,b)
hPtr => pointerToLocalBlock(h,b)
uPtr => pointerToLocalBlockwithHalo(u,b)
hPtr(1:m) = hPtr(1:m) - 0.5*H*(dt/dx)*(uPtr(2:m+1)-uPtr(0:m))

enddo
call cyclicHaloExchange(h)
do b=1,getNumLocalBlocks(u)
m = getLocalBlockLength(u,b)
hPtr => pointerToLocalBlockwithHalo(h,b)
uPtr => pointerToLocalBlock(u,b)
vPtr => pointerToLocalBlock(v,b)
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uPtr(1:m) = uPtr(1:m) + F*dt*vPtr(1:m) &
- 0.5*G*(dt/dx)*(hPtr(2:m+1)-hPtr(0:m))

vPtr(1:m) = vPtr(1:m) - F*dt*uPtr(1:m)
enddo
call cyclicHaloExchange(u)
call cyclicHaloExchange(v)

enddo

The library hides from the programmer all the details of data distribution
and all the details of how to exchange data between objects. The block vector
objects themselves contain all the necessary information, and the procedures
associated with them know how to perform the required operations.

6 Summary

This paper has described a parallel numerical library that combines the object-
oriented features of Fortran 95 with the parallel syntax of Co-array Fortran. The
library contains many other procedures associated with block-vector and block-
matrix objects, which cannot be described in detail here. For example, it includes
parallel matrix transpose, matrix multiplication and LU decomposition proce-
dures for block matrices. The performance of these procedures is discussed in a
separate paper [14]. The library also includes reduction procedures to compute
the global minimum, global maximum, and global sum of distributed objects. It
also contains various norms for distributed objects, for example, the L-1 and L-2
norms. The library currently does not support sparse vector or matrix objects,
which are candidates for future extensions.
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Abstract. In the present paper, we propose a hybrid MPI/OpenMP
implementation of a parallel three-dimensional fast Fourier transform
(FFT) algorithm on SMP clusters. The three-dimensional FFT algo-
rithm can be altered to create a block three-dimensional FFT algorithm
in order to reduce the number of cache misses. We then use the ob-
tained block three-dimensional FFT algorithm to implement the parallel
three-dimensional FFT. We succeeded in obtaining a performance of over
14 GFLOPS on the AIST Super Cluster M-64 (using 32 nodes out of 132
available, Itanium2 1.3 GHz, 4-way SMP).

1 Introduction

The fast Fourier transform (FFT) [1] is an algorithm that is widely used today
in science and engineering. Parallel three-dimensional FFT algorithms on distri-
buted-memory parallel computers have been investigated extensively [2, 3, 4, 5].
The hybrid MPI/OpenMP model is a natural parallel programming paradigm
for emerging parallel architectures that are based on clusters of SMPs.

In the present paper, we propose a hybrid MPI/OpenMP implementation of a
parallel three-dimensional FFT on clusters of SMPs. Our hybrid implementation
of the parallel three-dimensional FFT is based on a blocking algorithm for a
parallel three-dimensional FFT [5]. The block three-dimensional FFT algorithm
combines multicolumn FFTs [6, 7] and transpositions to reduce the number of
cache misses.

We have implemented the parallel block three-dimensional FFT algorithm
on a 32-node quad Itanium2 SMP cluster, and the obtained performance results
are reported herein.

Section 2 describes the conventional three-dimensional FFT algorithm. In
Section 3, we propose a block three-dimensional FFT algorithm, which is used
for problems that exceed the cache size. In Section 4, we propose a parallel
block three-dimensional FFT algorithm. Section 5 describes the in-cache FFT
algorithm used for problems that fit into the data cache. Section 6 presents the
performance results. Finally, in Section 7, we provide concluding remarks.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 970–977, 2006.
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2 Three-Dimensional FFT

The three-dimensional discrete Fourier transform (DFT) is given by

y(k1, k2, k3) =
n1−1∑
j1=0

n2−1∑
j2=0

n3−1∑
j3=0

x(j1, j2, j3)ωj3k3
n3

ωj2k2
n2

ωj1k1
n1

, (1)

where ωnr = e−2πi/nr (1 ≤ r ≤ 3) and i =
√
−1.

The three-dimensional FFT based on the multicolumn FFT algorithm is as
follows:

Step 1: Transpose
x1(j3, j1, j2) = x(j1, j2, j3).

Step 2: n1n2 individual n3-point multicolumn FFTs

x2(k3, j1, j2) =
n3−1∑
j3=0

x1(j3, j1, j2)ωj3k3
n3

.

Step 3: Transpose
x3(j2, j1, k3) = x2(k3, j1, j2).

Step 4: n1n3 individual n2-point multicolumn FFTs

x4(k2, j1, k3) =
n2−1∑
j2=0

x3(j2, j1, k3)ωj2k2
n2

.

Step 5: Transpose
x5(j1, k2, k3) = x4(k2, j1, k3).

Step 6: n2n3 individual n1-point multicolumn FFTs

y(k1, k2, k3) =
n1−1∑
j1=0

x5(j1, k2, k3)ωj1k1
n1

.

The distinctive features of the three-dimensional FFT can be summarized as
follows:

– Three multicolumn FFTs are performed in Steps 2, 4 and 6. Each column
FFT is small enough to fit into the data cache.

– The three-dimensional FFT has three transpose steps, which typically are
the chief bottlenecks in cache-based processors.

3 A Block Three-Dimensional FFT Algorithm

We combine the multicolumn FFTs and transpositions to reduce the number of
cache misses, and we modify the conventional three-dimensional FFT algorithm
to reuse the data in the cache memory. As in the conventional three-dimensional
FFT described above, it is assumed in the following that n = n1n2n3 and that
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COMPLEX*16 X(N1,N2,N3) !$OMP DO
COMPLEX*16 YWORK(N2+NP,NB),ZWORK(N3+NP,NB) DO K=1,N3

!$OMP PARALLEL DO II=1,N1,NB
!$OMP DO DO JJ=1,N2,NB

DO J=1,N2 DO I=II,MIN0(II+NB-1,N1)
DO II=1,N1,NB DO J=JJ,MIN0(JJ+NB-1,N2)

DO KK=1,N3,NB YWORK(J,I-II+1)=X(I,J,K)
DO I=II,MIN0(II+NB-1,N1) END DO
DO K=KK,MIN0(KK+NB-1,N3) END DO

ZWORK(K,I-II+1)=X(I,J,K) END DO
END DO DO I=II,MIN0(II+NB-1,N1)

END DO CALL IN_CACHE_FFT(YWORK(1,I-II+1),N2)
END DO END DO
DO I=II,MIN0(II+NB-1,N1) DO J=1,N2

CALL IN_CACHE_FFT(ZWORK(1,I-II+1),N3) DO I=II,MIN0(II+NB-1,N1)
END DO X(I,J,K)=YWORK(J,I-II+1)
DO K=1,N3 END DO

DO I=II,MIN0(II+NB-1,N1) END DO
X(I,J,K)=ZWORK(K,I-II+1) END DO

END DO DO J=1,N2
END DO CALL IN_CACHE_FFT(X(1,J,K),N1)

END DO END DO
END DO END DO

!$OMP END PARALLEL

Fig. 1. A block three-dimensional FFT algorithm

nb is the block size. In addition, each processor is assumed to have a multi-
level cache memory. A block three-dimensional FFT algorithm can be written
as follows:

1. Consider the data in main memory as an n1×n2×n3 complex matrix. Fetch
and transpose the data nb rows at a time into an n3×nb matrix. The n3×nb

array fits into the L2/L3 cache.
2. For each group of nb columns, perform nb individual n3-point multicolumn

FFTs on the n3 × nb array in the L2/L3 cache. Each column FFT also fits
into the L1 data cache.

3. Transpose each of the resulting n3 × nb matrices, and return the resulting
nb rows to the same locations in the main memory from which they were
fetched.

4. Fetch and transpose the data nb rows at a time into an n2 × nb matrix.
5. For each group of nb columns, perform nb individual n2-point multicolumn

FFTs on the n2 × nb array in the L2/L3 cache.
6. Transpose each of the resulting n2 × nb matrices, and return the resulting
nb rows to the same locations in the main memory from which they were
fetched.

7. Perform n2n3 individual n1-point multicolumn FFTs on the n1 × n2 × n3
array.

We note here that this algorithm is a three-pass algorithm. Figure 1 gives the
pseudo-code for this block three-dimensional FFT algorithm. Here, the arrays
YWORK and ZWORK are the work arrays. The parameters NB and NP are the blocking
parameter and the padding parameter, respectively.
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4 Parallel Block Three-Dimensional FFT Algorithm

Let N = N1 × N2 × N3. On a distributed-memory parallel computer having
P processors, a three-dimensional array x(N1, N2, N3) is distributed along the
third dimension N3. If N3 is divisible by P , then each processor has distributed
data of size N/P . Next, we introduce the notation N̂r ≡ Nr/P and denote the
corresponding index as Ĵr, which indicates that the data along Jr are distributed
across all P processors. Here, we use the subscript r to indicate that this index
belongs to dimension r. The distributed array is represented as x̂(N1, N2, N̂3).
At processor m, the local index Ĵr(m) corresponds to the global index as the
block distribution:

Jr = m×Nr + Ĵr(m), 0 ≤ m ≤ P − 1, 1 ≤ r ≤ 3. (2)

In order to illustrate the all-to-all communication, it is convenient to decompose
Ni into two dimensions, Ñi and Pi, where Ñi ≡ Ni/Pi. Although Pi is the same
as P , we use the subscript i to indicate that this index belongs to dimension i.

Starting with the initial data x̂(N1, N2, N̂3), the parallel three-dimensional
FFT can be performed according to the following steps:

Step 1: N2 · (N3/P ) individual N1-point multicolumn FFTs

x̂1(K1, J2, Ĵ3) =
N1−1∑
J1=0

x̂(J1, J2, Ĵ3)ωJ1K1
N1

.

Step 2: Transpose
x̂2(J2, K1, Ĵ3) = x̂1(K1, J2, Ĵ3).

Step 3: N1 · (N3/P ) individual N2-point multicolumn FFTs

x̂3(K2, K1, Ĵ3) =
N2−1∑
J2=0

x̂2(J2, K1, Ĵ3)ωJ2K2
N2

.

Step 4: Rearrangement
x̂4(K̃1, K2, Ĵ3, P1) = x̂3(K2, K̃1, P1, Ĵ3)

≡ x̂3(K2, K1, Ĵ3).
Step 5: All-to-all communication

x̂5(K̂1, K2, J̃3, P3) = x̂4(K̃1, K2, Ĵ3, P1).
Step 6: Rearrangement

x̂6(J3, K̂1, K2) ≡ x̂6(J̃3, P3, K̂1, K2)
= x̂5(K̂1, K2, J̃3, P3).

Step 7: (N1/P ) ·N2 individual N3-point multicolumn FFTs

x̂7(K3, K̂1, K2) =
N3−1∑
J3=0

x̂6(J3, K̂1, K2)ωJ3K3
N3

.

Step 8: Transpose
ŷ(K̂1, K2, K3) = x̂7(K3, K̂1, K2).
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The distinctive features of the parallel three-dimensional FFT algorithm can
be summarized as follows:

– The parallel three-dimensional FFT is accompanied by a local transpose
(data rearrangement).

– N2/3/P individual N1/3-point multicolumn FFTs are performed in Steps 1,
3 and 7 for the case of N1 = N2 = N3 = N1/3.

– The all-to-all communication occurs just once.

If both N1 and N3 are divisible by P , then the workload on each processor
is also uniform.

Although the input data x̂(N1, N2, N̂3) is distributed along the third dimen-
sion N3, the output data ŷ(N̂1, N2, N3) is distributed along the first dimension
N1. If we assume that the input data and output data have the same distribution,
then an additional all-to-all communication step is needed.

5 In-Cache FFT Algorithm

We use the radix-2, 4 and 8 Stockham autosort algorithm [8] for in-cache FFT.
Although the Stockham autosort algorithm requires a scratch array of the

same size as the input data array, digit-reverse permutation is unnecessary. If the
Stockham autosort algorithm is used for the individual FFTs, then the additional
scratch requirement for performing the individual FFTs is O(N1/3) (where N =
N1 ×N2 ×N3) at most.

We inserted OpenMP directives to the proposed block three-dimensional
FFT. The outermost loop of each FFT step shown in Fig. 1 is distributed across
the processors. Each directive of OpenMP may cause an overhead. In order to
reduce the fork/join overhead, three parallel regions can be fused, as shown in
Fig. 1.

6 Performance Results

In order to evaluate the proposed parallel three-dimensional FFT, called FFTE
(version 4.0), we compared its performance to that of the FFTW library (ver-
sion 2.1.5) [9], which is known to be one of the fastest FFT libraries for many
processors. Although the latest version of FFTW is version 3.0.1, MPI parallel
transforms are only available in version 2.1.5.

We averaged the elapsed times obtained from 10 executions of complex for-
ward FFTs. The parallel FFTs were performed on double-precision complex
data, and the table for twiddle factors was prepared in advance. We used trans-
posed order output to reduce the all-to-all communication step for the FFTE
and the FFTW.

The AIST Super Cluster M-64 (132 node, quad Itanium2 1.3GHz, 16KB L1
instruction cache, 16KB L1 data cache, 256KB L2 cache, 3MB L3 cache, 16GB
main memory per node, Linux 2.4.21) was used as clusters of SMPs. In the
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Table 1. Performance of parallel three-dimensional FFTs on the AIST Super Cluster
M-64 (Itanium2 1.3 GHz, 4-way SMP)

P
N1×N2×N3

FFTE 4.0 (Hybrid) FFTE 4.0 (MPI) FFTW 2.1.5
(Nodes×CPUs) Time MFLOPS Time MFLOPS Time MFLOPS

1×1 28×29×29 16.84255 517.98 16.58638 525.98 33.59739 259.67
1×2 28×29×29 9.57885 910.77 8.92122 977.91 21.98175 396.88
1×4 28×29×29 6.44173 1354.32 5.54898 1572.21 17.03849 512.03
2×1 29×29×29 19.67159 921.09 19.28121 939.74 45.80216 395.60
2×2 29×29×29 12.83536 1411.68 10.60596 1708.42 29.34613 617.44
2×4 29×29×29 9.77419 1853.80 6.69942 2704.62 21.22772 853.57
4×1 29×29×210 20.90372 1797.81 20.95441 1793.46 56.67690 663.07
4×2 29×29×210 14.27743 2632.19 13.53452 2776.67 37.50561 1002.01
4×4 29×29×210 11.34989 3311.13 8.46259 4440.84 26.54643 1415.67
8×1 29×210×210 22.97201 3388.74 25.54573 3047.33 58.68224 1326.57
8×2 29×210×210 16.20815 4802.91 14.38517 5411.56 43.43497 1792.25
8×4 29×210×210 13.03677 5971.29 9.51725 8179.50 27.83126 2797.08
16×1 210×210×210 30.33136 5310.06 34.05250 4729.79 65.79830 2447.80
16×2 210×210×210 22.75091 7079.33 21.49411 7493.27 51.58395 3122.31
16×4 210×210×210 19.33317 8330.83 16.04758 10036.48 34.95780 4607.31
32×1 210×210×211 36.71174 9066.85 40.87128 8144.10 71.18536 4675.96
32×2 210×210×211 28.60080 11638.14 28.58210 11645.75 56.51478 5889.79
32×4 210×210×211 25.10995 13256.10 22.46464 14817.06 40.04432 8312.29

experiment, we used 1 node∼ 32nodes on the AIST Super Cluster M-64. The
nodes on the Itanium SMP cluster are interconnected through a Myrinet-XP
switch. MPICH-SCore [10] was used as a communication library.

The Intel C Compiler (icc, version 8.1) and the Intel Fortran Compiler (ifort,
version 8.1) were used on the AIST Super Cluster M-64. For the FFTE (Hybrid),
the compiler options used were specified as “ifort -O3 -openmp.” For the FFTE
(MPI), the compiler options used were specified as “ifort -O3.” For the FFTW,
the compiler options used were specified as “icc -O3” and “ifort -O3.”

Table 1 compares the FFTE (Hybrid and MPI) and the FFTW in terms
of their run times and MFLOPS. The first column of the table indicates the
number of processors. The second column gives the problem size. The next six
columns show the average elapsed time in seconds and the average execution
performance in MFLOPS. The MFLOPS values are each based on 5N log2N for
a transform of size N = 2m.

For N = 210×210×211 and P = 32×4, the FFTE (MPI) runs approximately
12% faster than the FFTE (Hybrid), as shown in Table 1. Table 2 shows the
results of the all-to-all communication timings (pure MPI) on the AIST Super
Cluster M-64. The first column of the table indicates the number of processors.
The second column gives the problem size. The next two columns show the
average elapsed time in seconds and the average bandwidth in MB/sec.

Tables 1 and 2 show that all-to-all communication overhead contributes sig-
nificantly to the execution time. Table 2 shows that the all-to-all communication
performances for 4 CPUs per node are better than those for either 1 CPU per
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Table 2. All-to-all communication performance on the AIST Super Cluster M-64
(Itanium2 1.3 GHz, 4-way SMP)

P
N1×N2×N3 Time MB/sec(Nodes×CPUs)

1×2 28×29×29 1.15737 231.94
1×4 28×29×29 1.47452 136.54
2×1 29×29×29 3.68277 145.78
2×2 29×29×29 2.77443 145.13
2×4 29×29×29 2.74168 85.67
4×1 29×29×210 5.76482 139.69
4×2 29×29×210 4.30683 109.07
4×4 29×29×210 4.21265 59.74
8×1 29×210×210 6.22999 150.81
8×2 29×210×210 5.73692 87.73
8×4 29×210×210 5.40266 48.13
16×1 210×210×210 12.44766 80.87
16×2 210×210×210 12.28788 42.33
16×4 210×210×210 11.84227 22.31
32×1 210×210×211 17.92775 58.02
32×2 210×210×211 17.73715 29.80
32×4 210×210×211 17.07957 15.59

node or 2 CPUs per node. For the FFTE (Hybrid), all threads except one are
idle during MPI all-to-all communication.

Thus, the all-to-all communication time for hybrid implementation is greater
than that for pure MPI implementation. Moreover, the hybrid implementation
has a high cache miss ratio and a high thread overhead. These are the rea-
sons why using the FFTE (MPI) is more advantageous than using the FFTE
(Hybrid). As for related works, the pure MPI model outperformed the hybrid
model [11].

On the other hand, compared to the FFTW, the FFTE (MPI) runs approx-
imately 1.8 times faster for N = 210×210×211 and P = 32×4. The performance
of the FFTE remains at a high level even for the larger problem size, because of
cache blocking. This is the reason why the FFTE is more advantageous than the
FFTW. These results clearly indicate that the FFTE is superior to the FFTW.

We note that on the AIST Super Cluster M-64, a performance of over 14
GFLOPS was realized with N = 210 × 210 × 211 in the FFTE (MPI), as shown
in Table 1.

7 Conclusion

We have proposed the hybrid MPI/OpenMP implementation of the parallel
three-dimensional FFT algorithm on SMP clusters. We reduced the number of
cache misses for the conventional three-dimensional FFT algorithm.

Performance results indicate that the pure MPI model outperformed the
hybrid model. The performance of the FFTE is better than that of the FFTW.
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We succeeded in obtaining a performance of over 14GFLOPS on the AIST
Super Cluster M-64 (using 32 nodes out of 132 available, Itanium2 1.3GHz,
4-way SMP).
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Abstract. Replication provides high performance and availability but
introduces the problem of data consistency that arises when replicas are
modified. Session guarantees may be used to manage replica consistency
of a distributed system from a migrating client’s perspective. This pa-
per presents and proves safety of a new consistency protocol of session
guarantees using object-based version vectors.

1 Introduction

Required properties of a distributed system with respect to consistency depend,
in general, on the application and are formally specified by consistency models.
There are numerous consistency models developed for Distributed Shared Mem-
ory systems. These models, called data-centric consistency models, assume that
servers replicating data also access the data for processing purposes. In a mobile
environment, however, clients are separated from servers; they can switch from
one server to another. This switching adds a new dimension of complexity to
the problem of consistency. Session guarantees [2], called also client-centric con-
sistency models, have been proposed to define required properties of the system
regarding consistency from the client’s point of view. Intuitively: the client wants
to continue processing after a switch to another server so that new operations
will remain consistent with previously issued operations within a session.

Consistency protocols of session guarantees must efficiently represent sets
of operations performed in the system. Version vectors based on vector clocks
[3, 4] may be used for this purpose. Bayou system [5], implementing session
guarantees for the first time, uses server-based version vectors. Safety of the
consistency protocol of session guarantees, called VsSG, that uses server-based
version vectors has been proved in [6]. Other approaches have been analyzed
in [7].

In this paper a new consistency protocol of session guarantees, called VoSG,
that uses object-based version vectors is proposed, and its safety is formally
proved. Object-based version vectors, due to their structure, represent sets of
writes defined by session guarantees more accurately comparing to server-based
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version vectors. The messages exchanged by the VoSG protocol in case of writes
are also smaller than messages of the VsSG protocol. However, depending on
the characteristics of given application or system, the structure of object-based
version vectors is usually less stable comparing to server-based version vectors.
In a frequently changing environment some dynamic version vector maintenance
mechanism can be used to alleviate the problem [8].

2 Session Guarantees

In this paper we consider a replicated distributed storage system. The system
consists of a number of servers holding a full copy of a set of shared objects,
and clients running applications that access the objects. A client may access a
shared object after selecting a single server and sending a direct request to the
server. Clients are mobile, so they can switch from one server to another during a
session. Session guarantees are expected to take care of data consistency observed
by a migrating client.

The set of shared objects replicated by the servers does not imply any par-
ticular data model or organization. The only assumption is that the objects are
isolated, which means that their methods can access only internal states of the
objects, and not states of other objects. In practice, it means that isolated ob-
jects do not reference each other. Operations performed on shared objects are
divided into reads and writes. A read does not change the state of a shared ob-
ject, while a write does. A write may cause an update of an object, it may create
a new object, or delete an existing one. The requests for operations are handled
by clients synchronously, and operations are performed by servers sequentially.

Operations on shared objects issued by a client Ci are ordered by a rela-
tion Ci⇁, called client issue order. A server Sj performs operations in an order

represented by a relation
Sj

�. All operations performed locally by a server Sj

are recorded in a totally ordered set (OSj ,
Sj

�), called history. Writes and reads
on objects will be denoted by w and r, respectively, and operations for which
the type is irrelevant will be denoted by o. An operation performed by a server
Sj will be denoted by o|Sj . An operation performed on an object x will be de-
noted by o|x. The identifier of an object being accessed by an operation o will
be denoted by id(o).

Definitions of session guarantees depend on the definition of relevant writes
representing writes that have influenced results of a given read. In case of isolated
objects relevant writes are defined in the following manner:

Definition 1. The set of relevant writes of a read operation r performed on an
isolated object at server Sj consists of all previous writes on that object performed
at the server:

RW (r|Sj ) =
{
w ∈ OSj : id(w) = id(r) ∧ w

Sj

� r

}
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Session guarantees have been introduced in [2]. The following formal definitions
are based on those concepts.

Definition 2. Read Your Writes (RYW) session guarantee is a system property

meaning that ∀Ci ∀Sj

[
w

Ci⇁ r|Sj ⇒ w
Sj

� r

]
.

Definition 3. Monotonic Writes (MW) session guarantee is a system property

meaning that ∀Ci ∀Sj

[
w1

Ci⇁ w2|Sj ⇒ w1
Sj

� w2

]
.

Definition 4. Monotonic Reads (MR) session guarantee is a system property

meaning that ∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj ⇒ ∀wk ∈ RW (r1) : wk

Sj

� r2

]
.

Definition 5. Writes Follow Reads (WFR) session guarantee is a system prop-

erty meaning that ∀Ci ∀Sj

[
r

Ci⇁ w|Sj ⇒ ∀wk ∈ RW (r) : wk

Sj

� w

]
.

To provide the above defined properties required by migrating clients, an ap-
propriate mechanism, called consistency protocol of session guarantees, must be
implemented in the distributed system.

3 The VoSG Protocol of Session Guarantees

The proposed VoSG protocol of session guarantees intercepts communication
between clients and servers: at the client side before sending a request, at the
server side after receiving the request and before sending a reply, and at the
client side after receiving the reply. These interceptions are used to exchange
and maintain additional data structures necessary to preserve appropriate session
guarantees. Clients express their requirements regarding consistency by assigning
a set of session guarantees to their sessions. The set of session guarantees is
then passed to the protocol along with every operation request. After receipt
of a new request, a server checks whether its state is sufficiently up to date to
satisfy client’s requirements. If the server’s state is outdated then the request is
postponed and will be resumed after updating the server.

Servers periodically exchange information about writes performed in the past
in order to synchronize states of replicas. This synchronization procedure even-
tually causes total propagation of all writes directly submitted by clients. It does
not influence safety of the VoSG protocol but rather its liveness, and therefore
it will not be discussed in this paper (example procedure is presented in [5]). As
opposed to [2] we do not assume total ordering of non-commutative writes. The
reason is that the problem of total ordering of non-commutative writes is in fact
orthogonal to the problem considered in this paper.

Session guarantees define implicitly sets of writes that must be performed
by a server before proceeding to the current operation. The sets of writes are
monotonically increasing as the clients issue new operations. For this reason it
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Fig. 1. Object-based version vectors and cache consistency

is not realistic to exchange explicit sets of writes between clients and servers
for the purpose of checking appropriate session guarantees. Therefore, for ef-
ficient representation of sets of writes, we propose version vectors of the form
[v1 v2 . . . vNO ], where NO is the total number of objects in the system, and a
single position vi denotes the number of writes performed on the i-th object by
the selected server. Every server Sj maintains its local version vector VSj , and
updates appropriate positions upon every write. Every write in the VoSG pro-
tocol is labeled with a vector timestamp set to the current value of the version
vector VSj of the server Sj performing the write for the first time.

Fig. 1(a) shows a time-space diagram of a hypothetical execution in a system
using object-based version vectors. Let us assume that there are two shared
objects in the system, and initial values of server version vectors VS1 = VS2 =
[0 0 ]. The first client C1 issues an operation w(x)1, which is a write of value
1 on object x. Let object x be represented by the first position in the version
vector. After the write, the server’s version vector VS1 is set to [ 1 0 ]. At the
same time another client C2 issues a write operation on the same object x at
server S2. After the second write the server version vector at S2 is also set to
[ 1 0 ], because S2 has not contacted S1 yet, and has not learned about the first
write. Server version vectors VS1 and VS2 become equal, despite the fact that
histories at the servers contain different write operations. As a result, the version
vector representations of the sets of writes of histories at servers cannot reflect
the differences. Therefore, the version vector management must be enhanced, so
that every write will be uniquely timestamped. This can be achieved by global
ordering of writes on respective objects, which effectively means that the servers
must preserve cache consistency [9]. Example execution is presented in Fig. 1(b).

The VoSG protocol (presented in Fig. 2) maintains some data structures at
clients and servers for managing session guarantees. Every client Ci maintains
two version vectors: WCi and RCi . WCi represents all writes issued by the client,
while RCi represents all writes that have influenced the results of reads issued by
the client. Every server Sj maintains a version vector VSj representing all writes
performed by the server. The version vector is updated whenever a new write is
requested by a client, or when a synchronization between servers is performed.
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Upon sending a request 〈op, SG〉 to server Sj at client Ci

1: W ← 0
2: if (iswrite(op) and MW ∈ SG) or (not iswrite(op) and RYW ∈ SG) then
3: W ← max (W,WCi)
4: end if
5: if (iswrite(op) and WFR ∈ SG) or (not iswrite(op) and MR ∈ SG) then
6: W ← max (W,RCi)
7: end if
8: send 〈op, W 〉 to Sj

Upon receiving a request 〈op, W 〉 from client Ci at server Sj

9: seq ← 0
10: if iswrite(op) then
11: seq ← getSeqNumber(id(op))
12: end if
13: while VSj �≥ W ∨ seq > VSj [id(op)] + 1 do
14: wait
15: end while
16: perform op and store results in res
17: if iswrite(op) then
18: VSj [id(op)] ← VSj [id(op)] + 1
19: timestamp op with VSj

20: OSj ← OSj ∪ {op}
21: signal
22: end if
23: send op, res, VSj [id(op)] to Ci

Upon receiving a reply 〈op, res, seq〉 from server Sj at client Ci

24: if iswrite(op) then
25: WCi [id(op)] ← seq
26: else
27: RCi [id(op)] ← seq
28: end if

Every Δt at server Sj

29: foreach Sk �= Sj do
30: send Sj , OSj to Sk

31: end for

Upon receiving an update 〈Sk, O〉 at server Sj

32: foreach wi ∈ O do
33: if VSj �≥ T (wi) then
34: perform wi

35: VSj ← max VSj , T (wi)
36: OSj ← OSj ∪ {wi}
37: end if
38: end for
39: signal

Fig. 2. VoSG consistency protocol of session guarantees
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The VoSG protocol interacts with requests sent from clients to servers and
with replies sent from servers to clients. A request message is a couple 〈op, SG〉,
where op is an operation to be performed, and SG is a set of session guaran-
tees required by a given client. A reply is a triple 〈op, res,W 〉, where op is the
operation just performed, res represents the results of the operation (delivered
to the application), and W is a vector representing the state of the server just
after having performed the operation.

Before sending to the server, the request 〈op, SG〉 is substituted by a message
〈op,W 〉, where W is a version vector representing writes required by the client.
The vector W is calculated based on the type of operation (checked by the
iswrite(op) function), and the set SG of session guarantees required by the
client. The vector W is set to either 0, or WCi , or RCi , or to the maximum of
these two vector (lines 1, 3 and 6). The maximum of two vectors V1 and V2 is a
vector V = max (V1, V2), such that V [i] = max (V1[i], V2[i]).

Upon receiving a new write request the server first generates a sequence
number for the object being modified, which is accomplished by a call to function
getSeqNumber() (line 11). It is assumed that sequence numbers are generated in
a distributed manner by a separate algorithm. Before an operation is performed,
two conditions are checked (line 13). The first condition (VSj ≥ W ) checks
whether the server’s version vector dominates the vector W sent by the client,
which ensures that all writes required by the client have already been performed
by the server. A vector V1 dominates another vector V2, which is denoted by
V1 ≥ V2, when ∀i : V1[i] ≥ V2[i]. The second condition seq ≤ VSj [id(op)] + 1
ensures that all previous writes on a given object have already been performed,
and the write represented by op is exactly the next write. The second condition is
always true for reads, because seq is then set to 0, which allows reads to proceed.
If the state of the server is not sufficiently up to date, the request is postponed
(line 14), and will be resumed after synchronization with another server (line 39),
or after another write (line 21).

After performing a write, the server version vector is incremented at position
id(op), and a timestamped operation op is attached to the history OSj . Next,
a signal is generated (line 21) in order to resume threads that might be waiting
because of inappropriate sequence number. Finally, the server sends back a reply
with a single position of its version vector VSj [id(op)]. The position represents
the number of writes performed on the object just accessed.

At the client side, the number of writes sent by the server is stored at appro-
priate position ofWCi in case of writes, or RCi in case of reads. The replies in the
VoSG protocol contain only a single position of a version vector. The requests,
however, must contain the whole version vectors.

4 Safety of the VoSG Protocol

Theorem 1. The VoSG protocol preserves cache consistency.

Proof. Before performing a new write, every server requests a sequence number
for a given object. The sequence number must be exactly 1 greater than the value
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stored in VSj version vector at appropriate position (see line 13 of the algorithm
in Fig. 2). It means that all previous writes on that object must be performed
before the current one. After performing a new write w, the VSj version vector is
incremented at position id(w), and local history OSj is updated by attaching the
write. Due to this procedure the histories contain continuous sequences of writes
on respective objects. Writes that must be suspended, wait for updates from
other servers. The missing writes are applied during synchronization (line 34).
Histories exchanged by servers contain all operations on objects from the very
beginning up to some time, therefore the missing parts can be applied without
checking sequence numbers. ��

Theorem 2. RYW session guarantee is preserved by the VoSG protocol for
clients requesting it.

Proof. Let us consider two operations w and r, issued by a client Ci requir-
ing RYW session guarantee. Let the read follow the write in the client’s is-
sue order, and let the read be performed by a server Sj , i.e. w Ci⇁ r|Sj . After
performing w by some server Sk, VSk

[id(w)] represents the last version num-
ber of the object identified by id(w). The client updates its vector WCi , so
that WCi [id(w)] = VSk

[id(w)] (lines 23 and 25). The server Sj checks whether
VSj ≥ WCi is fulfilled before performing r (lines 3 and 13), and hence ensures
that VSj [id(w)] ≥WCi [id(w)], which means that Sj has performed all previous
writes on object id(w) up to and including the write w because writes on re-
spective objects are totally ordered (Theorem 1). As local operations at servers

are totally ordered, we get w
Sj

� r. This will happen for any client Ci requiring

RYW and any server Sj , so ∀Ci ∀Sj

[
w

Ci⇁ r|Sj ⇒ w
Sj

� r

]
, which means that

RYW session guarantee is preserved. ��

Theorem 3. MR session guarantee is preserved by the VoSG protocol for clients
requesting it.

Proof. Let us consider two reads r1 and r2, issued by a client Ci requiring MR
session guarantee. Let the second read follow the first read in the client’s issue
order, and let the second read be performed by a server Sj , i.e. r1

Ci⇁ r2|Sj . During
the first read r1, performed by some server Sk, the client updates its vector RCi ,
so that RCi [id(r1)] = VSk

[id(r1)] (lines 23 and 27). The server Sj checks whether
VSj ≥ RCi is fulfilled before performing r2 (lines 6 and 13), and hence ensures
that VSj [id(r1)] ≥ RCi [id(r1)]. This means that Sj has performed all previous
writes on object id(r1), because writes on respective objects are totally ordered
(Theorem 1), and thus, according to Definition 1, Sj has performed all writes
relevant to the read r1. As local operations at servers are totally ordered, we

get ∀wl ∈ RW (r1) : wl

Sj

� r2. This will happen for any client Ci and any server

Sj , so ∀Ci ∀Sj

[
r1

Ci⇁ r2|Sj ⇒ ∀wl ∈ RW (r1) : wl

Sj

� r2

]
, which means that MR

session guarantee is preserved. ��
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A theorem and a proof for MW and WFR are analogous to RYW and MR
respectively. Full versions of the theorems and proofs can be found in [10].

5 Conclusions

This paper has presented the VoSG consistency protocol of session guarantees,
and a correctness proof showing that the protocol is safe, i.e. appropriate guar-
antees are provided when required. It is worth mentioning, however, that though
the object-based version vectors used in the VoSG protocol are sufficient for ful-
filling session guarantees, they are not necessary. Thus, other approaches are also
possible, and they have been discussed in [7]. The sets of writes represented by
version vectors are supersets of the exact sets resulting from appropriate defi-
nitions. The accuracy of the write-set representation is therefore an important
factor of a consistency protocol of session guarantees influencing its performance.
This problem is currently being considered, and appropriate simulation experi-
ments are being carried out.
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7. Kobusińska, A., Libuda, M., Sobaniec, C., Wawrzyniak, D.: Version vector proto-
cols implementing session guarantees. In: Proc. of Int. Symp. on Cluster Computing
and the Grid (CCGrid 2005), Cardiff, UK (2005)

8. Ratner, D., Reiher, P., Popek, G.: Dynamic version vector maintenance. Technical
Report CSD-970022, Univ. of California, Los Angeles (1997)

9. Goodman, J.R.: Cache consistency and sequential consistency. Technical Report
61, IEEE Scalable Coherence Interface Working Group (1989)
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Abstract. The paper includes a proposal of a new approach of synthesis
of fault tolerant multiprocessors systems. Optimal task scheduling and op-
timal partition at resources are basic problems in high-level synthesis of
computer systems. Coherent synthesis may have a practical application
in developing tools for computers aided design of such systems.

1 Introduction

The goal of high-level synthesis of computer systems is to find an optimum
solution satisfying the requirements and constraints enforced by the given speci-
fication of the system. The following criteria of optimality are usually considered:
costs of system implementation, its operating speed and fault tolerant. A spec-
ification describing a computer system may be provided as a set of interactive
tasks. In any computer system certain tasks are implemented by hardware.

The basic problem of system synthesis is partitioning system functions due
to their hardware and software implementation. The goal of the resources as-
signment is to specify what hardware and software resources are needed for the
implementation and to assign them to specific tasks of the system, even be-
fore designing execution details. In the synthesis methods used so far, software
and hardware parts are developed separately [3], [10] and then composed, what
results in cost increasing and decreasing quality of the final product.

Task scheduling is one of the most important issues occurring in the synthesis
of operating systems responsible for controlling allocation of tasks and resources
in computer systems. Another important issue that occurs in designing com-
puter systems is assuring their fault-free operation. Such synthesis concentrates
on developing fault-tolerant architectures and constructing dedicated operating
systems for them. In this system an appropriate strategy of self-testing during
regular exploitation must be provided. In general, fault tolerant architectures of
computer systems are multiprocessor ones. The objective of operating systems
in multiprocessor systems is scheduling tasks and their allocation to system re-
sources. For fault tolerant operating system, this means scheduling usable and
testing tasks - multiprocessors tasks - that should detect errors of executive
modules, in particular processors [2].

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 986–993, 2006.
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Modeling fault tolerant systems consists of resource identification and task
scheduling problems that are both NP-complete. Algorithms for solving such
problems are usually based on heuristic approaches [4]. The objective of this
paper is to present the concept of combined (synergic) approach to the problem
of fault tolerant system synthesis, i.e. a coherent solution to task scheduling
and resource assignment problems. The solution includes also the system testing
strategies based on multiprocessors tasks.

2 Coherent Process of Fault Tolerant System Synthesis

Modeling the joint search for the optimum task schedule and resource partition
of the designed system into hardware and software parts is fully justified [1].
Simultaneous consideration of these problems may be useful in implementing
optimum solutions, e.g. the cheapest hardware structures. With such approach,
the optimum task distribution is possible on the universal and specialized hard-
ware and defining resources with maximum efficiency. We propose the follow-
ing schematic diagram of a coherent process of fault tolerant systems synthesis
(Figure 1).

The suggested coherent analysis consists of the following steps [5], [6]:
1. Specification for the system. 2. Specification of tasks. 3. Assuming the initial

values of resource set. 4. Defining testing tasks and the structure of system -
testing strategy selection, 5. Task scheduling, 6. Evaluating the speed and system
cost 7. The evaluation should be followed by a modification of the resource set,
a new system partitioning into hardware and software parts and step 4.

Fig. 1. The process coherent synthesis of dependable computer system

In this approach a combined search for optimal resources partition and opti-
mal tasks scheduling occur. Iterative calculations are executed till satisfactory
design results are obtained - i.e. optimal system structure, fault tolerant level
and schedule.
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3 Example of Fault Tolerant System Synthesis

Let us discuses a simple example of parallel multiprocessors system synthesis
assuming that functional description of the system is given by the tasks digraph.
A system will be optimized as regards cost (cost minimization) and execution
speed (schedule length minimization). This system will be implemented in the
common structure (without fault tolerant) and in the fault-tolerant structure [8].

3.1 System Specification

Testing system should realize tasks, which can be presented by a digraph (Fig. 2).

Fig. 2. Tasks digraph

We will assume executing times of tasks the following: t0 = 3, t1 = 2, t2 =
2, t3 = 1, t4 = 3, t5 = 3, t6 = 4, t7 = 3, t8 = 1, t9 = 1. As an optimal criterion for
projecting system we will assume minimization of executing time for all testing
tasks - minimization of testing tasks schedule length. The second considered op-
timal criterion is system cost which takes into consideration cost of all hardware
resources. Cost of system is:

CS = CP + i ∗ CM (1)

where: CP - processor cost, CM - memory cost, i - number of memory modules.
The additional requirements of designing system, we will assume as the fol-

lowing: RI - There is necessary a deadline of all tasks without delays executing
which equals (or less) 13 time units. RII - There is necessary execute task T6
nonpreemptable (in time). RIII - There is necessary a critical line for T6 task
which equals 9 time units. RIV - There is desirable a deadline, executing all
processes without delay, equal (or less) 10 time units.

3.2 Project of Structure and Schedule Without Fault-Tolerant
Technique

If we consider two identical and parallel processors (Figure 3), then this optimal
schedule fulfills requirement RI that will realize Muntza-Coffmana algorithm.
Cost of this system - with assumption that every processor needs one memory
unit, equals CS = 2∗CP +10∗CM . Taking into consideration requirement RII it is
necessary to correct tasks schedule. System cost doesn’t change. For requirement
RIII realization there is necessary further correction of tasks schedule. System
cost doesn’t change, too. At last it turns out; that all requirements (include RIV)
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Fig. 3. Realized requirements RI, RII, RIII, RIV

can’t be realized on two processors. We will apply specialized resource, which can
execute tasks: T0, T4, T5, T6, T7 with a triple speed (as compared to the standard
processor) and its cost is CASIC . Resources structure and processor schedule we
are showing in (Figure 3). System cost equals CS = CP + 6 ∗ CM + CASIC .

3.3 Project of Structure and Schedule in Fault-Tolerant System

The cost of the system should be as low as possible, and the architecture con-
formant with the fault tolerant system model is required, with two-processor
testing tasks.

Fig. 4. Structure 1: processors and two-processor testing tasks in a fault tolerant four-
processor structure: T12, T13, T14, T23, T24, T21, T34, T31, T32, T41, T42, T43. Structure 2:
processors and two-processor testing tasks in a fault tolerant five-processor structure -
T12, T13, T14, T15, T21, T23, T24, T25, T31, T32, T34, T35, T41, T42, T43, T45, T51, T52, T53, T54.
Structure 3: processors and two-processor tasks in a fault tolerant three-processor
system with a specialized ASIC processor - T12, T13, T23, T21, T31, T32.

We shall assume the following labeling for processor testing tasks - Tgh, where
Pg processor is testing (checking) Ph processor. Implementing the system satis-
fying the requirement RI, the architecture of a fault tolerant system was shows
in (Figure 4).

For such architecture, the optimum tasks schedule, guaranteeing the require-
ment RI, has been shown in (Figure 5). Taking into account the requirement
RII, the following correction is done to the task schedule. Thus, we obtain the
schedule shown in requirement RII. The system architecture and costs remain
unchanged. The next requirement RIII is reflected in a corrected schedule pre-
sented in requirement RIII.
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Fig. 5. Tasks schedule satisfying the requirement RI in a four-processor system (Req.
RI), the requirements RI and RII in a four-processor system (Req. RII), the require-
ments RI, RII, and RIII in a four-processor system (Req. RIII) - Structure 1

Fig. 6. Tasks schedule satisfying the requirements RI, RII, RIII and RIV: in the five-
processor system - Structure 2 and in the three-processor system with the specialized
processor - Structure 3

Considering the RIV requirement, the system structure change is necessary.
Two variants of the structure shall be proposed. The first structure consists
of five identical parallel processors, with two-processor testing tasks (Figure 4)
(Structure 2). Task schedule in such structure is depicted in (Figure 6). In the
second variant, a specialized module (ASIC) was applied, that may perform the
tasks: T0, T4, T5, T6 and T7 with a triple speed (as compared with the standard
universal processor). The system structure and schedule are shown in (Figure
4) (Structure 3) and (Figure 6), respectively. The universal processor completes
processing of usable tasks in 9 time units, while ASIC processor completes per-
forming its function in 8 time units. Accordingly, the required deadline was
reached in 9 units.

The cost of the developed system shall be estimated as follows. If we assume
that each usable task performed by a universal processor needs one memory
unit dedicated to such task, and task assigned to ASIC processor do not need
dedicated memory units the system cost is: CS = m ∗CP +nu ∗CM + p ∗CASIC

(2) where: m - the number of identical parallel processors, nu - the number
of tasks assigned to universal processors, p - the number of specialized ASIC
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processors devoted for processing remaining (n − nu) tasks. For the require-
ments: RI, RI+RII, RI+RII+RIII : m = 4, nu = 10, p = 0. For the requirements
RI+RII+RIII+RIV, in the first variant, m = 5, nu = 10, p = 0 and in the second
variant, where one ASIC processor is applied, m = 3, nu = 6 and p = 1.

4 Experimental Verification of the Coherent Synthesis

As mentioned earlier, the problems presented in this work (resource partitioning,
task scheduling) belong to NP-complete class. We shall present the final results
of the computer experiments obtained with coherent and non-coherent approach.
A meta-heuristic algorithms were applied: neural network and Tabu search. The
algorithms were presented in [5], [7], [8]. The optimality criteria used in our
experiments were minimum cost of the system and minimum processing time.
The computational results are presented in Table 1.

Table 1. Example coherent and non-coherent synthesis

Number
of tasks

Minimum processing time Minimum system cost
non-coherent coherent non-coherent coherent
cost time cost time cost time cost time

5 1.0 5.67 1.0 5.67 1.0 5.67 1.5 5.1
10 1.25 7.75 1.25 7.73 1.8 7.4 1.8 7.42
15 1.5 8.4 1.5 8.1 3.5 7.7 3.1 7.05
20 1.5 11.4 1.5 11.2 3.6 8.65 3.7 7.7
25 1.5 14.2 1.5 14 4.2 7.95 3.9 7.7
30 1.5 17.6 1.5 16.8 4.1 9.2 4.3 7.95
35 2.5 15.75 2.5 13.7 5.6 8.45 5.5 7.77
40 2.5 18.25 2.5 17.1 7.1 8.65 6.35 7.7
45 2.5 19.5 2.5 19 8.6 9.6 7.4 5.1
50 2.75 19.4 2.75 16.3 8.4 8.65 8.2 7.45
55 2.75 18 2.75 17.8 9.51 9.54 8.9 7.95

Analyzing the presented results one may conclude that the coherent algorithm
obtains better solutions in terms of the implementation costs criterion, as well as
in terms of the operating speed criterion for the designed implementations. These
results are collected in the charts as depicted in Figure 7 charts 1 and 2.

As for the time minimization (Figure 7 chart 1), both algorithms produce
similar values of the cost for all sample task sets. Coherent algorithm improve
the task processing time substantially, in particular for graphs with more then
30 tasks. For instance, 15% improvement of total processing time was obtained
for graphs with 50 tasks.

The diagram presenting the relationship between the costs and the number
of tasks (Figure 7 chart 3) suggests that the solutions obtained by coherent al-
gorithms are considerably cheaper than the ones obtained by a non-coherent
algorithm. A coherent algorithm obtains similar task time performance times in
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Fig. 7. Chart 1: Minimum processing time. Chart 2: Minimum system cost. Chart 3:
Minimum system cost.

cheaper structures that the ones defined by the non-coherent algorithm. This is
particularly visible for the case of graphs with 45 tasks.

Regarding the cost minimization, the diagram of the relationship between
the time and number of tasks in the system (Figure 7 chart 2) shows that the
obtained processing time is similar for both approaches.

5 Conclusions

The direction and the synthesis method presented in this paper are an attempt of
comprehensive and coherent approach to high-level system synthesis. This syn-
thesis is directed to systems with tasks self-testing the system main resources,
namely the processors. Such approach in designing fault tolerant systems ac-
counts for indivisible testing tasks [1], [11]. The following system optimization
criteria are accepted: operating time minimization and cost minimization. Syner-
gic solution is a result of cooperation between the scheduling algorithms and the
algorithms responsible for resource partition. One may also specify additional op-
timality criteria, i.e. minimum power consumption of the designed system (which
is particularly significant for embedded and mobile systems). For the proposed
system’s relevance to real systems, one should take into account the processes
of communication between resources and tasks, preventing resource conflicts, as
well as extend the available resources sets, for example by programmable and
configurable structures.

This work presents only one of the methods of providing self-testability of
the designed system. Fault tolerant is particularly significant for real time sys-
tems [2], [4], that is why the synthesis should include the criterion of the task
scheduling optimality before deadlines. The problem of coherent synthesis is
a multi-criteria optimization problem. Taking into account several criteria and
the fact that optimization of one criterion results often in worsening of the sec-
ond one, indicated at selecting optimization in the Pareto sense. The optimum
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solution in such case shall be the whole expanse of solutions. The above issues
are now studied.
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Abstract. The paper presents a method of modeling exception prop-
agation in distributed applications. The method is based on sequen-
tial control flow analysis and distributed control dependence analysis,
that are used to detect potential interactions between subsystems. The
consequences of exception occurrence are identified in local and remote
contexts by calculating both explicit propagation paths and implicit in-
fluences between parallel subsystems. In order to present the adequacy
of exception handling constructs, a representative, multithreaded appli-
cation is prepared and quantitative information about its behavior is
gathered.

1 Introduction

Exception handling (EH) is commonly used to increase software dependability
in sequential and distributed systems. An exception is a special event, usually
the result of an error, that causes a change in the control flow. After throwing
an exception, a handling function is called. If an exception can not be handled,
it is propagated to the caller that either handles it or further propagates it.

In the paper, we use control flow analysis (CFA) [1] to identify potential
exception propagation paths. CFA expresses paths of program execution, it uses
a CF graph (CFG(V,E)), in which vertexes (V ) represent program statements
(denoted as v, v′ ∈ V ) and edges (E) represent potential transitions. If an edge
exists from v to v′, the execution of v′ is immediately preceded by v. Control
dependence analysis(CDA) [2] is derived from CFA. Informally, v′ depends on
v if the execution of v′ depends on the result of v.

There are many approaches to analyze exception handling mechanisms used
in applications. The problem of failure propagation in distributed systems is
addressed in [3], in which authors present the concept of f − maps, that are
constructed from potential points of exception throws and the abilities of prop-
agation of methods. Initial and continued propagation of exceptions is described
in [4]. The author performs static code analysis to present source code metrics.
An attempt to simplify the analysis of CFG in the presence of exceptions has
been made in [5], in which the concept of Factored CFG is presented. FCFG is
constructed by grouping many blocks in one. Although industrial tools for CFA
exist (e.g. [6]), they neglect parallelism and, in most cases, also exceptions.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 994–1001, 2006.
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There is no work known to us, that uses CFA to analyze exception propa-
gation in distributed applications. In the work, we adopt CFA to such analysis.
Additionally, we present algorithms to calculate implicit influence of exceptions
on parallely executing subsystems (i.e. parts of application).

2 Control Flow Analysis of Distributed Applications in
the Presence of Exceptions

We use a new concept of distributed CFG with exceptions (DCFGE(V,E))
that is constructed by extending the basic CFG with three features: exception
handling representation [7], distributed calls and dependencies [8] [9], and state
information about application. DCFGE contains the following structure:

– standard CFG - vertexes for program statements and edges for intra- and
inter-procedural control flows,

– vertexes that represent exceptional exits of methods,
– additional edges that represent inter-method transitions in case of excep-

tional exits, the edges direct from exceptional exits to handling functions or
to exceptional exit vertexes of another method in the call chain [7],

– parallel execution edge that represents distributed control flow [8],
– edges that represent distributed dependencies: synchronization and commu-

nication [9].

In CDG of a distributed application, the dependencies of synchronization and
communication are defined. Informally, statements v, v′ are communication de-
pendent if the value of a variable assigned at v′ is used at u by an inter-
process communication. Statements v, v′ are synchronization dependent if the
start and/or termination of v′ directly determines the start/termination of v. A
detail and formal description of the basic concepts is presented in [7] [8] [9].

The proposed approach allows to analyze applications on different levels of
abstraction. In the paper, we consider the instruction level, however,CFG can be
combined on higher levels to reduce computational complexity. In the compact
analysis, methods or subsystems are represented by their regular exits, excep-
tional exits and distributed dependencies. The compact form is less precise than
a detail DCFGE, however allows to simplify the analysis. The nodes and edges
of an example DCFGE are presented in Fig. 1. The figure does not contain
the state information described in Sect. 2.2, distributed dependencies have been
presented summarily for methods.

2.1 DCFGE of an Example Application

The part of the source code (Java) of an example program that has been analyzed
is presented in Listing 1.1. The full source code and the libraries for execution
tracing (logging and log analysis) are available at author’s web site:

www.eti.pg.gda.pl/∼pkacz/analysis.html.
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1
2 public class Server extends
3 Thread {public void run (){ . . . }
4 . . .
5 synchronized void acceptBuyOffer
6 ( . . . ) throws AlreadySoldExc ,
7 Inva l idServerStateExc , . . .
8 { i f ( s t a t e !=Consts .BUYOFFERS)
9 throw new

10 Inva l i dSe rve rStat eExc ( ) ;
11 . . .
12 i f ( ( ! of ferFound ) | |
13 ( ! o f f e rAva i l a b l e ) )
14 throw new AlreadySoldExc ( ) ;
15 . . . }
16 synchronized OfferData ge tOf f e r
17 ( . . . ) throws I nva l i dSe rve rSta teExc
18 { . . .
19 i f ( s t a t e !=Consts .BUYOFFERS)
20 throw new
21 Inva l i dSe rve rStat eExc ( ) ;
22 . . . }
23 private synchronized void
24 endOfSe l l ( ) throws . . .
25 { for ( . . . )
26 {try {
27 switch
28 ( s o l dO f f e r s [ i ] . ge tStatus ( ) ){
29 case Consts .SECONDNOTIF :
30 throw new ChangeBuyerExc ( ) ;
31 . . . } }
32 catch ( . . . ) {}
33 catch ( ChangeBuyerExc e )
34 { i f ( . . . ) { . . .
35 s e ndNo t i f i c a t i on
36 ( s o l dO f f e r s [ i ] ) }

37 else { . . . } }
38 . . . } . . . }
39 private void s e ndNo t i f i c a t i on
40 ( Of f e r o f f e r ) throws . . .
41 { i f ( o f f e r . getBuyer () != null ){
42 o f f e r . getBuyer ( ) . acceptBuy
43 ( o f f e r . ge tOf f e rData ( ) ) ;
44 . . . }
45 else { . . . }
46 } }
47
48 public class Buyer extends
49 Thread { . . .
50 public void run (){
51 for ( . . . )
52 { try { . . . ;
53 giveBuyOffer ( ) ; }
54 catch ( AlreadySoldExc e )
55 { . . . }
56 catch ( Inva l i dSe rv e rStat eExc
57 e ) { . . . }
58 catch ( . . . ) { . . . }
59 } }
60 void giveBuyOffer ( )
61 throws AlreadySoldExc ,
62 Inva l idServerStateExc , . . .
63 { . . .
64 o f f e rData=se rve r . g e tO f f e r ( . . . ) ;
65 i f ( o f f e rData!=null ){
66 . . .
67 s e rve r . acceptBuyOffer
68 ( o f f e rData , this )} ;
69 . . . }
70 void acceptBuy ( OfferData o )
71 { . . . }}

Listing 1.1. Example code

The program is a simulation of an auction system. The server object supports
synchronization between sell and buy offers, and maintains the list of items. At
given time intervals, the server ends the auction and sends information to the
buyers. If the buyer does not confirm the buy, a second notification is send or
the buyer is changed.

2.2 Information About Application State in DCFGE

Vertexes in DCFGE are described with additional information about the state
corresponding to anomaly handling, which allows for an automated and precise
description of propagation with the use of DCFGE. Only explicitly thrown ex-
ceptions are expressed with vertexes in the graph, while other constructs require
other analysis or human interpretation. Anomalies are divided into three groups:
(i) explicit EH constructs, (ii) anticipated (known) anomalies (e.g. pre-condition
violation in a request, returned error codes), (iii) unanticipated anomalies. The
first group is detected straightforwardly from application code. The second group
(i.e. known fault-tolerance mechanisms) can be detected automatically, how-
ever initial human tuning is necessary, e.g. defining code patterns for condition
checks. The third group concerns typical errors in application code, which is not
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Fig. 1. DCFGE of the application from Listing 1 - distributed dependencies are pre-
sented summarily for methods, cf denotes control flow, S, D denote synchronization
and communication dependencies respectively

in the main scope of the paper, although it can be analyzed with explicit human
interpretation.

Information about application state is added to nodes of DCFGE either
automatically (auto) or by a human (human). Human-driven modifications ex-
tend the range of the analysis, however they are not necessary. Selected nodes
are marked with a flag that describes the current state of an application:

– exception throw (ET ) - throw statements (auto),
– handling function (HF ) - instructions within catch blocks (auto),
– error notification (EN) - if EN is passed through a node, (human or auto

with pattern comparison - if possible)
– incorrect handling (IH) - if an error occurs in handling, (human),
– incorrect (IC) - if a fault is detected in the code, this situation is not likely

to occur unless fault injection is used (human).

Additional extensions are made due to distributed aspects:

– remote call (RC) - represents a remote call (auto),
– asynchronous call (invocation) (AC) - represents a split of control flow

(auto),
– remote exception throw (ETRemote) - assigned to a node if an exception is

propagated from a remote call (auto)
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– remote error notification (ENRemote) - assigned to a node if an error notifi-
cation is passed from a remote call (auto or human)

– asynchronous exception throw (ETAsynchronous) - assigned to a node if an
exception is propagated asynchronously to remote components (auto),

– cooperative handling (CH) - communication within HF (auto) [10].

3 The Analysis of DCFGE

DCFGE is used to derive two kinds of information: precise information about
explicit exception propagation (sequential and distributed) and estimation of the
implicit influence of an exception on distributed subsystems through distributed
dependencies. The analysis is done in a “scope”, i.e. the guarded block that
supplies an adequate handling function. If the block is not available, the “scope”
ranges from the beginning to the end of the method propagating an exception
(e.g. a server method).

3.1 Deriving Information About Explicit Propagation

Automated analysis of explicit exception propagation takes on input the
DCFGE with state information and calculates propagation paths. The calcula-
tion is done for statements that may initialize exceptional events (referred to as
starting points - SP ): explicit throw statements, throws declarations of methods,
remote invocations.

1. identify all starting points (SP) of exceptions;
2. foreach (SP) {
3. use the depth first (DF) algorithm to find all control flow paths

in DCFGE from the SP to the end of each scope
4. foreach (path) {
5. record the nodes together with corresponding flags;
6. if IH or IC nodes exist, mark the CF as incorrect;
7. if RC or AC nodes exist, mark the CF as such;
8. if ET(Remote), EN(Remote) or ET(Asynchronous) nodes exist,

mark the CF as exception multiplication;
9. if CH nodes exist, mark the CF as cooperative handling;}}

The information about propagation contains SP , nodes and corresponding ap-
plication states. Although the number of all CF s in a CFG has exponential
complexity, we assume that propagation graphs are sparse within their scopes.
As an example, consider the exception thrown by the server in getOffer (line
20) (ET ), the exception is propagated to the client (ETRemote) in which it is
handled. The CF is flaged as exception multiplication.

3.2 Deriving Information About Implicit Impact on Remote
Subsystems

Apart from explicit changes of the control flow and communication, an exception
can implicitly influence remote subsystems. The impact is estimated, because we
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intend to present a fast and simple method for identifying potential influences.
Two levels of influence of distributed dependencies are distinguished:

– level 1 - operations invoked before an exception throw, the DCFGE is an-
alyzed from the SP to the beginning of each scope,

– level 2 - potential execution paths if the exception has not occurred, the
paths from the first instruction excluding the SP to the end of the scope.

The algorithm of approximating the impact of an exception on remote subsys-
tems works as follows:

1. foreach (starting point (SP))
2. { identify the list of scopes for the SP;
3. foreach (scope)
4. { agregate level 1 dependencies and their types:

walk backward from the SP to the beginning of the scope
create the list of met dependencies

5. agregate level 2 dependencies and their types:
assuming the branch with the SP has not been chosen, gather

nodes on paths from the branch node to the end of the scope
create the list of met dependencies } }

After the analysis, information about each propagation path is extended with the
list of potentially affected remote subsystems. We assume that method calls are
analyzed in a compact way. As an example consider again the exception thrown
at line 20 (ET ). The scope of this SP is the try/catch block in Buyer.run. Let us
assume, that the application performs a modification of a shared variable at line
18. Consequently, a level 1 communication dependency is present. The situation
is a potential error in application code and should be inspected.

3.3 Quantitative Values Describing Control Flow Paths

DCFGE presents information about potential execution paths, which is con-
structed by static analysis of program code. Additionally, dynamic analysis is
used to describe the behavior of a running application [11]. The number of ex-
ecutions of control flows, method exit results and anomaly events are counted.
The information describes a relative importance of each flow and rates the rel-
evance of the constructs. If the number of exceptional control flows is high, the
application or a subsystem need to be improved. Quantitative characteristics are
gathered from a real execution of an application in a working environment.

The analysis is done in the following steps: (i) apply logging functions to
register all anomaly situations, (ii) execute the modified application, (iii) analyze
the execution log. Currently, we use a dedicated logging library together with a
tool for automated gathering of general execution characteristics.

4 Experimental Results

The technique is demonstrated on a snippet of code from Listing 1.1 and
DCFGE from Fig. 1. The method described in previous sections is used to
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Table 1. Propagation paths

Path
name

Path description - vertexes(states) The number
of executions

PP9 9(ET), acceptBuyOffer.ExcExit (ET), giveBuyOf-
fer.ExcExit b (ET), 57 (HF/EN)

4

PP14 14 (ET), acceptBuyOffer.ExcExit (ET), giveBuyOf-
fer.ExcExit a (ET), 55(HF/EN)

9

PP20 20(ET), getOffer.ExcExit (ET), giveBuyOffer.ExcExit b
(ET), 57 (HF/EN)

114

PP30a 30(ET), 34(HF), 34b(HF), 35(HF), 41(HF), 42 (HF,CH), ac-
ceptBuy (CH)

2

PP30b 30(ET), 34(HF), 37(HF) 8
PP30c 30(ET), 34(HF), 34b(HF), 35(HF), 45(HF) 0

gather: static description of propagation paths and quantitative information
about execution. Existing tools that generate CFG of Java programs do not
concern distributed dependencies and generally neglect exceptional constructs.
Therefore, the exemplary graph has been generated manually. Currently, we
work on a tool that generates a graph with: exceptional information, applica-
tion states and distributed dependencies. Quantitative information was gathered
automatically by counting the number of executions and exception throws.

The part of code contains starting points at lines: 9, 25, 34, 45 that start
propagation paths (denoted PP ). Propagation paths are presented in table 1, in
which each path is described with nodes and node states from DCFGE.

The execution of the application was logged and control flows were counted.
In total, 1000 invocations of the method Buyer.giveBuyOffer have been made
with randomly generated request parameters and offer decisions. The invocations
resulted in 849 regular correct outputs and exceptional outputs in other cases.
In order to better demonstrate the use of quantitative characteristics, the code
was injected with two extra errors: (i) a delay has been made in the client source
to simulate latencies, (ii) the buyer refuses randomly to buy a declared product.

As it can be seen, the InvalidServerState exception occurs most often. The
exception is thrown usually in the getOffer method (PP20). In rare cases, the
server state changes between the call to getOffer and acceptBuyOffer (PP14).
Cooperative handling occurs in PP30a. Some control flows from Line30 do not
perform cooperative handling, which depends on method input values.

Table 2. Dependencies in propagation paths

Path name Path scope Path dependencies
PP9, PP14 Buyer.run() acceptBuyOffer, endOfSell, getOffer - synchronization,

communication
PP20 Buyer.run() acceptBuyOffer, endOfSell, getOffer- synchronization
PP30a lines 26:37 notifyBuy - communication, cooperative handling
PP30b, PP30c lines 26:37 none
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Potential influence of an exception on remote subsystems is calculated from
method dependencies and propagation paths. Table 2 presents the scopes and
dependencies of propagation paths.

5 Applications and Future Work

DCFGE is especially useful in software maintenance and improvement. Static
control flow description presents information about the control flows with high
anomaly propagation (i.e. a long sequential propagation path or many distrib-
uted dependencies). The control flows should be either modified or inspected in
detail. Additionally, quantitative characteristics of execution are used to describe
methods or subsystems, which allows to identify those areas that are especially
prone to anomalies. The information is used to improve selected parts of the
application. Static and dynamic description is used to compare alternative code
constructs for their adequacy for a given problem.

The most important aspect of future work is the implementation of a tool
that automatically generates DCFGE. Other research will focus on detecting
those EH mechanisms that guarantee high reliability and are used often.

The work was supported in part by KBN under the grant number 4T11C
00525.
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Abstract. We consider the problem of dividing a distributed system
into subsystems for parallel processing with redundancy for fault toler-
ance, where every subsystem has to consist of at least three units. We
prove that the problem of determining the maximum number of sub-
systems with redundancy for fault tolerance is NP-hard even in cubic
planar 2-connected system topologies. We point out that this problem
is APX-hard on cubic bipartite graphs. At last, for subcubic topologies
without units connected to only one other unit, we give a linear time
4/3-approximation algorithm.

1 Introduction

The concept of parallel processing with redundancy is well studied in literature
[1, 5, 12]. The idea of a fault-tolerant processing system with redundancy is that
a set ofK machines (units) is assigned the task of solving a given problem P for a
set of input test data I. The task is treated as indivisible among machines, i.e. the
i-th unit receives the input pair (P, I) and independently generates output data
Oi. It has to be assumed that the output produced by every unit may, with some
small probability, be corrupt due to software or hardware malfunction. Certain
time-critical applications require that the computational process may never be
repeated, and consequently the considered system must show resilience and be
able to recover a correct result despite faults in some part of the processing units.

In this paper we consider the problem of dividing a distributed processing sys-
tem into subsystems for parallel processing with redundancy for fault tolerance.
Each subsystem must be able to operate independently of all other processing
subsystems, i.e. no two subsystems may share computing units. Every subsystem
has to consist of at least three units, to allow for the detection of a faulty unit in
a so called voting process, and for establishing which of the outputs obtained by
units of the system is correct. In the case of heuristic computation, such a system
also guarantees reduced probability of a major error in calculations, since the
median of outputs of all nodes of the subsystem (or the mean of all outputs after
discarding extremal values) can be treated as the final result of the subsystem.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1002–1009, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Parallel Processing Subsystems with Redundancy 1003

Model and problem definition. The connections between nodes of the sys-
tem can be modelled in the form of a connection graph G = (V,E), and every
subsystem is assumed to be a connected subgraph of G with no fewer than
3 vertices. All subsystems are vertex-disjoint and capable of processing inde-
pendent tasks. This does not mean, however, that they may not be employed
concurrently for solving different subproblems of one larger problem, and the
results of all subsystems may be combined in a final global communication and
processing stage. The purpose of this paper is to characterise the problem of
maximizing the number of independent fault-tolerant subsystems in the system
graph for certain chosen system topologies. We first observe that a subsystem is
legal in accordance with the adopted definition if and only if it has a subgraph
in the form of the three vertex path P3. The discussed problem may therefore
be posed as packing the maximum possible number of vertex-disjoint paths P3
in the system graph (the MaxP3M problem for short). This problem has been
the subject of intensive research of a both theoretical and practical nature due
to its wide range of applications in parallel processing, distributed test cover [3],
and guarding segments in grid connections [9].

Our results. We prove that the problem of determining the maximum number
of subsystems with redundancy for fault tolerance is NP-hard even in cubic
planar 2-connected system topologies. Next, we point out that this problem is
APX-hard on cubic bipartite topologies. Finally, for subcubic topologies without
units connected to only one other unit, we give a linear time 4/3-approximation
algorithm for maximisation the number of fault-tolerant subsystems.

2 Problem Complexity for Different System Topologies

Following the observation asserting the one-to-one correspondence between the
problem of dividing a distributed processing system into subsystems with the
desired redundancy for fault tolerance and the maximum P3-matching problem
in the given connection graph of units, a formal definition of the considered
problem is given below.

Redundancy for Fault Tolerance Problem (the RFT problem)

Instance: A connection graph of units G(V,E).
Question: Are there at least k vertex-disjoint paths of order 3 in G?

However, it turns out that the RFT problem is NP-complete (and thus its max-
imisation version – the MaxRFT problem – is NP-hard) even for system topolo-
gies which are 2-connected, cubic, bipartite and planar. The idea of the NP-
completeness proof is based upon reduction from three dimensional matching
(3DM) problem and it is presented in detail in Section 4.

Theorem 2.1. The MaxRFT problem is NP-hard in bipartite planar cubic unit
topologies.

It is worth pointing out that, as far as we know, our result appears to be the
first classical problem in graph theory ever shown hard for cubic bipartite planar
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graphs. Vertex coloring, edge coloring and most forms of domination are easy,
and the complexity of other problems usually remains open.

Let us recall that even for the 3DM3 problem (with maximum degree at
most 3) it is NP-hard to decide whether a maximum matching is perfect or misses
a constant fraction of the elements [11]. Hence, using this result, a technique
developed by De Bontridder et al. [3], and gadgets from Section 4, it is easy to
prove the following theorem (due to the limited space we omit the proof).

Theorem 2.2. The MaxRFT problem is APX-hard in bipartite cubic unit
topologies.

For general graphs, the best known approximation algorithm for the maximum
P3-matching problem, and thus for the MaxRFT problem as well, achieves
3/2-ratio [3], whereas in the case of cubic graphs, there is a quadratic 4/3-
approximation algorithm (a 20-page proof can be found in [8]). Thus we get

Corollary 2.3. There is a 3/2-approximation algorithm for the MaxRFT prob-
lem, and in cubic system topologies, this ratio can improved to 4/3.

However, in the next section, we give an approximation algorithm which provides
a major improvement on this result, as it can be applied to any connection graph
with a known (2, 3)-factor, that is, a spanning subgraph with the minimum
degree at least 2 and the maximum degree at most 3. Although this class of
system topologies seems to be restricted, note that in reality system topologies
are usually dense enough to have a (2, 3)-factor (cubic graphs, 4-regular graphs).

From now on, we shall refer to a RFT-decomposition as a set of vertex-disjoint
paths of order at least 3.

3 An Approximation Algorithm for (2,3)-Regular
Systems

The idea of our algorithm is based upon the well-known DFS algorithm – we
modify it in order to get a pendant-P2-free spanning tree of a connection graph,
and the pendant-P2-freedom will imply the existence of the RFT-decomposition
of cardinality at least �n

4 �.
Definition 3.1. A graph is said to be pendant-Pk-free if it contains no path
of k + 1 vertices such that one of the end vertices of the path is of degree 1 in
G, the other is of degree 3, while all other vertices of the path are of degree 2.
In particular, a graph is pendant-P2-free if none of its vertices of degree 2 is
adjacent to both a vertex of degree 1 and a vertex of degree greater than 2.

Corollary 1. If a subcubic tree T of order n �∈ {1, 2, 5} is pendant-P2-free, then
there exists a P3-packing in T of at least �n/4� paths.

As a side note, let us recall that Masuyama and Ibaraki [10] showed that the
maximum Pi-matching problem in trees can be solved in linear time, for any
i ≥ 3. The idea of their algorithm is to treat a tree T as a rooted tree (T, r)
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(with an arbitrary vertex r a the root) and to pack i-vertex paths while traversing
(T, r) in the bottom-up manner.

Corollary 3.2. If system graph G has a spanning forest whose trees fulfill the
assumptions of Corollary 3.1, then there exists a P3-matching (and consequently
also an RFT-decomposition) of cardinality at least �n/4�. Such a decomposition
can be found in linear time.

Theorem 3.3. There exists a linear time 4/3-approximation algorithm for the
maximum P3-matching problem for subcubic graphs without pendant vertices and
without connected components of order 5.

Proof. Consider a subcubic graph G of order n which fulfills the assumptions
of the theorem. Taking into account Corollary 3.2, it suffices to show a linear-
time algorithm for constructing a spanning forest in G whose trees fulfill the
assumptions of Corollary 3.1. Such an algorithm is presented below.

1. For each connected component of G successively consider all edges e con-
necting vertices of degree 3. If removal of the edge from G does not create a
new connected component of order 5, remove the edge from G and continue
the process. Otherwise mark one of the endpoints of e as a cut vertex and
proceed to the next connected component.

2. For each connected component H of G construct a Depth First Search (DFS)
spanning tree T . The tree should be rooted following one of the rules below:
(a) If H has a cut vertex v marked in Step 1, let v be the root of the tree.
(b) If there exists an induced path (u1, u2, u3) in H such that u2 and u3 are

adjacent and of degree 2 in H , let u1 be the root of the tree and let u2
be the first vertex visited while recursing.

(c) If neither rule (a) nor rule (b) can be applied, let any vertex of degree 2
in H be the root of the tree.

3. For each connected componentH , if the resulting DFS tree T is not pendant-
P2-free, then for each DFS leaf v at the end of a pendant P2, remove from
T the edge incident to v and insert into T any other edge which is incident
to v in H . The set of spanning trees obtained in this way (taken over all
components of G) is the sought pendant-P2-free spanning forest. �

Notice that the presented result holds for all graphs having a spanning subgraph
with the property required in the assumptions of Theorem 3.

Corollary 3.4. There exists a linear time 4/3-approximation algorithm for the
MaxRFT problem in system topologies having a (2, 3)-factor without isolated
components of 5 vertices.

4 The MaxRFT Problem in Cubic Bipartite Planar
Graphs

Dyer and Frieze [4] proved that the three-dimensional matching problem is
NP-complete even for planar instances (3DM problem):
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Fig. 1. (a) Vertex vi is replaced by graph Gi (b). (c) After adjoining gadgets B and C
all but xi, yi, zi vertices are of degree 3.

Instance: A subcubic bipartite planar graph G(V ∪ M, E) without pendant
vertices, where V = X ∪ Y ∪ Z, |X | = |Y | = |Z| = q. And, for every vertex
m ∈ M we have that deg(m) = 3 and m is adjacent to exactly one vertex
from each of the sets X, Y and Z.

Question: Is there a subset M ′ ⊆M of cardinality q covering all vertices in V ?

Theorem 4.1. [4] The 3DM problem is NP-complete.

In this section, using Theorem 4.1, we will show that the problem of existence
the RFT-decomposition of cardinality �n

3 � in cubic bipartite (2-connected) pla-
nar graphs is NP-complete. Our proof consists of two steps: first, we prove
NP-completeness for “almost” cubic bipartite graphs, then we modify the con-
structed graph and show NP-completeness for cubic and planar graphs.

Theorem 4.2. The perfect P3-matching problem in cubic bipartite planar 2-
connected graphs is NP-complete.

Proof. Let G(V ∪M, E) be a subcubic bipartite planar graph without pendant
vertices, where V = X ∪ Y ∪ Z, |X | = |Y | = |Z| = q, every vertex m ∈ M has
degree 3, m is adjacent to exactly one vertex from each of the sets X, Y and
Z. Next, let G∗(V ∗, E∗) be a graph obtained from G by replacing each vertex
vi ∈ M , i = 1, . . . , |M |, (and all edges incident to it) with the graph Gi(Vi, Ei)
presented in Fig. 1, formally:

– V ∗ = V ∪
⋃

i=1,...,|M| Vi, where Vi = {pi
j}j=1,...,9 ∪ {xi

j, y
i
j , z

i
j}j=1,2,3;

– E∗ = E \ E− ∪ E+, where E− =
⋃

i=1,...,|M|{{xi, vi}, {yi, vi}, {zi, vi}},
E+ =

⋃
i=1,...,|M|(Ei ∪ {{xi, xi

2}, {yi, yi
2}, {zi, zi

2}}) and zi are neighbours
of vertex vi in graph G.
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Note that xi = xj iff dist(vi, vj) = 2. Clearly, graph G∗ is bipartite and it
has |V |+ 18|M | vertices and |E|+ 17|M | edges, and Δ(G∗) = 3.

Lemma 4.3. There exists a solution of the 3DM problem in graph G(V ∪M, E)
iff there exists a perfect P3-matching of cardinality q+6|M | in graph G∗(V ∗, E∗).

Proof. (⇒) Let M ′ be a solution of the 3DM problem in graph G(V ∪M, E),
|M ′| = q. A perfect P3-matching in graph G∗ consists of the following paths:

– if vertex vi corresponding to graph Gi is in M ′, then in graph Gi with
attached vertices xi, yi and zi (see Fig. 1) we choose the following 3-vertex
paths: xi

1x
i
2x

i, yi
1y

i
2y

i, zi
1z

i
2z

i, xi
3p

i
4p

i
3, yi

3p
i
8p

i
9, zi

3p
i
2p

i
1, pi

5p
i
6p

i
7;

– otherwise, if vertex vj corresponding to graph Gj is not in M ′, then in graph
Gj with attached vertices xj , yj and zj we choose the following 3-vertex
paths: xj

1x
j
2x

j
3, yj

1y
j
2y

j
3, zj

1z
j
2z

j
3, pj

1p
j
2p

j
3, pj

4p
j
5p

j
6, pj

7p
j
8p

j
9.

(⇐) Let P be a maximum P3-matching of cardinality q + 6|M | in a graph
G∗(V ∗, E∗) (P is perfect, of course). Let us consider any subgraph Gi, together
with vertices xi, yi and zi. First, let us note that xi (or resp. yi or zi) cannot be
a center of a 3-vertex path in a perfect matching. The following claim holds.

Claim. If one of the paths xi
1x

i
2x

i, yi
1y

i
2y

i or zi
1z

i
2z

i is in matching P , then all of
them are in matching P .

Consider, for example, xi
1x

i
2x

i ∈ P and yi
1y

i
2y

i /∈ P . Then yi
1y

i
2y

i
3, pi

7p
i
8p

i
9 and

pi
4p

i
5p

i
6 are in P , hence xi

3 is not covered by any path, a contradiction. The other
cases can be proved analogously. Therefore, perfect P3-matching P of graph G∗

either (1) consists of paths xi
1x

i
2x

i, yi
1y

i
2y

i and zi
1z

i
2z

i or (2) none of them is
in this matching. So the set M ′ = {vi ∈ M : Gi is covered in a way (1)} is a
solution to the 3DM in graph G(V ∪M, E). �

Now, we will transform graph G∗ to a bipartite graph where all vertices have
degree 3 apart from xi, yi, zi, which are of degree 2 or 3. We will need some
additional gadgets. It’s easy to verify the following properties of graphs B, A, L
and C presented in Fig. 2, (the dotted edges are external ones, the bold edges
belong to any perfect P3-matching):

– every perfect P3-matching of graph B uses only its internal edges, i.e., edges
el and er are not used in any perfect matching of B,

– every perfect P3-matching of graph A uses exactly one of edges el and er,
– every perfect P3-matching of graph L always uses edge el,
– every perfect P3-matching of graph C uses only its internal edges.

Let G∗∗ be a graph obtained from G∗ by replacing each graph Gi with a graph
G∗

i presented in Fig. 1. Graph G∗∗ has |V |+369|M | vertices and all but xi, yi, zi

have degree 3. It is easy to observe that there is a straightforward equivalence
between any perfect P3-matching in graph Gi and G∗

i . By Lemma 4.3, we get

Lemma 4.4. There exists a solution of the 3DM problem in graph G(V ∪M, E)
iff there exists a maximum P3-matching of cardinality q + 133|M | in graph G∗∗.
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(a)

el er
B

(b)

el er
A

(c)

el er
A B L

(d)

e L

B

C

S

Fig. 2. (a) None of edges el and er is covered by any perfect P3-matching of B. (b)
Only one of edges el or er is used in any perfect P3-matching of A. (c) Any perfect
P3-matching of L is using edge el. (d) None of three external edges of graph C are used
by any perfect P3-matching.

Now, we construct planar bipartite graph H with all vertices of degree 3. Note
that every vertex a ∈ X ∪ Y ∪ Z has degree 2 or 3 and the rest of the vertices
of G have degree 3, so the number of vertices of degree 2 is divisible by 3. The
idea is as follows: we attach a pendant vertex to every vertex of degree 2 and
move it to the outer face of graph. Possible crossing of edges we eliminate by the
following operation: if edge ab crosses the pendant edge xix

∗
i , we replace both

edges with the graph shown in Fig. 3. If edge ab belongs to some P3-matching
and a is an end vertex of some path abx, then we choose the following paths in
the P3-matching of graph H : av1v2, v3v4v5, v6bx (if vertex b is an end vertex,
analogously). If edge ab does not belong to any 3-vertex path, we construct two
paths v1v2v3, v4v5v6. Hence, any perfect P3-matching of graph G∗∗ can be easily
transformed to a perfect matching of graph H and vice versa.

(a)

xi

x∗
i

a

b

(b)

a v1 v2 v3

bv6v5v4

xi

x∗
i

B

B

B

B

Fig. 3. An auxiliary graph used to eliminate crossing of pendant edge connected to
vertex of degree 2
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If all pendant vertices are on the outer face of graph, we attach a graph C
to every triple of vertices from the same partition in such a way that pendant
vertices belong to graph C. This operation is possible, because the number of
vertices of degree 2 in both partitions must be the same and divisible by 3.
Observe that such a graph is still bipartite and cubic (hence it is 2-connected).
Obviously, all these operations can be done in polynomial time. From the above
and Lemmas 4.3 and 4.4, the thesis of Theorem 4.2 follows. �

5 Conclusions

In the paper we study the problem of dividing a distributed processing system
into the maximum number of subsystems for parallel processing with redundancy
for fault tolerance. In the case when every subsystem has to consist of at least two
units, the problem is equivalent to finding the maximum matching in the system
topology, which can be solved in a polynomial time. In the model described in
the paper every subsystem has to consist of at least three units, to allow for the
detection of a faulty unit by way of a voting process. On the one hand we have
presented a detailed analysis of the complexity status of the MaxRFT problem,
on the other hand, we have proposed approximation algorithms for some network
topologies.
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Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland
{jan.kwiatkowski, piotr.karwaczynski, marcin.pawlik}@pwr.wroc.pl

Abstract. A notion of a Dependable Information Service (DIS) is ad-
vocated as the means for applications in large scale distributed systems
to select service instances meeting their requirements, functional as well
as non-functional. Applications that need to provide certain correctness
of results to the end user can only do so by requiring the services they
use to guarantee particular level of correctness. When no such guarantees
can be made, applications cannot provide the service and thus become
unavailable. A system model is proposed to let applications temporarily
accept lower correctness of used services in order to increase the availabil-
ity caused by application accepted tradeoff. The proposed Dependable
Information Service provides applications with a set of services appropri-
ate for their demands and informs them of changes that can affect their
quality level.

1 Introduction

The ability of a service provider hosted in a large scale distributed system (Grid
[3], peer-to-peer networks) to fulfil requirements, imposed by the client appli-
cation, varies greatly with time. Unpredictable events like changing rate of in-
coming requests, different network conditions, consumption of local resources by
other services, node and link failures etc. all prevent the service provider from
meeting the demands of many applications. A number of applications would
benefit from being able to adapt to changes in the capabilities of services by
controlled degradation of their own requirements or by utilizing better service
providers. Since the service dependability is defined in the context of its users’ re-
quirements, making the application expectations flexible can result in the higher
overall system dependability. As currently no solutions allow such a pattern,
this paper attempts to present a new Information Service (IS) able to discover
service providers not capable to exactly respond to the application requirements
but still useful if the application expectations are lowered. We call it the Depend-
able Information Service (DIS). The mechanism is proposed to offer information
reflecting the best state of valuable knowledge about current system state. The
result is a dependable service-oriented distributed system where an application
can depend on the information provided to it even in the overwhelmingly large
and dynamic system.
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The proposed information service is a part of the solution being developed
in the scope of the DeDiSys project1. The major project objective is to im-
prove availability of data-centric and service-centric architectures by sacrificing
application-specific consistency [7]. For service-centric applications, consistency
equals correctness criteria imposed on services, e.g. their quality/dependability
level, resources they are able to provide, etc. In case of failures or a system
dynamism, the criteria can be temporarily lowered in order to keep a system
available.

The rest of the paper is organized as follows. Section 2 presents a short
overview of various network Information Services. In section 3 we describe typi-
cal IS usage scenario. Section 4 shows availability improvements present in our
model of the Dependable Information Service. Section 2 presents its architec-
tural design. Finaly, in section 6, we conclude with a summary of our work and
its future directions.

2 Information Services Overview

The majority of distributed systems need some means to locate specific services
(objects, components, etc. - for the purpose of this paper all of these entities will
be referred to as services), possibly dispersed among different nodes and LANs.
Services can be located by their attributes or - more generally - by requesting
certain capabilities. With respect to them, they can formulate requirements of
different kinds. The degree of complexity of the requested capabilities, as well as
the dynamicity of the system environment, determines the level of sophistication
of the necessary lookup mechanism.

The most basic form of requirements is a specification of the service name.
The common service that provides this functionality is a naming service. Tra-
ditionally it implements direct, single level mapping between requested names
and service locations. To this end, it maintains a set of bindings, which relate
names to addresses. All service names must be consistent with a naming conven-
tion supported by the naming service. The examples of existing naming services
include CORBA Naming Service and DNS.

An example of more advanced requirements is a set of attributes describing
a service, instead of an explicit name. In order to support this kind of lookup, a
directory service as an extension of a naming service was introduced. Directory
services are simple databases. Instead of locating an entry only by name, these
services allow clients to locate entries based on a set of search criteria. In general,
they manage a directory of entries. An entry has attributes associated with it.
An attribute consists of a name or identifier and one or more values. These
attributes describe the entry, and the exact set of attributes depends on the
type of the entry.

Both naming and directory services were designed with static target envi-
ronments in mind. Any changes in locations of components, due to e.g. mobility
1 Research supported by the European Community Framework Programme 6 project

DeDiSys, http://www.dedisys.org/, contract No 004152.
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or failures, result in stale information being served by them. Since dynamicity in
large scale, wide area distributed systems usually cannot be avoided, discovery
services appeared. The discovery service updates information it stores auto-
matically as the network configuration changes. It reacts to component renewal
messages or monitors components itself. The examples of the discovery service
are Globus MDS (Monitoring and Discovery Service) and Jini Lookup Service.

3 Typical Information Service Usage Scenario

In a typical implementation, the application first opts for the maximum precision
and requires information about a set of services that are able to deliver it. If the
constraints on the required number of nodes can not be met, the application
degrades its expectations and chooses to use some nodes that do not satisfy
the constraints. The application monitors satisfaction of constraints and if they
become unsatisfied, acts by lowering its requirements on some nodes or utilizing
different nodes that satisfy the constraints, if available. A typical installation of
the Globus Toolkit for the scenario described in previous section is illustrated
in Fig. 1.

Fig. 1. Typical IS usage scenario

The root Monitoring and Discovery Service (MDS) of the Globus Toolkit
gathers information from the local MDS instances. NodeMonitor (NM) subsys-
tem registers information on available node resources and reports the changes
to the application. NM subsystem can be created with Ganglia or Hawkeye
and WS GRAM information providers, reporting to a dedicated Trigger Service.
With this scenario in mind, the following problems that need to be addressed
can be identified:

1. Discovery of service instances capable of delivering the desired capabilities
2. Monitoring the ability of service instances to provide the desired capabilities
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3. Adjusting (degrading or upgrading) application requirements in accordance
with the capabilities of the service instances

4. Rescheduling the workload to other service instances to meet the require-
ments if necessary and possible.

4 Dependable Information Service

Dependability is a general concept, and in different usage scenarios different
attributes of dependability can be emphasized. The most significant attributes
of dependability are reliability, availability, safety, and security [1]. Reliability
deals with continuity of service, availability with readiness for usage, safety with
avoidance of catastrophic consequences on the environment, and security with
prevention of unauthorized access and/or handling of information. In our case
the most important attributes are availability and reliability. Safety is more
application dependant, although applications are always informed about the
quality of DIS answers and thus are always able to act accordingly. Security
depends on the actual system implementation and we do not discuss it here. To
simplify our discussion we present only the way in which the availability can
be increased, however in most cases the means to increase it will also increase
reliability of the service.

To see how the system availability can be raised, we define the notion of the
Quality of Environment (QoE). QoE describes how the system state corresponds
to the application expectations. It can be seen as a function of available system
resources, requested by particular application, and the system failures, resulting
in inexact data provided by the DIS to the application. The quality of data
provided by DIS will be measured by Quality of Answer (QoA) which defines
how the answer provided by DIS corresponds both to the actual system state
and application requirements. QoA is highest if all the resources requested by
application are fulfilling its functional and non-functional requirements and the
failure rate permits DIS to exactly answer application query. In this situation
the answer exactly corresponds to the application query. In the classical scenario
if the decrease of quality of environment (dQoE) exceeds some threshold (due to
the rate of failures or absence of requested resources) QoA is lowered from the
maximal value (exact answer) to the minimal one (the answer stating that the
resources cannot be discovered or are not present). In our proposed system the
possibility of approximate answers, based on stale data or data prediction, lets us
deal with the situations when parts of DIS are not responding but the resources
they were supposed to monitor are still available. The query language defines
the quality of information provided about particular resource as a requirement
imposed on the answer about that resource. The possibility to respond not only
with the exact answer but also with the one offering the application information
about resources which are of lower quality than it expects, lets us sacrifice the
QoA to achieve higher system availability, moving the point where the system
answer is of no use to the application from Tlow to Thigh.
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5 Architecture of the Dependable Information Service

The idea presented above extends classical Information Service with the pos-
sibility to provide answers inexactly corresponding to the application query in
order to improve availability. The query is compound and includes functional
as well as non-functional (e.g. related to the expected accuracy or time of an-
swer) requirements. An application specifies its requirements against desirable
business service in a Requirements document consisting of three sections:

1. Requested functional capabilities (hard - minimally satisfactory, and soft -
completely satisfactory)

2. Requested non-functional capabilities (hard - minimally satisfactory, and
soft - completely satisfactory)

3. Satisfaction function

Requested functional capabilities (RCF) define a set of functionalities that
the requester expects from a service provider. Hard RCF cannot be traded. If a
service is not able to provide them, it is of no use to the requester. An example
of such a capability is the ability to perform desired computations. On the other
hand, soft RCF can be traded. Such a capability can be, for example, that the
data set returned to the requester is normalized. The requester prefers the nor-
malization to take place, but without it is still able to utilize the result. Typical
examples of a description of the required functional capabilities are class of the
object in distributed object oriented systems (CORBA), or port type of a Web
service [2].

Requested non-functional capabilities (RCNF) describe capabilities that the
service should provide. Hard RCNF cannot be traded. A service that is not able to
provide them is useless to the requester. For example, the application performing
computations can require these to be finished in no more than 10 minutes with
an expected error rate smaller than 5%. If these constraints are not met, the
results cannot be used. Soft RCNF define the satisfactory set of non-functional
capabilities. If all of them are provided, the requester’s needs are completely sat-
isfied. These capabilities may be traded. E.g., for the computational application
they could be: time to finish computations smaller than 1 minute and expected
error smaller than 3%. If such capabilities are not provided, but the time and
precision values are within hard RCNF , the result can be accepted.

A satisfaction function represents the capabilities’ quality metric analogous
to the Rank expression in the ClassAds language [6]. A higher satisfaction func-
tion value indicates a better provider’s offer. The actual method used to define
the satisfaction function is based on the semantics used in the ClassAds lan-
guage. For the example described in the previous paragraph, the satisfaction
function could be, for instance, defined as: SF = 0.5/other.expectedT ime +
2/other.expectedError. The function value is computed if all hard, but not all
soft requested capabilities are satisfied. If hard capabilities cannot be provided,
the offer is rejected and the minimal function value is assumed. Similarly, when
both hard and soft requested capabilities are satisfied, the offer is fully satis-
factory and the function value is treated as maximal. The ability to accept or
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reject a service offer without further considerations speeds up the search process.
From the formal point of view satisfaction function can be seen as a part of non-
functional requirements, but as it is of special importance for our trade-off it is
discussed separately.

The proposed draft architecture is built around the notion of a dependable
information service, where service requesters ask for needed capabilities, and
service providers advertise offered capabilities (Fig. 2).

Dependable discovery service

Capabilities
manager

Discovery 
engine

requested 
capabilities 
document

Service requester

Capabilities 
designer

provided 
capabilities 
document

Service provider

Capabilities 
designer

Resource information 
provider

provided 
service

requested 
service

registration

reportingconfiguration

Overlay 
network 
service

registration

forwarding

Reporting service

Fig. 2. Dependable Information Service

Service providers and requesters are distributed among system nodes.
Providers register their capabilities in DIS via provided capabilities registra-
tion documents. The preparation of these documents is facilitated by capability
designers and resource information providers (RIP). A capability designer is im-
plemented in an application-specific way. It can simply import capabilities from
a file or database or generate it algorithmically.

A requester willing to gain access to a certain service utilizes a capabilities
designer to specify the detailed requested capabilities discovery document. This
document contains a set of requested functional and non-functional capabilities,
as well as a satisfaction function, and is forwarded to the DIS. The DIS in turn
employs a capabilities manager to analyse it. A capabilities manager interprets
the request, deals with priorities if necessary and uses a discovery engine to
find a service completely satisfying the requested capabilities. In case it is not
possible to find such a service, the requested soft capabilities are lowered and
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a satisfaction function is used to identify services providing the requested capa-
bilities best. A discovery engine cooperates with the Overlay Network Service
(ONS) to find the requested service. The ONS provides application-layer routing
based on the peer-to-peer paradigm[4],[5]. Currently, we envision the utilization
of the decentralized object location and routing (DOLR) algorithms. The Re-
porting Service records the information about the operation of the DIS and ONS
components. This information can be used to fine-tune their behaviour.

After the successful discovery of appropriate services, the service requester
is provided with a proposed contract with the service provider. If it finds the
proposed contract satisfying, it communicates with the service provider directly
in order to establish the contract.When a service provider process starts, it re-
trieves the state of the resources from its local RIP in order to calculate the
provided non-functional capabilities. These, as well as functional capabilities,
are included in the PC registration document, which is sent to DIS. DIS reg-
isters the provided capabilities of the service and replies with a result of the
registration, which may or may not succeed. On the other hand, a service re-
quester wishing to discover an appropriate service, sends a document stating
the requested functional and non-functional capabilities (RC query) that a ser-
vice should provide to DIS. DIS matches the required capabilities against the
provided capabilities of the discovered services and proposes a contract to the
requester. If the contract is satisfactory to the requester, then it forwards the
contract document to the service provider. Depending on scenario needs, a con-
tract confirmation message can be used or not. The simple option is to provide
the required and provided capabilities to DDS and let it do the matching auto-
matically with the confirmation being implied by the match. However, in some
scenarios, an explicit accept/reject message may be applicable and reasonable.
In this case the provider may explicitly accept or reject the contract by sending
a contract confirmation back to the requester. If the provider chooses to accept
the contract, or the contract is implicitly accepted, then the requester may use
the service until cancelling the contract with a contract cancellation document.
DIS is notified about all changes of the capabilities of a service provider (e.g.
after receiving and accepting a contract) with a PC update document.

The efficient and fault-tolerant information service is a focal point of the
developed architecture. The Dependable Information Service (DIS) is an exten-
sion of a discovery service. The added value is an improved selection process: the
service requester discovers the appropriate providers by specifying the precise re-
quested capabilities, including critical needs (hard requested capabilities), fully
satisfactory needs (soft requested capabilities), and information on priorities of
needs (satisfaction function). With this information, DIS is able to accurately
match the requested capabilities with the provided capabilities of the available
service providers.

DIS is replicated on every node within the system. The overall information
on application level system services is distributed among different DIS instances
in a redundant way. Consistency of the information is provided by soft state
mechanisms. The Dependable Information Service joins the ability to work in the
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large-scale Grid environments, fault-tolerance resulting from distributed design
and flexibility of user expectations to achieve higher dependability of the whole
system.

6 Conclusions

In the paper a new approach to developing Information Service has been pro-
posed. The new IS improves the overall dependability of the system, by allowing
applications to flexibly state their requirements and trade them to achieve higher
availability. The DIS itself is also highly fault-tolerant. Replicated among all the
system nodes, it no longer appears as a single point of failure. After identifying
the problems that appear in typical implementations, an extension to the clas-
sical Information Service framework has been proposed. The study of such an
extension suggests that it alleviates some of the problems of the initial approach.
Implementation of the proposed framework requires further study of usage sce-
narios in order to come to a proper level of abstraction to accommodate as wide
a scope of applications as possible.
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Abstract. Scalable Distributed Data Structures (SDDS) consists of two
components dynamically spread across a multicomputer: records belong-
ing to a file and a mechanism controlling record placement in file space.
Record placement in the file is SDDS specific mechanism. It is spread
between SDDS servers, their clients and dedicated process called split co-
ordinator. In the paper fault-tolerant protocols for SDDS components are
given. The protocols use Job Comparison Technique along with TMR.
Basic and extended SDDS architectures are compared with the help of
SDDS oriented software fault injector. Time overhead due to redundancy
introduced is estimated, too.

1 Introduction

SDDS [1] consists of two components dynamically spread across a multicom-
puter: records belonging to a file and mechanism controlling record placement
in file space. Methods of making fault-tolerant records were discussed in [2-5].
As far as methods of making fault-tolerant controlling mechanism is concerned,
the first solutions and estimations were done in [6]. It seems that fault tolerance
of SDDS controlling mechanism is very important for system’s dependability.
Faults causing wrong record placement can lead whole application to crash,
while faults concerning record data can cause invalid computations at most.

Controlling record placement in the file is SDDS specific mechanism. It is
spread between SDDS servers, their clients and dedicated process called split
coordinator, running on any multicomputer node.

In the paper extended SDDS architecture with fault-tolerant record place-
ment is introduced and estimated. Section 2 introduces principles of SDDS. Sec-
tion 3 describes SDDS controlling mechanism and its possible operational faults.
In section 4 fault-tolerant protocols for SDDS components are given. Section 5
contains comparison considerations. The paper ends with conclusions.

2 Scalable Distributed Data Structure (SDDS)

A record is the least SDDS element. Every record equipped with an unique
key is loaded into bucket. The buckets are stored on multicomputer nodes called
servers. Every server stores one or more buckets. All the servers can communicate
with each other. If a bucket is full it performs a split, moving about half of the
records to a new bucket.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1018–1025, 2006.
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Any number of machines called clients can simultaneously operate SDDS
file. Each client is not aware of other clients’ existence. Every client has its
own file image (information about an arrangement and number of the buckets),
not exactly reflecting actual file state. A client may commit addressing error,
sending a query to inappropriate bucket. In that case the bucket forwards the
query to appropriate one and the client receives Image Adjustment Message
(IAM), updating this client’s file image near to actual state. A client never is
going to commit the same addressing error twice.

There is a single dedicated process called split coordinator (SC), controlling
buckets’ splits. The clients, the servers and the SC are connected with a net.

SDDS file grows as the amount of required storage space increases1. There is
no need for central directory. Splitting and addressing rules are based on modified
linear hashing (LH*) [1]. The rules may be implemented in two ways: centralized
and decentralized. In the former case the SC is applied. In the latter case there
is no SC and servers send each other a token, which allows for splitting a bucket
actually holding it. Decentralized LH* was considered in [6].

3 Centralized LH* and Its Failures

LH* controlling mechanism is distributed between all SDDS elements. Below
centralized LH* will be considered.
The client functions are as follows:

• Computing destination bucket address (may be wrong) for a given key, using
local file image. Computing server physical address then and sending a query.

• Receiving a response message.
• Updating a file image using received IAM message, if there was any.

The server functions are as follows:

• Receiving incoming messages (sent by clients or servers).
• Verifying destination bucket address (check if the query was properly sent):

- if correct, operation is performed and results are sent back to the client;
- if incorrect, probable destination address is calculated and the message

is forwarded. IAM message to the client is sent then.
• Sending a collision message to SC in case of bucket overload.
• Performing a split after a message from SC. Committing the split then.

The split coordinator functions are as follows:

• Maintaining real LH* file parameters.
• Collecting information about full buckets, implementing file scaling strategy.
• Controlling file splits - sending a split message to the bucket pointed with n

pointer. Receiving split committing messages and updating file parameters.

1 If all the buckets are stored in RAM memory then SDDS highly improves data access
efficiency [1].
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Fig. 1. Single ‘deaf’ split coordinator

Possible failures of SDDS system results in LH* operational faults. To inves-
tigate LH* behavior in fault conditions software fault injector called ‘SDDSim’
was developed. It is a single computer MS Windows/X-Window application, be-
having as SDDS LH* file. Each of SDDS components (buckets, clients and SCs)
runs as a separate process. Interprocess communication uses shared memory and
semaphores to simulate network layer. SDDSim user is able to see SDDS mecha-
nism at work, inject faults into each component, see system’s reaction and then
analyze its behavior using log files.

Sample SDDS LH* file was created and faulty situations were simulated.
The file was able to expand to 128 buckets, each capable of storing 256 records.
Two series of record insertions were done. Results are presented in form of
two-dimensional graph. On X axis the progress (total number of messages send
through the net) of simulation is shown. On Y axis it is shown how much of the
net throughput is taken by messages of given type (what is actually transmitted
through the net).

The result of making the SC ‘deaf’ is obvious. After some successful insertions
the file became overloaded and it stopped to accept more data (Fig.1). Turning
the SC ‘berserk’ led to chaotic bucket splits. Many of the insertion messages
gone outside SDDS file bounds because of the corrupted file structure (Fig.2).

Summarizing, client operational faults are the following:

• The client breakdown. Such a client is not a danger for SDDS file.
• Wrong address calculation (client has gone berserk) - query would be sent to

wrong server. Such fault may lead to file damage, as it was explained above.

Server operational faults are the following:

• Invalid recipient - the server received a message concerning a bucket stored
on different server. There are two possibilities:
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Fig. 2. Single ‘berserk’ split coordinator

- The message is received by server having smaller id number than the
proper server. Such a fault is not a danger and the message will be
forwarded properly.

- The message is received by server having bigger id. Basic SDDS LH*
scheme for growing file would never forward a query to a server having
id smaller than current one’s id. This may lead to data access problems.

• Collision - bucket overload, nothing unusual for SDDS file, the server sends
a collision message then.

Split coordinator operational faults are the following:

• Deaf SC - collision messages do not initiate bucket splits and SDDS file
expansion. This leads to file overload.

• SC sending invalid messages (SC has gone berserk). Such a messages can
cause splits incompatible with LH* scheme, this leads to file structure crash
and massive data access problems.

4 Fault Tolerant Protocols for Centralized LH*

A multicomputer means a net of computers. Hence, rather obvious assumption
is taken that at least three-node multicomputer is considered. Under such as-
sumption all single transient or permanent faults of centralized LH* should be
tolerated.

Proposed mechanism uses Job Comparison Technique (JCT) and Triple Mod-
ular Redundancy (TMR) [7] to arrange fault tolerant split coordination. Fault-
tolerant bucket and SC protocol procedures were written in Promela language
[8]. The source consists of about 100 lines of code. Most important fragments of
it that concerns fault tolerance are presented below.
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The bucket process is defined as follows:

proctype Bucket(byte id) {
bool splitPool[3]; bool doSplit=0; int splitIgnore=-1;
...

BLOOP: bChan[id] ? msgOp, msgNum; /* Message received */
(msgOp == MSG_SPLIT) -> {

... /* Ignore third correct split message */
splitPool[msgNum] = 1; /* Remember this decision */

}
/* Two identical decisions sufficient to perform a split */
(splitPool[0] && splitPool[1]) -> { doSplit = 1; ... }
... /* The same for 1&2, 0&2 coordinators */
(doSplit) -> {

SPLIT(); /* Perform the split now */
... /* Send commit to every active coordinator */

}
... /* Process other message types */
goto BLOOP;

}

Split coordinator process is defined as follows:

proctype Coord(byte id) {
int myDecision=-1, hisDecision=-1; bool faultDetected=0;
...

CLOOP: cChan[id] ? msgOp, msgNum; /* Message received */
(msgOp == MSG_COLL) -> { /* Collision message */

... /* Bucket to split address computation */
bChan[destAddr] ! MSG_SPLIT,id; /* Split message send */
myDecision = destAddr; /* Remember my decision */
/* Send my decision to the next coordinator: */
cChan[(id+1)%numCoords] ! MSG_DECISION, myDecision;

}
/* Previous coordinator’s decision received */
(msgOp == MSG_DECISION) -> hisDecision = msgNum;
/* Set fault flag if no other decision after a time-out */
/* Two different decisions: */
(myDecision!=-1 && hisDecision!=-1) -> {

(myDecision != hisDecision) -> faultDetected=1;
...

}
/* In case of fault detection, run third SC: */
(faultDetected && numCoords<3) -> {run Coord (2); ...}
goto CLOOP;

}
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Process initialization is the following:

init { /* First bucket is created and two SCs are run */
run Bucket (0); run Coord (0); run Coord (1); numCoords = 2;

}

Moreover, the following rules hold:

• Every bucket sends a collision message to every active SC.
• Each active SC sends split message to the bucket.
• The bucket performs a split if at least two identical decisions were received.
• SC number id (0 or 1 or 2) is error protected (error correcting code is used).

Hence, we assume that it is always correct.

This LH* scheme allow invalid coordinators be replaced with new instances. As
it was explained above, the client may commit addressing fault, sending a query
to wrong server. Basic LH* scheme would forward such message to a proper
server if the message was originally sent to the server (bucket) having too small
id. We must define backwarding, if we want LH* tolerates every client addressing
fault. Hence, the destination address a’ should be calculated as follows:

a’ = hj(C);
if a’ != a then

a” = hj−1(C)
if a < a” and a” < a’ then a’ = a”;
if a” < a and a < a’ then a’ = a”;

The last (added) line does not allow the message to be sent beyond LH* file
space. If destination address a’ is smaller than current bucket address a then it
is still valid and the message would be sent there.

5 Comparison Considerations

To compare basic and fault tolerant SDDS architectures the experiment with
software fault injection was repeated for the same SDDS file. However, from the
very beginning two SCs were run and JCT was used.

After first series of insertions one of the SCs was turn ‘berserk’, so the third
SC started according to the procedure shown in section 4 and the file kept
working properly. There was no single lost message and no visible activity pause.

Client’s faults are not as dangerous as coordinator ones, but they leads to
data access problems. The SDDS file was created again. First series of insertions
were performed by properly working client. It was turn ‘berserk’ then. Forward-
ing and backwarding ensured that every message sent to any of the buckets (with
no respect to the file image), reached the correct bucket at last. Unfortunately
most of the network throughput was taken by forward/backward messages.

The SC is waked up only if some collisions were reported and there is a need
to make a split. How often the SC is making a decision, depends on single bucket
capacity and amount of incoming data. Our analysis includes only a new data
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inserted into LH* file, because newly inserted data fills buckets and initiates
splits. The frequency of LH* splits may be calculated as follows:

P = (D/(N ∗ 1024)) ∗ 3600 (1)

where:
N denotes bucket capacity, represented as the number of records * 1024;
D denotes incoming data stream intensity in number of records per second;
P denotes the number of splits per hour (the frequency of SC’s decisions).

The number of data messages is constant for any bucket capacity. During a
split, overloaded bucket sends about half of its content to a new one. We assume
that the number of messages for transferring data between buckets is identical to
the number of messages needed to transfer data between a client and a bucket.

The number of IAM messages is not considered, it depends on the number of
clients and their activity. It is relatively small and for larger buckets the number
of addressing errors decreases [1].

Three SC variants are considered. Each one requires DC number of messages:

• Single coordinator: 1 collision + 1 split decision + 1 commit, DC1 = 3;
• Double coordinator with JCT: 2 collisions + 2 result comparison + 2 deci-

sions + 2 commits, DC2 = 8;
• Triple coordinator with TMR: 3 collisions + 3 result comparison + 3 deci-

sions + 3 commits, DC3 = 12.

Total number of SC and data messages can be calculated as follows:

Σ DCn = DD + P ∗DCn, for n = 1, 2, 3 (2)

where: DD denotes the number of messages and commits per hour.

Fig. 3. The efficiency decrease caused by additional SC messages (compared to single
coordinator SDDS)
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Efficiency decrease caused by additional SC messages for JCT and TMR
variants can be calculated as follows (Fig.3):

ηDC2 = (Σ DC1/Σ DC2) ∗ 100% (3)

ηDC3 = (Σ DC1/Σ DC3) ∗ 100% (4)

Theoretical estimations were verified experimentally with the help of the fault
injector. 100000 of records were inserted into SDDS file working in two modes,
first with single then with triple SC. The experiment was repeated 5 times and
the best and the worst values were dropped. Finally, average time for each of the
mode was calculated. It was 13.97s for the first and 14.02s for the other of the
modes. This meant that the triple SC worked 99.64% as efficient as the single
one what agreed with estimated 99.7% (Fig.3, 1k-bucket).

6 Conclusions

Split coordination is a crucial SDDS mechanism. As it was proved, its break-
down results in SDDS file damage and data corruption. The extensions of SDDS
architecture we have discussed here results in SDDS dependability.

The application of JCT and TMR allows the SDDS works correctly in spite of
any single SC fault. Proposed protocols were verified with software fault injector
presented here, the results proved their usability. Time and cost overhead is low.

As it was shown, the number of additional messages required for double or
triple SC is so small that it has no meaning compared to the number of messages
transferred during basic SDDS scheme activity. It becomes even smaller as the
bucket capacity increases. It is worth to mention that our analysis was focused
on new data inserts only. In real system with more types of operations performed
(search, delete, modify) decreasing SDDS efficiency seems to be even smaller.
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Abstract. The authors recommend to quantify the security of a com-
plex system by first quantifying the security of its components, and, in
a second step, by calculating the overall security according to a given
method. This paper summarizes the state of the art of security measures
for components and presents a new method for combining these measures
into the system’s security. The proposed method starts with an intuitive
graphical representation of the system. This representation is converted
into an algebraic expression using abstract AND, OR, and MEAN oper-
ators. Applying application-dependent semantics to these operators will
allow for an evaluation of the model.

1 Introduction

From a rigorous point of view, no computer system is secure. For instance, any
real-world message encryption may be successfully attacked because its key-
length is finite, because the implementation will probably contain errors and
vulnerabilities, and because some users may not chose their passwords carefully
enough.

However, it is obvious that some systems are more secure than others. Thus,
it would be interesting to have some kind of measure for the security of a given
system. Such a measure could be used for several purposes: First, to quantify the
risk of operating a system. For example, a bank might decide to provide an online
banking service only if the probability of a successful attack lies below a given
threshold. Second, besides security, there are other so-called non-functional prop-
erties like e.g. performance, costs, reliability, availability, safety, etc.. Optimizing
a system towards one of these properties may deteriorate other properties. For
example, making a system more secure by using encrypted data exchange will
certainly cost money and performance. Additionally, the encryption algorithms
may be implemented incorrectly which may make the system less reliable. Thus,
designing a system is always a tradeoff between several non-functional proper-
ties. To find an optimal tradeoff, these properties (including security) must be
quantified. Third, we might want to compare two designs/implementations with
respect to their security.

Obtaining a meaningful security measure for a given system or design is ob-
viously a difficult task. We therefore advocate a divide-and-conqueror approach
which is well known from the area of reliability/availability modeling. For this
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purpose, the system is mentally decomposed into several subsystems. Each of
these subsystems is then in turn again decomposed, until the system is broken up
into basic components (hardware and software) for which availability/reliability
values are known or can be measured, modeled or (in the worst case) guessed.

In this paper, we propose a similar approach for gaining information on the
security of a given system. For such an approach, we need:

– a meaningful measure for the system’s security, which can also be applied to
each of the system’s components,

– methods to obtain these measures for the basic components, and
– a method to compute the overall system’s security from the components.

This paper mainly contributes to the third issue (see Sec. 3-5). In the next
section, the state of the art concerning the first two issues is summarized, cate-
gorized, and discussed.

2 Security Measures and Metrics

Several measures for secure systems have been presented in the literature, in-
cluding adversary work factor [1], adversary financial expenses [2, 3], adversary
time [4] probability like measures [5, 6], or simply defining a finite number of
categories for secure systems.

We can discriminate these measures into the type of scale used (either discrete
or continuous scales) and the range of this scale (either bounded or unbounded).
Without loss of generality, we can map all bounded scales to the interval [0; 1]
and all discrete scales to continuous scales. Thus, if a modeling method supports
bounded continuous scales with bounds [0; 1], it will support all bounded scales.

Unbounded continuous measures include adversary work factor, time, and
expenses. For example, we could measure the security of a door by the mean
time the attackers need to break through this door. In the general case, the
time interval is not deterministic but randomly distributed following a certain
probability distribution. Reasonable distributions include:

– The exponential distribution, which can be used for repeated attacks where
neither the attackers nor the defenders can learn from unsuccessful attacks.
The exponential distribution is memoryless. Thus, the attackers’ success to
break into the system within the time interval [t, t+Δt] is independent on t.
The exponential distribution is defined by a single parameter called λ. The
security of the door, i.e. its mean time to successful attack is given by λ−1.

– The Weibull distribution can be used for systems which age due to attacks
or become more secure due to attacks, i.e. for systems with increasing or
decreasing strength. This behavior is modeled by an additional aging pa-
rameter α. For the special case α = 1, the Weibull distribution equals the
exponential distribution. If α is less than 1, the system becomes stronger
with time, if α is greater than 1 the system ages and becomes weaker.
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– The normal distribution can be used to model differently skilled attackers.
We assume that the average attackers’ time to break into the system is μ.
Additionally, the parameter σ controls the variance of the distribution.

Other distributions are also imaginable depending on the application do-
main. In particular, combinations are possible, e.g. a door whose mean time to
a successful attack and aging parameter are itself random variables which follow
a normal distribution.

As we work towards an application independent modeling method in this
paper, we can not narrow our scope to a certain measure. However, without
loss of generality, we can assume that all basic security measures of system
components are either from:

– a bounded continuous scale with bounds [0; 1], or
– an unbounded random variable with a given distribution function from which

a mean time to successful attack can be derived.

3 Security in Medieval Times

In the middle ages, security was obtained by building castles. To be useful in
times of peace, castles possess doors, which we assume are the only targets for
the attackers in times of war. In this section, we show how the security of a castle
with up to two doors can be computed under the assumption that the security
of each door is known.

2d

a) b) c) d)

d d d d
d

d

1 1

2

1

2

Fig. 1. Four different medieval castles

Castle a) in Fig. 1 is the simplest castle we can think of. It has a wall (depicted
as a circle), a treasure room (depicted by a dot) which is the attackers’ main
target, and a door d, which is the only way for the attackers to get into the
castle. Thus, the security of the castle equals the security of the door.

The wall of Castle b) has two doors d1 and d2, and we assume that d1 is
weaker than d2. The two doors allow the attackers to strike the castle at two
points simultaneously. Thus, the castle’s security will be weaker than or equal to
the security of d1 (We assume that attacking d2 may weaken the defense at d1).

In contrast, the security of castle c) may be stronger than the security of a
castle with only one door. Here, the attackers must break into two doors to get
into the treasure room. If we again assume that d1 is weaker than d2, the castle’s
security is at least as good as the security of d2.
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In the last example (castle d)), the attackers have two castles they may choose
to attack. We consider an attack to be successful if the attackers get into one of
the two treasure rooms. However, the distance of the castles is too large to allow
for a simultaneous attack of both castles. Thus, the security of both castles will
be in the interval [d1; d2].

4 Security of Systems with 2 Components

Formalizing the ideas from the previous section, the following pieces of informa-
tion are needed to compute the security of a (medieval or modern) system:

– a security Measure M
– the securities of its components (or doors): d1, d2, . . . , dn

– a function: d : Mn →M , which maps the security of the doors to the security
of the overall system

0 1

AND
MEAN

OR

min maxd d 0 1 432

min max

AND

MEAN

OR
d d

a) b)

Fig. 2. Three classes for possible operators: AND, MEAN, OR

To deal with the complexity of today’s systems, we assume that the function
s can be depicted as a term using different binary operators. A modeling method
for secure systems is thus constructed by first defining a security measure and
second defining a set of operators to combine the components’ measures. Fig. 2a
shows a generic operator for the bounded continuous case with interval [0; 1].
The operator maps 2 operands d1,2 ∈ [0; 1] to a single element d ∈ [0; 1]. If we
call dmin the smaller operand and dmax the larger operand, we can classify the
possible operations into:

– AND-Operations, if 0 ≤ d ≤ dmin

– MEAN-Operations, if dmin ≤ d ≤ dmax

– OR-Operations, if dmax ≤ d ≤ 1

If both operands are unbounded random variables with expected value dmin,
dmax ∈ [0;∞], the operators can be similarly classified. (see Fig. 2b). The
only difference is that the result of an OR-operation may be arbitrarily large
(dmax <= d).
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4.1 AND-Operations

An AND-Operation should be used for a system which resembles castle b) from
Fig. 1. In this case, the defenders have to defend both doors. Thus, the system
is as weak as or weaker than dmin.

If M is in [0; 1] and we assume that the event of breaking into a door is
statistically independent, we can calculate the security of an AND-system by
dAND = dmin · dmax which is the expected value of a probabilistic event that
both doors are successfully attacked. Assuming independency is pessimistic from
a defenders’ point of view. It can be used for systems in which the defenders
are weakened by being responsible for two doors at the same time whereas the
attackers can attack both doors at the same time without additional efforts or
costs. In the case of dependent doors (i.e. two doors are built using the same
technique for the lock), the number of possible vulnerabilities becomes smaller.
Thus, dependencies among the doors will strengthen the system in this case.

For the unbounded random case, we can compute the mean time to successful
attack of the AND-system if the probability distributions of both doors are
known. If d(t) is the probability that a door withstands an attack of length (or
effort) t we can compute dAND(t) of the system by:

dAND(t) = dmin(t) · dmax(t)

if the doors are statistically independent from each other. For example, if the life-
time of both doors is exponentially distributed with a mean λ−1

min,max, dAND(t)
is also exponentially distributed, because of

dAND(t) = dmin(t) · dmax(t) = e−λmint · e−λmaxt = e−(λmin+λmax)t,

Furthermore, if the lifetimes are deterministic, we can easily derive d =
min(dmin, dmax). Depending on the distributions, calculating dAND(t) and/or
deriving d may be impossible using closed-form expression. However, the result
may be approximated with Monte Carlo simulations in a possible tool imple-
mentation.

4.2 OR-Operations

For systems corresponding to castle c) in Fig. 1, OR-operations can be used.
To defend the castle, either dmin or dmax has to be defended. A corresponding
system is at least as strong dmax.

If the security measure is in [0; 1] (and again, breaking the doors are statis-
tically independent events), we calculate the security of an OR-system by:

dOR = 1− (1− dmin) · (1− dmax))

This time, dependencies amongst the doors will weaken the system. E.g. if
both doors are protected with a similar type of lock, lock-picking the second lock
might be much easier after successfully opening the first door.
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Under the assumption that the security of a door is measured by an un-
bounded random value (i.e. a mean time to successful attack), and that both
doors are attacked simultaneously (e.g. by long range weapons) dOR can be
computed via dOR(t) which is defined as:

dOR(t) = dmin(t) + dmin(t)− dmin(t) · dmin(t)

Again, the computation of the expected value diOR of dtotal(t) depends on
the probability distribution of dmin(t) and dmax(t), and can be obtained by
simulation in the general case. For the deterministic case, under the assumption
that the doors are attacked one after another, i.e. that the second door cannot
be attacked before the attackers successfully broke the first door, the security of
the castle can be computed by d = dmin + dmax.

4.3 MEAN-Operations

In some systems, the attackers may first choose from one of two doors and, in
a second step, attack the system as if it had only one door. This scenario was
introduced before as castle d) in Fig. 1. Clearly, such a system is stronger than
any system with two doors which can be attacked concurrently, but weaker than
any system where the attackers must break into two doors. Thus, its security
lies in the interval [dmin; dmax].

Therefore, it is straightforward to apply a mathematical mean operation to
model these kinds of systems, which has the same property (dmin ≤ d ≤ dmax).
If the attackers randomly choose a door with equal probability 0.5 for each door,
the security of the system is:

dMEAN =
dmin + dmax

2

which is the arithmetic mean of dmin and dmax. In a more general case, the
attackers might have some knowledge which doors are more vulnerable and prefer
the doors with a lower security. In other scenarios, the defenders will have some
information on the attackers’ preferences and be able to strengthen the doors
which are most likely to be attacked. In this case, it is more likely that the
attackers choose the strong door. Both scenarios can be taken into account for
using the general power mean Mp defined as:

dMEAN = Mp =
(

dp
min + dp

max

2
)
) 1

p

The parameter p determines the amount of knowledge the attackers and
defenders have. If p equals one, the power mean equals the arithmetic mean,
i.e. neither the attackers nor the defenders have an influence on which door is
chosen. If p becomes greater, the knowledge of the defenders increases and thus
the probability that the attackers choose the strong door. For example, if p is 2,
Mp becomes the root of squared means , which can be computed by:
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dMEAN = M2 = RSM =

√
d2

min + d2
max

2
In the extreme case, i.e. p→∞, the attackers always choose the strong door

and thus dMEAN = dmax.
If p is smaller than 1, the attackers know the castle well and the weak door is

more likely to be under attack. For example, if p is 0, Mp is called the geometric
mean G defined as:

dMEAN = M0 = G =
√

dmin · dmax

In the other extreme case, i.e. p→ −∞, the attackers will choose the weakest
door and thus dMEAN = dmin.

The mean operations previously proposed in the literature [5] include the
weakest link, which is equivalent to M−∞, the weighted weakest link, and pri-
orized siblings. In the latter two, the modeler specifies weights in [0; 1] which
determine the preferences of the attackers towards choosing a certain door. How-
ever, choosing the right weights is very difficult in practice, which might be an
advantage for the method proposed here, as it requires only one parameter: p.

5 Security of Systems with n Components

Fig. 3a shows a castle with eight doors and two treasure rooms. Again, we define
that the attackers are successful if they are able to get into one of the two
treasure rooms. A semantically equivalent representation of the system is shown
in Fig. 3b. This figure was created by starting at the doors, which now form
the leaves of a tree. Then, the nodes were repeatedly connected in pairs by an
OR, AND or MEAN gate, respectively. For system evaluation, we can replace
the abstract gates by some formal ones. E.g., for a simple evaluation, we replace
each OR function by a minimum-operator, each AND-function by the maximum
operator, and each MEAN-function by the arithmetic mean function.
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Fig. 3. Example of a castle with eight doors and corresponding system tree
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6 Summary

This paper presents a step towards modeling secure system by a divide and
conquer approach as it is widely known from the area of reliability/availability
modeling. For this purpose, basic security measures known from the literature
were enumerated and categorized in Sec. 2. Then, Sec. 3-5 explain the basic ideas
of how to compute a system’s security from the securities of its components.
Repeatedly, two security measures of components are combined into a single
value by binary operators.

This paper proposed several new binary operators for doing this and classifies
them into three groups: OR, AND and MEAN operators. It also shows that all
operators presented in previous works can be categorized in the same way.

References

1. Schuedel, G., Wood, B.: Adversary Work Factor as a Metric for Information
Assurance. In: Proc. of the New Security Paradigm Workshop. (2000)

2. Schneier, B.: Attack trees. Dr. Dobb’s Journal (1999)
3. Schneier, B.: Secrets and Lies – Digital Security in a Networked World. Wiley and

Sons (2000)
4. Jonsson, E., Olovsson, T.: A quantitative model of the security intrusion process

based on attacker behavior. IEEE Transactions on Software Engineering 23 (1997)
235–245

5. Wang, C., Wulf, W.: Towards a Framework for Security Measurement. In: Proc.
of the National Information Systems Security Conference (NISSC 97). (1997)

6. Kotenko, I., Mankov, E.: Experiments with Simulation of Attacks against Com-
puter Networks. In: Proc. of the International Workshop on Mathematical Meth-
ods, Models and Architectures for Computer Network Security. Volume 2776 of
Lecture Notes in Computer Science., Springer-Verlag (2003) 187–198

7. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: From Dependability to Security. IEEE
Transactions on Dependable and Secure Computing 1 (2004) 48–65

8. Tidwell, T., Larson, R., Fitch, K., Hale, J.: Modeling internet attacks. In: Proc.
of the 2001 IEEE Workshop on Information Assurance and Security. (2001) 54–59

9. Steffan, J., Schumacher, M.: Collaborative attack modeling. In: Proc. of the 17th
ACM Symposium on Applied Computing (SAC 2002). (2002) 253–259

10. Hunstad, A., Hallberg, J.: Design for securability - Applying engineering principles
to the design of security architectures. In: Proc. of the Workshop of Application
of Engineering Principles to System Security Design (WAEPSSD). (2002)

11. Voas, J., Ghosh, A., McGraw, G., Charron, F.: Defining an Adaptive Software
Security Metric from a Dynamic Software Failure Tolerance Measure. In: Proc. of
the 11th Annual Conference on Computer Assurance (COMPASS’96). (1996)

12. Levi, D.: Lessons learned in using live red teams in IA experiments. In: Proc.
of the DARPA Information Survivability Conference and Exposition. Volume 1.,
IEEE (2003) 110–119

13. Vaughn, R.B., Henning, R., Sira, A.: Information Assurance Measures and Metrics
- State of Practice and Proposed Taxonomy. In: Proc. of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03). Volume 9. (2003)



Increasing Dependability by Means of
Model-Based Acceptance Test inside RTOS�

Yuhong Zhao, Simon Oberthür, Norma Montealegre,
Franz J. Rammig, and Martin Kardos

Heinz Nixdorf Institute, University of Paderborn, Paderborn, Germany

Abstract. Component-based self-optimizing systems can adjust them-
selves over time to dynamic environments by means of exchanging
components. In case that such systems are safety-critical, the dependabil-
ity issue becomes paramountly significant. This paper presents a novel
model-based runtime verification to increase dependability for the self-
optimizing systems of this kind. The proposed verification approach plays
a role of an alternative acceptance test transparently integrated in RTOS,
named model-based acceptance test. The verification is performed at the
level of (RT-UML) models representing the systems under consideration.
The properties to be checked are expressed by RT-OCL where the un-
derlying temporal logic is restricted to either time-annotated ACTL or
LTL formulae. The applied technique is based on the on-the-fly model
checking, which runs interleaved with the execution of the checked sys-
tem in a pipelined manner. More specifically, for ACTL formulae this
means an on-the-fly solution to the NHORNSAT problem, while in the
case of LTL formulae, the emptiness checking method is applied.

1 Motivation

Mechatronic systems represent a special class of complex cross-domain embedded
systems. The design of such systems involves a combination of design techniques
and technologies used in the mechanical and electrical engineering as well as in
computer science. The increasing complexity, even emphasized by the system
heterogenity, is one of the major problems in today’s mechatronic industry (e.g.,
automotive industry). To deal with this complexity one approach is to build
mechatronic systems in a self-reflecting, self-adapting and self-optimizing way.
In the Collaborative Research Center 614 “Self-optimizing concepts and struc-
tures in mechanical engineering” we are investigating such an approach. The
main focus is put on self-optimizing applications with highly dynamic software
components which are optimized and even replaced at runtime. Moreover, the
considered applications run under real-time constraints (see Fig. 1). As failures
of these technical systems usually have severe consequences, dependability is of
� This work is developed in the course of the Collaborative Research Center 614 -

Self-Optimizing Concepts and Structures in Mechanical Engineering - Paderborn
University, and is published on its behalf and funded by the Deutsche Forschungs-
gemeinschaft.
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paramount importance. This puts new demands on verification of such complex
and highly dependable systems.

For real-time systems with a dynamic task set, acceptance tests with respect
to schedulability are state of the art in RTOS. In reconfigurable and depend-
able systems the safety and consistency after component replacement has to be
checked as well. This extends the classical area of on-line acceptance testing.
Traditionally in real-time systems one tries to execute as many checking activi-
ties as possible off-line. In systems of dynamic structure this would mean that all
components that may be used in a substitution have to be checked (e.g., using
conventional model checking) to be correct in an arbitrary context, i.e., in the
most general context. Of course this very general correctness requirement would
result in highly over-dimensioned and thus inefficient components, what would
be a contradiction to the overall objective of self-optimization. Therefore we de-
cided to develop a novel technique for on-line model checking context-specific
parts of components at runtime. This verification technique is presented as an
acceptance test service of the underlying RTOS. The real-time restrictions make
it necessary to perform the on-line model checking at the level of (UML) models,
to assume that the models are implemented correctly, and to assume that any
non context specific internals of components have been verified off-line.

2 Related Work

A dependable operating system has to be robust (error free) and must support
fault tolerance. Thus, it has to deal with error detection in the temporal and
the value domains. Classical methods for error detection are: monitoring task
execution times, double execution of tasks and watchdogs [1]. Furthermore de-
pendable real-time operating systems must provide a predictable service to the
application task. The worst case administrative overhead of the operating system
must be known so that the temporal properties of the behavior of the complete
host can be determined analytically. To make such an analysis, the real-time op-
erating system must be very careful in supporting dynamic services like dynamic
task creation [2]. Reconfigurable systems demand task creation at runtime. As
the main responsibility of any operating system is the activation of tasks, the
scheduling policy is of high importance. In addition, overload conditions have
to be considered. Scheduling schemes for overload are divided into: best effort,
guarantee and robust. The last class, suitable for hard real-time systems, consid-
ers different policies for task acceptance and for tasks rejection. Whenever a task
enters a system, i.e., implied by the reconfiguration, an acceptance test verifies
the schedulability of the new task set based on the worst case assumption. If
the new set is found schedulable, the new task is accepted in the ready queue;
otherwise, one or more tasks are rejected based on a different policy [3]. Before
a safety critical system can be put into operation with a RTOS, it has to pass a
rational analysis. Unfortunately, fully automatic verification environments that
cover the complete system from the high level specification to the hardware are
beyond the current state of the art [1].
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3 Case Study

Let’s take a typical example (Fig. 1) to show how the model-based runtime
verification mechanism is applied to self-optimizing systems with safety-critical
requirements. Suppose a real-time application contains four components A, B, C
and D running in parallel. Now, due to the change of environment, a substitution
request is passed to the RTOS at time point tr that the component C should be
replaced by component E at the td’th time step after tr. Before the replacement is
really done at time point tr +td, the RTOS will request the model-based runtime
verification service to check if the system still keeps safety and consistency after
the replacement. According to the response from the verification service, Y es,
No or Unknown, the RTOS will decide to accept or reject the requirement for
substitution.

Substitution

?

:Component

E

:Component

A
:Component

B

:Component

D
:Component

C

Model-based Runtime

Verification Service

Information on System Models,

Properties, Current State and

Timing Constraint.

Information on System Models,

Properties, Current State and

Timing Constraint.
Real-time

Application

RTOS

Yes/No/UnknownYes/No/Unknown

Substitution

?

:Component

E

:Component

E

:Component

A
:Component

B

:Component

D
:Component

C

Model-based Runtime

Verification Service

Information on System Models,

Properties, Current State and

Timing Constraint.

Information on System Models,

Properties, Current State and

Timing Constraint.
Real-time

Application

RTOS

Real-time

Application

RTOS

Yes/No/UnknownYes/No/Unknown

Fig. 1. Case study

Obviously, the substitution of the component E for the component C will
cause the environment of each component in the system to be changed at run-
time directly (i.e., B, D and E) or indirectly (i.e., A). For component-based
systems, each component is verified correct under the given assumptions to the
environment of the component. As in our case study, the environment of each
component in the system might be changed dynamically due to the runtime re-
configuration. The following question arises:“Does the changed environment still
satisfy the required assumption?”. To answer this question, traditional model
checking unfortunately is not suitable any more: on the one hand, it is difficult
to predict how and when the reconfiguration will happen; on the other hand,
it is difficult to check the safety and consistency of the reconfiguration within
the given timing constraint. In practice, it is irrealistic to check off-line all the
possible cases of the reconfigurations due to the huge time and space complexity.
To our knowledge, the state of the art runtime verification [4, 5, 6] is not suitable
for our needs. On the one hand, only linear temporal logic formulae as well as
trivial assertions and invariants can be checked by tracing the program execu-
tion. On the other hand, potential errors can be detected only when they have
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really happened. Due to the above reasons, we propose a model-based runtime
verification mechanism working as an acceptance test of RTOS, by which we
are able to on-line check the safety and consistency of self-optimizing systems
at model level so that the potential errors can be predicted and thus avoided in
time before they really happen.

4 Model-Based Acceptance Test

4.1 Overview

Note that our runtime verification service is working at model level. That is,
both the models and the properties to be checked must be known beforehand.
We can achieve this by applying the design technique [7] presented within the
Collaborative Research Center 614 to design the self-optimizing systems based
on the modeling concepts of UML 2.0 with the CASE tool suite Fujaba1. As a
result, the architecture of such a system is specified by a component diagram
together with the definitions for ports and connectors; the overall behavior of the
system is specified by UML state machines with real-time extension, called real-
time UML statecharts [8], associated to each component, port and connector.
In addition, the properties required to each component are specified in real-time
OCL [9] at the design phase by developers.

In order to apply the model checking technique in an efficient way, we trans-
form the real-time UML models of the system and the associated real-time OCL
constraints into Kripke structures and Büchi automata respectively, and then
store them in a repository in advance. Thus, whenever a verification request
from the RTOS is received (Fig. 1), the verification service can fetch the related
Kripke structures and Büchi automata from the repository and immediately
start the on-the-fly verification. For this purpose, the real-time UML statecharts
and the related real-time OCL constraints exported from the Fujaba Tool Suite
are translated into the corresponding AsmL [10] models and time-annotated
ACTL/LTL formulae (including trivial assertions and invariants) respectively.
Then, the Kripke structure of each AsmL model is derived by applying to the
AsmL model the exploration functionality of the AsmL tool suite and the time-
annotated ACTL/LTL formulae are transformed into Büchi automata. The
time-annotated ACTL formulae are just RTCTL (Real-time Computation Tree
Logic) [11] formulae with only universal quantifiers allowed. The time-annotated
LTL is defined in a similar way. However, to avoid the fairness conditions caused
by the eventuality operators, we require that the eventuality operators must be
bounded ones if any. In this way, the bounds on the eventuality operators prevent
indefinite postponement.

The self-optimizing operation may cause the system to be reconfigured at
runtime in many ways. This paper mainly concerns such a case that one com-
ponent is replaced with another one. Obviously, the replacement may change
the environment of every active component in the system directly or indirectly.
1 www.fujaba.de
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On the other hand, the only constraint on the components replaceable with each
other is that they must follow the compatible protocols, which means that the
protocol of the new one must be the same as or the refinement of the old one.
Therefore, it is quite necessary to invoke the runtime verification service to make
sure that such a reconfiguration is really safe and consistent.

Without loss of generality, suppose that a real-time system model M contains
n components C1, C2, · · · , Cn (n ≥ 2) working in parallel and is requested at time
point tr to replace the component Ck (1 ≤ k ≤ n) with another component C′

k at
time point td relative to tr, denoted as M ′ = M(C′

k/Ck)@(tr � td). Accordingly,
let B′ be the new property automaton to be satisfied by M ′. Consequently, the
goal of our runtime verification is to check within the time interval td starting
from tr if M(C′

k/Ck)@(tr � td) |= B′.
To do this, we adopt on-the-fly model checking in a top-down way for both

ACTL and LTL formulae so that a pipelined working manner can be applied
between the verification service and the real-time application to gain more execu-
tion time for verification. Simply speaking, we do on-the-fly ACTL model check-
ing by checking the simulation preorder between M ′ and B′ incrementally [12].
That is, the decision problem of checking simulation preorder is converted into
the satisfiability problem for weakly negative Horn formulae, called NHORNSAT
problem. The basic idea is to encode the properties of the simulation relation
between M ′ and B′ into a type of CNF (Conjunctive Normal Form) formula
Γ , i.e., weakly negative Horn formula, and then prove on-the-fly that the CNF
formula Γ is satisfiable in polynomial time. [13] presents an efficient on-the-fly
algorithm that receives one Horn clause at a time and allows fast queries about
the satisfiability of the whole formula so far received. Similarly, a dualization
of the algorithm in [13] also gives an efficient linear time on-the-fly solution to
the NHORNSAT problem [12]. As for the on-the-fly LTL model checking, we
follow the emptiness checking technique [14]. However, we need some extensions
to make the above on-the-fly model checking cooperate seamlessly with the ap-
plication via RTOS as intermediary in a pipelined manner. Due to the limited
space, the details are omitted here, but can be found in [15].

Of course, to make our model-based runtime verification feasible, the imple-
mentation of each component in the system must conform to the correspond-
ing model of the component. In our design environment this is automatically
achieved by using Fujaba to generate code directly from the design model. There-
fore, the implementation of a component is the refinement of the model of the
component or, put it another way, the model is the abstraction of the correspond-
ing implementation. Thus, an ACTL (LTL) formula being true at the model
level implies that it is also true at the implementation level, while it being false
at the model level does not imply that it is also false at the implementation
level. That is, our runtime verification is conservative due to its being applied
to model level. However, the benefit of predicting and avoiding errors is gained
just due to its being applied to model level. Note that we implicitly assume that
the components under consideration own finite state machines and that they
have been prechecked correct under the given assumptions on the environments
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they depend on during the design phase. In addition, the processing speed for
verification is assumed to be faster enough than that for application.

4.2 Pipelined Working Principle

It is easy to see that the timing constraint is the main barrier for our model-based
runtime verification. To leap over this barrier, we adopt a pipelining technique
to gain more execution time for verification. The sequence diagram in Fig. 2
illustrates the cooperation between the verification service and the real-time
application. More precisely, the pipelined working mode is done between the
RTOS and the verification service and thus transparent to the application.

Fig. 2. Pipelined working principle

Whenever the RTOS receives a component substitution request from the ap-
plication, it will invoke the verification service to check if the substitution is
legal or not. The answer must be given within the required timing constraint,
say td, in our example. If lucky, the verification may finish the checking task
before the timing constraint is over. Unfortunately, it might be not the case
for more complex systems. Therefore, it is quite possible that, within td time
units, only the next t1 time steps starting from the initial states are checked
Y es, which means that the substitution is safe up to the coming t1 time steps.
In this case, the RTOS does allow the application to make the substitution
and execute forward t1 time steps. During this period, the verification con-
tinues to check, say the next t2 − t1 time steps. Accordingly, the application
can then go ahead the next t2 − t1 time steps. Note that at each time point
td + ti (i ≥ 1) with respect to tr, the application can report its current state,
say si, to the verification. Based on this runtime information, the verification
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can locate in the system model the corresponding state with respect to si and
thus avoid checking the whole state space of the system model by only check-
ing a sufficient sub-space reachable from this specific state mapped from si. In
this way, the computation load of the verification can be reduced to a greater
extent.

The above process is repeated. If to some time point an error is detected,
then the verification can be terminated with the answer No to the RTOS. An-
other situation occurs when at some time point, say td + tj+1 relative to tr, the
checking result is still positive, but the time interval tj+1 − tj is less or equal
to the pre-defined time constant tc, which denotes the minimum time steps that
the verification must keep ahead of the application. In this case the verification
process has to be stopped and Unknown is reported to the RTOS. Note that
these two cases only mean that the errors might happen in the future, because
we do not know if the errors are spurious or not. To avoid that the errors really
happen, we have to conservatively choose to reject the substitution request and
inform the application that an error might emerge in the future. That is, an ex-
ception will be raised by the RTOS together with a counterexample if necessary.
It is possible to let the application to handle the predicted failure in this case,
because failure recovery is integrated into the self-optimizing application itself.
Finally, if a sufficient sub-space that covers this actual run of the real-time ap-
plication is successfully checked, then we can report definitely Y es to the RTOS
and terminate the verification process. From now on, the application can guar-
antee to execute safely and consistently after the substitution. In fact, Fig. 2 just
illustrates an ideal pipelined cooperation between the application and the veri-
fication via the RTOS as intermediary without considering any implementation
details.

5 Conclusion

This paper presents our ongoing research on model-based acceptance test by
means of runtime verification at model level, which will be applied to the self-
optimizing systems. In fact, our model-level runtime verification can be seen as
an extension to the state of the art runtime verification. Our runtime verification
can check time-annotated ACTL and LTL properties, but is not really limited
to them. By introducing the pipelined cooperation between the verification and
the application via the RTOS as intermediary, we can check if a component
substitution still keeps the safety and consistency at runtime, provided that a
constraint on the checking time is required. Up to now, we have not measured
yet what the performance of our runtime verification looks like. Nevertheless,
experience demonstrates that the properties to be checked in practice are usually
not very complex. Therefore, the size of the Büchi automata derived from these
properties tends to be reasonable, what makes our model-based acceptance test
applicable to the self-optimizing systems.
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A Cache Oblivious Algorithm for Matrix
Multiplication Based on Peano’s

Space Filling Curve

Michael Bader and Christoph Zenger
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80290 München, Germany

Abstract. Cache oblivious algorithms are algorithms that are designed
to inherently exploit any kind of cache memory—regardless of its size or
architecture. In this article, we discuss a cache oblivious algorithm for
matrix multiplication. The elements of the matrices are stored according
to a Peano space filling curve. A block recursive approach then leads to
an algorithm where memory access to matrix elements is strictly local.
Consequently, the algorithm shows several interesting properties consid-
ering cache performance, prefetching strategies, or even parallelization.

1 Introduction

One of the current problems concerning the efficient use of available computing
power is the increasing gap between processor speed and the speed of memory
access. To overcome this speed difference, caches are used to accelerate the ac-
cess to frequently used data. This poses an additional demand when developing
software—algorithms that do not consider the presence of cache memory will
not be able to use a satisfying portion of the available performance. In fact,
very often the performance achieved by straightforward algorithms is rather
poor.

In linear algebra, this situation has been – rather successfully – tackled by
libraries such as BLAS, LAPACK, and similar. Heavily optimized, cache aware
implementations, such as ATLAS[8], GotoBLAS[5], or even vendor supplied li-
braries, are consistently competing for optimal performance on different hard-
ware platforms. However, in addition to cache optimization, processor specific
instruction sets and code optimizations have to be taken into account plus lots
of additional hardware-specific aspects. This has made ATLAS, for example,
turn to a self-tuning approach, where an optimal implementation for specific
hardware is obtained by a generic optimization process that can pick the best
implementation or algorithm from several options.

This makes it quite hard for any new implementation to come up and try
to beat the runtime of the existing libraries. Thus, in this paper we will set
our sights lower, and concentrate on only one aspect of the optimization queue:
locality of data access, which leads to inherently cache efficient implementations.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1042–1049, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Peano Curves and Data Locality

Space filling curves have become a valuable tool in many applications, where
data locality is an issue. A well known example in scientific computing is the
parallelization of data obtained from the discretization of partial differential
equations. In this context, space filling curves have quasi-optimal locality prop-
erties[9]. In the following, we will demonstrate how to exploit these locality
properties in the context of matrix multiplication.

2.1 A Stricty Local Scheme for 3 × 3-Matrices

Neither the commonly used schemes to store matrices – row-major and column-
major –, nor a straightforward implementation of the matrix multiplication
such as

for i from 1 to n do
for j from 1 to n do

C[i,j] := 0;
for k from 1 to n to

C[i,j] := C[i,j] + A[i,k] * B[k,j];
end do;

end do;
end do;

is motivated by aspects of data locality. Row-major and column-major storage
allow the fastest access to single element in a matrix, and the nested for-loops in
the given algorithm are probably the most simple solution when using the most
common programming languages.

To optimize locality of data access, we should rather start from a more neutral
formulation of the algorithm, such as the following:

// matrix C is assumed to be initialized
for all triples (i,j,k) in {1..n}x{1..n}x{1..n} do

C[i,j] := C[i,j] + A[i,k] * B[k,j];
end do;

With absolutely no constraints to execution order, we can start to design an
execution order that ensures optimal locality of data access. Let us consider
the following matrix multiplication, where all three matrices are ordered in an
improved way. ⎛

⎝a0 a5 a6
a1 a4 a7
a2 a3 a8

⎞
⎠

︸ ︷︷ ︸
=: A

⎛
⎝ b0 b5 b6

b1 b4 b7
b2 b3 b8

⎞
⎠

︸ ︷︷ ︸
=: B

=

⎛
⎝ c0 c5 c6

c1 c4 c7
c2 c3 c8

⎞
⎠

︸ ︷︷ ︸
=: C

(1)

To find a suitable order of execution, we use a graph representation. The nodes
of the graph are given by the triples (p, q, r), where each triple represents an
operation cr := cr + ap ∗ bq. Two nodes of the graph will be connected by
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5 41
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4 33
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3 47

3 38

2 28

2 17

2 06

Fig. 1. Graph representation of the operations of the 3×3 matrix multiplication given
in equation (1)

an edge, if data access remains local: the difference between two indices must
not be larger than 1 in any of the components p, q, and r.

The respective graph is shown in figure 1. It leads immediately to an optimal
order of execution. While this result might not seem to be too extraordinary, it
is remarkable in the sense that it is not possible to obtain a similar scheme for
2× 2-matrices!

In the following, we will extend this scheme to the multiplication of any
two matrices of odd dimensions. Therefore, we have to extend the mapping of
the matrix elements to a more general case, and afterwards introduce a block
recursive scheme for the multiplication.

2.2 Mapping Matrix Elements to Memory

The indexing scheme in equation (1) was, of course, motivated by a Peano space
filling curve. We will now introduce a general scheme that uses iterations of a
Peano curve to map matrix elements to memory. Figure 2 illustrates the recur-
sive construction principles for the Peano curve. Note the four different patterns
marked as P , Q, R, and S. The patterns will be used to characterize the num-
bering of a matrix-block:

P

P

Q QS

R

P
P R

P

Fig. 2. Recursive construction of a Peano curve (first two iterations)

– in a P -numbered block, the numbering starts in the top-left corner, and ends
in the bottom-right corner;

– a Q-numbered block is numbered from the top-right to the bottom-left
corner,
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– an R-numbered block is numbered from bottom-left to top-right, and
– an S-numbered block is numbered from bottom-right to top-left.

Then the numbering scheme can be described in terms of a grammar, as illus-
trated in figure 3. Note that the numbering scheme is not restricted to square
matrices as might be suggested by figure 2. Every block will be split in its larger
direction (rows or columns). For odd dimensions, any block with more than 7
rows or columns will be decomposed into three blocks of, again, odd dimensions
(not necessarily of equal size). Thus, we can construct a respective block num-
bering where the smallest blocks have at most m rows and n columns—where
m, n ∈ {3, 5, 7}. Matrices of even dimensions will have to be padded by a zero
column or row (or both).

P P P

P

P
Q

R

P
Q
P
Q

Q S QQ

Q R

R P R

R
S
R

R

S

S Q S

S
R
S

S

Fig. 3. Splitting and numbering schemes of matrix blocks. The arrows indicate the
positions of the first and last element, respectively.

3 Block Recursive Multiplication

Block-recursive multiplication of matrices is a quite well-known approach to
achieve cache-efficient algorithms [2, 3, 6]. In our case, the matrix blocks for mul-
tiplication naturally derive from the block numbering scheme. However, there
are three characteristic matrix dimensions involved, where the recursive split-
ting could be applied. For example, the multiplication of two P -numbered matrix
blocks onto a P -numbered target matrix can lead to either of the following three
block multiplications: ⎛

⎝P
Q
P

⎞
⎠P =

⎛
⎝P

Q
P

⎞
⎠ −→

⎧⎨
⎩

PP = P
QP = Q
PP = P

(2)

(
P R P

)⎛⎝P
Q
P

⎞
⎠ = P −→

⎧⎨
⎩

PP = P
RQ = P
PP = P

(3)

P
(
P R P

)
=
(
P R P

)
−→

⎧⎨
⎩

PP = P
PR = R
PP = P

(4)

Consider a block multiplication AB = C, and let m be the number of rows of
A and C, k be the number of columns of A (and rows of B), and n be the
number of columns of B and C. In the block numbering scheme, the matrix
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blocks will be split in the largest dimension first. Hence, to make the block
multiplication compatible with the block numbering, we again have to divide
the largest dimension first:

– if m ≥ n and m ≥ k, we will adopt scheme (2);
– if n > m and n ≥ k, we will adopt scheme (3);
– if k > m and k > n, we will adopt scheme (4).

From figure 1, we know that a multiplication on three P -numbered blocks (PP =
P ) always starts with the elements in the three respective top-left corners of the
matrices, and ends with the elements in the respective bottom-right corners.
This coincides with the numbering schemes. Thus, for the block multiplication
QP = Q, the second block multiplication in scheme (2), we have to make sure
that

– there exists a multiplication scheme similar to that given in figure 1, and
– this scheme runs from the top-right corners of the Q-blocks towards their

bottom-left corners, while
– the P -block is traversed from bottom-right to top-left, i.e. in the opposite

direction of its numbering.

Then, the QP = Q multiplication neatly fits between the two PP = P schemes:
no index jump will occur even during the transition between the two block
multiplications. Thus, the elements of all block matrices will be traversed in a
purely local manner: after an element is accessed it will either be directly re-used,
or one of its direct neighbours will be used next.

In the schemes (2) to (4) for the PP = P multiplication, three further possible
combinations for the multiplication of differently numbered blocks come up:
QP = Q, RQ = P , and PR = R. Of course, these can again lead to new
possible combinations. A careful examination of all possible scenarios leads to a
closed system of only eight possible situations. These are listed in table 1. For
every combination, a scheme similar to that given in figure 1 can be derived. In
fact, the schemes are identical up to the fact that the execution order can be
reversed for one, two, or all three of the matrices. Table 1 lists the execution
order for the eight different schemes indicating a ’+’ for the original execution
sequence given in figure 1, and indicating a ’−’, if the reverse sequence is applied.

Table 1. Possible combinations of block numberings during the block recursive matrix
multiplication and their respective execution order

AB = C PP = P PR = R QP = Q QR = S RQ = P RS = R SQ = Q SS = S

A + − + − + − + −
B + + − − + + − −
C + + + + − − − −

Finally, the schemes (2) to (4) have to be formulated for all eight combina-
tions given in table 1. For all resulting schemes, we again find that no index
jumps occur when leaving one block multiplication and entering the next.
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4 Implementation and Properties of the Algorithm

Algorithm 1 shows a prototypical recursive implementation of the PP = P block
multiplication of three matrices of size m× k, k × n, and m× n. The variables
idxA, idxB, and idxC are considered to be global variables, and contain the
(Peano) index of the currently accessed matrix elements. These variables will
only be changed by increment and decrement operations. During the multiplica-
tion of the atomic blocks, this results from the execution order given in 1. The
final algorithm consists of eight nested recursive procedures: one for each of the
schemes listed in table 1. The algorithm has the following properties:[1]

Algorithm 1. Block multiplication of three P -numbered blocks
PPP_mult(int m, int k, int n) {

if (m < 9 && k < 9 && n < 9) {
// multiplication of atomic blocks

}
else if ( (m > k) && (m > n) ){

PPP_mult( subblocksize(m,0), k, n); idxA++; idxC++;
QPQ_mult( subblocksize(m,1), k, n); idxA++; idxC++;
PPP_mult( subblocksize(m,2), k, n);

}
else if ( (m <= k) && (k > n) ){

PPP_mult(m, subblocksize(k,0), n); idxA++; idxB++;
RQP_mult(m, subblocksize(k,1), n); idxA++; idxB++;
PPP_mult(m, subblocksize(k,2), n);

}
else {

PPPmult(m, k, subblocksize(n,0)); idxB++; idxC++;
PRRmult(m, k, subblocksize(n,1)); idxB++; idxC++;
PPPmult(m, k, subblocksize(n,2));

}
}

– The matrix indices are only changed by increment or decrement operators.
This ensures that we will usually stay with the current memory block (a
cache line, for example).

– For any p, any sequence of p3 floating point operations will affect a range
of only O(p2) contiguous elements in each matrix. This is obviously the
optimal ratio we can achieve in the long range. It does not only guarantee
optimal re-use of data, but also makes it possible to predict precisely when
neighbouring blocks of memory will be accessed.

With these properties, the number of cache line transfers can, for example, be
computed for a so-called ideal cache [4]—a cache that will always make the best
choice when removing cache lines from the cache. The number of transfers is
then of order O

(
N3

L
√

M

)
, or more precisely T (N) ≈ 6

√
3 N3

L
√

M
, where N is the
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size of the square matrices, L is the length of the cache lines, and M is the
number of lines in the cache. This is also asymptotically optimal [7].

5 Performance

For performance tests, two simple code optimizations were applied:

– To reduce the number of recursive calls, several levels of recursion can be
combined. For example, if a matrix can be divided in 3 × 3 subblocks, the
subsequent three recursive steps lead to a sequence of 27 recursive calls—
these can be coded directly.

– To speed up recursive calls, parameters and local variables should be avoided.
There are, in fact, no essential parameters that can not be turned into global
or static variables.

As we did not attempt any processor specific optimizations so far, it is difficult
to provide a fair quantification of our algorithm’s performance in comparison to
that of standard libraries. In order to suppress effects that result from proces-
sor specific optimization, we chose to compare our algorithm with the default
kernel of Intel’s MKL1 (Math Kernel Library). The default kernel does not
use SSE instructions, for example, which makes it applicable on any Pentium
processors. The code for the Peano multiplication was also compiled without
using processor specific instructions. The achieved MFLOPS rates are given in
figure 4. The Peano based implementation exceeds the generic MKL by a factor
of about 3%. Of course, this can by no means be regarded as a serious compar-
ison of performance. However, it should at least give a rough impression of the
real-world performance that can be achieved by the Peano algorithm.
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Fig. 4. MFLOPS of the Peano multiplication in comparison to Intel’s MKL (generic
library, no SSE instructions allowed) on a Pentium 4 processor (3.4 GHz)

1 Intel Math Kernel Library 7.2, http://www.intel.com/software/products/mkl/
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6 Conclusion

We have presented a cache oblivious algorithm for the multiplication of full ma-
trices. The algorithm has a completely local access pattern to the stored matrix
elements. Together with the block recursive structure this leads to asymptoti-
cally optimal performance with respect to re-use of data and number of cache line
transfers. Apart from its potential to cache efficient implementations, the algo-
rithm should also be especially qualified for parallel scenarios—both, for shared
memory and distributed memory architectures. At least to some extent, the lo-
cality properties might also be exploitable for sparse matrices, which together
with the parallelization outlines our intended future work in this field.
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Abstract. Since the last decade, most of the supercomputer architec-
tures are based on clusters of SMP nodes. In those architectures the
exchanges between processors are made through shared memory when
the processors are located on a same SMP node and through the net-
work otherwise. Generally, the MPI implementations provided by the
constructor on those machines are adapted to this situation and take
advantage of the shared memory to treat messages between processors
in a same SMP node. Nevertheless, this transparent approach to exploit
shared memory does not avoid the storage of the extra-structures needed
to manage efficiently the communications between processors. For high
performance parallel direct solvers, the storage of these extra-structures
can become a bottleneck. In this paper, we propose an hybrid MPI-thread
implementation of a parallel direct solver and analyse the benefits of this
approach in terms of memory and run-time performances.

1 Introduction and Background

Solving large sparse symmetric positive definite systems Ax = b of linear equa-
tions is a crucial and time-consuming step, arising in many scientific and engi-
neering applications. The authors presented in previous works [2, 3, 4] an efficient
static scheduling based on a mixed 1D/2D block distribution for a parallel su-
pernodal version of sparse Cholesky factorization with total local aggregation on
processors. Parallel experiments, using MPI communications, were run on IBM
SP machines at CINES (Montpellier, France) on a large collection of sparse ma-
trices containing industrial 3D problems that reach 1 million of unknowns, and
have shown that our PaStiX software compares very favorably to PSPASES [6].

Nevertheless, a major memory bottleneck for our parallel supernodal factor-
ization scheme is caused by this local aggregation mechanism. The local aggre-
gation mechanism is due to the fact that during the factorization of some local
column-blocks, a processor has to update several times a block Aij mapped on
another processor. Indeed, it would be costly to send each contribution for a same
non-local block in separated messages. As illustrated on figure 1, the so-called
“local aggregation” variant of the supernodal parallel factorization consists in

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1050–1057, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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k1

k2

j

i
Aij

On P1

On P2

AUBij

Fig. 1. Local aggregation of block updates. Column-block k1 and k2 are mapped on
processor P1, column-block j is mapped on processor P2. Contributions from the proces-
sor P1 to the block Aij of processor P2 are locally summed in AUBij .

adding locally any contribution for a non-local block Aij in a local temporary
block noted AUBij (aggregated update block) and sending it once all the contri-
butions destinated to the non-local block Aij have been added.

For very large matrices from 3D problems, the highest peak of memory con-
sumption due to the storage of aggregated block contributions during the fac-
torization amounts several time the local factorized matrix part on a processor.
Thus in the full MPI version of our parallel solver, we introduced an optimized
communication mechanism to control the overhead of memory while loosing ac-
ceptable run-time performance [4].

Until now, we have discussed the parallelization in a full distributed mem-
ory environment. Each processor was assumed to manage a part of the matrix
in its own memory space, and any communication needed to update non local
blocks of the matrix was considered under the message passing paradigm. Nowa-
day, the massively parallel high performance computers are generally designed
as networks of SMP nodes. Each SMP nodes consists in a set of processors that
share the same physical memory. In [5], we have studied the improvement of our
static scheduling to take into account the communication modeling of multilevel
memories on network of SMP nodes. However, on those SMP-nodes architec-
tures, to fully exploit shared memory advantages, a relevant approach is to use
an hybrid MPI-thread implementation.

In the framework of direct solver, this approach aims at solving 3D problems
with more than 10 millions of unkowns, which is now a reachable challenge with
these new SMP supercomputers. The rational that motived this hybrid imple-
mentation was that the communications within a SMP node can be advanta-
geously substituted by direct accesses to shared memory between the processors
in the SMP node using threads. As a consequence, the MPI communication are
only used between processors that host threads from different MPI processes.

This kind of approach has been used in WSMP [1] which is a the parallel
multifrontal solver. The main difference between WSMP and our work is on
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the way to exploit parallelism inside the SMP nodes. In WSMP approach, the
parallelism inside SMP nodes is automatically exploited using multi-threaded
BLAS. In our approach, we use our static regulation algorithms to decide exactly
how the factorization of a supernode has to be splitted in elementary BLAS tasks
between threads.

The remainder of the paper is organized as follows: the section 2 describes
the main features of our method. We provide some experiments in section 3. At
last, we give some conclusions in section 4.

2 Overview of Our Hybrid MPI-Thread Implementation

As said in the previous section, the local aggregation mechanism is inherent to
the message passing model used in our parallel factorization algorithm. Thus, in
an SMP context, the simplest way to lower the use of aggregate update blocks is
to avoid the message passing communications between processors on a same SMP
node. In order to avoid these intra-node communications, we use threads that
share the same memory space. In an SMP node, a unique MPI process spawns a
thread on each processor. These threads are then able to address the whole mem-
ory space of the SMP node. Each thread is therefore able to access the matrix
part mapped on its MPI process. By this way, though the computational tasks

MPI−SHM

MPIMPI

Another SMP node

Processor 1

Processor 2

AUB

AUB
AUB

Fig. 2. Processor 1 and 2 belong to the
same SMP node. Data exchanges when
only MPI processes are used in the par-
allelization.

Another SMP node

Thread 1

Thread 2

AUB

MPI

Shared memory

Fig. 3. Thread 1 and 2 are created by one
MPI process. Data exchanges when there
is one MPI process per SMP node and one
thread per processor.
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are distributed between the threads, any update of the matrix part of the MPI
process is directly performed in the local matrix. The communication between
MPI processes still uses the local aggregation scheme we described earlier.

This hybrid MPI-thread strategy is pictured on figures 2 and 3. The
figure 2 sketches the situation when each processor is assigned a MPI process. In
this case, all the communications are performed using MPI. The extra-memory
needed to store the aggregate update blocks (AUB) is maximal since each MPI
process communicates their updates to any other MPI process through AUBs.
The figure 3 shows the situation when only one MPI process is used per SMP
node and inside each SMP node a thread is assigned on each processor. In this
case, all the threads on a SMP node share the same memory space and update
directly any column block assigned to their MPI process; in addition, the local
aggregation is made globally for the whole set of column blocks mapped on the
MPI process. This implies that the amount of extra-memory required for the
storage of the AUBs depends only on the number of MPI processes. Therefore,
the additional memory needed to store the AUBs is all the more reduced that
the SMP node are wider (in terms of number of processors).

3 Experiments

All of the algorithms described in this paper have been integrated in the PaStiX
software [2, 3], that make use of the static mapping and sparse matrix ordering
software package Scotch [8] version 3.4.

The parallel experiments were run on an 28 NH2 nodes [IBM SP3] (16 Power3+
with 16Go per node) located at CINES (Montpellier, France) with a network
based on a Colony switch. We have also used 2 SMP nodes [IBM SP4] (32-ways
Power4+ with 64Go per node) with a network based on a Federation switch to
validate our approach on our largest test cases. Switch interrupts are enabled
with default delay to perform non-blocking communication efficiently. All compu-
tations are performed in double precision (the relative backward error observed
on our problems is arround 10−15 for our direct factorization) and all time re-
sults are given in seconds. The blocking size parameter for BLAS3 computations
is set to 60 and we use here a one dimensional distribution as default. We have
apply an LDLt factorization on symmetric matrices and an LU factorization
for unsymmetric matrices (but with a symmetric pattern). In all the following
tables, the symbol “-” is used when the time measurments are not significant
due to memory swapping.

Our experiments were performed on a collection of sparse matrices from the
PARASOL ESPRIT Project and from CEA. The values of the associated mea-
surments in Table 1 come from scalar column symbolic factorization.

On each MPI process p, we compute the size of the local allocation for ma-
trix coefficients (denoted coeff alloc(p)) and of the local allocation for the AUB
(denoted AUB alloc(p)). The memory efficiency memeff(P ), on P processes, is
defined as follow:
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memeff(P ) =

∑
p{coeff alloc(p)}

P ·maxp{coeff alloc(p) + AUB alloc(p)}
The memory efficiency measures how the total memory allocations (matrix co-
efficients and AUBs) is reduced when the number of processors increases. When
memeff(P ) = 1, it means that there is no memory overhead due to the paral-
lelization; this can only happen when a single MPI process is used.

In table 2, for the two largest symmetric problems, the number of processors
vary between 16 (1 NH2 node) and 128 (4 NH2 nodes) of the IBM SP3. We
analyze the factorization time and the memory efficiency when we use 1, 4, 8
and 16 threads per MPI process. As expected, we can see that using 1 thread
for each CPU is always profitable for memory efficiency. For instance, with the
AUDI matrix, on 128 processors, the memory efficiency increases from 0.23 to
0.70. Beside, we can notice that the best factorization time is almost always
obtain with 8 threads by MPI process. Figure 4 shows graphically that we keep
a good memory efficiency and a good time scalability when we increase the
number of threads by MPI process.

Table 1. Description of our test problems. NNZA is the number of off-diagonal terms
in the triangular part of matrix A, NNZL is the number of off-diagonal terms in the
factorized matrix L and OPC is the number of operations required for the factorization.
Matrices are sorted in decreasing order of NNZL

OPC which is a measure of the potential
data reuse [7].

Name Columns NNZA NNZL OPC NNZL
OPC Description

OILPAN 73752 1761718 8.912337e+06 2.984944e+09 2.98e-3 symetric
QUER 59122 1403689 9.118592e+06 3.280680e+09 2.78e-3 symetric
SHIP001 34920 2304655 1.427916e+07 9.033767e+09 1.58e-3 symetric
X104 108384 5029620 2.634047e+07 1.712902e+10 1.54e-3 symetric
MT1 97578 4827996 3.114873e+07 2.109265e+10 1.48e-3 symetric
INLINE 503712 18660027 1.762790e+08 1.358921e+11 1.29e-3 symetric
BMWCRA1 148770 5247616 6.597301e+07 5.701988e+10 1.16e-3 symetric
CRANKSG1 52804 5280703 3.142730e+07 3.007141e+10 1.05e-3 symetric
SHIPSEC8 114919 3269240 3.572761e+07 3.684269e+10 0.97e-3 symetric
CRANKSG2 63838 7042510 4.190437e+07 4.602878e+10 0.91e-3 symetric
SHIPSEC5 179860 4966618 5.649801e+07 6.952086e+10 0.81e-3 symetric
SHIP003 121728 3982153 5.872912e+07 8.008089e+10 0.73e-3 symetric
THREAD 29736 2220156 2.404333e+07 3.884020e+10 0.62e-3 symetric
AUDI 943695 39297771 1.214519e+09 5.376212e+12 2.26e-4 symetric
MHD1 485597 24233141 1.629822e+09 1.671053e+13 9.75e-5 unsymetric

Table 2. Factorization time (and memory efficiency) on SP3

Name Number of processors
16 32 64 128

INLINE 1 thread/process 13.39 (0.77) 7.99 (0.70) 6.07 (0.59) 4.58 (0.42)
INLINE 4 threads/process 14.23 (0.94) 7.08 (0.89) 4.28 (0.84) 3.33 (0.78)
INLINE 8 threads/process 13.46 (0.98) 6.68 (0.94) 4.12 (0.89) 3.07 (0.81)
INLINE 16 threads/process 13.89 (1.00) 8.41 (0.98) 4.59 (0.94) 3.51 (0.90)
AUDI 1 thread/process - - 211.35 (0.34) 134.45 (0.23)
AUDI 4 threads/process 472.67 (0.81) 266.89 (0.71) 155.23 (0.60) 87.56 (0.43)
AUDI 8 threads/process 476.40 (0.93) 265.09 (0.81) 145.19 (0.70) 81.90 (0.54)
AUDI 16 threads/process 481.96 (1.00) 270.16 (0.89) 152.58 (0.83) 86.07 (0.70)
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Fig. 4. Factorization time and memory efficiency on IBM SP3 for AUDI problem

Table 3. Factorization time (and memory efficiency) on SP4

Name Number of processors
32 64

AUDI 4 threads/process 94.21 (0.71) 60.03 (0.57)
AUDI 8 threads/process 93.14 (0.82) 47.80 (0.74)
AUDI 16 threads/process 96.31 (0.92) 47.28 (0.81)
AUDI 32 threads/process 100.40 (1.00) 51.02 (0.92)
MHD1 4 threads/process 199.17 (0.29) 115.97 (0.16)
MHD1 8 threads/process 187.89 (0.49) 111.99 (0.31)
MHD1 16 threads/process 197.99 (0.73) 115.79 (0.49)
MHD1 32 threads/process 202.68 (1.00) 117.80 (0.78)

In table 3, we present experiments on IBM SP4. For 1 node (32 processors)
then 2 nodes (64 processors), we increase the number of threads by MPI process
between 4 to 32. Here again, the memory reduction is really substantial. We also
notice that the best factorization time is obtain when using 8 threads by MPI
process. This can be explained by the fact that this kind of node presents 4 I/O
cards for communications on the Federation switch. This behaviour is verified for
both symmetric problem (AUDI test case) and unsymmetric problem (MHD1
test case).

Another interesting remark is that the MPI-thread implementation allows us
to manage more efficiently a two dimensional distribution mapping. It is well
known that this kind of distribution is payfull in terms of scalability compared
to a one dimensional distribution for large matrices arising from 3D problems.
Indeed, a two dimensional distribution generates a lot of small messages that
are advantageously substituted by direct accesses to shared memory.

In table 4, we provide some results on a 3D magneto-hydrodynamic problem
(MHD1 test case) when we set a two dimensional distribution on the 4 first
levels of the block elimination tree. A complete analysis is out of the scope of
this paper, but this result illustrates another benefit of using our MPI-thread
implementation.

Finally, we give some comparisons (see tables 5 and 6) on the IBM SP3 for
the whole set of test cases in terms of factorization time and memory efficiency
for both MPI and MPI-thread implementations. While the memory reduction is
the most crutial criteria to optimize for parallel direct solver implementations,
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Table 4. MHD1 with 1D or 2D distribution on IBM SP4 (32 processors)

Name Implementation
Full MPI MPI-thread

MHD1 with 1D distribution 115.97 117.80
MHD1 with 2D distribution 111.51 90.68

Table 5. Factorization time (and memory efficiency) on SP3 (MPI only)

Name Number of processors
16 32 64 128

OILPAN .61 (0.74) .38 (0.71) .37 (0.62) .37 (0.58)
QUER .90 (0.69) .45 (0.69) .45 (0.55) .47 (0.55)
SHIP001 1.39 (0.67) .78 (0.59) .75 (0.48) .73 (0.46)
X104 2.76 (0.58) 1.86 (0.49) 1.79 (0.39) 1.12 (0.28)
MT1 3.52 (0.62) 1.55 (0.51) 1.41 (0.41) 1.53 (0.33)
INLINE 13.39 (0.77) 7.99 (0.70) 6.07 (0.59) 4.58 (0.42)
BMWCRA1 6.32 (0.72) 3.39 (0.59) 2.49 (0.43) 2.18 (0.37)
CRANKSEG1 4.19 (0.58) 2.04 (0.47) 1.58 (0.40) 1.92 (0.32)
SHIPSEC8 6.07 (0.45) 3.87 (0.34) 3.70 (0.26) 3.71 (0.23)
CRANKSEG2 5.19 (0.54) 2.94 (0.43) 2.24 (0.40) 2.64 (0.28)
SHIPSEC5 9.42 (0.46) 5.52 (0.38) 4.67 (0.27) 4.78 (0.21)
SHIP003 9.50 (0.55) 5.84 (0.47) 4.77 (0.30) 4.84 (0.23)
THREAD 6.48 (0.39) 3.65 (0.30) 3.90 (0.24) 3.90 (0.20)
AUDI - - 211.35 (0.34) 134.45 (0.23)

Table 6. Factorization time (and memory efficiency) on SP3 (MPI-thread)

Name Number of processors
16 32 64 128

OILPAN .95 (1.00) .60 (0.96) .36 (0.91) .31 (0.84)
QUER .81 (1.00) .54 (0.96) .46 (0.87) .34 (0.86)
SHIP001 1.02 (1.00) .64 (0.94) .51 (0.91) .51 (0.80)
X104 2.20 (1.00) 1.53 (0.95) 1.11 (0.86) .91 (0.77)
MT1 2.10 (1.00) 1.28 (0.94) .91 (0.89) .82 (0.84)
INLINE 13.89 (1.00) 8.41 (0.98) 4.59 (0.94) 3.51 (0.90)
BMWCRA1 5.96 (1.00) 3.25 (0.96) 2.05 (0.86) 1.28 (0.83)
CRANKSEG1 2.87 (1.00) 1.67 (0.96) 1.26 (0.88) .98 (0.78)
SHIPSEC8 4.52 (1.00) 3.09 (0.85) 2.46 (0.82) 2.33 (0.76)
CRANKSEG2 4.15 (1.00) 2.46 (0.96) 1.51 (0.83) 1.45 (0.71)
SHIPSEC5 7.44 (1.00) 4.68 (0.87) 3.40 (0.78) 3.05 (0.68)
SHIP003 7.71 (1.00) 5.22 (0.91) 3.29 (0.82) 3.13 (0.70)
THREAD 3.91 (1.00) 2.72 (0.81) 2.53 (0.65) 2.54 (0.59)
AUDI 481.96 (1.00) 270.16 (0.89) 152.58 (0.83) 86.07 (0.70)

we focus our study on setting 1 thread for each CPU unit (that is to say 16
threads by MPI process).

These results are in agreement with previous remarks and are also verified
on IBM SP4. But, on this architecture, the factorization times obtained are
less significant because for those problem sizes, the measured times are often
lower than 1 second. As a conclusion for these experiments, we obtain a good
memory scalability and the factorization time is most often reduced whatever
the number of processors, thanks to the MPI-thread implementation. Up to 64
processors, the factorization time is always reduced what shows that the MPI-
thread implementation also improves the time scalability.
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4 Concluding Remarks

In this paper, we have proposed an hybrid MPI-thread implementation of a direct
solver and have analyzed the benefits of this approach in terms of memory and
run-time performances.

To validate this approach, we have performed experiments on IBM SP3 and
SP4. In all test cases, the memory overhead is drastically reduced thanks to the hy-
brid MPI-thread implementation. In addition, we observe a significant decreasing
of the factorization time and a better global scalability of the parallel solver. This
techniques allow us to treat large 3D problems where the memory overhead was
a bottleneck for the use of direct solvers. Recently, we have factorized a 3D prob-
lem from CEA with 10 millions of unknowns (NNZ=6.68e+9, OPC=4.29e+13) in
less than 400 seconds on 2 SMP nodes (32-ways Power4+ with 64Go per node);
for this case, the memory efficiency is about 0.95. We have only considered in this
paper the factorization step, which is the most time consuming step, but the same
improvements are also verified for the triangular solve step.

Finally, a comparison with WSMP [1] is still in progress and will be published
in a survey article on the PaStiX direct solver.
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Abstract. We present the way in which we adapt data and computa-
tions to the underlying memory hierarchy by means of a hierarchical data
structure known as hypermatrix. The application of orthogonal block
forms produced the best performance for the platforms used.

1 Introduction

In order to obtain efficient codes, computer resources have to be used effectively.
The code must have an inner kernel able to make use of the functional units
within the processor in an efficient way. On the other hand, data must be ac-
cessible in a very short time. This can be accomplished with an adequate usage
of the memory hierarchy. In this paper we present the way in which we have
obtained fast implementations of two important linear algebra operations: dense
Cholesky factorization and matrix multiplication.

We are interested in the development of efficient linear algebra codes on a
variety of platforms. For this purpose, we use a hierarchical data structure known
as Hypermatrix to adapt our code to the target machine.

1.1 Hypermatrix Data Structure

Our application uses a data structure based on a hypermatrix (HM) scheme
[1, 2], in which a matrix is partitioned recursively into blocks of different sizes.
A commercial package known as PERMAS uses the hypermatrix structure for
solving very large systems of equations [3]. It can solve very large systems out-
of-core and can work in parallel. This approach is also related to a variety of
recursive/nonlinear data layouts which have been explored elsewhere for both
regular [4, 5, 6, 7] and irregular [8] applications.

The HM structure consists of N levels of submatrices. In order to have a
simple HM data structure which is easy to traverse we have chosen to have
blocks at each level which are multiples of the lower levels. The top N-1 levels
hold pointer matrices which point to the next lower level submatrices. Null
pointers in pointer matrices indicate that the corresponding submatrix does not
� This work was supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain
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have any non-zero elements and is therefore unnecessary. This is useful when
matrices are sparse. Only the last (bottom) level holds data matrices. Data
matrices are stored as dense matrices and operated on as such. Hypermatrices
can be seen as a generalization of quadtrees. The latter partition each matrix
precisely into four submatrices [9].

1.2 Motivation

In the past, we have been working on the sparse Cholesky factorization based on
the hypermatrix data structure. In the sparse codes it was important to avoid
unnecessary operation on zeros. At the same time, using small data submatrices
produced many calls to matrix multiplication subroutines resulting in a large
overhead. For this reason we created efficient routines which operate on small
matrices. By small we mean matrices which fit in cache. We grouped such rou-
tines in a library called the Small Matrix Library (SML). Information about the
creation of the SML can be found in [10]. Further details on the application of
SML to sparse hypermatrix Cholesky can be found in [11].

The hypermatrix data structure, however, can also be used for dense matrix
computations. Recently, we have applied a similar approach to work on dense
matrices. Let us comment on the case of the MIPS R10000 processor. Figure 1
shows the peak performance of the C = C−A×Bt matrix multiplication routines
in our SML for several matrix dimensions on a MIPS R10000 processor. On small
matrices, our code (mxmts fix) outperforms the DGEMM matrix multiplication
routine in the vendor BLAS library. We have labeled the latter as dgemm nts to
note that B is used transposed while A is not. In addition, it denotes that the
result of the multiplication is subtracted from the previous value in matrix C.

Fig. 1. Peak performance of SML dense matrix multiplication routines on an R10000

We chose the code corresponding to matrices of size 60 × 60 as our inner
kernel since this was the one providing best peak performance. Then, we used
this kernel in two codes based on a hypermatrix data structure: a Cholesky
factorization and a matrix multiplication. A data submatrix block size of 60×60
allows for a matrix to be almost permanently in L1 cache. Some conflicts might
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arise but they should be scarce. A second higher level of 8 × 8 pointers maps
blocks of 480 × 480 data. This is adequate both for the TLB and second level
cache. For the matrix sizes tested those two levels were sufficient to achieve
good memory usage. For larger matrices, which required to go out-of-core, or in
machines with more levels of caches more pointer levels could be used. The graph
on the left part of figure 2 shows the performance obtained on this platform for
a dense Cholesky factorization. The graph compares the results obtained by our
code (labeled as HM) with those obtained by routine DPOTRF in the vendor
library. Both when upper (U) or lower (L) matrices were input to this routine
its performance was worse than that of our code. We also tried the matrix
multiplication operation C = C − A ∗ BT since this is the one which takes
about 90% of Cholesky factorization. The results can be seen in the right part
of figure 2. Our code outperformed the DGEMM matrix multiplication routine
in both the vendor and ATLAS libraries. We must note however, that ATLAS
was not able to finish its installation process on this platform. Thus, we used a
precompiled version of this library which corresponds to an old release of ATLAS.
These preliminary results encouraged us to work on dense algorithms based on
the hypermatrix data structure.

Fig. 2. Performance of dense matrix multiplication and Cholesky factorization on a
MIPS R10000 processor

In this paper we present the extension of our work to dense matrix operations.
We will explain how our code is adapted to the underlying memory architecture
and is able to obtain good performance.

2 Producing Efficient Inner Kernels

In [10] we introduced a Small Matrix Library (SML). The routines in this library
operate efficiently on very small matrices (which fit in level 1 cache). Basically,
we try several variants of code with different loop orders and unroll factors.
By fixing parameters such as matrix leading dimensions and loop trip counts
at compilation time we are able to produce very efficient routines on many
platforms. We used such routines to improve our sparse Cholesky factorization
code based on the Hypermatrix data structure. We have extended our SML
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Fig. 3. Peak performance of SML dense matrix multiplication routines

with routines which work with sizes larger than the ones used for the sparse
codes. We choose as inner kernel the one providing best performance. On MIPS,
ALPHA and Itanium2 platforms we could obtain efficient kernels for the matrix
multiplication.

Figure 3 shows the peak performance of the C = C − A × Bt matrix mul-
tiplication routines in our SML for several matrix dimensions on two different
processors. On an Alpha 21264 we chose the routine which works on matrices
of size 48× 48. On the Intel Itanium2 we chose size 92× 92. It is interesting to
note that on the Itanium2 the highest performance was obtained for matrix sizes
which exceed the capacity of the level 1 (L1) data cache. The following tables
show information about caches for each of the three platforms used. Table 1
shows the number of caches and their sizes. Table 2 shows the minimum latency
for a floating-point load when it hits in each cache level.

Table 1. Cache sizes

Cache Level R10000 ALPHA 21264 Itanium2
L1 32 KB 64 KB 16 KB
L2 4 MB 4 MB 256 KB
L3 - - 3 MB

Table 2. Floating-point load latency (minimum) when load hits in cache

Cache Level R10000 ALPHA 21264 Itanium2
L1 3 4 -
L2 8-10 13 6
L3 - - 13

The Itanium2 has three levels of cache. In the first level it has separate
instruction and data caches with 16 Kbytes each. Then, it also has a 256 Kbytes
L2 cache and an off-chip L3 cache with possible sizes ranging from 1.5 up to 9
MB. The configuration used had a 3 MB L3 cache. The most interesting point
to note is the fact that this machine has low latency when a load hits in its level
2 (L2) cache [12]. The Intel Fortran compiler applied the software pipelining
technique automatically for tolerating such latency and produced efficient codes.
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This is the reason why on this machine the best peak performance for our SML
matrix multiplication routines was found for matrices which exceed the L1 data
cache size.

3 Exploiting the Memory Hierarchy

3.1 Number of Levels and Dimension of Each Level

We use the hypermatrix data structure to adapt our codes to the underlying
memory hierarchy. Our code can be parameterized with the number of pointer
levels and block sizes mapped by each level. For the dense codes we follow the
next approach: we choose the data submatrix block size according to the results
obtained while creating our SML’s matrix multiplication routine. The one pro-
viding the best performance is taken. As seen in section 2 we do this even when
the matrix size is too large to fit in the L1 cache. Then, for the upper levels
we choose multiples of the lower levels close to the value

√
C/2, where C is the

cache size [13]. We found that, for the machines studied, we only needed two
levels of pointers for dense in-core operations.

Figure 4 shows the performance of our hypermatrix multiplication routine
on an Itanium2 processor for several matrix dimensions. We have tried several
dimensions for the second level of pointers. Values 368 and 460, close to the value√

C/2, were the best. We tried using a third level with size 736 when the second
one has size 368. It didn’t produce any benefit since the SML routine was already
using efficiently the L2 cache, and the second level of pointers was enough to use
the L3 cache adequately. On the Alpha 21264 the size used for data submatrices
was 48× 48. Then, a second level of pointers in the hypermatrix maps blocks of
dimension 480.

Fig. 4. Performance of dense matrix multiplication and Cholesky factorization on an
Intel Itanium 2 processor

3.2 Orthogonal Blocks

In [14] a class of Multilevel Orthogonal Block forms was presented. In that
class each level is orthogonal to the previous: they are constructed so that the
directions of the blocks of adjacent levels are different. These algorithms exploit
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Fig. 5. Two examples of Multilevel Orthogonal Block forms

the data locality in linear algebra operations when executed in machines with
several levels in the memory hierarchy. Figure 5 shows graphically the directions
followed by two possible Multilevel Orthogonal Block (MOB) forms.

We have implemented Multilevel Orthogonal Blocks for the different levels
in the hypermatrix structure. Figure 6 shows the performance obtained on a
matrix multiplication performed on matrices of size 4507 on Itanium2 (left) and
Alpha 21264 (right) processors for all combinations of loop orders for two level of
pointers in a hypermatrix. All bars to the right of the dashed line correspond to
orthogonal forms. Although we eventually use only 2 pointer levels, for hyperma-
trix multiplication there is an improvement in the performance obtained when
the upper level is orthogonal to the lower. In this way the upper level cache is
properly used. The performance improvement is modest, but results were always
better than those corresponding to non-orthogonal block forms.

Fig. 6. Performance of HM dense matrix multiplication for several loop orders on Intel
Itanium 2 (left) and Alpha 21264 processors (right)

4 Results

We have compared our dense hypermatrix multiplication and Cholesky factoriza-
tion with ATLAS [15] DGEMM and DPOTRF routines. On the R10000 our code
outperformed both the vendor and ATLAS DGEMM and DPOTRF routines. On
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Fig. 7. Performance of dense matrix multiplication and Cholesky factorization on an
Alpha 21264 processor

Fig. 8. Performance of dense matrix multiplication and Cholesky factorization on an
Intel Itanium 2 processor

an ALPHA-21264A ATLAS’ installation phase lets the user choose whether to
install a hand made code specially designed for this platform (GOTO). In both
cases, on this system, ATLAS outperforms our matrix multiplication code. One
reason for this can be observed in figure 3. The peak performance of the matrix
multiplication routine in our SML was far from the theoretical peak performance
on this machine. However, we obtain the same performance as DPOTRF for
large matrices (figure 7). On the Itanium2 our performance got close to ATLAS’
both for DGEMM and DPOTRF. It was similar to ATLAS for large matrices
(figure 8). We must note that, in spite of its name, the ATLAS project is often
based on matrix multiplication kernels written in assembly code by hand.

5 Conclusions

It is possible to obtain high performance codes using a high level language and
a good optimizing compiler. The inner kernel can target the first level cache. In
some cases, it can also target the second level cache. This happens on processors
with small level 1 caches and low latency for floating-point loads from the second
level cache.
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A hypermatrix data structure can be used to adapt the code to the underlying
memory hierarchy. For the machines studied and working on dense matrices
in-core, two levels of pointers were enough. Going out-of-core or working on
machines with more levels of cache memory could benefit from the extension of
this scheme to a larger number of levels in the hypermatrix. The use of Multilevel
Orthogonal Block forms was always beneficial.

References

1. Fuchs, G., Roy, J., Schrem, E.: Hypermatrix solution of large sets of symmetric
positive-definite linear equations. Comp. Meth. Appl. Mech. Eng. 1 (1972) 197–216

2. Noor, A., Voigt, S.: Hypermatrix scheme for the STAR–100 computer. Comp. &
Struct. 5 (1975) 287–296

3. Ast, M., Fischer, R., Manz, H., Schulz, U.: PERMAS: User’s reference manual,
INTES publication no. 450, rev.d (1997)

4. Chatterjee, S., Jain, V.V., Lebeck, A.R., Mundhra, S., Thottethodi, M.: Nonlin-
ear array layouts for hierarchical memory systems. In: Proceedings of the 13th
international conference on Supercomputing, ACM Press (1999) 444–453

5. Frens, J.D., Wise, D.S.: Auto-blocking matrix multiplication, or tracking BLAS3
performance from source code. Proc. 6th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Program., SIGPLAN Not. 32 (1997) 206–216

6. Valsalam, V., Skjellum, A.: A framework for high-performance matrix multiplica-
tion based on hierarchical abstractions, algorithms and optimized low-level kernels.
Concurrency and Computation: Practice and Experience 14 (2002) 805–839

7. Wise, D.S.: Ahnentafel indexing into Morton-ordered arrays, or matrix locality for
free. In: Euro-Par 2000,LNCS1900. (2000) 774–783

8. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving memory hierarchy
performance for irregular applications. In: Proceedings of the 13th international
conference on Supercomputing, ACM Press (1999) 425–433

9. Wise, D.S.: Representing matrices as quadtrees for parallel processors. Information
Processing Letters 20 (1985) 195–199

10. Herrero, J.R., Navarro, J.J.: Automatic benchmarking and optimization of codes:
an experience with numerical kernels. In: Proceedings of the 2003 International
Conference on Software Engineering Research and Practice, CSREA Press (2003)
701–706

11. Herrero, J.R., Navarro, J.J.: Improving Performance of Hypermatrix Cholesky
Factorization. In: Euro-Par 2003,LNCS2790, Springer-Verlag (2003) 461–469

12. Intel: Intel(R) Itanium(R) 2 processor reference manual for software development
and optimization (2004)

13. Lam, M., Rothberg, E., Wolf, M.: The cache performance and optimizations of
blocked algorithms. In: Proceedings of ASPLOS’91. (1991) 67–74

14. Navarro, J.J., Juan, A., Lang, T.: MOB forms: A class of Multilevel Block Algo-
rithms for dense linear algebra operations. In: Proceedings of the 8th International
Conference on Supercomputing, ACM Press (1994)

15. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Supercomputing ’98, IEEE Computer Society (1998) 211–217



Measuring the Scalability of Heterogeneous
Parallel Systems

Alexey Kalinov

Institute for System Programming, Russian Academy of Sciences,
25 B. Kommunisticheskaya str., Moscow 109004, Russia

Abstract. A parallel algorithm cannot be evaluated apart from the ar-
chitecture it is implemented on. So, we define a parallel system as the
combination of a parallel algorithm and a parallel architecture. The paper
is devoted to the extension of well-known isoefficiency scalability metrics
to heterogeneous parallel systems. Based on this extension the scala-
bility of SUMMA (Scalable Universal Matrix Multiplication Algorithm)
on parallel architecture with homogeneous communication system sup-
porting simultaneous point-to-point communications is evaluated. Two
strategies of data distribution are considered: (i) homogeneous – data are
distributed between processors evenly; (ii) data are distributed between
processors according to their performance. It is shown that under some
assumption both strategies ensure the same scalability of heterogeneous
parallel system. This theoretical result is corroborated with experiment.

1 Introduction

A parallel algorithm cannot be evaluated apart from the architecture it is im-
plemented on. So, following [1] we define a parallel system as the combination
of a parallel algorithm and a parallel architecture. There are two important per-
formance metrics of parallel systems: efficiency and scalability. A lot of research
was conducted to improve the efficiency of heterogeneous parallel systems. But
scalability of such systems was practically out of research scope.

The efficiency of homogeneous parallel system is introduced in the following
way. The time taken by an algorithm to execute on a single processor is its
sequential execution time Ts. The time taken by an algorithm to execute on p
processors is its parallel execution times Tp. A parallel system’s speedup S is
the ratio of sequential execution time to parallel execution time: S = Ts/Tp. Its
parallel efficiency E is the ratio of speedup to the number of processors used:
E = S/p. The parallel efficiency of a parallel system usually increases as the
problem size increases and decreases as the number of processors increases.

The scalability is an ability of a parallel system to increase speedup as the
number of processors increases. There is no generally accepted metrics that mea-
sure scalability. In this paper we follow the most generally accepted metrics pro-
posed in [1]. The metrics is based on the isoefficiency function that dictates how
the problem size n must grow to maintain a fixed parallel efficiency as the number
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of processors p increases. We extend the metrics to heterogeneous parallel sys-
tems case and apply it to scalability analysis of Scalable Universal Matrix Mul-
tiplication Algorithm (SUMMA) [2] on parallel architecture with homogeneous
communication system supporting simultaneous point-to-point communications.

The paper has a number of contributions. The first one is the extension of
isoefficiency metrics to heterogeneous parallel systems. The second is the analysis
of influence of homogeneous and heterogeneous data distribution strategies to
scalability of SUMMA. The third is the experimental evaluation of the scalability
of a large heterogeneous parallel system.

The rest of the paper is organized as follows. Section 2 is devoted to the
extension of isoefficiency scalability metrics to heterogeneous case. In section 3
we analyze scalability of the matrix-matrix multiplication algorithm SUMMA
on heterogeneous parallel systems. Section 4 presents experimental results. In
section 5 we briefly describe related work. Section 6 concludes the paper.

2 Extension of Isoefficiency to Heterogeneous Parallel
Systems

Let the performance of each processor to be characterized by positive real num-
ber r. In this case in addition to number of processors p a parallel system is
characterized by the set of processor performances R = {ri}, i ∈ [1, p]. In this
paper we consider the simplest case when r does not depend on problem size.
We consider case of one process running per processor and do not differentiate
processors from processes.

In [3] is proposed to define the parallel efficiency of heterogeneous parallel
system as the ratio of the ideal execution time of parallel computation and the
real one. For the problem size n, the number of processors p and the performance
set R it can be written as:

E(n, p, R) =
Tideal(n, p, R)

Tp(n, p, R)
(1)

The ideal time can be computed in the following way. Let the sequential execu-
tion time Ts(n, rseq) is in inverse proportion to performance rseq of processor,
which perform computation. In ideal we can consider a parallel system as one
sequential computer with performance equal to the sum of performances of the
processors constituting the parallel system rsum =

∑
i∈[1,p] ri and write ideal

time as follows:

Tideal(n, p, R) =
Ts(n, rseq)rseq

rsum
=

rseq

raver
· Ts(n, rseq)

p
,

where raver- average performance of processors of the parallel system. Then,
equation (1) can be rewritten as

E(n, p, R) =
rseq

raver
· Ts(n, rseq)
pTp(n, p, R)

.
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Let performance of the processor performing sequential computations is raver .
Then, we write the expression for parallel efficiency as

E(n, p, R) =
rseq

raver
· Ts(n, raver)
pTp(n, p, R)

. (2)

For homogeneous parallel system ri = const and (2) is equal to usual parallel
efficiency

E(n, p, R) =
Ts(n)

pTp(n, p)
.

For homogeneous parallel system it is supposed that increase of system perfor-
mance is in proportion to number of processes. For heterogeneous system increase
of system performance depends on number of processors and their performance.

There is no generally accepted metrics that measure the scalability. In this
paper we follow the most generally accepted metrics proposed in [1]. During
execution, a parallel algorithm incurs overheads due to different reasons. The
total time spent by all processors doing the work that is not done by sequential
algorithm is the total overhead, T − o. The total time spent by all processors is
pTp(n, p, R), and the total overhead is pTo(n, p, R), so

pTp(n, p, R) = Ts(n, raver) + To(n, p, R)

and
E(n, p, R) =

Ts(n, raver)
Ts(n, raver) + To(n, p, R)

=
1

1 + To(n,p,R)
Ts(n,raver)

.

The isoefficiency relation that bounds problem size and number of processors to
keep level of parallel efficiency is written as

Ts(n, raver) = KTo(n, p, R).

Through algebraic manipulation this equation can be used to obtain the isoeffi-
ciency function.

Until now, we do not specify what we understand by size of problem being
solved. In fact our extension does not depend on it. But to analyze particular
parallel system we need to concretize the notion of problem size. There are two
main approaches to expression of problem size: as volume of computation and
as amount of primary memory. The first one is advocated, for example in [1],
because it allows equating problem size and sequential time. The second one is
advocated, for example in [4]. For a lot of algorithms it is assumed that data
structures it manipulates fit in primary memory. The maximum problem size it
can solve is limited by the amount of primary memory is available. This is the
reason to treat space as the limiting factor for scalability analysis.

3 Scalability Analysis of Matrix Multiplication Algorithm
SUMMA

Let us consider the Scalable Universal Matrix Multiplication Algorithm [2]
executing on parallel architecture supporting simultaneous point-to-point
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communications. The algorithm supposed that matrices are distributed over two-
dimensional process grid in such way that rows of matrices are assigned to the
same row of process grid and columns of the matrices are assigned to the same
column of process grid. The algorithm is based on implementing the broadcast
as passing a message around the logical ring that forms the row or column. This
allows pipelining computations and communications. For homogeneous parallel
systems in [2] it is demonstrated that the parallel efficiency depends on memory
use per node O(n2)and number of processes p only through their ratio. That is
isoefficiency function is N = O(n2) and system is highly scalable.

For heterogeneous parallel system we analyze two strategies of data distrib-
ution:

– homogeneous – data are distributed between processors evenly;
– heterogeneous – data are distributed between processors according to their

performance [8,9].

Let us consider square matrices N ×N and square process grid. Let communi-
cation time to be approximated as t = a + bL, where a is start-up cost and b is
cost of transfer of one unit of data. Let also N � √

p.

3.1 Homogeneous Distribution of Data

In [2] it is shown that under such assumption time complexity of algorithm with
homogeneous distribution of data on homogeneous system is

Tp(N2, p) =
N3

pr
+ 2N(a +

N
√

p
b),

where r is performance of the system processors.
On heterogeneous system time complexity is determined by time elapsed

for local updates on the weakest processor with performance rmin. It can be
written as

Tp(N2, p, R) =
N3

prmin
+ 2N(a +

N
√

p
b). (3)

Because Ts(N2, raver) = N3/praver the total overhead is

To(N2, p, R) = pTp(N2, p, R)−Ts(N2, raver) = p[
N3

prmin
+2N(a+

N
√

p
b)]− N3

praver

and the isoefficiency relations is

N3

praver
= K{p[

N3

prmin
+ 2N(a +

N
√

p
b)]− N3

praver
}.

One can see that in general the relation depends on raver and rmin, that is on
performances of the add-on processors. If the number of processors is big enough
then the average performance is a weakly changing value that can be approxi-
mated with constant. That is raver ≈ const. Suppose that rmin is a constant also.
In such supposition the isoefficiency function of heterogeneous parallel system
with homogeneous distribution of data is the same as of homogeneous parallel
system N2 = O(p).
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3.2 Heterogeneous Distribution of Data

As shown in [6] time complexity for heterogeneous distribution of data can be
expressed as

Tp(N2, p, R) =
N3

praver
+ 2N(a +

HN
√

p
b), (4)

where H is level of network heterogeneity (ratio of maximal and minimal proces-
sors performance). The total overhead is

To(N2, p, R) = p[
N3

praver
+ 2N(a +

HN
√

p
b)]− N3

praver
= p[2N(a +

HN
√

p
b)]

and the isoefficiency relations is

N3

raver
= 2KpN(a +

HN
√

p
b).

The relation depends on H . In supposition that H is a constant the isoefficiency
function of heterogeneous parallel system with heterogeneous distribution of data
is N2 = O(p) also.

Comparing equations 3 and 4 we can conclude that homogeneous distribution
of data provide the better distribution of communications but heterogeneous
distribution of data provide the better distribution of computations. Equating
right-hand members of equations 3 and 4 we can derive a condition under which
the both data distribution strategies have the same cost

N
√

p
(

1
rmin

− 1
raver

) = 2(H − 1)b.

4 Experimental Results

We carried out some experiments to estimate the influence of different data
distribution strategies to scalability of algorithm SUMMA on heterogeneous ar-
chitecture. We used a parallel system consisting of 1,6 GHz and 2,2 GHz dual
PowerPC 970 interconnected with Myrinet. The performance of the 1,6 GHz
processor demonstrated on sequential matrix multiplication relates to that of
the 2,2 GHz processor as 3:4. One processor ran one process of parallel program.
Square processor grid and square matrices were used. The size of grid was varied
from 2x2 to 13x13. To the best of our knowledge it is the first experimental
evaluation of heterogeneous system of such size. The size of the matrices was
selected as 5000

√
p×5000

√
p. That is we maintained memory use per processor.

The processors grid was formed the following way. Processors with the same per-
formance were assigned to the same column of the grid. The first half of columns
consist of 1,6 GHz processors and the second half of columns consist of 2,2 GHz
processors. If size of processor grid

√
p is odd then first

√
p/2+1 columns consist

of 1,6 GHz processors. Thus we ensured that rmin and H are the constants and
raver is approximately constant.
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Fig. 1. Ideal and real speedups achieved using heterogeneous distribution of data on
parallel system consisting of 1,6 GHz and 2,2 GHz dual PowerPC 970 interconnected
with Myrinet. The square matrices 5000

√
p×5000

√
p were multiplied on square proces-

sors grid
√

p×√
p. The first half of processors grid columns consisted of 1,6 GHz proces-

sors. The second half of processors grid columns consisted of 2,2 GHz processors.

Figure 1 presents the ideal and real speedups achieved using heterogeneous
distribution of data relative to homogeneous distribution of data. If we neglect
the communication cost then the ideal speedup can be computed as raver/rmin.
One can see that for small size of processors grid the real speedup is close to
ideal one. For large size of processors grid the performances of the both data
distribution strategies are approximately the same.

Figure 2 presents parallel efficiencies of parallel system with homogeneous
and heterogeneous data distributions. One can see that starting from 4x4 proces-
sors grid the both parallel efficiencies are approximately constant. This confirm
theoretical results that varying sizes of matrices and of processes grid in accor-
dance with isoefficiency function N2 = O(p) keeps the parallel efficiencies of
algorithm SUMMA constant for the both strategies of data distribution.

5 Related Work

We can point few papers considering scalability of heterogeneous parallel sys-
tems. Luis Pastor and Jose L. Bosque in [5] extend isoefficiency metrics for the
case of problem size considered as volume of computations. The extension is
based on the same definition of parallel efficiency as ratio of the ideal execu-
tion time of parallel computation and the real one as we use. They consider
the case of workload divisible between processors ad infinitum only. In [6] the
metrics proposed in [7] for scalability analysis of linear algebra algorithms was
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Fig. 2. Parallel efficiencies of parallel system with homogeneous and heterogeneous
data distributions. The computing system consist of 1,6 GHz and 2,2 GHz dual Pow-
erPC 970 interconnected with Myrinet. The square matrices 5000

√
p × 5000

√
p were

multiplied on square processors grid
√

p×√
p. The first half of processors grid columns

consisted of 1,6 GHz processors. The second half of processors grid columns consisted
of 2,2 GHz processors.

extended for heterogeneous parallel systems. The extended metrics was used to
the analysis of influence of different strategies of heterogeneous distribution of
computation on scalability of matrix multiplication algorithm SUMMA.

6 Conclusions

We extend the isoefficiency metrics for heterogeneous parallel systems without
concretizing the problem size notion. We apply the extension to analysis of influ-
ence of different data distribution strategies on scalability of algorithm SUMMA
that is scalable on homogeneous parallel platform. We show that under some
assumptions the isoefficiency function for heterogeneous parallel systems is the
same as for homogeneous parallel system with the both homogeneous and het-
erogeneous distribution of data. We experimentally corroborate this statement
on the heterogeneous system consisting of 169 processors.

Heterogeneous data distribution improves the distribution of computations
at the expense of deterioration of the communications distribution. So, for par-
allel computing systems consisting of hundred of processors appropriateness
of heterogeneous distribution of computations should be estimated more
precisely.
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Abstract. In this paper, we present a static data distribution strategy called Vari-
able Group Block distribution to optimize the execution of factorization of a
dense matrix on a network of heterogeneous computers. The distribution is based
on a functional performance model of computers, which tries to capture differ-
ent aspects of heterogeneity of the computers including the (multi-level) memory
structure and paging effects.

1 Introduction

The paper presents a static data distribution strategy called Variable Group Block dis-
tribution to optimize the execution of factorization of a dense matrix on a network of
heterogeneous computers. The Variable Group Block distribution strategy is a modifi-
cation of Group Block distribution strategy, which was proposed in [1] for 1D parallel
Cholesky factorization, developed into a more general 2D distribution strategy in [2]
and applied to 1D LU factorization in [3], [4].

The Group Block distribution strategy is based on the performance model, which
represents the speed of each processor by a constant positive number and computations
are distributed amongst the processors such that their volume is proportional to this
speed of the processor. However the single number model is efficient only if the relative
speeds of the processors involved in the execution of the application are a constant
function of the size of the problem and can be approximated by a single number. This
is true mainly for homogeneous distributed memory systems where:

– The processors have almost the same size at each level of their memory hierarchies,
and

– Each computational task assigned to a processor fits in its main memory.

But the model becomes inefficient in the following cases:

– The processors have significantly different memory structure with different sizes
of memory at each level of memory hierarchy. Therefore, beginning from some
problem size, the same task will still fit into the main memory of some processors
and stop fitting into the main memory of others, causing the paging and visible
degradation of the speed of these processors. This means that their relative speed
will start significantly changing in favor of non-paging processors as soon as the
problem size exceeds the critical value.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1074–1081, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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– Even if the processors of different architectures have almost the same size at each
level of the memory hierarchy, they may employ different paging algorithms re-
sulting in different levels of speed degradation for the task of the same size, which
again means the change of their relative speed as the problem size exceeds the
threshold causing the paging.

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the
effects of paging significantly complicates the design of algorithms distributing compu-
tations in proportion with the relative speed of heterogeneous processors. One approach
to this problem is to just avoid the paging as it is normally done in the case of paral-
lel computing on homogeneous multi-processors. However avoiding paging in local
and global heterogeneous networks may not make sense because in such networks it is
likely to have one processor running in the presence of paging faster than other proces-
sors without paging. It is even more difficult to avoid paging in the case of distributed
computing on global networks. There may not be a server available to solve the task of
the size you need without paging.

Therefore, to achieve acceptable accuracy of distribution of computations across
heterogeneous processors in the possible presence of paging, a more realistic perfor-
mance model of a set of heterogeneous processors is needed. In [5], we suggested a
functional performance model of computers that integrates some of the essential fea-
tures underlying applications run on general-purpose common heterogeneous networks,
such as the processor heterogeneity in terms of the speeds of the processors, the mem-
ory heterogeneity in terms of the number of memory levels of the memory hierarchy
and the size of each level of the memory hierarchy, and the effects of paging. Under
this model, the speed of each computer is represented by a continuous and relatively
smooth function of problem size.

The Variable Group Block distribution strategy presented in this paper uses this
functional performance model to optimize the execution of factorization of a dense
square matrix on a network of heterogeneous computers.

The functional model does not take into account the effects on the performance of
the processor caused by several users running heavy computational tasks simultane-
ously. It supposes only one user running heavy computational tasks and multiple users
performing routine computations and communications, which are not heavy like email
clients, browsers, audio applications, text editors etc.

The rest of the paper is organized as follows. In the next section, we present the
Variable Group Block distribution strategy. We then show experimental results on a
local network of heterogeneous computers to demonstrate the efficiency of the Variable
Group Block Distribution strategy over the Group Block Distribution Strategy.

2 Variable Group Block Distribution

Before we present our Variable Group Block distribution strategy, we briefly explain
the LU Factorization algorithm of a dense (n×b)×(n×b) square matrix A, one step of
which is shown in Figure 1. n is the number of blocks of size b×b [6], [7]. On a ho-
mogeneous p-processor linear array, a CYCLIC(b) distribution of columns is used to
distribute the matrix A. The cyclic distribution would assign columns of blocks with
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Fig. 1. One step of the LU factorization algorithm of a dense square matrix (n×b)×(n×b)

numbers 0,1,2,. . . ,n-1 to processors 0,1,2,. . . ,p-1,0,1,2,. . . ,p-1,0,. . . , respectively, for a
p-processor linear array (n�p), until all n columns of blocks are assigned. At each
step of the algorithm, the processor that owns the pivot block factors it and broadcasts
it to all the processors, which update their remaining blocks. At the next step, the next
column of b×b blocks becomes the pivot panel, and the computation progresses. Fig-
ure 1 shows how the column panel, L11 and L21, and the row panel, U11 and U12, are
computed and how the trailing submatrix A22 is updated. Because the largest fraction of
the work takes place in the update of A22, therefore, to obtain maximum parallelism all
processors should participate in the updating. Since A22 reduces in size as the compu-
tation progresses, a cyclic distribution is used to ensure that at any stage A22 is evenly
distributed over all processors, thus obtaining a balanced load.

Two load balancing algorithms, namely, Group Block algorithm and Dynamic Pro-
gramming algorithm [7] have been proposed to obtain optimal static distribution over
p heterogeneous processors arranged in a linear array. The Group Block distribution
partitions the matrix into groups (or generalized blocks in terms of [2]), all of which
have the same number of blocks. The number of blocks per group (size of the group)
and the distribution of the blocks in the group amongst the processors are fixed and are
determined based on speeds of the processors, which are represented by a single con-
stant number. Same is the case with Dynamic Programming distribution except that the
distribution of the blocks in the group amongst the processors is determined based on
dynamic programming algorithm.

We propose a static distribution strategy called Variable Group Block distribution,
which is a modification of the Group Block algorithm. It uses the functional model
where absolute speed of the processor is represented by a function of a size of the
problem. Since the Variable Group Block distribution uses the functional model where
absolute speed of the processor is represented by a function of a size of the problem,
the distribution uses absolute speeds at each step of the LU factorization that are based
on the size of the problem solved at that step. That is at each step, the number of blocks
per group and the distribution of the blocks in the group amongst the processors are
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Fig. 2. The matrix A is partitioned using Variable Group Block distribution. The size of the matrix
is shown in blocks of size b×b. This figure illustrates the distribution for n=18,b=32,p=3. The
distribution inside groups G1, G2, and G3 are {2,1,1,0,0,0}, {2,1,0,0,0}, and {2,2,1,1,0,0,0}. At
each step of the distribution, the absolute speed of the processor is obtained based on the update
of the trailing matrix. Since the Variable Group Block distribution uses the functional model
where the absolute speed of the processor is represented by a function of the problem size, the
distribution uses absolute speeds at each step that are based on the size of the problem solved at
that step.

determined based on absolute speeds of the processors given by the functional model,
which are based on solving the problem size at that step. Thus it takes into account the
effects of (multi-level) memory structure and paging.

Figure 2 illustrates the Variable Group Block distribution of a dense square (n×b)×
(n×b) matrix A over p heterogeneous processors. The Variable Group Block distribution
is a static data distribution that vertically partitions the matrix into m groups of blocks
of size b whose column sizes are g1,g2,. . . ,gm as shown in Figure 2.

The groups are non-square matrices of sizes (n×b)×(g1×b), (n×b)×(g2×b), . . . ,
(n×b)×(gm×b) respectively. The steps involved in the distribution are:

1. The size g1 of the first group G1 of blocks is calculated as follows:

– Using the data partitioning algorithm [5], we obtain an optimal distribution of
matrix A such that the number of blocks assigned to each processor is pro-
portional to the speed of the processor. The optimal distribution derived is
given by (xi, si) (0 ≤ i ≤ p− 1), where xi is the size of the subproblem such
that ∑p−1

i=0 xi=n2 and si is the absolute speed of the processor used to com-
pute the subproblem xi for processor i. Calculate the load index li = si

∑p−1
k=0 sk

(0≤ i≤ p−1).
– The size of the group g1 is equal to �1/min(li)� (0 ≤ i ≤ p− 1). If g1/p < 2,

then g1=�2/min(li)�. This condition is imposed to ensure there is sufficient
number of blocks in the group.

– This group G1 is now partitioned such that the number of blocks g1,i is propor-
tional to the speeds of the processors si where ∑p−1

i=0 g1,i=g1 (0≤ i≤ p−1).

2. To calculate the size g2 of the second group, we repeat step 1 for the number of
blocks equal to (n-g1)2 in matrix A. This is represented by the sub-matrix An-g1,n-g1

shown in Figure 2. We recursively apply this procedure until we have fully verti-
cally partitioned the matrix A.
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Table 1. Specifications of the twelve computers. Paging is the size of the matrix beyond which
point paging started happening.

3. For algorithms such as LU Factorization, only blocks below the pivot are updated.
The global load balancing is guaranteed by the distribution in groups; however, for
the group that holds the pivot it is not possible to balance the workload due to the
lack of data. Therefore it is possible to reduce the processing time if the last blocks
in each group are assigned to fastest processors, that is when there is not enough
data to balance the workload then it should be the fastest processors doing the work.
That is in each group, processors are reordered to start from the slowest processors
to the fastest processors for load balance purposes.

In LU Factorization, the size of the matrix shrinks as the computation goes on. This
means that the size of the problem to be solved shrinks with each step. Consider the first
step. After the factorization of the first block of b columns, there remain n-1 blocks of b
columns to be updated. At the second step, the number of blocks of b columns to update
is only n-2. Thus the speeds of the processors to be used at each step should be based
on the size of the problem solved at each step, which means that for the first step, the
absolute speed of the processors calculated should be based on the update of n-1 blocks
of b columns and for the second step, the absolute speed of the processors calculated
should be based on the update of n-2 blocks of b columns. Since the Variable Group
Block distribution uses the functional model where absolute speed of the processor is
represented by a function of a size of the problem, the distribution uses absolute speeds
at each step that are calculated based on the size of the problem solved at that step.

For two dimensional processor grids, the Variable Group Block algorithm is applied
to columns and rows independently.
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3 Experimental Results

A small heterogeneous local network of 12 different Solaris and Linux workstations
shown in Table 1 is used in the experiments. The network is based on 100 Mbit Ethernet
with a switch enabling parallel communications between the computers. The amount of
memory, which is the difference between the main memory and free main memory
shown in the tables, is used by the operating system processes and few other user appli-
cation processes that perform routine computations and communications such as email
clients, browsers, text editors, audio applications etc. These processes use a constant
percentage of CPU.

For the parallel LU factorization application, the absolute speed of a processor must
be obtained based on the execution of DGEMM routine on a dense non-square matrix
of size m1×m2. The reason is that the computational cost of the application mainly
falls into the update of the trailing submatrix, which is performed by this routine. Even
though there are two parameters m1 and m2 representing the size of the problem, the
parameter m1 is fixed and is equal to n during the application of the set partitioning
algorithm [5].

To apply the set partitioning algorithm to determine the optimal data distribution
for such an application, we need to extend it for problem size represented by two para-
meters, m1 and m2. The speed function of a processor is geometrically a surface when
represented by a function of two parameters s=f(m1,m2). However since the parame-
ter m1 is fixed and is equal to n, the surface is reduced to a line s=f(m1,m2)=f(n,m2).
The set partitioning algorithm can be extended here easily to obtain optimal solutions
for problem spaces with two or more parameters representing the problem size. Each
such problem space is reduced to a problem formulated using a geometric approach and
tackled by extensions of our geometric set-partitioning algorithm. Con-sider for exam-
ple the case of two parameters representing the problem size where neither of them is
fixed. In this case, the speed functions of the processors are represented by surfaces.
The optimal solution provided by a geometric algorithm would divide these surfaces to
produce a set of rectangular partitions equal in number to the number of processors such
that the number of elements in each partition (the area of the partition) is proportional
to the speed of the processor.

The absolute speed of the processor in number of floating point operations per sec-
ond is calculated using the formula (2×n×b×n×b)/(execution time) where n×b is the
size of the dense square matrix. The computer X6 exhibited the fastest speed of 130
MFlops for execution of DGEMM routine on a dense 8500×8500 matrix whereas the
computer X1 exhibited the lowest speed of 19 MFlops for execution of DGEMM rou-
tine on a dense 4500×4500 matrix. The ratio 130/19 ≈ 6.8 suggests that the processor
set is reasonably heterogeneous and it should also be noted that paging has not started
happening at this problem size for both the computers.

We use a piece-wise linear function approximation to represent the speed function
[5]. This approximation of speed function for a processor is built using a set of few
experimentally obtained points. The block size b used in the experiments is 32, which
is typical for cache-based workstations [3], [8].

Figure 3 shows the speedup of the LU Factorization application using the Variable
Group Block distribution strategy over the application using the Group Block Distri-
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Fig. 3. Speedup of Variable Group Block Distribution over Group Block Distribution. For the
Group Block Distribution, the single number speeds are obtained using DGEMM for a dense
square matrix. For the solid lined curve, the matrix used is of size 2000×2000. For the dashed
curve, the matrix used is of size 5000×5000.

bution strategy. The speedup calculated is the ratio of the execution time of the LU
Factorization application using the Group Block distribution strategy over the execu-
tion time of the application using the Variable Group Block Distribution strategy.

4 Conclusions and Future Work

In this paper, we presented a static data distribution strategy called Variable Group
Block distribution to optimize the execution of factorization of a dense matrix on a
network of heterogeneous computers. The distribution is based on a functional perfor-
mance model of computers, which integrates some of the essential features underly-
ing applications run on general-purpose common heterogeneous networks, such as the
processor heterogeneity in terms of the speeds of the processors, the memory hetero-
geneity in terms of the number of memory levels of the memory hierarchy and the size
of each level of the memory hierarchy, and the effects of paging.

Future work would involve extension of Variable Group Block distribution strategy
to optimize the execution of factorization of a dense matrix on a heterogeneous network
of computers using a functional model that would incorporate communication cost para-
meters, namely, latency and the bandwidth of the communication links interconnecting
the processors.
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Abstract. Hierarchically-blocked non-linear storage layouts, such as the Mor-
ton ordering, have been shown to be a potentially attractive compromise between
row-major and column-major for two-dimensional arrays. When combined with
appropriate optimizations, Morton layout offers some spatial locality whether tra-
versed row- or column-wise. However, for linear algebra routines with larger
problem sizes, the layout shows diminishing returns. It is our hypothesis that
associativity conflicts between Morton blocks cause this behavior and we show
that carefully arranging the Morton blocks can minimize this effect. We explore
one such arrangement and report our preliminary results.

1 Introduction

For dense multidimensional arrays, programming languages mandate one of the two
canonical layouts — row-major and column-major. Traversing an array in its major
order results in excellent spatial locality; however, traversing an array in opposite order
to its major order can lead to an order-of-magnitude worse performance.

In our earlier work [1] we considered whether Morton layout can be an alternative
storage layout to canonical layouts. Although Morton layout offers equal spatial locality
both in row- and column-major order traversals, our early work in the area suggested
that the performance of standard Morton layout may be disappointing. Following this
observation, we proposed two optimization schemes for Morton arrays — unrolling
and alignment. By exhaustively evaluating these optimizations, we demonstrated that
unrolling combined with strength-reduction of the Morton index calculation and correct
alignment of the base address of Morton arrays can lead to a significant improvement
in performance [1]. A key remaining weakness which we address in this paper is that
the performance of Morton layout tends to deteriorate with larger problem sizes.

Contributions of This Paper. In this paper we discuss how minimizing associativity
conflicts in the two-dimensional Morton layout may lead to further improvements in
performance. The main contributions of this paper are:

– We perform an in-depth analysis of associativity conflicts in Morton layout.
– We propose a hybrid layout scheme to minimize associativity conflicts in Morton

arrays, and we discuss combining this scheme with a modest amount of padding.
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– We demonstrate the effectiveness of our proposed scheme through an experimental
evaluation, using a suite of non-tiled micro-benchmarks.

This work differs from other work in this area, which mainly focused on optimizing for
temporal locality through hierarchical tiling, by targeting spatial locality of non-tiled
applications.

Structure of the Remainder of This Paper. In Section 2 we discuss related and previous
work relevant to this paper. We illustrate the impact of associativity conflicts in Morton
arrays and we propose a variant of Morton layout to address this problem in Section 3.
Following this, we evaluate and report performance results for our proposed scheme in
Section 4. Section 5 concludes the paper and discusses future work.

2 Previous Work

Many authors have studied recursive layouts in the context of performance optimiza-
tion. Notably, Wise et al. [2], Chatterjee et al. [3,4], and Gustavson [5] pioneered these
layouts, focusing on optimizing for temporal locality. Their implementations are either
tiled or recursively formulated. In [5] Gustavson adopts a similar approach to Chat-
terjee [3, 4]; however, Gustavson’s work is focused on deriving optimal layouts for
particular problems rather than a generic solution.

Recursive layouts, by definition, require a complete decomposition up to the ele-
ment level. Many authors [3, 4, 6] have identified that such a complete decomposition
may lead to increased conflict misses between different blocks, and have proposed dif-
ferent variants to fully recursive layouts. Chatterjee et al. [4] propose a family of non-
linear alternative layouts, called 4D layouts, which intermix recursive and linear lay-
outs. In one such variant, Chatterjee et al. divide two-dimensional arrays into linearly
arranged tiles, which are themselves blocked.

Drakenberg et al. [6] propose a semi-hierarchical layout (called HAT) and a linear-
algebra framework to determine conflict misses at compile time. Their layout is very
similar to one of the 4D layouts mentioned in [3, 4]. Their work, similar to ours, also
considers non-tiled or non-recursive algorithms but does not discuss padding.

3 Conflict Misses in Morton Layout

Associativity Conflicts in the Standard Morton Layout. One of the advantages of us-
ing the standard Morton scheme, where blocking is applied recursively up to the el-
ement level, is its simplicity — there is no need to choose blocking factors. This is
potentially useful for developing programs independently of underlying architectural
features. However, different sub-blocks within a Morton array may conflict with each
other. We demonstrate this effect in Figure 1(a): For a page-sized direct-mapped cache,
every page-sized sub-block of a Morton array conflicts with every other sub-block. This
appears to suggest that complete decomposition is sub-optimal.

In general, for a w-way associative cache with capacity C, addresses aligned at (C
w )

bytes are mapped to the same set. If each word is l bytes, each way holds C
wl words.
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(a) (b) (c)

Fig. 1. Conflict Misses in Morton Layout. We show three different variants of the Morton
scheme, where each location in the array represents a page-sized Morton block. In each case,
we also show the mapping of pages into linear memory and into a direct-mapped 4-page cache.
When accessing the standard Morton array (MZ) in row-major order, Morton pages 0 and 1 con-
flict with pages 4 and 5. Similarly, when accessing the MZ array in column-major order, pages 0
and 2 conflict with pages 8 and 10. This generates 2 misses per row or column for each traversal
order. However, when accessing the Morton variant (SAPMZ) in row-major order, traversal of
a single row is free from conflicts, but a column-major traversal suffers worse conflicts than the
MZ layout. The diagram on the far right (PSAPMZ) shows how padding can be used to elimi-
nate systematically recurring conflicts for column-major traversal. The same analysis is valid for
caches with higher levels of associativity.

Note that C, w and l are typically powers-of-two, so C
wl will also be a power-of-two.

Two arbitrary word-addresses s and t collide if |s− t|= C
wl . With row-major layout, this

happens with A[i,s] and A[i,t], or for elements separated by a multiple of |s− t|.
With Z-Morton layout this happens with A[i,u] and A[i,v] when |u− v| =

√
C
lw , if

C
wl is an even power-of-two (i.e., if C

wl words form a “square”). If C
wl is an odd power-

of-two, addresses A[i,u] and A[i,v] collide if |u− v|= 2
√

C
2lw .

Example. As a practical example, consider the ADI algorithm. In a slightly simplified
form, this contains the loop shown in Figure 2. For good performance, this loop re-
quires row-to-row re-use: the reference A[i-1][j] should come from cache, having
been loaded on the previous iteration of the for-i loop. At what datasize will associa-
tivity conflicts prevent this in a standard Morton array? According to our analysis in the
preceding paragraph, on a Pentium 4 processor with an 8-way set-associative 512KB
L2 cache, and an array of 8-byte double words, addresses A[i,u] and A[i,v] will

conflict ( C
wl is odd in this case) when |u− v| = 2

√
512×210

2×8×8 = 128. With an 8-way set-
associative cache, this means that we begin to lose row-to-row re-use at a row length of
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1 for( int i = 1; i < sz; ++i )
2 for( int j = 0; j < sz; ++j )
3 A[i][j] += A[i-1][j];

Fig. 2. Simplified loop from the ADI algorithm, requiring row-to-row re-use for good perfor-
mance

128×8 = 1024. This observation is confirmed by our experimental results for the Adi
algorithm on a Pentium 4 processor [1, 7] (see also Figure 3).

Stop-at-Page Morton Layout. A Hybrid Scheme. An alternative to standard Morton,
as suggested by Chatterjee et al. [4] and Drakenberg et al. [6], is to divide the ar-
ray into row-major or column-major ordered blocks and arranging the elements within
each block in Z-Morton order. Choosing page-sized Morton blocks guarantees unbi-
ased TLB behavior for both row-major and column-major traversals. We refer to this
scheme as Stop-at-Page-Morton (since we stop the blocking at page-level). This enables
us to utilize the compromise property of Morton layout and to minimize the effects of
associativity conflicts among Morton blocks at the same time. The resulting effect on
associativity conflicts is shown in Figures 1(b).

Notice, however, the increased dilation effect and the introduction of systematically
repeating conflicts for column-major traversal of SAPMZ arrays. A simple method to
avoid these systematically recurring conflicts is to pad each row of the array by a Morton
block, whenever the number of Morton blocks in a row is even. We refer to this tech-
nique as Padded Stop-at-Page-Morton scheme (PSAPMZ). Although PSAPMZ does
not improve spatial locality for column-major traversal, it does minimize associativity
conflicts for column-major traversal. This is illustrated in Figure 1(c).

Implementation Issues. For standard Morton arrays, it is necessary to round up the array
sizes of each dimension to the next power-of-two. For Stop-at-Page-Morton, padding is
only necessary up to the next page size and will never be worse than the storage require-
ments for standard Morton, except for array sizes smaller than a page. The Padded-Stop-
at-Page-Morton pads the row-length by an additional page-sized Morton block when the
number of such blocks in a row would otherwise be even.

Page size may vary from architecture to architecture, and may not always corre-
spond to an even power-of-two number of words. For most x86 variants (including the
systems we used to test our hypothesis) the page size is 4KB, and we chose a 16× 16
array of 8-byte doubles (half a page) as the largest Morton block.

4 Experimental Evaluation

Benchmark Kernels and Architectures. To test our proposed Stop-at-Page-Morton and
Padded Stop-at-Page-Morton layouts, we have collected a suite of simple implementa-
tions of standard, non-tiled numerical kernels operating on two-dimensional arrays and
carried out experiments on the Pentium 4 architecture. Table 1 summarizes the details
of the architecture. The kernels used in our experiments are shown in Table 2. We car-
ried out measurements over a full range of problem sizes and followed the experimental
approach detailed in [7] to minimize the effects of external interference.
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Table 1. Cache and CPU configuration used in the experiments. Compiler and compiler flags
match those used by the vendor in their SPEC CFP2000 (base) benchmark reports [8].

Processor Operating L1/L2/Memory Compiler
System Parameters and Flags Used

Pentium 4 Linux L1 D-cache: 4-way, 8KB, 64B cache line Intel C/C++
2.0 GHz 2.4.26 L2 cache: 8-way, 512KB, 128B cache line Compiler v8.1

Page size: 4KB -xW -ipo
Main Memory: 512MB DDR-RAM -O3 -static

Table 2. Numerical kernels used in our experimental evaluation [7]

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)
Jacobi2D Two-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
Cholesky K-variant (usually poor due to large stride)

Performance Results. Figure 3 shows our results in detail, and we make some com-
ments directly in the figure. For each experiment, we give a broad characterization of
the performance of the different Morton schemes we tested.

Impact of the Padded and Non-padded Stop-at-Page-Morton Scheme. For Adi, MMijk
and Cholesky-k kernels our theoretical conclusions from Section 3 are supported by our
experimental data. For MMijk and Cholesky, the SAPMZ scheme does not offer an im-
provement over standard Morton; however, padding the Stop-at-Page-Morton scheme
does help in these benchmarks. For the remaining benchmarks, Jacobi2D and MMikj,
neither SAPMZ nor Padded SAPMZ offer an improvement over standard Morton.

5 Conclusions and Future Work

Our hypothesis of how conflict misses in Morton layout can be minimized by the
SAPMZ and Padded SAPMZ layouts is supported by some but not all experimental
results. The padded SAPMZ scheme, in contrast to the SAPMZ scheme, has consis-
tently improved performance. Further, the reduction in associativity conflicts offered
by padded SAPMZ results in both row-major and column-major traversals of hierarchi-
cal arrays being yet closer in performance to row-major traversal of row-major arrays.
There are number of interesting issues that remain to be addressed:

– Exploring large arrays. Our experimental results are limited to a range of problem
sizes where the performance gain by SAPMZ/Padded SAPMZ occurs close to the
upper limit of the problem sizes we consider. We would like to extend our work
such that it covers a larger range of problem sizes.

– Hardware performance counters: Some features in the graphs may be explained
with the help of hardware performance counters. We plan to explore this further by
using one of the available hardware performance counter measurement tools.
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Morton and SAPMZ.
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– Both SAPMZ and Padded SAPMZ never
perform worse than standard Morton.

– SAPMZ does not result in a noticeable
improvement over standard Morton.

– For problem sizes larger than about 512×
512, Padded SAPMZ out-performs stan-
dard Morton and SAPMZ.
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MMikj on P4: Performance in MFLOP/s

Row-Major Default Alignment (a)
Column-Major Default Alignment (b)
Z-Morton Page-Aligned Unrolled (c)

Padded-SaP-Z-Morton Page-Aligned Unrolled (d)
Stop-at-Page-Z-Morton Page-Aligned Unrolled (e)

– For the Jacobi2D and MMikj benchmarks, SAPMZ and Padded SAPMZ scheme do not offer
a performance improvement over standard Morton.

Fig. 3. Performance of different layouts using a suite of micro-benchmarks running on the Pen-
tium 4 system described in Table 1
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– Mixed Morton layouts: So far, we have only considered Z-Morton as the underlying
layout. Mixing this with other members of the Morton layout family, which may
have complementary effects, may lead to lower associativity conflicts.
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Abstract. We present a new algorithm called rEvoluzer II for solving
the Reversal Median problem (RMP). Similar to its predecessor rEv-
oluzer I the new algorithm can preserve conserved intervals but it has
the additional property that it is suitable for parallelization. For the par-
allel version of rEvoluzer II a master-slave parallelization scheme is used
and several methods for reducing parallelization overheads have been
incorporated. We show experimentally that rEvoluzer II achieves very
good results compared to other methods for the RMP. It is also shown
that the parallel version has good scaling behavior for a not too large
number of processors.

1 Introduction

The genomes of species can be seen as arrangements of genes, rearranged dur-
ing their evolution. Unichromosomal genomes can be described as signed per-
mutations (“signed” is omitted in this paper). Reversals are rearrangement
operations reversing the order of a subsequence of neighbored genes and the
orientation of the involved genes. The Reversal Median Problem (RMP) is to
find for three given genomes (permutations) a genome such that the number of
reversals needed to transform it into the given genomes is minimal. The RMP
is known to be NP-hard [7]. A solution method for the RMP is often used as
a building block for solution methods for the Multiple Genome Rearrangement
Problem (MGRP), where for a given set of permutations a phylogenetic tree
with a minimal reversal distance sum over its edges has to be constructed.

Well known RMP Solvers are from Siepel et al. [9] and Caprara [7]. Both
algorithms are exact, i.e. find a solution with minimal score, and are incorporated
into the GRAPPA [10] software for solving the MGRP. Bourque [6] proposed
a heuristic RMP solver which is the building block of the MGR algorithm for
solving the MGRP. In MGR the RMP is solved iteratively by an evaluation of all
possible reversals for each genome, in order to identify reversals that presumably
bring the three genomes closer to each other until they meet in the proposed
ancestral genome. Heuristics are used to determine the applied reversals.

The genome arrangements found in living species often have structures in
the form of groups of genes that are related [11]. Some methods to describe such
structures on the level of genome arrangements have been proposed recently (e.g.,
conserved intervals [4], common intervals [8], or gene teams [3]). Recently, the
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first approaches considering structures for solving the MGRP have been proposed
[1, 2, 5]. In [5] we describe a median solver, called rEvoluzer, that takes conserved
intervals into account. In this paper we propose a new version of rEvoluzer, called
rEvoluzer II. In contrast to the first version of rEvoluzer (rEvoluzer I) the new
algorithm is suitable for parallelization. We present experimental results which
show that rEvoluzer II is a very competitive RMP solver. Moreover, we present
a parallel version of rEvoluzer II and study its speedup behavior.

In Section 2 the RMP is introduced formally. Section 3 describes rEvoluzer
II. The parallel version of rEvoluzer II is described in Section 4. Experimental
results are presented in Section 5.

2 The Reversal Median Problem

The reversal distance d(G1, G2) between two permutations G1 and G2 is the
minimal number of reversals needed to transform G1 into G2. It can be computed
in time O(n), where n is the number of elements each permutation has. The
RMP is to find for three given permutations G = {G1, G2, G3} a permutation
M such that

∑3
i=1 d(M, Gi) is minimal. In this paper the additional constraint

that possible gene groups should not be destroyed is considered. Therefore the
concept of conserved intervals is employed. A conserved interval of a set of signed
permutations is an interval of neighbored integers that is bounded by a pair of
integers with the following properties: i) it occurs for all given permutations in
the same order or in the reversed order if both integers have opposite signs and
ii) the set of intermediate integers between the bounding pair of integers is the
same in all given permutations. Reversals which preserve the conserved intervals
are called preserving.

3 Algorithm rEvoluzer II

The basic strategy of Siepel’s RMP solver, MGR, and rEvoluzer I is to apply
iteratively reversals, which are selected by some criteria, on the given permuta-
tions Gi until they meet or some stopping criterion is met. As an exact algorithm
Siepel’s RMP solver tries to apply all reversals whereas MGR and rEvoluzer I
select in every iteration one promising candidate reversal that is applied (in
rEvoluzer I there exists also a backtracking mechanism). Because the set of all
reversals becomes very large even for moderate sized problem instances, Siepel’s
RMP solver can only be applied to small instances. A possible disadvantage of
the strategy to reduce the candidate set of reversals to only one reversal is that
it can lead the algorithm to unfavorable regions of the search space.

The new strategy used in rEvoluzer II is to build up for each given permuta-
tion Gi a set of candidate permutations Fi, called front. Let F = ∪Fi. In order
to organize the search efficiently all already considered (visited) permutations
are stored in a tree data structure V . Each iteration of rEvoluzer II consists of
the following three parts: i) expansion of the fronts by applying reversals on the
permutations in F , ii) insertion of the new front elements into V , iii) reduction
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of the size of the fronts if they become too large. In a final post processing step
of rEvoluzer II the best found solutions are selected from V . In the following the
four different steps are described in more detail.

Expansion Step: In this step the permutations in every front Fi are moved
towards (with respect to reversal distance) the permutations Gh and Gj , where
h, i, j ∈ {1, 2, 3} are pairwise different. Therefore a set of candidate reversals
is determined for each front element. The candidate reversals are exactly the
reversals acting on only one cycle (for the definition of cycle see, e.g., [9]). These
reversals are known to be preserving [5]. These reversals are rated firstly by the
achieved reversal distance reduction relative to Gh and Gj and secondly by the
achieved distance enlargement to Gi. The best reversals are applied to obtain
the candidate permutations for the new front.

Merge Step: The union of the candidate permutation sets is computed and
permutations that have been visited already in a former iteration are deleted.

Cut Step: The expansion and merge steps may reduce or increase the size of the
front. To prevent an exorbitant increase the front is reduced in this step if a front
exceeds a size given by parameter τ . Then the front is reduced to size τ . In this
case triples (f1, f2, f3), fi ∈ Fi of permutations are selected that have a minimal
score, i.e., a minimal value of S = d(f1, f2)+d(f1, f3)+d(f2, f3)+

∑
i d(fi, Gi). At

most τ elements from each front with the lowest scores are put into the reduced
front. In order to bound the maximum runtime of this step at most rmax candi-
date triples are selected randomly from the fronts. We chose rmax := 5 ·maxi |Fi|.
For this case it can be shown that the probability that a permutation is never
chosen in a random triplet is < 1/e5 (� 0.68%).

Post Processing: In this step the final results are selected from V . For each
permutation in V the sum of the distances to G1, G2, and G3 is calculated and
all permutations with a minimal distance sum are put in the result set.

4 Parallelization of Algorithm rEvoluzer II

Algorithm rEvoluzer II can easily be adapted to different problem sizes. Increas-
ing the maximal front size τ leads to better results while using more computation
time. To overcome that problem rEvoluzer II has been parallelized. The parallel
version of rEvoluzer II (called P-rEvoluzer II) is based on a master/slave ap-
proach with a centralized load balancing mechanism. The master process man-
ages the three fronts Fi and the data structure V . During a run of P-rEvoluzer
II extensive data decomposition operations are performed, which is a common
technique used in parallelization when large data structures occur. Furthermore,
process interaction latency is hidden using multiple threads in the master process
and data locality techniques are incorporated.

Partitioning the Fronts: The expansion step is parallelized by data partition-
ing and self scheduling. Whenever a slave process is out of work the master sends
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a number of front elements (a chunk) to that slave. For partitioning F either
the same chunk sizes are used (each of the p − 1 slaves gets |F |/(p − 1) front
elements once) or alternatively a 1/l-split technique as described in the following
is used. The front elements are partitioned such that there are p − 1 chunks of
size |F |/(l · (p − 1)), which is 1/lth of all front elements. The remaining front
elements are partitioned again, such that 1/l of the rest of all elements are par-
titioned in p− 1 chunks again. For sufficient large values of |F | this partitioning
technique leads to p−1 chunks of size |F | ·(l−1)(s−1)/(ls ·(p−1)), where s is the
number of partitioning steps. This procedure is continued until a minimal chunk
size cmin is reached. The chunks are sent to the slaves in order of decreasing sizes.
There are two main advantages using chunk scheduling: i) Load-imbalances are
compensated, ii) the master/slave communication operations of the expansion
step within one iteration of P-rEvoluzer II will not all be initiated within a short
time interval. In such a situation the master would become a bottleneck. Note,
that a large value l leads to a communication overhead, as the number of chunks
is increased.

Hiding Latency in the Master: To cope with the potential problem that the
master process becomes a bottleneck chunk scheduling and other techniques are
applied. i) All chunks are sent and received asynchronously and non-blocking
from/to the slaves. ii) The master process uses two threads such that computa-
tion and communication overlap. One thread is used for calculating chunk sizes
and for sending and receiving the chunks, the other thread is used to process the
received data (store them in V). When more than one slave is used, the order
in which the results are received from the slaves is not deterministic. Since the
results of the cut step depend on the order of elements in F , this can lead to
different outcomes of the algorithm. Therefore, the elements in F are sorted in
lexicographic order before the cutting for all test runs (and only those) that were
done to compare the computation times for different numbers of slaves.

Data Locality Technique for Visited Permutations: A common technique
to reduce process interaction overhead is maximizing data locality. Within an
expansion step of P-rEvoluzer II all processes use their local data structure
Vi, i = 1, . . . , p to check whether a permutation has already been visited. If so,
this reduces the communication overhead, as the permutation has not to be sent
to the master. Furthermore, computation time is saved, as the master must not
determine if that permutation is already in V . Vi is reinitialized after each itera-
tion of P-rEvoluzer II. V1 is used by the master during the merge step to reduce
the number of accesses to V .

Parallelization of the Cut Step: The cut step has been parallelized in a
straight-forward manner. Suppose front Fi has to be cut. Then the master broad-
casts F to all slaves and maximal rmax/p front element triples are generated on
each processor. The best triples are chosen to determine �τ/p� permutations.
They are gathered by the master and merged to build the new front. Note, that
the parallelization of the cut step leads to different outcomes of the algorithm,
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Fig. 1. Average distance to solution (left) and score difference (right) achieved by
GRAPPA, MGR and P-rEvoluzer II; P-rEvoluzer II-{min-dts, max-dts, min-ids}, in-
dicate the three different methods to select permutations among the permutations
delivered by P-rEvoluzer II

as each processor has its own random number generator. Hence, we switch off
the parallelization of this step when comparing computation times for different
numbers of processors.

Parallelization of Post Processing: In the post processing phase the set of
solutions in V is analyzed to find the best median. For this step, which is only
done once, we use data partitioning. V is split in p parts and sent to the slaves.
The sequences with the smallest score difference are sent back to the master.
The master selects the best among these sequences.

5 Experimental Results

Setup: All experiments were conducted on a 32 dual-processor nodes Linux
Cluster with AMD Opteron 248 processors that have 64-bit capabilities and
4GB main memory per node. P-rEvoluzer II was implemented in C++ using
the MPICH v1.2.6 standard library for message-passing. Compilation was done
with the Portland Group Inc. C++ compiler v6.0. For concurrency in the master
process POSIX threads were used.

If not stated otherwise we used the following parameters in the experiments.
The threshold for the size of a front Fi which initiates a cut step was set to
τ = 2000. In a cut step the number of elements is reduced to τ = 128. The
default self scheduling method was 1/l-splitting with l = 2 and cmin = 2. The
master uses two threads to overlap communication and merging the results in
V . For time comparisons 20 RMP instances of size n = 100 have been solved.
All results are average times for solving one instance.

Results: In order to evaluate the solution quality obtained with rEvoluzer II
we compared it with other RMP solvers on 600 random instances of length
n = 100. For each 100 instances the permutations were generated by applying
k ∈ {5, 10, . . . , 30} random reversals to the identity permutation. The average
distance to solution values and score differences are given in Figure 1 (further
details in [6]). As the outcome of rEvoluzer II consists of a set of solutions, we
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Table 1. P-rEvoluzer II: comparison of computation times using constant and dynamic
chunk sizes for different number of processors; results in seconds

p 2 4 8 12 16 24 32 64
const. 456.62 184.22 95.40 72.18 61.84 54.24 47.45 44.78

1/2-splitting 458.68 170.42 81.81 57.31 46.62 37.86 34.37 31.68

used three methods to select permutations among the solutions with minimal
scores differences: i) solutions with minimal interval distance sums, or ii) solu-
tions with minimal distance to solution, or iii) solutions with maximal distance
to solution. Note, that for real world instances the distance to solution is not
known. Figure 1 shows that rEvoluzer II outperforms the other approaches on
the test instances (due to limited space further results on this are not described).

In Table 1 the 1/2-split technique is compared with the method using con-
stant size chunks. The results clearly indicate the superior performance of 1/2-
splitting. For 24 processors it leads to an improvement of more than 30%. For a
larger number of processors the improvement is smaller, as the master node be-
comes a bottleneck in both strategies. Note, that in the case of p = 2 processors
only one slave is used. For p = 1 the computation times are identical (524.75
sec). As 1/2-splitting clearly outperforms the variant with constant chunk sizes
only this technique is considered in the following. Figure 2 compares run times of
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Fig. 2. P-rEvoluzer II with one thread (top) and two threads (bottom) in the master
node; shown is the time-dependent behavior of: i) number of permutations in V , ii)
number of permutations in the master which still have to be send within an iteration
(send), iii) number of permutations which were already received by the master within
one iteration (recv); typical run on one test instance with size n = 100; p = 8 processors
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Table 2. Results for P-rEvoluzer II using different number of processors p; texp, tcut,
tpost: computation times for Expansion step, Cut step, Post processing step; cexp,
cpost: communication times for Expansion step and Post processing step; tcomp: overall
computation time; E: efficiency

p texp cexp tcut tpost cpost tcomp E

1 377.0 0.00 1.29 127.33 0.68 524.75 1.0
2 373.0 14.67 1.27 65.68 1.40 458.68 0.57
4 124.2 6.86 1.26 33.45 1.79 170.42 0.77
8 53.3 5.41 1.27 16.98 2.06 81.81 0.80

12 34.4 5.39 1.27 11.14 2.19 57.31 0.76
16 25.7 5.93 1.27 8.38 2.25 46.62 0.70
24 17.8 7.41 1.27 5.68 2.33 37.86 0.58
32 13.7 9.25 1.28 4.23 2.29 34.37 0.48
64 6.7 15.32 1.28 2.25 2.33 31.68 0.26

typical runs of the variant of P-rEvoluzer II that uses one thread in the master
with the variant that uses two threads. 8 processors were used. The following
three main differences can be observed between the two variants. i) The two-
threaded variant merges the received permutations during sending and receiving.
Hence, the time for merging the results in V is hidden. This can be seen when
comparing the length of the time interval between receiving the last chunks of
an expansion step and sending the first chunks of the next expansion step (e.g.,
in iteration 3 it is 2.89sec. in the one-threaded variant and 0.56sec. in the two-
thread variant). ii) The increase of |V| is smoother for the two-thread variant,
as permutations are merged by one thread as soon as they are received by the
master. iii) The overall computation time is more than 12% smaller for the two-
thread variant. Note, that the outcome of both variants can be slightly different
(see Section 4). The small subfigures within Figure 2 show the behavior of send
and recv in more detail for one iteration (iteration 27). It can be seen in both
figures that 1/2-splitting has the effect that the expansion step is completed
shortly after sending the last chunks to a slave.

Table 2 shows the computation and communication times for different num-
bers of processors for the expansion step, the cut step, and the post processing
step. Because the serial version of the cut step was used for the comparison,
there is no communication time for this step. Note, that the sum of all these
times is less than the overall computation time since additional computation
time is needed for sorting the front elements and a global synchronization op-
eration before each expansion step. It can be seen that the overall computation
time has a good scaling behavior up to about p = 24. For larger values of p
the master node becomes a bottleneck. For p = 64 more than 50% of the overall
computation time is used for communication, which leads to an efficiency of only
26%. For mid-range values of p P-rEvoluzer II has a very good efficiency. When
using p = 8 processors an efficiency of 80% was achieved.
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6 Conclusion

We presented the new algorithm rEvoluzer II for solving the Reversal Median
Problem (RMP) which takes into account conserved intervals. The results of
rEvoluzer II outperforms well-known approaches for the problem. In contrast to a
former version of this algorithm (rEvoluzer I) it is suitable for parallelization. The
parallel version (P-rEvoluzer II) uses a master-slave approach. Several techniques
to reduce parallelization overheads are incorporated, namely multi-threading in
the master node, chunk scheduling with decreasing chunk sizes and data locality
techniques. An overall efficiency of more than 80% could be achieved for with 8
processors.
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Abstract. Evolutionary methods of protein engineering such as phage
display have revolutionized drug design and the means of studying mole-
cular binding. In order to obtain the highest experimental efficiency,
the distributions of constructed combinatorial libraries should be care-
fully adjusted. The presented approach takes into account diversity–
completeness trade–off and tries to maximize the number of new amino
acid sequences generated in each cycle of the experiment. In the paper,
the mathematical model is introduced and the parallel genetic algorithm
for the defined optimization problem is described. Its implementation
on the SunFire 6800 computer proves a high efficiency of the proposed
approach.

1 Introduction

Evolutionary methods of protein engineering such as phage display have revo-
lutionized drug design and the means of studying molecular binding. Usually,
they involve repeating cycles of the combinatorial protein experiment. The bio-
chemical experiment’s cycle can be divided into three steps [1]: the generation of
genetic diversity (randomizing DNA), the coupling of genotype and phenotype,
and the identification of successful variants from the obtained protein libraries
(the selection).

Protein libraries are often constructed by expressing a library of partially
random gene sequences. This approach is used in phage display methods [2].
For instance, this method can be applied for searching new specific peptides or
proteins with high affinities to given targets. The cycle of the phage display ex-
periment is showed in Fig. 1, where a new peptide specific to a given acceptor
molecule is searched for. Nucleotide distributions used at particular positions
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Fig. 1. Phage display experiment’s cycle

of a randomized DNA sequence induce a distribution of amino acid sequences
obtained in the expression step according to the genetic code. Thus, design-
ing randomizations of DNA libraries is an important computational step of the
experiment (step 0).

Various theoretical approaches were proposed to increase the efficiency of
evolutionary methods. Many of them assume more or less clearly that “the like-
lihood of finding variants with improved properties in a given library is maxi-
mized when that library is maximally diversified” [3]. The main group of simple
methods try to utilize properties of the genetic code like redundancy and de-
generacy. In particular, simple equimolar mixtures of all four nucleotides for
randomized codons can be replaced by more efficient distributions which are not
so biased towards these amino acids with more entries in the genetic code table
[1]. Additionally, non-equimolar mixtures can decrease the probability of stop
codons, significantly improving the efficiency of experiments [1] [4] by increasing
the number of complete sequences. In [4] the size of protein library is quanti-
tavely described as the value of the sequence entropy, which is a measure of the
effective number of sequences. Related approaches involve finding the minimal
size of the library (the number of clones) that is required to obtain the desired
number of distinct variants or all variants with a given probability [3]. Simple
measures for library diversity were proposed in [5], where different combinatorial
monomer mole fractions were taken into account.

In a typical experiment, the phage display experiment’s cycles can be fre-
quently repeated to explore new (not explored yet) parts of the amino acid
sequence space. The common case is that one would like to obtain physically
as many new (i.e. not obtained previously) peptides as possible in each cycle to
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cover the sequence space quicker. Theoretically, it is even possible to obtain all
amino acid sequences in the finite number of cycles using randomizations gen-
erating partial diversity only. Although the approaches discussed above provide
means of assesing and adjusting library diversity and completness for a given
library size and applied distributions, they do not take into account the memory
of the experiment, i.e. information about the sequences that have been obtained
in previous cycles [6][7].

In this article, a new approach is presented which takes into account
diversity–completeness trade-off and tries to maximize the number of new amino
acid sequences in each cycle of the experiment. The power of the approach is
enhanced by the use of genetic algorithms with parallel evaluation of populations
that were tested on the SunFire machine. The paper consists of the following
sections: in Section 2 necessary phage display experiment details and its math-
ematical formulation, are presented. The optimized goal function is introduced
as well there. In Section 3 the applied genetic algorithm for the defined Optimal
Randomization problem is described, together with the parallel evaluation of
population’s solutions being its essential part. In Section 4 the obtained compu-
tational results are presented. Section 5 contains summary and future research
directions.

2 Problem Formulation

In the first step of phage display experiment’s cycle, the randomized DNA library
is constructed by randomizing the selected N codons (not neccessarily consec-
utive) within available V codons in the open reading frame to achieve genetic
diversity. (Consequently, as a result of the expression step, one obtains the pep-
tide library containing amino acid sequences of length V , where N positions are
randomized.) During a synthetization of the DNA library, particular nucleotides
adenine (A), guanine (G), cytosine (C) and thymine (T) are added to DNA
strands with the predetermined ratio p (ni,j), i = 1, . . . , N , where j = 1, 2, 3
denotes a nucleotide position in the i-th codon and n = A, G, C, T denotes a
nucleotide considered. (Please note that the i-th codon refers to the i-th ran-
domized codon, and not to the i-th codon in a DNA sequence).

Since the probabilities (frequencies) of nucleotide appearances in the given
codon ni,1ni,2ni,3 are independent, the frequency of this codon can be calculated
as follows: p (ni,1ni,2ni,3) = p (ni,1) · p (ni,2) · p (ni,3).

During the second step, the library of peptides displayed on a surface of bac-
teria is obtained. The distribution of amino acid sequences in the library depends
on the nucleotide ratios applied during the construction of the DNA library. We
assume, that the probability p (ai|ni,1, ni,2, ni,3) that amino acid ai will occur as
encoded by codon ni,1ni,2ni,3 is equal to the frequency of ni,1ni,2ni,3. To calcu-
late the overall probability of ai appearance, all codons that encode this amino
acid should be considered:

p (ai) =
∑

ni,1,ni,2,ni,3

p (ai|ni,1, ni,2, ni,3)
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=
∑

ni,1,ni,2,ni,3

p (ni,1) · p (ni,2) · p (ni,3) · δ (ai|ni,1, ni,2, ni,3) , (1)

where:

δ (ai|ni,1, ni,2, ni,3) =
{

1 , if ni,1, ni,2, ni,3 encodes ai,
0 , otherwise. (2)

according to the genetic code.
Assuming that probabilities p (a1) , p (a2) , . . . p (aN ) are independent, the

probability p (s) that amino acid sequence s will occur with the given amino
acids a1, a2, . . . , aN on randomized codon positions, can be calculated as fol-
lows:

p (s) =
V∏

i=1

p (ai) . (3)

Let L be the DNA library size, i.e. the number of DNA entities (molecules)
belonging to the constructed library. The number of such DNA entities (mole-
cules) that each one encodes amino acid sequence s with the given amino acids
a1, a2, . . . , aN on randomized codon positions, can be calculated as follows:

E (s) = L · p (s) . (4)

Please note that if the DNA library size L or frequency p (s) decreases, the
number of DNA molecules encoding s decreases too and the chance of expressing
s lowers. Thus, in our model, the requirement on the minimal number K of DNA
molecules such that each of these molecules encodes s, is introduced to guarantee
that s will be physically included into the library obtained and, consequently,
s will be compared with other variants during the selection step. Formally, the
following condition should be fulfilled:

E (s) = L · p (s) = L ·
N∏

i=1

p (ai) ≥ K . (5)

For given L, K and V and the nucleotide distribution, the real diversity of
the expressed peptide library can be defined as the total number of amino acid
sequences, where each amino acid sequence has to be encoded by at least K
DNA molecules:

Diversity =
∣∣∣{s ∈ (Σaa)

V : L · p (s) ≥ K
}∣∣∣ , (6)

where (Σaa)
V denotes all possible words (sequences) of length V over alphabet

Σaa of all amino acids. The above defined real diversity formula attempts to
calculate the exact number of well presented amino acid sequences.

As we mentioned in Section 1, our approach also tries to take the history
of an experiment into account, i.e. information about sequences that have been
obtained in previous experiment’s cycles. This allows to cover the sequence space
quicker by generating as many new complete (not obtained previously) amino
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acid sequences as possible. Here, “complete” means that a whole amino acid
sequence is encoded only by such DNA sequences that do not contain stop codons
in randomized positions. The total number of new amino acid sequences obtained
in the current experiment’s cycle can be calculated as follows:

|NewAminoAcids| =
∣∣∣s ∈ [(Σaa)

V \H
]

: L · p (s) ≥ K
∣∣∣ , (7)

where NewAminoAcids is a set of new amino acid sequences and H is a set of
previously obtained amino acid sequences. Our goal in “0-th” (computational)
step of an experiment cycle is to maximize |NewAminoAcids| value by varying
the nucleotide ratios applied during a synthetization of the DNA library.

To formally define the problem, let pw (ni,j) be the nucleotide ratio applied
in the w-th cycle of the experiment, where w = 1, 2, . . . , W and W is the number
of executed cycles. Consequently, the frequency of each sequence s in w-th cycle
is equal to pw (s) =

∏V
i=1 pw (ai). Analogously, Lw and Kw refer to the L and K

values applied in the w-th cycle. (Please note that for the current cycle L = LW+1
and K = KW+1.) Now, one can calculate H as follows:

H =
W⋃

w=1

{
s ∈ (Σaa)

V : Lw · pw (s) ≥ Kw

}
. (8)

Note that for every sequence s and its subsequence t consisting of all random-
ized positions only, p (s) = p (t), so one can evaluate only the probability of
subsequence of length N instead of V in order to compute p (s). Furthermore,
in each of the above definitions one can easily replace the whole sequence s of
length V with subsequence t of length N and (Σaa)

V with (Σaa)
N . In particular,

|NewAminoAcids| value is always the same regardless of its definition; whether
for the whole sequences or for its randomized subsequences. For simplicity, only
a randomized subsequence of length N will be considered later on.

The Optimal Randomization problem can be defined as follows:
Optimal Randomization – search version:

Instance: Number W ∈ N ∪ {0} of cycles executed, number N of randomized
codons, library size Lw ∈ N \ {0} and minimal number Kw ∈ N \ {0} of DNA
molecules encoding one amino acid sequence in the w-th cycle; ratios pw (ni,j) ∈
[0, 1] of nucleotides in particular cycles for every i ∈ {1, 2, . . . , N}, j ∈ {1, 2, 3},
L ∈ N \ {0} and K ∈ N \ {0} for the current cycle.

Answer: Randomization ratios p (ni,j) ∈ [0, 1] of nucleotides in the current cycle
such that there is no other ratios with greater value of |NewAminoAcids|.

For W > 0, Optimal Randomization becomes strongly NP–hard [8]. More-
over, there is also not known any polynomial–time algorithm for the non-
deterministic Turing machine solving its decision version.

3 The Parallel Genetic Algorithm

Taking into account the strong NP–hardness of the Optimal Randomization
problem, there is no hope to find an exact polynomial–time algorithm. Thus, the



1102 J. B�lażewicz et al.

(meta)heuristic algorithms for the problem appear as a reasonable alternative
to exact ones. Metaheuristic strategies like genetic algorithms [9] allow to search
the explored solution space in a smart way and find good suboptimal solutions
in an acceptable time.

The presented algorithm for Optimal Randomization uses the classic “sim-
ple” genetic algorithm (GA) scheme with non-overlapping populations as de-
scribed in [9]. The score of a solution (an individual in GA terminology) is defined
as |NewAminoAcids|. In each iteration (generation) the algorithm creates a new
population of individuals by first selecting individuals from the previous popu-
lation and then mating these selected individuals to produce the new offspring
for the new population. Additionally, the best individual from each generation is
carried over to the next generation. The array uniform crossover [10] was applied
with a probability of mating 0.9. The mutation probability was 0.01.

A solution of length N is represented as an array genome (in a genetic algo-
rithm sense) consisting of 12 ·N real numbers z (ni,j) ∈ [0.0, 1.0] corresponding
to nucleotide ratios:

p (Ai,j) =
z (Ai,j)

Z
, p (Gi,j) =

z (Gi,j)
Z

, p (Ci,j) =
z (Ci,j)

Z
, p (Ti,j) =

z (Ti,j)
Z

∈ [0, 1]

(9)
where Z = z (Ai,j)+z (Gi,j)+z (Ci,j)+z (Ti,j). The above encoding guarantees
that every genome always represents a correct solution. The initial population
is generated randomly in such way that:

p (ni,j) ∈ {0, 1} and p (Ai,j) + p (Gi,j) + p (Ci,j) + p (Ti,j) = 1 . (10)

During the evaluation of a population, the scores of all individuals are evalu-
ated. Unfortunately, there is not known any polynomial–time algorithm for com-
puting |NewAminoAcids|. The applied algorithm needs to enumerate O

(
20N
)

amino acid sequences generated by an individual in order to compute its score
value. Thus, the evaluation phase is the most time consuming step of the ge-
netic algorithm for Optimal Randomization. To reduce the evaluation time, the
parallel version of evaluation procedure was implemented as explained below.

Our evaluation procedure evaluates scores (|NewAminoAcids|) of population
individuals simultanously in a master-slave configuration. The master controls
the overall evolution (in the genetic algorithm sense): it initializes a population
and then in each iteration of the genetic algorithm it generates a new popula-
tion and calls the evaluation procedure until the given number of generations
is executed. When the population has to be evaluated, the master sends indi-
vidual’s genomes (solutions) to free slaves, a genome to a slave, and waits for
the answers. Each slave computes the |NewAminoAcids| of the solution received
and then sends the evaluated score to the master and begins to wait for new
genomes. The master continues sending genomes until the whole population is
evaluated.
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4 Results

The implemented genetic algorithm uses the GAlib - a C++ Library of Ge-
netic Algorithm Components [10] and MPICH 1.2.4 [11]. The computational
experiments were executed on multiprocessor SunFire 6800 located in Poznan
Supercomputing and Networking Center.

The tested instances were obtained by the incremental procedure simulating
the execution of experiment’s cycles. The solution found for the given instance
with W cycles has been added to this instance in order to create a new one with
W + 1 cycles. The simulation procedure has been executed for initial instances
with K = 102, L = 108, W = 0 and N = 5, 8, 11, 14.

Table 1. Results

N = 5 N = 8 N = 11 N = 14
W P T BS Q SU P T BS Q SU P T BS Q SU P T BS Q SU
0 17 4.22 356640 3.14 7.44 17 28.94 552960 720.94 10.25 17 27.51 552960 ∞ 11.01 17 28.02 655360 ∞ 11.01
0 9 7.44 356640 3.14 4.22 9 52.67 552960 720.94 5.63 9 46.00 552960 ∞ 6.58 9 45.96 655360 ∞ 6.71
0 5 12.02 356640 3.14 2.61 5 89.45 552960 720.94 3.32 5 83.80 552960 ∞ 3.61 5 83.40 655360 ∞ 3.70
0 3 19.44 356640 3.14 1.61 3 164.71 552960 720.94 1.80 3 155.69 552960 ∞ 1.95 3 159.69 655360 ∞ 1.93
0 1 31.38 356640 3.14 1.00 1 296.59 552960 720.94 1.00 1 302.87 552960 ∞ 1.00 1 308.48 655360 ∞ 1.00

10 17 3.96 114319 2.68 7.50 17 36.31 689144 899.67 9.86 17 40.85 774144 ∞ 10.68 17 46.11 589824 ∞ 10.71
10 9 6.98 114319 2.68 4.26 9 65.87 689144 899.67 5.44 9 65.31 774144 ∞ 6.68 9 74.36 589824 ∞ 6.64
10 5 11.30 114319 2.68 2.63 5 111.27 689144 899.67 3.22 5 117.86 774144 ∞ 3.70 5 133.23 589824 ∞ 3.71
10 3 18.42 114319 2.68 1.61 3 200.64 689144 899.67 1.78 3 221.32 774144 ∞ 1.97 3 251.57 589824 ∞ 1.96
10 1 29.70 114319 2.68 1.00 1 358.03 689144 899.67 1.00 1 436.32 774144 ∞ 1.00 1 493.86 589824 ∞ 1.00
25 17 5.36 66056 4.47 7.74 17 40.17 691392 902.60 9.92 17 46.76 688128 ∞ 10.39 17 44.56 514048 ∞ 9.50
25 9 9.49 66056 4.47 4.38 9 72.91 691392 902.60 5.47 9 74.68 688128 ∞ 6.50 9 67.52 514048 ∞ 6.27
25 5 15.44 66056 4.47 2.69 5 123.27 691392 902.60 3.23 5 134.04 688128 ∞ 3.62 5 117.68 514048 ∞ 3.60
25 3 25.11 66056 4.47 1.65 3 223.33 691392 902.60 1.78 3 252.33 688128 ∞ 1.93 3 221.73 514048 ∞ 1.91
25 1 41.51 66056 4.47 1.00 1 398.49 691392 902.60 1.00 1 485.75 688128 ∞ 1.00 1 423.33 514048 ∞ 1.00

To assess quality of the genetic algorithm, a simple random algorithm, gen-
erating solutions randomly, has been implemented. The algorithm generates
random genotypes (see (9) ) and evaluates their values in the loop which is
terminated if the given time limit is exceeded. The time limit was set to the
three maximal execution times of the genetic algorithm. The results of compu-
tational experiments for the chosen instances are presented in Table 1. Each
entry in the table is the mean value for 3 runs of the program for varying seed
values of a pseudorandom number generator that determines the behavior of the
crossover and mutation operators. The number of generations (iterations) of the
genetic algorithm was set to 100 and the number of individuals in a population
was set to 64. The columns in Table 1 contain respectively: N - the number
of randomized amino acid positions, W - the number of executed experiment’s
cycles, P - the number of processors utilized, T - execution time in seconds,

Fig. 2. Speed up charts
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BS - the best score found, Q - the “quality” measure of the genetic algorithm
computed as the ratio beetween the BS and the score value obtained by the
random algorithm described above, and SU - the speed up. ∞ in Q column in-
dicates that the random algorithm found solution with score equal to 0. The
values in Q column show that solutions found by the genetic algorithm are sig-
nificantly better than the ones found by the random algorithm. The obtained
speed up values prove the high efficiency of the applied approach even though
only the evaluation procedure is executed in parallel. The dependence beetwen
speed up and the number of processors is almost perfectly linear for a wide range
of problem’s parameters (see Fig. 2).

5 Conclusions

In this paper, a new approach is presented which takes into account diversity-
completness trade-off and tries to maximize the number of new amino acid
sequences in each cycle of the phage display experiment. The correspond-
ing mathematical model was defined and new measures Diversity and
|NewAminoAcids| for assesing efficiency of biochemical experiment’s libraries
were introduced. For the defined Optimal Randomization problem, the genetic
algorithm with evaluation procedure working in a master-slave configuration,
was designed, implemented and tested on SunFire 6800 computer. Computa-
tional experiments proved the high efficiency of the approach proposed.

In the future more sophisiticated operators should be designed to improve
the behavior of the genetic algorithm for hard instances. Alternatively, other
genetic algorithm schemes combined with, for example, local search strategies,
could be implemented.
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Abstract. In this paper we explore several techniques of analysing se-
quence alignments. Their main idea is to generalize an alignment by
means of a probability distribution. The Dirichlet mixture method is used
as a reference to assess new techniques. They are compared based on a
cross validation test with both synthetic and real data: we use them to
identify sequence-structure relationships between target protein and pos-
sible local motifs. We show that the Beta method is almost as successful
as the reference method, but it is much faster (up to 17 times). MAP
(Maximum a Posteriori) estimation for two PSSMs (Position Specific
Score Matrices) introduces dependencies between columns of an align-
ment. It is shown in our experiments to be much more successful than
the reference method, but it is very computationally expensive. To this
end we developed its parallel implementation.

1 Introduction

Motif discovery in the case of DNA or protein sequences has a wide range of
applications in modern molecular biology: from modeling mechanisms of tran-
scriptional regulation [4, 11] to prediction of protein structure [2]. In this work
we address the latter problem. We developed a probabilistic approach of general-
izing sequence alignments representing structural motifs of local neighborhoods
in proteins. We show that we can identify a correct motif of a given protein
fragment accurately using only sequence of the query fragment.

This problem has been extensively studied during the last few years. The
simplest estimator of seeing an amino acid in an alignment, called Maximum
Likelihood estimator [8], which only counts occurrences of amino acids, is of
no use for alignments consisting of too few sequences, as it may happen that
an amino acid is not seen in the alignment at all, but it would be seen, if the
number of aligned sequences were greater. To this end various methods introduc-
ing prior knowledge were proposed. These methods range from the zero-offset
method [10], through methods based on substitution matrices [3] or amino acid
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feature alphabets [13], to the most advanced Dirichlet mixture method [6, 12] for
which a mixture of Dirichlet distributions is supplied as prior knowledge. The
pseudocount method [14] is a special kind of the Dirichlet mixture method, where
only one Dirichlet distribution is used. It is shown in [10] that, when the columns
of an alignment are independent, the Dirichlet mixture method is close to the
theoretical optimum.

Modeling dependencies between columns in DNA sequence alignments has
been recently studied in [1, 4, 7]. In [7] dependencies are modeled only between
adjacent columns with the use of Hidden Markov Models. Methods exist to
model dependencies between columns not adjacent in an alignment. Autors of
[4] analyse a number of such methods, one of them being the mixture of PSSMs
(Position Specific Score Matrices) method. They use the pseudocount method
to introduce prior knowledge (modeled by a single Dirichlet distribution). We
propose a new method of estimating distributions from alignments that is more
suitable for protein sequence alignments. It models column dependencies with a
mixture of PSSMs and uses a mixture of many Dirichlet distributions as prior
knowledge. We discuss advantages of this choice in Section 5.

We performed two experiments comparing different techniques of generaliz-
ing alignments. The first one was performed with synthetic data, generated from
known probability distributions, the second with real data from a database of
protein motifs. In these experiments we compared our two new techniques with
the Dirichlet mixture method. First of the techniques we propose is MAP (Max-
imum a Posteriori) estimation for two PSSMs. This technique can model col-
umn dependencies. We show that it gives much better results than the reference
method. Second, the Beta method, gives results comparable with the Dirichlet
mixture method, but is up to 17 times faster.

2 Methods

Results of our experiments were obtained by a cross validation test done with
both synthetic and real data. We performed 3-fold cross validation with syn-
thetic data and 5-fold cross validation with real data. Let us describe the F -fold
cross validation test, where F is a positive integer, usually between 3 and 10.
The dataset for the test consists of a number of alignments. The test itself is
performed as follows: sequences from every alignment are randomly divided into
F subsets. Each of them is treated as a test set T in one of F runs of the cross
validation test. At the same time the remaining F − 1 subsets are treated as a
training set (profiles are estimated from the union of F − 1 subsets, according
to a selected profile estimation method, see below for details).

The log-probability is computed for every sequence from T and the alignment
from which that sequence was removed. For each alignment we then compute
its mean log-probability value for a given estimation method, averaged over all
sequences in all runs of the cross validation procedure. Let us fix the alignment
A. To address the statistical significance of the difference in mean log-probability
values for A between two methods, the paired t-test is performed. Following [4],
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we call one method better than the other on A when the difference in mean log-
probability values for A is positive, and significantly better when the associated
paired t-test p-value is below the 0.05 treshold. It is called worse or significantly
worse when the other method is, respectively, better or significantly better.

Additionally, in the case of synthetic data, which consists of alignments with
the same number of columns, during the cross validation procedure the prediction
test is performed as follows: for a given sequence from T , every alignment is
scored as described below. The prediction is judged as successful if the correct
alignment (i.e. the one, from which the test sequence was removed) is the one
with the highest score.

Let us define a notion of PSSM. By PSSM we understand a sequence pro-
file. Formally, PSSM of length l is a matrix (pij) of size 20 × l. We estimate
PSSMs from alignments using one of the techniques described below. All those
techniques accept a mixture of Dirichlet distributions as prior knowledge.

1. Dirichlet mixture method. This method, described in detail in [6, 12], is used
as a reference method. In short, PME (Posterior Mean Estimator) is used
with a prior being a mixture of Dirichlet distributions.

2. Beta method. Columns of all sequence alignments are first clustered by the
similarity of their amino acid distributions. The clusters are built around
center points computed from the supplied prior. After construction of the
clusters the prior is discarded and new and much simpler priors are estimated
for every cluster. Let us refer to a profile obtained from a column with the
use of the Maximum Likelihood estimator as an ML-profile. For every amino
acid x in the i-th cluster the new prior is the Beta(ai

x, bi
x) distribution. The

values of ai
x, bi

x are estimated from all ML-profiles in the i-th cluster.
Let us fix a column c in an alignment. Suppose that c is in the i-th

cluster. Let us consider any amino acid x. Suppose that x has the observed
frequency nx

n in the ML-profile of c. A posterior estimator of the probability

of x appearing in c is nx+ai
x

n+ai
x+bi

x
. We repeat that for all 20 amino acids. After

normalization by N =
∑

x
nx+ai

x

n+ai
x+bi

x
we obtain a new profile for c.

3. MAP estimation for two PSSMs. Instead of PME estimation (as in the case
of the Dirichlet mixture method) we use MAP estimation to obtain a mix-
ture of two PSSMs together with the weights q1, q2 of these PSSMs. This
representation takes into account column dependencies.

The implementation is parallel since the estimation is computationally
very demanding. MPI environment is used. We use a master-slave paradigm
in which one of the processes distributes the tasks and collects the results,
while the rest of the processes perform calculations. The calculations are done
in two phases. In the first, called the search phase, an extensive sampling
of the probability space is done to find good starting points for the second
phase, which is called the maximizing phase. In the second phase a gradient
descent as a part of EM (Expectation Maximization) algorithm is performed
to locally maximize our goal function.
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We use the following scoring procedure. Let us fix an alignment A of length l
and a query sequence S = s1s2s3 . . . sl. A is described by P (1), . . . , P (K), PSSMs
estimated according to one of the techniques described above, and by K positive
weights of these PSSMs, q1, . . . , qK , such that

∑K
i=1 qi = 1. The value of K

depends on the estimation technique and it equals 1 or 2 in this work. Every
PSSM P (k) = (p(k)

ij ) is a matrix of size 20 × l. The score of A is M(S, A) =∑K
k=1 qk ·p(k)

s11 ·p(k)
s22 ·. . .·p(k)

sll
. Logarithm of this score is used as the log-probability

value for the alignment A in the cross validation procedure.

3 Experiment with Synthetic Data

We performed two tests with synthetic data: in the first one, alignments consisted
of 200 sequences and in the second test of 600 sequences. This allowed us to
assess the impact of the number of sequences in an alignment on the estimation
accuracy.

For both tests we used the same prior distribution as in the case of the real
data (i.e. a mixture of 54 Dirichlet distributions). We believe that it made our
synthetic experiment more realistic. We generated 300 alignments of length 30
for both tests. The procedure to generate a single alignment was as follows:
first, generate three PSSMs with 30 columns distributed according to the prior;
then, from this mixture of PSSMs, generate 200 or 600 (depending on the test)
sequences of length 30. This procedure was repeated 300 times to generate 300
alignments.

3-fold cross validation was performed as it was described in Section 2. Thus
the estimation was done in fact on 2

3 of the alignment. For the estimation we
used the same prior that had been used to generate alignments.

In this experiment we tested the MAP estimation for two PSSMs and the
Beta method. Their comparison to the reference method, the Dirichlet mix-
ture method, presented in Table 1, shows the number of alignments, for which
each method had higher mean log-probability value than that of the reference
method. Table 1 also shows the percentage of successful predictions (evaluated
as described in Section 2) depending on the profile estimation method used.

As seen in Table 1, for alignments comprising relatively small number of
sequences the difference in prediction accuracy between the Beta method and
the Dirichlet mixture method was larger. This is due to a much simpler character
of the Beta method. The Beta method also had significantly worse mean log-
probability values in almost all cases. In addition we can see that in the case of
insufficient data the MAP estimation for two PSSMs performed very poorly. It
had lower mean log-probability values in all cases and in the prediction accuracy
test it was also much worse than both methods without dependencies. This is
caused by a need to estimate a larger number of parameters.

However, for alignments with greater number of aligned sequences the Beta
method performed almost as well as the Dirichlet mixture method (when we
consider prediction accuracy) and MAP estimation for two PSSMs proved to be
much more successful, having both much better prediction accuracy and higher
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Table 1. Results of tests with synthetic data: the number of alignments with higher
mean log-probability value than that of the reference method (i.e. better results), the
number of significantly better results and the number of significantly worse results.
The reference method row is presented in bold face. Column 6 shows the percentage
of successful predictions. Columns 7 and 8 show the number of sequences in each
alignment and an average number of sequences in the training set used for estimation
in the 3-fold cross validation procedure.

Estimation method PSSMs Better Sig. better Sig. worse Succ. pred. Seqs Tr. seqs
Dirichlet mixture 1 0 0 0 18% 200 133

Beta 1 0 0 293 16% 200 133
MAP estimation 2 0 0 300 11% 200 133

Dirichlet mixture 1 0 0 0 22% 600 400
Beta 1 63 5 128 22% 600 400

MAP estimation 2 285 274 7 29% 600 400

mean log-probability values in almost all cases, most of them being significantly
better.

We can see that it is enough to estimate two PSSMs instead of one to greatly
increase success rate, in spite of the fact, that data was generated from a mixture
of three PSSMs.

4 Experiment with Real Protein Motifs

Our experiment was performed on a list of 117 sets of structurally aligned protein
fragments. They were taken from proteins represented in ASTRAL 1.63 [5] and
having less than 40% sequence identity to one another. The fragments were
composed of several contiguous subfragments forming a local 3D neighborhood
in a protein core, as described in [9].

Fragments were structurally aligned based on their 3D structure similarity
measured by RMSD (Root Mean Square Deviation). After the structural align-
ment had been constructed, a corresponding sequence alignment was obtained

Fig. 1. Example of a set of structurally aligned fragments. There are 3 contiguous
subfragments in every fragment in this set.
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for each set of fragments. Figure 1 shows an example of such a structurally
aligned set. The sets (and consequently alignments) contained from 508 to 6996
fragments (sequences), as we rejected alignments with less than 500 sequences
(too few sequences to perform a reliable MAP estimation for two PSSMs).

To gather more sequential information for estimation methods, sequences of
the subfragments were extended by 4 amino acids on both ends. Extensions in
the set need not share common structure, as is the case for the original fragments.

Table 2 summarizes the results: it shows the number of alignments for which
the considered method was better (significantly better, significantly worse) than
the reference method (evaluated as decribed in Section 2) in the 5-fold cross
validation procedure with a mixture of 54 Dirichlet distributions used as a prior.

Table 2. Results of the test: the number of alignments with higher mean log-probability
value as compared to the reference method (i.e. better results), the number of sig-
nificantly better results and the number of significantly worse results. The reference
method row is presented in bold face. Last column shows computation time on a single
processor on all data (without cross validation, averaged over 3 runs).

Estimation method PSSMs Better Sig. better Sig. worse Comp. time
Dirichlet mixture 1 0 0 0 34 sec.

Beta 1 64 32 20 2 sec.
MAP estimation 2 83 77 26 no data

As seen in Table 2, the Beta method was more succesfull than the Dirichlet
mixture method in 64 of 117 cases (but not significantly in half of them), while
the estimation time in the former method was much shorter than in the case of
the latter. To assess the speed of estimation, we performed an additional test
(repeated 3 times) in which no cross validation was performed and both methods
were used to estimate profiles from the data. The test was performed on a com-
puter with Pentium4 2.80GHz processor and 512MB RAM. The estimation took
2 sec., 2 sec. and 2 sec. for the Beta method and 34 sec., 32 sec. and 37 sec. for
the Dirichlet mixture method; on average the Beta method was 17 times faster.

Including dependencies in our method with two PSSMs greatly increased
accuracy of estimation, making it better in 83 of 117 cases, most of them being
significantly better. It was significantly worse only in 26 cases.

MAP estimation, although the most successful, is also computationally most
demanding: the test described took about a week of computation time on a clus-
ter of 16 two-processor computers (AMD Opteron 2GHz, 2GB RAM). To assess
the impact of the number of processes on the computation time, additional test
was performed on that cluster. Table 3 summarizes the results of running the
computations without cross validation on a subset of alignments which consisted
of less than 1000 sequences (48 such alignments were present among all 117 align-
ments under consideration). The computations were run with 2, 4, 8, 16 and 32
processes. One of these processes, as described in Section 2, distributed the tasks
and collected the results, the rest of the processes performed the calculations.
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Table 3. Results of the scaling test for the MAP estimations for two PSSMs: the
computation time as a function of the number of processes. The second column presents
the number of processes doing the calculations. Columns 3 and 4 present the real
computation time while two last columns present the computation time predicted by
dividing the times from the row in bold face by the number of processes performing
the calculations. The values agree very well.

Processes Calc. processes Computation time Predicted time
Search phase Max. phase Search phase Max. phase

2 1 88704 sec. 961640 sec. - -
4 3 29568 sec. 332843 sec. 29568 sec. 320547 sec.
8 7 12833 sec. 130843 sec. 12672 sec. 137377 sec.
16 15 5989 sec. 63409 sec. 5914 sec. 64109 sec.
32 31 2905 sec. 34648 sec. 2861 sec. 31021 sec.

There were, respectively, 1, 3, 7, 15 and 31 processes doing the calculations. As
seen in Table 3, the computations scale very well. The computation time in each
case can be well predicted by dividing the time taken by one process doing the
calculations by the number of calculating processes.

5 Conclusions

The success of MAP estimation for two PSSMs not only in the experiment with
synthetic data, but also with real data, is caused, we believe, by three factors:

1. The way to include column dependencies, we introduce in our model (a
mixture of PSSMs), has a strong biological background: it models the fact,
that the structure of a protein motif can be stabilized in more than one way.

2. The dependent positions, which make the stabilization possible, are located
on different subfragments, not adjacent in an alignment. When the models
with dependencies between nonadjacent columns are considered, mixtures
of PSSMs have relatively few parameters [4], which makes estimation more
reliable.

3. The prior knowledge we use in our model (a mixture of many Dirichlet dis-
tributions) makes it possible to model many amino acid contexts in columns,
in contrast to the pseudocount method used in [4], which models only one
context: the background. Thus we can model hydrophobic columns, columns
with big amino acids, columns with positive amino acids, etc.

Comparison of the results on synthetic and real data shows that when per-
forming estimation with dependencies it is very important to include only align-
ments with enough sequences to make the estimation reliable. The results can
be very poor when the dependencies are considered but not enough examples
are provided for the estimation procedure.
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Parallel Implementation of Logical Analysis of
Data (LAD) for Discriminatory Analysis of

Protein Mass Spectrometry Data

Krzysztof Puszyński

Silesian University of Technology

Abstract. A parallel implementation of proteomic ovarian cancer
diagnosis system based on logical analysis of data is shown. The im-
plementation is based on computational cluster elaborated in System
Engineering Group at Silesian University of Technology. For verification
of algorithm and software Ovarian Dataset 8-7-02 (which can be found
at http://clinicalproteomics.steem.com) was used. This mass spectrom-
etry data contains intensity levels of 15 154 peptides defined by their
mass/charge ratios (m/z) in serum of 162 ovarian cancer and 91 control
cases. A Seti-like and OpenMosix with PVM cluster technology was used
to construct in LAD a fully reproducible models (1) using full range and
(2) using only 700-12000 of m/z values of peptides and proved in mul-
tiple cross-validation leave-one-out tests to guarantee sensitivities and
specificities of up to 100 %.

1 Introduction

The early detection of cancer is still one of the primary goals of cancer man-
agement. Since identification of peptides involved in tumorigenesis becomes pos-
sible the proteomic analysis of cancer is in the forefront of modern biomedical
research. There are many computational methods applicable for analysis of pro-
teomic data. Among them we mention clustering [1], discriminant analysis [1],
Bayesian networks [1], decision trees [2], support vector machines [3], artificial
neural networks [4], but as was shown in [5] the additional important results
can be obtained by using the logical analysis of data (LAD) [6, 7]. Neverthe-
less, LAD methodology requires large number of calculations because of their
specificity. It is impossible to implement this on a single desktop computer even
with large RAM and very fast CPU. Approximate time for one iteration in
leave-one-out validation on PIV 3,2GHz machine with 1 GB RAM is about
96 hour, because we have 253 samples and we need 24 288 hour for execu-
tion of complete validation, and we have no warranty that we receive correct
ovarian cancer model. For this reason it becomes necessary to use of paral-
lel calculations. At the begining a Seti-like cluster was build on eight System
Engineering Group laboratory halls computers. When computational cluster
with OpenMosix and PVM technology was started the computation became
transferred on him.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 1114–1121, 2006.
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2 Dataset Description and Methodology of LAD

2.1 Dataset

The data used in this paper are (as in [5]) Ovarian Dataset 8-7-02 which can be
found at http://clinicalproteomics.steem.com. They include intensity levels of 15
154 peptides defined by their mass/charge ratios (m/z) in serum of 162 ovarian
cancer and 91 control cases. This data has been obtained with SELDI-TOF-
MS (Surface-Enhanced Laser Desorption/Ionization with Time-Of-Flight Mass
Spectrometry) using WCX2 chip (weak cation exchange array with carboxylate
funcionality protein chip array).

Fig. 1. SELDI-TOF-MS chromatogram with ion peaks in range of 0 20 000 Da. Notice
that there are more m/z peaks between 0 and 10 000 Da than between 10 000 and 20
000 Da. On most cases accessible dataset contains range of 700 12 000 Da.

2.2 Methodology of LAD

The detailed description of methodology of LAD is beyond the scope of this
paper. It can be found in [6, 7]. In this paper only short description of LAD is
given. Logical analysis of data consists of 4 phases:

– binarization - because LAD works in boolean (0 and 1) space we need to
convert our problem to this space. In this phase we find cut-points and then
binarize our data according to them,

– support set finding - in this phase we build and solve a system of inequalities
based on binary information of peptides intensity. As a result we receive a
support set - a minimal set of peptides and its cut-points which are necessary
to correct distinguishing ovarian cancer cases,
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– pattern building - using peptides contained in support set we build positive
(including only cancer cases) and negative (including only control cases)
patterns. As a result of this phase we have large number of positive and
negative patterns,

– model building - in this final phase we reduce number of patterns to receive
ovarian cancer model,

The first two phases (binarization and support set finding) require a large
computational power and therefore the application of the cluster is necessary.

2.2.1 Binarization
At the beginning of binarization phase we need to find a cut-points which are
values of intensity levels between next cases counted according to formula:

cut − point(j) = intensity(i) +
intensity(i + 1) − intensity(i)

2
(1)

separately for each peptide. Then we carry out the proper binarization according
to the rule:

∀(i, j) if intensity(i) ≥ cut − point(j) then bij = 1 else bij = 0 (2)

By making this for all peptides we receive a binary matrix B from about 3.5
million columns and 253 rows, where each column represents one cut-point and
each row represents one (positive P or negative N) cases.

Table 1. Example of binary matrix B received in binarization phase of LAD. Each
column represents one cut-point and each row represents one case. Notice that we have
two types of cases: positive cases P (ovarian cancer cases) and negative cases N (control
cases).

cp1 cp2 cp3 . . . cp(k) . . . cp(K)

Intensity P1 0 0 0 . . . 0 . . . 0
Intensity P2 1 0 0 . . . 0 . . . 0
Intensity Pi 1 1 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
Intensity PI 1 1 1 . . . 1 . . . 0

Intensity N1 1 1 0 . . . 0 . . . 0
Intensity Nj 1 1 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
Intensity NJ 1 1 1 . . . 1 . . . 1

2.2.2 Support Set Finding
In this phase we use binary matrix B received from binarization phase. For each
pair of Pi and Nj we want to find this cp(k) which is different in Pi and Nj
because this cp(k) discriminate cases Pi and Nj. We can say that to distinguish
cases Pi and Nj we need at least one of this cp(k). This leads us to the following
condition:
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∀(i, j, k) if bi,k �= bj,k then a(i,j),k = 1 else a(i,j),k = 0; bi,k ∈ P ∧ bj,k ∈ N (3)

and finally to the following system of inequalities:

(1, 1)
(1, 2)
. . .

(1, J)
. . .

(I, J)

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 . . . a(1,1),k . . . 0
1 1 1 . . . a(1,2),k . . . 0
. . . . . . . . . . . . . . . . . . . . .
1 1 1 . . . a(1,J),k . . . 1
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⎞
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y1
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y3
. . .
yk

. . .
yK

⎤
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≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
. . .
1
. . .
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where we have I*J=162*91=14742 inequalities and about K=3.5 millions of vari-
ables. Because we want to have the smallest possible set of y=1 we treat this
problem as a zero-one programming problem where minimalized objective func-
tion is:

F (x) =
K∑

k=1

yk (5)

and system of inequalities is a system of constraints. We solve this by modi-
fied Balas Algorithm and receive irredundant set of y’s which are necessary to
distinguish P and N cases. We call this set a support set.

2.3 Computational Effort

Because of its specificity proteomic data like microarray data need a special
approach to correct cross validation tests. On this data we have a large number
of proteins defined by their m/z charge values (15 154 peptides) and few number
of cases (253 cases). In this case we need to repeat all procedure for each single
case which we leave out (detailed explanation can be found at [8] and [9]). For
this reason a full computation on single computer is impossible and we need to
use a parallel computation. This was made by using a Seti-like cluster build on
eight computers in the student lab then was transferred to the computational
cluster with OpenMosix and PVM technology.

3 Parallel Implementation of LAD

3.1 Seti-Like Cluster

This kind of parallel computing has been well-known for quite a long time. It was
invented on Berkeley University, and is used to analyze radio signals from space.
Its idea is to divide calculations on many independent samples and to compute
separately on different computers. Then results are sent to central computer. In
my implementation a computation problem was divided on single units with one
peptide being one unit. The first one and a half of second phase (inequalities
building) were executed simultaneously. Seti-like cluster built on eight System
Engineering Group laboratory halls computers and one personal computer as a
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central cluster computer was applied. At the beginning a test unit was sent to
all computers for its performance measuring so we can send a correct number
of units to finish the computations in one, possibly the shortest time. Then the
units was sent and computations begin. At the end results was sent back to the
central computer where the rest of calculations was made. The use at Seti-like
cluster permitted to accelerate calculations about six times.

3.2 Computational Cluster with OpenMosix and PVM Technology

Computational cluster with OpenMosix and PVM technology was elaborated in
Research Laboratory of Computational Biology at System Engineering Group
at Silesian University of Technology. In the laboratory we have four high-end
servers which compose in total of 8 CPUs (dual processor systems based on
Intel Xeon HyperThreading architecture), 16 GB of RAM and about 1,4 TB
of disc space. The whole system is connected by low-latency local network (1
Gbit ethernet) to create High Performance Computing cluster, named Beowulf
cluster one unified system to parallel computing. This cluster is based on Linux
platform with OpenMosix kernel and software package based on message-passing
paradigm (distributed memory virtual computers such as PVM Parallel Virtual
Machine or MPI - Message Passing Interface). Users can create and execute
programs written in C,C++ or FORTRAN programming language or can take
the advantage of high developed scientific environments like Matlab, R or others.
In this cluster, LAD calculations was distributed on all processors using PVM
and OpenMosix technology.

Application of the computational cluster with OpenMosix and PVM tech-
nology permitted to accelerate calculations about ten times.

Fig. 2. Hardware and software computational cluster elaborated in Research Labora-
tory of Computational Biology at System Engineering Group architecture

4 Results

In this section two accurate models of ovarian cancer diagnostic system consisting
on logical patterns are shown. The first contained peptides with m/z charge range
of 0 – 20000 Da, and second with the most accessible dataset range of 700 – 12000
Da. Both have a sensitivity and specificity in multiple cross validation leave-one-
out tests equal to 100%. In the tables below next columns contain: positive (P)
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or negative (N) pattern number, cut-points values of peptides choosen to the
support set and suitable relations on them describing given pattern and in the
last column prelevance of this pattern. Notice (1) that for correct distinguishing
ovarian cancer cases from control cases we need at least 3 peptides in the support
set when we have a full range of m/z values (0 – 20000 Da) and at least 8 peptides
when we have the most accessible range in dataset (700 - 12000 Da). Notice (2)
the both models contained peptides with rather low m/z charge value (lower than
the half of the maximum value). This indicates that peptides with lower m/z
charge value have more importance than these with higher m/z charge values.

Table 2. First model of ovarian cancer diagnostic system build on peptides with m/z
charge values of range 0 - 20 000Da

Patterns 2.2871 244.9524 435.0751 Prelevance (%)

P1 <52.8014 ≥28.0563 95
P2 <4.1559 <52.8014 34
P3 <4.1559 ≥28.0563 32
N1 ≥52.8014 <28.0563 89
N2 ≥4.1559 ≥52.8014 63
N3 ≥4.1559 <28.0563 58

5 Discussion

5.1 Discriminatory Analysis of Protein Mass Spectrometry Data

It has been seen that both models of ovarian cancer diagnostic system build
by using LAD have sensitivities and specificities of 100% validated by multiple
leave-one-out experiments. It justifies thesis that they can be used to distinguish
ovarian cancer cases from control cases with high accuracy. As was shown in [5]
it is possible to build model for the stage 1 ovarian cancer detection, that with
low invasiveness of research leaning on serum of blood gives a perfect tool to
early detection of tumors in which the patient’s blood subjected the processing
and analysis would give us answer about his membership to cancer or healthy
cases. Also the peptides contained in the support set can be examined as a
possible contributors or blockers of neoplasmic processes that in future can lead
to individualization of therapy.

5.2 Parallel Computation

The parallel implementation of proteomic ovarian cancer diagnosis system based
on logical analysis of data proved the strength of parallel processing. Both Seti-
like cluster and OpenMosix with PVM cluster accelerated considerably the com-
putational process necessary to build and to validate models of ovarian cancer
diagnostic system. Since their hardware and software structure allow for simple
extension by addition additional computers to the cluster as nodes it will be
possible in future to increase further their computational power.
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Table 3. Second model of ovarian cancer diagnostic system build on peptides with
m/z charge values of range 700 - 12 000Da

P. 704.4728 704.9683 831.0739 2665.3973 3536.2919 4003.6449 4593.1246 6803.0344 (%)

P1 <22.55 ≥7.4681 <30.0111 59
P2 <12.4736 ≥7.4681 <30.0111 59
P3 ≥37.7104 <30.0111 <8.1813 44
P4 ≥37.7104 ≥7.4681 <8.1813 34
P5 ≥37.7104 <12.4736 <27.0132 33
P6 <22.55 <30.0111 <27.0132 <8.1813 28
P7 <37.7104 <22.55 ≥7.4681 ≥27.0132 19
P8 ≥37.7104 <22.55 ≥7.4681 <27.0132 18
P9 <22.55 <12.4736 ≥7.4681 ≥8.1813 11
P10 <22.55 <12.4736 <7.4681 <8.1813 11
P11 ≥53.7858 ≥7.4681 ≥27.0132 9

N1 <37.7104 ≥22.55 ≥12.4736 43
N2 ≥12.4736 <7.4681 ≥30.0111 42
N3 <37.7104 ≥22.55 <7.4681 38
N4 <37.7104 ≥12.4736 ≥30.0111 <27.0132 33
N5 ≥12.4736 <7.4681 ≥8.1813 32
N6 ≥22.55 ≥30.0111 <27.0132 ≥8.1813 25
N7 <53.7858 ≥12.4736 <7.4681 ≥27.0132 23
N8 <7.4681 ≥27.0132 ≥8.1813 22
N9 <37.7104 ≥7.4681 ≥30.0111 <27.0132 <8.1813 5
N10 ≥37.7104 ≥30.0111 ≥27.0132 ≥8.1813 5

Fig. 3. Comparison of times of validation on single PIV computer, Seti-like cluster and
OpenMosix with PVM cluster
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Daydé, Michel 494
Dekeyser, Jean-Luc 896
Deldari, Hossein 188
Denemark, Jǐŕı 633
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