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Abstract. State explosion problem is a major huddle in model checking area. 
The model described in the temporal model checking is mainly control flow 
model. The fFSM is a model for describing the control flow aspects in 
PeaCE(Ptolemy extension as a Codesign Environment), which is a hardware/ 
software codesign environment to support complex embedded systems. fFSM, 
like a Statecharts, supports concurrency, hierarchy and global variables. But due 
to lack of their formality, we defined step semantics for this model and 
developed its verification tool in the previous work. In this paper, we present 
the model reduction technique based on dependency analysis to avoid the state 
explosion problem. As a result, the model, which couldn’t be verified before 
applying the technique, is verified.  

Keywords: State explosion problem, Dependency analysis, Model reduction, 
Model checking. 

1   Introduction* 

Control flow model like a Finite State Machine (FSM) is widely used in specifying 
system behavior. The PeaCE[1] is the Hardware/software codesign environment to 
support complex embedded systems. The specification uses synchronous dataflow (SDF) 
model for computation tasks, extended FSM model for control tasks and task-level 
specification model for system level coordination of internal models (SDF and FSM).  

The fFSM is another variant of Harel’s Statecharts, which supports concurrency, 
hierarchy and internal event as Statecharts does. Also it includes global variables as 
memories in a system. This model is influenced from STATEMATE of i-Logix 
inc.[2] and the Ptolemy[3] approaches. But the formal semantics of fFSM was not 
defined. The absence of a formal semantics caused problems such as confidence for 
simulation, correctness of code generation, and validation of a system specification. 
In the previous work, in order to solve those problems we defined step semantics of 
fFSM and we developed simulation and verification tool, Stepper, by means of the 
formal semantics, which was defined by flatten model of fFSM. SMV model checker 
was used in verification part, so this tool had a translation module from flatten fFSM 
into input language of SMV. In our tool, to be convenient for user to check some 
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important properties, those are automatically generated. According to the users’ 
choice in the property window, one of six properties can be checked. Built-in 
properties are such as unused components, unreachable guards, ambiguous transi- 
tions, deadlock, divergent behaviors, and race condition violation[4]. 

However, because of the use of variables in fFSM model, the state explosion 
problem occurs. Therefore, in this paper, to overcome the problem, we introduce 
model reduction technique into the Stepper, which is focusing on components of the 
model that are referred to in the property to be checked via dependency analysis. This 
technique is sometimes kwon as cone of influence which syntactically decrease the 
size of the state transition graph. Chan showed effective results of the model checking 
of Statecharts model using this technique[5]. Lind-Nielsen[6] proposed dependency 
analysis on the HSEM(Hierarchical State Event Model) to perform the compositional 
model checkingWe attempted to apply these techniques to fFSM model to tackle the 
state explosion problem. Through experimental results, we show that the Stepper is 
improved on the scalability and give that system consisted of loosely coupled 
components is very effective in model checking. 

The rest of the paper is structured as follows. In the next section, we overview the 
reduction technique so called cone-of-influence. In Section 3, we show reduction 
technique with dependency analysis in the control flow model. The experimental 
results present in section 4, and then we conclude the paper in section 5.  

2   Background 

Cone of influence technique attempts to decrease the size of the control flow model 
by focusing on the variables of the system that are referred to in the properties for 
model checking. In this chapter, we will summarize the cone of influence abstraction 
explained in [7].  

Let V  be the set of variables of a given synchronous circuits, which can be 

described by a set of equations: )(' Vfv ii = , for each Vvi ∈ , where if is a boolean 

function. Suppose that a set of variables VV ⊆′  are of interest with respect to the 
required property. We want to simplify the model by referring only to these variables. 
However, the values of variables in V ′  might depend on values of variables not in V ′ . 
Therefore, we define the cone of influence C  for V ′  and use C  in order to reduce the 
description of the model. The cone of influence C  of V ′  is the minimal set of 
variables such that 

• CV ⊆′  

• If for some Cvl ∈  its 
lf  depends  on 

jv , the Cv j ∈ . 

We will next show that the cone of influence reduction preserves the correctness of 
specifications in Computation Tree Logic(CTL) if they are defined over variables 
(atomic propositions) in C.  

Let },,{ 1 nvvV L= be a set of Boolean variables and let },,,{ 0 LSRSM = be the 

model of a synchronous circuit defined over V where, 
nS }1,0{= is the set of all valuation of V . 
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n
i =∧= = . 
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Suppose we reduce the circuit with respect to the cone of influence =C  

},,{ 1 kvv L for some nk ≤ . The reduced model }ˆ,ˆ,ˆ,ˆ(ˆ
0 LSRSM = is defined by  

kS }1,0{ˆ = is the set of all valuations of },,{ 1 kvv L  

)]([ˆ '
1 VfvR ii

k
i =∧= =  

}11)(ˆ|{)ˆ(ˆ kiforvsvsL ii ≤≤==  

}ˆˆ)},,(|ˆ,,ˆ{(ˆ
110110 kknk ddddthatsuchSddstateaisthereddS =∧∧=∈= LLL

Let SSB ˆ×⊆ be the relation defined as follow:  

kiallforddBdddd kikk ≤≤=⇔∈ 1ˆ))ˆ,,ˆ(),,(( 11 LL  

According to the proof in [7] B is a bisimulation between M and M̂ . Thus, 

MM ˆ≡ . As a result, we can obtain the following theorem:  

Let f be a CTL formula with atomic proposition in C . Then fMfM =⇔= |ˆ| . 

3    Reduction of Control Flow Model 

In this section, we explain our reduction method with below example. Figure 1 shows 
fFSM of mole game, where a player can hit the moles which move up and down after 
he/she inserts the coin. This game is a kind of reflex game. Whenever the player hit 
the risen mole, the score increase. During a time unit, presented time event, player can 
hit one mole once. 

 

Fig. 1. fFSM model of mole game 
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3.1   Syntax of Control Flow Model  

To explain the reduction technique, we define flatten machine of fFSM. There exit 
events, global variables, states, and transition. I, O, and IT are sets of input events, 
output events, and internal events, respectively.  

 
Definition 1 (fFSM). ),,,,,( VMITOIfFSM γ= , where I, O, IT are set of events, V is 

a set of global variables, and },...,{ 1 nmmM =  is the set of simple FSM. Let U
n

i
iS

1=

=∑  be 

the set of all states in M, hierarchical relation γ maps a state to the set of machines 
which belong to the state: .2: M→∑γ   

The hierarchical function γ has three properties: there exist a unique root machine, 
every non-root machine has exactly one ancestor state, and the composition function 
contains no cycles. Let ,2: ∑→∑sub  and }')(|'{)( ii SssMsssub ∈∧∈= γ  is another 

function to relate between a super state and its sub states. sub+ denotes the transitive 
closureof sub and sub* denotes the reflexive transitive closure of sub.  
 

Definition 2 (Simple FSM). ),,,( 0
iiiii scrTsSm =  

1. }...,,,{ 10 n
iiii sssS = is the finite set of states of mi,  

2. 0
is  is a initial state, 

3. 
iT  is the set of transition of mi, and a transition )',,,( sAgsTt i =∈ is composed 

of source and target states s, s′∈Si, guarding condition g which is Boolean expr
ession, and set of actions A, 

4. Script
ii Sscr 2: →  is a function to map a set of script into a state. 

 

Guards that include variables and events have the following minimal grammar.  
ExpvExpvExpeExpeGGGtrueG =<=<∧¬= ||||||:: 21

 

21||:: ExpExpvnExp •= ,  

where n is an integer constant, Vv ∈ is a global variable, •∈{+, −, ×, / } represents a 
set of binary operators.  

3.2   Dependency Analysis in Control Flow Model 

Although this example is a small, however it has 20 events and 18 variables, which 
cause state explosion during model checking. So we focused the feature of this model 
and found out that the relationship among moles is loosely coupled. Actually if we 
want to check any properties about the mole3, there is no need to concern with other 
moles, because the behavior of the mole3 is not affected by other moles. In order to 
verify the model reduced by means of only components referred in a property, we 
defined dependency between components in a given model, where the component is 
one of machine, event, and variable, because each component is translated by one 
variable in SMV input language according to translation rules mentioned in previous 
works[4], we can say that this reduction technique preserves the correctness of 
properties written CTL if they are defined over variables (atomic propositions) 
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corresponding to components referred in properties. In this subsection we will explain 
how to generate dependency graph of given fFSM model.  

 

Definition 3 (Dependency Graph). Dependency graph is consist of set of nodes N 
and set of links L. N is a set of all components of given model and when m is a simple 
machine, e ∈ I∪O∪IT is an event, v ∈ V is a variable, L is a set of the dependency 
relation defined as follows: 

1. Machine m depends on machine m′ if m is defined in a sub-machine of m′. Mach
ine m depends on event e or variable v if there is at least one guard in m that has 
a syntactic reference to e or v. 

2. Event e depends on machine m if there is at least one occurring e in m. Event e d
epends on event e′or variable v if e′ or v is used a guard to occur e. Event e depe
nds on variable v if e is used an action and there is a syntactic reference to v in th
e right-hand side of the assignment of the action. 

3. Variable v depends on machine m if there is at least one assignment to v in m. Va
riable v depends on event e or variable v′ if e or v′ is used a guard to update v an
d is used in the right-hand side of the assignment to v. 

 

Below figure 2 shows a generated DG by means of Definition 3 about machine m1 
and m2 in Figure 1. DG is obtained by fixed point calculation from components referr
ed in properties to be checked. Machine m1 and m2 do not directly depend on each oth
er, but through events timeset and timeout depend on each other implicitly. 

 

Fig. 2. Dependency graph of m1 and m2 in Figure 1 

3.3   Correctness of Specification in Reduced Model 

With the DG, if we want to check about the machine m2, then events gameOn and 
gameOver may not be used to translate the model into SMV. This technique is a kind 
of cone of influence mentioned in previous chapter. Due to our translation rule, each 
component in DG corresponds to variable in SMV and variables in SMV are 
implicitly represented by Boolean variables. So we regard the component as some 
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Boolean variables like variables in synchronous circuits. It is proved in [7] that the 
cone of influence preserves the correctness of specifications in CTL if they are 
defined over variables (atomic propositions) corresponding to components referred in 
properties. According to the proof, since the original model M and the reduced model 
M′ are bisimulation relation, for any CTL formula φ written in referred components in 
a given property, φφ =′⇔= || MM .  

4   Experimental Results 

4.1   Verification on Reduced Model 

Using simulation, ambiguous transitions was found machine m15 in Figure 1. The 
event trace is 〈{coin},{time},{time},{time},{time},{time, hit3}〉. It means that when 
the first rising the third mole, if player hits the mole, then in state the CountDown3, 
transition t36 and t37 are executed simultaneously, that is ambiguous transitions. But, 
by original model, we cannot terminate the verification procedure in Stepper. To 
overcome this state explosion problem, we apply the reduction technique based on 
DG explained in previous section, like figure 3. So we can detect this error within 
8.25 second and 159027 BDD size. However, the trace generated by model checking 
is not the same by simulation. The result trace is 〈{coin},{time},{time, hit3}〉. It means 
that there exist serious flaw in the mole game fFSM.  

 

Fig. 3. Selected machine for verifying ambiguous transitions in m15 

4.2   Correction of the Model Error 

The model error is that when still the control is in Ready3 state, if player hits the third 
mole, since the model react the event hit3, t36 and t34 are executed simultaneously, but 
it is just a model error, that is ugly model, not any semantic error. Even though there 
is a little concern of observation, we can understand that the machine m5 becomes 
stuck after that trace. However, through the detection of local deadlock, this error is 
not detected by semantic analysis because eventually when the super state of machine 
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m5 is transferred, the stuck situation is forced to be resolved by semantics. In this case, 
like Figure 4, designer must modify the model. 

 

Fig. 4. Modified sub-model under the machine m5 

5   Conclusions 

The fFSM is a model for describing the control flow aspects in PeaCE(Ptolemy 
extension as a Codesign Environment), which is a hardware/software codesign 
environment to support complex embedded systems[1]. We defined step semantics for 
the control flow model and developed its verification tool in the previous work[4]. In 
this paper, in order to avoid the state explosion problem, we introduce the model 
reduction technique based on dependency analysis[5,6,7]. As a result, the model, 
which couldn’t be verified before applying the technique, is verified.  

Now we are interesting in applying this reduction technique to software model 
checking. Because software model used in model checking is one of control flow 
model and its size is huge. 
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