

M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3984, pp. 905 – 911, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Avoidance of State Explosion Using Dependency Analysis
in Model Checking Control Flow Model

Sachoun Park and Gihwon Kwon

Department of Computer Science, Kyonggi University,
San 94-6, Yiui-Dong, Youngtong-Gu, Suwon-Si, Kyonggi-Do, Korea

{sachem, khkwon}@kyonggi.ac.kr

Abstract. State explosion problem is a major huddle in model checking area.
The model described in the temporal model checking is mainly control flow
model. The fFSM is a model for describing the control flow aspects in
PeaCE(Ptolemy extension as a Codesign Environment), which is a hardware/
software codesign environment to support complex embedded systems. fFSM,
like a Statecharts, supports concurrency, hierarchy and global variables. But due
to lack of their formality, we defined step semantics for this model and
developed its verification tool in the previous work. In this paper, we present
the model reduction technique based on dependency analysis to avoid the state
explosion problem. As a result, the model, which couldn’t be verified before
applying the technique, is verified.

Keywords: State explosion problem, Dependency analysis, Model reduction,
Model checking.

1 Introduction*

Control flow model like a Finite State Machine (FSM) is widely used in specifying
system behavior. The PeaCE[1] is the Hardware/software codesign environment to
support complex embedded systems. The specification uses synchronous dataflow (SDF)
model for computation tasks, extended FSM model for control tasks and task-level
specification model for system level coordination of internal models (SDF and FSM).

The fFSM is another variant of Harel’s Statecharts, which supports concurrency,
hierarchy and internal event as Statecharts does. Also it includes global variables as
memories in a system. This model is influenced from STATEMATE of i-Logix
inc.[2] and the Ptolemy[3] approaches. But the formal semantics of fFSM was not
defined. The absence of a formal semantics caused problems such as confidence for
simulation, correctness of code generation, and validation of a system specification.
In the previous work, in order to solve those problems we defined step semantics of
fFSM and we developed simulation and verification tool, Stepper, by means of the
formal semantics, which was defined by flatten model of fFSM. SMV model checker
was used in verification part, so this tool had a translation module from flatten fFSM
into input language of SMV. In our tool, to be convenient for user to check some

* This work was supported by grant No.(R01-2005-000-11120-0) from the Basic Research

Program of the Korea Science & Engineering Foundation.

906 S. Park and G. Kwon

important properties, those are automatically generated. According to the users’
choice in the property window, one of six properties can be checked. Built-in
properties are such as unused components, unreachable guards, ambiguous transi-
tions, deadlock, divergent behaviors, and race condition violation[4].

However, because of the use of variables in fFSM model, the state explosion
problem occurs. Therefore, in this paper, to overcome the problem, we introduce
model reduction technique into the Stepper, which is focusing on components of the
model that are referred to in the property to be checked via dependency analysis. This
technique is sometimes kwon as cone of influence which syntactically decrease the
size of the state transition graph. Chan showed effective results of the model checking
of Statecharts model using this technique[5]. Lind-Nielsen[6] proposed dependency
analysis on the HSEM(Hierarchical State Event Model) to perform the compositional
model checkingWe attempted to apply these techniques to fFSM model to tackle the
state explosion problem. Through experimental results, we show that the Stepper is
improved on the scalability and give that system consisted of loosely coupled
components is very effective in model checking.

The rest of the paper is structured as follows. In the next section, we overview the
reduction technique so called cone-of-influence. In Section 3, we show reduction
technique with dependency analysis in the control flow model. The experimental
results present in section 4, and then we conclude the paper in section 5.

2 Background

Cone of influence technique attempts to decrease the size of the control flow model
by focusing on the variables of the system that are referred to in the properties for
model checking. In this chapter, we will summarize the cone of influence abstraction
explained in [7].

Let V be the set of variables of a given synchronous circuits, which can be

described by a set of equations:)(' Vfv ii = , for each Vvi ∈ , where if is a boolean

function. Suppose that a set of variables VV ⊆′ are of interest with respect to the
required property. We want to simplify the model by referring only to these variables.
However, the values of variables in V ′ might depend on values of variables not in V ′ .
Therefore, we define the cone of influence C for V ′ and use C in order to reduce the
description of the model. The cone of influence C of V ′ is the minimal set of
variables such that

• CV ⊆′

• If for some Cvl ∈ its
lf depends on

jv , the Cv j ∈ .

We will next show that the cone of influence reduction preserves the correctness of
specifications in Computation Tree Logic(CTL) if they are defined over variables
(atomic propositions) in C.

Let },,{ 1 nvvV L= be a set of Boolean variables and let },,,{ 0 LSRSM = be the

model of a synchronous circuit defined over V where,
nS }1,0{= is the set of all valuation of V .

 Avoidance of State Explosion Using Dependency Analysis 907

)](['
1 VfvR ii

n
i =∧= = .

}11)(|{)(niforvsvsL ii ≤≤== , SS ⊆0 .

Suppose we reduce the circuit with respect to the cone of influence =C

},,{ 1 kvv L for some nk ≤ . The reduced model }ˆ,ˆ,ˆ,ˆ(ˆ
0 LSRSM = is defined by

kS }1,0{ˆ = is the set of all valuations of },,{ 1 kvv L

)]([ˆ '
1 VfvR ii

k
i =∧= =

}11)(ˆ|{)ˆ(ˆ kiforvsvsL ii ≤≤==

}ˆˆ)},,(|ˆ,,ˆ{(ˆ
110110 kknk ddddthatsuchSddstateaisthereddS =∧∧=∈= LLL

Let SSB ˆ×⊆ be the relation defined as follow:

kiallforddBdddd kikk ≤≤=⇔∈ 1ˆ))ˆ,,ˆ(),,((11 LL

According to the proof in [7] B is a bisimulation between M and M̂ . Thus,

MM ˆ≡ . As a result, we can obtain the following theorem:

Let f be a CTL formula with atomic proposition in C . Then fMfM =⇔= |ˆ| .

3 Reduction of Control Flow Model

In this section, we explain our reduction method with below example. Figure 1 shows
fFSM of mole game, where a player can hit the moles which move up and down after
he/she inserts the coin. This game is a kind of reflex game. Whenever the player hit
the risen mole, the score increase. During a time unit, presented time event, player can
hit one mole once.

Fig. 1. fFSM model of mole game

908 S. Park and G. Kwon

3.1 Syntax of Control Flow Model

To explain the reduction technique, we define flatten machine of fFSM. There exit
events, global variables, states, and transition. I, O, and IT are sets of input events,
output events, and internal events, respectively.

Definition 1 (fFSM).),,,,,(VMITOIfFSM γ= , where I, O, IT are set of events, V is

a set of global variables, and },...,{ 1 nmmM = is the set of simple FSM. Let U
n

i
iS

1=

=∑ be

the set of all states in M, hierarchical relation γ maps a state to the set of machines
which belong to the state: .2: M→∑γ

The hierarchical function γ has three properties: there exist a unique root machine,
every non-root machine has exactly one ancestor state, and the composition function
contains no cycles. Let ,2: ∑→∑sub and }')(|'{)(ii SssMsssub ∈∧∈= γ is another

function to relate between a super state and its sub states. sub+ denotes the transitive
closureof sub and sub* denotes the reflexive transitive closure of sub.

Definition 2 (Simple FSM).),,,(0
iiiii scrTsSm =

1. }...,,,{ 10 n
iiii sssS = is the finite set of states of mi,

2. 0
is is a initial state,

3.
iT is the set of transition of mi, and a transition)',,,(sAgsTt i =∈ is composed

of source and target states s, s′∈Si, guarding condition g which is Boolean expr
ession, and set of actions A,

4. Script
ii Sscr 2: → is a function to map a set of script into a state.

Guards that include variables and events have the following minimal grammar.
ExpvExpvExpeExpeGGGtrueG =<=<∧¬= ||||||:: 21

21||:: ExpExpvnExp •= ,

where n is an integer constant, Vv ∈ is a global variable, •∈{+, −, ×, / } represents a
set of binary operators.

3.2 Dependency Analysis in Control Flow Model

Although this example is a small, however it has 20 events and 18 variables, which
cause state explosion during model checking. So we focused the feature of this model
and found out that the relationship among moles is loosely coupled. Actually if we
want to check any properties about the mole3, there is no need to concern with other
moles, because the behavior of the mole3 is not affected by other moles. In order to
verify the model reduced by means of only components referred in a property, we
defined dependency between components in a given model, where the component is
one of machine, event, and variable, because each component is translated by one
variable in SMV input language according to translation rules mentioned in previous
works[4], we can say that this reduction technique preserves the correctness of
properties written CTL if they are defined over variables (atomic propositions)

 Avoidance of State Explosion Using Dependency Analysis 909

corresponding to components referred in properties. In this subsection we will explain
how to generate dependency graph of given fFSM model.

Definition 3 (Dependency Graph). Dependency graph is consist of set of nodes N
and set of links L. N is a set of all components of given model and when m is a simple
machine, e ∈ I∪O∪IT is an event, v ∈ V is a variable, L is a set of the dependency
relation defined as follows:

1. Machine m depends on machine m′ if m is defined in a sub-machine of m′. Mach
ine m depends on event e or variable v if there is at least one guard in m that has
a syntactic reference to e or v.

2. Event e depends on machine m if there is at least one occurring e in m. Event e d
epends on event e′or variable v if e′ or v is used a guard to occur e. Event e depe
nds on variable v if e is used an action and there is a syntactic reference to v in th
e right-hand side of the assignment of the action.

3. Variable v depends on machine m if there is at least one assignment to v in m. Va
riable v depends on event e or variable v′ if e or v′ is used a guard to update v an
d is used in the right-hand side of the assignment to v.

Below figure 2 shows a generated DG by means of Definition 3 about machine m1
and m2 in Figure 1. DG is obtained by fixed point calculation from components referr
ed in properties to be checked. Machine m1 and m2 do not directly depend on each oth
er, but through events timeset and timeout depend on each other implicitly.

Fig. 2. Dependency graph of m1 and m2 in Figure 1

3.3 Correctness of Specification in Reduced Model

With the DG, if we want to check about the machine m2, then events gameOn and
gameOver may not be used to translate the model into SMV. This technique is a kind
of cone of influence mentioned in previous chapter. Due to our translation rule, each
component in DG corresponds to variable in SMV and variables in SMV are
implicitly represented by Boolean variables. So we regard the component as some

910 S. Park and G. Kwon

Boolean variables like variables in synchronous circuits. It is proved in [7] that the
cone of influence preserves the correctness of specifications in CTL if they are
defined over variables (atomic propositions) corresponding to components referred in
properties. According to the proof, since the original model M and the reduced model
M′ are bisimulation relation, for any CTL formula φ written in referred components in
a given property, φφ =′⇔= || MM .

4 Experimental Results

4.1 Verification on Reduced Model

Using simulation, ambiguous transitions was found machine m15 in Figure 1. The
event trace is 〈{coin},{time},{time},{time},{time},{time, hit3}〉. It means that when
the first rising the third mole, if player hits the mole, then in state the CountDown3,
transition t36 and t37 are executed simultaneously, that is ambiguous transitions. But,
by original model, we cannot terminate the verification procedure in Stepper. To
overcome this state explosion problem, we apply the reduction technique based on
DG explained in previous section, like figure 3. So we can detect this error within
8.25 second and 159027 BDD size. However, the trace generated by model checking
is not the same by simulation. The result trace is 〈{coin},{time},{time, hit3}〉. It means
that there exist serious flaw in the mole game fFSM.

Fig. 3. Selected machine for verifying ambiguous transitions in m15

4.2 Correction of the Model Error

The model error is that when still the control is in Ready3 state, if player hits the third
mole, since the model react the event hit3, t36 and t34 are executed simultaneously, but
it is just a model error, that is ugly model, not any semantic error. Even though there
is a little concern of observation, we can understand that the machine m5 becomes
stuck after that trace. However, through the detection of local deadlock, this error is
not detected by semantic analysis because eventually when the super state of machine

 Avoidance of State Explosion Using Dependency Analysis 911

m5 is transferred, the stuck situation is forced to be resolved by semantics. In this case,
like Figure 4, designer must modify the model.

Fig. 4. Modified sub-model under the machine m5

5 Conclusions

The fFSM is a model for describing the control flow aspects in PeaCE(Ptolemy
extension as a Codesign Environment), which is a hardware/software codesign
environment to support complex embedded systems[1]. We defined step semantics for
the control flow model and developed its verification tool in the previous work[4]. In
this paper, in order to avoid the state explosion problem, we introduce the model
reduction technique based on dependency analysis[5,6,7]. As a result, the model,
which couldn’t be verified before applying the technique, is verified.

Now we are interesting in applying this reduction technique to software model
checking. Because software model used in model checking is one of control flow
model and its size is huge.

References

1. D. Kim, "System-Level Specification and Cosimulation for Multimedia Embedded
Systems," Ph.D. Dissertation, Computer Science Department, Seoul National University,
2004.

2. iLogix: http://www.ilogix.com/
3. http://ptolemy.eecs.berkeley.edu/
4. S. Park, K. G. Kwon, and S. Ha, "Formalization of fFSM Model and Its Verification," in the

Proceedings of the ICESS, LNCS 3820, Springer, pp.361-372, 2005.
5. W. Chan, “Symbolic Model checking for Large software Specification,” Dissertation,

Computer Science and Engineering at University of Washington, 1999.
6. J. B. Lind-Nielsen, "Verification of Large State/Event Systems," Ph.D. Dissertation,

Department of Information Technology, Technical University of Denmark, 2000.
7. E. M. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press, 1999.
8. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. J. Kristoffersen, K. G.

Larsen, "Verification of Large State/Event Systems Using Compositionality and
Dependency Analysis", FMSD, pp. 5-23, 2001.

9. E. M. Clarke, W. Heinle, “Modular translation of Statecharts to SMV,” Technical Report
CMU-CS-00-XXX, CMU School of Computer Science, August 2000.

	Introduction
	Background
	Reduction of Control Flow Model
	Syntax of Control Flow Model
	Dependency Analysis in Control Flow Model
	Correctness of Specification in Reduced Model

	Experimental Results
	Verification on Reduced Model
	Correction of the Model Error

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

