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Abstract. This paper provides an algorithm for finding feedback vertex
set in rotator graphs. Feedback vertex set is a subset of a graph whose
removal causes an acyclic graph and is developed in various topologies
of interconnected networks. In 1992, Corbett pioneered rotator graphs,
whose interesting topological structures attract many researchers to pub-
lish relative papers in recent years. In this paper, we first develops feed-
back vertex set algorithm for rotator graphs. Our algorithm utilizes the
technique of dynamic programming and generates a feedback vertex set
of size n!/3 for a rotator graph of scale n, which contains n! nodes. The
generated set size is proved to be minimum. Finding a minimum feedback
vertex set is a NP-hard problem for general graphs. The time complex-
ity of our algorithm, which finds a minimum feedback vertex set for a
rotator graph of scale n, is proved to be O(nn−3).

1 Introduction

Rotator graph, which is first proposed in 1992[1], is a family of Cayley graph and
has rich topological properties, such as symmetric structure, recursive construc-
tion, low diameter, unique shortest path routing, and so on. A rotator graph of
scale n, or denoted as an n-rotator, contains n! nodes in which every node has a
unique permutation of 123. . .n. The generation function gi inserts first symbol
of a permutation to the ith position, where 1 < i ≤ n. A 3-rotator is shown in
Fig.1. The bold lines are bi-directional edges. A feedback vertex set, or called
FVS, is a vertex subset of a graph whose deletion induces the remaining graph
acyclic. The FVS are applied in many applications, such as mutual exclusion
[2], data security[3], scheduling[4], optical networks[5][6], and so on. A minimum
FVS, or denoted as MFVS, is a FVS that contains smallest number of vertices.
Published papers[7][8] proved that finding MFVS is a NP-hard problem in gen-
eral and bipartite graphs. In recent years, FVS algorithms are also developed in
mesh and butterfly[9][10], hypercube[11], star graph[12], and shuffle-based inter-
connection networks[13]. We first proposed a FVS algorithm in rotator graphs in
this paper. The dynamic programming techniques are applied in our algorithm.
The main idea is that we utilize the FVS of a smaller scale graph to build that
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Fig. 1. A 3-rotator

of a larger one. The size of the feedback vertex set generated by our algorithm
is proved to be minimum.

2 Definitions

Used lemmas and definitions are introduced in this section. A rotator graph of
scale n is denoted as an n-rotator in which every node has a unique permutation
of 123. . .n. The outgoing edges of one node can be represented as generation
functions, g2, g3, . . . , and gn. Function gi inserts first symbol of a permutation to
the ith position to form a resultant node. Terms of node, vertex, and permutation
are interchangeable in this paper, so are edge and link.

Definition 2.1. Let u be a node in a rotator graph. Node u*gi denotes the
resultant node of applying gi to node u.

For example, 12345*g3=23145.

Definition 2.2. Let Vi,j of a rotator graph be the set of all permutations whose
ith position is j.

For instance, V2,1 = {2134, 2143, 3124, 3142, 4123, 4132} for a 4-rotator.

Definition 2.3. Let FVS(n) denote a feedback vertex set of an n-rotator.

Although applying g2 twice to one node makes a routing from itself to its neigh-
bor and back, it does not be considered as a cycle in our discussion. As illustrated
in Fig.2, a 3-rotator contains two node disjoint cycles, 123 → 231 → 312 → 123
and 213 → 132 → 321 → 213. If we remove node 123 and 132, the remaining
graph will contain no cycle. Thus 123, 132 is a FVS of a 3-rotator. In addition,
g3g3g3 is the smallest cycle in a rotator graph and an n-rotator contains n!/3
disjoint cycles of length 3.

3 Algorithm

The FVS algorithm illustrated in this section applies the techniques of dy-
namic programming. That is, the FVS of an n-rotator, denoted as FVS(n), is
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Fig. 2. Two node disjoint cycles in a 3-rotator

obtained by using that of a (n-1)-rotator. FVS(3)={123, 132} is easily observed.
The method of finding FVS(4) is described below: Nodes in a 4-rotator can be
categorized into V1,1, V2,1, V3,1, and V4,1 and each category consists of 6 nodes.
FVS(4) is initialized an empty set. We first add V1,1 to FVS(4). The remaining
graph of removing V1,1 from a 4-rotator is denoted as G(4-rotator - V1,1). Indeed,
G(4-rotator - V1,1) does not contain any cycle that includes any node in V2,1 or
V3,1. The reason is that any cycle contains at least one gk, where k ≥ 3, and the
generation gk will left shift symbol 1 of the permutations in V2,1 or V3,1. If cycle
exists, symbol 1 must be shifted to the first position eventually and then rotated
to a correct position. Because V1,1 had already been removed, symbol 1 can
not be left shifted to the first position. Thus the cycle does not exist. Therefore,
G(4-rotator - V1,1) does not include any cycle that contains node in V2,1 or V3,1.
Hence, nodes in V1,1 are the only candidates to add to FVS(4). Nodes in V1,1
are the form of ***1, where *** represents any legal permutation. Hence, finding
cycles in G(4-rotator - V1,1) can be viewed as finding cycles in a sub 3-rotator
of V4,1. Because rotator graphs are node symmetric and the feedback vertex set
of a 3-rotator, 123, 132, is already known, the FVS of the sub 3-rotator V4,1
can be easily solved by a symbol transformation. For example, FVS(3)={123,
132} implies that 1234, 1324 is a FVS of V4,1. By exchanging symbol 1 and 4,
we obtain that 4231, 4321 is a FVS of V4,1. Therefore, a FVS of a 4-rotator is
the union of V1,1 and 4231, 4321 = {1234, 1243, 1324, 1342, 1423, 1432, 4231,
4321}.

Lemma 3-1. For an n-rotator, G(n-rotator - V1,1) does not contain any cycle
that includes any node in V2,1 or V3,1.

Proof. First, every node in a cycle has a predecessor and a successor node. Be-
cause V1,1 has been removed, nodes in V2,1 do not have any successor node. Thus
G(n-rotator - V1,1) contains no cycle that includes any node in V2,1. Second,
every cycle contains at least one g3 function, which left shift symbol 1 of nodes
in V3,1 and connects to nodes in V2,1. Because V2,1 do not have any successor
node in G(n-rotator - V1,1), there is no cycle that includes any node in V3,1.
This lemma is verified. ��
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Lemma 3-2. Let C be a cycle in G(n-rotator - V1,1). Every node in C belongs
to the same vertex set Vi,1, where 4 ≤ i ≤ n.

Proof. Suppose cycle C contains nodes S1 and S2, where S1 ∈ Vi,1, S2 ∈ Vj,1,
and j �= i. First consider the case that i > j. The path from S2 to S1 must pass
at least one node ∈ V1,1. Because G(n-rotator - V1,1) does not contain any node
∈ V1,1, the path from S2 to S1 does not exist. Second, if i < j, the path from
S1 to S2 does not exist with the same reason. This lemma is proved. ��

By lemma 3-2, in the remaining graph of removing vertex set V1,1 from a rotator
graph, every node in a cycle belong to the same sub rotator graph Vi,1, where
i > 3. That is, in G(n-rotator - V1,1), nodes in a cycle have a property that
symbol 1 in the same position. In order to indicate node properties, we divide
a permutation into two parts, head sequence and tail sequence. Suppose that
symbol 1 of permutation S is in the ith position. Head sequence of S is the first
i−1 symbols and tail is the ith to the last symbols. For example, for node 43125,
head sequence is 43 and tail sequence is 125. In addition, we define length of
head/tail sequence is the number of symbols in head/tail sequence. If symbol
1 is in the first position for a permutation, of course, this node has no head
sequence. A property can be observed: An n-rotator contains one sub (n − 1)-
rotator graph in which every node has tail length is 1. In addition, n-rotator
also contains n−1 node-disjoint sub (n−2)-rotator in which every node has tail
length 2. For example, in a 5-rotator graph there is one sub 4-rotator with tail
length 1. Nodes in the sub 4-rotator are of the form ****1, where * represents
any legal symbol. In addition, this 5-rotator also has four sub 3-rotator graphs
with tail length 2. These four sub 3-rotator are ***12, ***13, ***14, and ***15.
A general expression of the property is shown in lemma 3-3.

Lemma 3-3. An n-rotator contains Pn−1
n−k−1 disjoint sub k-rotator graph in

which every node has tail length n − k, where k ≥ 3.

Proof. Every node in an n-rotator graph has permutation length n. Nodes in
a sub k-rotator have the same tail sequence whose length is n − k. Because the
first symbol of the tail sequence is 1, the number of distinct k-rotator is therefore
(n − 1)(n − 2) . . . (k + 1) = Pn−1

n−k−1 . In addition, because nodes in different sub
rotator graphs have different tail sequences, these sub rotators are node disjoint.
The lemma is verified. ��
The steps of finding a FVS in an n-rotator is described in the following: First, we
add the set V1,1 of an n-rotator to FVS(n). Second, by lemma
3-3, the remaining graph can be divided into a number of isolated sub rotator
graphs. The feedback vertex set of the whole graph can be obtained by joining
the feedback vertex set of these distinct sub graphs. Since a rotator graph is node
symmetric, the feedback vertex set of a rotator graph can be easily transferred
to that of identical size of sub rotator graphs. For example, a feedback vertex
set of a 3-rotator is 123, 132. Obviously, 1234, 1324 is the feedback vertex set
of sub 3-rotator graph with the form ***4. The feedback vertex of sub rotator
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graph ***1, ***2, and ***3 is obtained by exchanging symbol (1,4), (2,4), and
(3,4) of node 1234 and 1324, respectively. Thus the feedback vertex set of ***1,
***2, and ***3 are 4231, 4321, 1432, 1342, and 1243, 1423, respectively.

We illustrate the steps of acquiring the feedback vertex set of a 5-rotator
graph. In the beginning, FVS(3)={123, 132} and FVS(4)={2134, 3124, 2143,
4132, 4132, 3142, 2341, 2431} is already known. This assumption is reasonable
because FVS(4) is only a joint of 4 isolated sub 3-rotator graph and FVS(3)
is quite simple to be observed. We initialize FVS(5) = V1,1 ={12345, 12354,
12435, 12453, 12534, 12543, 13245, 13254, 13425, 13452, 13524, 13542, 14235,
14253, 14325, 14352, 14523, 14532, 15234, 15243, 15324, 15342, 15423, 15432}.
By lemma 3-3, a 5-rotator contains one 4-rotator graph with tail length 1 and
the sub 4-rotator is of the form ****1. We use FVS(4) to obtain the FVS of the
sub 4-rotator ****1. The FVS of the sub 4-rotator {25341, 35241, 25431, 45321,
45321, 35421, 23451, 24351} is added to FVS(5). In addition, a 5-rotator also
contains four isolated sub 3-rotator graph with tail length 2, which are ***12,
***13, ***14, and ***15. Each of these 3-rotator contains a FVS of size 2. These
FVS of these sub 3-rotator are easily obtains from FVS(3), {123, 132}. The FVS
of ***12, ***13, ***14, and ***15 are {34512, 35412}, {24513, 25413}, {23514,
25314} and {23415, 24315}, respectively. These four sets are also add to FVS(5).
In summary, FVS(5) contains 24+8+2*4=40 elements.

The algorithm of finding feedback vertex set of a rotator graph is given below:

Algorithm 3-1. Feedback vertex set finding in rotator graphs.

Input: the scale of rotator graph, n.

Output: the feedback vertex set of an n-rotator, FVS(n).
Steps:

1. Initialize FVS(n) = V1,1.

2. for k = 3 to n − 1 do

Add FVS of Pn−1
n−k−1 units of sub k-rotator graph to FVS(n).

loop

Lemma 3-4. The output FVS(n) of Algorithm 3-1 is correct.

Proof. The first step of Algorithm 3-1 adds V1,1 to FVS(n). By lemma 3-2,
symbol 1 of every node in a cycle in G(n-rotator - V1,1) must be in the same
position. In other words, if symbol 1 is in the ith position, the generations in the
cycle can only be g2, g3, . . . , and gi−1. This cycle is therefore being limited in a
sub (i-1)-rotator. Our algorithm joins feedback vertex sets of these sub rotators
to acquire the feedback vertex set of the whole graph. Step 2 adds all feedback
vertex sets of sub graphs whose node has tail sequence length n − 3, n − 4,
. . . , and 1 to the FVS(n). All sub rotators are considered in our algorithm, the
aggregation of the feedback vertex set is the feedback vertex set of the whole
graph. ��
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Lemma 3-5. The size of FVS(n) generated by Algorithm 3-1 is n!/3.

Proof. The number of nodes in FVS(n) is denoted as |FVS(n)| . We prove this
theorem by induction.

1. Because FVS(3)={123, 132}, |FVS(n)| =n!/3 holds for n = 3.

2. We assume that |FVS(n)|=n!/3 is true when n = k.

3. When n = k + 1,

|FVS(n)|=k! + Pk
0 * |FVS(k)| +Pk

1* |FVS(k-1)| + . . . +Pk
k−3 * |FVS(3)|

= k! + Pk
0 * k!/3 +Pk

1* (k-1)!/3 + . . . + Pk
k−3 * 3!/3

= k! + k!/3 * (k-2)

= (k+1)*k!/3

= (k+1)!/3

= n!/3. This lemma is proved. ��

Lemma 3-6. The size of FVS(n) generated by Algorithm 3-1 is minimum.

Proof. An n-rotator contains n!/3 disjoint cycles of size 3 and these cycles are
formed g3g3g3. Therefore, to eliminate all possible cycles need to remove at least
n!/3 nodes from an n-rotator. By Theorem 3-2, the size of FVS(n) generated by
Algorithm 3-1 is n!/3. Thus, it is minimum. ��

Lemma 3-7. The time complexity of Algorithm 3-1 is O(nn−3), where n is the
size of rotator graph.

Proof. Let t(k) be the time complexity of finding FVS(k) by using Algorithm
3-1. We assume t(3) = 1 because FVS(3) can be easily observed. The time
complexity t(n) is expressed follows:

t(n) = Pn−1
0 ∗ t(n − 1) + Pn−1

1 ∗ t(n − 2) + . . . + Pn−1
n−4 ∗ t(3). (1)

t(n + 1) = Pn
0 ∗ t(n) + Pn

1 ∗ t(n − 1) + . . . + Pn
n−3 ∗ t(3). (2)

From (1) and (2):

t(n + 1)
n

=
t(n)
n

+ Pn−1
0 ∗ t(n − 1) + Pn−1

1 ∗ t(n − 2) + . . . + Pn−1
n−4 ∗ t(3). (3)

From (2) and (3):
t(n + 1)

n
=

t(n)
n

+ t(n) (4)

From (4): t(n)=
∏n

k=4 =O(nn−3), n ≥ 3. ��
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4 Conclusions

This paper provides an algorithm for finding minimum feedback vertex sets for
rotator graphs. Finding minimum Feedback vertex set is a NP-hard problem for
general graph. For an n-rotator, our algorithm generates a feedback vertex set
of size n!/3 in O(nn−3). The size of the set is proved to be minimum.
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