
A Ubiquitous Workflow Service Framework

Joohyun Han, Yongyun Cho, Eunhoe Kim, and Jaeyoung Choi

School of Computing, Soongsil University,
1-1 Sangdo-dong, Dongjak-gu, Seoul 156–743, Korea

{jhhan, yycho, ehkim}@ss.ssu.ac.kr, choi@ssu.ac.kr

Abstract. In ubiquitous environments, all services head for context-
awareness to provide appropriate services for a user’s situation. However,
it is hard to implement all kinds of things related to context manage-
ments. In this paper we propose a ubiquitous workflow service framework,
named uFlow, based on a structural context model and uWDL, which is
a ubiquitous workflow description language. Service developers can eas-
ily describe context-aware services using the uFlow framework so long as
they only select available services based on Web Services and describe
context information as a transition condition of workflow services. In or-
der to verify the effectiveness of the uFlow framework, we designed and
implemented a service scenario described with uWDL, and demonstrated
that the scenario provides users with appropriate services according to
a user’s situation in ubiquitous computing environments.

1 Introduction

WfMC (Workflow Management Coalition) states that a workflow expresses flows
of subtasks until a process is completed using standardized methods [1]. Between
the subtasks in a workflow, there exist various relationships such as dependency,
ordering, and concurrency. Workflows describe flows of subtasks using a work-
flow language. A workflow management system manages and controls flows of
subtasks using state-transition constraints specified in the workflow language.
Modeling a workflow can help software designers better understand how to sup-
port users when they design applications.

An application or a service that uses context information or performs context-
appropriate operations is called a context-aware application or a context-aware
service [2, 3]. In order to provide a context-aware service in ubiquitous environ-
ments, an appropriate service is selected and executed based on context infor-
mation. Service developers should describe and handle context information to
build context-aware services. However, it is so difficult to implement all sorts of
things related to context managements such as context wrapper, context query
system, ontology server, and so on.

In this paper, we propose a ubiquitous workflow service framework, named
uFlow, based on a structural context model and uWDL. uWDL is a ubiquitous
workflow description language and it can specify the context information on
the transition conditions of workflow services to provide users with adaptive

M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3983, pp. 30–39, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Ubiquitous Workflow Service Framework 31

services for a user’s current situation, and the structural context model is used
to express context information in uWDL. Service developers can easily design
context-aware services using the uFlow framework so long as they only select
available services based on Web Services and describe context information as a
transition condition of workflow services.

2 Related Work

Gaia [4] supports a service environment in which ubiquitous applications can
communicate context information to each other. It depends on a specific protocol
which is not widely used because it is based on CORBA middleware. LuaOrb,
that is Gaia’s script language, can instantiate applications and interact with
execution nodes to create components and easily glue them together, but it
can’t express dependency or parallelism among the services because it describes
only a sequential flow of specific services. The uFlow framework is a workflow
system based on Web Services which are platform- and language-independent
standard service interfaces, so it can express dependency and parallel execution
among the services in heterogeneous ubiquitous computing environments.

BPEL4WS [5], WSFL [6], and XLANG [7] are Web Service-based workflow
languages for business processes and distributed computing environments. They
support service transition, and use XML-typed messages defined in other ser-
vices using XPath. Context information is a complex data set that includes data
types, values, and relations among the data types. XPath cannot sufficiently de-
scribe diverse context information because it can use only condition and relation
operators to decide transition conditions. uWDL uses a context triplet - subject,
verb, and object - in order to express high-level context information as transition
conditions, which can not be supported by existing workflow languages.

3 The Key Components for uFlow

A context in ubiquitous computing environments indicates any information that
is used to characterize the situation of an entity [3]. In ubiquitous environments,
all services head for context-aware services to provide appropriate services for
a user’s situation. In order to provide context-aware workflow services in ubiq-
uitous environments, an appropriate service is selected and executed based on
context information. Therefore we designed two components, which are a struc-
tural context model and a ubiquitous workflow description language to use the
context information as the constraints of the state transition in ubiquitous work-
flow services. The two components are designed based on knowledge structure
to express the context information in a simple and flexible way.

3.1 Structural Context Model

A structural context model expresses ubiquitous context information from a
viewpoint of knowledge structure. Because it has an information structure to

32 J. Han et al.

express complex context information, it is possible to describe contexts to specify
the context information on a transition condition of services in uFlow scenario
documents. Figure 1 shows a class diagram of the structural context model.
Context information can be any information that describes a situation of an
entity. An entity is a person, place, physical, or logical thing which is considered
in ubiquitous computing environment. We designed the structural context model
which is an ontology-based context model for uFlow using OWL (Web Ontology
Language), and it describes context information as entities having context types
which have its values. The ontology language OWL builds on RDF (Resource
Description Framework) [8], and a RDF statement is always a triple of resource,
property and value, in that order. Because our model is based on ontology using
OWL, our core concepts which are subject, verb, and object can be mapped into
resource, property, and value on RDF, respectively.

Fig. 1. Structural context model

3.2 Ubiquitous Workflow Description Language

A workflow management system manages and controls flows of subtasks us-
ing state-transition constraints specified in a workflow language. Although cur-
rent workflow languages such as BPEL4WS, WSFL, and XLANG can specify
the flows among services based on Web services, these workflow languages do
not support the ability that controls the state-transition constraints using con-
text, profile, or event information in ubiquitous computing environments. uWDL
(Ubiquitous Workflow Description Language)[9] is a Web Services-based work-
flow language that describes service flows, and provides the functionalities to

A Ubiquitous Workflow Service Framework 33

select an appropriate service based on high-level contexts, profiles, and events,
which are obtained from various sources and structured by Ontology [10]. To
provide these functionalities, uWDL specifies context and/or profile information
as a triplet of {subject, verb, object} based on the structural context model for
rule-based reasoning which can effectively represent the situation in a simple
and flexible way. Figure 2 shows the schema structure of uWDL.

Fig. 2. uWDL schema

4 Ubiquitous Workflow Service Framework

Service developers have to describe and manipulate context information for
context-awareness of services. However, they have a great difficulty in imple-
menting all kinds of things related to context managements such as context
wrapper, context query system, ontology server, and so on. We propose a ubiq-
uitous workflow service framework named uFlow based on the key components
in Section 3. Service developers can easily design context-aware services using
the uFlow framework so long as they only select available services based on Web
Services and describe context information as a transition condition of workflow
services. The uFlow framework consists of uFlow scenario editor, uFlow engine,
and uFlow context processor as shown in Figure 3.

A service developer can use the uFlow scenario editor to create a scenario doc-
ument written with uWDL. The service developer can query context information
to the ontology server through context browser to obtain standard vocabularies
of context information for a specific domain and specifies the context information
as a transition condition of workflow services. The scenario document created

34 J. Han et al.

Fig. 3. uFlow framework

by uFlow scenario editor is delivered into uFlow engine in order to parse and
manipulate the context information according to the service flows. The uFlow
engine collects context information through a context wrapper in uFlow context
processor and compares these context information with the context information
described in the scenario document. If the matching result is true, an appropri-
ate service is executed by the uFlow engine. The detailed explanations are as
follows.

4.1 uFlow Scenario Editor

uFlow scenario editor is a tool for developers to easily design scenario docu-
ments without detailed understanding of uWDL schema. Developers can select
currently available services based on Web Services and describe context informa-
tion as a transition condition of the services. The uFlow scenario editor provides
drag and drop capabilities to <node> and <link> elements in uWDL and con-
sists of available services, element explorer, and context information obtained
from current sensing environments. A scenario document is created by uflow
scenario editor, and translated and executed by uFlow engine. Figure 4 shows
uFlow scenario editor.

4.2 uFlow Engine

A uWDL document designed for a specific scenario should be translated and
executed to provide adaptive services for a user’s situation. For this purpose,
we need a process to manipulate contexts aggregated from a sensor network.
Figure 5 shows uFlow engine for handling context information expressed in
uWDL. uWDL parser parses a uWDL scenario document and produces a DIAST
(Document Instance Abstract Syntax Tree) [11] as a result. A DIAST represents
the syntax of a scenario document, and is used to compare contexts expressed

A Ubiquitous Workflow Service Framework 35

Fig. 4. uFlow scenario editor

in a scenario with entities aggregated from a sensor network to verify their co-
incidence. A context is described by one or more constraint elements, and each
constraint is represented by a context triplet of {subject, verb, object} in a se-
quence. In Figure 5, a partial subtree in dotted lines indicates a subtree that
makes up context constraints in the scenario.

A context mapper extracts types and values from objectified entities aggre-
gated from a sensor network, and composes a subtree which consists of subject,
verb, and object information. It then compares the type and the value of an
entity with those of the constraint element in the DIAST subtree, respectively.
If the type of the entity matches with its counterpart in the constraint element,
the context mapper regards it as a correct subelement of the constraint element.
If each entity has the same type, it may be ambiguous to decide the context’s
constraint according to its entity type only. The problem can be resolved by
comparing the value of the objectified entity with that of the constraint element
in the DIAST subtree.

4.3 uFlow Context Processor

uFlow context processor takes a responsibility of providing context information
with uFlow scenario editor and uFlow engine. uFlow context processor con-
sists of context browser, context wrapper and ontology server. Usually a Con-
text infrastructure treats low-level context information that is raw contextual
information which comes from sensors such as temperature, noise level, and lo-
cation. However, uFlow needs not only low-level context information but also
high-level context information that is combined by two or more low-level con-
text information. Ontology server has functions which reason high-level context
information from some low-level context information, and which reason explicit

36 J. Han et al.

Fig. 5. uFlow engine

context information from implicit context information through our Ontology-
based context model and ontology reasoner.

Context wrapper transforms context information obtained from a sensor net-
work into a form of structural context model adequate to uFlow Engine. Con-
text information structured using the structural context model consists of a
enity(subject), a type of the entity(verb), and a type of the value(object). uFlow
scenario editor is a tool which defines a sequence of services using context in-
formation. uFlow scenario editor requests context browser to browse available
context information provided by ontology server, and context browser delivers
them to uFlow scenario editor.

5 Experiments

In this section, we show a process to decide a state transition condition according
to context information. For testing, we simulated a ubiquitous office in Figure 6
using uFlow framework. The purpose is “implementing a service which prepares
an office work automatically according to a user’s situation.” Context information
is simulated in a virtual office environment based on GUI according to a variation
on the schedule, time, and/or user’s location and preference. These context infor-
mation is structured using the structural context model in Section 3 and transmit-
ted to uFlow engine in order to identify current situation. uFlow engine executes
related services which exist in a form of Web Services according to the user’s sit-
uation. The scenario context tab in Figure 6 shows the progress of uFlow engine
how to select a service according to dynamically incoming context information.

A Ubiquitous Workflow Service Framework 37

Fig. 6. The Simulation of a Ubiquitous Office

Fig. 7. A scenario document and a DIAST’s subtree produced by uWDL parser

Figure 7 shows a scenario document designed using the uFlow scenario ed-
itor. If uFlow engine receives context data objectified as (SituationType, pre-
sentation), (UserType, Michael), (UserType, John), and (LocationType, 313), it
compares the contexts’ types and values with the subtree’s elements. In this case,
the context (UserType, Michael) is not suitable for anywhere in the subtree’s
elements, so uFlow engine removes the context. For the experiment, we named a

38 J. Han et al.

Fig. 8. A hit-time for hit-position and the number of OCs

context of a scenario document as UC(uWDL Context) and a context obtained
from a sensor network in ubiquitous computing environments as OC(Objectified
Context). uFlow engine decides a service transition through a comparison be-
tween UCs and OCs. A context described in the scenario document consists of
a limited number of UCs. On the other hand, contexts obtained from a sensor
network can be produced as innumerable OCs according to a user’s situation.
Therefore, uFlow engine should select quickly and correctly an OC coinciding
with a UC from such innumerable OCs.

In Figure 8, we generated a lot of OCs incrementally, and measured how fast
the suggested uFlow engine found the OC of the produced OCs that coincided
with the UCs of the scenario document shown in Figure 7. To get the hit-time,
we placed the OCs coinciding with the UCs in the middle and the end of the
OCs that we produced randomly. We used a Pentium 4 2.0 GHz computer with
512MB memory based on Windows XP OS for the experiment. We increased
the OC’s amounts by 50, 100, 200, 300, 400, and 500 incrementally.

In Figure 8, 1/2 hit-position means the position of the OC coinciding with the
UC is the middle of the randomly produced OCs, and 2/2 hit-position means
the position of the OC is the end of the randomly produced OCs. As shown in
the result, the hit-time is not increased greatly regardless of the OCs’s consider-
able increase. This result shows that the suggested uFlow engine can sufficiently
support context-aware services.

6 Conclusion

In this paper, we proposed a uFlow framework for ubiquitous computing envi-
ronments. The uFlow framework was designed based on uWDL which can easily
describe service flows and the structural context model to express context in-
formation in uWDL. uWDL can specify the context information on transition
constraints of a service workflow in ubiquitous computing environments, and is
designed based on Web services. The uFlow framework consists of uFlow sce-
nario editor, uFlow engine, and uFlow context processor. It is able to integrate,
manage, and execute various heterogeneous services in ubiquitous environments.

A Ubiquitous Workflow Service Framework 39

Therefore, uFlow framework provides users with appropriate services accord-
ing to the user’s context information. We developed a scenario described with
uWDL, and we demonstrated that the uFlow framework can provide users with
autonomic services in ubiquitous computing environments. In the near future,
we will expand uWDL schema to express more detailed situations by assigning
semantic information to Web services.

Acknowledgements

This work was supported by the Ubiquitous Autonomic Computing and Network
Project, funded by the Korean Ministry of Information and Communication
(MIC).

References

1. D. Hollingsworth: The Workflow Reference Model. Technical Report. TC00–1003.
Workflow Management Coalition (1994)

2. Guanling Chen, David Kotz: A Survey of Context-Aware Mobile Computing Re-
search, Technical Report, TR200381, Dartmouth College (2000)

3. Anind k. Dey: Understanding and Using Context, Personal and Ubiquitous Com-
puting. Vol 5. Issue 1. (2001)

4. Manuel, Roman, Christopher, K.: Gaia: A Middleware Infrastructure to Enable
Active Spaces. IEEE Pervasive Computing (2002) 74–83

5. Tony, Andrews, Francisco, Curbera, et al.: Business Process Execution Language
for Web Services. BEA Systems. Microsoft Corp. IBM Corp., Version 1.1 (2003)

6. Frank, Leymann: Web Services Flow Language (WSFL 1.0), IBM (2001)
7. Satish, Thatte: XLANG Web Services for Business Process Design, Microsoft Corp.

(2001)
8. W3C: RDF/XML Syntax Specification, W3C Recommendation (2004)
9. Joohyun Han, Yongyun Cho, Jaeyoung Choi: Context-Aware Workflow Language

based on Web Services for Ubiquitous Computing, ICCSA 2005, LNCS 3481,
pp.1008–1017, (2005)

10. Deborah, L., McGuinness, Frank, van, Harmelen, (eds.): OWL Web Ontology Lan-
guage Overview, W3C Recommendation (2004)

11. Aho, A., V., Sethi, R., Ullman, J., D.: Compilers: Principles, Techniques and Tools.
Addison–Wesley (1986)

	Introduction
	Related Work
	The Key Components for uFlow
	Structural Context Model
	Ubiquitous Workflow Description Language

	Ubiquitous Workflow Service Framework
	uFlow Scenario Editor
	uFlow Engine
	uFlow Context Processor

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

