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Abstract. In this study we present a production-inventory model for 
deteriorating item with vendor-buyer integration. A periodic delivery policy for 
a vendor and a production-inventory model with imperfect quality for a buyer 
are established. Such implicit assumptions (deteriorating items, imperfect 
quality) are reasonable in view of the fact that poor-quality items do exist 
during production. Defective items are picked up during the screening process. 
Shortages are completely backordered. The study shows that our model is a 
generalization of the models in current literatures. An algorithm and numerical 
analysis are given to illustrate the proposed solution procedure. Computational 
results indicate that our model leads to a more realistic result.  

1   Introduction 

Since the development of the economic order quantity (EOQ) more than four decades 
ago, a substantial amount of researches have been conducted in the area of inventory 
lot sizing. However, one of the weaknesses of most researches is the unrealistic 
assumption of perfect quality items [25]. Cheng [2] proposed an EOQ   model with 
demand-dependent unit production cost and imperfect production process. He 
proposed a general power function to model the relationship between unit production 
cost, demand rate and process reliability. Cheng formulated this inventory decision 
problem as a geometric problem (GP), and applied the theories of GP to derive a 
closed-form optimal solution. Zhang and Gerchak [30] considered a joint lot sizing 
and inspection policy, for an EOQ model with a random proportion of defective units. 
They considered a model where the defective units are replaced by non-defective 
ones. Rosenblatt and Lee [24] considered the presence of defective products in a 
small lot size replenishment policy. They assumed that the defective rate from the 
beginning in-control state until the process goes out of control increased 
exponentially. The defective items can be reworked instantaneously and kept in stock. 
Rosenblatt and Lee concluded that the presence of defective products resulted in 
smaller lot sizes. Schwaller [26] presented a procedure to extend EOQ models by 
assuming that the defectives of a known proportion were present in the incoming lots, 
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and that fixed and variable inspection costs were incurred in finding and removing the 
items. Porteus [22] incorporated the effect of defective items in the basic EOQ model 
and invested in process quality improvement. He assumed a probability q would go 
out of control during production.  

Salameh and Jaber [25] presented a modified inventory model for imperfect quality 
items. They considered poor-quality items are sold as a single batch by the end of the 
100% screening process. Rosenblatt and Lee [24] showed that reducing the lot size 
quantity increased the average percentage of imperfect quality items. The reasonable 
explanation is that Rosenblatt and Lee [24] assumed defective items were reworked 
instantaneously and kept in stock. This increases the holding cost that results in lower 
lot sizes, whereas in this paper, imperfect quality items are withdrawn from stock 
resulting in lower holding cost and larger lot sizes. Goyal and Gardenas-Barron [10] 
extended Salameh and Jaber’s model and presented a practical approach to determine 
EPQ for items with imperfect quality. The approach suggested in their study results in 
nearly a zero penalty as compared to Salameh and Jaber. Later, Goyal et al. [11] 
extended the model of Goyal and Gardenas-Barron [10] to consider vendor-buyer 
integration. Chung and Hou [3] developed a model to determine an optimal run time 
for a deteriorating production system with shortages. They assumed the elapsed time 
is random between the production process shifts. 

Recently, Wee and Yu [28] extended the approach by Salameh and Jaber and 
considered permissible shortage backordering. They found that the traditional EOQ 
and Salameh and Jaber’s modified EPQ/EOQ model are both special cases of the 
proposed model when the backordering cost is very large. In this paper, the influence 
of imperfect quality and deterioration is taken into account. Imperfect quality is the 
result of imperfect machines and processes. Deterioration occurs because many 
agricultural products, gasoline and medicine do not have constant utility during 
storage. The distribution of time to deterioration of the item follows the exponential 
distribution. 

Ongoing deteriorating inventory has been studies by several authors in recent 
decades. Ghare and Schrader [12] were the first authors to consider ongoing 
deterioration of inventory. They have developed an EOQ model for items with an 
exponentially decaying inventory. Elsayed and Terasi [5] proposed a deteriorating 
production-inventory model with Weibull distribution and permissible shortage. Kang 
and Kim [20] proposed an exponentially deteriorating model considering the price 
and production level. An exponentially deteriorating production-inventory model with 
permissible shortage is presented in [23]. Other authors such as Dave [4] and Heng et 
al. [16] assumed either instantaneous or finite production rate with different 
assumptions on the patterns of deterioration. Yang and Wee [29] developed an 
integrated economic ordering policy of deteriorating items for a vendor and multiple-
buyers. 

Collaboration of enterprises, especially in terms of developing strategies, is vital in 
reducing the overall cost of the enterprise. This is because decision made 
independently by one player will not result in global optimum. Global optimization 
will only be realized if the perspectives of all players are considered. One of the 
advantages of applying joint economic lot size models (JELS) is being able to 
generate lower total inventory relevant cost for the system so that the net benefit can 
be shared by both parties. The JELS approach has been studied for years. Goyal [6] 
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was the first to introduce an integrated inventory policy for the single-supplier single-
customer problem. He showed that his integrated policy results in minimum joint 
variable cost for the supplier and the customer. Banerjee [1] developed a joint 
economic lot size model with lot-for-lot policy for a single-buyer single-vendor 
system by combining two EOQ models from the buyer and vendor. In his model, he 
assumed that the vendor makes the production setup as long as the buyer places an 
order and supplies on a lot for lot basis. He also showed that his JELS model has 
minimum joint total relevant cost by considering both the buyer and the vendor at the 
same time. Later Goyal [7] generalized Banerjee’s model by relaxing the assumption 
of the vendor’s lot-for-lot policy. He pointed out that the vendor could possibly 
produce a lot that can supply an integer number of orders from the buyer. 
Nevertheless the model restricts shipments cannot be triggered before the whole 
production batch is completed. A review of previous models on buyer-vendor 
integration until 1990 refers to [8].  

Lu [21] developed an algorithm which derived an optimal solution to the single-
vendor single-buyer problem, when the delivery quantity to the buyer at each 
replenishment was identical. Lu’s model is synchronous, allowing shipment to take 
place during production. The model proposed by Halm and Yano [14] is also 
synchronous, aiming to minimize the manufacturer’ and buyer’s inventory holding 
cost, manufacturer’s setup cost, as well as the transportation cost. Halm and Yano 
advocates that for the single-buyer single-item problem, the optimal solution has the 
property that the production interval is an integer multiple of the delivery interval. 
Halm and Yano [15] further extend the model to the single-machine multi-component 
problem. A heuristic procedure was therefore developed to find both the “just-in-
time” production runs and the delivery schedule. Goyal [9] relaxes the identical 
shipment constraint, allowing the quantity of successive shipments to be different in 
an increasing fashion by a fixed factor of production rate to demand rate. The policy 
is to deliver whatever that is produced at the replenished time by using the same 
example as Lu [21]. Goyal shows that a different shipment policy could result in a 
better solution. Ha and Kim [13] analyze the integration between the buyer and the 
supplier, and developed a mathematical model using the geometric method. 

Though both Goyal’s [9] and Hill’s [17] models illustrate that delivery in “what is 
produced” policy is better than delivery in “identical shipment” policy, Viswanathan 
[27] shows that neither strategy obtains the best solution for all possible problem 
parameters. More recently, Hill [18] derived a globally optimal batching and shipping 
policy for the single-vendor single-buyer integrated production-inventory problem. 
Hoque and Goyal [19] proposed an optimal policy for a single-vendor single-buyer 
integrated production-inventory system with a limited capacity of transport equipment.  

In this study, product deterioration and vendor-buyer integration are considered 
simultaneously. We propose a production-inventory model for an on-going 
deterioration item with partial backordering and imperfect quality. Shortages due to 
imperfect items are completely backordered. This is because not all customers are 
willing to wait for a new replenishment of stock. Customers encountering shortages 
will respond differently according to the type of commodities and market 
environment. In real world, complete backordering is likely only in a monopolistic 
market. An illustrative example and sensitivity analysis are given to validate the 
inventory model. 
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2   Notation and Assumptions 

The following notation is used: 

I(t) =     Inventory level at time t, Tt ≤≤0 ; 
Im = Maximum inventory level; 
Is = Inventory level at the end of time t1; 
Tv1 = The time length of the production stage; 
Tv2 = The time length of the non-production stage; 
R = The total production quantity; 
Q = Order size; 
D = Demand rate for buyer; 
X = Screening rate for buyer; 
c = Purchasing cost per unit for buyer; 
h = Carrying cost per unit per unit time for buyer; 
d = Deterioration cost per unit for buyer; 
K = Ordering cost per order for buyer; 
θ= Deterioration rate; 
Cvh= Carrying cost per unit per unit time for vendor; 
Cvd= Deterioration cost per unit for vendor; 
p = Defective percentage in demands for vendor; 
f(p) = Probability density function of p; 
x = Screening cost per unit for buyer; 
Ib = Total shortage demand (units/cycle); 
b = Backordering cost per unit for buyer; 
* = Superscript representing optimal value; 

The mathematical models presented in this study have the following assumptions: 

(1)  A single item with constant deteriorating rate of the on-hand inventory is 
considered. 

(2)  Demand rate is a continuous known constant. 
(3)  Lead-time is a known constant.  
(4)  Defective items are independent of deterioration. 
(5)  Replenishment is instantaneous. 
(6)  Screening process and demand proceeds simultaneously.  
(7)  Defective percentage, p, has a uniform distribution with [α, β], where 

10 ≤<≤ βα . 

(8)  Shortages are completely backordered. 
(9)  A single product is considered. 

3   Mathematical Model 

We derive the cost involved in integrating the lot sizing policies between a vendor and a 
buyer. The ultimate form of JIT purchasing agreement should be adopted to minimize 
the total cost by implementing frequent small lots deliveries. Figure 1 depicts the 
behavior of inventory levels for both the vendor and the buyer. The annual integrated 
total cost consists of the vendor’s annual total cost, and the buyer’s annual total cost. 
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3.1   The Vendor’s Total Cost per Unit Time 

Figure 1 shows that in periodic delivery, the vendor does not stop producing until all 
demand is satisfied. For a given R, the values of Tv1 and Tv2 can be derived as 

pRTv /1 =                                                                   (1) 

and 
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Fig. 1. Inventory level of vendor and buyer with customer demand 
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The vendor total inventory cost per unit time is depicted by the following formula: 

Total cost = setting cost + delivery cost + holding cost + deteriorating cost 
A carrying inventory can be derived as follows  
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3.2   The Buyer’s Total Cost per Unit Time 

Figure 2 shows a lot size of Q units is replenished with an ordering cost of $K and a 
purchasing price of $c per unit. A fraction of each lot received is defective, with a 
known probability density function f (p). The random variable p has a uniform 
distribution [α, β], where 10 ≤<≤ βα . A 100% screening process of the item is 

 

 

Fig. 2. Buyer’s inventory system with backordering 
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conducted at a rate of X. The defective items are picked up in a single batch during 
the replenishment period T1. Shortages of stock are partial backlogged at the 
beginning of each period. The behaviour of the inventory system is illustrated in 
Figure 1, where Tb is the cycle length, pDTb is the maximal number of defectives, and 
Ib is the total unit backordered. 

The buyer’s total cost per unit time , TCb, is depicted as: 

Total inventory cost = Ordering cost + Screening Cost + Deteriorating cost + 
Holding cost + Backordering cost. 

For the inventory system depicted in figure 3, the carrying inventory within the 
time interval between T1 and T2 is 
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The change in the inventory level during an infinitesimal time, dt, is a function of 
the deterioration rate θ, the demand rate D, and the inventory level I(t). It is 
formulated as 
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I(t) is the inventory level at time t.  
From the above differential equations, after adjusting for the constant of integration 

with various boundary conditions: I1(0) =Im, I2(0) =Is-pDT and I3(0) =0, the 
differential equations become: 
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and 

33333 0,)( TtDttI ≤≤−=                                                                 (12) 

Since the defective items are independent of deterioration, they have a value equal 
to pDTb.  From figure 2, I1(T1) =Is= I2(0) + pDTb, one has  
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The replenishment, Q, can be derived by substituting T1=DTb/X into Eq. (15). One has 
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Expanding the exponential functions and neglecting the third and higher power of 
T⋅θ , Eq. (16) becomes:  
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By substituting Eq. (17) into Eq. (6), one has 
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3.3   The Joint Total Cost Per Unit Time 

For the vendor, by substituting Tv=nTb and Eq. (17) into Eq. (4), one has 
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From Eq. (18) and Eq. (19), the total cost per unit time for both the vendor and 
buyer is: JTC(Tb,n)=TCv(Tb,n)+TCb(Tb) 
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For βα ≤≤ p , one has 

12
][ μβα =+=pE   

2

22
2

3
][ μβαβα =++=pE   

( ) 3

22
2 1)(

3
]1[ μβαβαβα =++−++=− pE  

The expected value of JTC, EJTC, is 

( )
2

22

)(
22

)()(

2
1

2
2

1
32

31
2

1

2
2

32
1

3

2
1

1

μ++μ⎟
⎠
⎞

⎜
⎝
⎛

θ
+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ μθ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ μθ
+

μθ
++μ⎟

⎠
⎞

⎜
⎝
⎛

θ
+++++

++

+
θ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ θμ−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
μθ+θμ−+μ−=

b

bb
b

b

d

b

s

vd
vh

bb
b

b

bDT
DD

h
d

T
X

D
T

D

X

D
DD

h
dxc

T

K

T

C

nT

C

C
C

T
X

D
T

D

X

D
DD

nT

R
TEJTC

(20) 
and from Eq. (3),  
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3.4   Methodology and Solution Search 

Our objective is to minimize the expected cost function.  
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The problem is to determine the value of n that minimizes EJTC. Since the number 
of deliveries per cycle, n, is a discrete variable, the value of n can be derived as 
follows: 

Step 1. Input all the system parameters. 
Step 2. For a range of n-value, equate the first derivative of EJTC with respect to Tb 

to zero. For each n, denote the resulting minimum value of Tb by Tb(n). 
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Step 3. Derive the optimal value of n, denoted by n#. And, the value, n*, is an integer 
in the vicinity of n#. The optimal value of must satisfy 

)1()()1( *** +≤≥− nEJTCnEJTCnEJTC                                        (23) 

Step 4. Using (17), the periodic delivery quantity, Q, can be solved. 

4   Numerical Example 

To illustrate the preceding theory, we compare our analysis with the example from 
Salameh and Jaber. The following data are assumed: R=150000 unit, P=160000 
units/year, Cs=300/cycle, Cd=$25/unit, Cvh=$2/unit/year, Cvd=$30/unit, D=50000 
units/year, K=$100/cycle, h=$5/unit/year, X=175200 units/year, x=$0.5/unit, 
b=$10/unit/year, c=$25/unit, d=$30/unit, s=$50/unit. The item deteriorates at a 
constant rate with θ=0.01. The percentage defective random variable, p, can take any 
value in the range [α, β] where α=0, and β=0.04. It is assumed that p is uniformly 
distributed with its p.d.f.  
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Since EJTC is a very complicated function due to high-power expression of the 
exponential function, a graphical representation showing the convexity of the EJTC is 
given in Fig. 3. Following the above solution procedure, we compute the optimal 
value of n that minimizes Eq.(20) as n*=75 (n#=74.8). Substituting n*=75 into Eq.(21), 
the optimum values of Tb is 0.0396 year.  From Eq.(17), the lot size Q* is 2020 units. 
Therefore, the integrated total cost per year is $1,194,719.  

 

Fig. 3.  Graphical representation of a convex EJTC (when  n*=75) 
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Based on the numerical example, if the decision is made solely from the buyer’s 
perspective, the optimal value of Tb that minimizes Eq.(18) is Tb

*=0.0272. From 
Eqs.(17) and (21), the optimal values of Q and n are Q*= 1388 and n*= 109. 
Substituting them into the buyer’s expected annual cost and the vendor’s expected 
annual cost, the total cost of the buyer and the vendor is $1,195,172. Therefore, the 
integrated cost reduction is (1,195,172-1,194,719)= 453. Note that the expected 
annual integrated total cost has an impressive cost-reduction as compared with an 
independent decision by the buyer. 

5   Conclusions 

This study has presented a deteriorating inventory model with unreliable process. The 
model extends the studies in [25] and considers a single-vendor single-buyer integrated 
two-echelon supply chain environment. Comparative studies in the example show the 
benefit of integration. The effect of deterioration should be considered even if it is small. 
We have shown in this study that the influence of imperfect quality, deterioration and 
complete backordering are significant. The management of an enterprise can select 
suppliers based on the defective percentage and the deterioration rate of the products 
supplied by each supplier.  
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Appendix A 

From Fig. 2, the vendor’s production interval, Tv1, and the production interval, Tv2, 
can be denoted by  

fbsv tTntT +⋅+= 11   and     bvvv TnTTT ⋅=+= 21                (A1) 
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It is observed that the total inventory level at Tv1 (the production stage) is the same 
as total inventory level at Tv2 (the non-production stage). One has 
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Substituting PRT /1 =  into (A2), the values of T2 can derived as  
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