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Abstract. We show the linear convergence of the tatônnement scheme
in a Bertrand oligopoly price competition game using a possibly asym-
metric attraction demand model with convex costs. To demonstrate this,
we also show the existence of the equilibrium.

1 Introduction and Model

In the Bertrand oligopoly price competition model for differentiated products, a
variety of demand models and cost models have been used. The choice of these
models affects the profit of each firm.

We let n be the number of firms, which are indexed by i = 1, . . . , n. The
demand for each firm is specified as a function of prices. Let pi denote the price
of firm i, and define the price vector of competing firms by p−i, which is a
shorthand for (p1, . . . , pi−1, pi+1, . . . , pn). Also denote the vector of all prices by
p = (p1, . . . , pn) = (pi,p−i). The demand for each firm i is given by di = di(p).
We assume that firm i’s demand is strictly decreasing in its price (i.e., ∂di/∂pi <
0), and that products are gross substitutes (i.e., ∂di/∂pj ≥ 0 whenever j �= i).

In this paper we consider a generalization of the logit demand model called
the attraction demand model:

di(p) :=
ai(pi)∑

j aj(pj) + κ
(1)

where κ is either 0 or strictly positive. As discussed in [2] and [14], the at-
traction model has successfully been used in estimating demand in econometric
studies, and is increasingly accepted in marketing, e.g., [5]. For its applications in
the operations management community, see [21], [4] and the references therein.
Without any loss of generality, we normalize the total demand of the market
to 1. The attraction function ai(·) of firm i is a positive and strictly decreasing
function of its price.

For the cost model, we assume that cost is not a function of price, but of
demand alone. We denote firm i’s cost function by Ci(di) defined on [0, 1] and
� For the full version of this paper, see [11].
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assume Ci is increasing and convex. The profit of firm i is the difference between
its revenue and cost, given by

πi := πi(p) := pi · di(p) − Ci(di(p)). (2)

Each firm’s objective is to maximize πi. We impose technical conditions on the
attraction demand and cost models as outlined in Section 2.

The study of oligopolistic interaction is a classical problem in economics. In
the model proposed by Cournot, firms compete on production output quanti-
ties, which in turn determine the market price. In Bertrand’s model, however,
competition is based on prices instead of production quantities. In the price
competition models by Edgeworth, each firm decides how much of its demand
is satisfied, in which case an equilibrium solution may or may not exist. Price
competition with product differentiation has also been studied by [12], [20] and
[8]. An extensive treatment of the subject is found in [24]. We provide a brief
summary of results regarding the existence, and stability of equilibrium, followed
by their application in the operations management literature.

Existence. There are two common methods to show existence of an equilibrium
in price competition games. The first method is to obtain existence through the
quasi-concavity of πi in pi. See [7]. The second method shows existence through
supermodular games. See [22] for the existence of an equilibrium in supermodular
games, and [16], for monotone transformation of supermodular games. Thus, if
the price competition game is supermodular, it has at least one equilibrium.
Similarly, [17] shows the existence of a Nash equilibrium for a generalization of
supermodular games, called games with strategic complementarities. Such games
include instances of price competition. These however are not applicable to our
model.

Stability. By definition, a set of actions at equilibrium is a fixed point of the
best response mapping. A simultaneous discrete tatônnement is a sequence of
actions in which the current action of each firm is the best response to the pre-
vious actions of other firms. An equilibrium is globally stable if the tatônnement
converges to this equilibrium regardless of the initial set of actions. [23] shows
that if a supermodular game with continuous payoffs has a unique equilibrium,
it is globally stable. To our knowledge, there is no known result regarding the
provable convergence rate of the tatônnement in the price competition game.

Operations Management Literature. There has been a growing interest in
oligopolistic price competition in the operations literature. To predict and study
market outcomes, the existence and the uniqueness of equilibrium are often
required. Stability and convergence rate indicate both the robustness of equilib-
rium and the efficiency of computational algorithms. For example, see [4], [3],
[1], and [6].

2 Assumptions

This section lists our assumptions on the attraction function ai(·) in (1), and
the profit function πi and the cost function Ci(·) in (2).
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We let ρi := inf{p : ai(p) = 0} be the upper bound on price pi. Firm i’s action
space for price is an open interval (0, ρi). Let P := (0, ρ1) × · · · × (0, ρn). Let
ηi(p) := −p·a′

i(p)/ai(p) be the elasticity of firm i’s attraction function. We adopt
the following simplifying notation: f(x+) := limh↓x f(h), f(x−) := limh↑x f(h),
inf ∅ = ∞, and y

y+k = 1 if y = ∞ and k is finite.

Condition A: (A1) ai(·) is positive, strictly decreasing and continuously dif-
ferentiable, i.e., ai(p) > 0 and a′

i(p) < 0 for all p ∈ (0, ρi).
(A2) The elasticity ηi(·) is nondecreasing.
(A3) If ai(0+) < ∞, then a′

i(0+) > −∞.
Condition B: (B1) Ci(·) is strictly increasing, continuously differentiable, and

convex on [0, 1], i.e., ci(·) := C′
i(·) is positive and increasing, and satisfies

ci(0+) > 0.
Condition C: (C1) ci(0) < ρi · (1 − 1/ηi(ρi)), i.e., the Lerner index [pi −

ci(di)]/pi at price pi = ρi and demand di = 0 is strictly bounded below
by 1/ηi(ρi).

(C2) If κ = 0, then ci(1) < ρi.
(C3) If κ = 0, the following technical condition holds:

n∑

i=1

(

1 − 1
ηi(ρi) · (1 − ci(1)/ρi)

)

> 1 .

Examples of Ci(·) include the linear function and exponential function. More
examples are provided in Section 3. We remark that attraction functions do not
need to be identical. Furthermore, even the form of the attraction function may
not be same among firms. Analogously, the cost functions need not have the
same form.

For the rest of this paper, we assume Conditions A, B and C hold. In Sec-
tion 5, we introduce an additional assumption that both Ci(·) and ai(·) are twice
continuously differentiable.

3 Examples

In this section, we list price competition models in which the convex cost model
is applicable. We present some examples from an inventory-capacity systems and
a service system based on queues.

Inventory-Capacity System: In the first example, consider the pricing problem
in the stochastic inventory system with exogenously determined stocking levels.
We denote stochastic demand of firm i by Di(p), and its expected demand by
di(p). Demand is a function of the price vector p = (p1, . . . , pn). We represent
firm i’s stochastic demand by Di(p1, . . . , pn) = ϕ(di(p), εi), where εi is a random
variable. (We can allow ϕ to be dependent on i). We suppose the continuous
density function fi(·) for εi exists, and let Fi(·) denote its cumulative density
function.

Let yi be the exogenously fixed stocking level of firm i. For the first yi units,
the per-unit materials cost is wi. If realized demand is at most yi, the per-unit
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salvage value of wi − hi > 0 is obtained. Otherwise, the excess demand is met
through an emergency supply at the cost of wi + bi per unit, where bi ≥ 0. The
profit of firm i is the difference between its revenue and costs, and the expected
profit is πi(p|yi) = pi · di(p) − Ci(di(p), yi), where

Ci(di, yi) = widi + hiE[yi − ϕ(di, εi)]+ + biE[ϕ(di, εi) − yi]+ ,

and hi and bi are the per-unit inventory overage and underage costs, respectively.
Our goal is to show that for fixed yi, this function satisfies condition (B1).

We achieve this goal with two common demand uncertainty models.

– Additive Demand Uncertainty Model: ϕ(di, εi) = di + εi where E[εi] = 0.
Then,

∂Ci(di, yi)
∂di

= wi − hiP [yi ≥ di + εi] + biP [yi ≤ di + εi]

= wi − hiFi(yi − di) + bi(1 − Fi(yi − di)).

– Multiplicative Demand Uncertainty Model: ϕ(di, εi) = di · εi where εi is
positive and E[εi] = 1. Then,

∂Ci(di, yi)
∂di

= wi − hi

∫ yi/di

0
εdFi(ε) + bi

∫ ∞

yi/di

εdFi(ε)

= wi − hi + (hi + bi)
∫ ∞

yi/di

εdFi(ε).

In both cases, ∂Ci(di, yi)/∂di is positive since wi > hi and nondecreasing in di.
We conclude that for fixed yi, Ci(di, yi) is strictly increasing, twice continuously
differentiable, and convex in di. Furthermore, ∂Ci(di, yi)/∂di > 0 at di = 0.

Service System: In the second example, we model each firm as a single server
queue with finite buffer, where the firms’ buffer sizes are given exogenously. Let
κi denote the size of firm i’s buffer; no more than κi customers are allowed to the
system. We assume exponential service times and the Poisson arrival process.
The rate μi of service times are exogenously determined, and the rate di of
Poisson arrival is an output of the price competition. In the queueing theory
notation, each firm i is a M/M/1/κi system.

We assume that the materials cost is wi > 0 per served customer, and the
diverted customers’ demand due to buffer overflow is met by an emergence supply
at the cost of wi + bi unit per customer, where bi > 0. The demand arrival rate
di = di(p) is determined as a function of the price vector p. It follows that firm
i’s time-average revenue is pi · di − Ci(di), where Ci(di) is the sum of wi · di and
the time-average number of customers diverted from the system is multiplied by
bi. Thus, according to elementary queueing theory (see, for example, [15]),

Ci(di) = wi · di + bi · di · (1 − di/μi)(di/μi)κi

1 − (di/μi)κi+1 , if di �= μi

= wi · di + bi · di

κi + 1
, if di = μi.
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Algebraic manipulation shows that Ci(·) is convex and continuously twice dif-
ferentiable, satisfying ci(0) = wi > 0.

4 Existence of Equilibrium

In this section, we show that the oligopoly price competition has a unique equi-
librium. Given the price vector, each firm’s profit function is given by expression
(2), where its demand is determined by (1). We first show that the first order con-
dition ∂πi/∂pi = 0 is sufficient for the Nash equilibrium (Proposition 1). For each
value of a suitably defined aggregate attraction δ, we show that there is at most
one candidate for the solution of the first order condition (Proposition 2). Then,
we demonstrate that there exists a unique value δ of the aggregator such that
this candidate indeed solves the first order condition (Propositions 3 and 4). We
proceed by assuming both Conditions A, B and C. Let ςi(p) := ηi(pi)·(1−di(p)).

Proposition 1. Firm i’s profit function πi is strictly quasi-concave in pi ∈
(0, ρi). If p∗ = (p∗1, . . . , p

∗
n) ∈ P satisfies ∂πi(p∗)/∂pi = 0 for all i, p∗ is the

Nash equilibrium in P, and p∗i > ci(0) for each i. Furthermore, the condition
∂πi/∂pi = 0 is equivalent to

ci(di(p))/pi = 1 − 1/ςi(p) . (3)

Given a price vector, let δ :=
∑n

j=1 aj(pj) be the aggregate attraction. The

support of δ is Δ :=
(
0,

∑n
j=1 aj(0+)

)
. From (A1), it follows that δ ∈ Δ. Then,

di = ai(pi)/(δ+κ). Since a−1
i is well-defined by (A1), we get pi = ai

−1((δ+κ)di).
Thus, (3) is equivalent to

ci(di)
ai

−1((δ + κ)di)
= 1 − 1

ηi ◦ ai
−1((δ + κ)di) · (1 − di)

. (4)

Observe that there is one-to-one correspondence between p = (p1, . . . , pn) and
d = (d1, . . . , dn), given δ (and of course, κ). Let Di(δ) be the solution to (4) given
δ (and κ). The existence and uniqueness of Di(δ) are guaranteed by Proposition
2 below. The Di(δ)’s may not sum up to the “correct” value of δ/(δ+κ) unless a
set of conditions is satisfied (Propositions 3). Proposition 4 shows the existence
of a unique δ such that the Di(δ)’s sum up to δ/(δ + κ).

Let di(δ) := min
{

ai(0+)
δ+κ , 1

}
be an upper bound on the market share of firm i.

For each fixed δ ∈ Δ, we define the following real-valued functions on
(
0, di(δ)

)
:

Li(xi|δ) :=
ci(xi)

ai
−1((δ + κ)xi)

and Ri(xi|δ) := 1 − 1
ηi ◦ ai

−1((δ + κ)xi) (1 − xi)
.

We remark that both Li(xi|δ) and Ri(xi|δ) are continuous in xi in
(
0, di(δ)

)
.

Proposition 2. For each i and each δ ∈ Δ, Li(·|δ) is positive and strictly
increasing, and Ri(·|δ) is strictly decreasing. Furthermore, Li(xi|δ) = Ri(xi|δ)
has a unique solution in

(
0, di(δ)

)
, i.e., Di(δ) is a well-defined function of δ.
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For any aggregate attraction δ ∈ Δ, Proposition 2 shows that there is a unique
solution xi satisfying Li(xi|δ) = Ri(xi|δ), and this solution is Di(δ). It represents
demand that maximizes firm i’s profit provided that the aggregate attraction
remains at δ. Also, define D(δ) := D1(δ) + · · · + Dn(δ). Note that Di(δ) is
a strictly decreasing function since any increase in δ lifts the graph of Li(xi|δ)
and drops that of Ri(xi|δ). Therefore D(δ) is also a strictly decreasing function.
Furthermore, Di(δ) is a continuous function of δ. Thus, D(δ) is continuous.

Proposition 3. For fixed δ ∈ Δ, D(δ) = δ
δ+κ holds if and only if there exist

p = (p1, . . . , pn) and d = (d1, . . . , dn) such that the following set of conditions
hold: (i) δ =

∑n
j=1 aj(pj), (ii) di = ai(pi)/(δ+κ) for each i, and (iii) Li(di|δ) =

Ri(di|δ) for each i. In such case, furthermore, the price vector corresponding to
any δ satisfying D(δ) = δ

δ+κ is unique.

If there is δ ∈ Δ satisfying D(δ) = δ
δ+κ , then by Proposition 3, the corresponding

price vector satisfies ∂πi/∂pi = 0 for all i. By Proposition 1, this price vector
is a Nash equilibrium. For the unique existence of the equilibrium, it suffices to
show the result of the following proposition.

Proposition 4. There exists a unique δ ∈ Δ such that D(δ) = δ/(δ + κ).

Theorem 1. There exists a unique positive pure strategy Nash equilibrium price
vector p∗ ∈ P. Furthermore, p∗ satisfies p∗i > ci(0) for all i = 1, · · · , n.

5 Convergence of Tatônnement Scheme

In this section, we show that the unique equilibrium is globally stable under
the tatônnement scheme. Suppose each firm i chooses a best-response pricing
strategy: choose pi maximizing his profit πi(p1, . . . , pn) while pj ’s are fixed for
all j �= i.

By Theorem 1, there exists a unique equilibrium vector, which is denoted
by p∗ = (p∗1, · · · , p∗n) ∈ P . Define Q := (0, a1(0+)) × · · · × (0, an(0+)). Let
q∗ = (q∗1 , · · · , q∗n) ∈ Q be the corresponding attraction vector where q∗i := ai(p∗i ).
Let q̂i :=

∑
j �=i qj be the sum of attraction quantities of firms other than i. Set

θ∗i := q∗i /(q̂∗i + κ) and d∗i := q∗i /(q∗i + q̂∗i + κ), which are both positive. Suppose
we fix the price pj for all j �= i, and let qi := ai(pi) be the corresponding
attraction. Since ai is one-to-one and δ = qi + q̂i, condition (4) is equivalent to

ci

(
qi

qi+q̂i+κ

)

ai
−1(qi)

= 1 − 1
ηi ◦ ai

−1(qi)

(

1 +
qi

q̂i + κ

)

. (5)

Using an argument similar to Proposition 2 and ensuing discussion, it can be
shown that there is a unique solution qi to (5) for each q̂i given by any pos-
itive number less than

∑
j �=i ai(0+). We call this solution qi the best response

function ψi(q̂i) for firm i. The unique equilibrium satisfies ψi(q̂∗i ) = q∗i where
q̂∗i =

∑
j �=i q∗j . Furthermore, it is easy to show that ψi(·) is strictly increasing.
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Proposition 5. ψi(·) is a strictly increasing function.

From the definition of θ∗i and ψi(q̂∗i ) = q∗i , we know ψi(q̂i)/(q̂i+κ) = θ∗i at q̂i = q̂∗i .
The following proposition characterizes the relationship between ψi(q̂i)/(q̂i+κ)
and θ∗i .

Proposition 6. ψi(q̂i)/(q̂i + κ) is strictly decreasing in q̂i, and satisfies ψi(q̂∗i )/
(q̂∗i + κ) = θ∗i . Thus,

ψi(q̂i)
q̂i + κ

⎧
⎨

⎩

> θ∗i , for q̂i < q̂∗i
= θ∗i , for q̂i = q̂∗i
< θ∗i , for q̂i > q̂∗i .

Furthermore, ψ′
i(q̂i) is continuous, and satisfies 0 < ψ′

i(q̂
∗
i ) < θ∗i .

Let q = (q1, . . . , qn). We denote the vector of best response functions by Ψ(q) =
(ψ1(q̂1), · · · , ψn(q̂n)) ∈ Q, where q̂i =

∑
j �=i qj . Note that q∗ = (q∗1 , · · · , q∗n)

is a fixed point of Ψ , i.e., Ψ(q∗) = q∗. By Proposition 5, we have Ψ(q1) <
Ψ(q2) whenever two vectors q1 and q2 satisfy q1 < q2. (The inequalities are
component-wise.) We now show that best-response pricing converges to the
unique equilibrium. We define the sequence {q(0),q(1),q(2), · · · }⊂ Q by q(k+1) :=
Ψ(q(k)) for k ≥ 0.

Theorem 2. If each firm employs the best response strategy based on the prices
of other firms in the previous iteration, the sequence of price vectors converges
to the unique equilibrium price vector.

Proof. Let q(0) ∈ Q denote the attraction vector associated with the initial price
vector. Choose q(0),q(0) ∈ Q such that q(0) < b̂(0) < q(0) and q(0) < b̂∗ < q(0).
Such q(0) and q(0) exist since Q is a box-shaped open set.

For each k ≥ 0, we define q(k+1) := Ψ(q(k)) and q(k+1) := Ψ(q(k)). From the
monotonicity of Ψ(·) (Proposition 5) and Ψ(b̂∗) = b̂∗, we get

q(k) < b̂(k) < q(k) and q(k) < b̂∗ < q(k). (6)

Let u(k) := maxi

{
q̂
(k)
i / q̂∗i

}
. Clearly, u(k) > 1 for all k by (6). We show that

the sequence
{
u(k)

}∞
k=0 is strictly decreasing. For each i,

q
(k+1)
i = ψi(q̂

(k)
i ) <

(
q̂
(k)
i + κ

)
· θ∗i =

(
q̂
(k)
i + κ

)
· q∗i
q̂∗i + κ

≤ q̂
(k)
i

q̂∗i
· q∗i ≤ u(k)q∗i ,

where the first inequality comes from Proposition 6, the second one from (6),
and the last one from the definition of u(k). Thus

q̂
(k+1)
i =

∑

j �=i

q
(k+1)
j <

∑

j �=i

u(k)q∗j = u(k)q̂∗i , (7)
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and u(k+1) = maxi{q̂
(k+1)
i /q̂∗i } < u(k). Since

{
u(k)

}∞
k=0 is a monotone and

bounded sequence, it converges. Let u∞ := limk→∞ u(k). We claim u∞ = 1.
Suppose, by way of contradiction, u∞ > 1. By Proposition 6, ψi(q̂i)/(q̂i + κ) is
strictly decreasing in q̂i. Thus, for any q̂i ≥ 1

2 (1 + u∞) · q̂∗i , there exists ε ∈ (0, 1)
such that for each i, we have

ψi(q̂i)
(q̂i + κ)

≤ (1 − ε) · ψi(q̂∗i )
q̂∗i + κ

= (1 − ε) · q∗i
q̂∗i + κ

.

For any k, if q̂
(k)
i ≥ 1

2 (1 + u∞) · q̂∗i , then

q
(k+1)
i = ψi

(
q̂
(k)
i

)
≤

(
q̂
(k)
i + κ

)
· (1 − ε) · q∗i

q̂∗i + κ

≤ q̂
(k)
i

q̂∗i
· q∗i · (1 − ε) ≤ (1 − ε) · u(k) · q∗i .

Otherwise, we have q̂∗i < q̂
(k)
i < 1

2 (1 + u∞) · q̂∗i . By Proposition 6,

q
(k+1)
i = ψi

(
q̂
(k)
i

)
<

(
q̂
(k)
i + κ

)
· q∗i
q̂∗i + κ

≤ q̂
(k)
i

q̂∗i
· q∗i ≤ 1

2
(1 + u∞) · q∗i .

Therefore, we conclude, using an argument similar to (7), u(k+1) ≤ max{(1−ε) ·
u(k), (1+u∞)/2}. From u(k+1) > u∞ > (1+u∞)/2, we obtain u(k+1) ≤ (1−ε)·u(k),
implying u(k) → 1 as k → ∞. This is a contradiction. Similarly, we can show that
l(k) := mini

{
q̂(k)

i
/ q̂∗i

}
is a strictly increasing sequence converging to 1. ��

The following proposition shows the linear convergence of tatônnement in the
space of attraction values.

Proposition 7. The sequence {q(k)}k≥0 converges linearly.

Proof. Consider
{
q(k)

}∞
k=0

and
{
q(k)

}∞

k=0
in the proof of Theorem 2. Recall

q(k) < b̂(k) < q(k) and q(k) < b̂∗ < q(k). We will show that q(k) and q(k)

converges to b̂∗ linearly. Since Q is a box-shaped open set, there exists a convex
compact set B ⊂ Q containing all elements of

{
q(k)

}∞
k=0

and
{
q(k)

}∞

k=0
. From

the proof of Proposition 6, there exists δ > 0 such that for any b̂ ∈ B, we have

d

dq̂i

(
ψ(q̂i)
q̂i + κ

)

≤ −δ.

From integrating both sides of the above expression from q̂∗i to q̂
(k)
i ,

ψi(q̂
(k)
i )

q̂
(k)
i + κ

− ψ(q̂∗i )
q̂∗i + κ

≤ −δ
(
q̂
(k)
i − q̂∗i

)

since the line segment connecting b̂∗ and q(k) lies within B.
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Define δ1 := δ · mini minb̂∈B {(q̂i + κ) · q̂∗i /q∗i } > 0. We choose δ > 0 is

sufficiently small such that δ1 < 1. Recall q
(k+1)
i = ψi(q̂

(k)
i ) and q∗i = ψ(q̂∗i ).

Rearranging the above inequality and multiplying it by (q̂
(k)
i + κ)/q∗i ,

q
(k+1)
i /q∗i ≤ (q̂

(k)
i + κ)/(q̂∗i + κ) − δ · (q̂

(k)
i − q̂∗i ) · (q̂

(k)
i + κ)/q∗i

≤ q̂
(k)
i /q̂∗i − δ1 · (q̂

(k)
i /q̂∗i − 1) = (1 − δ1) · q̂(k)

i /q̂∗i + δ1.

where the second inequality comes from q̂
(k)
i > q̂∗i and the definition of δ1.

Let ρ(k) := maxi{q
(k)
i /q∗i }. Thus, q

(k)
j ≤ ρ(k) ·q∗j holds for all j, and summing

this inequality for all j �= i, we get q̂
(k)
i ≤ ρ(k) · q̂∗i . Thus, q

(k+1)
i /q∗i is bounded

above by (1−δ1)·ρ(k)+δ1 for each i, and we obtain ρ(k+1) ≤ (1−δ1)·ρ(k)+δ1 .
Using induction, it is easy to show

ρ(k) ≤ (1 − δ1)k · (ρ(0) − 1) + 1

Therefore, we obtain

max
i

{
(q(k)

i − q∗i )/q∗i
}

= ρ(k) − 1 ≤ (1 − δ1)k · (ρ(0) − 1)

= (1 − δ1)k · max
i

{
(q(0)

i − q∗i )/q∗i
}

and

max
i

{
q
(k)
i − q∗i

}
≤ (1 − δ1)k · max

i
{q∗i } · max

i

{
(q(0)

i − q∗i )/q∗i
}

,

showing the linear convergence of the upper bound sequence q(k). A similar
argument shows the linear convergence of q(k). ��

The linear convergence in the above theorem is not with respect to the price
vector but with respect to the attraction vector, i.e. not in p but in q. Yet, the
following theorem also shows the linear convergence with respect to the price
vector. Let {p(k)}k≥0 be the sequence defined by p

(k)
i := a−1

i (q(k)
i ).

Theorem 3. The sequence {p(k)}k≥0 converges linearly.

Proof. Consider
{
q(k)

}∞
k=0

and
{
q(k)

}∞

k=0
in the proof of Proposition 7. Let

{
p(k)

}∞
k=0

and
{
p(k)

}∞

k=0
be the corresponding sequences of price vectors.

Within the compact interval [p(0)
i , p(0)

i
], the derivative of ai is continuous and

its infimum is strictly negative. By the Inverse Function Theorem, the derivative
of a−1

i (·) is continuous in the compact domain of [q(0)
i

, q
(0)
i ]. Recall p∗i = a−1

i (q∗i ).
There exists some bound M > 0 such that

|pi − p∗i | = |a−1
i (qi) − a−1

i (q∗i )| ≤ M · |qi − q∗i |

whenever ai(pi) = qi ∈ [q(0)
i

, q
(0)
i ] for all i. From the proof of Proposition 7,

we obtain q
(k)
i ∈ (q(k)

i
, q

(k)
i ) ⊂ [q(0)

i
, q

(0)
i ]. Therefore, the linear convergence of

{q(k)}k≥0 implies the linear convergence of {p(k)}k≥0. ��
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