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Abstract. The main contents of this paper is two-fold. First, we present
a method to approximate multivariate convex functions by piecewise
linear upper and lower bounds. We consider a method that is based on
function evaluations only. However, to use this method, the data have to
be convex. Unfortunately, even if the underlying function is convex, this
is not always the case due to (numerical) errors. Therefore, secondly, we
present a multivariate data-smoothing method that smooths nonconvex
data. We consider both the case that we have only function evaluations
and the case that we also have derivative information. Furthermore, we
show that our methods are polynomial time methods. We illustrate this
methodology by applying it to some examples.

1 Introduction

In the field of discrete approximation, we are interested in approximating a
function y : R

q → R, given a discrete dataset {(xi, yi) : 1 ≤ i ≤ n}, where
xi ∈ R

q and yi = y(xi) ∈ R, and n is the number of data points. It may
happen that we know beforehand that the function y(x) is convex. However,
many approximation methods do not make use of the information that y(x) is
convex and construct approximations that do not preserve the convexity. For
the univariate case there is some literature on convexity preserving functions;
see e.g. [1] and [2]. In [1], Splines are used, and in [2], polynomial approximation
is considered. For the multivariate case, in [3], convex quadratic polynomials are
used to approximate convex functions. Furthermore, there is a lot of literature on
so-called Sandwich algorithms; see e.g. [4], [5], [6], [7], and [8]. In these papers,
upper and lower bounds for the function y(x) are constructed, based on the
discrete dataset, and based on the knowledge that y(x) is convex.

A problem that may occur in practice is that one may have a dataset that is
subject to noise, i.e., instead of the data yi we have ỹi = y(xi) + εi

y, where εi
y is

(numerical) noise. There may also be noise in the input data, i.e., x̃i = xi + εi
x,

and if derivative information is available, it could also be subject to noise, i.e.,
˜∇yi = ∇yi + εi

g, where ∇yi = ∇y(xi). Note that we assume y(x) to be convex.
However, due to the noise, the perturbed data might loose the convexity of
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y(x), i.e., the noise could be such that it is not possible to fit a convex function
through the perturbed data. Therefore, we are interested in data-smoothing, i.e.,
in shifting the data points, such that they obtain convexity, and such that the
amount of movement of the data is minimized. This problem has already been
tackled in literature for the univariate case; see e.g. [9], [10], and [11]. Also in
isotonic regression, this problem is dealt with for the univariate case; see [12].

In this paper, we will consider two problems. First, we consider how to con-
struct piecewise linear upper and lower bounds to approximate the output for
the multivariate case. This extends the method in [7] to the multivariate case.
If derivative information is available it is easy to construct upper and lower
bounds. However, derivative information is not always available, e.g., in the case
of black-box functions. In this paper, it turns out that these upper and lower
bounds can be found by solving linear programs (LPs).

Second, we will consider the multivariate data-smoothing problem. We con-
sider both the case that we have only function evaluations and the case that we
also have derivative information. We will show that, if we only consider errors in
the output data, the first problem can be solved by using techniques, which are
from linear robust optimization; see [13]. It turns out that this problem can be
tackled by solving an LP. If we also have derivative information, we can also con-
sider errors in the gradients and in the input variables. We then obtain a nonlin-
ear optimization problem. However, if we assume that there are only errors in the
gradients and in the output data, we obtain an LP. Also, if we assume that there
are only errors in the input data and in the output data, we also obtain an LP.

The remainder of this paper is organized as follows. In Sect. 2, we consider
the problem of constructing upper and lower bounds. In Sect. 3, we consider
multivariate data-smoothing, and in Sect. 4, we give some examples of the ap-
plication of the data-smoothing techniques, considered in Sect. 3. Finally, in
Sect. 5, we present possible directions for further research.

2 Bounds Preserving Convexity

In this section we assume that y(x) is convex and that the data (xi, y(xi)) for
i = 1, . . . , n are convex as well, i.e., there are no (numerical) errors, and there
exists a convex function that fits through the data points.

2.1 Upper Bounds

We are interested in finding the smallest upper bound for y(x), given convexity,
and the data (xi, y(xi)), for i = 1, . . . , n. Let x =

∑n
i=1 αix

i, where
∑n

i=1 αi = 1,
and 0 ≤ αi ≤ 1, i.e., x is a convex combination of the input data xi. Then, it is
well-known that convexity gives us the following inequality:

y(x) = y

(

n
∑

i=1

αix
i

)

≤
n

∑

i=1

αiy(xi) .

This means that
∑n

i=1 αiy(xi) is an upper bound for y(x). To find the smallest
upper bound we should therefore solve
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u(x) := min
α1,...,αn

n
∑

i=1

αiy(xi)

s.t. x =
n

∑

i=1

αix
i

0 ≤ αi ≤ 1
n

∑

i=1

αi = 1,

(1)

where we put the decision variables underneath ’min’.

2.2 Lower Bounds

If we have derivative information, it is easy to construct a lower bound. It is
well-known that if y(x) is convex, we have that

y(x) ≥ y(xi) + ∇y(xi)T (x − xi), ∀x ∈ R
q, ∀i = 1, . . . , n .

Therefore, �(x) = max
i=1,...,n

(

y(xi) + ∇y(xi)T (x − xi)
)

is a lower bound.

If we do not have derivative information, we have to do something else.
We are interested in finding the largest lower bound for y(x), given convexity
and the data (xi, y(xi)), for i = 1, . . . , n. Let xk =

∑

i�=k αk
i xi + αkx, where

∑

i�=k αk
i + αk = 1, with 0 ≤ αk

i ≤ 1, and 0 < αk ≤ 1, for all k = 1, . . . , n, i.e.,
xk is a convex combination of xi, i �= k, and x. Then the following holds for all
k ∈ {1, . . . , n}:

y(xk) = y

⎛

⎝

∑

i�=k

αk
i xi + αkx

⎞

⎠ ≤
∑

i�=k

αk
i y(xi) + αky(x) . (2)

Without loss of generality we may assume that αk > 0. Then we can rewrite (2) as

y(x) ≥
y(xk) −

∑

i�=k αk
i y(xi)

αk
, for k = 1, . . . , n .

This inequality gives us a lower bound for y(x). To obtain the largest lower
bound we should solve the following problem:

max
k=1,...,n

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
αk,αk

i

y(xk)−�i�=k αk
i y(xi)

αk

s.t. xk =
∑

i�=k

αk
i xi + αkx

∑

i�=k

αk
i + αk = 1

0 ≤ αk
i ≤ 1

0 < αk ≤ 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (3)

This comes down to solving n nonlinear optimization problems, and taking the
value of the largest solution. Note that the nonlinear optimization problems have
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linear constraints and a fractional objective with linear numerator and denomi-
nator. These kinds of optimization problems can be rewritten into an LP; see [14].

This can be done as follows. Define tk := 1/αk. We can now rewrite the inner
optimization problem in (3) as

max
αk,αk

i ,tk
tky(xk) −

∑

i�=k αk
i tky(xi)

s.t. xktk =
∑

i�=k

αk
i tkxi + αktkx

∑

i�=k

αk
i tk + αktk = tk

αk
i tk ≥ 0

αktk = 1,

where we multiplied all constraints by tk. Now we define zk
i := αk

i tk and zk :=
αktk. We then get

max
zk,zk

i ,tk
tky(xk) −

∑

i�=k zk
i y(xi)

s.t. xktk =
∑

i�=k

zk
i xi + zkx

∑

i�=k

zk
i + zk = tk

zk
i ≥ 0

zk = 1 .

(4)

Note that (4) is an LP. Therefore, for the lower bound �(x) we obtain the
following:

�(x) := max
k=1,...,n

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
zk,zk

i ,tk
tky(xk) −

∑

i�=k zk
i y(xi)

s.t. xktk =
∑

i�=k

zk
i xi + zkx

∑

i�=k

zk
i + zk = tk

zk
i ≥ 0

zk = 1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (5)

Note that the number of constraints in (5) is q + 1. The number of variables in
(5) is also q + 1. Therefore it takes polynomial time to find the lower bound.

3 Convex Data-Smoothing

If the dataset is not convex, we first have to smooth the data such that it becomes
convex. We distinguish between the case that we only have function evaluations
and the case that we also have derivative information.

3.1 Function Value Information

We only consider movement of the output data ỹi. So, we want to minimally shift
the perturbed output data ỹi such that they become convex. In the following
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optimization problem, we minimize the upward shifts (δ+
y )i and the downward

shifts (δ−y )i such that the new shifted output data points yi
s become convex:

min
δ+

y ,δ−
y ,ys

n
∑

i=1

(

(δ+
y )i + (δ−y )i

)

s.t. yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n

yi
s ≤

∑

k �=i

λi
kyk

s (∀λi
k ∈ [0, 1]|xi =

∑

k �=i

λi
kxk,

∑

k �=i

λi
k = 1),

∀i = 1, . . . , n
δ+
y ∈ R

n
+, δ−y ∈ R

n
+ .

(6)

We minimize the �1-norm. It is easy to see that in the optimum either (δ+
y )i = 0

or (δ−y )i = 0. The second constraint forces the shifted output data points yi
s to

become convex. Note that (6) is an LP with infinitely many constraints, i.e.,
it is a semi-infinite LP, which can also be seen as a robust linear programming
problem. We can solve this problem with methods from [13]. Since the ”uncer-
tainty region”: {∀λi

k ∈ [0, 1]|xi =
∑

k �=i

λi
kxk,

∑

k �=i

λi
k = 1} of the second constraint

in (6) is a polytope, we can rewrite this semi-infinite programming constraint as
a collection of linear constraints without an uncertainty region. We follow the
reasoning of the proof of Theorem 1 in [13] to show this. Let us consider the
second constraint for a certain value of i. We can write this constraint as

∑

k �=i

λi
kyk

s − yi
s ≥ 0 ∀(λi

k ∈ [0, 1]|xi =
∑

k �=i

λi
kxk,

∑

k �=i

λi
k = 1) . (7)

Note that this constraint is satisfied if and only if the solution of the minimization
problem

min
λi

k

∑

k �=i

λi
kyk

s − yi
s

s.t. xi =
∑

k �=i

λi
kxk

∑

k �=i

λi
k = 1

λi
k ≥ 0

(8)

is nonnegative. The dual of this LP is given by:

max
ri,vi

(xi)T ri + vi − yi
s

s.t. (xk)T ri + vi ≤ yk
s ∀k �= i

ri ∈ R
q, vi ∈ R,

(9)

where en−1 is the (n − 1)-dimensional all-one vector. Since (9) is the dual of
(8), both LP’s have the same optimal solution. Note that the optimal value of
(9) is nonnegative if and only if there exists a feasible solution for (9) such that
the objective function of (9) is nonnegative. We can now conclude that (7) is
satisfied if and only if there exist ri and vi, which are feasible for (9) and have
a nonnegative objective, i.e. if the following inequalities are satisfied:
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⎧

⎨

⎩

(xi)T ri + vi ≥ yi
s

(xk)T ri + vi ≤ yk
s ∀k �= i

ri ∈ R
q, vi ∈ R .

(10)

We can now finally rewrite the second constraint in (6) as (10) for every i =
1, . . . , n. This means that we can rewrite (6) as

min
δ+

y ,δ−
y ,ys,ri,vi

n
∑

i=1

(

(δ+
y )i + (δ−y )i

)

s.t. yi
s = ỹi + (δ+

y )i − (δ−y )i ∀i = 1, . . . , n
(xi)T ri + vi ≥ yi

s ∀i = 1, . . . , n
(xk)T ri + vi ≤ yk

s ∀k �= i, ∀i = 1, . . . , n
δ+
y ∈ R

n
+, δ−y ∈ R

n
+,

ri ∈ R
q, vi ∈ R ∀i = 1, . . . , n,

(11)

which is an LP. Note that, after substituting the equality constraints for yi
s, the

number of constraints in (11) is n(n − 1) + n = n2. The number of variables in
(11) is (q + 3)n.

Above, we minimized the sum of the absolute values of the shifts, i.e. the
�1-norm. However, we can also choose to minimize other norms, such as e.g., the
�∞-norm or the �2-norm. Using the �∞-norm, we also obtain an LP, which is
similar to (11).

3.2 Derivative Information

Next, we consider the case in which we also have gradient information. Suppose
that the underlying function is convex, but the data are not convex, due to
(numerical) errors. Again, we are interested in shifting the data such that they
become convex. We consider perturbed output values ỹi, perturbed gradients
˜∇y(xi), and perturbed input values x̃i. Therefore in this case we want to mini-
mize the shifts in the output values, in the gradients, and in the inputs. So, in the
following optimization problem, we minimize the sum of upward and downward
shifts (δ+

y )i and (δ−y )i of the output values, the upward and downward shifts
(δ+

g )i and (δ−g )i of the gradient, and the upward and downward shifts (δ+
x )i and

(δ−x )i of the input values such that the data become convex:

min
(δ+

y )i,(δ−
y )i,(δ+

g )i,

(δ−
g )i,(δ+

x )i,(δ−
x )i,

xi
s,yi

s,(∇yi)s

n
∑

i=1

(

(δ+
y )i + (δ−y )i + eT

q (δ+
g )i + eT

q (δ−g )i + eT
q (δ+

x )i + eT
q (δ−x )i

)

s.t. (∇yi)s = ˜∇yi + (δ+
g )i − (δ−g )i ∀i = 1, . . . , n

xi
s = x̃i + (δ+

x )i − (δ−x )i ∀i = 1, . . . , n
yi

s = ỹi + (δ+
y )i − (δ−y )i ∀i = 1, . . . , n

(∇yi)T
s (xj

s − xi
s) + yi

s ≤ yj
s ∀i, j = 1, . . . , n, i �= j

(δ+
y )i ∈ R+, (δ−y )i ∈ R+, (δ+

g )i ∈ R
q
+ ∀i = 1, . . . , n

(δ−g )i ∈ R
q
+, (δ+

x )i ∈ R
q
+, (δ−x )i ∈ R

q
+ ∀i = 1, . . . , n,

(12)



818 A.Y.D. Siem, D. den Hertog, and A.L. Hoffmann

where ∇yi = ∇y(xi), and eq is the q-dimensional all-one vector. The 4-th con-
straint in (12) is a necessary and sufficient condition for convexity of the data;
see page 338 in [15]. However, (12) is a nonconvex optimization problem, and
therefore not tractable.

However, if there is no uncertainty in the input values x1, . . . , xn, we can
omit the variables (δ+

x )i and (δ−x )i in (12), and we obtain an LP. Similarly, if
there is no uncertainty in the values of the gradients, we can omit (δ+

g )i and
(δ−g )i in (12), and we also obtain an LP.

An example of a problem, where the gradient information is exact, and we
only have errors in the input variables and output variables is in the field of
multiobjective optimization. In the so-called weighted sum method, to determine
a point on the Pareto curve/surface the weights determine the exact value of the
gradient, whereas due to numerical errors of the solver, the input value and the
output value might be subject to noise.

Note that in the formulation of (12) we have minimized the shifts (δ+
y )i, (δ−y )i,

(δ+
g )i, (δ−g )i, (δ+

x )i, (δ−x )i, and have given them all equal importance. However,
we might want to give one type of the error more weight than the other type.

4 Numerical Examples

In this section we will consider some examples of the theory discussed in Sect. 3.

Example 1 (artificial, no derivative information). In this example we apply the
theory that we developed in Sect. 3.1. We consider the function y : R

2 → R, given
by y(x1, x2) = x2

1+x2
2. We take a sample of 10 input data points x1, . . . , x10 from

[−2, 2]× [−2, 2], and calculate the output values y(x1), . . . , y(x10). Furthermore,
we add some noise to it, i.e., we add a noise εi

y, where the εi
y’s are independent

and uniformly distributed on [−2.5, 2.5], such that the data become nonconvex.
We obtain values ỹi = yi + εi

y. The values are given in Table 1. We solved (11)
for this problem, and the shifted data yi

s are also given in Table 1. The values
that are really shifted, are shown in italics. 	


Table 1. Data and results of smoothing in Example 1

number x1 x2 y ỹ ys

1 -0.0199 -1.9768 3.9081 6.1588 6.1588
2 0.0925 1.3411 1.8071 0.4628 0.4628
3 1.4427 0.3253 2.1872 2.7214 2.7214
4 -1.8056 -1.1961 4.6908 4.6208 4.6208
5 -0.4435 -0.3444 0.3153 2.2718 2.0578
6 -1.2952 0.8811 2.4539 3.7644 3.7644
7 1.7826 1.6795 5.9984 5.7807 5.7807
8 0.8074 -1.3585 2.4974 0.0899 0.4842
9 -0.8714 0.5089 1.0183 2.6254 2.6254
10 0.5779 -0.7205 0.8531 0.5766 0.5766
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Example 2 (radio therapy, no derivative information). In radiotherapy the main
goal is to give the tumour enough radiation dose, such that the surrounding
organs do not receive too much radiation dose. This problem can be formulated
mathematically by a multiobjective optimization problem. With the tumour and
each healthy surrounding organ, an objective function is associated. One of the
problems is that the calculation of a point on the Pareto surface can be very time-
consuming. Therefore, we are interested in approximating the Pareto surface; see
e.g. [16]. Under certain conditions, we may assume that this Pareto surface is
convex. However, due to numerical errors, the Pareto points may not be convex.
Therefore we should first smooth them to make them convex.

We have data from a patient of the Radboud University Nijmegen Medical
Centre, in Nijmegen, the Netherlands. This data is from a multiobjective opti-
mization problem with 3 objectives, and has 69 data points. The data are shown
in Fig. 1. The Pareto surface is a convex and decreasing function. However, it
turned out that the data is not convex. By solving (11), the data is smoothed
such that the data becomes convex. The smoothed data points are also shown
in Fig. 1. 	


2

4

6

8

10

12 10
15

20
25

30
35

40

2

4

6

8

10

12

14

x
1

x
2

y

perturbed
         
smoothed

Fig. 1. The the perturbed data and the smoothed data of Example 2

5 Further Research

As interesting topics for further research we mention several possible applications
of the methods developed in this paper.

Possible applications for the construction of the bounds in Sect. 2 are:

– Extend the Sandwich algorithms as exist for the approximation of univari-
ate convex functions to the multivariate case by using the lower and up-
per bounds. More specifically, this may be useful for approximating convex
Pareto surfaces and black-box functions (e.g. deterministic computer simu-
lation).
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– Use the lower bounds in convex optimization. For each new candidate pro-
posed by the nonlinear programming solver, we can calculate the lower
bound, and if this lower bound is larger than the best known objective value
up to now, we reject the candidate before evaluating its function value. This
may reduce computation time, especially when the function evaluation is
time-consuming. In [17] promising results are shown for the univariate case.

Possible applications for the data-smoothing methods of Sect. 3 are:

– Apply data-smoothing before applying Sandwich type algorithms. This may
be necessary because of (numerical) noise. This noise occurs e.g., when we
want to estimate a Pareto surface in the field of multiobjective optimization.

– Apply data-smoothing to multivariate isotonic regression problems.
– Apply the data-smoothing techniques to sampling methods to assess the

convexity/concavity of multivariate nonlinear functions; see [18].
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