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Abstract. Consider a set of users and servers connected by a network.
Each server provides a unique service which is of certain benefit to each
user. Now comes an attacker, who wishes to destroy a set of edges of the
network in the fashion that maximizes his net gain, namely, the total
disconnected benefit of users minus the total edge-destruction cost. We
first discuss that the problem is polynomially solvable in the single-server
case. In the multiple-server case, we will show, the problem is, however,
N P-hard. In particular, when there are only two servers, the network
disconnection problem becomes intractable. Then a g-approximation al-
gorithm is developed for the two-server case.

1 Introduction

Consider a network of servers and their users in which each server provides a
unique service to the users. (Each server also can be the user of a service other
than her own.) Each user takes a benefit through the connection provided by
the network to each server. Now comes an attacker who wishes to destroy a set
of edges in the manner that optimizes his own objective, although defined to
various circumstances, that explicitly accounts for the disconnected benefits of
users resulted from destruction.

Such a model, to the author’s best knowledge, was proposed first by Martel et
al. (8). They considered the single-server problem in which the total disconnected
benefit is maximized under an edge-destruction budget constraint. The problem,
as they showed, is N P-hard. They also proposed an exact method enumerating
maximum disconnected node sets among minimum cost cuts separating node
pairs using cut submodularity.

In this paper, we consider the problem of maximizing net gain, namely, the
total disconnected benefit of users minus the edge-destroying cost. The problem
is polynomially solvable when there is a single server. It is, however, N P-hard
in general. We will provide the proofs. In particular, if there are two servers, the
problem becomes intractable. Also, we will present a g—approximation algorithm
for the two-server case.
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In Section 2l we review the previous models on separating nodes of a graph.
Section [3] provides a mathematical model of the problem. It also discusses the
polynomiality of the single-server case and N P-hardness for the k-server case
with £ > 2. A g—approximation algorithm is presented in Section [ Finally, we
summarize the results and point out an open problem in Section [l

2 Node Separation Problems: A Literature Review

In this section we review combinatorial optimization models on the separation
of nodes of an undirected graph. There are various such models. (See, e.g. (1;
5).) Among them, the following three models probably have been studied most
intensively.

Problem 1. k-cut problem: Given an undirected G = (N, FE) with nonnegative
edge weights, find a minimum weight set of edges E’ such that the removal of
E’ from E separates graph into exactly & nonempty components.

This problem is N P-hard for general £ > 3 and approximable within factor 2 — i
within the optimum. Goldscmidt and Hochbaum (7) showed that the problem
is polynomially solvable for fixed k.

Problem 2. k-terminal cut problem, Multiway cut problem: Given an
undirected G = (N, E) with nonnegative edge weights and a set of k specified
nodes, or terminals, find a minimum weight set of edges E’ such that the removal
of E’ from E disconnects each terminal from all the others.

k-terminal cut problem is Max-SN P-hard even for k = 3 (4). Therefore, there
is some € > 0 such that (1 + €)-approximation is N P-hard. Naor and Zosin(9)
considered the directed version of & multi-terminal cut problem, and presented
two 2-approximation algorithms. The current best approximation guarantee is

5 — | by Calinescu et al. (3).

k-cut problem k-terminal cut problem multicut problem

k=2 pe Pt P(12)
k>3 P(2;7) Max-SN P-hard®?(4) Max-SN P-hard?
arbitrary N P-hard/(7) Max-SN P-hard?"(4; 3) Max-SN P-hard’

“ P means “polynomially solvable”

Y Maxz — SN P-hard if there is a constraint on the size of the separated component
¢ polynomially solvable if the graph is planar

¢ N P-hard even if all edge weights are equal to 1

¢ NP-hard by the reduction from 3-terminal cut problem

/ There is a (2 — 2)-approximation algorithm

9 There is a (3 — , )-approximation algorithm

h N P-hard even if the graph is planar and all edge weights are equal to 1

“ approximable within O(log k).
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Problem 3. Multicut problem: Given an undirected G = (N, E) with nonneg-
ative edge weights and k pairs of nodes, find a minimum weight set of edges E’
such that the removal of E’ from FE separates all pairs of nodes.

This problem is a generalization of the k-terminal cut problem. Hence, it also
becomes Max-SN P-hard when k = 3. Currently, this problem is approximable
within the factor of O(log k) (6).

These works can be summarized as above text table.

In the NV P-hardness proof of the k-server network disconnection problem, we
reduce the (k+1)-terminal problem to the k-server network disconnection problem.

3 The k-Server Network Disconnection Problem

3.1 Problem Formulation

Given an undirected graph G = (N, E) with N = {1,2,...,n}, the server set
S ={s1,---,sk} C N, the costs ¢;; > 0, (¢,7) € E, the nonnegative vectors d;, =
(d},---,d*)T, i € N, find a set F C E that maximizes the total disconnected
benefits of nodes minus the edge-destruction cost, - ; e p Cij-

Let N; be the set of nodes remaining connected from server [ after the de-
struction of F. Then, it is easy to see that for any i # j, the two sets, N; and
Nj; are either identical or mutually exclusive: N; = N; or N; N N; = (). Hence,
if we denote by Ny the nodes disconnected from all the servers, then the set
N = {Ny, N1, ..., Ny} is a partition of N. If A" has p distinct sets, we will call
N a p-partition. Our problem can be restated as follows:

Problem 1. k-server network disconnection problem: Find a partition N =
{No, N1, ..., Ny} with s; € Nj, j = 1,2,...,n that maximizes

z(WNV) = Z Z Z dz — Z Cij- (1)

I:NJEN PEN; j¢ N, (i,j)€EEHENp, jENg
such that Np#Ng

3.2 Polynomiality of the Single-Server Case

We need to find Ny C N with s; € Ny so that N = {N \ Ny, N1} maximizes
(). Define a binary variable x as follows:

 f1ifje,
Y= 0, otherwise.

For notational convenience we assume s; = 1, ¢;; = ¢j; for all 4,5 € N and
¢ij =0 for (i,7) ¢ E. Then we can formulate the single-server problem as a 0-1
quadratic program as follows.

max z(z) = 37, dj(1 —x5) — DI >y cij(mi — z;)? (2)

sub.to z1 =1, z; € {0,1}, j € N\ {1}.
Using x; = acjz, it is easy to rewrite the objective of (2) as a quadratic function
of & = (w2, 23,...,2,): 2(2) = 2TQ% + Z?:Q(d]l — ¢1;), where Q = (g;j) =2

is given as follows:
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o _dll + cin _ZZ:2Cik7 1f7/:.77 (3)
4ij Cij, otherwise.

Lemma 1. An unconstrained 0-1 quadratic mazimization with nonnegative off-
diagonal elements is polynomially solvable.

Proof. See Picard and Ratliff (10). O

Theorem 1. The single-server network disconnection problem is polynomially
solvable.

Proof. Since ¢;; > 0, (i,j) € E, the polynomiality of the quadratic program
formulation (2)), follows from (B]) and Lemma [l a

3.3 NP-Hardness of the k-Server Case

Unlike the single-server case, our problem is N P-hard in general. When k = 2,
in particular, it becomes N P-hard. To see this, consider the decision version of
the 3-terminal cut problem, Problem 2

Problem 2. Decision version of 3-terminal cut problem(3DMC) Given a
terminal set T' = {t1,t2,t3}, a weight w;; > 0, (¢,5) € E and a constant W, is

there a partition ' = (N1, N2, N3) such that t; € N;, j = 1,2,3, and

(i,j)EE|i€Np, jENg
such that Np#Ng

Theorem 2. The 2-server network disconnection problem is N P-hard.

Proof. Given any instance of 3DMC, we can construct an instance of the 2-
server problem as follows : On the same graph G = (N, F), designate the first two
terminals of 3DMC as the two server nodes, s; = t1 and sy = t5 while ¢3 is a non-
server node in the 2-server instance. Now, define the benefit vector for the node
of the 2-server instance: For a constant M > W, set ds, = (d} ,d2 ) = (0, M),
ds, = (M,0), and dy, = (M, M). The other nodes are assigned to the benefit
vector, (0,0). Also set Z = 4M —W. Finally, the edge cost is defined as ¢;; = w;j,
(i,7) € E. We claim that the answer to 3DMC is ‘yes’ if and only if the 2-server
instance has a partition whose value is no less than Z.

Suppose there is a partition N = {Nl, Ng7 N3} of 3DMC satisfying w(N) <
W. Then, it is easy to see that N = {Ng, Nl, Ng} is a solution of the 2-server
instance: s; € N ,j=1,2,and

3
:Zzzdg_ Z wij > 4M —W = Z.

=1 iENL jﬁENz (i,j)eE:ieNP, jqu
such that Np#Ng

On the other hand, assume N = {No7 N1, Ng} is a solution of the 2-server
instance such that Z(N ) > Z. To show that N is a 3-terminal cut, it suffices to
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see that Nj, j =0,1,2 are all pair-wise distinct. But, if any two of the sets are
identical, then z(Z) < 3M, a contradiction to the assumption. Furthermore, this
also implies

2(N) =4M — w(i) > Z =4M — W.

Since 4M — w(N) > Z = 4M — W, we get w(N) < W. ]
It is not hard to see that the proof can be extended to show that the (k + 1)-

terminal cut problem is a special case of the k-server network disconnection
problem.

4 A g-Approximation of the 2-Server Case

Let N = { Ny, N1, Na} be a solution of the 2-server case such that s; € Ny and
39 € Ns. Define

Ey={(i,j) € E|i€ Ny and j € Na}
Ey={(i,j) € E|i€ Ny and j € No}, and
EQZ{(@j)EE‘iENQ&deENg}.

Recall that it may be either N1 = Ny or Ny = () and thus an optimal solution

Fig. 1. 2-server solution

may be 1-; 2-; or 3-partition. If it is trivially a 1-partition, then the optimal
objective value is 0. The idea is to approximate the optimum with an optimal
2-partition which is, as we will show, polynomially computable.

Algorithm H : Find an optimal 2-partition as an approximation of the optimum.

Lemma 1. An optimal 2-partition can be computed in polynomial time.

Proof. There are two cases of an optimal 2-partition: N1 = Ny or N7 # No.
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Case 1: N; and N, are distinct
Then we can formulate the 2-server problem as a quadratic program similarly
to the single-server case. Define a binary variable x as follows:

1, ifje N,
Y770, ifj € N,.

As before, we adopt the notation, sy = 1, so = 2, ¢;; = ¢j; for all 4,5 € N and
¢ij =0, (4,5) ¢ E. Then, it is easy to see that the 2-server case is equivalent to

max z(z) = Z?:I (d?a;j + djl(l — axj)) — ; S Z;LZI cij(mi —xi)?  (4)
sub.to 1 =1, x93 =0,
v €{0,1}, j € N\ {1,2}.

Then we can rewrite (@) in terms of & = (z3,74,...,7,)7: 2(2) = 27Q% +
Z?:1 djl» +d} + db — 2c12, where Q = (gi;) 8,00 is given as follows:
=3,
Gii = df —di +cin — cio = Xy caw, if i =, (5)
Y Cijs otherwise.

Since ¢;5, (i,7) € E are nonnegative, z(&) can be solved in polynomial time from
Lemma 1.

Case 2: N; and N, are identical

In this case, the problem is essentially a single-server problem. Merge s; and so
into a single node and replace benefit vector (d},d?) by a single benefit d} + d?.
Then, it is easy to see that the 2-server case is equivalent to the single-server
case defined on the modified network, implying that the 2-server case can be

solved in polynomial time. Case 1 and 2 complete proof. g
Theorem 1. An optimal 2-partition is factor 3 within the optimum.
Proof. Let N* = {Ng, Ny, N3} and N = {NF,Nf, Nf'} be an optimal solu-

tion and the solution of Algorithm H, respectively.

2 2
AN =YY d-d) - > Cij

I=03ieN} j=1 (4,J)EE;UETUES
1
:2(( Z d?-}—Zd.}— Z cig) + ( Z d%-i—Zd?— Z Cij)
i€ENGUNT i€ENS (i,J)EEjUES IENFUNS IENY (i,J)EEjUET
HOdi+d) = Y ey)
1ENG (i,7)EETUE}

1 * * * * * * * * *
= 2<Z(N07N1 U N3) + 2(Ny, Ng UN3) + 2(N3, Ny U Ny)).
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Since Z(./\/H) > maX{Z(NS‘; NfU NQ*), Z(Nl*, Ny U NQ*), Z(NQ*, N§ U Nl’“)}7

2N) < DN,

This completes the proof. a

Theorem 2. Algorithm H is a ;—approximation algorithm for the 2-server case.

Proof. From Lemma 1 and Theorem 1. a

5 Summary and Further Research

We consider the k-server network disconnection problem. We show that the
problem can be solved in polynomial time for the single-server case while the
problem is NP-hard in general. The problem is NP-hard even for the two-server
case. Also, we propose a g—approximation algorithm for two-server case.

The approximability of the k-server network disconnection problem for gen-
eral k > 0 remains open. The quadratic program based approximation algorithm
for the 2-server case does not seem to straightforwardly extend to the general
case.
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