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Abstract. We consider some optimization problems arising in an ef-
ficient simulation method for the measurement of the tail of portfolio
credit risk. When we apply an importance sampling (IS) technique, it
is necessary to characterize the important regions. In this paper, we
consider the computation of directions for the IS, which becomes hard
in multifactor case. We show this problem is NP-hard. To overcome
this difficulty, we transform the original problem to subset sum and
quadratic optimization problems. We support numerically that these re-
formulation is computationally tractable.

1 Introduction

Measurement of portfolio credit risk is an important problem in financial indus-
try. To reserve economic capital or to summarize the potential risk of a company,
the portfolio credit risk is calculated frequently. Some of key properties of this
measurement are the importance of dependence structure of obligors constitut-
ing the portfolio and the rare-event characteristic of large losses. Dependence
among obligors incurs large losses more frequently, even though they are still
rare. Gaussian copula is one of the most popular correlation structure in prac-
tice. (See [5].) Since there is no known analytical or numerical way to compute
the tail losses under Gaussian copula framework, Monte Carlo method is a viable
way to accomplish this task. (See [1], [4], [6], [8], and [9]) However, the rareness
of large losses makes a crude Monte Carlo method impractical. To accelerate
the simulation, one effective way is the application of IS. When applying IS,
the identification of important region is the key for the efficiency enhancement.
In this paper, we consider the problem of identifying important regions. The
combinatorial complexity underlying this problem makes it a hard problem. We
re-formulate this problem as a combination of quadratic optimizations and sub-
set sum problems. The worst case complexity is not reduced, but the subset sum
problems can be solved very fast in practice. Consequently this new approach
works very well for actual problem instances.
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2 Portfolio Credit Risk and Importance Sampling

We briefly introduce the portfolio credit risk model and Gaussian copula frame-
work. We consider the distribution of losses from defaults over a fixed horizon.
We are interested in the estimation of the probability that the credit loss of
a portfolio exceeds a given threshold. As it is difficult to estimate correlations
among the default events of obligors, latent variables are introduced as default
triggers and the dependence structure is imposed on the latent variables indi-
rectly. A linear factor model is adopted for the correlations among them. We use
the following notation:

m : the number of obligors to which the portfolio is exposed;
Yk : default indicator (= 1 for default, = 0 otherwise) for the k-th obligor;
pk : marginal probability that the k-th obligor defaults;
ck : loss resulting from default of the k-th obligor;
Lm = c1Y1 + · · · + cmYm : total loss from defaults.

We are interested in the estimation of P(Lm > x) for a given threshold x
when the event {Lm > x} is rare. We call such one as a large loss event. We
introduce latent normal random variables Xk for each Yk. Xk’s are standard
normal random variables and We set Yk = 1{Xk > Φ−1(1 − pk)}, with Φ the
cumulative normal distribution. For a linear factor representation of Xk, we
assume the following: There are d factors and t types of obligors. {I1, . . . , It} is
a partition of the set of obligors {1, . . . , m} into types. If k ∈ Ij , then the k-th
obligor is of type j and its latent variable is given by

Xk = a�
j Z + bj εk

where aj ∈ R
d with 0 < ‖aj‖ < 1, Z is a d dimensional standard normal random

vector, bj =
√

1 − a�
j aj and εk are independent standard normal random vari-

ables. This dependence structure is called a Gaussian copula model. (See [2].) Z
represents common systematic risk factors and εk an idiosyncratic risk factor.
We set x = q

∑m
k=1 ck for a given q, 0 < q < 1. Denote the average loss of each

type by Cj =
∑

k∈Ij
ck/|Ij| and total average loss by C =

∑m
k=1 ck/m. Then

index sets (sets of types) important for the large losses exceeding qC can be
characterized by the following index set J ⊂ {1, . . . , t} (See [3]):

max
J ′�J

∑
j∈J ′

Cj < qC ≤
∑
j∈J

Cj . (1)

This characterization of an important index set can be interpreted as follows: to
observe samples with large losses, the common factors should have values which
enable the sum of average losses of the types in the index set to exceed the loss
threshold.

After identifying these index sets (say J , the point to shift the mean vectors
of Gaussian common factors is found by

μJ := argmin {‖z‖ : z ∈ GJ } (2)
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where

Gj :=
{
z ∈ R

d : a�
j z ≥ dj

}
and GJ :=

⋂
j∈J

Gj .

dj > 0 is a constant for each type calculated from the problem instance. In this
paper, the positivity of dj is sufficient.

Now returning to the Monte Carlo simulation, we sample the common factors
from the mixture distribution of N(μJ , I) for all the J ’s satisfying (1). μJ is
the minimum distant point to the important region for the large losses and
we sample from the normal distribution shifted to those points. As usual, we
compensate this change of measure by multiplying likelihood ratios. (See [3] for
details.)

Define Sq be the set of index sets satisfying (1). In principle, we can use
μ1, . . . , μK in the simulation as the mean vectors of mixture distribution if
K = |Sq|. However, K becomes very large as t increases. The size depends on q,
but for q values near 0.5, the order of K follows exponential to t. So identifying Sq

first and then finding corresponding μJ ’s are impractical. In the next section, we
exploit some structural properties and re-formulate the problem into a tractable
one.

3 Re-formulation of Problem

The first idea comes from the fact that we use μJ for the shift of mean vectors
but J is not explicitly used. So if μJ = μJ ′ for two different index sets J and
J ′, we don’t need to know what the two index sets are, but just need μJ . Hence
we focus on the characterization of

V := {μJ : J ⊂ {1, . . . , t}, |J | ≤ d, GJ �= ∅}

instead of Sq which possibly consists of exponentially many elements with re-
spect to the number of types t. The issue here is how to find the candidate IS
distributions as fast as possible when the number of types, t, and the dimension
of factors, d, are fixed.

3.1 Reduction of Candidate Mean Vectors

For a given problem instance, the size of Sq depends on the value q. In the worst
case, the size of Sq will be

(
t

[t/2]

)
, in which case the application of IS is intractable

for instances with a large number of types. To avoid this difficulty, we need to
devise a method that does not involve an explicit enumeration of the index sets
in Sq. The key fact is the following lemma.

Lemma 1. For any J ∈ Sq satisfying GJ �= ∅, there exists a J ′ ⊂ J with
|J ′| ≤ d such that

μJ = μJ ′ .
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Proof. (Sketch of Proof) Recall that the definition (2) implies that μJ is the
optimal solution of linear programming (LP), min{μ�

J z : a�
j z ≥ dj for j ∈ J }.

The LP duality gives a dual optimal solution π with P := {j : πj > 0} and

|P| ≤ d. The complementary slackness condition shows that μJ and
π∗

j

‖v‖ , j ∈ P
satisfy KKT optimality conditions for min{‖z‖ : a�

j z ≥ dj for j ∈ P} and its
dual. We can take J ′ = P and this completes the proof. Refer [3] for details. 	

The lemma tells us that we don’t have to spend our effort to solve (2) if |J | > d.
This gives a large reduction of our search space. From this lemma, we also have
the following upper bound on the number of (2) which we have to solve.

Lemma 2. For an instance with d factors and t types,
∣∣{μJ : J ∈ Sq

}∣∣ ≤
(

t

d

)
+

(
t

d − 1

)
+ · · · + t < td.

Proof. Note that the righthand side of inequality is the number of ways of choos-
ing d or less constraints from t candidates. Combining with Lemma 1, we com-
plete the proof. 	


3.2 Derivation of the Subset Sum Problem

Recall that {μJ : J ∈ Sq} ⊂ V from Lemma 1. The upper bound in Lemma 2
is also an upper bound on |V|. Our approach is to find V , as reduced candidate
mean vectors, and use it to get {μJ : J ∈ Sq} from V . Assume a representation
V = {v1, . . . ,vn} and define H(v) := {j : a�

j v ≥ dj , j = 1, . . . , t} for v ∈ V .
H(v) is the maximal index set satisfying v = μH(v). Consider, for each v ∈ V ,
all the minimal constraints sets forming the optimization problem whose unique
optimal solution is v; denote this family by F(v) = {F : F ⊂ H(v),v = μF ,v �=
μF\{j} for all j ∈ F}. Note that |F | ≤ d for each F ∈ F(v) by Lemma 1 and
hence the cardinality of

⋃
v∈V F(v) has the same upper bound as the one in

Lemma 2. Because we search V by probing all index sets of cardinality less than
or equal to d, we get F(v)’s as by-products of the search. To simplify notations,
we abuse the symbol V to denote the collection of pairs (v, F ) for each v and
each F ∈ F(v).

To identify {μJ : J ∈ Sq} from V according to our scheme, we have to decide
whether there is a J ∈ Sq such that v = μJ for each v ∈ V . For this decision,
we can use some information on v, H(v) and F(v), which can be collected from
the computation of V with no additional cost. We formulate this problem as a
minimal cover problem (MCP). Then we transform MCP into a knapsack prob-
lem. To simplify notations, we define CJ :=

∑
j∈J Cj for any index set J .

MCP: An index set N is given. {Ci}i∈N with Ci > 0 and a subset F ⊂ N
(F �= ∅) are given. For a given positive number b, is there a subset J ⊂ N \ F
such that

CJ∪F ≥ b and CJ∪F\{k} < b for all k ∈ J ∪ F ?

Then we have the following lemma:
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Lemma 3. The answer to MCP is YES if and only if there exists a J ⊂ N \ F
such that

i) CJ∪F ≥ b, ii)CJ∪F\{k} < b for all k ∈ J, and iii)CJ∪F − min
i∈F

Ci < b.

Proof. If we notice the relation CJ∪F\{k} < b for all k ∈ F ⇔ CJ∪F − mini∈F

Ci < b, then the proof is complete. 	


Set b′ := b − CF . Using Lemma 3, we can rewrite the MCP as

MCP′: {Ci}i∈N with Ci > 0 and a subset F ⊂ N are given. For a given positive
number b, is there a subset J ⊂ N \ F such that

i)CJ ≥ b′, ii)CJ\{k} < b′ for all k ∈ J, and iii)CJ < b′ + min
i∈F

Ci ?

Consider the following 0-1 knapsack problem (KP):

f∗ = min

⎧
⎨
⎩

∑
j∈N\F

Cjxj :
∑

j∈N\F

Cjxj ≥ b′, xj ∈ {0, 1} for all j ∈ N \ F

⎫
⎬
⎭ .

Any set G ⊂ N \ F corresponding to an optimal solution of (KP) satisfies
condition i) of MCP′ from the feasibility. If CG\{k} ≥ b′ for some k ∈ G, then
G\{k} is another feasible set with strictly less optimal value and this contradicts
to the optimality of G. Hence G satisfies ii) of MCP′. Therefore, we conclude that
f∗ < b′+mini∈F Ci if and only if the answer to MCP is YES. Now set N = H(v)
and take an F from F(v). Then by setting b = qC, MCP solves whether there
is a J such that F ⊂ J ⊂ H(v), J ∈ Sq, and v = μJ . Hence by checking this
question for all F ∈ F(v), we can decide whether v ∈ {μJ : J ∈ Sq}. Note
that, with mini∈F Ci = 1, MCP′ is equivalent to knapsack feasibility problem
and hence MCP is NP-complete.

By transforming MCP′ into the maximization form using the minimal index
set notations results in the following SSP:

f∗ = max

⎧
⎨
⎩

∑
j∈N\F

Cjxj :
∑

j∈N\F

Cjxj ≤ CN − qC, xj ∈ {0, 1} for all j ∈ N \F

⎫
⎬
⎭.

The procedure identifying {μJ : J ∈ Sq} is described as the following:

1: Identify V by solving the norm minimization problems (2) associated with
all possible combinations of type indices, J ⊂ {1, . . . , t}, |J | ≤ d.

2: Given q, solve SSP associated with each N = H(v) and F ∈ F(v) for all
v ∈ V . If f∗ > CN − qC − mini∈F Ci, then include v among the
shifting mean vectors.
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We assume that all Cj ’s are positive integers. This is a necessary assumption
for knapsack problems. SSP has a special structure and is called a subset sum
problem which is NP-complete. However, knapsack problems arising in practice
are solved very fast. (See, e.g., Chapter 4 of Kellerer, Pferschy, and Pisinger [7].)
For numerical experiment, we measured the time spent to solve 106 subset sum
problems using a code subsum.c available at http://www.diku.dk/∼pisinger.
Each instance consists of 100 randomly generated weights (i.e. |N \ F | = 100
in SSP) and the weights have their ranges [1, 104] (i.e., 1 ≤ Cj ≤ 104). 21.88
seconds were spent to solve all these 106 problems. (All experiments in this paper
were executed using a notebook with a CPU of 1.7GHz Intel Pentium M and a
512MB RAM.) This number of problems, 106, is roughly the upper bound of the
cardinality of V for a factor model having 100 types (= |N |) and three factors.
In solving a subset sum problem, the range of weights are crucial for the running
time of algorithm. The above input ranges imply that the potential loss amount
of each obligor will take its value among the multiples up to 104 of some base
amount.

Table 1 shows the average cardinalities of {μJ : J ∈ Sq} and V for 30
randomly generated 20- or 25-type instances with factor dimension 4 or 5. Note
that the values of the upper bound on |V| in Lemma 2 are 6195, 21699, 15275,
and 68405, respectively. However we just need to keep a smaller size (at most
2000 on average) of V to get {μJ : J ∈ Sq}. The computing time of V takes
about 28, 100, 65, and 300 seconds for each instance, respectively if we use the
MATLAB function quadprog for the norm minimization (2). (By a specialized
algorithm in Section 3.3, the time can be reduced to 0.3, 1, 1, and 6 seconds for
each instance, respectively.) And the total times in solving 9 subset sum problems
to find {μJ : J ∈ Sq}’s for q = 0.1, 0.2, . . . , 0.9 from V are at most 0.2, 0.5, 0.4,
and 1.5 seconds, respectively. Furthermore, the cardinalities of {μJ : J ∈ Sq}
are much smaller than the theoretical upper bound. These observations imply
that we can implement the IS efficiently.

Table 1. The average number of minimum norm points in R
d. nq denotes the average

of |{μJ : J ∈ Sq}|. (This table is taken from [3]).

Types d Bound |V| n0.1 n0.2 n0.3 n0.4 n0.5 n0.6 n0.7 n0.8 n0.9

20 4 6195 574.6 16.9 36.1 48.5 52.2 44.5 29.6 14.3 3.9 0.2
20 5 21699 932.2 25.0 57.0 78.8 84.4 69.0 44.2 19.5 4.9 0.4
25 4 15275 1224.9 33.5 65.7 90.5 91.7 74.6 44.1 16.0 2.4 0.2
25 5 68405 2036.5 39.7 96.3 138.4 157.1 137.7 79.8 28.2 3.1 0.0

3.3 Quadratic Optimizations

To find V , we need to solve (2). We can apply general quadratic program-
ming (QP) algorithms to these problems. However, we can exploit the hier-
archy of QP problems further: we characterize V by solving a QP for each
J ⊂ {1, . . . , t}, |J | ≤ d. This strategy of the search allows us to do it by
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solving νJ = argmin{‖z‖ : a�
j z = dj for all j ∈ J } instead of the original

QP contrained by inequalities. This equality constrained problem can be solved
by simple Gaussian eliminations. Because of the change of constraints, we have
‖νJ ‖ ≥ ‖μJ ‖ instead of equality. So we have to detect the case ‖νJ ‖ > ‖μJ ‖.
For this, we adopt the following procedure:

Set L = ∅
for i = 1 to d

for all J ⊂ {1, . . . , t} of |J | = i
• find νJ
• check the existence of J ′ ∈ L so that J ′ ⊂ J and νJ ′ ≤ νJ
• if no such J ′ then add J to L.

end
end

Note that there always exists a J ′ ⊂ J such that νJ ′ = μJ if ‖νJ ‖ > ‖μJ ‖.
Furthermore, νJ ′ = μJ ′ . Since the enumeration is done in increasing order of
|J |, νJ ′ exists in the list L (because |J ′| < |J |). Hence the J is discarded
before we solve (2) for J . By this implementation, we can reduce substantial
amount of time spent to identify V .

4 Concluding Remarks

We considered an optimization problem arising in the simulation of portfolio
credit risk. Our re-formulation has the same worst case computational complex-
ity as the original problem, but it allows tractability in practice. The shifting of
sampling distribution based on these points enhances the efficiency of simulation
quite impressively.
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