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Abstract. This paper considers a buffer allocation problem of flexible
manufacturing system composed of several parallel workstations each
with both limited input and output buffers, where machine blocking is
allowed and two automated guided vehicles are used for input and out-
put material handling. Some interesting properties are derived that are
useful for characterizing optimal allocation of buffers for the given FMS
model. By using the properties, a solution algorithm is exploited to solve
the optimal buffer allocation problem, and a variety of differently-sized
decision parameters are numerically tested to show the efficiency of the
algorithm.
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1 Introduction

Flexible manufacturing systems (FMSs) have been introduced in an effort to
increase productivity by reducing inventory and increasing the utilization of
machining centers simultaneously. An FMS combines the existing technology of
NC manufacturing, automated material handling, and computer hardware and
software to create an integrated system for the automatic random processing of
palletized parts across various workstations in the system.

The design of an FMS begins with a survey of the manufacturing require-
ments of the products produced in the firm with a view to identifying the range
of parts which should be produced on the FMS. Then the basic design concepts
must be established. In particular the function, capability and number of each
type of workstation, the type of material handling system and the type of storage
should be determined.

At the detailed design stage it will be necessary to determine such aspects
as the required accuracy of machines, tool changing systems and the method of
feeding and locating parts at machines. Then the number of transport devices,
the number of pallets, the capacity of central and local storages must be deter-
mined, along with some general strategies for work transport to reduce delays
due to interference.

One of key questions that the designer face in an FMS is the buffer allocation
problem, i.e., how much buffer storage to allow and where to place it within the
system. This is an important question because buffers can have a great impact on
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the efficiency of production. They compensate for the blocking and the starving
of the workstations. Unfortunately, buffer storage is expensive both due to its
direct cost and due to the increase of the work-in-process(WIP) inventories. Also,
the requirement to limit the buffer storage can be a result of space limitations
in the factory.

Much research has concentrated on queueing network model analyses to eval-
uate the performance of FMSs, and concerned with mathematical models to
address the optimization problems of complex systems such as routing opti-
mization, server allocation, workload allocation, buffer allocation on the basis
of the performance model. Vinod and Solberg (1985) have presented a method-
ology to design the optimal system configuration of FMSs modeled as a closed
queueing networks of multiserver queues. Buzacott and Yao (1986) have reviewed
the work on modelling FMS with particular focus on analytical models. Shan-
thikumar and Yao (1989) have solved the optimal buffer allocation problem with
increasing concave production profits and convex buffer space costs. Paradopou-
los and Vidalis (1999) have investigated the optimal buffer allocation in short
balanced production lines consisting of machines that are subject to breakdown.
Enginarlar et al. (2002) have investigated the smallest level of buffering to ensure
the desired production rate in serial lines with unreliable machines.

In the above-mentioned reference models, machines were assumed not to
be blocked, that is, not to have any output capacity restriction. These days,
the automated guided vehicle (AGV) is commonly used to increase potential
flexibility. By the way, it may not be possible to carry immediately the finished
parts from the machines which are subject to AGV’s capacity restriction. The
restriction can cause any operation blocking at the machines, so that it may be
desirable to provide some storage space to reduce the impact of such blocking.
In view of reducing work-in-process storage, it is also required to have some
local buffers of proper size at each workstation. Sung and Kwon(1994) have
investigated a queueing network model for an FMS composed of several parallel
workstations each with both limited input and output buffers where two AGVs
are used for input and output material handling, and Kwon (2005) has considered
a workload allocation problem on the basis of the same model.

In this paper, a buffer allocation problem is considered to yield the highest
throughput for the given FMS model (Sung and Kwon 1994). Some interesting
properties are derived that are useful for characterizing optimal allocation of
buffers, and some numerical results are presented.

2 The Performance Evaluation Model

The FMS model is identical to that in Sung and Kwon(1994). The network
consists of a set of n workstations. Each workstation i(i = 1, · · · , n) has machines
with both limited input and output buffers. The capacities of input and output
buffers are limited up to IBi and OBi respectively, and the machines perform
in an exponential service time distribution. All the workstations are linked to
an automated storage and retrieval system (AS/RS) by AGVs which consist of
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AGV(I) and AGV(O). The capacity of the AS/RS is unlimited, and external
arrivals at the AS/RS follow a Poisson process with rate λ.

The FCFS (first come first served) discipline is adopted here for the services
of AGVs and machines. AGV(I) delivers the input parts from the AS/RS to each
input buffer of workstations, and AGV(O) carries the finished parts away from
each output buffer of workstations to the AS/RS, with corresponding exponential
service time distributions. Specifically, AGV(I) distributes all parts from the
AS/RS to the workstations according to the routing probabilities γi(

∑n
i=1 γi =

1) which can be interpreted as the proportion of part dispatching from the
AS/RS to workstation i.

Moreover, any part (material) can be blocked on arrival (delivery) at an
input buffer which is already full with earlier-arrived parts. Such a blocked part
will be recirculated instead of occupying the AGV(I) and waiting in front of the
workstation (block-and-recirculate mechanism). Any finished part can also be
blocked on arrival at an output buffer which is already full with earlier-finished
parts. Such a blocked part will occupy the machine to remain blocked until a
part departure occurs from the output buffer. During such a blocking time, the
machine cannot render service to any other part that might be waiting at its
input buffer (block-and-hold mechanism).

Sung and Kwon(1994) have developed an iterative algorithm to approxi-
mate system performance measures such as system throughput and machine uti-
lization. The approximation procedure decomposes the queueing network into
individual queues with revised arrival and service processes. These individual
queues are then analyzed in isolation. The individual queues are grouped into
two classes. The first class consists of input buffer and machine, and the second
one consists of output buffers and AGV(O). The first and second classes are
called the first-level queue and the second-level queue, respectively.

The following notations are used throughout this paper (i = 1, · · · , n):

λ external arrival rate at AS/RS
λi arrival rate at each input buffer i in the first-level queue
λ∗

i arrival rate at each output buffer i in the second-level queue
μ service rate of AGV
μi service rate of machine i

P (k1, · · · , kn) probability that there are ki units at each output buffer i in the
second-level queue with infinite capacity.

P (idle) probability that there is no unit in the second-level queue with
infinite capacity.

∏
(k1, · · · , kn) probability that there are ki units at each output buffer i in the

second-level queue with finite capacity.
∏

(idle) probability that there is no unit in the second-level queue with
finite capacity.

The second-level queue is independently analyzed first to find the steady-state
probability by using the theory of reversibility. The steady-state probability is
derived as follows.
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Lemma 1. (refer to Sung and Kwon 1994, Theorem 2)

The steady-state probability of the second-level queue is derived as∏
(k1, · · · , kn) = P (k1, · · · , kn)/G

∏
(idle) = P (idle)/G (1)

where,
A = {(k1, · · · , kn)|0 <= ki <= OBi, 1 <= i <= n},

G =
∑

(k1,···,kn)∈AP (k1, · · · , kn) + P (idle),

P (k1, · · · , kn) = (1 − ρ) · ρ(k1+···+kn+1) · (k1+···+kn)!
k1!···kn! · q1

k1 · · · qn
kn ,

P (idle) = 1 − ρ,

ρ =
∑n

i=1λ
∗
i /μ,

qi = λ∗
i /

∑n
i=1λ

∗
i .

It is followed by finding the clearance service time accommodating all the possible
blocking delays that a part might undergo due to the phenomenon of blocking.
The clearance time is derived from the steady-state probability of second-level
queue. Then, the first-level queues are analyzed by this expected clearance time
in the approach of the M/M/1/K queueing model.

3 The Buffer Allocation Problem

In FMS, a frequently encountered problem is concerned with how to allocate
buffer space among several subsystems for maximizing the production rate (sys-
tem throughput). In this section, the buffer allocation problem is considered to
yield the highest throughput for the given performance evaluation model. The
optimal buffer allocation problem can be stated as follows :

Maximize Z = TH(x1, · · ·xn, xn+1, · · · x2n)

s.t.

2n∑

i=1

xi ≤ S (2)

where

TH(x1, · · · xn, xn+1, · · · x2n) = the system throughput,
xi = the number of buffers allocated to buffer i(input buffer : 1 ≤ i ≤ n,

output buffer : n + 1 ≤ i ≤ 2n), that is(IB1, · · · , IBn, OB1, · · · , OBn)
S = the maximum total number of buffers to be allocated.

Despite of its practical importance, this buffer allocation problem has not
been successfully studied in the literature. The major difficulty appears to be
lack of known properties regarding the throughput of system as a function of its
buffer capacity. Some interesting properties for the associated system throughput
are now derived.

Property 1. In the first-level queue-alone subsystem, the throughput is a mono-
tonically increasing concave function of its buffer size.
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Proof:
Let ρi(= λi/μi) and IBi denote the utilization and the buffer size of the first-level
queue i, respectively. Then the throughput of the first-level queue i,
TH(λi, IBi, μi), can be derived as follows :

TH(λi, IBi, μi) = μi · (1 − 1 − ρi

1 − ρIBi+1
i

)

By the definition of TH(IBi),
TH(λi, IBi + 1, μi) − TH(λi, IBi, μi)

= μi · (
1 − ρi

1 − ρIBi+1
i

− 1 − ρi

1 − ρIBi+2
i

)

= μi · (
1

1 + ρi + ρ2
i + · · · + ρIBi

i

− 1
1 + ρi + ρ2

i + · · · + ρIBi+1
i

)

> 0 for all ρi.

And,

2TH(λi, IBi + 1, μi) − TH(λi, IBi, μi) − TH(λi, IB + 2, μi)

= 2 · μi · (1 − 1 − ρi

1 − ρIBi+2
i

) − μi · (1 − 1 − ρi

1 − ρIBi+1
i

) − μi · (1 − 1 − ρi

1 − ρIBi+3 )

= μi · (1 − ρi)[
1

1 − ρIBi+1
i

+
1

1 − ρIBi+3
i

− 2
1 − ρIBi+2

i

]

=
μi · (1 − ρi)

(1 − ρIBi+1
i )(1 − ρIBi+3

i )(1 − ρIBi+2
i )

· [ρIBi+3
i + ρIBi+1

i − 2ρIBi+2
i

+ρ2·IBi+5
i + ρ2·IBi+3

i − 2ρ2·IBi+4
i ]

=
μi · (1 − ρi)3 · (ρIBi+1

i + ρ2·IBi+3
i )

(1 − ρIBi+1
i )(1 − ρIBi+3

i )(1 − ρIBi+2
i )

> 0 for all ρi.

Thus, the throughput of the first-level queue is a monotonically increasing
concave function of buffer size. This completes the proof.

Also, the throughput of the second-level queue is characterized as follows.

Property 2. In the second-level queue-alone subsystem, the throughput is a mo-
notonically increasing concave function of its buffer size.

Proof:
Let ρ(=

∑n
i=1

λ∗
i

μ ) and (OB1, · · · , OBn) denote the utilization and the output
buffer sizes of the second-level queue, respectively. Then the throughput of the
second-level queue, TH(λ∗

1, · · · , λ∗
n, OB1, · · · , OBn, μ), can be derived as follows.

TH(λ∗
1, · · · , λ∗

n, OB1, · · · , OBn, μ) = μ · (1 −
∏

(idle))

= μ · (1 − 1 − ρ

G(λ∗
1, · · · , λ∗

n, OB1, · · · , OBn, μ)
)

= μ · (1 − 1
φ(λ∗

1, · · · , λ∗
n, OB1, · · · , OBn, μ)

)
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where,

G(λ∗
1 , · · · , λ∗

n, OB1, · · · , OBn, μ)

= (1 − ρ)[1 +
OB1∑

k1=0

· · ·
OBn∑

kn=0

ρn+1 (k1 + · · · + kn)!
k1! · · ·kn!

qk1
1 · · · qkn

n ],

φ(λ∗
1 , · · · , λ∗

n, OB1, · · · , OBn, μ)

= 1 +
OB1∑

k1=0

· · ·
OBn∑

kn=0

ρn+1 (k1 + · · · + kn)!
k1! · · ·kn!

qk1
1 · · · qkn

n

n = k1 + · · · + kn

And, let

ψ1 =
OB1∑

k1=0

· · ·
OBi+1∑

ki=OBi+1

· · ·
OBn∑

kn=0

ρn+1 (k1 + · · · + kn)!
k1! · · ·kn!

qk1
1 · · · qkn

n , and

ψ2 =
OB1∑

k1=0

· · ·
OBi+2∑

ki=OBi+2

· · ·
OBn∑

kn=0

ρn+1 (k1 + · · · + kn)!
k1! · · · kn!

qk1
1 · · · qkn

n

These lead to the relation ψ1 > ψ2 , and it holds that

φ(λ∗
1 , · · ·λ∗

n, OB1, · · · , OBi + 1, · · · , OBn, μ)
= φ(λ∗

1 , · · ·λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1

φ(λ∗
1 , · · ·λ∗

n, OB1, · · · , OBi + 2, · · · , OBn, μ)
= φ(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1 + ψ2

By the definition of TH(λ∗
1, · · · , λ∗

n, OB1, · · · , OBn, μ)

TH(λ∗
1, · · · λ∗

n, OB1, · · · , OBi + 1, · · · , OBn, μ)
−TH(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ)

= μ · [
1

φ(λ∗
1, · · · λ∗

n, OB1, · · · , OBi, · · · , OBn, μ)

− 1
φ(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1

]

> 0 for all OBi

And, 2 · TH(λ∗
1,· · · λ∗

n,OB1,· · · , OBi + 1,· · ·,OBn,μ)

− TH(λ∗
1, · · · λ∗

n, OB1, · · · , OBi, · · · , OBn, μ)
−TH(λ∗

1, · · · λ∗
n, OB1, · · · , OBi + 2, · · · , OBn, μ)

= μ · [ −2
φ(λ∗

1 , · · ·λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1

+
1

φ(λ∗
1, · · · λ∗

n, OB1, · · · , OBi, · · · , OBn, μ)
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+
1

φ(λ∗
1, · · · λ∗

n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1 + ψ2
]

= μ · [φ(λ∗
1, · · · λ∗

n, OB1, · · · OBn, μ) · (ψ1 − ψ2) + ψ2
1 + ψ1 · ψ2]

· 1
φ(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1

· 1
φ(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ)

· 1
φ(λ∗

1, · · · λ∗
n, OB1, · · · , OBi, · · · , OBn, μ) + ψ1 + ψ2

> 0 for all OBi

Thus, the throughput of the second-level queue is a monotonically increasing
concave function of buffer size. This completes the proof.

Finally, the following result can be obtained by the comparison of the thr-
oughputs for buffer allocation scheme.

Property 3. In the second-level queue-alone subsystem, the balanced buffer al-
location scheme maximizes the throughput.

Proof:
For simplification, the proof will be completed only for the case of n = 2, S = 2
and λ1 = λ2. Let THb and THnb be the throughput of the balanced allocation
scheme case (OB1 = OB2 = 1) and the other one (OB1 = 2), respectively.

THb − THnb = μ(1 − 1 − ρ

Gb
) − μ(1 − 1 − ρ

Gnb
) = μ(1 − ρ)

Gb − Gnb

Gb · Gnb

Since q1 = q2 and by the definition of G,

Gb − Gnb = (1 − ρ)[(1 − ρ + ρ2 + 2ρ3q1q2) − (1 + ρ + ρ2q1 + ρ3q2
1)]

= (1 − ρ)[ρ2(1 − q1) + ρ3(2q1q2 − q2
1)]

= (1 − ρ)[
1
2
ρ2 +

1
2
ρ3]

Therefore, THb − THnb ≥ 0. This complete the proof.

On the basis of properties, now consider the optimization problem in (2).
Since the throughput is a monotonically increasing concave function of buffer
capacities for both first-level and second-level queue as proved, the marginal
allocation approach of Fox (1966) can be used to efficiently solve the optimal
buffer allocation problem in (2). The idea of this approach is as follows.

Let �TH(x1, · · · , xi, · · · , x2n) = TH(x1, · · · , xi+1, · · · , x2n)−TH(x1, · · · , xi,
· · · , x2n) for all i. Allocate the available buffer spaces to the buffer that would
yield the largest increase in �F (xi) one at a time. Continue this procedure until
the available buffer spaces are exhausted.
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The algorithm of the buffer allocation problem can be summarized as follows.

Step 1. Set xi = 0, for all i(= 1, · · · , 2n).
Step 2. For all i, calculate �TH(x1, · · · , xi, · · · , x2n) = TH(x1, · · · , xi +

1, · · · , x2n) − TH(x1, · · · , xi, · · · , x2n) by using the performance
evaluation model.

Table 1. The result of the parameter set 1

iteration x1 = IB1 x2 = OB2 throughput increment allocation
0 0 0 .5262 -
1 1 0 .6667 .1405 ∗∗

0 1 .5846 .4941
2 2 0 .7313 .0646 ∗∗

1 1 .7311 .0644
3 3 0 .7677 .0364

2 1 .7965 .0652 ∗∗
4 3 1 .83288 .03638 ∗∗

2 2 .83287 .03637
5 4 1 .8558 .0229

3 2 .8685 .0356 ∗∗

Table 2. The result of the parameter set 2

S x1 x2 x3 x4 TH � allocation S x1 x2 x3 x4 TH � allocation
IB1 IB2 IB3 IB4 IB1 IB2 IB3 IB4

0 0 0 0 0 .6291 -
1 1 0 0 0 .7043 .0752 ∗∗ 6 3 1 1 1 .8867 .0142

0 1 0 0 .7043 .0752 2 2 1 1 .9003 .0278 ∗∗
0 0 1 0 .6641 .035 2 1 2 1 .882 .0095
0 0 0 1 .6641 .035 2 1 1 2 .89 .0175

2 2 0 0 0 .7378 .033 7 3 2 1 1 .9149 .0146 ∗∗
1 1 0 0 .7758 .0715 ∗∗ 2 3 1 1 .9149 .0146
1 0 1 0 .731 .0267 2 2 2 1 .912 .0117
1 0 0 1 .7438 .0395 2 2 1 2 .912 .0117

3 2 1 0 0 .8087 .0329 ∗∗ 8 4 2 1 1 .9232 .0083
1 2 0 0 .8087 .0329 3 3 1 1 .9293 .0144 ∗∗
1 1 1 0 .807 .0312 3 2 2 1 .9217 .0068
1 1 0 1 .807 .0312 3 2 1 2 .9284 .0135

4 3 1 0 0 .8268 .0181 9 4 3 1 1 .9376 .0083
2 2 0 0 .8406 .0319 3 4 1 1 .9376 .0083
2 1 1 0 .8312 .0225 3 3 2 1 .9379 .0086 ∗∗
2 1 0 1 .8425 .0338 ∗∗ 3 3 1 2 .9379 .0086

5 3 1 0 1 .8629 .0204 10 4 3 2 1 .9427 .0048
2 2 0 1 .8663 .0238 3 4 2 1 .9479 .01
2 1 1 1 .8725 .03 ∗∗ 3 3 3 1 .9394 .0015
2 1 0 2 .855 .0125 3 3 2 2 .9524 .0145 ∗∗
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Step 3. Find k such that �TH(x1, · · · , xk, · · · x2n)
= Max

1≤i≤2n � TH(x1, · · · , xi, · · ·x2n).
Set xk = xk + 1, S = S − 1.
If S > 0, then go to step 2.

Step 4. Stop.

In order to illustrate the solution procedure, the buffer allocation problem on
the basis of the given performance evaluation model is considered with parameter
set 1 (λ = 1, μ1 = μ2 = 2, μ = 1, S = 5), parameter set 2 (λ = 1, r1 = r2 =
0.5, μ1 = μ2 = 2, μ = 1, S = 10) and parameter set 3 (λ = 1, r1 = r2 = 0.5, μ1 =
1, μ2 = 2, μ = 1, S = 10), where S, λ, ri, μi, and μ denote the maximum total
number of buffers to be allocated, the arrival rate, the routing probability, the
machine service rate, and the AGV service rate, respectively.

At first, a simple system with a single workstation is considered to illustrate
the marginal allocation procedure, which is identical to the two stage transfer
line. The results of the system with parameter set 1 are shown in Table 1. The
table gives both the amount of increment and throughput results.

At second, the buffer allocation problem is considered to test the efficiency
of the solution algorithm. For S = 1, · · · , 10, the results of the system with
parameter set 2 and 3 are shown in Table 2 and 3, respectively.

Table 3. The result of the parameter set 3

S x1 x2 x3 x4 TH � allocation S x1 x2 x3 x4 TH � allocation
IB1 IB2 IB3 IB4 IB1 IB2 IB3 IB4

0 0 0 0 0 .5944 -
1 1 0 0 0 .6662 .0718 6 3 2 1 0 .8547 .0162

0 1 0 0 .6729 .0785 ∗∗ 2 3 1 0 .8592 .0207
0 0 1 0 .6219 .0275 2 2 2 0 .8502 .0117
0 0 0 1 .6297 .0353 2 2 1 1 .8692 .0307 ∗∗

2 1 1 0 0 .741 .0681 ∗∗ 7 3 2 1 1 .8869 .0177 ∗∗
0 2 0 0 .7074 .0345 2 3 1 1 .8835 .0143
0 1 1 0 .7049 .032 2 2 2 1 .8858 .0166
0 1 0 1 .7002 .0273 2 2 1 2 .8789 .0097

3 2 1 0 0 .7731 .0321 8 4 2 1 1 .898 .0111
1 2 0 0 .7745 .0335 ∗∗ 3 3 1 1 .901 .0141
1 1 1 0 .7728 .0318 3 2 2 1 .9014 .0145 ∗∗
1 1 0 1 .771 .03 3 2 1 2 .8973 .0104

4 2 2 0 0 .8061 .0316 9 4 2 2 1 .9105 .0091
1 3 0 0 .7931 .0186 3 3 2 1 .9177 .0163 ∗∗
1 2 1 0 .8095 .035 ∗∗ 3 2 3 1 .9068 .0054
1 2 0 1 .796 .0215 3 2 2 2 .9162 .0148

5 2 2 1 0 .8385 .029 ∗∗ 10 4 3 2 1 .9269 .0092
1 3 1 0 .8303 .0208 3 4 2 1 .9275 .0098
1 2 2 0 .8229 .0134 3 3 3 1 .924 .0063
1 2 1 1 .8376 .0281 3 3 2 2 .9281 .0104 ∗∗
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The computational results present that the solution algorithm is very effi-
cient. In case of S = s, the solution algorithm generated the optimal solution at
the s− th iteration. However, it is impossible in practice to allocate buffer spaces
by conventional approach, since the number of allocating combination becomes
explosively large as the number of S and workstation increase.

And, the results of Table 2 and 3 imply that the balanced buffer allocation
scheme maximize the system throughput. That is, in order to maximize the
system throughput, the buffer should be allocated depending on the routing
probability and service rate of machine and AGV.

4 Conclusions

In this paper, a design aspect of a flexible manufacturing system composed of
several parallel workstations each with both limited input and output buffers
where two AGVs are used for input and output material handling is considered.
The optimal design decision is made on the allocation of buffer spaces on the
basis of the given performance evaluation model.

Some interesting properties are derived that are useful for characterizing
optimal allocation of buffer spaces. The properties are then used to exploit a
solution algorithm for allocating buffer spaces. A variety of differently-sized de-
cision parameters are numerically tested to show the efficiency of the algorithm.
The results present that the solution algorithm is very efficient.

Further research is to consider the cost factor more explicitly, and also to
extend these concepts to general production systems.
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