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Abstract. Parts required in Just-In-Time manufacturing systems are usually 
picked up from suppliers on a daily basis, and the routes are determined based 
on average demand. Because of high demand variance, static routes result in 
low truck utilization and occasional overflow. Dynamic routing with limited 
early ordering can significantly reduce transportation costs. An integrated 
mixed integer programming model is presented to capture transportation cost, 
early ordering inventory cost and stop cost with the concept of rolling horizon. 
A four-stage heuristic algorithm is developed to solve a real-life problem. The 
stages of the algorithms are: determining the number of trucks required, 
grouping, early ordering, and routing. Significant cost savings is estimated 
based on real data. 

1   Introduction 

The Just-In-Time (JIT) philosophy originated from the work of Taiichi Ohno at 
Toyota Motor Company and made its way to the US about 20 years ago [1]. The JIT 
philosophy is now adopted by most automakers all over the world. Based on the JIT 
philosophy, inventory is considered a big cost contributor so that the goal is to reduce 
inventory levels to “zero” [2]. Therefore, parts are ordered and transported only when 
they are needed in the production. Based on a recent project with one of the major 
automakers in the US that implements a JIT system, we found out that the inbound 
logistics decision making process has the following procedures: 

1. The production plan is determined based on dealer orders or forecasted demand, 
and it is derived by manufacturing needs such as line balancing.  

2. The parts are ordered based on daily production needs, and the logistics group 
has little control on how many to order and when to order.  

3. Milk-runs (routes) are determined based on average demand. Following the 
milk-runs trucks visit the suppliers to pick up the required parts and then come 
back to the manufacturing plant. Each truck has one run everyday. A supplier 
may be visited by one or more trucks. This is different from the typical 
capacitated vehicle routing problem (CVRP), in which each supplier is visited 
by exactly one truck. The problem is similar to the split delivery vehicle routing 
problem (SDVRP) [3, 4].  

Because inbound logistics costs are not considered during production planning, 
high volatility of part consumption in the assembly line leads to frequent and small 



 Routing with Early Ordering for Just-In-Time Manufacturing Systems 749 

batches. The practice of assigning the suppliers to the trucks (milk-runs) based on 
average daily demand and keeping the same routes every day makes the problem 
worse. Furthermore, routes are typically determined manually, which also hurts the 
efficiency. Truck utilizations can be as low as 30%, while sometimes overflow 
happens when additional trucks are required.  

In this paper we address the above mentioned problem of the mismatch between 
production and logistics. To eliminate this mismatch, “dynamic routing” and “early 
ordering” are proposed as solutions. Dynamic routing means that the routes are 
determined daily based on production needs. Though integrated production planning 
and route scheduling is implemented in some other industries [5], in the automotive 
industry it is difficult to fully incorporate logistics needs into production planning. 
The industry has implemented a manufacturing driven JIT system for such a long time 
that any major change requires approval from high-level management, which is 
usually difficult to achieve. The proposed early ordering policy will not affect the 
production planning process. In the automotive industry, production plans are made 
several days before actual production starts. Thus, the required parts are known 
several days before they are actually consumed in the assembly line. Early ordering 
policy simply allows the parts to be shipped one or two days early to save 
transportation cost. However, late ordering is not allowed in order not to disturb the 
manufacturing process. The parts that are ordered early will be stored in the inbound 
warehouse for one or two days and possibly increase inventory holding costs.  

In Section 2, a mixed integer programming (MIP) model is proposed for the 
routing problem with early ordering in a JIT environment. A heuristic algorithm to 
solve the model is presented in Section 3. Section 4 concludes the paper and includes 
some cost saving estimates based on a real case.  

2   A Mixed Integer Programming Model for Daily Routing with 
Early Ordering 

In an assembly system such as the auto assembly plant described above, there are two 
main costs: transportation and early ordering inventory costs. The transportation cost 
is composed of a fixed cost for each truck, a variable cost for each mile, and a fixed 
cost for each stop. Among them, the fixed cost for each truck dominates the others. In 
the literature, most routing studies do not consider the stop issue. The automotive 
company that we have studied has to pay a fixed amount to the trucking companies 
for each stop on the routes because a stop means additional handling time and effort. 
The number of stops is also a constraint because a truck can not finish a route in one 
day if it has to make too many stops. In the standard CVRP models, since each 
supplier can be visited exactly once, the number of total stops is fixed. Therefore, 
there is no need to consider stop costs in the CVRP models. Though the routing 
decision influences the number of stops in an SDVRP model, stop costs and 
constraints are usually not addressed in the SDVRP literature [6-8].  

Since early ordering is allowed, additional inventory holding costs are considered 
in the proposed model. Typically, a major component of the inventory holding cost is 
the cost of capital invested [1]. However, automakers and their suppliers have long-
term relationships, and the payments are made periodically (e.g. weekly or biweekly). 
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Therefore, the inventory holding costs are mainly driven by the space occupied rather 
than the capital invested. The demand for one part could be several hundred pieces or 
more every day, and they are held in containers during shipping and handling. The 
number of parts in a container is called a unit load, which may have several dozen or 
up to hundred pieces of the same part. Therefore, the demand and the amount 
delivered are measured in unit loads rather than pieces. The notation and the model 
for the routing problem with early ordering are given below. 

Parameters:  

K: the number of available trucks (k=1,2,…,K); 
T:  the number of days in the planning horizon (t=1,2,…,T); 
P: the set of parts (p∈P); 
N: the number of suppliers (i,j=0,1,2,…,N; 0 is used for the origin); 
C: truck capacity; 
u: the inventory holding cost per unit space for early ordered parts; 
q: the fixed cost per truck per day; 
λ: the variable transportation cost per truck per mile; 
w: the cost for one stop; 
dt,p: the demand (in unit loads) for part p on day t (with lead time);  
ci,j: the distance from supplier i to supplier j; 
rp,i: indicates whether or not part p is provided by supplier i (0: no; 1: yes; 

note that each part is provided only by one supplier; 
,

1

1
N

p i
i

r
=
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vp: space required by one unit load of part p; 
S:  the maximum number of stops allowed for each truck. 

Decision variables: 

ot,k,p: the unit loads of part p shipped by truck k on day t; 
xt,k,i,j:  equals 1 if truck k visits supplier j right after supplier i on day t; 0 

otherwise; 
lt,k,i: the remaining capacity of truck k after visiting supplier i on day t  

(l0,k,t = C); 
st,k,i: equals 1 if truck k visits supplier i on day t; 0 otherwise; 
It,p: the inventory (in unit loads) of p ordered early on day t. 

The MIP model for daily routing with early ordering: 
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The objective function (1.1) minimizes the sum of the inventory holding costs and 
the transportation costs. The first constraint set (1.2) represents the inventory 
evolvement over days and ensures that the production needs of all parts are satisfied. 
The second constraint set (1.3) ensures that only those trucks that visit supplier i pick 
up parts from supplier i. The third constraint set (1.4) help obtain the numbers of truck 
stops. The fourth constraint set (1.5) is used to keep the flow at each supplier balanced 
(i.e. the number of trucks arriving at a supplier equals the number of trucks leaving 
that supplier). The fifth constraint set (1.6) makes sure that the amount picked up by a 
truck does not exceed its capacity and eliminates sub-tours. The last set of constraints 
(1.7) is used to make sure that the number of stops by a truck does not exceed the 
maximum number allowed.  

The proposed model combines transportation and inventory decisions. It is a 
variant of the SDVRP with additional constraints to address the issues of truck stops 
and early ordering. The standard SDVRP takes the total required space at each 
demand point into consideration, but this model addresses the problem at the part 
level. Since thousands of parts are required and hundreds of suppliers need to be 
visited every day, the model of the whole inbound logistics for this automaker is very 
large. The SDVRP itself is a well-known NP-complete problem [3]. Therefore, good 
solutions rather than optimal solutions are expected in practice for a large-scale 
SDVRP. The early ordering policy makes the computational burden even heavier by 
adding one more dimension of time into the problem. In reality, the suppliers are 
usually grouped by regions, and several transportation service providers are in charge 
of one region. Thus, the logistics problem of each region can be solved separately. 
However, dozens of suppliers and hundreds of parts are usually involved in a region. 
In a problem with 15 suppliers, 150 parts, and 7 available trucks there will be more 
than 3000 binary variables when only one-day early ordering is allowed. When 
CPLEX [9], a commercial optimization software, is used to solve the model, 800MB 
of memory is used up after one day of calculations while the gap between the lower 
and upper bounds is still more than 90%. Therefore, fast heuristics are necessary for 
daily decision making.  

3   A Four-Stage Heuristic Algorithm 

A number of constructive heuristics can be found in the literature for the CVRP or the 
SDVRP. Most of them are two-stage algorithms including a grouping stage and a 
routing stage. Typically, a bin packing problem with restrictions is used in the 
grouping stage. Belenguer et al. [4] develop an algorithm based on a lower bound to 
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solve the SDVRP (this needs some more explanation). Archetti et al. [5] use dynamic 
programming to solve SDVRP instances where vehicles have small capacities. For the 
model given in Section 2, we develop a four-stage heuristic algorithm. The basic 
scheme is illustrated in Fig. 1.  

 

Fig. 1. The basic scheme of the four-stage heuristic 

In the first stage, the number of required trucks is calculated for days t=n, n+1,…, 
n+T-1. Initially, early ordering is not considered and the number of required trucks is 
found by the following equation:  
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= ∑  and the allowance of 0.9 is used to account for space that may 

be wasted because of unit loads. The number of required trucks on day t without early 
ordering is ⎡ ⎤tK . If only one-day early ordering is allowed, early ordering is 

implemented if the following two conditions are satisfied: 
 

1 1t t t tK K K K+ ++ < +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ;                                         (3.1) 

and   1 1-  t tK K UB+ + ≤⎢ ⎥⎣ ⎦ .                                                         (3.2) 

Since the fixed cost for each truck dominates other costs, early ordering is only 
implemented when a truck can be saved on the next day (condition (3.1)). For 
example, if Kt=2.3 and Kt+1=2.2 then three trucks are required for both days without 

Implement the routing and pickup plan for day n 

Initialize: n=0 

n=n+1 

Group the suppliers for day t=n

Determine the number of required trucks for 
the next T days (t=n, n+1,…,n+T-1)

Is early ordering 
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Adjust truck loading to 
implement early ordering 

No 

Yes 
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Stage 1 
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early ordering. If 0.2 truck space of parts can be moved from day t+1 to day t (i.e. 
Kt=2.5 and Kt+1=2), one truck can be saved on day t+1. Also, note that early ordering 
increases inventory holding costs. Therefore, it is implemented only when the space 
moved from day t+1 to day t is not more than UB (e.g. 30%) of the truck capacity 
(condition (3.2)).  

In the second stage, grouping is done to determine which suppliers should be 
visited by each truck. There are many grouping heuristics in the literature. The basic 
idea is to group the nearby suppliers together without violating the truck capacity 
constraints. We propose the following optimization model to solve the grouping 
problem for each day t.  

min , , , , , ,
1 1 1 1
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M: a large number to facilitate modeling; 
τ: cost per unit distance; 
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the rectangular distance between supplier i and virtual center 
of truck k. 
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approximated by the sum of rectangular distances between the virtual center of the 
trucks and the suppliers served by those trucks. The first constraint set (4.2) forces the 
load of each truck to be less than or equal to the capacity. Constraint set (4.3) has 
demand satisfied for all parts requested by the assembly line. Constraint set (4.4) 
ensures that truck k stops at supplier i if parts are to be picked by truck k from that 
supplier. Constraint set (4.5) makes sure that the number of stops by a truck does not 
exceed the maximum number allowed. The last four constraint sets (4.6-4.9) are used 
to obtain the rectangular distances from the suppliers to the virtual centers of the 
trucks. Though the model looks cumbersome, the number of variables and constraints 
are significantly less than those of the original model (1.1-1.7). A problem with 15 
suppliers, 150 parts and 7 available trucks has about 105 binary variables and 750 
constraints. CPLEX can yield a solution to such a relatively small problem in 5 
minutes with less than 1% gap on average.  

In the third stage, how to implement the early ordering policy is determined. Let 
Lk,t be the remaining capacity of truck k on day t. The following algorithm given in 
Fig. 2 is developed for implementing one-day early ordering. Assume et is the total 
space occupied by the parts ordered early on day t ( ⎣ ⎦ )  -(9.0 11 ++= ttt KKCe . 

Step 0. Initialize k (k = 1) 
Step 1. Move all parts provided by one supplier i, served by truck k and    
            satisfying both of the following conditions: 

• they are needed on both day t and t+1 :  

    , , , 0 p i t k p
p P

r o
∈

≥∑  and 
, 1, 0p i t p

p P

r d +
∈

≥∑ ;  

• the total day t+1 volume from the supplier i does not exceed  

    the remaining capacity: 
, 1,p i t p k

p P

r d C L+
∈

≤ −∑ ; 

             If a movement happens,  
• update the utilized capacity Lk of truck k; 
• update the total early ordered volume. 

Step 3. If the total early ordered volume reaches ei, go to end. 
Step 4. If k < K: k=k+1 and go to step 1. 
Step 5. Move the parts satisfying the following conditions for truck   
            k=1,...,K until the total early ordered volume reaches ei: 

• It is needed on both day t and t+1: , , 1,0 and 0t k p t po d +≥ ≥  

• Day t+1 volume of the same part does not exceed the remaining   
      capacity of the truck: 

1,t p kd C L+ ≤ −  

Step 6. If the total early ordered volume is still smaller than ei, arbitrarily   
            move the parts needed on both days until the early ordered volume  
            reaches ei. 

Fig. 2. The Algorithm to Determine the Early Ordering Policy 
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The algorithm that determines the early ordering policy first tries to reduce the 
number of stops on day t+1 without increasing the number of stops on day t. The 
second priority is to reduce the number of handlings of the same parts.  

The fourth stage deals with the routing problem for each truck which is a standard 
Travel Sales Problem (TSP). Though the TSP is an NP-hard problem, its optimal 
solution can be obtained in seconds by CPLEX in this case because each truck usually 
has at most five stops. 

The concept of rolling horizon is used for the overall algorithm. If only one-day 
early ordering is allowed (T=2), the first step is implemented for two days (t=n and 
n+1). Grouping and routing models are only solved for the first day (t=n). On the 
next day, the second day’s demand information will be updated, and the early ordered 
parts will be deducted from it. The four-stage algorithm will be implemented after 
updating n=n+1 with the new information of the third day’s demand. 

4   Implementation and Conclusion 

The proposed four-stage algorithm is implemented on a real inbound logistics 
problem faced by a major automotive company in the US. The region under study has 
15 suppliers and 158 parts, and usually 4 to 7 trucks are required every day. Only one-
day early ordering is allowed because of information availability and inventory 
concerns. One month’s worth of real data is used, and the result is obtained in 10 
minutes. The average truck utilization is improved from 40% to 80% while its 
variability over trucks also becomes much smaller. The total cost savings is about 
20% including 24% savings on the number of used trucks, 17% savings on the total 
number of stops, and 15% savings on the total traveled distance. Early ordering does 
not happen frequently in that about 2% of the parts (in space) are ordered early. Of the 
total 20% savings, about 4% is contributed by the early ordering policy.  

This paper presents a mixed integer programming model and a heuristic algorithm 
to improve the inbound logistics for Just-In-Time manufacturing systems. A dynamic 
routing policy and an early ordering policy are proposed to reduce the total cost. The 
proposed model and the algorithm are tested using real-life data obtained from an auto 
manufacturer. The recommended policies and the proposed heuristic algorithm works 
well in the sense that the computational speed is high while the quality of the solution 
is much better than that of the solution currently used by the auto manufacturer.  

In this paper, only a constructive heuristic is discussed without any improvement 
phase. A future research extension is to develop more sophisticated improvement 
heuristics to obtain better solutions to the problem.  
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