
The Maximum Integer Multiterminal Flow
Problem

Cédric Bentz

CEDRIC-CNAM, 292, Rue Saint-Martin,
75141 Paris Cedex 03, France

cedric.bentz@cnam.fr

Abstract. Given an edge-capacitated graph and k terminal vertices, the
maximum integer multiterminal flow problem (MaxIMTF) is to route
the maximum number of flow units between the terminals. For directed
graphs, we introduce a new parameter kL ≤ k and prove that Max-

IMTF is NP-hard when k = kL = 2 and when kL = 1 and k = 3, and
polynomial-time solvable when kL = 0 and when kL = 1 and k = 2.
We also give an 2 log2(kL + 2)-approximation algorithm for the general
case. For undirected graphs, we give a family of valid inequalities for
MaxIMTF that has several interesting consequences, and show a cor-
respondence with valid inequalities known for MaxIMTF and for the
associated minimum multiterminal cut problem.

1 Introduction

Routing problems in networks are commonly modeled by flow or multicommod-
ity flow problems. Given an edge-capacitated graph (directed or undirected),
the goal is to route flow units (requests) between prespecified vertices. When
one seeks to route the maximum number of flow units from a unique source to
a unique sink, the problem is the famous maximum flow problem. The Ford-
Fulkerson’s theorem [11] gives a good characterization for this case, which is
efficiently solvable [1]. In particular, this theorem states that, if the capacities
are integral, the value of a maximum integer flow is equal to the value of a min-
imum cut, i.e., to the value of a minimum weight set of edges whose removal
separates the source from the sink. Unfortunately, this does not hold for more
general variants. One of the most studied variant is the maximum integer multi-
commodity flow problem: given an edge-capacitated graph G = (V, E) and a list
of source-sink pairs, the goal is to simultaneously route the maximum number
of flow units, each unit being routed from one source to its corresponding sink.

This problem is NP-hard even for two source-sink pairs [10], and cannot be
approximated within |E|1/2−ε (resp. within (log |E|)1/3−ε) for every ε > 0 in di-
rected graphs [15] (resp. in undirected graphs [2]) unless P = NP (recall that, for
a maximization (resp. minimization) problem, an α-approximation algorithm is
a polynomial-time algorithm that always outputs a feasible solution whose value
is at least 1/α times (resp. at most α times) the value of an optimal solution).
The corresponding generalization of the problem of finding a minimum cut is the
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minimum multicut problem, which asks to select a minimum weight set of edges
whose removal separates each source from its corresponding sink. This problem
is also NP-hard in several special cases, and has a noticeable relationship with
the former: the continuous relaxations of the linear programming formulations
of the two problems are dual [8]. In particular, this interesting property has been
used to design good approximation algorithms for both problems [14]. Further
results and references concerning these problems can be found in [1] and [8].

Another generalization of the maximum flow problem is the maximum integer
multiterminal flow problem (MaxIMTF): given an edge-capacitated graph and
a set T = {t1, . . . , tk} of terminal vertices, MaxIMTF is to route the maximum
number of flow units between the terminals. Note that this problem is a partic-
ular maximum integer multicommodity flow problem in which the source-sink
pairs are (ti, tj) for i �= j. The associated minimum multiterminal cut problem
(MinMTC) is to select a minimum weight set of edges whose removal separates
ti from tj for i �= j. Note that MaxIMTF and MinMTC also have the duality
relationship mentioned above. MinMTC has been widely studied in the undi-
rected case (see [3], [5], [6], [7], [8], [9], [16] and [20]), and the directed case has
also received some attention: Garg et al. [13] show that it is NP-hard even for
k = 2 and give an 2 log2 k-approximation algorithm, and Naor and Zosin [18]
give a 2-approximation algorithm. However, the algorithm of Garg et al. has
an interesting property: it computes a multiterminal cut whose value is at most
2 log2 k times the value of an integer multiterminal flow, and hence is an 2 log2 k-
approximation for both MinMTC and MaxIMTF (while the algorithm of Naor
and Zosin does not provide an approximate solution for MaxIMTF). (Note that
the same idea easily yields an log2 k-approximation algorithm for MaxIMTF in
undirected graphs.) Costa et al. [8] show that MaxIMTF and MinMTC are
polynomial-time solvable in acyclic directed graphs by using a simple reduction
to a maximum flow and a minimum cut problem, respectively. To the best of
our knowledge, these are the only results about MaxIMTF in directed graphs.
In undirected graphs, MaxIMTF has recently be shown to be polynomial-time
solvable by using the ellipsoid method [17] (the result is based on the associated
Mader’s theorem on T -paths [19, Chap. 73]). Algorithmic aspects of special cases
have also been studied (inner eulerian graphs in [12] and trees in [4]). However,
it can be easily noticed that, for all the problems mentioned above, the general
directed case is “harder” than the undirected one, since there exists a linear
reduction from the latter to the former: simply replace each edge by the gadget
given in [19, (70.9) on p. 1224].

The motivation of this paper is to explore further the complexity of Max-

IMTF. Given a directed graph, we say that a terminal is lonely if it lies on at
least one directed cycle containing no other terminal, and we let TL denote the
set of lonely terminals and kL = |TL|. We shall see that kL is a key parame-
ter for better understanding the complexity and approximability of MaxIMTF.
Moreover, some of our results will extend to MinMTC.

We first show that MaxIMTF is strongly NP-hard in directed graphs, even
if kL = k = 2 or if kL = 1 and k = 3 (Section 2). Then, we prove MaxIMTF to
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be tractable when kL = 0 and when kL = 1 and k = 2, and improve the 2 log2 k-
approximation algorithm of Garg et al. [13] by providing an 2 log2(kL + 2)-
approximation algorithm for the general case (Section 3). Eventually, we give
a family of valid inequalities for MaxIMTF in undirected graphs, and show
an interesting correspondence with valid inequalities known for the associated
problem MinMTC (Section 4).

Note that, throughout this paper, we consider only simple graphs. We call
Directed (resp. Undirected) MaxIMTF the problem MaxIMTF defined in di-
rected (resp. undirected) graphs. Moreover, due to lack of space, we sometimes
omit some details in our proofs.

2 NP-Hardness Proof

We show in this section that Directed MaxIMTF is strongly NP-hard, even if
k = kL = 2 (or kL = 1 and k = 3). In order to do this, we adapt the proof,
given in [10], of the NP-completeness of the directed integer multicommodity flow
problem with two source-sink pairs, (s1, s

′
1) and (s2, s

′
2): given an arc-capacitated

directed graph G = (V, A) and two integer demands d1 and d2 associated with
the respective source-sink pairs, it asks to decide whether these demands can
be simultaneously routed while respecting the capacity constraints (if, for an
instance, the answer is yes, then this instance is solvable). In the instance used
in the proof of [10, Theorem 3], d1 = 1, d2 ≤ |V | and all the arcs have capacity
1. Moreover, this instance satisfies

|Γ−(s1)| = |Γ−(s2)| = 0

and
|Γ+(s′1)| = |Γ+(s′2)| = 0

where, for v ∈ V , Γ+(v) = {u ∈ V such that (v, u) ∈ A} and Γ−(v) = {u ∈
V such that (u, v) ∈ A}. We modify this initial instance as follows: we add two
new vertices, t1 and t2, and four arcs (t1, s1), (s′2, t1), (t2, s2) and (s′1, t2), valued
by 1, d2, d2 and 1 respectively (see Fig. 1(a)).

It is easy to see that the initial instance is solvable if and only if the optimum
value for the maximum integer multicommodity flow instance defined on the
pairs (t1, t2) and (t2, t1) is equal to d2 + 1 (no flow unit being routed from si

to sj , from s′i to s′j for i �= j, or from si to s′j for i �= j). Moreover, the latter
instance is equivalent to a directed maximum integer multiterminal flow instance
with two terminals, t1 and t2. Eventually, we can replace each one of the two
arcs (s′2, t1) and (t2, s2) by d2 directed paths of length two (containing only arcs
with capacity 1) between the corresponding endpoints, and obtain an instance
of MaxIMTF where each arc has capacity 1. The described transformation is
clearly polynomial, and hence

Theorem 1. Directed MaxIMTF is NP-hard in graphs with unit capacities,
even with only two terminals.
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Fig. 1. Reductions for Directed MaxIMTF

In particular, this implies the strong NP-hardness of Directed MaxIMTF. It
can also be noticed that this result matches the complexity result for the asso-
ciated cut problem MinMTC in directed graphs [13].

However, in the proof of Theorem 1, k = kL = 2: so, what happens when
kL = 1? Actually, a slightly different proof shows that Directed MaxIMTF

remains NP-hard, even with unit capacities. We define three new terminals
instead of two: t1, t2 and t3. Moreover, we add four arcs (t1, s1), (s′2, t1), (t2, s2)
and (s′1, t3), valued by 1, d2, d2 and 1 respectively (note that TL = {t1}; see Fig.
1(b)). In this instance, it is easy to see that there exists an integer multiterminal
flow of value d2 + 1 if and only if 1 flow unit is routed from t1 to t3 and d2 flow
units are routed from t2 to t1. This implies:

Theorem 2. Directed MaxIMTF is NP-hard in graphs with unit capacities,
even if kL = 1 and k = 3.

We shall deal with the cases where kL = 0 and where kL = 1 and k = 2 in the
next section.

3 Exact and Approximation Algorithms

From the previous section, Directed MaxIMTF is strongly NP-hard even for
kL = 1 and k = 3 and for k = kL = 2. Hence, if P �= NP , the only efficient algo-
rithms one can expect to design are approximation algorithms. In this section,
we improve the 2 log2 k-approximation algorithm of Garg et al. [13] and give an
2 log2(kL + 2)-approximation algorithm for Directed MaxIMTF.

The basic idea of our approach is to combine the algorithm of Garg et al. with
an interesting strengthening of [8, Proposition 3]. The main idea of the proof of
[8, Proposition 3] (that shows that MaxIMTF and MinMTC are polynomial-
time solvable in acyclic directed graphs) is to split up each terminal vertex ti
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Fig. 2. Splitting up terminal ti

into two new vertices, t′i and t′′i , such that all the vertices in Γ−(ti) are linked
to t′i and t′′i is linked only to the vertices in Γ+(ti). Then, we add two new
vertices, σ and τ , and link (by arcs with sufficiently large capacities) every t′i to
τ and σ to every t′′i (see Fig. 2). Finally, we compute a maximum flow between σ
and τ (obviously, we assume that the capacities are integral). The obtained flow
is a valid integer multiterminal flow for the initial instance if, in the modified
instance, no flow unit is routed from t′′i to t′i for some i.

The main point for us is that, if there is no lonely terminal, then, by splitting
up the terminals as explained, there will remain no directed path from t′′i to t′i
for each i, and hence we will be able to solve MaxIMTF and MinMTC using
the above technique. Actually, if we want to guarantee that, after splitting up
each terminal, the modified graph does not admit a directed path from t′′i to t′i
for some i (otherwise, we cannot be sure that the flow we will compute in the
modified graph will be a valid multiterminal flow in the initial graph), this is
essentially the best (i.e., weakest) assumption that can be made. Namely, one
can easily show:

Theorem 3. After splitting up all the terminals, there is no directed path be-
tween t′′i and t′i for each i if and only if kL = 0.

This also implies the following strengthening of [8, Proposition 3]:

Theorem 4. MinMTC and MaxIMTF are polynomial-time solvable in di-
rected graphs if kL = 0, by using a max flow-min cut algorithm.

Actually, the last remaining case, i.e., the case where kL = 1 and k = 2, is
also polynomial-time solvable. Indeed, one can prove that on any directed cycle
containing only the terminal in TL, there is a removable arc, i.e., an arc lying
on no elementary path between the two terminals (otherwise, there would be a
vertex of this cycle lying on another directed cycle containing only the terminal
not in TL, which is impossible). By iteratively removing such arcs, we are back
to the case where kL = 0. Hence:

Theorem 5. Directed MaxIMTF is tractable if kL = 1 and k = 2.

Theorems 3 and 4 show the importance of the parameter kL for both Max-

IMTF and MinMTC. Moreover, this suggests the following approach for finding
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approximate solutions for these two problems: first, (a) split up each terminal
ti ∈ T − TL into t′i and t′′i as explained above, add the two vertices σ and τ ,
and link (by heavy arcs) every t′i to τ and σ to every t′′i ; then, (b) compute a
multiterminal cut and flow for this new instance (i.e., where the terminal set
is TL

⋃
{σ, τ}) by using the algorithm of Garg et al. [13]. The definition of TL

guarantees that we obtain a valid integer multiterminal flow.
Hence, the main difference with their algorithm is that, before using their

divide-and-conquer strategy, we transform the graph by replacing the terminals
in T − TL by two new terminals, σ and τ . This implies that we use Garg et al.’s
algorithm on an instance with kL + 2 terminals, and so we obtain an approxi-
mation factor of 2 log2(kL + 2) (instead of 2 log2 k).

Actually, one can even prove that this analysis of the approximation ratio
is tight by using a particular family of instances built on an undirected tree
with k = 2p vertices (all vertices are terminal), and which is transformed into a
directed graph by replacing each edge by the gadget given in [19, (70.9) on p.
1224] (each arc of the gadget has the capacity of the initial edge). Due to lack
of space, we do not give the whole construction here.

4 Polyhedral Results for the Undirected Case

In this section, we give a family of valid inequalities for the LP formulation
of Undirected MaxIMTF given in [13]. We call them tree inequalities, as they
can be seen as the “flow counterpart” of the tree inequalities given in [7] and
characterizing completely the polytope of MinMTC in trees (as shown in [7]).

Theorem 6. Let U be an undirected tree and XU = {t1, . . . , th} be the terminals
in U . Assume the leaves of U coincide with these h terminals (assume without
loss of generality that we have removed from U the edges such that no flow unit
can be routed through them). Then, if FU denotes the total number of flow units
that are routed between the terminals in XU , the inequality

FU ≤
⌊∑

i∈{1,...h} ci

2

⌋

is a valid inequality for MaxIMTF (called tree inequality), where, for each i,
ci is the minimum capacity of the edges contained in the path pi linking ti to ni,
its nearest vertex of degree at least 3 in U (see Fig. 3).

A proof of this theorem is given below. In particular, this proof will imply that
these inequalities (together with the usual constraints) are sufficient to guaran-
tee the existence of an integer optimal solution to the continuous relaxation of
the linear program (i.e., of an optimal solution for MaxIMTF) in undirected
trees (recall that the tree inequalities for MinMTC do give a complete charac-
terization of the associated polytope in undirected trees [7]). These inequalities
may also be sufficient to completely characterize the polytope associated with
MaxIMTF in undirected trees. On the other hand, a quadratic algorithm for
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Fig. 3. A tree instance for Theorem 6 ((ui, vi) has capacity ci)

MaxIMTF in trees is already known [4]. Our original motivation came from
the fact that the authors of [7] used the description of the polytope associated
with MinMTC to derive an efficient algorithm for MinMTC in trees by using
complementary slackness conditions: can it be done for MaxIMTF?

Actually, one can prove that the tree inequalities for MaxIMTF are a special
case of a more general class of valid inequalities, that we call inner odd set
inequalities: they have been used very recently (the paper [17] has appeared just
after the submission of the present paper) to prove that Undirected MaxIMTF

was polynomial-time solvable via the ellipsoid method. They are derived from
the fact that evenness considerations are well-known to be of great importance
in integer flow problems with several sources and sinks (see [12] for example).
They can be defined as follows:

Definition 1. Let G = (V, E) be an undirected graph and let T be the set of
terminal vertices. For each X ⊆ V \ T , let (X, V \ X) be the set of edges lying
between X and V \ X and let c(X, V \ X) be the total capacity of the edges in
(X, V \X). Then, F , the total number of flow units routed between the terminals
in T , satisfies the following valid inequality (called inner odd set inequality)

F ≤
⌊

c(X, V \ X)
2

⌋

.

Roughly speaking, the validity of these inequalities comes from the fact that each
flow unit in G is routed through no or an even number of edges in (X, V \ X),
since X contains no terminal (see Fig. 4). Hence, each flow unit routed through
an edge in (X, V \ X) is counted at least twice, and the total amount of flow in
(X, V \X) is thus equal to (at least) 2F . This amount being at most c(X, V \X),
we can divide both sides of the inequality by 2 and use the integrality of F to
obtain the desired result.

Now we can prove Theorem 6 by using Definition 1 and the following fact.

Theorem 7. The tree inequalities are a special case of the inner odd set in-
equalities.

Proof. We use the notations of Theorem 6. Given an undirected tree U , for each
i, let (ui, vi) be an edge of pi with capacity ci (ui lying in the path from ti to vi),
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X T

V \ X

(X,V \ X)

Fig. 4. An inner odd set configuration (c(X, V \ X) is odd)

and let p′i be the path from ti to ui (see Fig. 3). Then, the tree inequality on U is
obtained by taking the inner odd set inequality defined on the set X = V \

⋃
i p′i,

since any flow unit has to be routed through at least one edge (and, in fact,
through exactly two edges) in (X, V \ X), i.e., through (ui, vi) and (uj , vj) for
some i and j. ��

In trees, it is not difficult to see that all the inner odd set inequalities that
matters are the ones corresponding to tree inequalities. Hence, from [17], these
inequalities suffice to guarantee the existence of integer optimal solutions in
undirected trees.

In fact, there exists an interesting relationship between the inner odd set
inequalities and the inner eulerian assumption made in [12]. Given an edge-
capacitated undirected graph G = (V, E), the degree of a vertex v ∈ V , denoted
by dV (v), is the sum of the capacities of the edges adjacent to v. Moreover,
for X ⊆ V , dX(v) is the degree of vertex v in the subgraph of G induced by
X

⋃
{v}. A graph is inner eulerian if every non terminal vertex has an even

degree. Theorem 8 shows that the inner odd set inequalities are useless if the
graph is inner eulerian.

Theorem 8. Given a graph G = (V, E) and a set of terminal vertices T , G is
inner eulerian if and only if ∀X ⊆ V \ T , c(X, V \ X) is even.

Proof. It is easily seen that, by definition, G is inner eulerian if and only if
∀X ⊆ V \ T with |X | = 1, c(X, V \ X) is even. Now, assume that G is inner
eulerian, and let X ⊂ V contain no terminal. Then, we have

c(X, V \ X) =
∑

v∈X

dV \X(v) =
∑

v∈X

dV (v) −
∑

v∈X

dX(v) .

Moreover,
∑

v∈X dV (v) is even since G is inner eulerian, and
∑

v∈X dX(v) is
always even (because it is equal to two times the sum of the capacities of the
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edges having both endpoints in X). This implies that c(X, V \ X) is even, and
Theorem 8 follows. ��

An interesting question would be to determine whether the inner odd set inequal-
ities (together with the usual constraints) give a complete characterization of the
polytope of Undirected MaxIMTF. Theorem 8 shows that a positive answer to
this question would imply that the polytope of the continuous relaxation of the
LP formulation of Undirected MaxIMTF is integral in inner eulerian undirected
graphs (the existence of integer optimal solutions was already known [12]).

5 Conclusion and Open Problems

The parameter kL introduced in this paper improves our knowledge of the bound-
ary between tractable and intractable cases of MaxIMTF in directed graphs.
Several results, positive and negative, about tractability and approximability of
this problem, are provided. Moreover, we have given a family of valid inequalities
for the undirected case, and have proved an interesting correspondence with valid
inequalities already known. However, two important questions remain open: is
there an O(1)-approximation algorithm for the general directed case? Moreover,
are they other tractable special cases (e.g., planar digraphs)?
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