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Sandra Duni Ekşioğlu and Mingzhou Jin

Department of Industrial and Systems Engineering,
Mississippi State University, P.O. Box 9542, Mississippi State, MS 39762, USA

sde47@ie.msstate.edu

Abstract. This study addresses a production and distribution planning
problem in a dynamic, two-stage supply chain. This supply chain con-
sists of a number of facilities and retailers. The model considers that the
final product is perishable and therefore has a limited shelf life. We for-
mulate this problem as a network flow problem with a fixed charge cost
function which is NP -hard. A primal-dual heuristic is developed that
provides lower and upper bounds. The models proposed can be used for
operational decisions.

1 Introduction

This paper investigates a planning model that integrates production, inventory
and transportation decisions in a two-stage supply chain. Production and trans-
portation activities have usually been studied separately by industry and acad-
emia, mainly because (i) each problem in itself is difficult and therefore the
combined problem is not tractable, and (ii) different departments in an orga-
nization are in charge of each activity. In fact, the two activities can function
independently if there is a sufficiently large inventory buffer that completely de-
couples the two. This, however, would lead to increased holding costs and longer
lead times. The pressure of reducing costs in supply chains forces companies to
take an integrated view of their production and distribution processes.

The supply chain analyzed in this paper consists of a number of facilities, each
with similar production capabilities, and a number of retailers. We assume that
retailers’ demand for a single perishable product is known deterministically and
that there are no production or transportation capacity constraints. Facilities
produce the final product and carry inventories to satisfy retailers’ demands
during the planning period. We assume that there is no transshipment between
facilities. This situation is typical in the food and beverage industry, where the
retailers are often supermarkets and restaurants that have a very limited storage
capacity. Most of the food products are perishable and have a limited lifetime.
To account for this, we constraint the number of periods that a product is stored
at a facility before being shipped to the retailer. The decisions that need to be
made are (i) the timing of production; (ii) the location and size of inventories;
and (iii) the timing of shipment.

The proposed model is suitable for tactical and operational planning. We
assume that the planning period is a typical one, and it will repeat itself over
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time. This means the model is cyclic in nature. For this reason, we assume a
fixed starting and ending period with varying initial and ending inventories. We
model the problem as a network flow problem with fixed charge cost functions.
This is an NP-hard problem since even some of its special cases are known to
be NP-hard. For example, the single-period problem is a fixed charge network
flow problem in bipartite networks (Johnson et al. [1]) that is NP-hard. The
complexity of this problem led us to consider heuristic approaches.

Production/inventory problems for perishable products have been studied.
However, very little has been done in the area of integrated production and
distribution planning for perishable products. Nahmias [2] presents a review of
ordering policies for perishable inventories. Hsu [3] studied the economic lot-
sizing problem with perishable products. In this model, the deterioration rate
of the inventory and its carrying cost in each period depend on the age of the
stock. Myers [4] presents a linear programming model to determine the maximum
satisfiable demand for products with limited shelf life.

Previous work of the authors (Ekşioğlu et al. [9]) has been focused on variants
of this production and distribution planning problem. In addition to previous
work, this paper considers that the final product is perishable and has limited
lifetime; and relaxes the assumption of constant initial inventory that is found
in most inventory management models.

2 Problem Description and Formulations

This section presents a mixed integer linear programming (MILP) formulation of
the cross-facility production and transportation planning problem with perish-
able inventory. Let F denote the number of facilities that produce and store the
final products that are then delivered to R customers. The facilities have iden-
tical production capabilities. In other words, the final product can be produced
in each facility. However, the setup and transportation costs, as well as the unit
production and inventory holding costs, differ from one facility to the other, from
one time period to the next. Given the projected demand of each retailer dur-
ing the T -period planning horizon, the production and transportation planning
problem decides how much to produce, transport and hold in inventory at each
facility in order to meet demand at minimum cost. We assume that the planning
horizon of length T is a typical one and repeats itself over time. All problem
data are assumed cyclic with cycle length equal to T (bj,T+1 = bj1, bj,T+2 = bj2,
. . . , where bjt is the demand at retailer j in period t). As a result, the inventory
pattern at the facilities will be cyclic as well. We model this by letting the initial
inventory be equal to the last period inventories.

2.1 Original Problem Formulation

Property 2 of an optimal solution to our problem (Section 2.3) implies that
demand in a particular time period is satisfied from exactly one facility. We
develop a network flow model based on the single source assignment property. Let
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pit denote the unit production cost at facility i in period t; sit is the production
setup cost at facility i in period t; hit is the unit inventory cost at facility i in
period t; and cijt is the total transportation cost of shipping bjt from facility i to
retailer j in period t. The decision variables are: qit is the amount produced at
facility i in period t; Iit is the inventory at facility i in the end of period t; xijt

is a binary variable that equals 1 if there is a shipment from facility i to retailer
j in period t, and equals 0 otherwise; and yit is a binary variable that equals 1
if production takes place at facility i in period t, and equals 0 otherwise. The
following is a MILP formulation of the problem:

minimize
F∑

i=1

R∑

j=1

T∑

t=1

{pitqit + sityit + hitIit + cijtxijt}

subject to (P)

qit + Ii,[T+(t−1)] −
R∑

j=1

bjtxijt − Iit = 0 i = 1, . . . , F ; t = 1, . . . , T (1)

F∑

i=1

xijt = 1 j = 1, . . . , R; t = 1, . . . , T (2)

qit −
t+k∑

τ=t

R∑

j=1

bj[τ ]yit ≤ 0 i = 1, . . . , F ; t = 1, . . . , T (3)

Iit −
t+k∑

τ=t+1

R∑

j=1

bj[τ ]xij[τ ] ≤ 0 i = 1, . . . , F ; t = 1, . . . , T (4)

Ii0 = IiT i = 1, . . . , F (5)
qit, Iit ≥ 0 i = 1, . . . , F ; t = 1, . . . , T (6)

yit, xijt ∈ {0, 1} i = 1, . . . , F ; j = 1, . . . , R;
t = 1, . . . , T. (7)

For our convenience, in this formulation we have used the notation [t]=(t+1)mod
T − 1 i.e., Ii[t−1] = Ii,t−1 for t = 2, . . . , T and Ii[0]=IiT

.
Constraints (1) and (2) are the flow conservation constraints at the produc-

tion and demand points respectively. Constraints (3) are the setup constraints.
Constraints (4) are the perishability constraints, where k (k ≤ T −1) denotes the
maximum number of periods that a product can be stored. Constraints (5) model
the fact that the initial inventory is equal to the ending inventory and T is a typ-
ical sequence of periods that will repeat itself. Setting the initial inventory level
equal to the ending inventory means that these inventory levels are not fixed,
and the model will determine the ending inventory levels that will prepare the
system for future demands. Constraints (6) are the non-negativity constraints,
and (7) are the boolean constraints. Standard solvers such as CPLEX can be
used to solve small instances of (P). Large problem instances are solved using
the primal-dual algorithm.
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The transportation cost function fij(gijt) is considered to be a concave func-
tion with respect to the amount shipped, gijt. Based on the single-source as-
signment property of an optimal solution to our problem, facility i in period t
either will not ship to retailer j or will ship the total demand, bjt. This indicates
that the transportation cost function consists of only two points gijt = 0 and
gijt = bjt. The LP-relaxation of the transportation cost function passes through
the points: gijt = 0 and gijt = bjt. Solving the LP-relaxation of (P) with re-
spect to the transportation cost function gives a solution such that gijt = 0 or
gijt = bjt. That means the LP-relaxation gives an exact approximation of the
concave transportation cost function. Therefore, cijt = fij(bit).

In the special case when F = 1, retailers’ demands are satisfied from the
same facility; therefore, there is no decision to be made about which facility will
ship the final product. In this case problem (P) reduces to the classical economic
lot-sizing problem (Wagner and Whitin [5]).

2.2 Extended Problem Formulation

Linear programming relaxation of formulation (P) that is obtained by replacing
the boolean constraints (7) with the nonnegativity constraints is not tight. This
is due to the constraints (3).

∑t+k
τ=t

∑R
j=1 bj[τ ] provides a high upper bound for

qit, since the production in a period rarely equals this amount. One way to
tighten the formulation is to split the production variables qit by destination
into variables qijt[τ ] (τ = t, . . . , t + k). The new decision variable qijt[τ ] presents
the amount produced at facility i in period t to satisfy the demand of retailer j
in period τ . For these variables, a trivial and tight upper bound is the demand
at retailer j in period τ , bjτ .

The following is an equivalent formulation of (P) given with respect to deci-
sion variable qijt[τ ]:

minimize
F∑

i=1

T∑

t=1

[
R∑

j=1

t+k∑

τ=t

cijt[τ ]qijt[τ ] + sityit]

subject to (Ex-P)
F∑

i=1

τ∑

t=τ−k

qij[T+t]τ = bjτ j = 1, . . . , R; τ = 1, . . . T

qijt[τ ] − bj[τ ]yit ≤ 0 i = 1, . . . , F ; j = 1, . . . R; t = 1, . . . T ; t ≤ τ ≤ t + k

qijt[τ ] ≥ 0 i = 1, . . . , F ; j = 1, . . . , R; t = 1, . . . T ; t ≤ τ ≤ t +k

yit ∈ {0, 1} i = 1, . . . , F ; t = 1, . . . T,

where cijt[τ ] = pit + cij[τ ]/bj[τ ] +
∑τ−1

s=t hi[s]. In the special case when k = 0,
no inventories are carried from one period to another. In this case the problem
decomposes by period. The single-period problem is the facility location problem,
which is still a difficult problem to solve.
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2.3 Properties of Optimal Solution

Using the network flow interpretation, we establish the required properties of
optimal solutions to (P) when the costs are nonnegative.

Theorem 1. There exists an optimal solution to problem (P) such that the de-
mand at retailer j in period t is satisfied from either production or the inventory
of exactly one of the facilities.

Proof: The uncapacitated, production and transportation planning problem
minimizes a concave cost function over a bounded convex set; therefore, its op-
timal solution corresponds to a vertex of the feasible region (Zangwill [6]). Let
(q∗, x∗, I∗) be an optimal solution. In an uncapacitated network flow problem, a
vertex is represented by a tree solution. The tree representation of the optimal
solution implies that demand in every time period will be satisfied by exactly
one of the facilities (in other words, x∗

ijtx
∗
ljt = 0, for i �= l and t = 1, 2, . . . , T ).

Furthermore, for each facility in each time period, if the inventory level is posi-
tive, there will be no production, and vice versa: q∗itI

∗
i,[t−1] = 0, for i = 1, . . . , F ,

t = 1, . . . , T . �

Theorem 1 implies properties 1 and 2 of the optimal solutions to our problem.

Property 1. The uncapacitated, production and transportation planning prob-
lem has an optimal solution that is such that a facility in a time period t either
produces or carries inventory from the previous period (or neither), but not both.
This property of the optimal solutions is often referred to in the literature as the
Zero Inventory Property (ZIP). ZIP applies to the classical single-item lot-sizing
problem and some of its generalizations (Wagner and Whitin [5]).

Property 2. The optimal solution of the problem is such that the demand
in a time period is satisfied from a single facility. This property is equivalent
to the single-source assignment property for the uncapacitated facility location
problem.

Property 3. Every facility in a given time period t either does not produce or
produces the demand for a number of periods in the time interval t, . . . , [t + k]
(the periods do not need to be successive). This property can be easily derived
from Theorem 1 and the tree representation of an optimal solution.

3 Solution Procedures

3.1 Exact Solution Approach

Theorem 2. There exists an algorithm for the uncapacitated, single commod-
ity, integrated production and distribution planning problem with perishable com-
modities (P) that is polynomial in the number of facilities and exponential in the
number of periods and retailers.
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Proof: The following steps describe the algorithm:

1. Consider all the possible assignments of demands bjt (j = 1, . . . , R and t =
1, . . . , T ) to facility i (for i = 1, . . . , F ). There is a total of FRT assignments.

2. Given an assignment of demands to facilities, for each facility i (i = 1, . . . , F )
we need to solve an uncapacitated, single-commodity lot-sizing problem
(ELSPi) that considers the final product to be perishable and is cyclic in
nature.
Without loss of optimality we can assume an optimal solution mint=1,...,T

It = 0. We can solve problem (ELSPi) for each t = 1, . . . , T , fixing It = 0 and
treating period t as the “last” planning period. The cheapest one among the
corresponding solutions is then the optimal solution. One should note that
problem (ELSPi) with IT = 0 is in fact the (ELS) problem. This problem
can be solved in O(T logT ) (Wagelmans et al. [7]), and problem (ELSPi) is
solved in O(T 2 log T ).

Therefore, the running time of this algorithm is bound by O(FTR+1T 2 log T ).

3.2 Primal-Dual Heuristic

The dual problem of the LP-relaxation of (Ex-P) has a special structure that
allows us to develop a primal-dual based algorithm. The following is the formu-
lation of the dual problem:

maximize
T∑

t=1

R∑

j=1

bjtvjt

subject to (D-P)
�t+k

τ=t

�R
j=1 bj[τ ]wijt[τ ] ≤ sit i = 1, . . . , F ; t = 1, . . . , T

vj[τ ] − wijt[τ ] ≤ cijt[τ ] i = 1, . . . , F ; t = 1, . . . , T ; t ≤ τ ≤ t + k
wijt[τ ] ≥ 0 i = 1, . . . , F ; j = 1, . . . , R; t = 1, . . . , T ; t ≤ τ ≤ t + k.

In an optimal solution to (D-P), both constraints wijt[τ ] ≥ 0 and wijt[τ ] ≥
vj[τ ] − cijt[τ ] should be satisfied. Since wijt[τ ] is not in the objective function, we
can replace it with wijt[τ ] = max(0, vj[τ ] − cijt[τ ]). This leads to the following
condensed dual formulation:

maximize
T∑

t=1

R∑

j=1

bjtvjt

subject to (D∗-P)

t+k∑

τ=t

R∑

j=1

bj[τ ] max(0, vj[τ ] − cijt[τ ]) ≤ sit i = 1, . . . , F ; t = 1, . . . , T.

The extended formulation of the multi-facility lot-sizing problem is a special
case of the uncapacitated facility location problem. The primal-dual scheme
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we discuss, in principle, is similar to the primal-dual scheme proposed by Er-
lenkotter [8] for the facility location problem. However, the implementation
of the algorithm is different. Wagelmans et al. [7] use a similar primal-dual
scheme for the classical lot-sizing problem. They show that this algorithm solves
the problem in O(T log T ). The dual variables have the following property:
vt ≥ vt+1, for t = 1, . . . , T. This property is used to show that the dual as-
cent algorithm gives the optimal solution to the economic lot-sizing problem.
This property does not hold true for (D-P).

Description of the Algorithm. Suppose the linear programming relaxation
of (Ex-P) has an optimal solution (q∗, y∗) that is integral. Let (v∗, w∗) denote an
optimal dual solution. The complementary slackness conditions for the primal
(Ex-P) and dual (D-P) problems are as follow:

(C1) y∗
it[sit −

∑R
j=1

∑t+k
τ=t bj[τ ]w

∗
ijt[τ ]] = 0 for i = 1, . . . , F ; t = 1, . . . , T

(C2) q∗ijt[τ ][cijt[τ ] − v∗j[τ ] + w∗
ijt[τ ]] = 0 for i = 1, . . . , F ; j = 1, . . . , R;

t = 1, . . . , T ; t ≤ τ ≤ t + k
(C3) w∗

ijt[τ ][q
∗
ijt[τ ] − bj[τ ]y

∗
it] = 0 for i = 1, . . . , F ; j = 1, . . . , R;

t = 1, . . . , T ; t ≤ τ ≤ t + k

(C4) v∗jt[bjt −
∑

i

∑t
τ=t−k q∗ijt[T+τ ]] = 0 for j = 1, . . . , R; t = 1, . . . , T.

The simple structure of the dual problem can be exploited to obtain near optimal
feasible solutions by inspection. Suppose that the optimal values of the first f −1
dual variables of (D∗-P) are known. Then, to be feasible, the f -th dual variable
(vlτ ) must satisfy the following constraints:

blτ max(0, vlτ − ciltτ ) ≤ Milt,τ−1 = sit−�R
j=1

�τ−1
s=t bj[T+s] max(0, v∗

j[T+s] − cij[T+t][T+s]) −
�l−1

j=1 bjτ max(0, v∗
jτ − cij[T+t]τ )

for all i = 1, . . . , F and t = τ − k, . . . , τ . In order to maximize the dual problem,
we should assign vlτ the largest value satisfying these constraints. When blτ > 0,
this value is

vlτ = min
i=1,...,F ;τ≥t

{ciltτ +
Milt,τ−1

blτ
} (8)

Note that if Miltτ−1 ≥ 0 implies vlτ ≥ ciltτ .
A dual feasible solution can be obtained simply by calculating the value of the

dual variables sequentially (Figure 1). A backward construction algorithm can
then be used to generate primal feasible solutions (Figure 2). The primal-dual
solutions found using these algorithms may not necessarily satisfy the comple-
mentary slackness conditions.

Theorem 3. The solutions obtained with the primal and dual algorithms are
feasible and they always satisfy the complementary slackness conditions (C1)
and (C2).

Proof: The proof is similar to the proof of Proposition 4.1 in Ekşioğlu et al. [9].

Hence, one can determine whether the solution obtained with the primal and
dual algorithms is optimal by checking if conditions (C3) are satisfied or if the
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Miτ,τ−1 = siτ for i = 1, . . . , F ; j = 1, . . . , R; τ = 1, . . . , T
for τ = 1 to T do

for j = 1 to R do
if bjτ = 0 then vjτ = 0
else

vjτ = minit{cij[T+t]τ + Mi[T+t],τ−1/bjτ}, τ − k ≤ t ≤ τ
for t = τ − k to τ do

for i = 1 to F do
Mi[T+t]τ = max{0, Mi[T+t],τ−1 − bjτ ∗ max{0, vjτ − cij[T+t]τ}}

enddo
enddo

enddo
enddo

Fig. 1. Dual algorithm

yit = 0, qijtτ = 0, i = 1, . . . , F ; j=1,. . . ,R; t = 1, . . . , T ; τ ≤ [t + k]
P = {(j, l)|bjl > 0, for j = 1, . . . , R; l = 1, . . . , T}

Start : τ = max l ∈ P , t = τ − k
Step 1 : for i = 1 to F do

for j = 1 to R do
repeat t = t + 1

until Mi[T+t]τ = 0 and cij[T+t]τ − vjτ + max{0, vjτ − cij[T+t]τ} = 0
yi[T+t] = 1, and i∗ = i, t∗ = t, go to Step 2

enddo
enddo
go to Step 3

Step 2 : for t = t∗ to t∗ + k do
for j = 0 to R do

if ci∗jt∗[t] − vj[t] + max{0, vj[t] − ci∗jt∗[t]} = 0
then qi∗jt∗[t] = bj[t], P = P − (j, [t])

enddo
enddo

Step 3 : if P �= ∅ then go to Start

Fig. 2. Primal algorithm

objective function values from the primal and dual algorithms are equal. The
running time of this primal-dual algorithm is O(FRT 2).

4 Computational Results

In this section we describe our computational experience in solving the integrated
production and transportation planning problem with perishable inventory. Our
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Table 1. Summary of results of primal-dual algorithm

Setup Costs
Problem 200-300 200-900 600-900 900-1,500 1,200-1,500

Error Cpu Error Cpu Error Cpu Error Cpu Error Cpu
(%) (sec) (%) (sec) (%) (sec) (%) (sec) (%) (sec)

16 0.14 0.15 0.24 0.15 0.77 0.15 1.37 0.15 1.91 0.15
17 0.19 0.15 0.30 0.20 1.08 0.20 1.91 0.20 2.64 0.20
18 0.26 0.20 0.37 0.25 1.30 0.20 2.28 0.25 3.21 0.25
19 0.14 0.70 0.23 0.55 0.77 0.65 1.40 0.65 1.96 0.06
20 0.19 1.00 0.29 0.85 1.07 0.95 1.85 0.95 2.59 0.95
21 0.24 1.25 0.34 1.25 1.30 1.25 2.26 1.25 3.17 1.25
22 0.14 2.95 0.23 2.90 0.78 2.85 1.40 3.10 1.94 2.95
23 0.19 4.45 0.30 4.45 1.08 4.45 1.89 5.00 2.63 4.95
24 0.24 6.00 0.35 5.85 1.29 6.05 2.23 6.10 3.12 5.80

goal is to provide some indication of both the quality and the computing time
of the lower and upper bounds generated using the primal-dual algorithm. The
problem instances we use are the same as the ones presented in Ekşioğlu et al.
[9]. For all problems we set k = T

2 . The errors presented are calculated as follows:

Error(%) =
Primal Sol. − Dual Sol.

Dual Sol.
∗ 100.

It has been shown in the literature (Hochbaum and Segev [10], Ekşioǧlu et al.
[9]) that the ratio of setup to variable costs impacts the complexity of the fixed
charge network flow problems. The results in Table 1 indicate that an increase
in setup costs impacts the quality of the solutions from primal-dual algorithm.
However, setup costs do not affect the running time of the algorithm. The results
also show that an increase in the number of facilities and time periods impacts
the performance of the primal-dual algorithm.

For the same set of problems, formulation (Ex-P) is solved using CPLEX
9 callable libraries. CPLEX gives the optimal solution for problems 16 to 18,
but fails to solve the rest of the problems because of the problem size. Table 2
presents the running time of CPLEX for problems 16 to 18.

Table 2. CPLEX running times (in cpu seconds)

Setup Costs
Problem 200-300 200-900 600-900 900-1,500 1,200-1,500

16 15.85 15.95 16.05 16.55 16.50
17 26.55 27.05 28.35 28.75 44.40
18 40.25 41.05 42.20 42.10 86.50



Cross-Facility Production and Transportation Planning Problem 717

5 Conclusions

This paper presents two network flow formulations for an integrated production
and transportation planning problem with perishable inventories. The network
consists of a number of facilities and retailers. The facilities produce and carry
inventory to satisfy retailers’ demands during T time periods. Retailers’ demands
are known deterministically. Unlike the traditional inventory models, the starting
and ending inventories are not constant. Section 3 presents an exact solution pro-
cedure and a primal-dual algorithm to solve the problem. The exact algorithm is
polynomial in the number of facilities and exponential in the number of retailers
and time periods. This algorithm runs in O(FTR+1T 2 log T ) times. The primal-
dual algorithm is used to generate lower and upper bounds. Its running time is
O(FRT 2) times. We tested the performance of the algorithms on a wide range
of randomly generated problems. Computational results show high-quality solu-
tions from the primal-dual algorithm. The maximum error gap was 3.12 percent
and the maximum running time was 6.10 cpu seconds. Computational results
demonstrate that the ratio of fixed to variable costs, the length of time horizon
and the number of facilities impacted the running time and the quality of the
solutions from the primal-dual algorithm and CPLEX. We identified a number
of problems that CPLEX could not solve because it ran out of memory. However,
for all problem classes, primal-dual algorithm gave high-quality solutions in a
reasonable amount of time.
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