
Truck Dock Assignment Problem with Time
Windows and Capacity Constraint in

Transshipment Network Through Crossdocks

Andrew Lim1,2, Hong Ma1, and Zhaowei Miao1,2

1 Dept of Industrial Engineering and Logistics Management,
Hong Kong Univ of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

2 School of Computer Science & Engineering,
South China University of Technology, Guang Dong, P.R. China

Abstract. In this paper, we consider the over-constrained truck dock
assignment problem with time windows and capacity constraint in trans-
shipment network through crossdocks where the number of trucks ex-
ceeds the number of docks available, the capacity of the crossdock is
limited, and where the objective is to minimize the total shipping dis-
tances. The problem is first formulated as an Integer Programming (IP)
model, and then we propose a Tabu Search (TS) and a Genetic algo-
rithms (GA) that utilize the IP constraints. Computational results are
provided, showing that the heuristics perform better than the CPLEX
Solver in both small-scale and large-scale test sets. Therefore, we con-
clude that the heuristic search approaches are efficient for the truck dock
assignment problem.
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1 Introduction

Dock assignment for trucks is one of key activities at crossdocks. Trucks are
assigned to docks for the duration of a time period during which the cargo
and trucks are processed. Dock availability and times of arrivals/departures (as
given by an estimated time of arrival/departure or ETA/ETD for each truck)
can change during the course of the planning horizon due to operational contin-
gencies (for example, delays, traffic control). A familiar scene at crossdocks these
days is when arriving trucks are waiting for process, sometimes for a long time,
before finally proceeding to their docks, because the gate is occupied by another
truck. So they need to schedule those docks well in order to increase the utiliza-
tion and achieve better performance of the transshipment network. Firstly, good
dock assignment can help crossdock increase the utilization by reducing dock de-
lays. Secondly, good dock assignment can minimize distances (times) cargo are
required to transfer from dock to dock. Because of the large number of freight
and the dynamic nature of the problem, scheduling has become more difficult.
This has made it more important for crossdock operators to use docks in the
best possible way.
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We consider the truck dock assignment in transshipment network through
crossdocks. But in classical models, where transshipment is studied in the context
of network flow [1]. One such model where transshipment becomes an important
factor is in crossdocking which has become synonymous with rapid consolidation
and processing. Tsui and Chang used a bilinear program of assigning trailers to
doors, where the objective was to minimize weighted distances between incom-
ing and outgoing trailers [8]. Recently, a study by Bartholdi and Gue examined
minimizing labor costs in freight terminals by properly assigning incoming and
outgoing trailers to doors [2]. Although previous cross-docking studies have con-
sidered intra-terminal factors such as types of congestion that impact costs, they
do not address actual dock assignments to arriving vehicles when considering the
time window of trucks and capacity of crossdocks.

Also our problem is similar in some ways to the problem of gate assignments
in airports, for which some analytical work exists. For example, the basic gate
assignment problem is a quadratic assignment problem and shown to be NP-hard
[7]. Since the gate assignment problem is NP-hard, various heuristic approaches
have been used by researchers and work has focused on the over-constrained
airport gate assignment, where there is an excess of flights over gates [3, 6]. The
objective there was to minimize the number of flights without any gate assigned
(i.e. those left on the ramp) and the total walking distance.

In this paper, we consider the over-constrained truck dock assignment
problem with time windows and capacity constraint in transshipment network
through crossdocks where the number of trucks exceeds the number of docks
available and the capacity of the crossdock is limited, and where the objectives
are to minimize the total shipping distances. The problem is formulated as an
IP problem. The air gate assignment problem is NP-hard, then our problem is
also NP-hard because the air gate assignment problem is a special case of our
problem. We use both a Tabu Search and a GA algorithms to solve the problem.
Computational results are provided , showing that our heuristics work well in
all the test sets.

This work is organized as follows: in the next section, we give an IP model.
Tabu search and GA algorithms are developed in Section 3 and section 4. We
provide computational results in Section 5. In Section 6, we summarize our
findings.

2 Problem Description and Formulation

In this section, we provide an IP model for the over-constrained truck dock
assignment problem with time windows and capacity constraint which attempts
to assign trucks within its time window to docks to minimize shipping distances
between docks. We have capacity constraint that the total number of pallets
inside the crossdock cannot exceed the capacity of crossdock. Also note that in
real world, cargo containers are huge in size, and one pallet usually carries exactly
one cargo container at one time. Therefore, terms ’pallet’, ’cargo’, and cargo
container’ refer to the same transportation unit in the transshipment network
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throughout the paper. The following notations are used:

N : set of trucks arriving at and/or departing from the crossdock;
M : set of docks available in the crossdock;
n: total number of trucks, that is |N |, where |N | denotes the cardinality of N ;
m: total number of docks, that is |M |;
ai: arrival time of truck i (1 ≤ i ≤ n);
di: departure time of truck i (1 ≤ i ≤ n);
wk,l: shipping distance for pallets from dock k to dock l (1 ≤ k, l ≤ m);
fi,j : number of pallets transferring from truck i to truck j (1 ≤ i, j ≤ n;)
C: capacity of crossdock, i.e. the maximum number of pallets the crossdock can
hold at a time.

In addition, we use another dock, dock m + 1, which is rent from others for
temporary usage when there is not enough capacity left inside the crossdock, or
when all the docks are occupied. New arriving truck should go to this dock to
load and unload cargoes, but it will incur a much higher cost (distance is longer).
This dock can be used by many trucks simultaneously with infinite capacity.
We regard it as a reasonable remedy to make the problem always feasible. Let
wk,m+1 (wm+1,k) be shipping distance from dock k (m + 1) to dock m + 1 (k)
(1 ≤ k ≤ m). Figure 1 illustrates an outline of the crossdock and major elements
of our problem.

The following auxiliary variables are used:

xi,j ∈ {0, 1}: 1 iff truck i departs no later than truck j arrives; 0 otherwise.

Fig. 1. Truck Dock Assignment Problem with Operation Time Constraint
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The decision variables are as follows:

yi,k ∈ {0, 1}: 1 if truck i is assigned to dock k, 0 otherwise. (1 ≤ i ≤ n,
1 ≤ k ≤ m + 1). yi,k = yj,k = 1 implies that ai > dj or aj > di (1 ≤ i, j ≤ n);

zijkl ∈ {0, 1}: 1 iff truck i is assigned to dock k and truck j is assigned to
dock l (1 ≤ i, j ≤ n,1 ≤ k, l ≤ m + 1).

Before we give out the model, in order to make the problem and data rea-
sonable, some remarks of are made as follows:

1) fi,j ≥ 0, iff dj ≥ ai (1 ≤ i, j ≤ n), otherwise fi,j = 0 which means truck i
will transfer some cargo to truck j iff truck j departs no earlier than truck
i arrives;

2) ai < di (1 ≤ i ≤ n) which means for each truck, the arrival time should
strictly smaller than its departure time;

3) n > m which satisfies the over-constrained condition;
4) capacity C is defined as follows: when truck i comes, it consumes units of

capacity equal to
∑m

k=1
∑m

l=1
∑n

j=1 fi,jyi,kyj,l . On the other hand, when
truck j leaves,

∑m
k=1

∑m
l=1

∑n
i=1 fi,jyi,kyj,l units of capacity are released.

5) sort all the ai’s and bi’s in an increasing order, and let tr (r = 1, 2..., 2n)
correspond to these 2n numbers such that t1 ≤ t2 ≤ ... ≤ t2n. Use this
notation, we can easily formulate the set of capacity constraints.

Our objective is to minimize the total shipping distance of transferring cargo
between docks inside the crossdock. The IP model is as follows:

min
m+1∑

k=1

m+1∑

l=1

n∑

i=1

n∑

j=1

fi,jwk,lzijkl

s.t.
m+1∑

k=1

yi,k = 1(1 ≤ i ≤ n) (1)

zijkl ≤ yi,k(1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m + 1) (2)

zijkl ≤ yj,l(1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m + 1) (3)

yi,k + yj,l − 1 ≤ zijkl(1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m + 1) (4)

xi,j + xj,i ≥ zijkk(1 ≤ i, j ≤ n, i �= j, 1 ≤ k ≤ m) (5)

m∑

k=1

m∑

l=1

∑

i∈{i: ai≤tr}

n∑

j=1

fi,jzijkl −
m∑

k=1

m∑

l=1

n∑

i=1

∑

j∈{j: dj≤tr}
fi,jzijkl ≤ C(1 ≤ r ≤ 2n)

(6)
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yi,k ∈ {0, 1}, yj,l ∈ {0, 1}, zijkl ∈ {0, 1}(1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m + 1) (7)
Constraints (1) ensures that each truck must be assigned to exactly one

dock. Constraints (2)-(4) jointly define the variable z which represent the logic
relationship among yi,k, yj,l and zijkl. Constraint (5) specifies that one dock
cannot be occupied by two different trucks simultaneously. Finally, constraint
(6) is capacity constraint which means that for each time point tr, the total
number of pallets inside the crossdock cannot exceed the capacity C.

3 Tabu Search

Tabu search (TS) is a heuristic search procedure that proceeds iteratively from
one solution to another by moves in a neighborhood space with the assistance
of adaptive memory [4]. We next describe TS memory and the framework used
for the problem.

3.1 TS Memory

The solution is represented by a sequences A, which has length n (n is the
number of trucks). The sequence A represents the dock assignment. For example,
consider an instance with m docks and n trucks. The solution is then a sequence
(s1, s2, ..., sn), which means that Truck 1 is assigned to dock (gate) s1, Truck 2 is
assigned to dock s2, . . . , Truck n is assigned to dock sn (0 ≤ si ≤ m, 1 ≤ i ≤ n).
If the truck i is unassigned to any of the docks, which is possible when all the
docks are occupied, we give si the value of 0. If the solution is feasible, the dock
assignment is then uniquely determined by the sequence of (s1, s2, ..., sn). The
representation is depicted in Fig. 2. In the TS memory we implement, only the
assignment information is captured so that only the move that has the identical
neighborhood exchange move to the assignments will be forbidden.

Fig. 2. The Solution Representation

3.2 Neighborhood Search

We use the a modified neighborhood search approach from Ding [3], which con-
sists of three moves:

The Insert Move: Move a single truck to a dock gate other than the one it
currently assigns. It is depicted in Fig. 3.

The Interval Exchange Move: Exchange two truck intervals in the current
assignment. A truck interval is a group of consecutive trucks assigned to one
dock gate. The move is depicted in Fig. 4.

The Rented Dock Exchange Move: Exchange a truck which is assigned to the
rented dock with a truck that is assigned to a general dock gate.
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Fig. 3. The Insert Move

Fig. 4. The Interval Exchange Move

3.3 TS Framework

The TS algorithm can be described by the following steps:

1. Generate an initial solution xinit randomly, set xcurr ← xinit;
2. Generate a set of neighborhood solutions N(xcurr) of xcurr by the Insert

Move and Interval Exchange Move;
3. The solution x

′ ∈ N(xcurr) with the least cost and satisfying either one
of the two conditions (1) and (2) and must satisfying condition (3) will be
selected: (1) it is not forbidden (i.e. the assignment is not identical to any
assignments of recent tabu tenure moves); (2) The cost of x

′
is better than

the current best cost (aspiration criterion); (3) The occupied capacity of x
′

at boundary time points of all time windows is less than the capacity of
crossdock C.

4. Set xcurr ← x
′
; update the TS memory;

5. If the termination conditions are satisfied, stop; otherwise jump to step 2;

When we generate the neighborhood solutions, we randomly choose three
types of moves with equal probability. There are two termination conditions:
either the best solution cannot be improved within a certain number of iterations,
or the maximum number of iterations has been reached.

4 Genetic Algorithm

Genetic algorithms (GA) have become a well-known meta-heuristic approach for
difficult combinatorial optimization problems [5]. In this second approach to the
dock assignment problem, we found it suitable to solve it. We first discuss some
essential components of GA, including solution representation and crossover op-
erators, and then outline the framework of our GA.

4.1 Solution Representation

The chromosome is an important component in GA and has great influence on
the algorithm output. In the basic GA, a chromosome is usually encoded as a se-
quence and represents a solution. Similar to the TS solution representation (see
Fig. 2), we here represent the dock assignment solution by a chromosome se-
quence that defines an assignment of trucks to the docks. During the population
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initialization process, if the randomly generated chromosome is infeasible, we
just drop the infeasible sequence and generate a new one.

4.2 Crossover and Mutation

In our problem, chromosomes are not permutation sequences such as in the
Travelling Salesman Problem. Hence,well-known crossover operators, such as
Partially Mapped Crossover and Cycle Crossover, cannot be used. We imple-
mented two crossover operators: One-Point Crossover and Two-Point Crossover.

In the One-Point Crossover, one random crossover point is selected. The first
part of the first parent is attached with the second part of the second parent
to make the first offspring. The second offspring is built from the first part of
the second parent and the second part of the first parent. The following is an
example of One-Point Crossover operator (the crossover point is denoted by |):

Parent1: (3 2 4 2 4 | 1 3 1), Parent2: (2 1 2 4 3 | 2 2 4)
Offspring1: (3 2 4 2 4 | 2 2 4), Offspring2: (2 1 2 4 3 | 1 3 1)

In the Two-Point Crossover, two random crossover points are selected for one
crossover operation. The chromosomal materials are swapped between two cut
points to produce offsprings. This is illustrated in the following example:

Parent1: (3 2 | 4 2 4 | 1 3 1), Parent2: (2 1 | 2 4 3 | 2 2 4)
Offspring1: (3 2 | 2 4 3 | 1 3 1), Offspring2: (2 1 | 4 2 4 | 2 2 4)

In the proposed GA, we use both of the above-mentioned cross over oper-
ators with equal probability. We chose the ‘Swap Mutation’ as our mutation
operator, which selects two positions at random and swaps the values at those
positions. For example, the following mutation swaps the values at position 3
and position 6: (3 2 4 2 4 1 3 1) → (3 2 1 2 4 4 3 1). For simplicity, we do not
apply any repair function to the infeasible offsprings. Therefore, if an offspring
is infeasible by violating constraints in the problem, we simply remove it from
the GA population base.

4.3 GA Framework

With these components of GA, we now outline GA as follows . In this algorithm,
#pop, #crossover, #iter and p1 are parameters which are specified within ex-
periments.

Initialize Pop with size �pop
for iter ← 1 to �iter do
for off ← 1 to �crossover do
Randomly select ParentA and ParentB
Crossover ParentA and ParentB to produce OffspringA and OffspringB

end for
for each new-produced individual indv do
mutate indv with probability p1

end for



Truck Dock Assignment Problem with Time Windows 695

evaluate each individual
select the best �pop individuals from all the individuals
update current best solution

end for

5 Experimental Results and Analysis

All the algorithms were coded in Java and tested on a P4 2.4GHz PC with 512M
RAM. As comparison, we use ILOG CPLEX 8.0 to the IP formulation presented
in Section 2. The test generation process, parameter settings of various methods,
and detailed computational results are presented in the following subsections.

5.1 Test Data and Experiment Setup

We chose a representative layout of a crossdock to have two parallel sets of
terminals, where docks are symmetrically located in the two terminals shown
in Fig. 5. We set the distance between two adjacent docks within one terminal
(e.g., dock 1 and dock 3) to be 1 unit and the distance between two parallel
docks in different terminals (e.g., dock 1 and dock 2) to be 3 units. To simplify
the problem, we assumed that forklift can only walk ‘horizontally’ or ‘vertically’,
i.e., if one forklift wants to transfer one pallet from dock 3 to dock 2, his walking
distance is 1+3=4 units. This is similar to the so-called Manhattan metric. In
addition, we set the distance between rented dock and any of docks inside the
crossdock to be 10 in order to make it undesirable to use.

Fig. 5. Crossdock topology

The start points of truck time window ai(1 ≤ i ≤ n) are uniformly generated
in the interval [1, n∗70

m ]. The end points bi are generated as bi = ai +[45, 74]. The
number of transferring pallets fi,j is randomly generated in the interval [6, 60]
if dj ≥ ai (0 otherwise). In TS, Maximum number of iterations is 106 and each
time 100 neighbors are generated with a tabu tenure = 10. The algorithm is to
terminate if the best solution was not improved within 104 iterations. In GA, we
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specify �iter = 104, �pop = 300, and �crossover = 500. The mutation probability
p1 is taken to be 0.2. The maximum iteration is 105 and the termination condition
was when the best solution did not improve within 500 iterations.

5.2 The Results

We designed two categories of test sets. The detailed results are presented in
Table 1–2 respectively. The first row of each table denotes the instance ID or
group ID. The second row contains the sizes, where n × m means that there
are n trucks and m docks. The rest of the rows provide the results of various
methods proposed in this paper. Each result cell contains two values. The value
on the top provides the result, whereas the value at the bottom provides the
computational time in seconds.

1. Small-scale Test Sets
Small-scale test sets are generated with the size (n × m) ranging from 12×4 to
18×7. We see that GA performs extremely well for this group of test sets, as
it obtains the best objective values for all test sets. Solution quality of TS are
slightly worse than GA while the runtime of TS is considerably faster. At last,
CPLEX gets the optimal solutions only for the three smallest test sets within
the time limit of 2 hours. For all other 7 test sets that CPLEX exceeds the
time limit, the solution quality is generally worse than the two meta-heuristic
approaches.

2. Large-scale Test Sets
Large-scale test sets ranging from 20×6 to 35×9 are used here. We see from
Table 2. that the performance of TS surpasses GA in both solution quality and
runtime, but in general, both meta-heuristics have provided quite good solutions.
beating GA in 8 of the 10 test sets. We also note the solution time of GA grows
very quickly as the problem size expands, which indicates that GA does not scale
quite well for the problem.

As a whole, we can conclude from the experiment that both two proposed
meta-heuristics are effective approaches for the dock assignment problem. If a
minimal runtime of solving medium-to-large-scale instances is required, TS is
then more preferred than GA.

Table 1. Results: Small-scale Test Sets

Size 12 X 4 12 X 5 14 X 4 14 X 5 16 X 6 16 X 7 18 X 6 18 X 7
CPlex 7523 8914 12117 3680 22984 13049 14712 14276

Time(s) 1035 5460 3166 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200
TS 7523 8917 12200 3578 21017 12528 13760 13818

Time(s) 0.55 0.58 0.56 0.58 0.66 0.64 0.72 0.78
GA 7523 8914 12117 3464 20953 12489 13635 12986

Time(s) 1.89 1.75 2.53 2.61 2.91 4.13 4.81 5.58
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Table 2. Results: Large-scale Test Sets

Size 20 X 6 20 X 7 25 X 6 25 X 7 30 X 8 30 X 9 35 X 8 35 X 9
CPlex 62537 64682 101683 112648 146595 134762 148654 145725

Time(s) ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200 ≥ 7200
TS 40777 49219 68610 76418 99442 97981 105312 116147

Time(s) 1.06 1.02 1.31 1.28 1.84 1.81 2.28 2.34
GA 42405 60610 68892 78112 95918 98355 105768 111341

Time(s) 5.36 1.95 9.95 7.20 17.83 15.80 51.11 59.00

6 Conclusions and Future Work

In this paper, we consider the over-constrained truck dock assignment problem
with time windows and capacity constraint in transshipment network through
crossdocks where the number of trucks exceed the number of docks available and
the capacity of the crossdock is limited, and where the objectives are to minimize
the total shipping distances. The problem is formulated as an IP model. We then
propose a Tabu Search (TS) and a Genetic algorithms (GA) that utilize the IP
constraints. Experiments were conducted using a range of test data sets that
reflect realistic scenarios. The heuristic search algorithms are compared with
the CPLEX solver, showing they obtain better results within shorter running
times. In the future, we think that although this problem considers crossdock
optimization problem, it can also be applied to the air gate assignment problem
in airport to schedule the flights well in order to achieve better performance. The
other direction of research is to study a realistic model which take the operational
time, instead of the distance, of each pallet into consideration. Therefore, the
arrival/departure time windows of the trucks can be well related to the inner-
crossdock operations.
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