
M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3982, pp. 621 – 630, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scheduling an R&D Project with
Quality-Dependent Time Slots

Mario Vanhoucke1,2

1 Faculty of Economics and Business Administration,
Ghent University, Gent, Belgium

2 Operations & Technology Management Centre,
Vlerick Leuven Gent Management School, Gent, Belgium

mario.vanhoucke@ugent.be

Abstract. In this paper we introduce the concept of quality-dependent time
slots in the project scheduling literature. Quality-dependent time slots refer to
pre-defined time windows where certain activities can be executed under ideal
circumstances (optimal level of quality). Outside these time windows, there is a
loss of quality due to detrimental effects. The purpose is to select a quality-
dependent time slot for each activity, resulting in a minimal loss of quality. The
contribution of this paper is threefold. First, we show that an R&D project from
the bio-technology sector can be transformed to a resource-constrained project
scheduling problem (RCPSP). Secondly, we propose an exact search procedure
for scheduling this project with the aforementioned quality restrictions. Finally,
we test the performance of our procedure on a randomly generated problem set.

1 Introduction

In the last decades, the research in resource-constrained project scheduling has been
investigated from different angles and under different assumptions. The main focus
on project time minimization has shifted towards other objectives (e.g. net present
value maximization), extensions such as multi-mode scheduling and/or preemption,
and many other facets (for the most recent overview, see [1]).

However, the literature on project scheduling algorithms where quality consider-
ations are taken into account is virtually void. [9] maximize the quality in the
resource-constrained project scheduling problem by taking the rework time and
rework cost into account. They argue that their work is a logical extension of the
classical resource-constrained project scheduling efforts. Therefore, they refer to a
previous study by the same authors that indicated that over 90% of the project
managers take the maximization of the quality of projects and their outcomes as their
primal objective. Given that emphasis on quality management and its implementation
in project management, and the need to develop new tools and techniques for
scheduling decisions, we elaborate on that issue based on a real-life project in the
bio-technology sector.

The motivation of this research paper lies in the effort we put in the scheduling of a
project with genetically manipulated plants. In this project, several activities need to
be scheduled in the presence of limited resources and severe quality restrictions. More

622 M. Vanhoucke

precisely, some activities need to be executed preferably within certain pre-defined
periods, referred to as quality-dependent time slots. Although the execution is also
possible outside these pre-defined intervals, it is less desirably since it leads to a
decrease in quality. The concept of pre-defined time windows for activity execution is
not new in the project scheduling literature. [2] criticize the traditional models in
which it is assumed that an activity can start at any time after the finishing of all its
predecessors. To that purpose, they consider two improvements over the traditional
activity networks by including two types of time constraints. Time-window
constraints assume that an activity can only start within a specified time interval.
Time-schedule constraints assume that an activity can only begin at one of an ordered
schedule of beginning times. [15] elaborate on these time constraints and argue that
time can be treated as a repeating cycle where each cycle consists of two categories:
(i) some pairs of rest and work windows and (ii) a leading number specifying the
maximal number of time each pair should iterate. By incorporating these so-called
time-switch constraints, activities are forced to start in a specific time interval and to
be down in some specified rest interval. Quality-dependent time slots refer to pre-
defined time windows where certain activities can be executed under ideal
circumstances (optimal level of quality). Outside these time windows, there is a loss
of quality due to detrimental effects. Unlike the time-switch constraints, the quality-
dependent time slots allow the execution of the activity outside the pre-defined
window leading to an extra cost or decrease in quality. Consequently, the quality-
dependent time slots are similar to the time-switch constraints. The latter are hard
constraints (execution is only possible within the interval) and the former are soft
constraints (execution is preferable within the interval but is also possible outside the
interval) that can be violated at a certain penalty cost.

Our project settings assume that each activity has several pre-defined quality-
dependent time slots, from which one has to be selected. The selection of a time slot
must be done before the start of the project (in the planning phase). Given a fixed set
of time slots per activity, the target is then to select a time slot and to schedule the
project such that the loss in quality will be minimized.

2 Description of the Problem

The project under study can be represented by an activity-on-the-node network where
the set of activity nodes, N, represents activities and the set of arcs, A, represents
finish-start precedence constraints with a time lag of zero. The activities are numbered
from the dummy start activity 1 to the dummy end activity n and are topologically
ordered, i.e. each successor of an activity has a larger activity number than the activity
itself. Each activity has a duration di (1 ≤ i ≤ n) and a number of quality-dependent
time windows nr(i). Each window l of activity i (1 ≤ i ≤ n and 1 ≤ l ≤ nr(i))

is characterized by a time-interval ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq , of equal quality, while deviations outside

that interval result in a loss of quality. Note that the time slot ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq , is used to

refer to a window with optimal quality and can be either an interval or a
single point-in-time. The quality deviation of each activity i can be computed as

 Scheduling an R&D Project with Quality-Dependent Time Slots 623

maxloss =iQ }0;;x{ +− −− iliiil qssq and depends on the selection of the time window l,

with si the starting time of activity i. To that purpose, we need to introduce a binary
decision variable in our conceptual model which determines the selection of a specific

time interval for each activity i, yil =
⎩
⎨
⎧

otherwise,0

activityforselectedbeenhasintervaltimeif,1 il
.

We use opt
ilq to denote the minimal activity cost associated with a fixed and optimal

level of quality for each time window l of activity i. We use extra
ilq to denote the loss

in quality per time unit deviation from the time interval and consequently, the total

cost of quality equals ∑∑
=

+
n

i

inr

l
iliilil yQqq

=1

)(

1

lossextraopt)(. Note that nr(0) = nr(n) = 1, since

nodes 0 and n are dummy activities with
+−

= 0101 qq and
+−

= 11 nn qq . Moreover, we set

∞=extra
01q to force the dummy start activity to start at time instance zero. The project

needs to be finished before a negotiated project deadline nδ , i.e. nnn qq δ==
+−
11 .

Consequently, setting ∞=extra
1nq denotes that the project deadline can not be

exceeded (a hard constraint), while ∞<extra
1nq means that the project deadline can be

exceeded at a certain penalty cost (soft constraint).
There are K renewable resources with ak (1 ≤ k ≤ K) as the availability of resource

type k and with rik (1 ≤ i ≤ n, 1 ≤ k ≤ K) as the resource requirements of activity i with
respect to resource type k. The project with renewable resources and quality-
dependent time windows can be conceptually formulated as follows:

∑∑
=

+
n

i

inr

l
iliilil yQqq

1=

)(

1

lossextraopt)(Minimize (1)

Subject to

jii sds ≤+ Aji ∈∀),((2)

∑
∈

≤
)(tSi

kik ar k = 1, …, K and t = 1, …, T (3)

i

inr

l
ilili syqQ −≥∑

=

−
)(

1

loss i = 1, …, n (4)

∑
=

+−≥
)(

1

loss
inr

l
ililii yqsQ i = 1, …, n (5)

∑
=

=
)(

1

1
inr

l
ily i = 1, …, n (6)

624 M. Vanhoucke

0=1s (7)

++ ∈∈ int,int loss
ii Qs i = 1, …, n (8)

bin∈ily i = 1, …, n and l = 1, …, nr(i) (9)

where S(t) denotes the set of activities in progress in period]t-1,t]. The objective in
Eq. 1 minimizes the total quality cost of the project (i.e. the fixed cost within the
selected time window plus the extra cost of quality loss due to deviations from that
interval). The constraint set given in Eq. 2 maintains the finish-start precedence
relations among the activities. Eq. 3 represents the renewable resource constraints and
the constraint sets in Eq. 4 and Eq. 5 compute the deviation from the selected time
window of each activity. Eq. 6 represents the time window selection and forces to
select a single time window for each activity. Eq. 7 forces the dummy start activity to
start at time zero and Eq. 8 ensures that the activity starting times as well as the time
window deviations assume nonnegative integer values. Eq. 9 ensures that the time
window selection variable is a binary (0/1) variable. Remark that the quality loss
function measuring the quality decrease due to a deviation from the ideal time
window l can be off any form (such as stepwise functions, convex functions, etc…).
However, we assume in Eqs. [1]-[9], without loss of generality, a linear quality
deviation function.

Although our first acquaintance with this problem type was during the scheduling
of a genetically manipulated plants project, we believe that there are numerous other
examples where pre-defined time-windows need to be selected before the execution
of the project. The following four examples illustrate the possible generalization of
multiple quality-dependent time windows to other project environments:

Perishable Items. The project of this paper, which motivates us to elaborate on this
issue, is a typical example where items (i.e. plants) are perishable. Many project
activities consist of tests on growing plants where the quality is time-dependent since
there is an optimal time interval of consumption. Earlier consumption is possible, at a
cost of a loss in quality, since the plants are still in their ripening process. Later
consumption results in loss of quality due to detrimental effects.

State-of-Nature Dependencies. In many projects, the performance of some activities
might depend on the state-of-nature. In this case, a pre-defined set of possible starting
times depending on the state-of-nature are linked with possible execution times of the
activity, and the deviation from these time windows is less desirable (resulting in
higher costs or quality loss) or even completely intolerable.

Multiple Activity Milestones. The project scheduling literature with due dates
(milestones) has been restricted to considering projects with pre-assigned due dates
(see e.g. [11] and [12]). In reality, milestones are the results of negotiations, rather
than simply dictated by the client of the project. Therefore, we advocate that due
dates, including earliness and tardiness penalty costs for possible deviations, are
agreed upon by the client and the contractor (and possibly some subcontractors). This
results in a set of possible due dates for each activity, rather than a single pre-defined
due date. The objective is then to select a due date for each activity such that the total
earliness/tardiness penalty costs will be minimized.

 Scheduling an R&D Project with Quality-Dependent Time Slots 625

Time-Dependent Resource Cost. In many projects, the cost of (renewable) resources
heavily depends on the time of usage. The aforementioned time-switch constraints are
a typical and extreme example of time-dependent resource costs, since it restricts the
execution of activities to pre-defined time intervals (work periods) without any
possibility to deviate. However, if we allow the activities to deviate from their
original work periods (e.g. by adding more (expensive) resources to an activity in the
pre-defined rest period), the work periods can be considered as the quality-dependent
time slots while the rest periods are periods outside these slots in which the activity
can be executed at an additional cost.

3 The Algorithm

The problem type under study requires the selection of a quality dependent time-
window from a possible set of windows such that the total quality loss is minimized.
A closer look to the problem formulation of (1)-(9) reveals the following
observations:

 When K = 0, i.e. there are no resources with limited capacity, the problem given in
(1)-(9) reduces to an unconstrained project scheduling problem with non-regular
measures of performance. Due to the special structure of the quality loss functions
and the multiple time-windows, the problem reduces to a separable nonconvex
programming problem (see “solution algorithm for problem (1)-(2), (4)-(9)”
described below).

 When K > 0, i.e. there is at least one renewable resource with limited capacity,
resource conflicts can arise during the scheduling of the project. Therefore, this
problem type can be solved to optimality by any branch-and-bound enumeration
scheme for project scheduling problems with non-regular measures of
performance (see “solution algorithm for problem (1)-(9)” described below).

In this section we describe a double branch-and-bound algorithm for the problem
type under study. The first branch-and-bound procedure ignores the renewable
resource constraints and searches for an exact solution of the unconstrained project
scheduling problem. The second branch-and-bound procedure aims at resolving
resource conflicts and needs the previously mentioned solution as an input in every
node of the tree.

Solution Algorithm for Problem (1)-(2), (4)-(9): The basic idea of this solution
approach relies on the approach used by [6] and [7]. Their problem is to find the
vector x = (x1, …, xn) which minimizes

∑
=

=
n

i
ii xx

1

)()(ϕϕ subject to x ∈ G and l ≤ x ≤ L (10)

for which it is assumed that G is closed and that each ϕi is lower semi-continuous,
possibly nonconvex, on the interval [li, Li]. In their paper, they have presented an
algorithm for separable nonconvex programming problems. To that purpose, they
solve a sequence of problems in a branch-and-bound approach in which the objective

626 M. Vanhoucke

function is convex. These problems correspond to successive partitions of the
feasible set. This approach has been successfully applied for different optimization
problems.

[10] have shown that this problem type is a special case of irregular starting-time
costs project scheduling which can be formulated as a maximum-flow problem and
hence, can be solved using any maximum-flow algorithm.

Due to the special structure of the convex envelope, we rely on an adapted
procedure of [14] developed for an unconstrained project scheduling problem with
activity-based cash flows which depend on the time of occurrence. This branch-and-
bound procedure basically runs as follows. At each node, we calculate a lower bound

for the total quality cost ++−− ++ iiliilil QqQqqopt for each activity i. To that purpose, we

construct the convex envelope of the total quality cost profile over the whole time
window [esi, lfi] for each activity i (esi = earliest start and lfi = latest finish). The

convex envelope of a function F = ++−− ++ iiliilil QqQqqopt (l = 1, …, nr(i)) taken over

C = [esi, lfi] is defined as the highest convex function which fits below F.
If the reported solution is not feasible for the original problem, the algorithm

starts to branch. The algorithm calculates two new convex envelopes for these
subsets and solves two new problems at each node. Branching continues from the
node with the lowest lower bound. If all activities at a particular node of the branch-
and-bound tree are feasible, then we update the upper bound of the project (initially
set to ∞) and explore the second node at that level of the branch-and-bound tree.
Backtracking occurs when the calculated lower bound is larger than or equal to the
current lower bound. The algorithm stops when we backtrack to the initial level of
the branch-and-bound tree and reports the optimal lower bound. This lower bound
can be calculated at each node of the branch-and-bound algorithm described
hereunder.

Solution Algorithm for Problem (1)-(9): In order to take the renewable resource
constraints into account (i.e. equation (3)) we rely on a classical branch-and-bound
approach that uses the unconstrained solutions as lower bounds at each node of the
tree. Since the previous branch-and-bound procedure searches for an optimal solution
for the unconstrained project and consequently, ignores the limited availability of the
renewable resources, the second branching strategy boils down to resolving resource
conflicts. If resource conflicts occur, we need to branch. A resource conflict occurs

when there is at least one period]t - 1, t] for which ∑
∈

>≤∃
)(

:
tSi

kik arKk . To that

purpose, we rely on the branch-and-bound approach of [8] for the resource-
constrained project scheduling problem with discounted cash flows. This is an
adapted version of the branching scheme developed by [3] for the resource-
constrained project scheduling problem and is further enhanced by [5], [12]
and [13].

In order to prune certain nodes of the branch-and-bound tree, we have implemented
the so-called subset dominance rule. This dominance rule has originally been
developed by [5] and has been applied in the branch-and-bound procedures of [12]

 Scheduling an R&D Project with Quality-Dependent Time Slots 627

i

[di ri1]

[]extraopt ,, ilililil qqqq +− =

9

8

7

6

5

4

3

2

[2 2]

1
21

20

19

1817

1615

14

13

12

11

10

[1 5] [3 7] [6 2]

[5 2] [10 5] [8 3] [9 4]

[8 6] [9 3] [8 4] [6 1]

[2 4] [2 4] [10 1] [5 3]

[6 4]

[8 2]

[3 3]

[(0,2,4)]

[(0,6,19)(2,9,19)]

[(0,10,2)(2,20,2)]

[(0,10,16)(2,20,16)] [(0,28,3)(2,38,3)]

[(0,22,6)(2,42,6)]

[(0,18,1)] [(0,24,6)]

[(0,15,1)] [(3,23,6)] [(0,32,2)]

[(0,17,8)] [(0,30,6)] [(0,36,1)][(0,8,6)]

[(0,22,2)] [(0,33,4)]

[(0,44,7)]

[(0,43,8)]

i

[di ri1]

[]extraopt ,, ilililil qqqq +− =

i

[di ri1]

[]extraopt ,, ilililil qqqq +− =

9

8

7

6

5

4

3

2

[2 2]

1
21

20

19

1817

1615

14

13

12

11

10

[1 5] [3 7] [6 2]

[5 2] [10 5] [8 3] [9 4]

[8 6] [9 3] [8 4] [6 1]

[2 4] [2 4] [10 1] [5 3]

[6 4]

[8 2]

[3 3]

[(0,2,4)]

[(0,6,19)(2,9,19)]

[(0,10,2)(2,20,2)]

[(0,10,16)(2,20,16)] [(0,28,3)(2,38,3)]

[(0,22,6)(2,42,6)]

[(0,18,1)] [(0,24,6)]

[(0,15,1)] [(3,23,6)] [(0,32,2)]

[(0,17,8)] [(0,30,6)] [(0,36,1)][(0,8,6)]

[(0,22,2)] [(0,33,4)]

[(0,44,7)]

[(0,43,8)]

9

8

7

6

5

4

3

2

[2 2]

1
21

20

19

1817

1615

14

13

12

11

10

[1 5] [3 7] [6 2]

[5 2] [10 5] [8 3] [9 4]

[8 6] [9 3] [8 4] [6 1]

[2 4] [2 4] [10 1] [5 3]

[6 4]

[8 2]

[3 3]

[(0,2,4)]

[(0,6,19)(2,9,19)]

[(0,10,2)(2,20,2)]

[(0,10,16)(2,20,16)] [(0,28,3)(2,38,3)]

[(0,22,6)(2,42,6)]

[(0,18,1)] [(0,24,6)]

[(0,15,1)] [(3,23,6)] [(0,32,2)]

[(0,17,8)] [(0,30,6)] [(0,36,1)][(0,8,6)]

[(0,22,2)] [(0,33,4)]

[(0,44,7)]

[(0,43,8)]

Fig. 1. An example project with quality-dependent time slots

and [13]. This dominance rule can be applied when the set of added precedence
constraints (to resolve resource conflicts) of a previously examined node in the tree is
a subset of the set of precedence constraints of the current node.

Example: We illustrate the project scheduling problem with limited resources and
quality-dependent time slots by means of an example project of figure 1. The two
numbers above each node are used to denote the activity duration di and its
requirement ri1 for a single renewable resource with availability a1 = 10. The numbers

below the node are used to denote),,(extraopt
ilililil qqqq +− = for each quality-dependent

time slot l. For the sake of clarity, we assume that +− = ilil qq , i.e. the quality-dependent

time slots are a single point in time. Moreover, we assume extra
ilq is equal for each

interval l.
Each activity of the example project belongs to one of the following categories. An

activity can be the subject to single (activities 12 and 17) or multiple quality-
dependent time slots (activities 3, 5, 8, 18 and 20). Activities can also have the
requirement to be scheduled as-soon-as-possible (ASAP; activities 2, 4, 6, 7, 9, 10, 11
and 13) or as-late-as-possible (ALAP; activities 14, 15, 16, 19 and 21). This can be
incorporated in the network by adding a single quality-dependent time slot with

iii esqq == +−
11 (ASAP) or iii lsqq == +−

11 (ALAP), with esi (lsi) the earliest start

(finishing) time of activity i. Deviations from these requirements will be penalized by
extra
1iq per time unit. We assume that the project deadline T equals 44 time units.

Figure 2 displays the schedules found by solving the RCPSP without (i.e.
minimization of project time) and with the quality-dependent time slots. The activities
highlighted in dark grey are the activities that are scheduled at a different time
instance between the two schedules. Activities 3, 6, 8, 14, 10, 17, 13, 18, 12 and 20
have been scheduled later than the classical RCPSP schedule, while activities 5 and 7
have been scheduled earlier.

628 M. Vanhoucke

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19

20

480 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
0

1

2

3

4

5

6

7

8

9

10

t

2

3

4
5 6

7

8

10

11

12

13

14

15

17 18

19

20

480 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
0

1

2

3

4

5

6

7

8

9

10

t

9

16

Fig. 2. The RCPSP schedule with minimal time (left) and quality-dependent time slots (right)

4 Computational Experience

In order to validate the efficiency, we have coded our double B&B procedure in
Visual C++ Version 6.0 under Windows NT 4.0 on a Compaq personal computer
(Pentium 500 MHz processor). We have generated a problem set by the RanGen
network generator of [4] with 10, 20 and 30 activities.

In order to test the presence of renewable resources on the performance of our
B&B procedure, we have extended each network instance with renewable resources
under a pre-defined design. To that purpose, we rely on the resource use RU and the
resource-constrainedness RC which can be generated by RanGen. More precisely, we
use 4 settings for the RU (1, 2, 3 or 4) and 4 settings for the RC (0.25, 0.50, 0.75 or 1).

In order to generate data for the quality-dependent time slots, we need to generate
values for the number of time slots nr(i), the start and finishing time instance per time

slot l (
−
ilq and

+
ilq) and the quality deviation per time unit for each time slot l (extra

ilq).

We used 4 different settings to generate the number of time slots per activity, i.e. nr(i)
equals 5, 10, 15 or 20. The start and finishing times of each time slot have been
carefully selected between the earliest start time and the latest finish time of each
activity, such that the ‘spread’ of the time slots have been generated under 3 settings,
i.e. low (time slots close to each other), average and high (time slots far from each

other). The extra
ilq values have been randomly generated. Using 30 instances for each

setting, we have created 17,280 problem instances.
In table 1 we report the computational results for the project scheduling problem

with renewable resource constraints and quality-dependent time-slots. To that
purpose, we display the average CPU-time in seconds (Avg.CPU), the number of
problems solved to optimality within 100 seconds CPU-time (#Solved), the average
number of created nodes in the main branch-and-bound tree (#Avg.CN) to resolve
resource conflics, the average number of branched nodes for this B&B tree (Avg.BN)
and the average number of created nodes (Avg.CN2) in the unconstrained branch-
and-bound tree (lower bound calculation) at each node of the main B&B tree. The
row labelled ‘all instances’ gives the average results over all 17,280 problem
instances and illustrates the efficiency of our double branch-and-bound procedure. In
the remaining rows we show more detailed results for the different parameters of our
full factorial experiment.

 Scheduling an R&D Project with Quality-Dependent Time Slots 629

Table 1. Computational results for the RCPSP with quality-dependent time slots

Avg.CPU #Solved Avg.CN Avg.BN Avg.CN2
All instances 43.517 10,212 78.924 71.517 22.881

Number 10 0.099 5,760 57.378 44.173 7.825
of 20 53.149 3,012 86.021 80.557 26.672

activities 30 77.304 1,440 93.372 89.821 34.145
1 30.462 3,123 59.043 49.905 28.101
2 43.544 2,530 80.558 72.422 24.646
3 48.318 2,348 87.304 80.869 20.121
4 51.745 2,211 88.791 82.872 18.654

0.25 24.602 3,328 49.583 36.353 25.489
0.5 48.772 2,338 85.655 79.643 25.258

0.75 50.547 2,270 89.723 84.356 20.758
1 50.149 2,276 90.735 85.716 20.017
5 31.851 3,069 76.684 70.006 10.714

10 45.553 2,476 79.643 72.077 20.211
15 48.146 2,339 79.423 71.860 28.533
20 48.519 2,328 79.947 72.125 32.064
low 39.394 3,640 78.472 71.500 15.385
mid 44.644 3,333 79.704 72.422 24.841
high 46.515 3,239 78.596 70.629 28.416

RC

nr(i)

Spread

RU

As expected, the RU and the RC are positively correlated with the problem
complexity. Indeed, the more resources in the project and the tighter their
constrainedness, the higher the probability for a resource conflict to occur. These
effects are completely in line with literature (see e.g. [13]). The number of time slots
is positively correlated with problem complexity. The spread of the time slots is
positively correlated with the problem complexity. When time slots are close to each
other, the selection of an activity time slot is rather straightforward since only one (or
a few) are relevant.

5 Conclusions and Areas for Future Research

In this paper we presented a double branch-and-bound procedure for the resource-
constrained project scheduling problem with quality-dependent time slots. The depth-
first branch-and-bound strategy to solve renewable resource conflicts makes use of
another branch-and-bound procedure to calculate the lower bounds at each node. The
branching scheme has been extended with the subset dominance rule to prune the
search tree considerably. The incorporation of quality-dependent time slots in project
scheduling is, to the best of our knowledge, completely new.

It is in our future intentions to broaden the research efforts of quality-dependent
time slot selection in project scheduling. More precisely, the introduction of dynamic
quality-dependent time slots should open the door to many other applications. In this
case, each activity can be executed several times, preferably within the pre-defined
time slots. Moreover, the different time slots per activity depend on each other, in the

sense that the time interval ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq , depends on the finishing time of the activity in

or around the previous time slot = ⎥⎦
⎤

⎢⎣
⎡ +

−
−

− 11, ilil qq . A typical example is a maintenance

630 M. Vanhoucke

operation that needs to be done within certain time limits. A second maintenance
operation depends on the execution of the first one, resulting in a second time slot that
depends on the starting time of the activity around the first time slot. The
development of heuristic solution methods to solve larger, real-life problems instances
also lies within our future research intentions.

References

1. Brücker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: notation, classification, models and methods. European Journal of
Operational Research. 112 (1999) 3-41

2. Chen, Y.L., Rinks, D., Tang, K.: Critical path in an activity network with time constraints.
European Journal of Operational Research. 100 (1997) 122-133

3. Demeulemeester E., Herroelen, W.: A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Management Science. 38 (1992)
1803-1818

4. Demeulemeester, E., Vanhoucke, M., Herroelen, W.: A random network generator for
activity-on-the-node networks. Journal of Scheduling. 6 (2003) 13-34

5. De Reyck, B., Herroelen, W.: An optimal procedure for the resource-constrained project
scheduling problem with discounted cash flows and generalized precedence relations.
Computers and Operations Research. 25 (1998) 1-17

6. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems.
Management Science. 15 (1969) 550-569

7. Horst, R.: Deterministic methods in constrained global optimization: Some recent
advances and new fields of application. Naval Research Logistics. 37 (1990) 433-471

8. Icmeli, O., Erengüç, S.S.: A branch-and-bound procedure for the resource-constrained
project scheduling problem with discounted cash flows. Management Science. 42 (1996)
1395-1408

9. Icmeli-Tukel, O., Rom, W.O.: Ensuring quality in resource-constrained project
scheduling. European Journal of Operational Research. 103 (1997) 483-496

10. Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: On project scheduling with irregular
starting time costs. Operations Research Letters. 28 (2001) 149-154

11. Schwindt, C.: Minimizing earliness-tardiness costs of resource-constrained projects. In:
Inderfurth, K., Schwoediauer, G., Domschke, W., Juhnke, F., Kleinschmidt, P., Waescher,
G. (eds.). Operations Research Proceedings. Springer. (1999) 402-407

12. Vanhoucke, M., Demeulemeester, E., Herroelen, W.: An exact procedure for the resource-
constrained weighted earliness-tardiness project scheduling problem. Annals of
Operations Research. 102 (2000) 179-196

13. Vanhoucke, M., Demeulemeester, E., Herroelen, W.: On maximizing the net present value
of a project under renewable resource constraints. Management Science. 47 (2001) 1113-
1121

14. Vanhoucke, M., Demeulemeester, E., Herroelen, W.: Progress payments in project
scheduling problems. European Journal of Operational Research. 148 (2003) 604-620

15. Yang, H.H., Chen, Y.L.: Finding the critical path in an activity network with time-switch
constraints. European Journal of Operational Research. 120 (2000) 603-613

	Introduction
	Description of the Problem
	The Algorithm
	Computational Experience
	Conclusions and Areas for Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

