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Abstract. In this paper we introduce the concept of quality-dependent time 
slots in the project scheduling literature. Quality-dependent time slots refer to 
pre-defined time windows where certain activities can be executed under ideal 
circumstances (optimal level of quality). Outside these time windows, there is a 
loss of quality due to detrimental effects. The purpose is to select a quality-
dependent time slot for each activity, resulting in a minimal loss of quality. The 
contribution of this paper is threefold. First, we show that an R&D project from 
the bio-technology sector can be transformed to a resource-constrained project 
scheduling problem (RCPSP). Secondly, we propose an exact search procedure 
for scheduling this project with the aforementioned quality restrictions. Finally, 
we test the performance of our procedure on a randomly generated problem set.  

1   Introduction 

In the last decades, the research in resource-constrained project scheduling has been 
investigated from different angles and under different assumptions. The main focus 
on project time minimization has shifted towards other objectives (e.g. net present 
value maximization), extensions such as multi-mode scheduling and/or preemption, 
and many other facets (for the most recent overview, see [1]). 

However, the literature on project scheduling algorithms where quality consider-
ations are taken into account is virtually void. [9] maximize the quality in the 
resource-constrained project scheduling problem by taking the rework time and 
rework cost into account. They argue that their work is a logical extension of the 
classical resource-constrained project scheduling efforts. Therefore, they refer to a 
previous study by the same authors that indicated that over 90% of the project 
managers take the maximization of the quality of projects and their outcomes as their 
primal objective. Given that emphasis on quality management and its implementation 
in project management, and the need to develop new tools and techniques for 
scheduling decisions, we elaborate on that issue based on a real-life project in the  
bio-technology sector. 

The motivation of this research paper lies in the effort we put in the scheduling of a 
project with genetically manipulated plants. In this project, several activities need to 
be scheduled in the presence of limited resources and severe quality restrictions. More 



622 M. Vanhoucke 

precisely, some activities need to be executed preferably within certain pre-defined 
periods, referred to as quality-dependent time slots. Although the execution is also 
possible outside these pre-defined intervals, it is less desirably since it leads to a 
decrease in quality. The concept of pre-defined time windows for activity execution is 
not new in the project scheduling literature. [2] criticize the traditional models in 
which it is assumed that an activity can start at any time after the finishing of all its 
predecessors. To that purpose, they consider two improvements over the traditional 
activity networks by including two types of time constraints. Time-window 
constraints assume that an activity can only start within a specified time interval. 
Time-schedule constraints assume that an activity can only begin at one of an ordered 
schedule of beginning times. [15] elaborate on these time constraints and argue that 
time can be treated as a repeating cycle where each cycle consists of two categories: 
(i) some pairs of rest and work windows and (ii) a leading number specifying the 
maximal number of time each pair should iterate. By incorporating these so-called 
time-switch constraints, activities are forced to start in a specific time interval and to 
be down in some specified rest interval. Quality-dependent time slots refer to pre-
defined time windows where certain activities can be executed under ideal 
circumstances (optimal level of quality). Outside these time windows, there is a loss 
of quality due to detrimental effects. Unlike the time-switch constraints, the quality-
dependent time slots allow the execution of the activity outside the pre-defined 
window leading to an extra cost or decrease in quality. Consequently, the quality-
dependent time slots are similar to the time-switch constraints. The latter are hard 
constraints (execution is only possible within the interval) and the former are soft 
constraints (execution is preferable within the interval but is also possible outside the 
interval) that can be violated at a certain penalty cost. 

Our project settings assume that each activity has several pre-defined quality-
dependent time slots, from which one has to be selected. The selection of a time slot 
must be done before the start of the project (in the planning phase). Given a fixed set 
of time slots per activity, the target is then to select a time slot and to schedule the 
project such that the loss in quality will be minimized.  

2   Description of the Problem 

The project under study can be represented by an activity-on-the-node network where 
the set of activity nodes, N, represents activities and the set of arcs, A, represents 
finish-start precedence constraints with a time lag of zero. The activities are numbered 
from the dummy start activity 1 to the dummy end activity n and are topologically 
ordered, i.e. each successor of an activity has a larger activity number than the activity 
itself. Each activity has a duration di (1 ≤ i ≤ n) and a number of quality-dependent 
time windows nr(i). Each window l of activity i (1 ≤ i ≤ n and 1 ≤ l ≤ nr(i))  

is characterized by a time-interval ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq ,  of equal quality, while deviations outside 

that interval result in a loss of quality. Note that the time slot ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq ,  is used to  

refer to a window with optimal quality and can be either an interval or a  
single point-in-time. The quality deviation of each activity i can be computed as  
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maxloss =iQ  }0;;x{ +− −− iliiil qssq  and depends on the selection of the time window l, 

with si the starting time of activity i. To that purpose, we need to introduce a binary 
decision variable in our conceptual model which determines the selection of a specific 

time interval for each activity i, yil = 
⎩
⎨
⎧

otherwise,0

activityforselectedbeenhasintervaltimeif,1 il
. 

We use opt
ilq  to denote the minimal activity cost associated with a fixed and optimal 

level of quality for each time window l of activity i. We use extra
ilq  to denote the loss 

in quality per time unit deviation from the time interval and consequently, the total 

cost of quality equals ∑∑
=

+
n

i

inr

l
iliilil yQqq

=1

)(

1

lossextraopt )( . Note that nr(0) = nr(n) = 1, since 

nodes 0 and n are dummy activities with 
+−

= 0101 qq  and 
+−

= 11 nn qq . Moreover, we set 

∞=extra
01q  to force the dummy start activity to start at time instance zero. The project 

needs to be finished before a negotiated project deadline nδ , i.e. nnn qq δ==
+−
11 . 

Consequently, setting ∞=extra
1nq  denotes that the project deadline can not be 

exceeded (a hard constraint), while ∞<extra
1nq  means that the project deadline can be 

exceeded at a certain penalty cost (soft constraint).  
There are K renewable resources with ak (1 ≤ k ≤ K) as the availability of resource 

type k and with rik (1 ≤ i ≤ n, 1 ≤ k ≤ K) as the resource requirements of activity i with 
respect to resource type k. The project with renewable resources and quality-
dependent time windows can be conceptually formulated as follows:  

∑∑
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+
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0=1s  (7) 

++ ∈∈ int,int loss
ii Qs      i = 1, …, n (8) 

bin∈ily      i = 1, …, n and l = 1, …, nr(i) (9) 

where S(t) denotes the set of activities in progress in period ]t-1,t]. The objective in 
Eq. 1 minimizes the total quality cost of the project (i.e. the fixed cost within the 
selected time window plus the extra cost of quality loss due to deviations from that 
interval). The constraint set given in Eq. 2 maintains the finish-start precedence 
relations among the activities. Eq. 3 represents the renewable resource constraints and 
the constraint sets in Eq. 4 and Eq. 5 compute the deviation from the selected time 
window of each activity. Eq. 6 represents the time window selection and forces to 
select a single time window for each activity. Eq. 7 forces the dummy start activity to 
start at time zero and Eq. 8 ensures that the activity starting times as well as the time 
window deviations assume nonnegative integer values. Eq. 9 ensures that the time 
window selection variable is a binary (0/1) variable. Remark that the quality loss 
function measuring the quality decrease due to a deviation from the ideal time 
window l can be off any form (such as stepwise functions, convex functions, etc…). 
However, we assume in Eqs. [1]-[9], without loss of generality, a linear quality 
deviation function.  

Although our first acquaintance with this problem type was during the scheduling 
of a genetically manipulated plants project, we believe that there are numerous other 
examples where pre-defined time-windows need to be selected before the execution 
of the project. The following four examples illustrate the possible generalization of 
multiple quality-dependent time windows to other project environments: 

Perishable Items. The project of this paper, which motivates us to elaborate on this 
issue, is a typical example where items (i.e. plants) are perishable. Many project 
activities consist of tests on growing plants where the quality is time-dependent since 
there is an optimal time interval of consumption. Earlier consumption is possible, at a 
cost of a loss in quality, since the plants are still in their ripening process. Later 
consumption results in loss of quality due to detrimental effects. 

State-of-Nature Dependencies. In many projects, the performance of some activities 
might depend on the state-of-nature. In this case, a pre-defined set of possible starting 
times depending on the state-of-nature are linked with possible execution times of the 
activity, and the deviation from these time windows is less desirable (resulting in 
higher costs or quality loss) or even completely intolerable. 

Multiple Activity Milestones. The project scheduling literature with due dates 
(milestones) has been restricted to considering projects with pre-assigned due dates 
(see e.g. [11] and [12]). In reality, milestones are the results of negotiations, rather 
than simply dictated by the client of the project. Therefore, we advocate that due 
dates, including earliness and tardiness penalty costs for possible deviations, are 
agreed upon by the client and the contractor (and possibly some subcontractors). This 
results in a set of possible due dates for each activity, rather than a single pre-defined 
due date. The objective is then to select a due date for each activity such that the total 
earliness/tardiness penalty costs will be minimized.  
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Time-Dependent Resource Cost. In many projects, the cost of (renewable) resources 
heavily depends on the time of usage. The aforementioned time-switch constraints are 
a typical and extreme example of time-dependent resource costs, since it restricts the 
execution of activities to pre-defined time intervals (work periods) without any 
possibility to deviate. However, if we allow the activities to deviate from their 
original work periods (e.g. by adding more (expensive) resources to an activity in the 
pre-defined rest period), the work periods can be considered as the quality-dependent 
time slots while the rest periods are periods outside these slots in which the activity 
can be executed at an additional cost. 

3   The Algorithm 

The problem type under study requires the selection of a quality dependent time-
window from a possible set of windows such that the total quality loss is minimized. 
A closer look to the problem formulation of (1)-(9) reveals the following 
observations:  

 When K = 0, i.e. there are no resources with limited capacity, the problem given in 
(1)-(9) reduces to an unconstrained project scheduling problem with non-regular 
measures of performance. Due to the special structure of the quality loss functions 
and the multiple time-windows, the problem reduces to a separable nonconvex 
programming problem (see “solution algorithm for problem (1)-(2), (4)-(9)” 
described below). 

 When K > 0, i.e. there is at least one renewable resource with limited capacity, 
resource conflicts can arise during the scheduling of the project. Therefore, this 
problem type can be solved to optimality by any branch-and-bound enumeration 
scheme for project scheduling problems with non-regular measures of 
performance (see “solution algorithm for problem (1)-(9)” described below). 

In this section we describe a double branch-and-bound algorithm for the problem 
type under study. The first branch-and-bound procedure ignores the renewable 
resource constraints and searches for an exact solution of the unconstrained project 
scheduling problem. The second branch-and-bound procedure aims at resolving 
resource conflicts and needs the previously mentioned solution as an input in every 
node of the tree. 

Solution Algorithm for Problem (1)-(2), (4)-(9): The basic idea of this solution 
approach relies on the approach used by [6] and [7]. Their problem is to find the 
vector x = (x1, …, xn) which minimizes 

∑
=

=
n

i
ii xx

1

)()( ϕϕ  subject to x ∈ G and l ≤ x ≤ L (10) 

for which it is assumed that G is closed and that each ϕi is lower semi-continuous, 
possibly nonconvex, on the interval [li, Li]. In their paper, they have presented an 
algorithm for separable nonconvex programming problems. To that purpose, they 
solve a sequence of problems in a branch-and-bound approach in which the objective 
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function is convex. These problems correspond to successive partitions of the 
feasible set. This approach has been successfully applied for different optimization 
problems.  

[10] have shown that this problem type is a special case of irregular starting-time 
costs project scheduling which can be formulated as a maximum-flow problem and 
hence, can be solved using any maximum-flow algorithm.  

Due to the special structure of the convex envelope, we rely on an adapted 
procedure of [14] developed for an unconstrained project scheduling problem with 
activity-based cash flows which depend on the time of occurrence. This branch-and-
bound procedure basically runs as follows. At each node, we calculate a lower bound 

for the total quality cost ++−− ++ iiliilil QqQqqopt  for each activity i. To that purpose, we 

construct the convex envelope of the total quality cost profile over the whole time 
window [esi, lfi] for each activity i (esi = earliest start and lfi = latest finish). The 

convex envelope of a function F = ++−− ++ iiliilil QqQqqopt  (l = 1, …, nr(i)) taken over 

C = [esi, lfi] is defined as the highest convex function which fits below F. 
If the reported solution is not feasible for the original problem, the algorithm 

starts to branch. The algorithm calculates two new convex envelopes for these 
subsets and solves two new problems at each node. Branching continues from the 
node with the lowest lower bound. If all activities at a particular node of the branch-
and-bound tree are feasible, then we update the upper bound of the project (initially 
set to ∞) and explore the second node at that level of the branch-and-bound tree. 
Backtracking occurs when the calculated lower bound is larger than or equal to the 
current lower bound. The algorithm stops when we backtrack to the initial level of 
the branch-and-bound tree and reports the optimal lower bound. This lower bound 
can be calculated at each node of the branch-and-bound algorithm described 
hereunder. 

Solution Algorithm for Problem (1)-(9): In order to take the renewable resource 
constraints into account (i.e. equation (3)) we rely on a classical branch-and-bound 
approach that uses the unconstrained solutions as lower bounds at each node of the 
tree. Since the previous branch-and-bound procedure searches for an optimal solution 
for the unconstrained project and consequently, ignores the limited availability of the 
renewable resources, the second branching strategy boils down to resolving resource 
conflicts. If resource conflicts occur, we need to branch. A resource conflict occurs 

when there is at least one period ]t - 1, t] for which ∑
∈

>≤∃
)(

:
tSi

kik arKk . To that 

purpose, we rely on the branch-and-bound approach of [8] for the resource-
constrained project scheduling problem with discounted cash flows. This is an 
adapted version of the branching scheme developed by [3] for the resource-
constrained project scheduling problem and is further enhanced by [5], [12]  
and [13].  

In order to prune certain nodes of the branch-and-bound tree, we have implemented 
the so-called subset dominance rule. This dominance rule has originally been 
developed by [5] and has been applied in the branch-and-bound procedures of [12]  
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Fig. 1. An example project with quality-dependent time slots 

and [13]. This dominance rule can be applied when the set of added precedence 
constraints (to resolve resource conflicts) of a previously examined node in the tree is 
a subset of the set of precedence constraints of the current node. 

Example: We illustrate the project scheduling problem with limited resources and 
quality-dependent time slots by means of an example project of figure 1. The two 
numbers above each node are used to denote the activity duration di and its 
requirement ri1 for a single renewable resource with availability a1 = 10. The numbers 

below the node are used to denote ),,( extraopt
ilililil qqqq +− =  for each quality-dependent 

time slot l. For the sake of clarity, we assume that +− = ilil qq , i.e. the quality-dependent 

time slots are a single point in time. Moreover, we assume extra
ilq  is equal for each 

interval l. 
Each activity of the example project belongs to one of the following categories. An 

activity can be the subject to single (activities 12 and 17) or multiple quality-
dependent time slots (activities 3, 5, 8, 18 and 20). Activities can also have the 
requirement to be scheduled as-soon-as-possible (ASAP; activities 2, 4, 6, 7, 9, 10, 11 
and 13) or as-late-as-possible (ALAP; activities 14, 15, 16, 19 and 21). This can be 
incorporated in the network by adding a single quality-dependent time slot with 

iii esqq == +−
11  (ASAP) or iii lsqq == +−

11  (ALAP), with esi (lsi) the earliest start 

(finishing) time of activity i. Deviations from these requirements will be penalized by 
extra
1iq  per time unit. We assume that the project deadline T equals 44 time units. 

Figure 2 displays the schedules found by solving the RCPSP without (i.e. 
minimization of project time) and with the quality-dependent time slots. The activities 
highlighted in dark grey are the activities that are scheduled at a different time 
instance between the two schedules. Activities 3, 6, 8, 14, 10, 17, 13, 18, 12 and 20 
have been scheduled later than the classical RCPSP schedule, while activities 5 and 7 
have been scheduled earlier. 
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Fig. 2. The RCPSP schedule with minimal time (left) and quality-dependent time slots (right) 

4   Computational Experience 

In order to validate the efficiency, we have coded our double B&B procedure in 
Visual C++ Version 6.0 under Windows NT 4.0 on a Compaq personal computer 
(Pentium 500 MHz processor). We have generated a problem set by the RanGen 
network generator of [4] with 10, 20 and 30 activities. 

In order to test the presence of renewable resources on the performance of our 
B&B procedure, we have extended each network instance with renewable resources 
under a pre-defined design. To that purpose, we rely on the resource use RU and the 
resource-constrainedness RC which can be generated by RanGen. More precisely, we 
use 4 settings for the RU (1, 2, 3 or 4) and 4 settings for the RC (0.25, 0.50, 0.75 or 1). 

In order to generate data for the quality-dependent time slots, we need to generate 
values for the number of time slots nr(i), the start and finishing time instance per time 

slot l (
−
ilq and 

+
ilq ) and the quality deviation per time unit for each time slot l ( extra

ilq ). 

We used 4 different settings to generate the number of time slots per activity, i.e. nr(i) 
equals 5, 10, 15 or 20. The start and finishing times of each time slot have been 
carefully selected between the earliest start time and the latest finish time of each 
activity, such that the ‘spread’ of the time slots have been generated under 3 settings, 
i.e. low (time slots close to each other), average and high (time slots far from each 

other). The extra
ilq  values have been randomly generated. Using 30 instances for each 

setting, we have created 17,280 problem instances. 
In table 1 we report the computational results for the project scheduling problem 

with renewable resource constraints and quality-dependent time-slots. To that 
purpose, we display the average CPU-time in seconds (Avg.CPU), the number of 
problems solved to optimality within 100 seconds CPU-time (#Solved), the average 
number of created nodes in the main branch-and-bound tree (#Avg.CN) to resolve 
resource conflics, the average number of branched nodes for this B&B tree (Avg.BN) 
and the average number of created nodes (Avg.CN2) in the unconstrained branch-
and-bound tree (lower bound calculation) at each node of the main B&B tree. The 
row labelled ‘all instances’ gives the average results over all 17,280 problem 
instances and illustrates the efficiency of our double branch-and-bound procedure. In 
the remaining rows we show more detailed results for the different parameters of our 
full factorial experiment. 
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Table 1. Computational results for the RCPSP with quality-dependent time slots 

Avg.CPU #Solved Avg.CN Avg.BN Avg.CN2
All instances 43.517 10,212 78.924 71.517 22.881

Number 10 0.099 5,760 57.378 44.173 7.825
of 20 53.149 3,012 86.021 80.557 26.672

activities 30 77.304 1,440 93.372 89.821 34.145
1 30.462 3,123 59.043 49.905 28.101
2 43.544 2,530 80.558 72.422 24.646
3 48.318 2,348 87.304 80.869 20.121
4 51.745 2,211 88.791 82.872 18.654

0.25 24.602 3,328 49.583 36.353 25.489
0.5 48.772 2,338 85.655 79.643 25.258

0.75 50.547 2,270 89.723 84.356 20.758
1 50.149 2,276 90.735 85.716 20.017
5 31.851 3,069 76.684 70.006 10.714

10 45.553 2,476 79.643 72.077 20.211
15 48.146 2,339 79.423 71.860 28.533
20 48.519 2,328 79.947 72.125 32.064
low 39.394 3,640 78.472 71.500 15.385
mid 44.644 3,333 79.704 72.422 24.841
high 46.515 3,239 78.596 70.629 28.416

RC

nr(i)

Spread

RU

 

As expected, the RU and the RC are positively correlated with the problem 
complexity. Indeed, the more resources in the project and the tighter their 
constrainedness, the higher the probability for a resource conflict to occur. These 
effects are completely in line with literature (see e.g. [13]). The number of time slots 
is positively correlated with problem complexity. The spread of the time slots is 
positively correlated with the problem complexity. When time slots are close to each 
other, the selection of an activity time slot is rather straightforward since only one (or 
a few) are relevant.  

5   Conclusions and Areas for Future Research 

In this paper we presented a double branch-and-bound procedure for the resource-
constrained project scheduling problem with quality-dependent time slots. The depth-
first branch-and-bound strategy to solve renewable resource conflicts makes use of 
another branch-and-bound procedure to calculate the lower bounds at each node. The 
branching scheme has been extended with the subset dominance rule to prune the 
search tree considerably. The incorporation of quality-dependent time slots in project 
scheduling is, to the best of our knowledge, completely new. 

It is in our future intentions to broaden the research efforts of quality-dependent 
time slot selection in project scheduling. More precisely, the introduction of dynamic 
quality-dependent time slots should open the door to many other applications. In this 
case, each activity can be executed several times, preferably within the pre-defined 
time slots. Moreover, the different time slots per activity depend on each other, in the 

sense that the time interval ⎥⎦
⎤

⎢⎣
⎡ +−

ilil qq ,  depends on the finishing time of the activity in 

or around the previous time slot = ⎥⎦
⎤

⎢⎣
⎡ +

−
−

− 11, ilil qq . A typical example is a maintenance 
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operation that needs to be done within certain time limits. A second maintenance 
operation depends on the execution of the first one, resulting in a second time slot that 
depends on the starting time of the activity around the first time slot. The 
development of heuristic solution methods to solve larger, real-life problems instances 
also lies within our future research intentions. 
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