
M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3982, pp. 610 – 620, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Using Constraint Satisfaction Approach to Solve the 
Capacity Allocation Problem for Photolithography Area 

Shu-Hsing Chung1, Chun-Ying Huang1 and Amy Hsin-I Lee2 

1 Department of Industrial Engineering and Management, National Chiao Tung University, 
No. 1001, Ta Hsueh Road, Hsinchu, Taiwan, R.O.C. 

shchung@mail.nctu.edu.tw, cyhuang.iem90g@nctu.edu.tw 
2 Department of Industrial Management, Chung Hua University,  

No. 707, Sec.2, Wu Fu Road, Hsinchu, Taiwan, R.O.C. 
amylee@chu.edu.tw 

Abstract. This paper addresses the capacity allocation problem for photo- 
lithography area (CAPPA) under an advanced technology environment. The 
CAPPA problem has two characteristics: process window and machine 
dedication. Process window means that a wafer needs to be processed on 
machines that can satisfy its process capability (process specification). Machine 
dedication means that after the first critical layer of a wafer lot is being processed 
on a certain machine, subsequent critical layers of this lot must be processed on 
the same machine to ensure good quality of final products. A production plan, 
constructed without considering the above two characteristics, is difficult to 
execute and to achieve its production targets. Thus, we model the CAPPA 
problem as a constraint satisfaction problem (CSP), which uses an efficient 
search algorithm to obtain a feasible solution. Additionally, we propose an upper 
bound of load unbalance estimation to reduce the search space of CSP for 
searching an optimal solution. Experimental results show that the proposed 
model is useful in solving the CAPPA problem in an efficient way. 

1   Introduction 

Due to its diverse characteristics, such as reentry process, time-constrained operation 
and different batch sizes for machines, wafer fabrication has received a lot of research 
attention, especially in photolithography process [13, 14, 7, 10]. The photolithography 
process uses masks to transfer circuit patterns onto a wafer, and the etching process 
forms tangible circuit patterns onto the wafer chip. With the required number of 
processes in the photolithography, integrated circuitry products with preset functions 
are developed on the wafer.  

As wafer fabrication technology advances from micrometer level to nanometer 
level, more stringent machine selection restrictions, the so-called process window 
control and machine dedication control, are imposed on the production management of 
photolithography area for wafer lots.  

Process window constraint, also called equipment constraint, is related to the strict 
limitation to the choice of a machine to process higher-end fabrication technology in 
the process of a wafer lot to meet increasingly narrower line width, distance between 
lines, and tolerance limit. In other words, wafer lots could only be processed on 
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machines that meet certain process capability (process recipe or process specification). 
On the contrary, wafers that only need a lower-end fabrication technology have less 
stringent machine selection restriction. Due to the difference in adjustable ability 
among photolithography machines regarding process recipes, functions of various 
machines in fact vary to a certain extent even though they are grouped in the same 
workstation. Hence, the situation is that some machines can handle more process 
capabilities (simultaneously handle higher- and lower-end fabrication technology) 
while other machines can handle less process capabilities (only handle lower-end 
fabrication technology). Some related studies are as follows. Leachman and Carmon 
[9] and Hung and Cheng [5] use linear programming to obtain a production plan for 
maximizing the profit. Toktay and Uzsoy [12] transform the capacity allocation 
problem with machines’ capabilities constraint into maximum flow problem. However, 
only a single product type is considered in the study. 

Machine dedication constraint considers layer-by-layer process on wafers, in which 
the circuit patterns in the layers can be correctly connected in order to provide 
particular functions. If electrical circuits among the layers cannot be aligned and 
connected, this will cause defective products. The alignment precision provided by 
different machines varies to a certain extent, even for machines of the same model, due 
to some differences, which are referred to as machine difference. It has been stipulated 
that when the first critical operation of a wafer lot is done on a particular machine, the 
rest of its subsequent critical processes will need to be processed by the very same 
machine to avoid the increase in defective rate due to machine difference. A related 
study was done by Akçali et al. [1], in which a study was conducted on the correlation 
between photolithography process characteristics and production cycle time using a 
simulation model, and machine dedication policy was set as one of the experiment 
factors. Experimental results indicate that dedicated assignment policy has a remark- 
able impact on cycle time. 

With advanced fabrication technology, the impact of process window and machine 
dedication constraints on wafer fabrication is increasingly evident. Capacity require- 
ment planning is difficult because wafer fabrication has special characteristics of 
reentry and long cycle time, and the number of layers of products, required process 
window, number and distribution of critical layers are different. As a result, the 
effectiveness of production planning and scheduling system is seriously impacted if the 
constraints of process window and machine dedication are not considered.  

Up to now, the CAPPA problem has not been tackled except by Chung et al. [3], in 
which a mixed integer-linear programming (MILP) model is devised. However, a 
practical scale-sized problem may take an exponential time. In this research, we adopt 
the efficient constraint satisfaction approach, which treats load unbalance among 
machines as one of the constraints and obtain the optimal solution by constantly 
narrowing down the upper bound of the load unbalance. Because a relatively large 
amount of settings and long solving process may still be required, a load unbalance 
estimation to reduce the search space is also applied. 

In section 2, the MILP model, the constraint satisfaction problem, and the load 
unbalance estimation are introduced. Section 3 demonstrates the effectiveness of 
proposed model. Section 4 uses a real-world case to show the applicability of proposed 
model. In the last section, the research results are summarized. 
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2   Model Development 

Indices: 

i Index of order number, where i = 1, …, I. 
j Index of layer number, where j = 1, …, Ji. 
k Index of machine number in photolithography area, where k = 1, …, K. 
l Index of process capability number, where l = 1, …, L. 
t Index of planning period, where t = 1, …, T. 
r Index of ranking, where r = 1, …, L. 

Parameters: 

Akl = 1 if machine k has process capability l; 0, otherwise. 
ACkt Available capacity of machine k in planning period t. 
ALt Average capacity loading of workstation in planning period t. 
CLij = 1 if layer j of order i is a critical layer; 0, otherwise. 
CRijl = 1 if layer j of order i has a load on process capability l; 0, otherwise. 
CSrt Cumulative available capacity from the first to the r-th rank process 

capability. 
DClt Capacity requirement of process capability l in planning period t. 
DSlt Ratio of capacity requirement to available capacity of process capability l in 

planning period t. 
Ji Number of photolithography operations for order i. 
LTijt = 1 if layer j of order i has a load in planning period t; 0, otherwise. 
MLt The maximum loading level among machines in planning period t. 
pij Processing time of layer j of order i. 
SQ(r) Function of the processing capacity of the r-th rank. 
SClt Available capacity of process capability l in planning period t. 

Decision Variables: 

bik = 1 if the first critical layer of order i is assigned to machine k; 0, otherwise. 
+
ktu  Positive difference between utilization rate of machine k and average 

utilization rate of the entire workstation that machine k belongs to in planning 
period t. 

−
ktu  Negative difference between utilization rate of machine k and average 

utilization rate of the entire workstation that machine k belongs to in planning 
period t. 

xijk = 1 if layer j of order i is assigned to machine k; 0, otherwise. 

2.1    Mixed Integer-Linear Programming Model 

To solve the CAPPA problem, we need to know the load occurrence time of 
photolithography workstation for each layer of each order in the production system. An 
interview with several semiconductor fabricators found out that X-factor, the ratio of 
remaining time before delivery to processing time of an order, is used as a reference for 
controlling the production progress to make sure that the delivery of orders can be 
accomplished on time (see also [8]). With the information of X-factor, processing time 
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of an order, production plan and WIP level, the loading occurrence time of each order 
(LTijt) can be estimated. A MILP model is constructed as follows: 

 

Minimize ∑ ∑= =
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The objective function (1) is to balance the capacity utilization rates among 
machines. Constraint (2) ensures that each layer of an order, including new release 
orders and WIP orders, must be assigned to a machine k if it has a capacity request in 
this planning horizon. In the machine assignment, process window constraint must be 
considered. Constraint (3) is to make sure that each layer of an order can only be 
assigned to a particular single machine. Constraint (4) states the machine dedication 
control. If the first critical layer of order i is assigned to machine k for process, bik is set 
to one. Note that the orders in a planning horizon can either be orders planned to release 
or WIP orders that were released to shop floor in the previous planning horizon. 
Therefore, bik is a decision variable if the order is a planned-to-release order or a WIP 
order which its first critical layer has not been decided on a particular machine in 
previous planning horizon, and is a known parameter if the order is a WIP order which 
its first critical layer has been decided to process on machine k, but unfinished, in the 
previous planning horizon. Constraint (5) calculates the difference between the 
utilization rate of machine k and the average utilization rate of the entire workstation in 
each period of the planning horizon. The detail definition of tAL  is shown as equation 
(14) and (15) in section 2.3. Constraint (6) and (7) limit the upper value of +

ktu  and −
ktu , 

respectively. 

2.2   Constraint Satisfaction Problem (CSP) 

Constraint satisfaction problem (CSP) searches for a feasible solution which satisfies 
all constraints under a finite domain of variables. CSP originated from artificial 
intelligence (AI) in computer science. Through consistency checking techniques, 
constraint propagation and intelligent search algorithms, CSP has a relatively high 
solving efficiency in a combinatorial optimization problem, and it has been widely 
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applied in many research fields, such as vehicle routing related problem, production 
scheduling, facility layout and resource allocation [2, 11, 4]. 

Although CSP algorithm primarily aims to derive a feasible solution, it can be 
adjusted to search for an optimal solution. A feasible solution is generated by CSP first, 
then the feasible solution is set as the upper bound of the objective function (for a 
minimization problem), and such a relationship is treated as a constraint to solve the 
new CSP. With the continuation of lowering the upper bound of the objective function, 
the optimal solution can finally be obtained as the solution of the previous CSP when 
the current CSP can no longer be solved [2]. In other words, by deleting the objective 
function and solving the constraints part, we could convert the problem into a CSP. If 
the objective function is added into the constraints by setting its upper bound, an 
optimal solution for the CAPPA problem can be obtained by constantly reducing the 
upper bound of the objective function (E), as shown by equation (12).  

Euu
t k ktkt ≤+∑∑ −+  )(  (12) 

Chung et al. [3] stated that loading balance is a critical factor for maintaining 
stability of production cycle time. Thus, we believe that the balance of loading among 
machines is more suitable than the emphasis of the minimization of the sum of the 
differences among machine utilization rates in a workstation. As a result, constraint 
(13) replaces constraint (12) in the solving of the CAPPA by CSP. For a more 
convenient explanation, we refer a CSP to search for a feasible solution as I-CSP 
model, and a CSP to search for an optimal solution as O-CSP model. 

tktkt Euu ≤+ −+      , for each k, each t (13) 

When CSP is applied to generate an optimal solution for the CAPPA problem  
(i.e. O-CSP model), the number of iterations for upper bound of load unbalance is 
difficult to estimate. In consequence, the expectation of a fast-solving and efficient 
algorithm from CSP may not be attained. Hence, we present a heuristic method to 
estimate the value of Et (upper bound of load unbalance, UBLU). With a good 
estimation of the upper bound of load unbalance, the search space of O-CSP can be 
reduced, and the efficiency and quality of solution from CSP to solve the CAPPA 
problem can be increased. 

2.3   Upper Bound of Load Unbalance (UBLU) Estimation 

Conventionally, the average load level (ALt) of a workstation in a planning period is 
obtained by dividing total load by the number of machines, and the maximum loading 
level (MLt) among the machines is assumed equal to the average loading level (ALt). 
This calculation is based on the assumption that all machines are identical, that is, 
machines have identical process capability. 

Since the types and amount of process capabilities are not exactly the same in the 
CAPPA problem, the maximum loading level may not equal to the average loading 
level. Therefore, we propose a two-phase capacity demand-supply assessment, which 
includes an independent and a dependent assessment, to estimate the maximum loading 
level among the machines. The results are utilized as the basis for setting the UBLU in 
equation (13). The concept is described as follows: 
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Phase I. Independent capacity supply assessment 
The independent assessment examines whether capacity requirement is less than 
capacity supply for each process capability l. Capacity supply is the sum of the 
maximum loading level (MLt) of each machine to handle this process capability, and 
the initial value of MLt is set to be the average capacity loading (ALt) in a workstation. If 
capacity demand is less than supply, the independent assessment is passed, and we can 
go to the dependent assessment. Otherwise, the maximum loading level of all machines 
needs to be raised to satisfy the capacity requirement of process capability l.  

Phase II. Dependent capacity supply assessment 
Since Phase I evaluates the capacity demand-supply without considering the fact that 
machines may possess several process capabilities, this phase uses an iterative 
calculation to assess whether the overall capacity supply is sufficient based on the 
maximum loading level obtained from Phase I. First, the ratios (DSlt) of capacity 
requirement to capacity supply of each process capability are ranked from large to 
small, and the sequence is SQ(r). Then, whether cumulative capacity requirement is 
less than cumulative capacity supply is examined according to the ranking of DSlt (that 
is, SQ(r)). If the answer is affirmative, the capacity supply is sufficient to meet the 
capacity requirement with the consideration of the types and amount of process 
capabilities of each machine. Otherwise, further adjustment of the maximum loading 
level is required to meet the cumulative capacity demand. 

The maximum loading level among the machines obtained after the two-phase 
capacity supply assessment is set as a basis for setting the UBLU. Followings are the 
detail computation steps: 

Capacity requirement of each process capability 
Step 1: Calculate capacity requirement (DClt) of process capability in each planning 

period within the planning horizon. 

∑ ∑=
i j ijtijlijlt  LT CRpDC )(   , for each l, each t (14) 

Step 2: Calculate average capacity loading (ALt) of machines in photolithography 
workstation in each planning period. 

KDCAL
l ltt ∑=   , for each t (15) 

Phase I. Independent capacity supply assessment 
Step 1: Set t = 1, l = 1. 
Step 2: Set MLt = ALt . 
Step 3: Verify if independent capacity supply of process capability l is sufficient in 

planning period t. If yes, then go to step 5; else go to step 4. 

ltlt SCDC  ≤  (16) 

    where 

∑×=
k kltlt AMLSC  
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Step 4: Adjust the maximum loading level (MLt) to satisfy capacity requirement of 
process capability l. 

∑−+=
k klltlttt ASCDCMLML )(  (17) 

Step 5: Check if l = L. If yes, then go to step 6; else let l = l + 1 and go to step 3. 
Step 6: Check if t = T. If yes, then end of Phase I; else let t = t + 1, l = 1, and go to 

step 2. 

Phase II. Dependent capacity supply assessment 
Step 1: Set t = 1. 
Step 2: Calculate the ratio (DSlt) of each process capability. 

)( ∑×=
k kltltlt AMLDCDS   , for each l (18) 

Step 3: Rank the values of all DSlt in planning period t from large to small. Use r to 
represent the rank and SQ(r) to represent the r-th process capability.  

Step 4: Set r = 1. 
Step 5: Calculate whether dependent capacity supply is sufficient. If equation (19) is 

satisfied, then go to step 7; else go to step 6. 

rt
r

r trSQ CSDC   
1'  ),'( ≤∑ =  (19) 

   where 

{ }{ }∑ ∑ =×=
k

r

r rSQktrt AMLCS 0,max,1 min  
1' )'(,  

 

Step 6: Adjust the maximum loading level (MLt) to satisfy cumulative capacity 
requirement. Then go to step 7. 

rtrt
r

r trSQtt CSCSDCMLML ) (  
1'  ),'( −+= ∑ =  (20) 

Step 7: Check if r = L. If yes, then go to step 8; else let r = r + 1 and go to step 5. 
Step 8: Check if t = T. If yes, then end of Phase II; else let t = t + 1, and go to step 2. 

Setting the upper bound of load unbalance (UBLU) 
After the two-phase assessment above, the upper bound of load unbalance can be set as 
(MLt - ALt)/ALt. However, considering the processing time for each layer of each 
product is not identical and is not divisible. It is revised as follows: 

{ }
⎭⎬
⎫

⎩⎨
⎧ −=

∀ tij
ji

tttt ALpALALMLE
 , 

min  ,  )(max  (21) 

3   Comparisons Among MILP, I-CSP, and O-CSP Models 

A simple example is presented here to compare the performance between MILP, I-CSP, 
and O-CSP models. Consider a production environment with three machines, M1, M2 
and M3, and each machine possesses different process capabilities as shown in Table 1. 
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Table 1. Process capability of machines 

Process capability Machine 
No. 1 2 3 4 
1 1* 1 0 0 
2 0 1 1 0 
3 0 1 1 1 

* 1 if the machine has this certain process capability; 0, otherwise. 

Table 2. Processing time, loading occurrence time, process window constraint and critical 
operation of orders 

Layer Number Order 
No. 1 2 3 4 5 6 7 
1 12,1,1,0* 15,1,3,1 19,2,2,0 12,2,3,1 14,3,2,0 - - 
2 11,1,1,0 16,1,3,1 18,2,2,0 11,2,3,1 9,3,2,0 15,3,3,1 17,3,1,0 
3 13,1,2,0 15,1,3,0 10,2,4,1 13,2,2,0 20,3,4,1 12,3,3,0 - 
4 12,1,2,0 14,2,4,1 14,2,2,0 13,2,4,1 12,3,3,0 15,3,2,0 - 
5 13,1,2,0 13,1,3,0 19,1,4,1 12,2,3,0 13,2,4,1 12,3,2,1 16,3,2,0 

* processing time (hr), load occurrence time (week), required process capability, whether a 
  critical operation (1: critical operation; 0: non-critical operation), respectively. 

Table 3. Performance of different solving models 

 [k, t] 
Model 

 [1, 1] [2, 1] [3, 1] [1, 2] [2, 2] [3, 2] [1, 3] [2, 3] [3, 3] 
MILP (1) +

ktu  0.0099 0.0000 0.0000 0.0019 0.0000 0.0019 0.0000 0.0039 0.0000 
0.03571 (2) −

ktu  0.0000 0.0019 0.0079 0.0000 0.0039 0.0000 0.0019 0.0000 0.0019 
0.282 (3)3 0.0099 0.0019 0.0079 0.0019 0.0039 0.0019 0.0019 0.0039 0.0019 

 (4)4 0.0099 0.0039 0.0039 
 (5)5 1.6632 0.6552 0.6552 

I-CSP (1) +
ktu  0.4623 0.0000 0.0000 0.3591 0.0000 0.0000 0.5634 0.0000 0.0000 

2.7694 (2) −
ktu  0.0000 0.1865 0.2757 0.0000 0.0634 0.2956 0.0000 0.2817 0.2817 

0.00 (3) 0.4623 0.1865 0.2757 0.3591 0.0634 0.2956 0.5634 0.2817 0.2817 
 (4) 0.4623 0.3591 0.5634 
 (5) 77.6664 60.3288 94.6512 

O-CSP (1) +
ktu  0.0099 0.0000 0.0000 0.0019 0.0000 0.0019 0.0000 0.0039 0.0000 

0.0357 (2) −
ktu  0.0000 0.0019 0.0079 0.0000 0.0039 0.0000 0.0019 0.0000 0.0019 

0.30 (3) 0.0099 0.0019 0.0079 0.0019 0.0039 0.0019 0.0019 0.0039 0.0019 
 (4) 0.0099 0.0039 0.0039 
 (5) 1.6632 0.6552 0.6552 

1 Objective function value. Notice the objective function value of I-CSP and O-CSP is the sum of ( −+ + ktkt uu ). 
2 Computational time (sec). Notice the time of O-CSP is the sum of solving time of the 15 iterations in Table 4. 
3, 4, 5 (3)=(1)+(2). (4) is the maximum value of (3) under t. (5)=(4)×available capacity (168 hours/period). 

There are five orders to be released, and the information of processing time (hrs), 
loading occurrence time (week), required process capability and critical layer process 
are shown in Table 2. The commercial software ILOG OPL 3.5 [6] is utilized to solve 
the simplified example by three different models: MILP model, I-CSP model and 
O-CSP model. The results are shown in Table 3. 

Even though I-CSP model uses the least amount of solving time among the three 
models, its objective function value (2.7694) and workstation utilization rate difference 
(maximum difference of 0.5634) are the worst. As an extension of I-CSP model,  
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Table 4. Computation process of O-CSP in solving the simple example 

# of 
iterations 

UBLU Objective 
function value 

Solving time Maximum 
difference1 

1 - 2.7694 0.00 0.5634 
2 0.5634 1.6782 0.02 0.3432 
3 0.3432 1.3051 0.02 0.2599 
: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

6 0.2480 0.8924 0.03 0.1865 
7 0.1865 0.6502 0.02 0.1448 
8 0.1448 0.6146 0.02 0.0932 
: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

14 0.0277 0.1304 0.02 0.0218 
15 0.0218 0.0357 0.05 0.0099 
16 0.0099 no feasible solution 

1 The maximum value of ( −+ + ktkt uu ). 

O-CSP can constantly adjust the UBLU by using equation (13) (see Table 4 for 
computation process) to eventually derive at an optimal solution (same as the objective 
function value of MILP model). One drawback of the model is that the required 
iterations of adjustments are not estimable. With the upper bound of load unbalance 
estimation introduced in section 2.3, we could set the upper bound of load unbalance to 
0.1811. Comparing with the data in Table 4, 0.1811 is the upper bound for the 7th 
iteration in the O-CSP model. In consequence, the adoption of the setting of UBLU to 
the O-CSP model can effectively reduce the number of iterations. 

4   A Real-World Application 

To verify the applicability of the proposed model, a real-world case investigated in [3], 
is examined here. In this wafer fab, there are ten steppers and five different process 
capabilities. Five types of products, A, B, C, D and E, are manufactured, and each 
product requires 17, 19, 16, 20 and 19 times of photolithography operations respect- 
tively. The total required photolithography operation time for a product is in a range 
between 597 to 723 minutes. Product A and B require fabrication technology of 0.17 
μm, while Product C, D and E adopt 0.14 μm fabrication technology. Production 
planning and control department sets the planning horizon to be 28 days and planning 
period to be 7 days. In the planning horizon, there are 474 lots that are expected to be 
released. Manufacturing execution system (MES) reveals that there are currently 204 
lots of WIP on floor. 

The CAPPA problem is solved by O-CSP using software ILOG OPL 3.5 [6], and the 
results are shown in Table 5. Through the upper bound of load unbalance estimation, 
the CAPPA problem could have a fairly balanced capacity allocation result (i.e. MLt = 
ALt), and the UBLU is set to 0.0014 (=15/10800, where minimum processing time is 15 
minutes and available capacity for machines in a planning period is 10,800 minutes.) 
Table 5 shows that the objective function value derived from the CAPPA problem is 
0.0205 and the required solving time is 475.22 sec. This result is superior than that 
generated by Chung et al. [3] that the objective function value and required solving 
time are 0.0291 and 5.3878 hours respectively. 
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Table 5. Objective function value, maximum difference and solving time under different UBLU 

UBLU 
Objective 

function value 
Maximum 
difference1 

Solving time 
(sec.) 

－ 9.4434 0.9994 125.94 
: 
: 

: 
: 

: 
: 

: 
: 

0.0014 0.0205 0.0013 475.22 
0.0013 0.0167 0.0010 576.53 
0.0010 0.0141 0.0008 851.02 
0.0008 0.0116 0.0007 903.43 
0.0007 0.0107 0.0006 973.98 
0.0006 0.0084 0.0005 3477.64 
0.0005 no feasible solution 

1 The maximum value of ( −+ + ktkt uu ). 

When the UBLU (0.0014) is used as a basis of O-CSP for solving the CAPPA 
problem, the required number of iterations is only six times. This indicates that the 
setting of UBLU can effectively reduce the search space of O-CSP. Such a solving 
process possesses a very good quality and has its application value in real practice. 

5   Conclusion 

In this paper, we consider the capacity allocation problem with the process window and 
machine dedication constraints that are apparent in wafer fabrication. We model the 
CAPPA problem as a constraint satisfaction problem (CSP), which uses an efficient 
search algorithm to obtain a feasible solution. A relatively large amount of setting and 
calculation process is required in CSP because it treats the objective function as one of 
the constraints for searching an optimal solution while the bound of objective function 
is narrowed down through an iterative process. Hence, we propose a method for setting 
the upper bound of load unbalance among machines, and the search space and the 
number of computations can be decreased effectively in the CAPPA problem. The 
result shows that a very good solution can be obtained in a reasonable time and can be a 
reference for wafer lot release and dispatching of photolithography machines, and the 
model thus is valuable in real world application. 
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