
M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3982, pp. 38 – 47, 2006.
© Springer-Verlag Berlin Heidelberg 2006

PGNIDS(Pattern-Graph Based Network Intrusion
Detection System) Design*

Byung-kwan Lee, Seung-hae Yang, Dong-Hyuck Kwon, and Dai-Youn Kim

Dept of Computer Engineering, Kwandong University, Korea
bklee@kd.ac.kr, yang7177@cho.com, taz0108@hotmail.com,

dy2300@freechal.com

Abstract. PGNIDS(Pattern-Graph based Network Intrusion Detection System)
generates the audit data that can estimate intrusion with the packets collected
from network. An existing IDS(Intrusion Detection System), when it estimates
an intrusion by reading all the incoming packets in network, takes more time
than the proposed PGNIDS does. As this proposed PGNIDS not only classifies
the audit data into alert and log through ADGM(Audit Data Generation
Module) and stores them in the database, but also estimates the intrusion by
using pattern graph that classifies IDPM(Intrusion Detection Pattern Module)
and event type, Therefore, it takes less time to collect packets and analyze them
than the existing IDS, and reacts about abnormal intrusion real time. In
addition, it is possible for this to detect the devious intrusion detection by
generating pattern graph.

1 Introduction

PGNIDS is proposed to design network intrusion detection system based on pattern
graph. When information is exchanged, PGNIDS can detect illegal connectivity and
intrusion-related behavior such as DoS(Denial of Service) attack and port scan.

2 Related Works[12]

2.1 IDS Analysis

There are two primary approaches to analyzing events to detect attacks: misuse
detection and anomaly detection. Misuse detection, in which the analysis targets
something known to be "bad", is the technique used by most commercial systems.
Anomaly detection, in which the analysis looks for abnormal patterns of activity, has
been, and continues to be, the subject of a great deal of research. Anomaly detection
is used in limited form by a number of IDSs.

* This work was supported by grant No. B1220-0501-0315 from the University fundamental

Research Program of the Ministry of Information & Communication in Republic of Korea.

 PGNIDS(Pattern-Graph Based Network Intrusion Detection System) Design 39

2.2 The Kind of Intrusion Detection

Some IDSs analyze network packets captured from network backbones or LAN
segments, to find attackers. Other IDSs analyze sources information generated by the
operating system of application software for signs of intrusion.

2.2.1 Network-Based IDSs
The majority of commercial intrusion detection systems are network-based. These
IDSs detect attacks by capturing and analyzing network packets. Listening on a
network segment or switch. the network-based IDS can monitor the network traffic
affecting multiple hosts that are connected to the network segment, thereby protecting
those hosts. Network-based IDSs often consist of a set of single-purpose sensors or
hosts placed at various points in a network. These units monitor network traffic,
performing local analysis of that traffic and reporting attacks to a central management
console. As the sensors are limited to running the IDS, they can be more easily secured
against attack. Many of these sensors are designed to run in "stealth" mode, in order to
make it more difficult for an attacker to determine their presence and location.

2.2.2 Host-Based IDSs
Host-based IDSs operate on information collected from within an individual computer
system. This vantage point allows host-based IDSs to analyze activities with great
reliability and precision, determining exactly which processes and users are involved in
a particular attack on the operating system. Furthermore, unlike network-based IDSs,
host-based IDSs can "see" the outcome of an attempted attack, as they can directly
access and monitor the data files and system processes usually targeted by attacks.

2.2.3 Application-Based IDSs
Application-based IDSs are a special subset of host-based IDSs that analyze the
events transpiring within a software application. The most common information
sources used by application-based IDSs are the application's transaction log files. The
ability to interface with the application directly, with significant domain or
application-specific knowledge included in the analysis engine, allows application-
based IDSs to detect suspicious behavior due to authorized users exceeding their
authorization. This is because such problems are more likely to appear in the
interaction between the user, the data, and the application.

3 PGNIDS Design

As shown Fig.1 PGNIDS consists of DCM(Data Collection Module), ADGM(Audit
Data Generation Module), IDPGM(Intrusion Detection Pattern Generation Module),
and PGGM(Pattern Graph Generation Module). DCM collects all the incoming
packets in Network. ADGM generates the audit data that decides an intrusion and
classifies them according to behavior characteristics. IDPGM generates patterns with
the classified audit data. PGGM generates pattern graphs with the patterns that
IDPGM generates and decides whether it is an intrusion with them.

40 B.-k. Lee et al.

3.1 Network-Based DCM

PGNIDS in this paper uses libpcap which is called packet capture library provided in
LINUX. libpcap captures and filters packets. The necessary contents from the filtered
packets are extracted according to packet filtering rule in order to generate only audit
data that PGNIDS requires.

struct pcap {
 int snapshot;
 int linktype;
 int tzoff;
 int offset;

 struct pcap_sf sf;
 struct pcap_md md;
 /* Read buffer. */
 int bufsize;
 u_char *buffer;
 u_char *bp;
 int cc;
 /* Place holder for

pcap_next().
*/
 u_char *pkt;
 /* Placeholder for filter

code if bpf not in kernel. */
 struct bpf_program fcode;

 char
errbuf[PCAP_ERRBUF_SIZE];

 }

 typedef struct pcap pcap_t;

Fig. 1. PGNIDS design Fig. 2. The algorithm for capturing packets using
libpcap

3.1.1 Packet Capture
Packet capture confirms the contents of all the incoming packets in network. This can
apply to various types such as monitoring, network debugging and sniffering for statistics
and security for network use. The method capturing packets by using libpcap is as
follows. First, the device(NIC) or the file which will be captured is opened, the packets
are analyzed, and the device or the file is closed. Libpcap provides various interfaces
according to its function. Fig .2 shows the algorithm for capturing packets using libpcap.

3.1.2 Packet Filtering Rule
The rule of packet filter uses source address, source port number, destination address,
destination port number, protocol flag, and activity(pass/reject). With these fields,
sequential ACL(Access Control List) for filtering packets has to be written. Screening
router is the software that decides activity, that is, pass or reject in ACL sequentially.
The filtering rule consists of one or several primitives and its format is shown in
table. 1.

 PGNIDS(Pattern-Graph Based Network Intrusion Detection System) Design 41

Table 1. The format of packet filter rule

 action [direction] [log] [quick] [on interface] [af] [proto protocol] \
 [from src_addr [port src_port]] [to dst_addr [prot dst_port]] \
 [flag tcp_flags] [state]

− Action. The action to be taken for matching packets, either pass or block.
The default reaction may be overridden by specifying either block drop or block
return.

− Direction. The direction the packet is moving on an interface, either in or out.
− Log. Specifies that the packet should be logged via pflogd. If the rule specifies

the keep state, modulate state, or syn proxy state option, then only the packet
which establishes the state is logged. To log all packets regardless, use log-all.

− Quick. If a packet matches a rule specifying quick, then that rule is considered
the last matching rule and the specified action is taken.

− Interface. The name or group of the network interface that the packet is moving
through. An interface group is specified as the name of the interface but without
the integer appended.

− Af. The address family of the packet, either inet for IPv4 or inet for IPv6.
− Protocol. The layer 4 protocol of the packet. : tcp, udp, icmp, icmp6, a valid

protocol name from /etc/protocols, a protocol number between 0 and 255, a set
of protocols using a list.

− src_addr, dst_addr. The source/destination address in the IP header.
− src_port, dst_port. The source/destination port in the layer 4 packet header.
− tcp_flags. Specifies the flags that must be set in the TCP header when using

proto tcp. Flags are specified as flags check/mask.
− State. Specifies whether state information is kept on packets matching this rule.

3.1.3 Packet Filtering Flow Chart
Packet filtering rules are stored in a particular order and is applied to the packets in
that order. Fig.3 shows the flow of packet filtering.

Fig. 3. Packet filter operational order

42 B.-k. Lee et al.

3.2 ADGM(Audit Data Generation Module)

As it is not proper to use the collected data for audit data, ADGM(Audit Data
Generation Module) is used to extract only audit data that can decide an intrusion
from the collected packets. First, ethernet frame in packet filtering must be
divided into IP or ARP packet separately in ethernet layer. In IP layer, IP packet
is divided into ICMP, TCP, or UDP separately. That is, in this paper ADGM classifies
IP packet into TCP, UDP and, ICMP, generates the audit data and stores them in the
database to detect an intrusion. Fig .4 passes the packets of unsigned char type to the
pointer of ethernet header. If the packet is IP protocol, Fig .4 shows that it is
transferred to the pointer of IP header and is classified into TCP, UDP, and ICMP.

void packet_analysis(unsigned char *user, const struct pacap_pkthdr *h,
 const unsinged char *p)
 {

unsigned int length = h->len;
struct ether_header *ep;
unsinged short ether_type;

 length -= sizeof(struct ether_header);
 ep = (struct ether_header *)p;
 p = += sizeof(struct ether_header)
 …

 if (ip->protocol == IPPROTO_TCP) {//TCP protocol
 tcph = (struct tcphdr *)(P + (iph->ihl*4) + (tcph->doff * 4));
 tcpdata = (unsigned char *) (p + (iph->ihl * 4) + (tcph->doff * 4));
}
 …
 if (ip->protocol == IPPROTO_UDP) {//UDP protocol
 udph = (struct udphdr *) (p + iph->ihl *);
 udpdata = (unsigned char *) (p_iph->ihl * 4) + 8;
 }
 …
 if (ip->protocol == IPPROTO_ICMP) {//ICMP protocol
 icmp = (struct icmp *) ([+iph->ihl * 4);
 icmpdata = (unsigned char *) (p + iph->ihl*4) + 8;
 …
 }

Fig. 4. Packet Analysis Algorithm

3.3 IDPGM(Intrusion Detection Pattern Generation Module)

The Intrusion detection pattern proposed in this paper is based on that of Snort.

3.3.1 Snort
Snort is a lightweight network IDS that real time traffic analysis and packet logging
can be done on the IP network. In addition, it is network sniffer based on libpcap.

 PGNIDS(Pattern-Graph Based Network Intrusion Detection System) Design 43

That is, it is a tool which monitors, writes, and alarms network traffic that matches
intrusion detection rule.

Snort can do protocol analysis, contents detection and the matching and detect the
various attacks and the scans such as overflow, stealth port scan, CGI attack, SMB
detection.

3.3.2 IDPGM
Intrusion detection pattern is based on that of Snort and Snort consists of the packets
of TCP, UDP and ICMP, etc. These packets generates pattern format with
backdoor.rules, ddos.rules, dns.rules, dos.rules, exploit.rules, finger.rules, ftp.rules,
icmp.rules, info.rules, misc.rules, netbios.rules, policy.rules, rpc.rules, rservices.rules,
scan.rules, smtp.rules, sql.rules, telnet.rules, virus.rules, and web-cgi.rules etc. These
pattern format is shown in table. 2.

Table 2. Pattern format

alert tcp $EXTERNAL_NET any ->
$HOME_NET 80 (content:"|90C8 C0FF FFFF|/bin/sh" msg:
"IMAP buffer overflow!";) �

The generated pattern proposed in this paper is stored in a database mysql in order
to be used for intrusion detection. Fig .5 shows the structure of TCP data.

{
unsigned short s_port; // source port number
unsigned short d_port; // destination port number
 int flat; // TCP flag
char content[200]; // data
int c_size; // content length of content
int p_size; // size of payload
char msg[200]; // message
}

Fig. 5. Structure of TCP data

struct pattern_graph
{
char p_name[50] // name of pattern graph
unsigned short n_id; // node number
unsigned short s_port; // source port number
char content[200]; // data
char msg[200]; // message
}

Fig. 6. Structure of Pattern Graph

44 B.-k. Lee et al.

3.4 PGGM(Pattern Graph Generation Module)

The patterns generated by IDPGM are stored in a database. PGGM generates pattern
graphs by analyzing the relationship between patterns, stores them in the database,
and prevents a devious intrusion by using the generated pattern graph.

3.4.1 Pattern Detection Algorithm
The Proposed PGNIDS changes AS(Attack Specification Language) to the pattern
that is the data structure suitable for PGNIDS to process attacks. The pattern graph
is to draw the process of Scenario in tree type and the last node of the tree has no
transmission event. Each node of pattern graph means a message. Table. 3 shows the
type of message.

Table 3. Message Format

type � <node ID, timestamp, attribute price> �
node ID � Each node number in pattern graph �
timestamp � Event occurrence hour �
attribute price � Attribute price of event �

pattern_detection(attack_scenario) {
if

(search_DB(attack_scenario)==FALSE) {
i=0;
while(!EOF) {
read(attack_scenario);
create_constrain(node, i);
message = create_message(node, i);
if event(send) {
save(event_pool, message); }
else {
save(pass_pool, message); }

create_graph
(pattern, event_pool, pass_pool, i);
i = i+1; }
return(pattern); }
}

Fig. 7. Pattern graph generation flow
chart

Fig. 8. The algorithm detecting pattern

The message of each node, when the event of the node is transmitted, is stored in
the event pool and the rest of events are stored in the pass pool. In the course of
changing to pattern graph, some limitations about each node happens. At this time the
conditions of the limitations consists of the static limitation condition that has a
constant value and the dynamic limitation condition that has a variable value.
Fig. 7 shows the flow chart of pattern graph. Fig. 8 shows the algorithm detecting
pattern.

 PGNIDS(Pattern-Graph Based Network Intrusion Detection System) Design 45

When pattern detection algoritm is applied by using the attack scenario of Fig. 9,
the generated pattern graph is shown in Fig. 10.

ATTACK "sample" [a, b, c]
a {
send(c) : e1[$x=a0;] }
b {
e2[$y = al;]
send(c) : e3[a2 == $x;] }
c {
e4[]
e5[a3 == $y;]}

Fig. 9. Attack scenario Fig. 10. Pattern graph

4 PGNIDS Simulation

The objects of PGINDS proposed in this paper are all the packets on the network and it
is possible for PGNIDS to capture packets under TCP, UDP, and ICMP environment
by using packet filter. As PGNIDS performs real-time network, it reduces the
collection of packets and analysis time and reacts to abnormal attack real-time.

Fig. 11. Network utilization analysis

Table 4. The number of event according
data type

Event
Type �

24 hours �

alert � 32,448 �
Log � 33,127 �

4.1 The Analysis of Network Utilization

Fig. 11, when PGNIDS reports the detection information to a server, shows the mean
delay time of each event. That is, Fig. 11 shows the delay of transmission packet
according to the change of network utilization and that its delay is increasing rapidly
over utilization 0.8.

4.2 The Analysis According to Event Type

Table. 4 shows the analysis according to event type processed by packet filtering rule
for 24 hours in PGNIDS. Fig. 12 shows the delay of alert and log event. The delay
about each event shows the increasing trend according to the network utilization.

46 B.-k. Lee et al.

4.3 The Analysis Using Pattern Graph

PGNIDS generates pattern graph by using each event, stores it in a database, and
detects a devious attack by making pattern graph with the relationship between each
event. Fig. 13 shows the detection ration of devious attack according to network delay
ratio by using pattern graph between each event.

Fig. 12. The analysis according to event type Fig. 13. The analysis with a pattern graph

5 Conclusion

PGNIDS is the system that decides an intrusion by collecting network packets real
time. An existing IDS, when it estimates an intrusion by reading all the
incoming packets in network, takes more time than the proposed PGNIDS does. As
this proposed PGNIDS not only classifies the audit data into alert and log through
ADGM and stores them in the database, but also estimates the intrusion by using
pattern graph that classifies IDPM and event type, Therefore, it takes less time to
collect packets and analyze them than the existing IDS, and reacts to abnormal
intrusion real time. In addition, it is possible for this to detect the devious intrusion
detection by generating pattern graph.

References

1. Byung-Kwan Lee, Eun-Hee Jeong, “Internet security”, Namdoo Books, 2005
2. LBNL's Network Research Group
3. http://www.linux.co.kr/
4. Kwang-Min Noh, It uses pacp library from linux and packets it catches and it sees v0.3,

2000.09.14, Linux Korean alphabet document project
5. http://www.snort.org
6. http://www.silicondefense.com/snortsnarf
7. http://my.dreamwiz.com/winmil/security/snort.htm
8. http://www.whitehats.com/

 PGNIDS(Pattern-Graph Based Network Intrusion Detection System) Design 47

9. Tsutomu Tone, "1% network principal which decides a success and the failure“,
Sungandang, 2004

10. http://www.windowsecurity.com
11. Dai-il Yang, Seng-Jea Lee “Information security surveying and actual training”, Hanbit

Media, 2003
12. Rebecca Bace, Peter Mell, NIST Special Publication on Intrusion Detection Systems
13. http://www.openbsd.org/faq/pf/filter.html

	Introduction
	Related Works[12]
	IDS Analysis
	The Kind of Intrusion Detection

	PGNIDS Design
	Network-Based DCM
	ADGM(Audit Data Generation Module)
	IDPGM(Intrusion Detection Pattern Generation Module)
	PGGM(Pattern Graph Generation Module)

	PGNIDS Simulation
	The Analysis of Network Utilization
	The Analysis According to Event Type
	The Analysis Using Pattern Graph

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

