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Abstract. An encrypted email is sent from Bob to Alice. A gateway
wants to check whether a certain keyword exists in an email or not for
some reason (e.g. routing). Nevertheless Alice does not want the email
to be decrypted by anyone except her including the gateway itself. This
is a scenario where public key encryption with keyword search (PEKS)
is needed. In this paper we construct a new scheme (KR-PEKS) the K-
Resilient Public Key Encryption with Keyword Search. The new scheme
is secure under a chosen keyword attack without the random oracle. The
ability of constructing a Public Key Encryption with Keyword Search
from an Identity Based Encryption was used in the construction of the
KR-PEKS. The security of the new scheme was proved by showing that
the used IBE has a notion of key privacy. The scheme was then modified
in two different ways in order to fulfill each of the following: the first
modification was done to enable multiple keyword search and the other
was done to remove the need of secure channels.

1 Introduction

Bob wants to send Alice confidential emails and in order to ensure that no one
except her can read it, he encrypts the emails before sending them so that Alice,
and her alone, will possess the capability of decrypting it. Consider the scenario
where Alice would like to download only the urgent emails to her mobile, leaving
the rest to check later from her computer. Alice requires access to the email server
(gateway) so that she can search her emails for the keyword “urgent” prior
to downloading them. The server should facilitate the search for this keyword
without being able to decrypt Alice’s private emails.

This scenario was first introduced in Boneh et al.’s paper [4]. They presented
a general scheme called PEKS where Alice gives trapdoors for the words she
wants the gateway to search for. The trapdoors come in the form of some kind
of data that is used to test the existence of keywords within an email without
revealing any other information(Section 3).

In [4] the authors constructed several schemes based on different security
models but these schemes either had some limitation on the number of keywords
to search for or were not secure enough (ie. were proven secure in random oracle).

In [2] the authors pointed out two important features that were not covered
in [4]. The first one was the ability to search for multiple keywords. The second
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characteristic, put forwards in Section 3.1 of this paper, was elimination of the
requirement of secure channels, for sending trapdoors. These two new features
issues are explained in details in the paper and new schemes to facilitate them
will be introduced in this report paper(Section 3.6 and 3.7).

The ability of constructing IBE from PEKS was explored in [4]. IBE is a
public key encryption where the public key is a direct product of the identity of
the user [12] [5]. Building a PEKS from an IBE needs the latter to have some
extra properties such as the notion of key privacy. Key privacy is a security
property that implies that an adversary should not be able to guess which ID
from a set of ID’s was used in encrypting some email(Section 3.3).

Heng and Kurosawain [10] proposed a scheme called K-resilient IBE, this
scheme does not lead to breach of privacy [1]. The basic K-resilient IBE was
used to construct a PEKS that is fully secure (Section 3.4).

The next Section entails some important concepts that form the foundation
for our work. Following that, Section 3 explains the PEKS scheme, its security
notions, the relation with IBE, and last but not least the construction of a new
PEKS scheme using the K-Resilient IBE was introduced. The last Section in this
paper concludes the results of our work.

2 Preliminaries

In this Section we will go through some definitions that will be used further in
this document.

2.1 Decisional Diffie-Hellman

The Decisional Diffie Hellman (DDH) Problem [7] is the ability to distinguish
between 〈g, ga, gb, gab〉 and 〈g, ga, gb, T 〉 where a, b, c ∈ Zq ,g ∈ Gq, Gq is a group
of prime order q, and T is a random element that belongs to Gq.

The quadruple 〈g, ga, gb, gab〉 is called the real quadruple and the quadruple
〈g, ga, gb, T 〉 is called the random quadruple. So if we have an adversary D that
takes X, Y, T ∈ Gq and returns a bit d ∈ {0, 1}, consider the following two
experiments.

For both experiments X ← gx; Y ← gy

•Expddh−real
Gq,D •Expddh−rand

Gq,D

T ← gxy A random T ∈ Gq

d ← D(q, g, X, Y, T ) d ← D(q, g, X, Y, T )
Return d Return d

The advantage of the adversary D in solving the Diffie-Hellman is defined as
follows:-

Advddh
Gq ,D = Pr[Expddh−real

Gq,D = 1] − Pr[Expddh−rand
Gq,D = 1]

If this advantage is negligible for any adversary D then we say DDH is hard to
solve. The DDH was used in PEKS Section 3.4.
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2.2 Hash Functions

A family of hash functions H = (G; H) is defined by two algorithms [9]. G is a
probabilistic generator algorithm that takes the security parameter k as input
and returns a key K. H is a deterministic evaluation algorithm that takes the
key K and a string M ∈ {0, 1}∗ and returns a string Hk(M) ∈ {0, 1}k−1.

Definition. Let H = (G; H) be a family of hash functions and let C be an
adversary [9]. We consider the following experiment:

Experiment Expcr
H,C(k)

K ← G(k); (x0; x1) ← C(K)

if ((x0 �= x1) ∧ (HK(x0) = HK(x1))) then return 1 else return 0.

We define the advantage of C via Advcr
H,C(k) = Pr[Expcr

H,C(k) = 1] :

The family of hash functions H is collision-resistant if the advantage of C is
negligible for every algorithm C whose time-complexity is polynomial in k.

3 Public Key Encryption with Keyword Search

An encrypted email is sent from Bob to Alice [4]. The gateway wants to check
whether a certain keyword exists in an email or not for some reason (for example
routing). Nevertheless Alice does not want the email to be decrypted by anyone
except her, not even the gateway itself. This is a scenario where public key
encryption with keyword search (PEKS) is needed. PEKS encrypts the keywords
in a different manner than the rest of the email. The gateway is given “trapdoors”
corresponding to particular keywords. Using the PEKS of a word and trapdoor
of a keyword, the gateway can test whether the encrypted word is the particular
keyword or not.

General Scheme. According to [4] a PEKS consists of four algorithms as de-
scribed below :

– KeyGen(s): Take a security parameter s and generate two keys a public key
Apub and private key Apriv

– PEKS(Apub, W): It produces a searchable encryption for a keyword W using
a public key Apub

– Trapdoor(Apriv, W): Produce a trapdoor for a certain word using the pri-
vate key.

– Test(Apub, S, Tw): Given the public key Apub, some searchable encryption
S where S = PEKS(Apub, W

′), and the trapdoor Tw to a keyword W .
Determine whether or not the word we are looking for W and the word
encrypted W ′ are equal.
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So Bob sends Alice through the gateway the following:

[E(Apub, M), PEKS(Apub, W1), PEKS(Apub, W2), ..., PEKS(Apub, Wm)]

where PEKS(Apub, Wi) is a searchable encryption of the keywords and
E(Apub, M) is a standard public key encryption of the rest of the message M .

3.1 Security Notions Related to PEKS

Security Under a Chosen Keyword Attack (CKA). For a PEKS to be
considered secure we need to guarantee that no information about a keyword
is revealed unless the trapdoor of that word is available [4]. To define secu-
rity against an active adversary A we use the following game between A and
challenger.

– CKA-Setup: The challenger runs the key generation algorithm and gives the
Apub to adversary A and keeps Apriv to itself.

– CKA-Phase 1: A asks the challenger for trapdoors corresponding to keywords
of its choice.

– CKA-Challenge: The adversary decides when phase 1 ends. Then it chooses
two words W0, W1 to be challenged on. The two words should not be among
those for which A obtained a trapdoor in phase 1. The challenger picks a
random bit b ∈ {0, 1} and gives attacker. C = PEKS(Apub, Wb).

– CKA-Phase 2: A asks for more trapdoors like in phase 1 for any word of its
choice except for the W0, W1.

– CKA-Guess: A outputs its guess of b′ and if b′ = b that means A guessed the
encrypted message and the adversary wins.

We say that the scheme is secure against a chosen keyword attack (CKA) if A
has a low advantage of guessing the right word being encrypted.

Secure Channels. In the PEKS scheme in [4] there is a need to have a secure
channel between Alice and the server, so that an eavesdropper (Eve) can not
get hold of the trapdoors sent. No one but the server should be capable of
testing emails for certain keywords. This is one of the drawback that the authors
of [2] tried to solve by generating a public and a private key that belong to
the server. The PEKS algorithm was modified to encrypt keywords using both
Alice’s and the server’s public key, while the testing algorithm needs the server’s
private key as an input. In this way the scheme is secure channel free (SCF-
PEKS) because Eve can not obtain the server’s private key, therefore can not
test.

The SCF-PEKS is said to be IND-SCF-CKA secure when it ensures that the
server that has obtained the trapdoors for given keywords cannot tell a PEKS
ciphertext is the result of encrypting which keyword, and an outsider adversary
that did not get the server’s private key cannot distinguish the PEKS ciphertexts,
even if it gets all the trapdoors for the keywords that it queries.
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3.2 Handling Multiple Keywords

Multiple Keyword search in a PEKS is the capability of searching for more
than one word either disjunctively or conjunctively. In PEKS [4] the only way
to do this is to search for each word separately and then do the disjunctive or
conjunctive operations on the result of the testing algorithm. This technique is
impractical when it comes to a large number of keywords in one conjunctive
search request, because every email is searched for every single keyword. In [8]
a new scheme was suggested for conjunctive search called PECK. The scheme
substitutes the PEKS algorithm with a PECK algorithm that encrypts a query
of keywords. The testing is done with a trapdoor for each query instead of each
word. So Bob sends Alice the following:

[E(Apub, M), PECK(Apub, (W1, W2, ..., Wm))]

We say that the scheme is secure against a chosen keyword attack (CKA) if
an adversary has a low advantage in guessing the right query of keywords being
encrypted.

3.3 The Strong Relation Between IBE and PEKS

In [4] the authors showed how the algorithms used in IBE can be used for con-
structing a PEKS. They showed how with the four algorithms in an IBE Setup,
Extract, Encrypt, and Decrypt [12] [5] could be used for to achieve the pur-
pose of a PEKS scheme. So if keyword was used in place of an ID in the IBE
scheme. The Setup algorithm will be equivalent to the KeyGen algorithm in a
PEKS. Extracting the private key in the IBE will be in replace of generating
trapdoors for keywords in PEKS scheme. Now if the Encryption algorithm in
the IBE was used to encrypt some zero string of a certain length, the result
will be a PEKS ciphertext that could later be tested by using the Decryp-
tion algorithm in an IBE and checking whether the result is the same string
of zeros. The problem is that the ciphertext could expose the public key (W)
used to create it. So we need to derive a notion of key privacy [3] for IBE
to ensure that the PEKS is secure under a chosen keyword attack. Key pri-
vacy is a security notion first introduced in [3]. If an adversary can not guess
which ID of a set of ID’s in an IBE scheme was used in encrypting a particu-
lar ciphertext then that IBE scheme does not lead to breach the privacy of its
keys. This could be under chosen plaintext attack(IK-CPA) or chosen ciphertext
attack(IK-CCA).

3.4 Construction of a PEKS from the K-Resilient IBE (KRPEKS)

Since the K-resilient IBE scheme suggested in [10] is said to be IK-CCA secure
( [1] for proof) it was tempting to construct a PEKS using that scheme. As any
other PEKS scheme there are four algorithms, summarized in the following.
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– KRPEKS-KeyGen
Step 1: Choose a group G of order q and two generators g1, g2
Step 2: Choose 6 random k degree polynomials where the polynomials are

chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′

0 + a′
1x + a′

2x
2 + ... + a′

kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk

Step 3: For 0 ≤ t ≤ k; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2
Step 4: Choose a random collision resistant hash function H (Section 2.2)
Step 5: Choose a random collision resistant hash function H ′ (Section 2.2)
Step 6: Assign Apriv = 〈F1, F2, h1, h2, P1, P2〉

Apub = 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk, H, H ′〉
– KRPEKS

Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2
Step 3: Calculate for each keyword w

Aw ← Πk
t=0A

wt

t ; Bw ← Πk
t=0B

wt

t ; Dw ← Πk
t=0D

wt

t

Step 4: s ← Dr1
w

Step 5: Using the -exclusive or- operation calculate e ← (0k) ⊗ H ′(s)
Step 6: α ← H(u1, u2, e)
Step 7: vw ← (Aw)r1 .(Bw)r1α

Step 8: C ← 〈u1, u2, e, vw〉
– KRPEKS-Trapdoor

Run Extract of the IBE and the output is the trapdoor
Tw = 〈F1(w), F2(w), h1(w), h2(w), P1(w), P2(w)〉.

– KRPEKS-Test
Step 1: α ← H(u1, u2, e)
Step 2: Test if vw �= (u1)F1(w)+h1(w)α.(u2)F2(w)+h2(w)α

then Halt else go to Step 3.
Step 3: s ← (u1)P1(w).(u2)P2(w)

Step 4: m ← e ⊗ H ′(s)
Step 5: If the resulting plaintext is a 0k conclude

that C is an encryption of w.

The security of this scheme relies on DDH and the collision resistant hash
function as shown in the next Section 3.5.

3.5 Security of KRPEKS Against CKA

The K-Resilient IBE scheme [10] is an identity based encryption that is based
on the Decisional Diffie Hellman problem (DDH). The security of such scheme
is based on the difficulty of solving DDH and whether the hash functions used
are collision resistant or not. In [1], the following theorem was proved.

Theorem. Let G be a group of prime order q. If DDH is hard in G then KRIBE
is said to be IK-CCA secure. So for any adversary A attacking the anonymity of
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KRIBE under a chosen ciphertext attack and making in total a qd(.) decryption
oracle queries, there exist a distinguisher DA for DDH and an adversary C
attacking the collision resistance of H such that

AdvIK−CCA
KRIBE,A(K) ≤ 2AdvDDH

G,DA
(K) + 2AdvCR

H,C(K) + (qd(K) + 2)/(2k−3)

Since KRIBE is IK-CCA secure [1]. Therefore if an adversary knows two IDs
ID0, ID1 and is given a ciphertext encrypted using one of the IDs. The adversary
would not to be able to guess which one was used unless the DDH is not hard
or the hash function is not collision resistant. In this Section we show that since
the PEKS was built from the KRIBE and KRIBE has key privacy notions then
PEKS should logically be proved to be secure under a CKA.

Now if we compare both schemes the KRIBE in [10] and the KRPEKS we
would notice that the key generation algorithm in the latter is the same as the
setup in the former. The trapdoor is created the same way a secret key is created
for an ID in the IBE scheme but instead of the IDs we have words. The encryption
of IBE is equivalent to it for the PEKS but instead of a message, a k length zero
string 0k is encrypted. The testing of the existence of a keyword is done by using
the same decryption algorithm of the IBE and checking whether the result is
equal to 0k. In other words if an adversary can not tell the difference between
which ID was used to encrypt a given ciphertext. Then the same adversary would
not know which word was used in creating ciphertext C = PEKS(Apub, Wb).
The only difference between the two security notions is that instead of having
a decryption oracle in proving IK-CCA in KRIBE we have a trapdoor oracle
in the new PEKS. So someone can conclude that the advantage of guessing the
right word depends on the DDH problem, the collision resistance of the hash
function and Qt where Qt is the maximum number of trapdoor queries issued
by the adversary.

3.6 Constructing K-Resilient SCF-PEKS Scheme

In [2] the authors constructed a SCF-PEKS using the same methodology used
in the PEKS in [4]. In this Section we will try to build a SCF-PEKS using the
KR-PEKS described in 3.4.

– SCF − KRPEKS − CPG (Common Parameter Generator) :
Step 1: Choose a group G and two generators g1, g2
Step 2: Choose random k
Step 3: Choose a random collision resistant hash function H (Section 2.2).
Step 4: Calculate the common parameter cp = 〈G, g1, g2, H, k〉

– SCF − KRPEKS − SKG(cp) (Server Key Generator) :
Step 1: Choose 6 random k degree polynomials, chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′

0 + a′
1x + a′

2x
2 + ... + a′

kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk
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Step 2: For 0 ≤ t ≤ K; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2
Step 3: Assign Aprivs = 〈F1, F2, h1, h2, P1, P2〉

Apubs = 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk, H〉
– SCF − KRPEKS − RKG(cp) (Reciever Key Generator) :

Step 1: Choose 6 random k degree polynomials, chosen over Zq

P̂1(x) = d̂0 + d̂1x + d̂2x
2 + ... + d̂kxk ; P̂2(x) = d̂′0 + d̂′1x + d̂′2x

2 + ... + d̂′kxk

F̂1(x) = â0 + â1x + â2x
2 + ... + âkxk ; F̂2(x) = â′

0 + â′
1x + â′

2x
2 + ... + â′

kxk

ĥ1(x) = b̂0 + b̂1x + b̂2x
2 + ... + b̂kxk ; ĥ2(x) = b̂′0 + b̂′1x + b̂′2x

2 + ... + b̂′kxk

Step 2: For 0 ≤ t ≤ K; Compute Ât = gât
1 g

â′
t

2 , B̂t = gb̂t
1 g

b̂′
t

2 , D̂t = gd̂t
1 g

d̂′
t

2
Step 3: Choose a random collision resistant hash function H ′ (Section 2.2).
Step 4: Assign Aprivr = 〈F̂1, F̂2, ĥ1, ĥ2, P̂1, P̂2〉

Apubr = 〈g1, g2, Â0, ..., Âk, B̂0, ..., B̂k, D̂0, ..., D̂k, H, H ′〉
– SCF − KRPEKS

Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2

Step 3: Calculate Aw ← Πk
t=0A

wt

t ; Bw ← Πk
t=0B

wt

t ; Dw ← Πk
t=0D

wt

t

Âw ← Πk
t=0Ât

wt

; B̂w ← Πk
t=0B̂t

wt

; D̂w ← Πk
t=0D̂t

wt

Step 4: s ← Dr1
w D̂r1

w

Step 5: e ← (0k) ⊗ H ′(s)
Step 6: α ← H(u1, u2, e)
Step 7: vw ← ((Aw)(Âw))r1 .((Bw)(B̂w))r1α

Step 8: C ← 〈u1, u2, e, vw〉
– SCF − KRPEKS − TG (Trapdoor Generator) :

Calculate: Tw = 〈F̂1(W ), F̂2(W ), ĥ1(W ), ĥ2(W ), P̂1(W ), P̂2(W )〉
– SCF − KRPEKS − T (Testing Algorithm) :

Step 1: α ← H(u1, u2, e)
Step 2: Test if vw �= (u1)F1(w)+h1(w)α+F̂1(w)+ĥ1(w)α.

(u2)F2(w)+h2(w)α+F̂2(w)+ĥ2(w)α

then halt else go to next step
Step 3: s ← (u1)P1(w)+ ˆP1(w).(u2)P2(w)+P̂2(w)

Step 4: m ← e ⊗ H ′(s)
Step 5: If the resulting plaintext is a 0k conclude

that C is the encryption of w.

Notice that the testing part can not be done except by the server. Therefore,
the trapdoor could be sent via public channels.

3.7 Constructing a K-Resilient PECK

In [8] [11] the authors constructed a PECK by adopting ideas from the PEKS
in [4]. In this paper we will try to build a PECK scheme by adopting ideas
from the KR-PEKS. The four algorithms that form this scheme are described as
follows.
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– KRPECK-KeyGen:
Step 1: Choose a group G of order q and two generators g1, g2
Step 2: Choose 6 random k degree polynomials, chosen over Zq

P1(x) = d0 + d1x + d2x
2 + ... + dkxk ; P2(x) = d′0 + d′1x + d′2x

2 + ... + d′kxk

F1(x) = a0 + a1x + a2x
2 + ... + akxk ; F2(x) = a′

0 + a′
1x + a′

2x
2 + ... + a′

kxk

h1(x) = b0 + b1x + b2x
2 + ... + bkxk ; h2(x) = b′0 + b′1x + b′2x

2 + ... + b′kxk

Step 2: For 0 ≤ t ≤ k; Compute At = gat
1 g

a′
t

2 , Bt = gbt
1 g

b′
t

2 , Dt = gdt
1 g

d′
t

2
Step 3: Choose two random numbers s0, s1 ∈ Zq

Step 4: Calculate S = gs0
1 .gs1

2
Step 5: Choose a random collision resistant hash function H (Section 2.2).
Step 6: Calculate: Apriv = 〈F1, F2, h1, h2, P1, P2, s0, s1〉

Apub = 〈g1, g2, A0, ..., Ak, B0, ..., Bk, D0, ..., Dk, S, H〉
– KRPECK:

Step 1: Choose a random r1 ∈ Zq

Step 2: Compute u1 = gr1
1 ; u2 = gr1

2
Step 3: Calculate for every Wi where 1 ≤ i ≤ m

Awi ← Πk
t=0A

wt
i

t ; Bwi ← Πk
t=0B

wt
i

t ; Dwi ← Πk
t=0D

wt
i

t

Step 4: Calculate ei where 1 ≤ i ≤ m and ei ← Dr1
wi

Step 5: Calculate αi where 1 ≤ i ≤ m and αi ← H(u1, u2, ei)
Step 6: vwi ← (Awi)r1 .(Bwi)r1αi

Step 7: C ← 〈u1, u2, e1, ..., em, vw1 , ..., vwm , Sr1〉
– KRPECK-Trapdoors:

Step 1: Choose Ω1, ..., Ωt where t is the number of keywords you want to
search for and Ωi is the keyword in position Ii

Step 2: T1 = P1(Ω1) + P1(Ω2) + ... + P1(Ωt) + s0
Step 3: T2 = P2(Ω1) + P2(Ω2) + ... + P2(Ωt) + s1
Step 4: For 1 ≤ j ≤ t Compute αj ← H(u1, u2, eIj )
Step 5: T3 = F1(Ω1) + ... + F1(Ωt) + h1(Ω1)α1 + ... + h1(Ωt)αt

Step 6: T4 = F2(Ω1) + ... + F2(Ωt) + h2(Ω1)α1 + ... + h2(Ωt)αt

Step 7: TQ = 〈T1, T2, T3, T4, I1, ..., It〉
– KRPECK-Test:

Step 1: Test if vwI1
.vwI2

...vwIt
�= uT3

1 .uT4
2 then halt else do Step 2

Step 2: If Sr1 .eI1 .eI2 .eI3 ...eIt = uT1
1 .uT2

2
then output “True” otherwise output false

If all the words exist, then definitely the condition of the if-statement in
Step 2 in the testing algorithm will be true.

4 Conclusion

The main aim of this research was to have a PEKS that is secure under a stan-
dard model rather than the random oracle model only. To do so, the first step was
finding an IBE scheme that has key privacy notions. Use of IBE with Weil pair-
ing to build a PEKS was demonstrated in [5] and the scheme was secure under a
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chosen keyword attack but under the random oracle only. The IBE suggested by
Boneh and Boyenin in [6] also was not useful in constructing a PEKS as shown
in [2]. It was tempting to try to prove the K-resilient IBE [1] to have a notion
of key privacy because it was shown in [3] that the Cramer-Shoup encryption
is secure. The KRIBE adopted a lot of techniques from this encryption scheme
and KRIBE was proved to be secure [1].

The new PEKS scheme was then used to construct a public key encryption
with conjunctive keyword search and a public key encryption that does not need
a secure channel.

However, the new PEKS scheme still has some drawbacks because of the
limitations of the KRIBE scheme itself, where the number of malicious users is
restricted to some value K. That is the number of trapdoors generated in the
PEKS is limited to at most K. Nevertheless, that is not a serious problem where
we could use a reasonably large K for email searching applications.

An additional concern lies in the basic formulation of the PEKS system. The
idea of the sender, Bob having the sole power to decide which words to consider
as keywords for the recipient, Alice, may not be as convenient in reality. In fact,
Alice should have all influence on the email sorting and one solution would be for
her to cache a set of criteria in form of queries. In that way, the emails categorized
as ‘urgent’ would have greater possibility of being what she considers imperative
to read.
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