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Abstract. This study proposes a new complex system modeling approach by 
extending a bias-variance trade-off into a bias-variance-complexity trade-off 
framework. In the framework, the computational complexity is introduced for 
system modeling. For testing purposes, complex financial system data are used 
for modeling. Empirical results obtained reveal that this novel approach per-
forms well in complex system modeling and can improve the performance of 
complex systems by way of model ensemble within the framework. 

1   Introduction 

In the last few decades, system modeling and optimization – an important aspect of 
complex systems – has proved to be one of the hardest tasks in studying complex 
systems. The topic has, as a result, received increased attention, especially due to its 
difficulties and wide applications. Two key problems are (i) how to select an appro-
priate model class from various model classes (i.e., modeling) and (ii) how to make 
the final model closer to specific complex systems; in other words how to improve 
final model performance based on the given data (i.e., optimization or improvement). 

In order to solve these problems, a bias-variance-complexity trade-off framework 
is proposed. The theoretical background of our framework is provided by the bias-
variance-noise decomposition of the generalization error and introduction of complex-
ity (see below). We argue that the introduction of complexity into the framework can 
lead to an appropriate model class selection, and an ensemble of the selected model 
class can lead to performance improvement of the final complex systems model under 
the proposed framework. Our procedures and methods are described in Section 3. In 
Section 4 an example from the financial complex system domain is presented for 
further explanation. Some concluding remarks are drawn in Section 5. 
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2   The Bias-Variance-Complexity Trade-Off Framework 

This section mainly describes the theoretical background of the proposed framework. 
It has two parts: bias-variance-noise decomposition and bias-variance-complexity 
trade-off. 

2.1   Bias-Variance-Noise Decomposition 

Assume that there is a true function ε+= )(xfy , where ε is normally distributed with 

zero mean and standard deviation σ. Given a set of training sets D: {(xi, yi)}, we fit 
the unknown function h(x) = w·x + ξ to the data by minimizing the squared error 

∑ −
i ii xhy 2)]([ . Now, given a new data point x* with the observed value ε+= *)(* xfy , 

we would like to understand the expected error ]*))(*[( 2xhyE − . We then decom-

pose this formula into “bias”, “variance” and “noise” in the following: 
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(1) 

From Equation (1), the expected error consists of three components: bias, variance 
and noise. The loss of the bias is from the difference between average prediction and 
optimal prediction, and is mainly caused by the learning algorithm. The variance 
originates from the difference between any prediction and the average prediction, and 
is often caused by using different training sets. The noise is very small and comes 
from the difference between optimal prediction and true function. Usually, the noise 
is hard to reduce, as in practice the inherent noise is often unknown. Thus the ex-
pected error is roughly equal to the sum of the squared bias and variance, as seen in 
Equation (2) below. 

Expected error E[(h(x*)- y*)2] = bias2 (h(x*)) + variance (h(x*)). (2) 

2.2   The Bias-Variance-Complexity Trade-Off Framework 

According to [1], bias decreases as model complexity (i.e., the number of parameters) 
increases, whereas variance increases with model complexity, i.e., the more complex 
the model, the higher the variance. On the other hand, if the model is too simple, the 
bias will increase. There is a close relation among bias, variance and complexity, as is 
illustrated in Fig 1. 

From Fig. 1, we can see that there is a trade-off relationship among bias, variance 
and complexity. Through this trade-off, the optimal complexity can be found. Also, 
bias and variance are optimal because the sum of two parts can attain the minimum in 
the total error curve. 
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Fig. 1. The relationship among bias, variance and complexity 

The bias-variance-complexity trade-off provides a conceptual framework for mod-
eling complex systems, i.e., for determining a good model for complex systems. The 
detailed discussions are presented in the next section. 

3   Complex System Modeling Under the Proposed Framework 

In this section, we mainly discusses the two important modeling problems for com-
plex systems – model selection and model improvement and optimization – under the 
proposed framework. 

3.1   The Model Selection Under the Proposed Framework 

As previously stated, the bias-variance-complexity trade-off provides a conceptual 
framework for determining a good model for complex systems. However, we need to 
obtain a practical criterion for determining a good model by optimizing the three 
components under the proposed framework. It should be noted that the ultimate goal 
of model selection under the proposed framework is to choose a good model which 
will perform the best on future testing data, i.e., a good generalization.  

As earlier revealed, if the model is too complex for the amount of training data, it 
learns (or memorizes) parts of noise as well as problems in the underlying structure, 
resulting in “overfitting” or high variance as well as low bias. The selected model will 
perform badly in the testing data (or have a weak generalization). Inversely, if the 
model is not complex enough, it cannot capture the underlying structure in the data, 
no matter how much data it is given; this leads to “underfitting” or high bias. The 
selected model will also perform very badly (or have a poor generalization). In addi-
tion, the parsimony principle or Okham’s razor [2] shows that “from all models de-
scribing the process with the same level of accuracy, the simplest is the best”. This 
implies that we may find a good model selection criterion through a rational trade-off 
among bias, variance and complexity. 

Based on the above descriptions and the proposed framework, it is possible to find 
a good model by minimizing the following selection criterion:  

Model selection criterion = f(bias, variance, complexity). (3) 



 A Bias-Variance-Complexity Trade-Off Framework for Complex System Modeling 521 

From Equation (3), we see that the model selection criterion is actually a multi-
objective optimization problem, i.e., minimizing the bias and variance for a given or 
appropriate complexity.  

The aim of selection is for the model to perform good generalization of new obser-
vations or unknown data. However, as [3] pointed out, model generalization is often 
defined as the prediction risk. With the help of this concept and Equation (3), we 
suppose that x∈Rm is random sampled according to a distribution p(x), the expected 
output for x is ε+= )(xfy  and the prediction output is )(xh . We can then formulate 

a concrete model selection criterion in the following: 

Model selection criterion = dxxhxfxpnd 2)]()()[()( ∫ −ϕ  (4) 

where ϕ  is a monotonically increasing function of the ratio of model complexity (i.e., 

the number of parameters or degrees of freedom) d and the training sample size n [4]. 
The function ϕ  is often called the penalization factor because it inflates the average 

residual sum of squares for increasingly complex models. Several forms of ϕ  have 

been proposed in the statistical literature, such as final prediction error (FPE) [5] and 
Schwartz’ criterion (SC) [6]: 

FPE: 1)1)(1()( −−+= qqqϕ  (5) 

SC: 1)1()(log5.01),( −−⋅⋅⋅+= qqnnqϕ  (6) 

where q denotes the ratio of model complexity and training sample size. In this study 
we used FPE as the penalization factor of complexity. 

In addition, in view of the results of [3], the model selection criterion can be ap-
proximated by the expected performance on a finite test set. 

Model selection criterion = ]))()([()( 2xhxfEnd −ϕ . (7) 

With Equations (1), (2) and (5), the final model selection criterion can be written as 

Selection criterion = [ ] [ ]]))()([())()(()()( 22 xhxhExfxhdndn −+−⋅−+ . (8) 

As can be seen from Equation (8), the bias, variance and complexity are all taken 
into account in the model selection process. Through the trade-off of bias, variance 
and complexity, as shown in Fig. 1, we can find an appropriate model class from 
various model classes for specific complex systems. In practice, the generic judgment 
rule is known as “the smaller the selection criterion value the better the model”. 

3.2   The Model Improvement Under the Proposed Framework 

Although a good model can be selected using the model selection criterion described 
above, the model does not necessarily give a good generalization because of the diffi-
culties of complex system modeling. In order for a complex system to perform well, it 
is necessary to improve and optimize the selected model from the previous phase. In 
this study, model ensemble is used. 
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Model ensemble is a subject of active research. It makes possible an increase in 
generalization performance by combining several individual models trained on the 
same tasks. The ensemble approach has been justified both theoretically [7] and em-
pirically [8]. Generally, the creation of an ensemble is divided into two steps, the first 
being the judicious creation of the individual ensemble members and the second their 
appropriate combination to produce the ensemble output. The widely-used ensemble 
model includes bagging [9] and boosting [10]. In this study, we propose a new ap-
proach to building an ensemble model for complex systems based on the proposed 
bias-variance-complex trade-off framework. 

Our proposed approach is based on the observation that the generalization error of 
an ensemble model can be improved if the predictors on which averaging is done 
disagree and if their fluctuations are uncorrelated [11]. We now consider the case of 

an ensemble model )(ˆ xh  consisting of M individual models, )(ˆ
1 xh ,…, )(ˆ xMh ; the 

ensemble model is represented as  

∑= =
M
i ii hwh 1 )(ˆ)(ˆ xx  (9) 

where the weights may sum to one, i.e., ∑ ==
M
i iw1 1 . Given the testing data Dtest = 

{(x1,y1),…,(xN,yN)}, then and the ensemble mean squared error is defined as: 

Ensemble mean squared error = 
2

1 1 ))(ˆ()1( ∑ ∑ −= =
N
i

M
j iji hyNM x  (10) 

By introducing the average model ∑= =
M
j iji hMh 1 )()/1()( xx  the mean squared er-

ror can be decomposed into bias and variance in terms of Equations (1) and (2): 

Bias2 = ∑ −=
N
i ii hyN 1

2))(()1( x  (11) 

Variance = 
2

1 1 ))(ˆ)(()1( ∑ ∑ −= =
N
i

M
j iji hhNM xx . (12) 

We can examine the effects of bias and variance from Equations (11) and (12). The 
bias terms depends on the target distribution (y), while the variance term does not. A 
more elaborate formulation would further decompose the bias term into true bias and 
noise (see Equation (1)), but as in practice the inherent noise is often unknown, the 
current definition is used here. The variance terms of the ensemble could be decom-
posed in the following way: 
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where the expectation is taken with respect to D. The first sum in Equation (13) marks 
the lower limit of the ensemble variance and is the weighted mean of the variance of 
ensemble members. The second sum contains the cross terms of the ensemble mem-
bers and disappears if the models are completely uncorrelated [11]. Thus, we focus on 
the second part so as to lower the variance. 
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Through observing Equations (11) and (13), we can find several ways to reduce the 
expected error by ensemble under the bias-variance-complexity trade-off framework: 
(i) increase the number of individual models with the given data as much as possible 
to lower bias; (ii) build some independent models for lowering variance; and (iii) keep 
an appropriate computational complexity for ensemble. The final ensemble model can 
improve the performance of complex systems by rational trade-off processing based 
on the proposed framework.  

3.3   The New Modeling Approach for Complex Systems Under This Framework 

Based on the previous two subsections, a novel modeling approach for complex sys-
tems is proposed. This approach consists of two phases, model selection and model 
improvement, or five steps. The procedure is as follows. 

A. Model selection phase 
1) Given a data set of complex system D, a disjoint training set Dtrain and Dtest is first 
created. The former is used to build a model and the latter to test the model. 
2) Because we do not know the patterns of complex systems due to their difficulties, 
different types of models (or model classes) are used to try to capture the characteris-
tics of complex systems. 
3) With the Dtrain, different model classes can be built. In terms of the Dtest and corre-
sponding model selection criterion mentioned in the Section 3.1, an appropriate model 
class can be selected. Generally, the selected model class can capture more useful 
patterns than can other candidate model classes, and so will have low bias in a sense. 

B. Model improvement phase 
4) As Section 3.2 showed, model ensemble can improve the model performance of a 
complex system. From Equation (11), we know that the improvement in the bias is 
very limited. Inversely, the improvement space in the variance is large (Equations (12) 
and (13)) only if the individual models are independent or completely uncorrelated 
[11]. The simplest method for creating diverse ensemble members is to train each 
model using randomly initialized conditions, such as different model architectures and 

 

 

Fig. 2. The basic process of the proposed approach 



524 L. Yu et al. 

different training subsets [12]. So in this step, we create a large number of ensemble 
members with different initialized conditions. 
5) The different ensemble members obtained from the previous step are synthesized 
into the final model for a complex system. 

The basic process is illustrated in Figure 2. For further interpretation, an example 
from the financial domain is presented in the following section. 

4   The Empirical Study 

In this section, foreign exchange rate modeling and forecasting is used as an illustra-
tive example of our proposed approach. Two widely traded exchange rates the US 
dollar/euro (USD/EUR) and the US dollar/Japanese yen (USD/JPY) are chosen. We 
take daily data (source: DataStream) from 1 January 2000 until 31 October 2004 as 
entire data sets (partial data sets excluding holidays). For space reasons, the original 
data are not listed in this study but can be viewed on the website. For convenience, we 
take daily data from 1 January 2000 to 31 October 2003 as the training data set 
(Dtrain), and daily data from 1 November 2003 to 31 October 2004 as the testing set 
(Dtest); these are used to evaluate the model performance. In this study, four model 
classes, linear polynomial model (LPM), K-Nearest-Neighbor (KNN) model, logit 
regression model (LRM), and feed-forward neural network (FNN) model, are selected 
as candidate model classes. We generated 100 training sets {Di (i = 1,2,…,100)} of 
fixed size N with the use of Dtrain to train different model classes. We let 

∑= =
100

1 ),()100/1()( i iDhxh x  denote the average of these model classes. We then verify 

our approach with the following procedures. 

A. Model class selection phase 
Based on the above descriptions and model selection criterion, the results of four 
model classes are reported below. 

As can be seen from Table 1, we know that the best model class is the feed-
forward neural network model in terms of the proposed model selection criterion for 
two exchange rates. With regard to complexity (here referring to model parameters), 
the effect of penalty has been taken into consideration by the selection criterion value.  
 

Table 1. Simulation results of model selection for two exchange rates * 

Exchange Classes Bias2 Variance Complexity Criterion value 
LPM 0.065413 0.053815 10 0.129164 
KNN 0.058445 0.081252 14 0.156271 
LRM 0.075854 0.078639 12 0.171241 

USD/EUR 

FNN 0.032587 0.054014 30 0.110219 
LPM 0.184577 0.084758 14 0.301290 
KNN 0.223143 0.105472 13 0.364666 
LRM 0.254876 0.085347 8 0.351490 

USD/JPY 

FNN 0.128114 0.094756 37 0.300299 

* Criterion value = (Bias2 + Variance) × penalization factor of complexity. 
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In addition, we also see that the bias of the FNN model is the lowest of the four model 
classes, as earlier revealed. According to the proposed model selection criterion, we 
select the FNN model as an agent for exchange-rate modeling. However, we also note 
that the variance of the FNN model is relatively large in the four model classes, im-
plying that there is room for improvement in the FNN model. In the sequel, model 
improvement is performed. 

B. Model improvement phase 
In this phase, we use model ensemble technique to improve the performance of the 
model selected in the previous phase. As Equation (13) shows, the variance will be 
reduced if the models are uncorrelated. That is, model diversity can reduce model 
error variance. In the case of neural network ensembles, the networks can have differ-
ent architecture, different training algorithms or different training subsets, and differ-
ent initialized weights or random weights [12–13]. In our study, we use these diverse 
methods to create different ensemble members. In order to have fair competition, the 
estimation of bias and variance is calculated for every ensemble with different com-
plexity (here referring to the number of ensemble members). Simulation results are 
presented in the Table 2. 

Table 2. Simulation results of different ensemble models for two exchange rates * 

Exchange Type Complexity Bias2 Variance Expected error 
Benchmark 1 0.032587 0.054014 0.086601 
Ensemble1 50 0.032225 0.050257 0.082482 
Ensemble2 100 0.032126 0.048253 0.080379 
Ensemble3 150 0.032158 0.048878 0.081036 
Ensemble4 200 0.032254 0.048854 0.081108 

USD/EUR 

Ensemble5 250 0.032545 0.048832 0.081377 
Benchmark 1 0.128114 0.094756 0.222870 
Ensemble1 50 0.127453 0.090015 0.217468 
Ensemble2 100 0.126587 0.089547 0.216134 
Ensemble3 150 0.127098 0.084854 0.211952 
Ensemble4 200 0.127805 0.087055 0.214860 

USD/JPY 

Ensemble5 250 0.127987 0.089811 0.217798 

* Expected error = (Bias2 + Variance). 

From Table 2, we see that (a) the ensemble model with 100 members performs the 
best for USD/EUR, while for USD/JPY, the ensemble model with 150 members per-
forms the best. The main reason is that the fluctuation of the Japanese yen is more 
complex than that of the euro; (b) compared to the benchmark model (i.e., single 
model), all the ensemble models lower the bias and variance, but bias reduction is less 
than variance reduction, implying that the ensemble can effectively reduce the vari-
ance; (c) of all the ensemble models, the most complex one does not necessarily give 
the best performance, as revealed by experiments, implying that an ensemble model 
should have an appropriate complexity (be neither too complex nor too simple); (d) 
all the ensemble models perform better by observing the expected error, implying that 
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the ensemble technique is an effective complex system modeling technique for im-
proving modeling performance. 

5   Conclusions 

In this study we propose a novel complex system modeling approach based on the 
bias-variance-complexity trade-off framework. This approach consists of two phases: 
model selection and model improvement. In the first phase, we select an appropriate 
model class as modeling agent in terms of bias-variance-complexity trade-off. In the 
second phase, we improve complex system model performance by ensemble, based 
on the framework. Experimental results demonstrate that the proposed approach is 
effective. 
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