

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 113 – 128, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Dynamic Imperative Languages for Runtime Extensible
Semantics and Polymorphic Meta-programming

Anthony Savidis

Institute of Computer Science, Foundation for Research and Technology – Hellas,
GR-70013, Heraklion, Crete, Greece

as@ics.forth.gr

Abstract. Dynamically typed languages imply runtime resolution for type
matching, setting-up an effectible ground for type-polymorphic functions. In
statically typed object-oriented languages, operator overloading signifies the
capability to statically extend the language semantics in the target program con-
text. We show how the same can be accomplished dynamically in the Delta
dynamic language, through simple member-function naming contracts. Addition-
ally, we provide a software-pattern for dynamically extensible function semantics,
something that cannot be accommodated with static function overloading. We
demonstrate how meta-programming, i.e. crafting of parametric program capsules
solving generic problems known as meta-algorithms or meta-components, be-
come truly polymorphic, i.e. can accept an open set of parameter values, as far as
those dynamically bind to eligible elements compliant to the meta-program design
contract. In Delta, inheritance is dynamically supported as a runtime function,
without any compile-time semantics, while all member function calls are resolved
through late binding. We employ those features to show how Delta supports the
imperative programming of polymorphic higher-order functions, such as generic
function composers or the map function.

1 Introduction

Statically typed compiled languages have been widely deployed for the implementa-
tion of typical stand-alone software applications, while interpreted dynamically typed
languages became mostly popular as a means to support web application develop-
ment. Dynamic languages not only enable rapid development, but also facilitate far
more flexible and open component reuse and deployment. The lack of static type
matching enables truly polymorphic programming templates, relying on late binding
and conformance to predefined design contracts, in the deployment program context.
A superset of key features met in existing imperative dynamic languages like Python
(http://www.python.org/), Lua (Ierusalimschy et al., 1996), and ECMA Script
(ECMA, 2004), encompasses: dynamically typed variables, prototype-based runtime
classes, functions as first-class values, support for unnamed functions, dynamic han-
dling of actual arguments, and extensible operator semantics.

We extend this set of features, in the context of the Delta language, by introducing:
(a) prototypes with member functions being independent callable first-class values, as

114 A. Savidis

atomic pairs holding both the function address and the alterable owner instance; (b)
dynamic inheritance, having entirely runtime semantics, in comparison to the tradi-
tional compile-time inheritance operators; (c) a programming recipe for runtime ex-
tensible function semantics; and (d) an enhanced operator overloading technique. We
also show how polymorphic programming of software patterns is possible, relying on
the dynamic language features. The latter is only partially accommodated in statically
typed OO languages, for types conforming to predefined super-types, once the LSP
(Liskov, 1988) design contract is not broken. Finally, we demonstrate the way poly-
morphic higher-order functions, such as function generators, are implementable
through functor object instances.

1.1 Link to Rapid Integration of Software Engineering Techniques

The key contribution of dynamic languages in the context of rapid integration of
software engineering techniques concerns their genuine capability to accommodate
quickly advanced software patterns like: extensible semantics, higher-order functions,
coupling-relieved dynamic inheritance, and polymorphic pattern programming. Due
to the inherent type-dynamic nature of such languages, the transition from generic
design capsules to concrete algorithmic meta-programs is straightforward, as there are
no syntactic constructs that introduce unnecessary type-domain restrictions, like typed
arguments, typed function signatures, or compile-time base classes.

It is argued that software engineering is by no means independent of the adopted
programming language, as languages may severely affect, infect, advance, or define
the particular software engineering code of practice. For instance, Eiffel (Meyer,
1997) by semantically and syntactically reflecting an innovative software design rec-
ipe requires explicitly programmers to assimilate and apply the Design by Contract
method. This way, the language itself provides an effective safety net ensuring devel-
opers cannot deviate from the design prescription itself.

Dynamic languages make it implementationally easier, while syntactically more
economic, to practice the implementation of generic functions and directly program-
mable program patterns, thus leading to easily manageable reusable code units. But in
the mean time, due to complete lack of compile-time safety, they require algorithmic
type-check safeguards, that, when implemented in a less than prefect manner, may
unnecessarily compromise both code quality and runtime performance.

2 Prototypes as Instance Factories

In the Delta language, prototypes are runtime class values, from which instances are
dynamically produced through replication. In this context, following the recipe of
existing dynamic languages, object classes never appear within the source code in the
form of compile-time manifested types, but only as first-class runtime values called
prototypes. The characteristics of prototypes in the Delta language are:

 They are associative table objects, having no prototype-specialized compile-time or
runtime semantics; prototypes are normal object instances, chosen by programmers
to play the role of class-instance generators, thus prototypes are effectively a
design pattern combined with a deployment contract;

 Dynamic Imperative Languages for Runtime Extensible Semantics 115

 There are no reserved constructor functions; construction is implemented through
programmer-decided factory member functions, primarily relying on instance
cloning.

Associative tables constitute the sole object model in the Delta language, offering
indexed member access through late binding; member functions are allowed inside
associative-table construction expressions, i.e. enumeration of member elements be-
tween [and]. Such table construction expressions are called prototype definition
expressions. Member functions have the following key properties:

 They are typical table members, associated by default to the constructed table in-
stance; however, the owner instance of a member function can be dynamically al-
tered, while it is not required to be an instance of the original prototype, i.e. the
prototype whose definition syntactically encompasses the member function
definition;

 New member functions can be also installed to a table instance dynamically, i.e.
outside the syntactic context of the respective prototype definition;

 Within member function definitions, the keyword self always resolves dynamically
to the runtime owner table instance;

 The value of a member function itself is directly callable, internally, being an
atomic pair of the owner instance and function address; upon call, members will
resolve self references to their owner instance value. This way, member function
calls do not syntactically require an object instance expression, as it is the case
with C++, Java, ECMA Script or Lua.

The dotted syntax, e.g. p.x is syntactically equivalent to p[“x”], where member x
binding within p always takes place during runtime. This is similar to name-based late
binding in Lua methods and ECMA Script member functions. This dynamic form of
late-binding can be openly deployed for any object instance, once the object caters to
dynamically resolve to the referred named members. However, this behavior is not
accomplishable in statically typed languages, as compile-time conformance of the
object instance and the referenced member is required to a specific type inheritance
hierarchy and function signature, respectively. Moreover, late binding in dynamic
languages is straightforward for data members too, something that is not accommo-
dated in statically typed languages. A member function in Delta is an unnamed value;
it is referenceable through the programmer decided index value. A function definition
inside parenthesis, like for instance (member() {return copy(self);}), is a
function value expression, internally carrying the function address; the same form is
applicable to non-member functions as well.

In Fig. 1, one of the possible ways to implement prototypes in Delta is outlined.
Following this method, prototypes are stored in static local variables, inside their
respective prototype-returning function, e.g. PointProto(). The prototype is con-
structed as a model-instance, offering a set of members chosen by the programmer. It
should be noted that none of the following member function names appearing in
Fig. 1, like clone instance production function, new constructor function, and class
reflecting the prototype name, is enforced by the Delta semantics, but those are freely
chosen by the programmer.

116 A. Savidis

function PointProto() { // Prototype extraction function
static proto;

 if (typeof(proto)==”Undefined”) // First time called.
 proto = [
 {“x”, “y” : 0 },
 {“class” : “Point” },
 {“clone” : (member(){return copy(self);})}
 {“new” : (member(x,y) { // Constructor.
 p = self.clone();
 p.x = x, p.y = y;
 return p;
 }) }
];
 return proto;
}
p1 = PointProto().new(30, 40); // Via prototype constructor
p2 = p1.clone(); // By instance replication
fc = p1.clone; // Getting p1 “clone” member
p2 = fc(); // Calls p1 “clone” member

Fig. 1. Examples of simple prototype implementation and use

2.1 Details on Object Oriented Extensions to Deployment of Associative Tables

Associative tables (or tables) play a key role in the Delta language: (a) they are the
only built-in aggregate type; and (b) they provide the ground for object-oriented
programming. Tables are stored in variables by reference, so assignment or parame-
ter passing semantics does not imply any kind of copy, while comparison is also
done by reference. Within a table, indexing keys of any type may be used to store
associated values of any type. Tables grow dynamically; they can be constructed
through a table constructor expression, while individual elements can be easily
added or removed. The expression [] constructs an empty table, while [{“x”:0}
] makes a table with a single element, with value 0, indexed by the string key
“x”. Table instance elements can be removed by setting the corresponding value to
nil, implying that nil cannot be stored within a table. Hence, t.x = nil; causes
the entry indexed by key “x” within t to be directly removed. Finally, the follow-
ing library functions are provided:

 tabindices(t1), returning a new constructed table t2 where: ∀ pair of index and
associated value (Kj, Vj) ∈ t1, j ∈ [0, N), N being the total stored values in t1, the
pair (j, Kj) is added in t2. That is, a table with all keys indexed by ordered con-
secutive integer values is returned. The way the ordering of keys is chosen is im-
plementation dependent (i.e. undefined).

 tablength(t1), returning N being the total stored values in t1.
 tabcopy(t1), returning a new constructed table t2 where: ∀ pair of index and asso-

ciated value (Kj, Vj) ∈ t1, j ∈ [0, N), N being the total stored values in t1, the pair
(Kj, Vj) is added in t2. That is, an exact copy of t1 is returned. The tabcopy func-
tion is implemented by using tabindices and tablength as follows:

 Dynamic Imperative Languages for Runtime Extensible Semantics 117

function tabcopy(t1) {
 for (t2=[], ti=tabindices(t1), n=tablength(ti)-1; n>=0;
--n)
 t2[ti[n]] = t1[ti[n]];
 return t2;
}

In prototype definitions through associative tables, there is no support for a built-in
destructor function in the Delta language. Although Delta is a language supporting
automatic garbage collection, it was decided to separate memory disposal, taking
place when tables can no longer be referenced via program variables, from the par-
ticular application-specific object destruction or clean-up logic. This decision is
backed-up by the following remark:

 Application objects need to be cancelled exactly when the application logic de-
cides that the relevant destruction conditions are met. In such cases, all corre-
sponding cancellation actions, which actually implement the application-specific
policy for the internal reflection of the cancellation event, are performed as
needed. Once application-specific actions are applied, memory disposal takes
place only at the point there is no program variable assigned to particular the sub-
ject object instance. Hence, it is clear that memory disposal is semantically thor-
oughly separated from application-oriented object lifetime control and instance
cancellation (i.e. destruction).

It should be noted that the use of tabcopy should be avoided when there are member
functions in tables, since their internal owner table reference is not changed but is
copied as it is. Instead, the copy(t1) should be employed, which in addition to tabcopy,
performs the following:

 Let t2 be the returned copy of t1. Then, ∀ member function value (F,T) ∈ t1, if
T = t1, then add (F, t2) in t2 else add (F, t1) in t2. In other words, member function
values of the original table become member function values of the table copy. The
functioning of copy is not recursive, meaning in case of member instances
programmers have to take care for proper instance copy as well.

3 Dynamic Inheritance

Inheritance is based on dynamic associations of the form α β (α derived from β) and
β α (β inherits to α), to reflect that table instance α inherits directly from table in-
stance β. This association defines an inheritance tree, where, if γ is a predecessor of δ,
then we define that δ is derived from γ, symbolically δ γ, while γ is also said to be a
base instance for δ. The establishment of an inheritance association α β is regulated
by the precondition:

α ≠ β ∧ ¬ β α ∧ ¬ (∃ γ : γ≠ β ∧ γ β)

This precondition formalizes the fact that an instance: (a) cannot inherit from its self;
(b) cannot inherit from any of its derived instances; and (c) can inherit to at most one
instance. In the Delta language, the following basic library functions are provided for
dynamic management of inheritance associations among table instances:

118 A. Savidis

 inherit(tα, tβ), which establishes the associations tα tβ and tβ tα
 uninherit(tα, tβ), which cancels the association tα tβ and tβ tα
 isderived(tα, tβ), returning, true if tα tβ, else false

In Delta, inheritance is a runtime function applied on instances, establishing an aug-
mented member-binding context for derived instances. The metaphoric isa connota-
tion of base and derived classes are not entirely adopted in Delta, since inherit(x, y)
doesn’t state that x isa y, neither that x depends implementationally on y; it only
defines augmented member binding for both x and y, i.e. if a member requested for x
or y is not found in x (derived), then try to find it in y (base).

3.1 Dynamic Virtual Base Classes

In a given inheritance hierarchy I with most derived class C, a virtual base class B is a
class required to be inherited only once by C, irrespective of how many times B
appears as a base class in I. In statically typed OOP languages, compilers “know” the
static inheritance hierarchy, so they construct appropriate memory models for derived
classes having a single constituent instance per virtual base class. In the context
of dynamic inheritance, the same behavior is accomplished with the special form of
virtual inheritance programmed as shown in Fig. 2.

function virtually_inherit(derived, base) {

t = allbaseinstances(derived);
 for (n = tablength(t) - 1; n >= 0; --n)
 if (t[n].class == base.class)
 return;
 inherit(derived, base);
}

Fig. 2. Implementation of virtual dynamic inheritance

Its implementation uses the allbaseinstances(x) library function, returning a nu-
merically indexed table encompassing references to all base instances of x. The function
virtually_inherit is actually supplied as a library function in Delta for convenience.
In the implementation of Fig. 2, we need only seek for a base instance whose class name
matches the supplied base instance argument. If such an instance is found, i.e. derived
already inherits from base, inheritance is not reapplied. However, we have also extended
the virtually_inherit library function to enable dynamically the conditional update
of the current virtual base instance with the supplied base argument.

3.2 Member Resolution in Dynamic Inheritance Chains

Inheritance associations define an augmented way for late binding of instance mem-
bers, reflecting the fundamental priority of member versions in derived instances over
the member versions of base instances, within inheritance hierarchies. Additionally,
programmers may qualify member bindings as bounded, when there is a need to em-
ploy the original member versions of base instances, as opposed to the refined ones.
The member-binding algorithm is a tree search algorithm, as shown in Fig. 3.

 Dynamic Imperative Languages for Runtime Extensible Semantics 119

bind (t, x, bounded) {
 if (bounded = true and x ∈ t) then

 return t.x
 V = {} /* V holds visited base instances */
 r = resolve({ t.root }, x) /*’root’ denotes the most derived instance */
 if (r ≠ nil) then
 return r.x
 else
 return nil

}
resolve (S, x) {

 L = {} /* Set of all base instances for the instances of S*/
 for (each t ∈ S where t ∉ V) do {
 if (x ∈ t) then
 return t
 V = V ∪ { t }
 L = L ∪ t.base /* ‘t.base’ is a set of ‘t’ base instances */
 }
 if (L ≠ ∅) then
 return resolve(L, x)
 else
 return nil

}

Fig. 3. Member binding logic within instance inheritance chains; notice that root denotes the
most derived instance in an instance inheritance hierarchy

x

x

x

y

y

z

z

x

bind(x)

y

bind(y)

bounded
bind(y)y

bind(z)

z
bounded
bind(x)

x

x

x

x

y

y

z

z

x

x

x

y

y

z

z

x

bind(x)

y

bind(y)

bounded
bind(y)y

bind(z)

z
bounded
bind(x)

x

Fig. 4. Examples of member search paths (dotted arrows) for late binding of different members
in an instance inheritance hierarchy; the shaded tree indicates the real member storage, while
the most derived instance is actually the root instance

120 A. Savidis

Following Fig. 3 (left), in case the bounded flag (i.e. bounded use) of the bind
function is true, resolution of x directly in instance t is performed. Otherwise, i.e. ¬
bounded ∨ x ∉ t, the resolution function resolve is called, which performs a breadth-
first search starting from the root, i.e. the most derived instance in the runtime
inheritance tree. This search always returns the first member resolution closest to the
inheritance root (most derived instance). In Fig. 4, a few examples are provided
regarding the alternative search paths, to resolve particular members within an in-
stance inheritance hierarchy. The distinction of table instances into either object
prototypes or object instances is a semantic separation in the context of the program
design, not reflecting any particular built-in language semantics for associative tables.
Similarly, the semantics of the inheritance-association management functions concern
table instances in general, without any operational differentiation for either object
prototypes or object instances. This feature allows:

 Dynamically installable/removable inheritance, facilitated by connecting/discon-
necting a complete instance inheritance sub-hierarchy to/from the target instance,
through a call to inherit/uninherit library function.

4 Function Overloading Pattern

The deployment of unnamed functions, dynamic manipulation of actual arguments,
runtime type identification, and associative storage, allows the implementation of a

function sig(t) {
 for (s = "", n = tablength(t), i = 0; i < n; ++i)
 s += typeof(t[i]);
 if (s == "") return "void";
 else return s;
}

function overloaded() {
 static dispatcher;
 if (typeof(dispatcher) == "Undefined")
 dispatcher = [
 {"NumberNumber" : (function(x,y) {...}) },
 {"StringString" : (function(a,b) {...}) },

 {"Table" : (function(t) {...}) },
 {"void" : (member() { return self; })},
 {"install" : (member(sig, f) {

self[sig] = f; })}
];
 return dispatcher[sig(arguments)] (|arguments|);
}

function added (x, s) {...}
overloaded().install("NumberString", added);

Fig. 5. Dynamic function overloading for extensible function semantics

 Dynamic Imperative Languages for Runtime Extensible Semantics 121

dynamic function-overloading pattern, relying on runtime management of alternative
function versions through string-based signatures. It is a software pattern in the sense
that it is not a built-in language mechanism, but an accompanying language-specific
programming recipe for dynamically extensible function semantics. The programming
pattern for function overloading is illustrated in Fig. 5, with an example function
supporting three alternative signatures. As it is shown, overloaded functions encapsu-
late a static local dispatch table, named dispatcher, storing the alternative

function sig(t) {
for (s = ””, n = tablength(t), local i = 0; i < n; ++i)

 if (typeof(t[i])==”table” and t[i].class != nil)
 s += t[i].class;
 else
 s += typeof(t[i]);
 return s==”” ? “void” : s;
}

function metaconstructor() {

return [
{"construct" : (member() {

 f = self.constructors[sig(arguments)];
 return f(|arguments|);
 })}

];
}

proto = [
 { “constructors” : [
 { “void” : (function(){ return copy(proto); }) },
 { “numbernumber” : // Parameterized constructor
 (function(x,y){

p = copy(proto); p.x = x; p.y = y; return p; }) },
 { “Point” : // Copy constructor
 (function(pt){ return proto.construct(pt.x, pt.y); })}
]
 }
];
inherit(proto, metaconstructor());

function midpointconstructor(p1,p2) {
 p = copy(PointProto()); // Instantiate from prototype
 p.x = (p1.x+p2.x)/2; // Initialize members
 p.y = (p1.y+p2.y)/2;
 return p; // Return the new instance
}

// Installing the constructor at the prototype
PointProto().constructors.PointPoint = midpointconstructor;

Fig. 6. The meta-constructor pattern for dynamic constructor overloading. Notice that to allow
dynamically installed constructors, those are turned to non-member functions.

122 A. Savidis

implemented versions as embedded unnamed functions. The actual argument expres-
sion |table| unrolls all elements of table, as if those where supplied by distinct actual
expressions (i.e. “pushed” on the arguments’ stack); this is similar to the ∗ operator
for sequences in Python. Also, arguments is a reserved local variable (of table type)
carrying all actual arguments of the current call (numerically indexed). Thus,
|arguments| propagates the actual arguments of the present call to an encapsulated
delegate function invocation.

If overloaded is called without arguments, it returns a handle to the internal dis-
patcher table, offering the install member function to dynamically add / remove /
update a function version for arguments signature sig (in Delta, removal of a table
element is equivalent to setting nil as the element value).

4.1 Dynamic Constructor Overloading

Overloaded constructors basically follow the dynamic function-overloading pattern
previously discussed (see Fig. 5). Additionally, such alternative constructors can be
dynamically extensible, meaning argument conversion and instance initialization
functions can be installed on the fly as needed, either at an instance or prototype level.

We will slightly modify the sig function which extracts the type-signature of the
actual argument list to cater for object-instance arguments in the following manner: if
an argument is of type “table”, then if it has a “class” member, its value is as-
serted to be of “string” type and its content is returned as the type value; else, the
“table” type is returned. As it is shown in Fig. 6, all constructors are dynamically
collected in one member-table of the object prototype named “constructors”,
while the dynamic installation of a particular constructor requires the provision of a
unique signature and a corresponding constructor function. Also, the meta-
construction functionality is named “construct”, internally dispatching to the ap-
propriate signature-specific constructor, is implemented as an inherited member
function, meaning it can be directly re-used. One important modification of this over-
loaded constructor in comparison to the function-overloading pattern is that the
overloaded constructor functions are now non-member functions. The latter is neces-
sary once we decide to allow dynamically installable constructors, effectively requir-
ing that such constructor functions can be defined externally to table constructor defi-
nitions, i.e. being non-member functions.

5 Operator Overloading Contract

In Delta the semantics of all binary operators are dynamically extensible for table
object instances through the following implementation technique:

 eval(t1 op binary t2). If there is a t1 member named op being actually a function f, the
result of evaluation is f(t1, t2). Otherwise, the original semantics for t1 op t2 are applied.

 eval(op unary t1). If there is a t1 member named op being actually a function f, the result
of evaluation is f(t1). Otherwise, the original semantics for t1 op t2 are applied.

In the current implementation, this method applies to most binary operators in Delta,
like arithmetic and associative operators, as well as the function call () and the table

 Dynamic Imperative Languages for Runtime Extensible Semantics 123

member access operators. For prefix and postfix unary operators –- and ++, the +
and – binary operators need to be only overloaded. Boolean operators are excluded as
short-circuit boolean evaluation diminishes boolean operators from the target code.
However, different Delta implementations may override short-circuit code and intro-
duce boolean instructions in the virtual machine, meaning overloading can be also
supported in this case. Regarding table member access, we distinguish among read /
write access through “[]” (read access) and “[]=” (write access), also covering the
use of “.” supplied in place of “[]” for syntactic convenience. Once table member
access is overloaded, the native operator is hidden unless the member is temporarily
removed and reinstalled again; this is possible with the explicit non-overloaded mem-
ber access functions tabget and tabset. Finally, for unary operators: not requires
overloading of !=, and unary minus requires overloading of multiplication operator
with numbers (-x it is calculated as x*-1).

To make binary operators more efficient we distinguish the position of the primary
table argument with a dot, so there are two member versions; e.g. “.+” and “+.”.
The operator overloading approach in Delta is very simple, yet very powerful. Over-
loaded operators constitute normal members distinguishable uniquely through a
naming contract being part of the language semantics. This makes operators directly
derivable through dynamic inheritance, since, as normal object members, they are
also subject to late binding; finally, operator functions as first-class values are dy-
namically extractable, removable or substitutable. An example showing operator
overloading is provided in Fig. 7.

function Polygon() {
 static proto = [
 {“area” : (member(){...})},
 {“.<=” : (function(p1,p2) {

return p1.area() <= p2.area(); })},
 {“.+” : (function(p,x) {
 p[“.+dispatch”][sig(x)](p,x); })},
 {“.+dispatch” : [
 {“Point” : (function(a,b){…})},
 {“Number” : (function(a,b){…})},
]},
];
}

p1 = Polygon().new();
p2 = Polygon().new();
if (p1 <= p2)
 p1 = p2 + 10;

Fig. 7. Dynamic operator overloading for dynamically extensible language-operator semantics

6 Polymorphic Pattern Programming

Software patterns are defined as recurring solutions to common design problems
mostly provided as recipes having a standardised documentation, rather than as

124 A. Savidis

directly reusable code. Since software patterns constitute meta-solutions, the capabil-
ity to turn their documentation to an equally generic programmed artefact is really a
matter of appropriate abstraction choices in the context of pattern implementation,
and effective support for polymorphism in the context of pattern deployment. Theo-
retically, patterns are meta-programs, where meta accounts to type abstraction and
polymorphism for constituent content or logic elements. Arguably, once the necessary
type-abstraction and type-polymorphism support is provided, polymorphic pattern
programming is directly accomplishable. It is clear that to enable generic polymor-
phism, the compile-time matching barrier needs to be effectively bypassed.

// Returns an instance of the ‘State’ pattern.

function StatePattern() {
 return [
 { “setstate” : (member(newState) {
 uninherit(self, self.State);
 inst = prototypes[self.class].States[newState].new();
 inherit(self, self.State = inst);
 })}
];
];

inherit(a, StatePattern());
a.setstate(“foo”);

Fig. 8. The reusable polymorphic State pattern implementation

We demonstrate the capability for polymorphic pattern programming for the State
pattern (Gamma et al., 1995), concerning classes supporting runtime updateable be-
haviors, the latter implemented as distinct classes. It is interesting to note that the
State pattern implicitly exposes the need to support dynamic inheritance, since the
State pattern was born as a design recipe to craft classes conditionally reflecting,
during runtime different behavioral pictures. The implementation of a directly de-
ployable polymorphic State pattern is shown in Fig. 8. Following Fig. 8, we choose to
store at runtime any state-related prototype named S, for class-specific prototype
named A, within prototypes[A].States[S]. The State pattern logic is actually
consolidated in a single function performing the following actions:

 Cancels the inheritance association with the current base State instance
self.State;

 Makes a new instance corresponding to the prototype of the new state, that is pro-
totypes[self.class].States[newState];

 Establishes an inheritance association with the new base State instance, while set-
ting the current State name, i.e. inherit(self, self.State = inst);

The runtime associations for the State pattern are shown in Fig. 9. The “owns” label
indicates the instance in which members are actually stored, “binds” denotes mem-
bers resolved via late-binding to a base / derived instance, while “refers” signifies
members being instance references.

 Dynamic Imperative Languages for Runtime Extensible Semantics 125

Derived A
instance

Inherited
State pattern

instance
setstate

State

Inherited
state S

instance

class

self.class self.State

xnx1 xj

xnx1 xj

owns uses

owns

uses

owns

binds binds

re
fe

rs

binds
binds

binds

Derived A
instance

Inherited
State pattern

instance
setstate

State

Inherited
state S

instance

class

self.class self.State

xnx1 xj

xnx1 xj

owns uses

owns

uses

owns

binds binds

re
fe

rs

binds
binds

binds

Fig. 9. The runtime associations for the State pattern and the way the various members are
dynamically resolved; notice that the state-specific instance constitutes a dynamic base in-
stance, rather than a delegate local instance as it is in the original implementation recipe
(Gamma et al., 1995)

7 Polymorphic Higher-Order Functions

Higher-order functions are functions taking functions as arguments and / or delivering
functions as results; the most challenging case concerns function generators. Func-
tional programming languages like Haskell (Peyton Jones, 2003) or Scheme (Abelson
et al., 1998) genuinely support the definition of generic (polymorphic) higher-order
functions through the λ-lambda operator. Although dynamically typed languages
easily overpass the signature-checking barrier, they only manage to allow polymor-
phic function generators once functions are treated as object instances by the underly-
ing implementation, with their own call-persistent data members. In Python this is
possible with an interpreted implementation, however compiled dynamically typed
languages like Lua (Ierusalimschy et al., 1996) fail in this respect because they do not
provide a truly object-oriented model for functions. In Delta, the implementation of

function compose(f, g) {
 return [

{ "f" : f },
{ "g" : g },

 { "()" : (member(){
return self.f(|self.g(|arguments|)|); })}

];
}
mul = function(x,y){ return x*y; });
sqrpair = function(x,y){ return [sqr(x), sqr(y)]; });
mulsquares = compose(mul, sqrpair);
x = mulsquares(3, 7));

Fig. 10. A polymorphic function composer

126 A. Savidis

function generators is straightforward: they are functions returning table instances
overloading the function call () operator; the latter are commonly called functors. In
Fig. 10, the implementation of a generic function composer is shown.

The compose function returns a table object instance which stores in local members
the two functions (those need not be “normal” functions, but can be functors as well),
while also overloading the call operator (), binding to a an appropriate member func-
tion. This member function performs firstly a call to g, propagating to it the actual
arguments of the composed function via the |arguments| expression. Then, the
return values of this call, collected in a table, are supplied as actual arguments to the f
call, as |self.g(…)|. The result of f invocation is by definition the correct result of
the composition.

Next we present the imperative implementation of three additional key polymor-
phic higher-order functions in the Delta language (see Fig. 11): (a) the mapping func-
tion, applying an argument function to all entries of a table; (b) the const function,
transforming a value parameter to a mathematical constant function (i.e. always re-
turning this value when called); and (c) the delayed call function, which accepts a
function and its actual arguments, returning a function which is equivalent to this call.

function map(f, t) {
 for (ti = tabindices(t), n = tablength(ti)-1; n >= 0; --n)
 t[ti[n]] = f(t[ti[n]]);
}
function sqr(x) {

if (typeof(x)==”number”) return x*x; else return x;
}
t = [0, 1, 2, 3, 4, {“x”, ”y” : 4}, {“name” : ”t”}];
map(sqr, t); // Affects only numeric values, for all indices
function const(c) {
 t = [{“c” : c}, {“f” : (member(){ return self.c; })}];
 return t.f;
}
c_10 = const(10);
print(c_10()); // Prints “10”
c_hello = const(“hello”);
c_hello(); // Prints “hello”

function call(f) {
 for (args=[], n=tablength(arguments) - 1; n > 0; --n)
 args[n-1] = arguments[n]; // Shift indices left
 t = [{ “args” : args }, { “f” : f },
 { “call” : (member(){

return self.f (|self.args|); })}
];
 return t.call;
}
c = call(compose, mul, sqrpair);
print(c()(3, 2)); // Prints “36”

Fig. 11. Examples of additional polymorphic higher-order functions, with an imperative im-
plementation in the Delta language

 Dynamic Imperative Languages for Runtime Extensible Semantics 127

The programming of such higher-order functions in the Delta language is enabled by
the deployment of two key features: (i member functions as distinct first-order values
internally carrying both the member function address and the associated table in-
stance; and (ii) late binding of actual arguments, supporting “transit” actual argument
passing in a functional programming style. For instance, every call to the const
higher-order function (see Fig. 11) constructs a table encompassing both the supplied
value indexed by “c”, and a member function indexed by “f”, the latter returning
the “c” member of its associated runtime table; effectively, the const function re-
turns the member function value of the newly constructed table, i.e. a pair of the func-
tion address and constructed table instance.

8 Discussion and Conclusions

The benefits of introducing enhanced dynamic-language features, towards directly de-
ployable polymorphic program capsules, can be argued and demonstrated, however,
they cannot be largely predicted and projected. Since we lack theoretical frameworks to
assess the computational necessity of constructs like polymorphic higher-order func-
tions, dynamically extensible function semantics, or dynamic inheritance hierarchies, in
an imperative programming context, it is hard to formally prove that their introduction
always leads to an enhanced code of programming practice. Intuitively, truly dynamic
languages enable a more natural and convenient mapping of abstract designs to source
code units, while effectively enabling the accommodation of computable design deci-
sions injected in the runtime logic, as static invariant associations and dependencies are
diminished. This remark implies that there is a very strong impact of truly dynamic
imperative languages on the software engineering of meta-programs and polymorphic
code capsules. Practically, the main implications lay on the fact that meta-elements and
parametric polymorphism become directly implementable, turning design patterns and
software recipes to concrete program units. However, increased flexibility is usually
paid by decreased safety. This is also true for the Delta language, as the programming
flexibility offered by dynamic typing has to be eventually paid by the manual embed-
ding of runtime type checking logic. This implies that all potential type conflicts are
only detectable during runtime, meaning that the test units have to be designed in a way
ensuring the exhaustive execution of all type safety guards. In this context, the dynamic
function-overloading pattern provides a standard entry point to attack type conflicts, as
well as potential functional extensions, either during development (manually encapsu-
lating functions) or during runtime (signature-based installation of overloaded func-
tions). While at present the object-oriented support offered by the Delta language is
primarily focused on re-usability and polymorphism, the language misses the ingredi-
ents to facilitate encapsulation and information hiding. Although programmers currently
follow the software pattern of accessing member variables only through member func-
tions, language extensions may need to be introduced to support typical member access
qualifiers such as private or const, to guard pattern conformance during execution.
However, considering the semantics of Delta tables, such guards can be only accommo-
dated in the form of runtime member-access check-points, meaning that more testing
code is needed, to ensure that “information hiding” related qualifiers are always
respected.

128 A. Savidis

References

H. Abelson, R.K. Dybvig, C.T. Haynes, G.J. Rozas, N.I. Adams IV, D.P. Friedman, E. Kohl-
becker, G.L. Steele Jr., D.H. Bartley, R. Halstead, D. Oxley, G.J. Sussman, G. Brooks, C.
Hanson, K.M. Pitman, M. Wand (1998). Revised Report on the Algorithmic Language
Scheme. Journal of Higher-order and Symbolic Computation, 11(1), pp. 7–105.

ECMA (2004). ECMA Script Language Specification. Available electronically from: http://
www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Gamma, E., Helm, R., Johnson,R., Vlissides, J. (1995). Design Patterns: Elements of Re-
Usable Object-Oriented Software. Addison-Wesley.

Ierusalimschy, R., Henrique de Figueiredo, L., Celes Filho, W. (1996). Lua – an extensible
extension language. Journal of Software Practice & Experience 26(6), pp. 635–652.

Liskov, B. (1988). Data Abstraction and Hierarchy, SIGPLAN Notices, 23,5 (May, 1988).
Meyer, B. (1997). Object-Oriented Software Construction - Second Edition. Prentice Hall,

Santa Barbara, CA.
Peyton Jones, S. (2003). Haskell 98 Language and Libraries, Cambridge University Press.

	Introduction
	Link to Rapid Integration of Software Engineering Techniques

	Prototypes as Instance Factories
	Details on Object Oriented Extensions to Deployment of Associative Tables

	Dynamic Inheritance
	Dynamic Virtual Base Classes
	Member Resolution in Dynamic Inheritance Chains

	Function Overloading Pattern
	Dynamic Constructor Overloading

	Operator Overloading Contract
	Polymorphic Pattern Programming
	Polymorphic Higher-Order Functions
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

