

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 66 – 80, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Technique to Represent Product Line
Core Assets in MDA/PIM for Automation∗

Hyun Gi Min and Soo Dong Kim

Department of Computer Science, Soongsil University,
511 Sangdo-Dong, Dongjak-Ku, Seoul 156-743, Korea
hgmin@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. A Product Line (PL) is a set of products (applications) that share
common assets in a domain. Product line engineering (PLE) supports the
systematic development of a set of similar software systems by common and
distinguishing characteristics. Core assets, the common assets, are created
and instantiated to make products in PLE. Model Driven Architecture (MDA)
emphasizes its feasibility with an automatically developing product. Therefore,
we can get the advantages of two paradigms, PLE and MDA, as core assets are
represented as PIM in MDA with a predefined automatic mechanism. The PLE
framework in the PIM level has to be interpreted by MDA tools. However, we
do not have a standard UML profile for representing core assets. The research
representing the PLE framework is not enough to automatically make core
assets and products. We represent core assets in the PIM level in terms of
architecture, components, and decision models. Core assets are specified with
our profile at the level of PIM, where they can be automatically transformed
and instantiated. The method of representing the framework with PLE and
MDA is used to improve productivity, applicability, maintainability and quality
of products.

1 Motivation

MDA is a new software development paradigm where a model plays a key role in
automatic software development [1]. It provides a systematic framework to
understand, design, operate, and evolve all aspects of an enterprise system, using
engineering methods and tools. The goals of MDA are portability, interoperability,
and reusability by the architectural separation of concerns. A very common technique
for achieving platform independence is to target a system model for a technology-
neutral virtual machine. A model in PIM is reusable over different platforms.

A product line is a set of products (applications) that share common assets in a
domain. Product Line Engineering is a set of principles, techniques, mechanisms, and
processes that enables the realization of produce lines [2]. Core assets, the common
assets, are created and instantiated to make products in PLE. The concepts in the

∗ This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD). (KRF-2004-005-D00172).

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 67

application domain are analyzed and used to build a product line architecture, which
includes reference architecture for the systems in the domain. Applications can then
be constructed largely by instantiating this product line architecture.

Therefore, if main constructs and mechanisms of the MDA are combined with the
core mechanisms and characteristics of PLE, we can expect to have an effective
software development approach. PLE supports this by reusing common assets derived
through core asset engineering, and MDA supports this by generating applications on
diverse platforms through a model transformation. However, previous researches
about representing assets are not enough to automatically make core assets and
products.

In this paper, we suggest techniques to improve the advantage of PLE and MDA.
We define the elements of core assets and PIM. We compare the needing of core
assets and supporting PIM to present. We suggest a UML profile for PLE to present
the gaps that can not be presented by a general PIM. Product line architecture,
components, decision models, and resolution models are designed by our proposed
method in MDA. The design can be automatically transformed to a source code
implementation by using MDA transformation mappings. Eventually application
engineering of PLE can be automated using MDA tools. We also believe that the
productivity, applicability, maintainability, reusability, and quality of an application
can be greatly increased.

2 Foundation

2.1 Model Driven Architecture (MDA)

MDA is an approach to using models in software development. The essence of MDA
is making a distinction between Platform Independent Models (PIMs) and Platform
Specific Models (PSMs). To develop an application using MDA, it is necessary to
first build a PIM of the application, then transform this using a standardized mapping
into a PSM, and finally map the latter into the application code by automation.

The goals of MDA are portability, interoperability and reusability through
architectural separation of concerns [1]. Some of the motivations of the MDA
approach are: reduce the time of adoption of new platforms and middleware, primacy
of conceptual design, and interoperability. The MDA approach makes it possible to
save the conceptual design, and helps to avoid duplication of effort and other needless
waste [3][4].

2.2 Product Line Engineering (PLE)

PLE supports the systematic development of a set of similar software systems by
understanding and controlling their common and distinguishing characteristics. Thus
it is an approach for software reuse driven by the concepts from the real-world
domain of software products, which are used to tackle main reuse challenges. The
concepts in the application domain are analyzed and used to build a product line
infrastructure, which includes reference architecture for the systems in the domain.

68 H.G. Min and S.D. Kim

Concrete applications can then be constructed largely by instantiating and reusing this
product line infrastructure [5].

2.3 UML Profile

A UML profile defines standard UML extensions that combine and/or refine
existing UML constructs to create a dialect that can be used to describe artifacts in a
design or implementation model. It defines a set of UML extensions that define
several standard extension mechanisms, including stereotypes, constraints, tagged
values and icons [6]. When one defines a profile, it is common MDA practice to
also define mappings that specify how to transform models conforming to the
profile into artifacts appropriate to the specific kinds of systems. If a model is not
specified by a particular UML profile, the model can not be transformed
automatically by the MDA mechanism.

The OMG has adopted a MOF metamodel of Java and EJB to complement the
UML profile for EJB [7], a UML profile for modeling enterprise application
integration [8] and a UML profile for CORBA [9] as well. However, there support
implementation levels. The profiles do not present the component of a PIM level.

2.4 Gomaa’s PLUS

Product Line UML-Based Software Engineering (PLUS) method extends the
UML-based modeling methods that are used for single systems to address software
product lines [10]. With PLUS, the objective is to model the commonality and
variability in a software product line. Gomaa suggest stereotypes «kernel»,
«optional», «alternative», and «variant» to be used in UML diagrams. However, the
elements are not explicitly identified in this model and no precise definition for the
elements is suggested. These stereotypes about representing PLE framework are not
enough to automatically make core assets and products.

2.5 Muthig’s PLE Metamodel

The metamodel for the product line assets describes an information model for
the assets capturing the explicit and integrated product line information [5]. The
metamodel for product line assets consists of three packages. The Asset package
contains the metamodel for general assets including assets used for single-system
development.

The GenericAsset package depends on the Asset package and defines genericity as
an add-on characteristic for any asset. The main concepts in the GenericAsset package
are variant asset elements, which are variation points concerned with variant
information at local points in an asset.

The DecisionModel package builds on generic assets and extends the variation
point concept to decisions. Decisions are variation points that typically constrain
other variation points and provide a question that must be answered during appli-
cation engineering. These questions and the constraints among them support
application engineering by guiding the instantiation of generic assets. The constraint
network of decisions is the decision model.

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 69

3 Elements of Core Assets

In this section, we define elements of core assets and each element is elaborated in
detail. A core asset plays a key role in PLE. It consists of product line architecture
(PLA) which is generic to products, a component model capturing components and
interfaces, and a decision model defining variability realization, as shown in Fig. 1. PLA
and component model can be represented to architecture specifications, component
specifications, and interface specifications. Like the C&V (Commonality and
Variability) model, the variability should especially be specified to decision description.

Core Asset

Product Line
Architecture

Component
Model

Interface

Decision
Model

Element

Variation
Point

Variant

Decision
Specification

Interface
Specification

Representation
Layer

Element
Layer

Sub-Element
Layer

Inter-element
Relationship

Effect

«instance of»

Provided
Interface

Required
Interface

0…*
*

*

Architecture
Specification

Component

*

*

Component
Specification

«refers to»

Artifact
Layer

* 1

*

*

*

«refers to»

Style
{ abstract}

View
{ abstract}

«c
on

fo
rm

s
to

»

«r
ef

er
s

to
»

Object Inter-object
Relationship

Attached
Task

«r
ef

er
s

to
»

Fig. 1. Meta Model for Core Asset

Architecture specification effectively designs architecture. It is important that
architecture specification include style, view, element and inter-element relationships.
It describes the composition of software components and their functionalities in a
conceptual level, while the component specification specifies objects and inter-object
relationships.

Component specification specifies software components and their relationships
with text or graphical notations such as UML diagrams [11]. The models can be
represented by use case diagrams, class diagrams, and sequence diagrams in UML.
Expression of Variability on the models has generally been proposed by using
stereotypes. Interface specification specifies public interface through which two
components communicate each other, and which consists of method signatures and
semantics. In this specification, two types of the interfaces may exist, provided
interface and required interface [11].

Decision specification is a realization of the variability of the C&V specification, and
it consists of variation points, their associated variants, effects, and attached tasks.
Several variants exist in one variation point, and each variant may have several effects
and attached tasks.

70 H.G. Min and S.D. Kim

4 Gap Analysis Between Core Asset and PIM Artifacts

MDA specification [12] and MDA guide [13] suggest the concept of PIMs. The PIM
provides formal specifications of the structure and function of the system in a platform-
independent manner using UML, MOF, and so on. We define the key elements of PIM
in Fig. 2 to compare needing of core assets and supporting PIM to present.

The gaps that are differentiated between core asset artifacts and PIM are covered
by UML profile for specifying PLE in section 5. If the gaps are covered by PIM with
UML profile for PLE, the core asset contents can be designed by PIMs. Applications

PIM

Behavior
Model

Structure
Model Class

Diagram

Component
Diagram

Structure
Diagram Composite

Structure D.

Use case
Diagram

Sequence
Diagram

Behavior
Diagram

Activity
Diagram

Semantic
Language

State
Diagram

ASL

Package
Diagram

Deployment
Diagram

OCL

Interaction
Overview D.

Fig. 2. Metamodel of PIM

Table 1. Gaps between Core Assets and PIM Artifacts (: Support, : Partially Support,
−: Not supported)

Needed by Core Assets
Element Sub Element

Supporting by PIM
(UML and ASL)

Gap

Module
Class, Component, Composite
Structure, Package Diagram

PLA
Model

Relationship
Dependency, Association,
Generalization, Realization, etc.

Intra-Object Class, Composite Structure Diagram Compo-
nent Relationship Relationship
Interface Provided and Required Interface

Functional View
Use case and activity Diagram
Action Semantic Language

Static View Class, Component Diagram

Compo-
nent
Model

Dynamic View
Sequence Diagram
Communication Diagram
Interaction Overview Diagram

Variation Point − −
Variant − −
Effect − −

Decision
Model

Task − −

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 71

can be generated by the PIM using automation. We identify the gaps of PLA,
components, and decision model as Table 1.

Product line architecture must provide a link between the standard organization, or
communications protocols, and the individual components to permit clients to
understand easily how the components will fit into their respective architecture [2].
The product line architecture model that consists of module and relationship between
modules needed by core assets is covered by PIM, such as UML and ASL. However,
the detailed types for the module are not specified by them.

The component model represents a design of components themselves which are
represented with structural and behavioral models of objects, inter-object relation-
ships, and interfaces. The component model of core assets is nearly supported by
class, composite structure, and a component diagram.

The decision model is a specification of variations in core assets and includes
variation points, variants, effects, and the attached task. Core assets are instantiated
for an application by the decision model and resolution model. However, the elements
of the decision model are not supported by PIM.

5 Method to Present the Core Asset in PIM

In this section, we specify methods to represent the core asset in PIM of MDA. The
PIMs that are specified by our methods can be transformed into PSM and code
sources using the automation of MDA. The method to present core assets consists of
product line architecture, components, variations, and decision models. The method is
showed by examples about core assets for rental application.

5.1 Method to Present Product Line Architecture

Software architecture realizes both functional and non-functional requirements. With
the requirements and product line analysis model derived from the requirements,
several kinds of views are proposed and used such as module view, C&C (Component
and Connector) view and deployment view [14]. Several styles of a view can be
applied to PLA. Architecture design begins with choosing the most appropriate
architectural styles which can realize both types of requirements.

Element and inter-element relationships in PLA are directly derived from the
requirements and especially inter-element relationships are guided by styles. There-
fore, it is fair to state that elements and the relationships effectively implement
functional and non-functional requirements. Hence the style is not a constituent
of product line architecture, but an abstract element to which the architecture
conforms.

The UML profile for specifying PLA can be described as shown in Table 2. The
profile can specify module views and C&C views [14]. Conceptual components
have conceptual relationships between each other. Relationships are abstracted
interfaces between units. The styles of the C&C viewtype consist of the pipe-filter,

72 H.G. Min and S.D. Kim

shared-data, publish-subscribe, client-server, peer to peer, and communicating-
processes styles.

Types of messages are control, data, and uses from QADA which are methods of
standing for Quality-Driven Architecture Design Analysis method [15]. Passing control
means, that one component controls a given aspect of the system. Passing data
means, that one component inputs data to another component, but is still able to
continue processing without waiting for a reply or return value. The situation is
reversed when talking about uses relationships, where a component has a kind of
subcontract with the component it uses [15]. Fig. 3 is an example of PIM for

Table 2. Elements of UML Profile for Specifying PLA

Element Presentation Applies to Remarks
Unit «module» Class, Component, Package

Connector «connector» Class, relationship

Use Dependency «use» Relationship Use UML2.0

Control Relationship «control» Relationship

Data Relationship «data» Relationship

Layer «layer» Package and class

Filter «filter» Class, Component

Pipe «pipe» Relationship

Repository «repository» Class, Component

Publish «publish» Relationship

Subscribe «subscribe» Relationship

Client «client» Class, Component

Server «server» Class, Component

RentalUI
<<Client>>

CustomerUI
<<Client>>

Rental
<<module>>

DataBase1
<<Repository>>

<<use>>

Customer
<<module>>

<<use>>

<<use>>

DataBase2
<<Repository>>

{vpID="2",vType="alt"}

Fig. 3. Example of PLA PIM Design for Rental Application

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 73

specifying PLA. This unit and its relationships can have variation and can be
instantiated.

5.2 Method to Present Components

The component model represents component designs themselves which are
represented with structural and behavioral models of objects, inter-object relation-
ships, and interfaces as Table 3. Generally, component-base development (CBD) is
based on object-oriented development (OOD) and in this section we assume that
functionality of the core asset is realized by its components. The component model is
based on PLA.

Table 3. Elements of UML Profile for Specifying Components

Element Presentation Applies to Remarks
Component «component» Component, Package Use UML 2.0

Transient Class «Transient» Class

Persistence Class «Persistence» Class Default

Primary key filed «UniqueId» Attribute

Synchronous Message «Sync» Operation Default
Asynchronous
Message

«Async» Operation

Relationships
Between Components

Dependency,
Association,
Generalization,
Realization, etc.

Relationship Use UML 2.0

Interface «Interface» Interface Use UML 2.0

Provided Interface «ProvidedInterface» Interface Use UML 2.0

Required Interface «RequiredInterface», Interface Use UML 2.0

Signature
name (param : Type):
return type

Operation Use UML 2.0

Constraints { }, pre:, post:, inv:
Class, Method,
Relationship, etc.

OCL

Algorithms Use Text Method OCL, ASL

The components are identified by architecture models. The components are nearly
described by UML 2.0. The structural model of the components can be represented
by the composite structure diagram of UML 2.0. The behavior can be represented by
sequence, communication, activity, state machine diagrams, and Action Semantic
Language (ASL).

Components are the fundamental units of packaging related objects [16], hence we
need to specify the related objects in a component in core asset PIM. A port is a
connection point between a classifier and its environment. Connections from the
outside world are made to ports according to what is provided and required.

Persistency objects that should be stored in the database or file systems are
represented by a stereotype «Persistence». If some objects such as value objects [17]

74 H.G. Min and S.D. Kim

for transforming data are not persistent, a stereotype «Transient» is used.
Asynchronous messages use the stereotype «Async» that are described at methods in
class, sequence, and communication diagrams. Constraints and algorithms can be
expressed by Object Constraints Language (OCL), and ASL.

A component provides its component-level interface, i.e. the protocol for accessing
the service of the component. An interface is clearly separated from the component
implementation to increase the maintainability and replaceability [16]. Hence, we
need to specify some interfaces as well as component units.

Two types of interfaces can be modeled; provided and required interfaces. The
provided interface specifies the services provided by a component and it is invoked by
other components or client programs at runtime. The stereotype «ProvidedInterface»
is used to denote this interface, and the name provided interface is defined by using
‘Ip’ prefix name. The required interface specifies external services invoked by the
current component, i.e. a specification of external services required by the current
component [10]. By specifying the required interface for a component, we can
precisely define the services invoked by the current component.

This information can later be used in integrating related components into core
assets. The required interface can be specified with a stereotype «RequiredInterface».
An interface consists of operation signatures and their semantics. The semantics can

context IpRental::checkOutItem(items : Set (RentaI)) pre: items.size() < 5
context IpRental::returnItem(items : Set (RentaI)) pre: items.size() >0

IpRental

checkOutItem(items : Rental[]) : void
returnItem(items : Rental[]) : void

<<ProvidedInterface>>

RentalComp
<<component>>

IrCustomer

getStatus() : String
updateStatus(st : String) : void
search(id : String) : Customer

<<RequiredInterface>>

IrReservation

notify(itemInfo : Info) : vo id
search(resv : Info) : Reservation

<<RequiredInterface>>
<<use>>

<<use>>

Fig. 4. Example of Components PIM Design for Rental Application

Table 4. Elements of Action Semantic Language

Semantics Usage
Creating Object create object instance <object reference> of <class>;
Deleting Object delete object instance <object reference>;

Searching Object
s e l e c t [o n e | a n y | m a n y] < o b j e c t r e f e r e n c e s e t >

from instances of <class> where <where clause>;
Writing Attribute <object reference>.<attribute name> = <expression>;
Reading Attribute …<object reference>.<attribute name>;
Sending Message generate signal action to <class>

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 75

be expressed in terms of pre- and post-conditions and invariants using OCL. Fig. 4 is
an example of component PIM design of a component RentalComp.

Behavior can be represented by behavior diagrams, ASL such as Executable UML
[18], and OCL. The action semantic is described in Table 4. The behavior can
generate source code using automation of MDA because the syntax can be read by
MDA tools.

Fig. 5 is an algorithm of returnItem(). If a customer should pay a penalty fee, the
penalty fee is deducted from his or her mileage. If customers return items early, points
are added to his or her mileage.

itemID = rental.itemID;

generate notify(itemID) to Reservation;

If rental.dueDate <= today
rental.penaltyFee = 100;

else rental.penaltyFee = 0;

create object instance newAccount of Account;
newAccount.date = today;
newAccount.amount = rental.penaltyFee;
generate write(newAccount) to Account;
create object instance mileage of Integer;
mileage = -(today-rental.duedate) *10;
generate upateStatus(mileage) to Member;

create object instance mileage of Integer;
mileage = (dueDate – today) *100;
generate upateStatus(mileage) to Member;

[rental.penaltyFee>0] [rental.penaltyFee == 0]

returnItem(item:Rental):void

Fig. 5. Example of Behavior Modeling using ASL for Rental Application

5.3 Method to Present Variation and Decision Model

The instantiation of components in core assets of PLE differs from the customization
of components in CBD. Binary components include customization mechanisms to set
variation [19]. The variation is chosen by the component consumer after the
transition. The core assets are instantiated by the resolution of the decision model in
the application engineering before the transition. The unnecessary elements are
removed or deselected for target application by the decision models. The decision
model is a specification of variations in core assets and includes variation points,
variants, effects, and the attached task [20].

A variation point is a place where slight differences among members may occurr.
The variation point may be exposed in the architectural style, architectural elements

76 H.G. Min and S.D. Kim

and relationships, and component internals. Variants are valid values which can
appropriately fill in a variation point. As the types of variation points and variability
types such as optional and alternative, the variants may be designed into various
formats.

The effect means a range of relationships among variations points, and is
represented with dependencies and constraints. For example, some variations should
be selected with some variations, but some variations are not. The relationships are an
essential problem which should be specified and resolved in product line engineering
[21]. Therefore, for one variant of a variation point, the effect can be represented as
the post-conditions of setting the variant. The Attached Task is a set of activities to
resolve a variation point for one selected variant, that is, to instantiate. Through the
attached tasks, post-conditions of the instantiated variation point should satisfy
defined effects for the variation point.

Table 5. Elements of UML Profile for Specifying Components

Element Presentation Applies to Remarks
Variation Point «VP» Attribute, Method Default
Attribute VP «VP-A» Attribute in Class

Logic VP «VP-L» Method in Class, Sequence, etc.

Workflow VP «VP-W» Method in Class, Sequence, etc.

Interface VP «VP-I» Operation in Class Diagram

Persistency VP «VP-P» Operation in Class Diagram

Variation Scope {vScope = value} Variation Point
Close, Open,
Unknown

ID of VP {vpID = value } Variation Point Unique ID

Type of VP
{vpType = value
}

Variation Point opt, alt

Constraints { }, pre:, post:, inv: Class, Method, Relationship, etc. OCL

Algorithms Use Text Method OCL, ASL

We define types of variation as attribute variability, logic, workflow, persistency
and interface variability [22]. To express variation points of core assets, we propose
stereotypes that are «VP-A», «VP-L», «VP-W», «VP-P» and «VP-I». The attribute
variability denotes occurrences of variation points on attributes. Logic describes an
algorithm or a procedural flow of a relatively fine-grained function. Logic
variability denotes occurrences of variation points on the algorithm or logical
procedure. Workflow variability denotes occurrences of variation points on the
sequence of method invocations. Persistency is maintained by storing attribute
values of a component in a permanent storage so that the state of the component can
alive over system sessions. Persistency variability denotes occurrences of variation
points on the physical schema or representation of the persistent attributes on a
secondary storage.

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 77

We present two kinds of variation point scopes. The open scope variation point has
any number of variants which are already known and additional variants which are
currently unknown but can possibly be found later at the customization or deployment
time. In constraint, the close scope variation point has two or more variants which are
already known. The types of variation points consist of opt and alt. The opt is an
optional selection of variants at the variation point. The variation cannot be used. The
alt is one of which could be selected at the variation point. Stereotype variation points
have a tagged value about variation scope, ID of a variation point, and Type of a
variation point.

The decision model for the returnItem () in Fig. 6 is shown as Table 6. Decision
models may be described using the table form in the tool. It is easily read by people.
However, the table form cannot be read by tools for instantiation. Therefore, if the
decision models are saved as XML, the file is easily read by tools.

Rental

id : String
date : Date
dueDate : Date
<<VP-A>> fee : double {vpID = "7", vType="opt"}
<<VP-A>> penalty : double {vpID = "8", vType="opt"}

<<VP-L>> checkOutItem() : void {vpID="9", vType="alt"}
modifyRental() : void
searchRentalByItem() : void
<<VP-W>> returnItem() : void {vpID="10", vType="alt"}
checkPreviousRental()
<<VP-L>> getLoanPeriod() : void {vPID="11", vType="alt"}
<<VP-L>> getPenaltyFee() : float {vpID = "12", vType="opt"}

Customer

id : String
name : String
mileage : long
<<VP-A>> rank : int {vpID = "71", vType='opt"}

<<VP-L>> makeCustomer()

0..*

1

Fig. 6. Example of Variation Design for Rental Application

Table 6. Example of Decision Model of returnItem()

VP
ID

Variant
ID

Effect Task

1

While returning items,
points are assigned by
each customer rank.

{if vpID==71 then varID == 1} //customer
object should have an attribute rank
generator notifyReservation() to Reservation;
Point = 10 * customer.rank;
generator IncPoint() to Member;

10

2
While returning items,
100 points are assigned
 to each customer.

Point = 100;
generator IncPoint() to Member;
generator notifyReservation() to Reservation;

Decision specification can be represented to UML extensions and XML as Fig. 7.
While variability occurs in components of a component-based development, it can
occur in the component model or PLA of PLE. A variability listed in the decision
specification is eventually reflected and realized in the architecture specification,
component specification and interface specification.

78 H.G. Min and S.D. Kim

<?xml version="1.0" encoding="UTF-8"?>
<DecisionModel xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:noNamespaceSchemaLocation=". \DecisionModel.xsd">
<VariationPoint ID="10">
 <Variant ID="1">
 <Effect> While returning items, points are assigned by each customer rank.</Effect>
 <AttachedTask>{if vpID==71 then varID == 1}</AttachedTask>
 <AttachedTask>generator notifyReservation() to Reservation;</AttachedTask>
 <AttachedTask>Point = 10 * customer.rank;</AttachedTask>
 <AttachedTask>generator IncPoint() to Member;</AttachedTask>
 </Variant>
 <Variant ID="2">
 <Effect> While returning items, 100 points are assigned to each customer.</Effect>
 <AttachedTask>Point = 100;</AttachedTask>
 <AttachedTask>generator IncPoint() to Member;</AttachedTask>
 <AttachedTask>generator notifyReservation() to Reservation;</AttachedTask>
 </Variant>
 </ VariationPoint>

</DecisionModel>

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="DecisionModel">
 <xs:annotation>
 <xs:documentation>Comment describing your root element</xs:documentation>
</xs:annotation>
<xs:complexType>
 <xs:sequence>
 <xs:element name="VariationPoint" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Variant" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Effect" minOccurs="0"/>
 <xs:element name="AttachedTask" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string " use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

 </xs:schema>

Fig. 7. Decision Model and XMI Schema for Decision Model

6 Assessment

The UML 2.0 and Gomaa’s PLUS do not sufficiently detail the profile for specifying
architecture, components, and decision models. These stereotypes about the
representing PLE framework are not enough to automatically make core assets and
products. We suggest a UML profile that supports them. The core asset PIM can be
present by our UML profile. The core asset PIM can be instantiated by MDA
mapping rules for instantiation.

 A Technique to Represent Product Line Core Assets in MDA/PIM for Automation 79

As shown in Fig. 8, the MDA transformation mechanism can be used to map a core
asset to an instantiated core asset if the decision models and application specific
decisions including variants are expressed in XMI. To automate the instantiation
process, mapping rules that map elements of the core asset to the elements of the
instantiated core asset are required, as in Fig. 8.

Generic
Core Asset

(PIM)

Generic
Core Asset

(PIM)

Decision Model
(XMI)

Instantiated
Core Asset

(PIM)

Instantiated
Core Asset

(PIM)

Instantiate Core Asset
by Transformation

Resolution Model
(XMI)

Mapping Rules
for Instantiation

Fig. 8. Instantiation by MDA Transformation

7 Conclusion Remarks

Both PLE and MDA are emerging as effective paradigms for building a family of
applications in a cost effective way. PLE supports this by reusing common assets
derived through core asset engineering, and MDA supports this by generating
applications on diverse platforms through model transformation. However, previous
researches about representing the PLE framework are not enough to automatically
make core assets and products.

In this paper, we propose the UML profile for specifying PLE. Our UML profile
consists of UML extensions, notations, and related instructions to specify elements of
PLE in MDA PIM models, which can be presented by general UML and MDA design
tools. We introduce a concept of integrating MDA and PLE in software engineering.
Once core assets are specified with our profile at the level of PIM, they can be
automatically transformed and instantiated. Eventually, the application engineering of
PLE is automated by MDA tools. We also believe that the productivity, applicability,
maintainability, reusability, and quality of the application can be greatly increased.

References

[1] OMG, “MDA Guide Version 1.0.1,” omg/2003-06-01, June 2003.
[2] Clements P, Northrop L, Software Product Lines, Addison Wesley, 2002.
[3] Flater., D., “Impact of Model-Driven Architecture,” In Proceedings of the 35th Hawaii

International Conference on System Sciences, January 2002.
[4] Frankel, D. and Parodi, The MDA Journal, Model Driven Architecture Straigth from the

Masters, Meghan-Kiffer Press, 2004.
[5] Muthig, D. and Atkinson, C., “Model-Driven Product Line Architectures,” SPLC2 2002,

LNCS Vol. 2379, pp. 110–129, 2002.
[6] Frankel, D., Model Driven Architecture™:Applying MDA™ to Enterprise Computing,

Wiley, 2003.
[7] Java Community Process , “UML Profile For EJB_Draft,” 2001.

80 H.G. Min and S.D. Kim

[8] OMG, “UML™ Profile and Interchange Models for Enterprise Application
Integration(EAI) Specification,” 2002.

[9] OMG, “UML Profile for CORBA Specification V1.0, OMG,” Nov. 2000.
[10] Gomaa, H., Designing Software Product Lines with UML from Use Cases to Pattern-

based Software Architectures, Addison-Wesley, 2004.
[11] Rumbaugh, J., Jacobson, I, and Booch, G., The Unified Modeling Language Reference

Manual Second Edition, Addison-Wesley, 2004.
[12] Object Management Group, Model Driven Architecture (MDA), July 2001.
[13] OMG, MDA Guide Version 1.0.1, omg/2003-06-01, June 2003.
[14] Clements, P., et al., Documenting Software Architectures Views and Beyond, 2003.
[15] Matinlassi, M., Niemela, E., and Dobrica, L., “Quality-driven architecture design and

quality analysis method: A revolutionary initiation approach to a product line
architecture,” VTT publication 456, VTT Technical Research Center of Finland,
ESPOO2002, 2002.

[16] Heineman, G. and Councill, W., Component-Based Software Engineering, Addison
Wesley, 2001.

[17] Roman, E., Mastering Enterprise JavaBeans™ and the Java™2 Platform, Enterprise
Edition, WILEY, 1999.

[18] Mellor, S. and Balcer, M., Executable UML: A Foundation for Model-Driven
Architecture, Addison Wesley, 2002.

[19] Kim, S., Min, H., and Rhew, S., “Variability Design and Customization Mechanisms for
COTS Components,” Proceedings of The 2005 International Conference on
Computational Science and its Applications (ICCSA 2005), LNCS Vol. 3480, pp. 57–66,
2005.

[20] Kim, S., Chang, S., and Chang, C., “A Systematic Method to Instantiate Core Assets in
Product Line Engineering,” Proceedings of Asian-Pacific Software Engineering
Conference 2004, Nov. 2004.

[21] Sinnema, M., Deelstra, S., Nijhuis, J., and Bosch, J., “COVAMOF: A Framework for
Modeling Variability in Software Product Families,” Proceedings of the Third Software
Product Line Conference (SPLC 2004), LNCS Vol. 3154, August 2004.

[22] Kim, S., Her, J., and Chang, S., “A Theoretical Foundation of Variability in Component-
based Development,” Information and Software Technology, Vol. 47, pp. 663–673, July
2005.

	Motivation
	Foundation
	Model Driven Architecture (MDA)
	Product Line Engineering (PLE)
	UML Profile
	Gomaa’s PLUS
	Muthig’s PLE Metamodel

	Elements of Core Assets
	Gap Analysis Between Core Asset and PIM Artifacts
	Method to Present the Core Asset in PIM
	Method to Present Product Line Architecture
	Method to Present Components
	Method to Present Variation and Decision Model

	Assessment
	Conclusion Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

