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Abstract. This paper describes our experiences modifying the Rapid
Application Development methodology for rapid system development to
design a data gathering system for mobile fieldworkers using handheld
computers in harsh environmental conditions. In our development pro-
cess, we integrated User-Centred Design as an explicit stage in the Rapid
Application Development (RAD) software engineering methodology. We
describe our design process in detail and present a case study of its use
in the development of a working system. Finally, we use the design of
the working system to highlight some of the lessons learned, and provide
guidelines for the design of software systems for mobile data collection.

In pursuing this project, we worked with field ecologists monitoring
the evolution of coastal wetlands in the San Francisco Bay Area. The
overall goal of the ecology project was to provide accurate information
on the impact development has on these wetland areas. While the archi-
tecture of our system is tuned to the specific needs of the ecologists with
whom we worked, the design process and the lessons we learned during
design are of interest to other software engineers designing for similar
work practices.

1 Introduction and Background

Recently, much interest has been paid to supporting the information needs of
biologists, specifically with respect to the collection, analysis, and management
of large data sets. While much of the work is geared toward genomic data, other
fields of biology also suffer from inadequate data collection and management
processes. In this paper, we describe our development process that resulted in
the design of a data collection application for ecologists studying plant species
in the sensitive coastal wetlands area near our institution.

The wetlands project measures species and frequency of vegetation at ran-
domly generated data points in an area of ecological interest. Figure [I] depicts
a region of interest with sampling points. Data points are loaded into a GPS
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Fig. 1. Computer generated data collection points are displayed on a map, and the
researchers collectively assign data points in the field
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Fig. 2. Data sheet used to record field data. The data is captured using numerical
scales.

system and ecologists travel to each of the data points, recording species and
frequency data for the vegetation located there.

To record data, each team used a clipboard with a sheet of paper attached.
Information is recorded using fixed numerical scales (See Figure [2). The use of
numerical scales speeds the recording process and minimizes transcription er-
rors. To analyze the numerical data collected, the data is transcribed into a
spreadsheet application. The transcription of one day of paper-based field ob-
servations typically takes two or three days of data entry time in the laboratory.
Our goal in this project was to enable electronic data collection, thus eliminating
transcription.
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While a complete description of the data collection practices of ecologists is
beyond the scope of this paper, one important question is whether the fieldwork
techniques we observed in our target project can be generalized. Certain aspects
of any project are unique, while others are characteristics of the general work
practice across many or all projects.

The ecologists we work with perform fieldwork constantly. In follow-up inter-
views with our user group and other biologists, several themes that are com-
mon across current biological fieldwork practice came to light. Typical practices
include:

1. The use of numerical scales or other shorthand symbols or shorthand no-
tations to simplify data capture and to minimize transcription errors is
common.

2. The data collected are predictable. Biologists know the species of vegetation
(or animals, soil moisture content, etc.) that they expect to find at a given
location, and how much variability is likely in measured values.

3. The need for data transcription to electronic format, and a desire for this
process to happen quickly, are generally true of many projects.

4. The use of pen and paper is typical in the field, due to paper’s tactile char-
acteristics and to the persistence of data recorded on paper despite mishaps,
i.e. “If it falls in the mud, I can still read it.”

One other important characteristic seems to be common across biological
domains. The most significant hassle associated with data collection is the tran-
scription process in the lab. As one participant noted: “Transcribing is error
prone ... knowing whether something is a 4 or a 9, lining up numbers with names
... It takes a lot of time and no one likes [doing] it.”

A constraint on system development for limited term biological fieldwork
projects, where the duration of the project is measured in weeks or months,
is the need for a rapid development process to design and deploy systems early
in the fieldwork project. To support rapid development for mobile fieldwork, we
present a modified form of rapid application development we used in the design
and deployment of our system. Rapid application development (RAD) is an iter-
ative software development methodology described, originally, by James Martin
[11]. Since its inception, many authors have identified difficulties associated with
software development using RAD methodology [I] [8].

To overcome problems with typical RAD methodologies, we introduce User
Centred Rapid Application Development (UCRAD). UCRAD is a three-stage
process. In the first stage, user interface design is combined with the elicitation
of requirements. In the second stage, a high fidelity prototype is evolved into a
functional system that is gradually deployed in the field. Finally, we maintain the
deployed application through constant tailoring to the data collection process.

This paper is organized as follows. In Related Work, we outline some previous
work in the design of data collection systems for ecologists, and some related work
in the use of Pocket PC devices and PDAs for data collection in other fields. Next,
we describe the User-Centred Rapid Application Development methodology we
evolved during the course of the design of the system. We briefly describe the
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system architecture we designed and its success as a vehicle for data collection
for field biologists. Finally, we conclude by outlining lessons learned during the
evolution of our design process.

2 Related Systems

In this section, we focus on data capture or data recording systems designed for
handheld computers. The use of handheld computers, such as Personal Digital
Assistants (PDAs), as data collection devices has been studied in a number of
fields as diverse as Emergency Response [16], Learning environments [6] [13], and
even in Human-Computer Interaction during usability trials [7]. Of particular
interest to us is the use of handhelds in the ecological sphere.

One significant use of PDAs in ecological fieldwork environments is the work
by Pascoe et al. for use in observing giraffe behaviour in Kenya and in support of
archaeologists [12]. In their project, many of the characteristics of field biologist
users were identified, including:

— Dynamic user configuration, specifically the fact that data capture occurs in
hostile environments while walking, crawling, or running.

— Limited attention capacity, due to the need to record data while making
observations.

— High-speed interaction, due to the fact that giraffes move and an observer
may need to record a lot of data rapidly to capture a complete picture of
giraffe behaviour.

— Context dependency, specifically the need to know location and timing in-
formation.

While the work of Pascoe et al. does identify many characteristics of users in
fieldwork environments, their focus on ecologists observing animals has an effect
on user characteristics. As well, while an understanding of users is important,
there is a need to understand how these characteristics play out in design, and
to develop methodologies for successful design.

Other related work that merits mention includes the use of PDAs as location-
aware guides in indoor environments [4], or as guide systems for use on university
campuses [0]. Finally, we note that many researchers are working on a complete
understanding of context, in various fields, including scientific inquiry [5].

In these research systems, the focus of research is on how best to use handheld
computers such as PDAs to support data collection tasks. The design process is
not the focus of this work.

Beyond the research domain, several companies design solutions for mobile
data collection. One well-known company is Fieldworkelﬂ, which builds inte-
grated solutions involving GPS, data servers, and PDAs to collect field data.
Fieldworker distributes a development environment to aid in the deployment
of sophisticated applications. While reviewers have liked the advanced features

! http://www.fieldworker.com/
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Fieldworker Pro supports [15], there is a clear delineation to be made between
Integrated Development Environments like Fieldworker Pro and software de-
velopment processes which is our focus here. Fieldworker is a tool to support
software development methodologies. The focus of this paper is a software devel-
opment methodology which we have developed to design applications for mobile
fieldworkers.

3 User-Centred Rapid Application Development

The goal of our project is the design of data collection applications for use in
limited term fieldwork projects that are common in ecology and other biological
fields. The limited term nature of these projects, ranging in duration from weeks
to months, requires an agile software development process.

Agile development methodologies, including Extreme Programming, are diffi-
cult to manage. For example, in Extreme Programming (XP), Bellotti et al. note
that teams “must have a good grip on customer requirements ... by the time you
engage in XP in order to prioritize engineering effectively” [2]. While XP does
allow rapid development, the “Customer is King” aspect of design requires an
ability, on the part of the customer or fieldworker, to prioritize features. This was
absent in our development, as the ecologists had no experience with technology.
Working with them to prioritize engineering required providing them with some
experience with the technology prior to requirements specification.

Researchers also note that iterative development methodologies often result in
poor quality software due to the need to specify system architecture and system
logic early, in conjunction with evolving requirements [8]. This need to specify
architecture first is also a characteristic of standard software development pro-
cesses such as the Universal Software Development Process [10]. If the goal is
to develop functional software in a short timeframe, eliciting requirements is of-
ten too time consuming a process to separate from development, but the need to
specify a target for development still exists. When looking at RAD methodology,
our goal was to combine software development with the elicitation of require-
ments and allow the prioritization of engineering to evolve with the project.

To compensate for a lack of requirements, we modified traditional RAD
methodology to allow the early stages of development to focus on eliciting re-
quirements. Figure 3 depicts our RAD process for developing software for mobile
fieldworkers. The process has three stages. In the first stage, high-fidelity pro-
totypes are developed to design and evaluate the user interface and to manage
project risk. In the second stage, the prototype is evolved into a functioning sys-
tem by creating the back-end architecture. Finally, we deploy the full-featured
application and continually tune the application to the evolving requirements of
the fieldworker. Each stage is iterative in nature, and follows a basic RAD style
deployment, where a prototype is developed, tested in the field, and evaluated
via a joint meeting between clients and developers.

We designed this process for the express purpose of deploying a highly usable
application in two to three weeks. We try to accelerate the development process
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Fig. 3. Our software development process for field biology

by giving biologists some experience using technology in the field early and to
give developers, here a Master’s student in Computer Science, some understand-
ing of the requirements of the biological process early.

Early iterations occur in approximately four days. This works well in conjunc-
tion with many ecological projects. The typical data collection process we have
observed in field ecology involves biologists spending one or two days collecting
data in the field, followed by two or three days transcribing the data recorded
on paper in the field into electronic format and doing some early analysis of
the data. By matching our iteration to the biologists’ data collection cycle, we
prototyped a high quality user interface in approximately four iterations over
a two week period and then added the back end application logic over a one to
two week period. During the last week of the development cycle, the biologists
used our application for data collection, but continued to maintain paper data
collection as a back-up until the application development cycle entered the third
stage.

There are two main goals to the first stage of development. First, func-
tional and non-functional requirements must be developed for the overall project.
Second, we wish to manage risk and determine whether the project will result
in a worthwhile software artefact. To do this, we focus specifically on the design
and implementation of a high-fidelity user interface.

Focusing on the user interface allows us to accomplish our goals in a number
of ways. Eliciting requirements in any domain is a challenging task, particularly
when the users have no frame of reference. In our case, working with field ecolo-
gists, the most significant hurdle we faced was the lack of experience on the part



40 E. Lank et al.

of the ecologists with technology in the field. While we had significant experience
designing applications, we lacked experience with ecological fieldwork environ-
ments. A common language for expressing requirements was missing, as was any
experience on the part of the user with what technology would be useful in the
field. Focusing on the development of a high-fidelity user interface allowed us to
work with the ecologists to concurrently specify and validate requirements. Sec-
ond, and equal to eliciting requirements is the need to manage user expectations
and user buy-in. With high fidelity prototypes, we can represent accurately to our
users the functionality of the final application, and allow our users to determine
whether the application will be an effective tool for data collection. Third, in any
user-centred design task, work context plays an important role. There is a need to
specify both the tasks performed by the system and the constraints on that task
that result from the surrounding environment. However, the introduction of tech-
nology has an impact on both the task and the environment, and we wanted to
measure not only how data was currently collected, but how an application could
alter the paradigm of data collection, and what were the liabilities associated
with use of technology in the environment. We worked to understand the impact
of our technology due to two factors that together determine successful design
for mobile fieldworkers. The first is rapid data input. Fieldwork is the most costly
component in any data collection task in the ecological sphere, and we need to
ensure that electronic data capture is not significantly slower than paper-based
data collection. The second is data integrity. Work in coastal wetlands involves
the need to engineer against mishaps. We need to balance these two factors in our
design, and evaluating technology in the field allows us to determine whether we
have successfully engineered for rapid input and against mishaps. A final benefit
in early focus on the interface is that it allows us to begin to prioritize features
in the application more effectively. We see how the application will be used, and
evaluate the expected benefit of each feature in the interface.

The goal of the second stage is the evolution of a non-functional prototype
to a functional application. With a user interface to design toward, the process
of adding back-end data capture is relatively straightforward in mobile data
collection tasks. However, care must be taken to preserve the performance of the
application and to ensure data redundancy. While a high quality user interface
has been designed in the first stage, the interface must evolve to match the
application logic.

We separate application logic from interface development for two reasons.
First, the application logic is a secondary concern to front-end system design in
mobile fieldworker environments. The goal of the application is to replace paper
as a data collection paradigm for field ecologists. Given that fieldwork is expen-
sive and occurs in harsh conditions, the success of the application is determined
by the user’s ability to quickly and accurately record data. The ability of the
application to archive that data once recorded is necessary but not sufficient
for the success of the project. Where usability is the key determining factor in
project failure, focusing on the user interface first allows us to manage risk. By
focusing first on interface design and second on application logic, we maintain the
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primacy of the user interface in successful application design. Second, beyond
the management of risk, application logic naturally occurs at a different stage
in development. We use high-fidelity user interfaces to both elicit and validate
our understanding of requirements, while application logic, instead, instantiates
the requirements in a functioning software application. By explicitly separating
these stages, we maintain a focus on what the system should do (first stage),
followed by a focus on how the system should accomplish its goals.

The final stage allows us to tune the application during deployment in the
field. The projects we seek to design applications for are, as noted earlier, lim-
ited term fieldwork projects. As a result, deployment occurred early in the
project’s lifespan, typically after approximately three weeks. One result of early,
rapid, deployment it that the application that is deployed is a work-in-progress.
The application continues to be tailored to the data collection task our users
performed.

4 TUCRAD in Practice

In this section, we briefly describe the evolution of our target software system.
We first describe the sequence of development tasks. We then describe in brief
the development of our software system for field biology to show how we elicit,
validate, and then implement the system requirements.

Figure @] depicts the development process over the four week period resulting
in a deployed software application. The target ecology project continued for ap-
proximately two months after the completion of development, and we continued

Week 1 Week 2 Week 3 Week 4
!
Hardware >
Evaluate Hardware Platforms
Make platform decision Finalize System Requirements Phase 3
Evaluate task analysis results Begin Phase 2 N
from field observations v h
User Interface Prototype Refine user interface Adapt Interface to ArchibectureL Tune User Interface
First Ul | Refine System Requirements pt J to User Task

Evaluate first prototype of User Interface

Begin to develop full system requirements

Tune Architecture to
User Task

System Architecture Develop system architect ]
Hooks for
application /

back end

System Deployed

Fig. 4. In our methodology, software is designed from the front end to the back end
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refining our application during deployment. As shown, we begin by selecting a
platform, then design and implement the user interface. Back-end application
logic is gradually developed and integrated into the application after validation
of the user interface.

During the ini tial stages of user interface engineering, we worked with the
biologists to understand exactly what the data collection process involved. In
our development process, planning begins as a simple process of first interview-
ing the fieldworker about their data collection task and then observing that task
in the field. Our initial planning involved a design meeting where the project
goals were outlined, and hardware options were explored by the designers and
users. Particularly during the first iteration, developers traveled to the field with
the ecologists. This allowed the development team to evaluate different hard-
ware platforms and to begin to develop a complete picture of the data collection
task.

During the initial fieldwork with the ecologists, we spent two days working in
the field. During this initial field outing, we validated the Pocket PC as an appro-
priate development platform. We considered other options, including Logitech
electronic pens and tablet and laptop computers. Tablet and laptop computers
are too expensive and to awkward for use by mobile fieldworkers, and electronic
pens, while appropriate for fieldwork, work best for qualitative, not quantita-
tive, data recording tasks. For quantitative data capture, handheld computers
are the most effective application platform. During this initial fieldwork, obser-
vations of paper-based data collection tasks were also performed. We developed
hierarchical task models, which we then validated with the ecologists during our
evaluation meeting following our initial deployment. Being in the field watch-
ing the data collection process allowed us to develop a rich picture of the data
collection task, the primary use case of our system. In validating this with the
biologists, the basic requirements of the system were developed.

Using a drag and drop graphical user interface editor, we prototyped an ini-
tial user interface with no supporting back-end logic. The interface was designed
to follow, as closely as possible, the specific actions involved in the ecologists’
data collection task. During hardware evaluation, we also noted that, although
the Pocket PC was an appropriate platform, stylus-based input was not appro-
priate as the stylus was frequently misplaced. The interface was designed to be
used with fingers rather than with a Pocket PC stylus. The initial interface was
developed in two days, and the biologists carried the interface with them when
they went to the field and tested the interface for their data collection task.

We refined the interface over two additional iterations, and then began de-
veloping the application logic to support the interface components. During the
deployment of a high-fidelity interface, several non-functional requirements came
to light. For example, one of the ecologists noted during a design meeting, “Dur-
ing our last field outing, someone fell and a GPS system got wet and stopped
functioning. Many lessons were learned, [and we are even more nervous about
technology in the field] ... Will that data persist even if we drop it in the water?”
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In Figure Bl we show the final, functional application. The first two screens
support data entry. Numerical entry is performed using a 10-key numeric keypad
screen (not shown), while commonly found species are entered by selecting from
a customizable screen that lists the species biologists expect to find at a given
location. Another screen, not shown, lists over ninety-five species that are found
in San Francisco wetlands. As we began to implement the back-end architecture,
the need to support data collection came to light, and we added that functionality
to our interface. When biologists select a previously entered data point from a
list, they are presented with a screen that allows them to edit values associated
with that data point.

After developing the core functionality in our interface, we designed and im-
plemented a back-end architecture. The back-end architecture and hardware is
designed to support data preservation in spite of submersion and other envi-
ronmental hazards. In our system, we are using Dell Axim X50v Pocket PCs.
These devices have random access memory (RAM) typical of Pocket PCs. They
also have persistent internal storage in the form of 128MB of internal, writeable
ROM. Finally, the Axims have both CompactFlash and Secure Digital (SD) Card
slots. To protect the integrity of data, our system does several things. First, all
data is stored in a SQL CE database. Second, each action by the user is added
to a log file stored on persistent internal storage. Third, after each data point is
added, the data is written to the database and a comma separated value (csv)
file is written to the CompactFlash or SD cards if present or to persistent stor-
age if these cards are not present. Typically, the ecologists we work with use SD

Fig. 7. Pocket PC application in use in the field in its waterproof case. In spite of the
glare from the sun, the application can be seen faintly running through the waterproof
membrane that permits interaction while protecting the Pocket PC device.
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cards in all the Pocket PCs. Thus, even if the device falls out of its case and is
submerged in water, the data collected by the ecologists is secure, and can be
obtained either from the SD card or by reading the internal ROM in the Pocket
PC. Figure [0l depicts the final architecture of our software system. To further
protect the device, a waterproof case is used (Figure [1]).

Modifications continued during the third phase. At one point, the data collec-
tion task changed slightly, requiring modifications to the interface. The storage
format for data also changed several times, requiring a readjustment of the back-
end architecture. By continually evaluating the software application, the system
maintained a tight fit with the data collection task being performed.

5 Broader Lessons from Design

5.1 Successful Characteristics of Design

We continue designing field applications for use by biologists. From this design
and early design of new applications, we note several characteristics of our design
that assisted in its success. These include:

— Keeping features simple and data capture fluid.
— Deploying early.

— Rapid iteration.

— Over-engineering.

Simple features, as advocated by Extreme Programming, RAD, and other
iterative methodologies, are an important consideration in design. Pen and paper
are very successful in the field, and some biologists argue that it is because pen
and paper only support the most basic interaction. As one user noted early in
design: “I can always transcribe in lab. I just need the data collected and I don’t
know how a computer will help.” Keeping features simple in the application
allowed us to get an application into the field early, which is a second advantage.
Many features that were planned prior to our design process were eliminated
during our rapidly iterating cycle. As one example, early in design we proposed
a set of web services to upload data. However, the use of a secure digital card
in the Pocket PC proved sufficient. Our application currently saves two days of
transcription time associated with each day spent collecting data in the field.
Saving an additional ten minutes was a much lower priority. Plugging an SD card
into a card reader connected to a PC and opening the CSV file in a spreadsheet
program was sufficiently fast.

Early deployment, even of an imperfect interface, is not something to fear as
long as the interface is solely for testing. To test our application in the field,
we noted for biologists that it wasn’t stable, that they should continue to use
paper, and that all we wanted was what worked and what didn’t for collecting
data. Taking care in the design process to understand the task was important.
The results of careful task analysis allowed us to develop and deploy a usable
interface quickly. Small glitches in interaction were addressed through iterative
refinement.



46 E. Lank et al.

Rapid iteration through prototypes was another positive aspect of design in
this domain. It is true that rapid prototyping results in initial applications that
need significant improvement. However, in our case, as noted, getting software
to the field quickly is a benefit in the limited term projects typical of field
biology. As fixes are identified, correcting the software improves the effectiveness
of technology in the field. Rapid iteration can continually improve prototypes,
making technology even more useful over the course of the target project.

As well, early deployment, in our case, improved the transition of the ecolo-
gists we work with from informants to analysts and even to beginning designers.
Once they understood how technology could be designed for the field, they were
more able to engage actively in the design and evaluation process.

As a final comment, as designers in the field we noted that we underestimated
how hostile the environment is. During one outing, a member of the design team
was trapped in thick mud. On returning to the lab, he noted that he “almost
didn’t make it back. I was sinking in mud, trapped, and I couldn’t move...” Data
redundancy, protective cases, and other aspects of fault tolerant design are es-
pecially essential in biological fieldwork. Losing hardware is not critical. Losing
time sensitive data is much more costly. Our rapid iterations and early deploy-
ment of semi-functional prototypes allowed us to develop an appreciation of the
non-functional requirements of the system prior to full deployment.

5.2 Less Successful Design Processes

Paper prototyping, wireframes, or other low fidelity prototyping processes are
one of the primary vehicles for cooperative and participatory design. It is a
typical stage in many design processes, and some researchers have presented the
results of low fidelity prototype testing as the validation for design guidelines in
various domains [9].

The challenge with paper prototyping is that feedback on a design is suspect
for highly mobile, context sensitive environments such as ecology. This is not a
novel observation; Rudd et al. note that low-fidelity prototyping is not appro-
priate for evaluation, but is more appropriate for requirements elicitation [14].
Typical wireframe walkthroughs occur far from the context of use of software
artefacts. While we did use wireframes in support of design meetings, we were
careful to focus our evaluation and design planning on experiences with higher
fidelity prototypes with functional graphical user interfaces that could execute
in limited ways on the specific hardware platforms in the field.

Another common tool in interactive application design is participatory design,
but it is a tool that must be used with caution. Our design process evolved out
of a failure in participatory design. Researchers note that using participatory
design is not straightforward. For example, Taxen notes that, in introducing
participatory design into a museum environment there is a need to constantly
validate products with respect to current work practice [I7]. Carroll et al., in
their work with schoolteachers, note a transition from Practitioner-Informants
through Analysts to Designers over a five year period [3]. To participate in
design, users need some experience with the technology in its use context. Rapid
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prototyping allowed our users to experiment with technology in the field and
this improved their ability to identify positives and negatives in requirements
and early designs.

6 Broader Applicability of UCRAD

In analyzing the problems with RAD, Howard notes two different forms of RAD:
Rapid program development, where a detailed software specification is quickly
implemented in code; and Rapid System Development, where a kernel of an idea
for a project is evolved into a functional piece of software [§]. Our goal, in intro-
ducing our three-stage RAD model, has been to support Rapid System Develop-
ment. However, as Howard notes, Rapid System Development requires extensive
user involvement to describe what the system needs to do, to react to proposals,
and to validate prototypes. He also comments on its “chaotic” nature [g].

Much of this paper focuses around our work in supporting the capture of
quantitative data by mobile fieldworkers, specifically, in this case, ecologists us-
ing handheld computers. The process described in this paper was designed for
the development of handheld computing applications, and handheld comput-
ers are particularly suited to quantitative data capture in mobile environments.
Handheld computers are less suited to the capture of qualitative, observational
data.

Although this development process has only been used to design systems for
data capture for field biologists, it seems to hold promise for Rapid System De-
velopment tasks where user involvement is needed to simultaneously specify and
validate both requirements and implementation. In this way, it is particularly
suited to domains where the users have no prior experience using technology.
In such domains, users find it challenging to work with designers to specify
requirements as they have no pre-existing frame of reference. Participatory de-
sign breaks down, and even the specification of requirements with the users is
challenging because they are unconvinced of the merits of technology. By first
prototyping and implementing the interface, we can capture user requirements
more effectively. Simultaneously, users become more informed about what the
technology can accomplish and can see directly the benefits of using the tech-
nology. The result of using and experimenting with the technology aids users’
transition from informants to co-designers.

The use of evolutionary prototyping in the process, coupled with continual
evaluation of the prototype, allows the risk inherent in any development process
to be managed. Systems evolve that suit user needs. If a suitable system cannot
be implemented, this becomes obvious early in evaluation as the user interface
will fail to support users’ tasks. We noted this failure when working with qual-
itative data capture. The interface for handheld computers was not as efficient
as pen and paper for capturing qualitative data in another ecology project we
explored.

One advantage we had in our system design is that the back-end applica-
tion logic was relatively simple. The requirements were that it captures specific



48 E. Lank et al.

data when entered in the interface and that it protects that data against envi-
ronmental mishaps that would destroy the Pocket PC device. As the software
architecture evolved, additional features were added to the user interface (e.g. a
data grid that allowed direct manipulation of the database fields, a data correc-
tion screen that allowed users to select data points entered and correct values
associated with them), but the core use-case could be fixed, validated, and sup-
ported immediately through user interface prototyping.

7 Conclusion

In this paper, we describe a modified form of Rapid Application Development
called User Centred Rapid Application Development (UCRAD). Our devel-
opment process is a three-stage process. We first focus on high-fidelity, semi-
functional user interface prototyping with a drag and drop GUI editor to
simultaneously elicit and validate requirements. We then evolve our limited pro-
totype with its high quality user interface into a functional application. Finally,
we deploy and continue to modify the application to tightly integrate with the
appropriate task. Each stage in our process follows a Rapid Application Develop-
ment methodology where implementations are tested in the field and evaluation
is performed via joint meetings between developers and users. Our methodology
has proved useful in the design of mobile, quantitative data collection applica-
tions for limited term biological fieldwork projects.
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