
Using Stepwise Feature Introduction in Practice:
An Experience Report

Ralph-Johan Back, Johannes Eriksson, and Luka Milovanov

Turku Centre for Computer Science,
Åbo Akademi University, Department of Computer Science,

Lemminkäisenkatu 14, FIN-20520 Turku, Finland
{backrj, joheriks, lmilovan}@abo.fi

Abstract. Stepwise Feature Introduction is an incremental method and software
architecture for building object-oriented system in thin layers of functionality,
and is based on the Refinement Calculus logical framework. We have evaluated
this method in a series of real software projects. The method works quite well
on small to medium sized software projects, and provides a nice fit with agile
software processes like Extreme Programming. The evaluations also allowed us
to identify a number of places where the method could be improved, most of these
related to the way inheritance is used in Stepwise Feature Introduction. Three of
these issues are analyzed in more detail here: diamond inheritance, complexity of
layering and unit testing of layered software.

1 Introduction

Stepwise Feature Introduction (SFI) [1] is a bottom-up software development method-
ology based on incremental extension of the object-oriented system with a single new
feature at a time. It proposes a layered software architecture and uses Refinement
Calculus [2, 3] as the logical framework.

Software is constructed in SFI in thin layers, where each layer implements a specific
feature or a set of closely related features. The bottom layer provides the most basic
functionality, with each subsequent layer adding more and more functionality to the
system. The layers are implemented as class hierarchies, where a new layer inherits all
functionality of previous layers by sub-classing existing classes, and adds new features
by overriding methods and implementing new methods. Each layer, together with its
ancestors, constitutes a fully executable software system.

Layers are added as new features are needed. However, in practice we cannot build
the system in this purely incremental way, by just adding layer after layer. Features may
interact in unforeseen ways, and a new feature may not fit into the current design of the
software. In such cases, one must refactor the software so that the new feature fits better
into the overall design. Large refactorings may also modify the layer structure, e.g. by
changing the order of layers, splitting layers or removing layers altogether.

An important design principle of SFI is that each extension should preserve the func-
tionality of all previous layers. This is known as superposition refinement [4]. A super-
position refinement can add new operations and attributes to a class, and may override

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 2–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Stepwise Feature Introduction in Practice: An Experience Report 3

old operations. However, when overriding an old operation, the effect of the old opera-
tion on the old attributes has to be preserved (but new attributes can be updated freely).
No operations or attributes can be removed or renamed.

Consider as an example a class that provides a simple text widget in a graphical user
interface. The widget works only with simple ASCII text. A new feature that could be
added as an extension to this widget could be, e.g., formatted text (boldface, italics,
underlined, etc). Another possible extension could be a clipboard to support cut and
paste. We could carry out both these extensions in parallel and then construct a new
class that inherits from both the clipboard text widget and the styles text widget using
multiple inheritance (this is called a feature combination), possibly overriding some of
the operations to avoid undesirable feature interaction. Or, we could first implement
the clipboard functionality as an extension of the simple text widget, being careful to
preserve all the old features, and then introduce styles as a new layer on top of this.
Alternatively, we could first add styles and then implement a clipboard on top of the
styles layer. The three approaches are illustrated in Figure 1.

A component is divided into layers in SFI. Layers will often cut across components,
so that the same layering structure is imposed on a number of related components.
As an example, consider building an editor that displays the text widget. In the first
layer we have a simple editor that only displays the simple ASCII text widget. Because
of the superposition property of extension this simple editor can in fact also use the
CutAndPaste, Styles or BetterText widgets, but it cannot make use of the new fea-
tures. We need to add some features to the simple editor so that the functionality of the

SimpleText

CutAndPaste

Styles

SimpleText

CutAndPaste

Styles

SimpleText

CutAndPaste Styles

BetterText

(a) (b) (c)

Fig. 1. Alternative extension orders

SimpleText

CutAndPaste Styles

BetterText

SimpleEditor

BetterEditor

content

content

Simple layer

Better layer

Editor component Text component

Fig. 2. Interacting components

4 R.-J. Back, J. Eriksson, and L. Milovanov

extended widget can be accessed (menu items for cut and paste, or for formatting, or
toolbar buttons for the same purpose). We do this by constructing a new an extension
of the simple editor (a better editor), which uses the BetterText widget and gives the
user access to the new functionality. The situation is illustrated in Figure 2.

The new editor is, however, restricted to only work on the better text widget, because
the features it assumes are only available on this level. Hence, there are two layers in
the design, the Simple layer and the Better layer.

Stepwise Feature Introduction has been tried out in a number of real software
projects. This allows us now to evaluate the merits of this approach and to spot pos-
sible drawbacks as well as opportunities for improvement. Our purpose in this paper is
to report on these case studies, and to provide a first evaluation of the approach, together
with some suggestions on how to improve the method.

The paper is structured as following: Section 2 present the software projects where
SFI was applied. We summarize our experience with the methodology in Section 3. In
Sections 4–6 we then consider in more detail three interesting issues that arose from
our experiments with Stepwise Feature Introduction. The problems with implementing
feature combinations using multiple inheritance is discussed in Section 4. The problem
of class proliferation is discussed in Section 5, where metaprogramming is considered
as one possible way of avoiding unneccessary classes. In Section 6, we show how to
adapt unit testing to also test for correct superposition refinement. We end with a short
summary and some discussion on on-going and future work.

2 SFI Projects in Gaudi

The software projects where SFI was evauated were all carried out in the Gaudi Soft-
ware Factory at Åbo Akademi University. The Gaudi Software Factory is an academic
environment for building software for the research needs and for carrying out practical
experiments in Software Engineering [5]. Our research group defines the setting, goals
and methods to be used in the Factory, but actual construction of the software is done in
the factory, following a well-defined software process. The work is closely monitored,
and provides a lot of data and measures by wich the software process and its results can
be evaluated. The software process used in Gaudi is based on agile methods, primarily
Extreme Programming [6], together with our own extensions.

We will here describe four software projects where Stepwise Feature Introduction
was used throughout. The settings for all these projects were similar: the software had
to be built with a tight schedule, and the Gaudi software process had to be followed. The
programmers employed for these projects (4–6 persons) were third-fifth year students
majoring in Computer Science or related areas. Each project had a customer who had
final saying on the functionality to be implemented. The projects were also supervised
by a coach (a Ph.D. student specializing in Software Engineering), whose main task
was to guide the use of the software process and to control that the process was being
followed. There has also been one industrial software project [7] with SFI, but this is
outside the scope of this paper, as it was not carried out in the Gaudi Factory, and the
software process used was not monitored in a sufficiently systematic manner.

Using Stepwise Feature Introduction in Practice: An Experience Report 5

All of the projects used SFI, but the ways in which the method was applied differed
from project to project. We describe the projects in chronological order below. For each
project, we present the goals: both for the software product that was to be built, and for
the way in which SFI was to be evaluated in this project. We give a general overview of
the software architecture, show how SFI was implemented, what went right and what
went wrong, and discuss the lessons learned from the project.

2.1 Extreme Editor

The Extreme Editor project [8] was the first application of SFI in practice. It ran for
three months during the summer 2001 and involved six programmers. The program-
ming language of the project was Python [9]. The software product to be built was
an outlining editor which became a predecessor for the Derivation Editor described in
Section 2.2. The goal for the project was to obtain the first experience from practical
application of SFI with a dynamically typed programming language. There were no
technical guidelines for the application of SFI except that the extension mechanism for
classes (the feature introduction—Section 1) should be inheritance.

Figure 3 shows the layered architecture of the Extreme Editor. There were eight
layers in the system. Each layer introduced new functionality into the system, without
breaking the old features. The software was structured into these layers in an ad hoc
way. A new layer extended its predecessor by inheriting its corresponding classes and
possibly introducing one or more new classes. There were no physical division of the

Command

0..*

EditItem

BasicItem ConfigBasicEditorBasicWindow

CCCPWindow CCCPClipboard

SelWindow

CCCPEditor

SelEditor

MVWindow MVEditor

ExpandEditor

FindEditor

StyleItem StyleStyleEditorStyleWindow

1..* 1

1..* 1

1..* 1

1..* 1
StyleDocument

EditCommandHistory

MVCommandHistory MVDocument

EditEditorEditWindowEditDocument

1

FindWindow

ExpandWindow

1

1..*

1..* 1
BasicDocument

1

1..*

1

1 1

1

1
SelDocument

1

1

1..*

1 1..*

1 1 1 1

1 11 1

0..*

Fig. 3. The layers of the editor

6 R.-J. Back, J. Eriksson, and L. Milovanov

software into the layers on the level of the file system: each class name had a prefix—the
name of the layer where the class belongs to. More on the architecture of the software
and detailed description of the layers can be found in the technical report [8].

The feedback on SFI from this project was rather positive. The method supported
building software with a layered architecture quite well. The developers found it rather
easy to add new features as new layers. The fact that functionality of the system was
divided into layers made the overall structure of the system clearer to all the program-
mers. Another advantage was “bug identification”: the layered structure made it easy to
find the layer in which the bug occured and its location in the source code.

On the other hand, even in the three-month project, as more features were imple-
menter and the more classes were introduced into the system, it was getting harder to
navigate among them without any tool support, any automatic documentation describ-
ing the layer structure and without a systematic naming convention for classes, layers
and methods. We also found that SFI requires a special way of unit testing (the testing
classes should be extended in the same way as the ordinary classes of the system). More
on unit testing will be discussed in Section 6.

2.2 Editor for Mathematical Derivations

MathEdit [10] was an effort to implement tool support for structured derivations and is
currently the largest project developed using the SFI methodology. MathEdit was de-
veloped in the Gaudi Software Factory as two successive summer projects, in 2002 and
2003. One of the objectives of the first summer project was to try out feature combi-
nation by multiple inheritance. The second objective of the project was to assess how
well a new team could embrace an existing SFI codebase and continue its develop-
ment. The continuation project in 2003 shared only one out of four developers with the
2002 project. Still, it turned out that the new programmers were able to start working
productively with the existing code base within the first three weeks.

 medit

Text_Editor

Text_ReadOnlyEditor

Text_WrapFormatter

Text_WrapAnywhereFormatter

Text_WordWrapFormatter

Text_WrappedRow

Text_CompositeRow

Text_Document
*

Text_KeyCatcher Text_KeyStore*

Text_EditorKeyCatcher

Text_EditorPopup

Text_SharedDialog

Text_UnicodeDialog

*

Base layer

Text layer

Frame layer

application

Text_KeybindingsDialog

Text_MainWindow

Frame_Viewtabs

Text_ImportText

Text_ExportFilter

Frame_ViewWindow

Base_AboutBox

Text_ViewWindow

Text_OptionsTabDialog

Text_Viewtabs

Base_Menu

Frame_MainWindow

Text_ExportText

Base_Toolbar

Text_DialogBase

*

Base_MainWindow

*

*

Text_ImportFilter
*

**

*

*

Fig. 4. The first three layers of MathEdit, unit tests excluded

Using Stepwise Feature Introduction in Practice: An Experience Report 7

MathEdit consists of totally 16 layers. A description of each layer and its major fea-
tures can be found in [10]. Classes are associated with layers based on naming conven-
tions. A diagram showing the classes of the first three layers (unit test classes excluded)
can be seen in Figure 4. Due to space considerations, we do not display a complete class
diagram for MathEdit.

On the highest level, MathEdit is separated into three major components: a
document-view component (medit), the application-level user interface (appli-
cation) and a mathematical profile plug-in. The medit and application components
are layered as described above. The layering cross-cuts these top-level components, so
the layering is global. The profile component was designed as a plug-in, so it was not
layered—users should be able to write custom profiles without having to care about the
internal layer structure of MathEdit.

Combining two layers using multiple inheritance was attempted but ultimately aban-
doned in the MathEdit project. The main reason were practical problems arising from
the use of multiple inheritance; e.g., classes in the graphical toolkit used (Qt) did not
support multiple inheritance well. Also, the development team was quite small, so it did
not seem fruitful to work on two features in parallel as if they were independent, when
it was already known that the features would be combined later on. Instead, a feature
was implemented with extensibility in mind, so that it was easy to add the next feature
in a new layer. The gains of parallel development would probably be much higher in a
larger project, but this still remains to be evaluated.

The MathEdit application is executable with any layer as the top layer, providing
the functionality of this layer and all layers below. The gives us the possibilities to fall
back to an earlier working version in case of malfunction, and to locate bugs that were
introduced in a some unknown layer. We simply implement a test that exposes the bug
and run it with different top layers. The lowest layer that exhibits the erroneous behavior
is either harboring the bug, or triggering a bug in a previous layer.

2.3 Software Construction Workbench

The Software Construction Workbench (SCW) project (summer – fall 2002) was an
effort to build a prototype for IDE supporting Stepwise Feature Introduction and
Python. This application was built in Python, as an extension of the System Model-
ing Workbench [11]. The main feature are modeling software systems in a SFI fashion
with UML, automatic Python code generation and execution of the constructed sys-
tem and support for unit tests in the environment. SCW also included basic support for
Design by Contract [12] and reverse engineering.

As far as SFI is concerned, the goals in this project were to get further feedback on
the practical application of the methods, to try out the layered approach to unit testing
(discussed in Section 6) and to try out new naming conventions (described below in
this section). A special feature of this project was that it used its own medicine: the
software needed to support software development with SFI was built itself using this
method. Since the architecture of the SCW is rather complex, we do not present it here,
for the reader’s convenience. Instead, we illustrate how the SFI method was applied in
this project on a small and simplified fragment of the software.

8 R.-J. Back, J. Eriksson, and L. Milovanov

Undo_Redo

SFI_ManagerLayer_Manager

Code_Gen

Code_GeneratorSFI_ManagerLayer_Manager

Fig. 5. Layer structure, Python implementation

Figure 5 shows an example of the layer structure implementation. SFI layers were
implemented using Python’s packaging mechanism: each SFI layer corresponds to a
Python package. To show that a layer is a successor of another layer we draw a depen-
dency from the successor to its ancestor; in practice this dependency was the Python
import statement. The mechanism for extension of classes was inheritance, as shown
in Figure 5. Every class, once introduced, keeps its original name through all of its
extensions. This was simple to implement: Python packages provide a namespace so
we had no conflicts with the names of the classes.

A class can be extended with new methods and/or some inherited methods can be over-
written. When an old method is overwritten in the next class extension, it is a good prac-
tice to have a call to the original method inside the body of the extended method. Accord-
ing to the developers, the implemented layered structure of the software together with the
name conventions really clarified the software. The Software Construction Workbench
project was carried out as two subprojects, such that half of the developers were new in
the second subproject, and in the beginning had no understanding of the software at all.
Nevertheless, the new programmers were able to take over the code easily because of the
division of features into layers. The new programmers also commented that the layering
made it much easier to navigate in the code, modify code and search for bugs.

The SCW project showed that in order to use the SFI methods properly and effi-
ciently, tool support is really needed. Because of the way Python packaging was used
to implement the SFI layers, it took a lot of time to divide the code into directories cor-
responding to the layers. Building software according to SFI also promotes refactoring
(a practice enforced in our Software Factory). For example, when changing something
in the lower layer, it can often affect the successive layers, so they should be slightly
changed. According to the developers a simple tool helping with the navigation among
the layer structure, i.e. from ancestor to successor and the other way around, would here
save a lot of time.

2.4 Personal Financial Planner

The Personal Financial Planner project [13] (FiPla) was the first application of SFI
with a statically typed language—Eiffel [14]. The software goal for the project was to
build a personal financial planner. The features required of this product type include

Using Stepwise Feature Introduction in Practice: An Experience Report 9

Graph

Graph_PlannerGraph_Account

Prognisis

Prognosis_PlannerPrognosis_Account Prognosis_Prediction

Fig. 6. Layer structure, Eiffel implementation

tracking of actual events (manually or automatically), planning (such as budgeting and
creating scenarios), and showing future scenarios.

SFI was evaluated in this project to see how the method would work with a statically
typed language. Another goal was to see how well the SFI layers layers correspond
to the short release cycles used in the Gaudi Software Factory [5], so that each short
iteration starts a new layer. Finally we also wanted to see how well SFI and Design by
Contract [12] fit together.

SFI layers in Eiffel are implemented using Eiffel clusters. However, unlike Python
packages, a cluster in Eiffel does not provide a namespace for the classes. It means
that all names of the classes in the Eiffel software system should have unique name,
so it was impossible to have the same naming convention as in the SCW project. For
this purpose we used another naming convention, where each class name should have
the name of the layer that the class belongs to as a prefix. Figure 6 shows a simplified
fragment of the software architecture.

SFI worked well with Eiffel when we applied the methods in the same way as in
our Python projects. Structuring the software system into layers according to the small
releases defined by the customer turned out to be a good idea. However, a few important
technical issues that needed improvement were found. These issues only came up when
using SFI with a statically typed language.

The extension of classes using pure inheritance did not work well with Eiffel. The
types of the parameters and return value of redefined routines should be at least of con-
forming types. Eiffel does not support parametrized polymorphism, hence, the number
of parameters should be constant in all extensions of a routine. It is possible to overcome
these limitations using routine renaming or rewriting a routine completely previously
undefining it with Eiffel’s undefine statement. The last case is, however, not recom-
mended since it will not be a real extension of the routine.

To avoid these problems one must pay more attention to the overall system architec-
ture and plan a bit further ahead then just for the next iteration. Extensive refactoring
was needed in some cases, when the planning had not been done carefully enough. To
refactor a SFI system efficiently, tool support was again deemed necessary.

3 Experience of Using SFI

In this section we summarize our experience from using SFI in the software projects
mentioned above, based on the quantitative and qualitative data that was collected

10 R.-J. Back, J. Eriksson, and L. Milovanov

Table 1. Basic product metrics for SFI projects

EE MathEdit SCW FiPla
LOC 3300 44372 16334 8572
Test LOC 1360 4198 14565 2548
Total LOC 4660 48570 30899 11120
Classes 52 427 66 59
Test classes 23 53 42 25
Methods 344 3790 610 331
Test methods 85 279 355 177
LOC/class 63 104 247 145
LOC/test class 59 79 347 102
Methods/class 6.6 8.9 9.2 6.0
Test methods/class 3.7 5.3 8.5 7.0

during these projects. Table 1 shows some basic code metrics for the presented SFI
projects. It is easy to see that even in small projects like Extreme Editor and FiPla, the
number of classes is growing fast. On the one hand this helps with debugging: as the
developers were often commenting, it is easy to find the source of a bug in the code
because of the separation of functionality into the layers. On the other hand, managing
a large number of classes manually eventually becomes quite complicated, suggesting
that tool support for navigation among successive layers, classes and methods is needed.

SFI is a bottom-up approach for constructing software systems and is therefore not
that well suited for developing graphical user interfaces. Constructing good GUIs is a
complicated task in itself and needs to combine different approaches such as bottom-
up, top-down, use of state charts and designer tools. Our experience showed that when
using SFI, it is better to separate GUI development from the construction of the core of
the system.

Stepwise Feature Introduction fits well in our software process and in general in
the Extreme Programming philosophy of introducing small changes one at a time in
a software project [5, 15]. The division of the system into layers can be driven by the
XP iteration planning process. When the development team negotiates with the cus-
tomer about what new features should be implemented for the next small release, it is
then easy to see what should be included in the next layer. Every layer in SFI system
together with its ancestor layers represent a functional, working system. Hence, each
layer corresponds to a small release, making it easy to package a specific release so that
the customer can do the acceptance testing.

We obtained good results regarding the practical usability of SFI from our projects.
SFI has a formal basis and provides a sound way of structuring software, and SFI de-
signs often capture the core concerns of the software (the features) more explicitly than
many traditional OO designs. We have also identified some shortcomings in the method
that we need to work on. The use of inheritance as an extension mechanism can be
cumbersome and does introduce some complexity of its own into the system. SFI occa-
sionally makes it difficult to add a feature that does not fit well into the layer hierarchy.
In order to make SFI practically usable, it will be necessary to devise another extension

Using Stepwise Feature Introduction in Practice: An Experience Report 11

mechanism or introduce SFI-aware development tools (such a tool is currently being
worked on, as explained in Section 7).

In the remaining sections, we will discuss in more depth three specific issues that
came up during our experiments, and which we think merit a much closer analyzis.

4 Feature Combination and Diamond Inheritance

SFI suggests combining two or more independently developed layers into a feature
combination layer (see Section 1). As each layer may contain an extension of the same
class, the feature combination layer combines the extensions of a class from each layer
into a new subclass using multiple inheritance. It is then the responsibility of the new
layer to synchronize the two independent features in a meaningful way.

Multiple inheritance is significantly more complex than single inheritance for both
language implementors and programmers. What constitutes correct use of multiple in-
heritance in object-oriented software is a subject of some controversy. Bir Singh [16]
lists the four main uses of multiple inheritance, none of which correspond to the way it
is used in SFI (combination of two implementations with a potentially large number of
common methods):

– combination of multiple independent protocols;
– mix and match, where two or more classes are designed specially for combination;
– submodularity, to factor out similar subparts for improved system design;
– separation of interface and implementation.

This may suggest that multiple inheritance as implemented in most programming lan-
guages might not be ideal for feature combination as originally proposed in SFI. We
will here focus on one serious design problem encountered numerous times in our
experiments, namely diamond inheritance.

Diamond inheritance occurs when two or more ancestors of a class share the same
base class. This situation arises fairly often in large systems, especially if the class
hierarchy has a common root. In SFI diamond inheritance is likely to occur because of
the way inheritance is used as a layer extension mechanism, especially if one uses the
suggested feature combination.

An example of a situation in which the diamond pattern typically occurs in an SFI
design can be seen in Figure 7. The Basic layer contains two classes, BasicAccount
and a derived class BasicCheckingAccount, the latter supposedly having some ex-
tended behavior such as allowing withdrawals greater than the balance. In this case
the programmer used inheritance to be able to handle objects of the two account
types uniformly, i.e. to achieve polymorphism. Let us now assume that in the next
layer (the Better layer), support for multiple currencies is added, and that this fea-
ture requires both BasicAccount and BasicCheckingAccount to be extended into
BetterAccount and BetterCheckingAccount respectively. However, to preserve
polymorphism, BetterAccount must also be extended to BetterCheckingAccount.
We notice that mixing the two usage patterns of inheritance results in a diamond struc-
ture in the design.

12 R.-J. Back, J. Eriksson, and L. Milovanov

BasicAccount

+ withdraw (amount :int):void

BasicCheckingAccount

+ withdraw (amount :int):void

BetterAccount

+ withdraw (amount :int):void

BetterCheckingAccount

+ withdraw (amount :int):void

Better layer

Basic layer

Fig. 7. Diamond inheritance

Diamond inheritance causes difficulty when the same method is imple-
mented in more than one base class. In this example the withdraw method
of BetterCheckingAccount depends on functionality implemented in both
BasicCheckingAccount and BetterAccount, and calls both (in some order). How-
ever, each of these calls trigger a call to BasicAccount.withdraw, resulting in two
calls to this method. The code in BasicAccount.withdraw is thus executed twice,
which is not the intended behavior (the sum is withdrawn twice from the account). The
same situation occurs commonly with constructors—the constructor of the common
base class in the diamond is called twice. This results in data structures and resources
being initialized twice, potentially leading to resource leaks.

In the example case, when implementing BetterCheckingAccount.withdraw we
want to call the withdraw method of both base classes, but BasicAccount.withdraw
must be called only once. In Python 2.3, which was actually designed with inheritance
diamonds in mind [17], this is possible using the built-in super function which creates
a linearization of the class hierarchy and returns for a given class the previous class
in the linearization. By replacing direct calls to __init__ with super the desired call
order can be achieved. The drawback is that since we are no longer explicitly calling
the base class method, we might not be sure which method actually gets called without
considering the linearization of the whole class hierarchy. Because this would make the
class design more complex we have not used super in any of our Python projects.

Most SFI projects developed in the Gaudi Software Factory have avoided diamond
inheritance by not using multiple inheritance for feature combination or for mixing poly-
morphic extension with stepwise extension. Consequently we have not been able to add
features to a base class in a polymorphic inheritance hierarchy using SFI layers. However,
many times features are better implemented using delegation, where an object uses an-
other object (the delegatee) to perform an operation. In this case we can simply replace
the delegatee with a more advanced version in a higher layer. E.g., MathEdit heavily
uses the Bridge and Decorator design patterns [18] to avoid inheritance diamonds.

5 Avoiding Trivial Classes with Metaprogramming

One problem discovered early on was that some SFI-supporting metaprogramming
framework had to be implemented to reduce complexity that was primarily caused by

Using Stepwise Feature Introduction in Practice: An Experience Report 13

Text_ViewWindow

+ create ():Text_Editor

Text_Editor

Edit_ViewWindow

+ create ():Edit_Editor

Edit_Editor<< instantiates >>

<< instantiates >>

Text layer

Edit layer

Fig. 8. Subclassing to override factory method

proliferating factory methods. This problem occurs whenever one class (the factory) is
responsible for creating instances of another class (the product), and subclassing the
product to add a new feature results in having to subclass the factory only to override
the factory method so that it creates an instance of the new product class. An example
from MathEdit is illustrated in Figure 8.

The class Text_ViewWindow creates an object of type Text_Editor in the Text
layer. In the Edit layer the Editor class is extended with a feature that does not affect
the behavior of ViewWindow in any other way than that it now has to instantiate objects
of type Edit_Editor instead of Text_Editor. A class Edit_ViewWindow (grayed out)
has to be introduced only to override the factory method that creates the Editor object.

Since frequent subclassing and deep inheritance hierarchies are commonplace in SFI
designs, this situation will occur whenever a product class is subclassed and results in
a large number of trivial factory subclasses, cluttering the design and increasing the
code size. To avoid introducing these subclasses the metaprogramming framework of
MathEdit implements a routine that given a class name returns the correct Python class
for the running layer (Python classes are first-class objects which can easily be passed
around; in more static languages one might need to do this in compile time using e.g.
macro substitutions). If a certain class is not extended in the current layer, the routine
searches backwards in the layer stack until it finds the most recent class definition. For
example, calling the routine to get the ViewWindow class when running layer Edit would
return Text_ViewWindow.

A substantial problem we encountered with deep inheritance hierarchies is that the
control flow through the call chains of overridden methods becomes difficult to
overview. The programmers generally thought it was hard to grasp the order of method
calls and how the object state changes in response to the calls, especially with many
nested method calls. Also, finding a method declaration in the code could require
searching through several classes in the inheritance chain, unless the programmer knew
exactly in which layer the method was implemented. One programmer commented that
“a drawback with having so many hierarchical levels is that you start to forget methods
and variables that you defined on the lowest levels.”

Our experience indicates that the refactoring stage of SFI is of very high importance
for keeping the design clean. Especially when working with unstable requirements,
features can not easily be added on top of each other. The programmers found some
of the refactorings to be difficult and error-prone, partly because inheritance creates a

14 R.-J. Back, J. Eriksson, and L. Milovanov

rather tight coupling between classes. However, a good test harness will substantially
aid in the detection of such errors.

6 Unit Testing of Superposition

Unit testing is testing of individual hardware or software units or groups of related
units [19]. Extensive, automated unit testing has been proposed as an efficient way of
detecting errors introduced by changes in the software [6, 20]. A unit test exercises some
subset of the software’s behavior and validates it against its specification. Unit testing
frameworks frequently group test methods into test case classes, which can further be
aggregated into test suites. The complete test harness, consisting of all test suites, can
then be executed with a single command.

SFI architectures should maintain the superposition refinement relationship between
extensions and their bases—class invariants established in previous layers should not
be violated in subsequent layers. A layered unit testing architecture allows us to easily
create and maintain a test suite that aids in the detection of such violations, typically
caused by programmer error or design mistakes. By writing tests for only new func-
tionality and inheriting existing testing functionality, we introduce the requirement that
a test introduced in one layer should also pass in all subsequent layers.

Most of our projects have utilized a unit testing architecture based on inheriting test
cases. Our experience has shown it to be useful in practice; especially with many layers
programmers easily forget assumptions and requirements introduced in a lower layer—
if these are reflected in unit tests for the lower layer, possible violations are detected
also when running tests for higher layers.

We assume that for testing we use a unit testing framework that provides us at least
with a test case class. When constructing test cases in bottom layers, all test cases inherit
the class from the testing framework. Test cases of the extended classes in successive
layers should be extensions of the test cases from previous layers using the same exten-
sion mechanism as the application classes—inheritance. If an inherited method of an
application class is overridden and extended with new functionality, the corresponding
test method should be extended accordingly. If the body of the extended method con-
tains a call to its ancestor method, the same technique should be applied in the body of
the corresponding test method. This allows us to test both new and old functionality by
writing tests just for the new functionality.

An example of a basic testing scenario with two layers can be seen in Figure 9. The
Simple layer contains one application class (SimpleText) and its associated test class
(SimpleTextTest), which tests the insert method of SimpleText. The Better layer
extends SimpleText into BetterText by overriding insert and adding the paste
method; correspondingly the BetterTextTest test case extends SimpleTextTest to
override testInsert and adds a new test method for the paste method (testPaste).
The new testInsert method should test directly only the new functionality intro-
duced in BetterText, it should call the testInsert method from the Simple layer
to test that the old functionality of insertion is preserved in BetterText. In this way,
we test that BetterText is in fact a superposition refinement of SimpleText.

Using Stepwise Feature Introduction in Practice: An Experience Report 15

SimpleText

+ insert (s:String):

BetterTextTest

+ testPaste ():

+ testInsert ():

BetterText

+ paste ():

+ insert (s:String):

SimpleTextTest

+ testInsert ():

Better layer

Simple layer

TestCase

Fig. 9. Layered test cases

We have used the PyUnit [21] unit testing framework, which is essentially a Python
version of the JUnit testing framework for Java [20]. The programmers found it easy to
write tests in Python using PyUnit. No special compilation cycle for tests is required,
and grouping all tests into a single suite makes it easy to run the tests often; program-
mers were encouraged to run the tests before committing any new code to the main
source.

A number of open source testing frameworks for Eiffel are available. The Gobo [22]
tool was used in our project for unit testing. Gobo test cases work similarly to PyUnit;
the programmer subclasses a predefined test class and adds test methods. However,
because the Gobo test framework is not integrated into the EiffelStudio environment,
it was necessary to set up two different projects, one for compiling the system and
one for compiling the tests and the system. The programmers found this arrangement
inconvenient.

7 Conclusion and Future Work

We have above described our results from using Stepwise Feature Introduction, a for-
mally defined method, in practical software engineering projects. The central idea in
SFI is that layers are built stepwise as superposition refinements on top of each other;
using class inheritance as the extension mechanism. Also, each layer together with
lower layers should constitute a fully executable application.

We have carried out several case studies in Stepwise Feature Introduction. Our expe-
rience from these studies has shown us that SFI works well for structuring, debugging
and testing the software under development. Combining SFI with an agile process like
Extreme Programming provides architectural structure and guidance to an otherwise
quite ad hoc software process, and has allowed us to deliver good working software
in a timely manner. It is easy for developers to learn how to apply SFI, and the layer
structure helps developers to understand the software architecture.

The main difficulties in applying the method have been caused by lack of automation
and, to some extent, conflicting use of class inheritance. These observations point to a

16 R.-J. Back, J. Eriksson, and L. Milovanov

need for a generic SFI-supporting programming environment. Many of the
programming tasks involved in applying SFI can require considerable amount of time.
However, most of them can be automated, which would provide a great help for the pro-
grammers. The Software Construction Workbench (Section 2.3) was the first attempt to
build tool support for SFI, but it was Python-specific. A number of smaller case studies
also showed that SCW somewhat too rigidly restricted the software architecture.

SFI-style extensions adds a new dimension to software diagrams, which can
become quite large and difficult to overview. We are currently building and experi-
menting with SOCOS, a prototype tool for constructing and reasoning about software
systems, that is intended to support SFI. SOCOS is essentially an editor for refinement
diagrams [3]. Refinement diagrams have exact semantics and a mathematical base in
lattice theory and refinement calculus. A software system is presented to the user as a
three-dimensional diagram containing software parts and dependencies between parts.

The SOCOS system is currently in early stages and the framework is still being
worked on. Our current focus is on developing an environment for constructing lay-
ered software systems and reasoning about their correctness on both architectural and
behavioral levels. Stepwise Feature Introduction, using either inheritance or another
layer extension mechanism, is intended to be the main method by which features are
added to the system. The goal is to create a tool for correctness-preserving, incremental
construction of SFI-layered software systems.

References

1. Back, R.J.: Software construction by stepwise feature introduction. In: ZB ’02: Proceedings
of the 2nd International Conference of B and Z Users on Formal Specification and Develop-
ment in Z and B, Springer-Verlag (2002) 162–183

2. Back, R.J.J., Akademi, A., Wright, J.V.: Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1998)

3. Back, R.J.: Incremental software construction with refinement diagrams. Technical Report
660, TUCS – Turku Centre for Computer Science, Turku, Finland (2005)

4. Back, R.J., Sere, K.: Superposition refinement of reactive systems. Formal Aspects of Com-
puting 8 (1996) 324–346

5. Back, R.J., Milovanov, L., Porres, I.: Software development and experimentation in an
academic environment: The Gaudi experience. In: Proceedings of the 6th International Con-
ference on Product Focused Software Process Improvement – PROFES 2005, Oulu, Finland.
(2005)

6. Beck, K.: Extreme Programming Explained: Embrace Change. The XP Series. Addison-
Wesley (1999)

7. Anttila, H., Back, R.J., Ketola, P., Konkka, K., Leskela, J., Rysä, E.: Coping with increas-
ing SW complexity - combining stepwise feature introduction with user-centric design. In:
Human Computer Interaction, International Conference (HCII2003), Crete, Greece (2003)

8. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: An experiment on extreme programming
and stepwise feature introduction. Technical Report 451, TUCS – Turku Centre for Computer
Science, Turku, Finland (2002)

9. Lutz, M.: Programming Python. O’Reily (1996)
10. Eriksson, J.: Development of a mathematical derivation editor. Master’s thesis, Åbo Akademi

University, Department of Computer Science (2004)

Using Stepwise Feature Introduction in Practice: An Experience Report 17

11. Back, R.J., Björklund, D., Lilius, J., Milovanov, L., Porres, I.: A workbench to experiment on
new model engineering applications. In Stevens, P., Whittle, J., Booch, G., eds.: UML 2003
– The Unified Modeling Language. Model Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003, Proceedings Volume 2863 of LNCS,
Springer (2003) 96–100

12. Meyer, B.: Object-Oriented Software Construction. second edn. Prentice Hall (1997)
13. Back, R.J., Hirkman, P., Milovanov, L.: Evaluating the XP customer model and design by

contract. In: Proceedings of the 30th EUROMICRO Conference, IEEE Computer Society
(2004)

14. Meyer, B.: Eiffel: The Language. second edn. Prentice Hall (1992)
15. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: XP as a framework for practical software

engineering experiments. In: Proceedings of the Third International Conference on eXtreme
Programming and Agile Processes in Software Engineering - XP2002. (2002)

16. Singh, G.B.: Single versus multiple inheritance in object oriented programming. SIGPLAN
OOPS Mess. 6 (1995) 30–39

17. Simionato, M.: The Python 2.3 method resolution order. http://www.python.org/2.3/mro.
html (2003)

18. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

19. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York (1990)

20. Beck, K., Gamma, E.: Test-Infected: Programmers Love Writing Tests. Java Report (1998)
37–50

21. Purcell, S.: PyUnit. http://pyunit.sourceforge.net/ (2004)
22. Bezault, E.: Gobo Eiffel Test. http://www.gobosoft.com/eiffel/gobo/getest/ (2001)

	Introduction
	SFI Projects in Gaudi
	Extreme Editor
	Editor for Mathematical Derivations
	Software Construction Workbench
	Personal Financial Planner

	Experience of Using SFI
	Feature Combination and Diamond Inheritance
	Avoiding Trivial Classes with Metaprogramming
	Unit Testing of Superposition
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

