

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 266 – 277, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Balancing Agility and Discipline with XPrince

Jerzy Nawrocki1,2,∗, Lukasz Olek1,2, Michal Jasinski1,2, Bartosz Paliświat1,2,
Bartosz Walter1,2, Błażej Pietrzak1, and Piotr Godek2

1 Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

2 PB Polsoft, Poznań, Poland
Jerzy.Nawrocki@put.poznan.pl

Abstract. Most of the contemporary projects require balance between agility
and discipline. In the paper a software development and project management
methodology called XPrince (eXtreme PRogramming IN Controlled Environ-
ments) is presented. It is a combination of XP, PRINCE2 and RUP. Moreover,
some experiments and tools are described that create an important basis for the
methodology.

1 Introduction

The first reaction to the software crises in the late 60s was call for discipline. In the next
20 years people proposed many standards (IEEE standards, ISO standards etc.). They
were followed by maturity models (CMM, ISO 15504 etc.) and discipline-oriented
methodologies (e.g. PSP [13], and TSP [14]). Parallel to this process in the 70s first
project management methodologies were applied to support software development.
Perhaps the first one was PROMPTII created by Sympact Sytems Ltd. and adopted in
1979 by UK’s Central Computer and Telecommunications Agency (CCTA). In 1989
CCTA established its own methodology called PRINCE (for PRojects IN Controlled
Environments). Seven years later it was modified and since that time it is known as
PRINCE2 [18]. It is quite a popular methodology also outside UK. It has got an opinion
of rather restrictive but effective project management method.

However, too much discipline kills initiative and flexibility, which are necessary
to successfully build complex systems with changing requirements. To help this in
the mid 90s so-called agile methodologies arose. They emphasize the need for
effective communication between individuals, customer orientation, software-
centric thinking and fast responding to changes. Perhaps the most popular agile
methodology is Extreme Programming (XP for short) [3]. As usually, there is no
silver bullet and both approaches, agile and discipline-oriented, have their
advantages and disadvantages. Discipline-oriented methodologies usually suffer
from excessive paper work, low flexibility, slow decision processes and inability to
accommodate many changes. XP’s weakness is relying on on-site customer (in
many projects customer representative is too busy and she/he cannot fulfill this

∗ Corresponding author.

 Balancing Agility and Discipline with XPrince 267

requirement), lack of written documents (oral communication is fast but when the
system is complex and there are many difficult trade-offs after some time it can be
hard to remember what was the final solution and why it was chosen), and
sometimes too short planning perspective.

As Barry Boehm and Richard Turner have noted, every successful venture in a
changing world requires both agility and discipline ([5, p. 2]). In the paper an
integrated and flexible software development methodology is presented along with
accompanying tools which aims at balancing agility and discipline. It is called
XPrince (for eXtreme Programming in controlled environments) and it is based on
three other methodologies: XP [3], PRINCE2 [18], and RUP [17]. In the next section
we describe a two-level approach to team organization which results in a team
structure compliant with both XP and PRINCE2. In Section 3 the project lifecycle is
discussed. Again our aim was to obtain a lifecycle that would be conformant with
both XP and PRINCE2. Then, tools and techniques are presented that aim at
providing agility and effectiveness to requirements engineering (Sec. 4) and software
construction (Sec. 5). Our aim was to solve the problems associated with XP’s
weaknesses and preserve agility. To obtain this we have integrated a project manage-
ment methodology (PRINCE2) with a software development one (XP), and we have
elaborated tools that integrate various software engineering techniques. We have
integrated a use-case editor with a mock-up generator and an effort estimator (the
resulting tool is called UC Workbench). We have also integrated reuse with testing
(test-cases are used as a query to find a function or a class).

2 Team Structure

At the thirst glance, PRINCE2 does not fit XP for a number of reasons. One of them
is that roles in PRINCE2 are different from those in XP. In PRINCE2 a project is
directed by its Project Board which consists of three roles (see Fig. 1a):

• Executive – Represents the investor and is responsible for making the project
successful from the business point of view. He can cancel the project if necessary.

• Senior User – He coordinates end users and focuses on usability aspects.
• Senior Supplier – Represents the supplier organization (a senior manager).

PRINCE2 assumes that Project Board members are too busy to look after the project
on the day-to-day basis. Therefore, in PRINCE2 there is another role called Project
Manager who is responsible for tactical level of management. Among others, he
prepares plans which are later on accepted by the Project Board and writes progress
reports. To balance “intrinsic optimism” of the Project Manager in PRINCE2 there is
an optional role of Project Assurance whose mission is to check if the reports send by
the Project Manager meet the reality. If a project team is small the developers are
immediately coordinated by the Project Manager.

XP team has no particular structure diagram. However, from the description given
by Kent Beck [3] one can derive a team structure diagram presented in Fig. 1b. That
diagram can be “refactored” into the diagram of Fig. 1c. This refactoring allows to see

268 J. Nawrocki et al.

Fig. 1. Minimal project team structure in PRINCE2 (a). A team structure diagram for XP (b).
XPrince team structure (c).

XP team as PRINCE-compatible. From the PRINCE2 point of view the Project
Manager controls a team of developers. PRINCE2 does not impose any constraints on
how the developers should be organized, so from that point of view Analyst or Architect
is just a developer. On the other hand, the developers can be unaware of existence of the
Project Board. From their point of view the Analyst (a role coming from RUP) is the
customer and they have two coaches: Project Manager and Architect. In XP there is
only one coach, but its mission is twofold: removing organizational obstacles (e.g. lack
of paper) and intervene when developers encounter technical difficulties (e.g. unit tests
take too long). Taking this into account we have decided to split the coach role into two
roles. Project Manager is responsible for right organizational environment (including
good contacts with the Project Board), she/he solves interpersonal problems and is
rather motivating than directing [4]. A good Project Manager should build his team
around character ethic proposed by Stephen Covey [10]. Architect is much more
technically oriented. It is an additional role not present in XP nor in PRINCE2 (it also
comes from RUP). From the developers point of view, Architect is a senior-designer
(corresponding to Brook’s Chief Surgeon [7]) who is well-experienced and can provide
merit (i.e. technical) advices to the developers. The Architect is responsible for
establishing and maintaining the architecture and the developers are responsible for
“filling in” the architecture with the functionality. A very good description of architect’s
role is given by Kroll and Kruchten [17].

3 Project Lifecycle

Project lifecycle is a basis for planning. In PRINCE2 (Fig. 2a) a project begins with
Starting-up (deciding about the management team, preparing a Project Brief and a Project
Approach, planning the initiation stage). It can be very short (sometimes a few hours are
enough). It is followed by Initiating a Project (planning a project, refining the business

 Balancing Agility and Discipline with XPrince 269

case and risks, setting up project controls and project files, assembling the Project
Initiation Document). Then a number of stages appear (each stage is assigned a list of
expected products and it is controlled using its own plan). A project ends with Closing
(obtaining customer’s acceptance, identifying follow-on actions, evaluating the project).

In RUP (Fig. 2b) a project consists of four phases: Inception (finding out what and
how to build), Elaboration (working out the architecture, planning the project,
mitigating essential risks, putting the development environment in place),
Construction (preparing a fully functional beta version of the system), Transition
(preparing deployment site, training users, checking that user expectations are met
and deployment is complete).

XP’s lifecycle is the simplest one (Fig. 2c). It consists of a sequence of releases
and each release is a sequence of increments. Each release and each iteration starts
with a planning session (so-called Planning Game). There is no overall project plan –
planning perspective is limited to one release. Sometimes people use so-called zero-
functionality increment to arrange things and prepare the development environment.

Fig. 2. Project lifecycles proposed by different methodologies: PRINCE 2 (a), RUP (b), XP (c),
and XPrince (d)

In XPrince the lifecycle is a combination of all the mentioned approaches. The
PRINCE2 concept of starting-closing ‘brackets’ is quite practical. They are completely
non-technical activities, so it makes sense to separate them from the other stages (in
RUP it is partially included into Inception and Transition). Starting up a Project is
usually performed by Project Manager and it has the following objectives:

• Appoint the project management team (see the previous section).
• Produce a vision document (it is a shorter and more concrete version of PRINCE’s

Project Brief and Project Approach, and it contains an initial version of the
business case).

• Plan the initiation stage.

270 J. Nawrocki et al.

The next stage is Initiating a Project. Its aim is to provide a plan and an
organizational environment for the project. It is a combination of PRINCE’s Initiation
and RUP’s Inception. It is mainly performed by the Project Manager and the Analyst.
Some consultancy with the Architect will also be necessary. The objectives of the
stage are the following:

• Understand what to build. If necessary, produce a lightweight version of the
ConOps document [15] containing a business model based on use cases, list of
problems to be solved, and key system functionality required to solve the
problems. The key system functionality should be accompanied by a list of quality
criteria and work products. The Analyst is responsible for the objective and for
updating the risks associated with it.

• Propose an initial architecture. It should be a short, high-level description
providing information necessary for planning the project. It should also contain a
list of the tools that will be used. Nominally the Architect is responsible for the
objective and its risks, but if the architecture is pretty obvious the Analyst can do
the work.

• Plan the whole project and refine the business case. That objective is under
supervision of the Project Manager and he is also responsible for maintaining the
risks associated with it. A project plan presents a strategic view of the project. To
support agility the project plan should be based on the first-things-first principle [10].
It should specify the number of releases and assign features (high-level use cases)
to releases. The longer the project the less concrete should be a project plan.
Actual planning and contracting should be at the level of releases. In XP there is no
project plan – there are only release plans. In XPrince a project plan has been
added not only to comply with PRINCE2 but also to provide a wider perspective
which can be very useful. It is important to understand that a project plan is a
source of valuable information, not an excuse to reject changes. Every change
should be welcomed as long as it supports reaching the business objectives stated
in the business case.

• Set-up communication channels and project management environment. Communi-
cation channels include reports (e.g. results of weekly acceptance tests as suggested
by XP). The project management environment can be classical, based on files and
documents or it can be supported by advanced tools. That objective is the
responsibility of the Project Manager.

• Plan the Elaboration stage. The Elaboration stage is mainly about architecture.
The Architect is to propose architectural mechanisms, identify risks associated
with the proposed mechanisms, check the risks (e.g. through experiments), and
create a framework that will be used by the Developers. The Analyst and the
Project Manager use that stage to refine the requirements and the project plan.

Each Release stage consists of a number of increments which are followed by
transition. At this stage the development process resembles very much XP. The
Architect and the Developers produce code and test cases. The Analyst is responsible
for requirements and acceptance tests. He also plays the role of on-site customer. An
increment is a purely internal checkpoint. Each Release ends with a transition and
then a new version of the system is deployed and passed over to end users. As in XP,
each increment should have the same duration – that helps the Developers to learn

 Balancing Agility and Discipline with XPrince 271

what an increment is in the sense of time and, as a result, they become better at
planning it.

Closing an XPrince project resembles very much its counterpart in PRINCE2. The
project is decommissioned, the follow-on actions are identified, and the project is
evaluated.

4 Requirements Engineering with UC Workbench

In this section we present a tool supporting requirements engineering based on use-
cases. It is called UC Workbench (UC stands for Use Cases). UC Workbench was
designed with XPrince’s Analyst in mind.

4.1 Text or Diagram?

According to a popular saying, one picture has a value of 1000 words. Unfortunately,
it seems it does not hold for requirements engineering. In March and April 2005 we
have conducted an experiment at the Poznan University of Technology. The aim of
the experiment was to find out which approach, text-based or diagram-based, is better
from the understandability point of view. As a representative of the text-based
approach we have selected use cases [8, 1]. For diagram-based approach we have
chosen BPMN [27] which resembles UML but is specifically designed for business
modeling. The participants of the experiment were 4th year students working on their
master degrees in Software Engineering (SE) or Business Administration (BA). There
were 17 SE students and 11 BA students. The process went through the following
steps:

1. A lecture presenting an introduction to a given notation (90 minutes).
2. A rehearsal session during which the students were given a high level description

of PRINCE2 processes expressed in a given notation with a number of seeded
defects and their task was to find them. The document was 5 pages long. The
session lasted for about 90 minutes.

3. An experiment session run in a similar way as the rehearsal. However, this time we
have changed the business domain. Instead of PRINCE2 processes the participants
were presented business models concerning university regulations (earning
university diploma, taking the final exam etc.). They were given one hour to find
the defects.

The process was performed twice (each time with different business models) to get
more data. Each time there were two groups: one using use cases, and the other
working with BPMN diagrams. It could happen that the two groups were not
equivalent in terms of their skills. To avoid this, the second time we have switched the
groups (the use-case group was given BPMN diagrams and vice versa). Students
worked individually. Every detected defect was shortly described on the defect log.
As the understandability measure we have assumed the number of defects detected in
the document. Defect detection ratio (DDR) for a person p was defined as follows:

DDR(p) = ⋅ 100% Number of defects detected by person p

Number of all the defects

272 J. Nawrocki et al.

DDR for use cases was greater than for BPMN and that result was statistically
significant (with the significance level 0.05). This justifies the following conjecture:
use cases are easier to understand than BPMN diagrams. Thus, it is better to express
business processes in the form of use cases.

We have also performed another experiment. This time one group was given a
business model expressed only in use cases and the other group was given the same
use cases accompanied with BPMN diagrams. The latter group detected more defects
than the former and the results were statistically significant. Thus, BPMN diagrams
are a valuable add-on to the use cases.

Taking into account results of those experiments we have decided that in XPrince
requirements engineering will be based on use cases and diagrams will be treated as
useful adornments.

4.2 UC Workbench

UC Workbench is a tool developed at the Poznan University of Technology [21] to
support requirements management and business modeling based on use cases. We
were surprised by the fact that there is no good tool for use-case engineering. UC
Workbench provides the following functionality:

• Editing use cases with automatic renumbering the steps in the main scenario as
well as in all the extensions.

• Automatic reviews with detecting ‘bed smells’ (e.g. undefined and unused actors,
too short or too long scenarios, an extension with no steps).

• Generating of mockups from the collected use cases. An automatically generated
mockup is based on a web browser and it consists of two windows (see Fig. 3): the
scenario window (presents the currently animated use case), and the screen window
(shows the screen design). In the case of business modeling the screen window
would contain a BPMN diagram.

• Composing the SRS document based on IEEE Std. 830-1998. UC Workbench
generates the SRS document from the use cases.

• Generating effort calculators based on Use-Case Points [16] that are to support
XP’s Planning Game. In XPrince planning comprises three levels: Use-Case Points
(the lowest level) provide default effort estimates that can be later on changed by
the experts; Wide-Band Delphi Method is used to support effort estimation by the
team (experts); Planning Game (the highest level) controls a dialog between
the customer (and Analyst) and the Developers led by the Architect about the
scope of the next release.

We believe that appropriate tools can be very helpful in balancing agility and
discipline. They can provide information available in discipline-oriented methodologies
but faster and cheaper. Due to this, changing requirements are not so a big problem as
it used to be.

To evaluate UC Workbench we have performed a simple experiment aiming at
comparison of UC Workbench with a popular, general purpose text processor (MS
Word). There were twelve participants (students of the 4th year working towards their
Master degree in Software Engineering). They were split into two equal-size groups.

 Balancing Agility and Discipline with XPrince 273

Fig. 3. A screenshot of a mockup generated by UC Workbench

Fig. 4. Effort necessary to type-in (left) and to change (right) use-cases using UC Workbench
and MS Word

274 J. Nawrocki et al.

One group was using MS Word and the other UC Workbench. The students were
provided with a draft containing 4 use cases (each 6–9 steps long). There were two
steps. First students were asked to type-in the use cases using the assigned tool. Then
they were asked to introduce some changes. It turned out (see Fig. 4) that by using
UC Workbench one can save about 25% of time at typing-in and about 40% at
introducing changes.

5 Developing the Software

5.1 To Do Pair Programming or Not To Do?

Pair Programming is one of key practice of XP. A pair of programmers equipped with
a single computer is assigned a programming task. One of the programmers is writing
code, while the other is watching, asking questions, and introducing test cases,
therefore providing so-called continuous review. Another approach to collaborative
programming – called Side-by-Side Programming (SbS) – has been proposed by
Cockburn [9]. In this approach a single task is solved by a pair of programmers, each
equipped with his own computer.

Results of experimental research on pair programming performance vary from
optimistic (speedup at the level of 40% of time and overhead about 20% of the effort
compared to individual programming [23, 28, 29]), to quite pessimistic (speedup
about 20%, effort overhead about 60% [20]). Unfortunately, up-to-date there are no
published experimental data concerning SbS performance.

Recent experiments performed at the Poznan University of Technology [22]
indicate that classical Pair Programming is less efficient than the SbS programming.
Almost 30 students were working for 6 days in a controlled environment. They were
building an Internet application managing conference paper submission and review
processes. They were split into three groups: SbS pairs, XP-like pairs, and
individuals. It turned out that the SbS pairs were faster by 13% than the XP pairs and
by 39% than the individual programmers. Consequently, the SbS effort was by 26%
smaller than the effort of XP pairs and only 22% greater than the effort of individuals.
This experiment shows that Side-by-Side programming is an interesting alternative to
XP-like pair programming and individual programming.

Another experiment run at the Poznan University of Technology in 2005 confirms
this observation. 44 volunteer subjects participated in the experiment. They were
undergraduate students studying Computer Science (2nd year of study). They had
completed various programming courses (including Java and C++) amounting to over
400 hours. Again we have decided that the subjects will work at the university
(controlled conditions). Some students worked in XP-like pairs and the others in SbS
pairs. They were given two 9-hour long programming assignments and they worked
according to predefined process. The results show, that Side-by-Side programming is
faster than XP-like Pair Programming by 16%–18% percent.

Interestingly, all the subjects participating in the experiment preferred collaborative
programming (55%) over individual problem solving (40%). Moreover, 70% of the
subjects preferred Side-by-Side approach and only 30% voted for XP-like pair
programming.

 Balancing Agility and Discipline with XPrince 275

In XPrince the Developers can choose between individual, SbS or XP-like pair
programming. If they choose individual programming, a reviewer is assigned to check
quality of the work (it is another Developer).

5.2 Code Refactoring

Refactoring is one of the core XP techniques supporting software maintenance [3]. It
depends on changing source code internal structure to improve its readability and
adjust it to changing requirements, while preserving its observable behaviour (that
allows to reuse the ‘old’ regression tests) [12].

An agile project most of its life-time stays at maintenance phase because actually it
constantly evolves over time. That makes refactoring (and any other software
maintenance technique) very important.

Unfortunately, refactoring is also a costly and error-prone technique. Changes are
likely to introduce mistakes and unexpected side-effects, which effectively alter the
program behaviour. Preventing this requires additional effort, which adds even 80%
to overall project cost [6]. However, the investment pays back with subsequent
maintenance events: according to some authors [25], refactoring is cost effective after
sixth such action. Small-scale experiment performed at the Poznan University of
Technology with graduate students in Software Engineering revealed that the
refactoring-related overhead in every increment decreased from 75 down to 7 percent
in just three development cycles, as compared to a similar incremental process
performed without code restructuring [26]. Thus, disciplined refactoring contributes
to code quality, whereas its cost is justified for projects with several functional
increments or maintenance actions.

As in typical XPrince project there are many increments, refactoring and
programming environments supporting it (e.g. IBM Eclipse) are strongly recommended.

5.3 Integration of Code Reuse and Test-First Coding

It is a widely known fact, that code reuse can reduce software development cost and
increase reliability. For instance, Toshiba reported decrease in defects by 20–30%,
and Hewlett-Packard even by 76% [11]. The main problem with code reuse is finding
a piece of code which can be used to accomplish some given goal. That task is
definitely not a trivial one, especially when the size of repository and the number of
people involved are significantly big (which is actually the situation when the
systematic reuse starts paying off). Such a difficult task cannot be approached without
a support of both well organized processes and well designed tools.

One of the most interesting approaches to improving the search process is so-called
behavioural retrieval [2, 24]. A behaviour of a class or a method is specified by a
small program showing the input and expected output. That idea was first proposed
by Podgurski [24]. Unfortunately, it was not widely used in practice because of a
common belief that specifying a class or a method is not trivial and it will be faster to
write a piece of code than to find it in a repository (the technique of behavioural
retrieval is oriented towards relatively small pieces of code like functions or classes).

But in XP (and in XPrince as well) coding is preceded by preparing test cases (it is
so-called test-first coding). To support code reuse and test-first coding we have
developed a tool that takes test cases written in jUnit and using the technique of

276 J. Nawrocki et al.

behavioural retrieval searches through a code repository looking for a class or a
method which potentially satisfies this rough specification. If it succeeds, the
Developer can check more precisely if the found piece of code satisfies his require-
ments and if so, the work is done. If not, he can start programming as he did if he was
just doing classical test-first coding.

The proposed technique is not to replace existing methods of searching through
repositories. It is rather a complementary solution designed to operate well for small
pieces of code, for which commonly used techniques as text-based retrieval or faceted
classification may not be sufficient.

To evaluate the proposed tool we have performed a simple test. Nine programmers
(5th year students) were given description of 10 relatively simple program units (the
descriptions were given in a natural language). They were asked to provide a set of
test cases that would allow finding the units in the code repository. In 9 of 10 cases
the programmers correctly specified the units. The only problem was with a class
representing strings that can be matched with regular expressions (4 of 9
programmers made a wrong assumption).

6 Conclusions

By integrating different methodologies and supporting them with appropriate tools
one can obtain a balance between agility and discipline. The solutions presented in the
paper follow from our 7-years long experience in running the Software Development
Studio at the Poznan University of Technology. The described methodology
(XPrince) and the first version of UC Workbench went also through in-field testing –
they have been used in a commercial project for a government agency.

Acknowledgements

We are thankful to PB Polsoft, a software company with headquarters in Poznan who
provided us with a feedback from a real industrial project run according to XPrince,
and personally to Grzegorz Leopold who created that opportunity.

This work has been financially supported by the State Committee for Scientific
Research as a research grant 4 T11F 001 23 (years 2002-2005).

References

[1] Adolph, S., Bramble, P., Cockburn, A., Pols, A., Patterns for Effective Use Cases,
Addison-Wesley, 2002.

[2] Atkinson S., Examining behavioural retrieval, WISR8, Ohio State University, 1997.
[3] Beck, K., Extreme Programming Explained. Embrace Change, Addison-Wesley, Boston,

2000.
[4] Blanchard, K., Zigarmi D., Zigarmi P., Leadership and the One Minute Manager, 1985.
[5] Boehm, B., Turner, R., Balancing Agility and Discipline. A Guide for Perplexed,

Addison-Wesley, Boston, 2004.
[6] Bossi P., Repo Margining System.

http://www.communications.xplabs.com/lab2001-1.html, visited in 2004.

 Balancing Agility and Discipline with XPrince 277

[7] Brooks, F., A Mythical Man-Month, Addison-Wesley, Boston 1995.
[8] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, Boston, 2000.
[9] Cockburn, A., Crystal Clear. A Human-Powered Methodology for Small

Teams. Addison-Wesley, Boston, 2005.
[10] Covey, S., The Seven Habits of Highly Effective People, Simon and Schuster, London,

1992.
[11] Ezran M., Morisio M., Tully C., Practical Software Reuse, Springer, 2002.
[12] Fowler M., Refactoring. Improving the Design of Existing Code. Addison-Wesley,

Boston, 1997.
[13] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, Reading MA,

1995.
[14] Humphrey, W., Introduction to the Team Software Process, Addison-Wesley, Reading

MA, 2000.
[15] IEEE Guide for Information Technology – System Definition – Concept of Operations

(ConOps) Document, IEEE Std. 1362–1998.
[16] Karner, G., Use Case Points – Resource Estimation for Objectory Projects, Objective

Systems SF AB, 1993.
[17] Kroll, P., Kruchten, Ph., The Rational Unified Process Made Easy, Addison-Wesley,

Boston, 2003.
[18] Managing Successful Projects with PRINCE2, TSO, London, 2004.
[19] Nawrocki, J., Jasiński, M., Walter, B., Wojciechowski, A., Extreme Programming

Modified: Embrace Requirements Engineering Practices, 10th IEEE Joint International
Requirements Engineering Conference, RE'02, Essen (Germany), IEEE Press, Los
Alamitos (2002) 303–310.

[20] Nawrocki, J., Wojciechowski, A.: Experimental Evaluation of Pair Programming. In:
Maxwell, K., Oligny, S., Kusters, R., van Veenendaal, E. (eds.): Project Control.
Satisfying the Customer. Proceedings of the 12th European Software Control and Metrics
Conference ESCOM 2001. Shaker Publishing, London (2001) 269–276.

[21] Nawrocki, J., Olek, L., UC Workbench – A Tool for Writing Use Cases and Generating
Mockups. In: Baumeister, H., Marchesi, M., Holcombe, M., (Eds.) Extreme
Programming and Agile Processes in Software Engineering, Lecture Notes in Computer
Science 3556, (2005), 230–234.

[22] Nawrocki, J., Jasinski, M., Olek, L., Lange, B.: Pair Programming vs. Side-by-Side
Programming. Proceedings of the European Software Process Improvement and
Innovation Conference, Lecture Notes in Computer Science 3792 (2005), 28–38.

[23] Nosek, J. T., The Case for Collaborative Programming. Communications of the ACM,
Volume 41, No. 3 (1998) 105–108.

[24] Podgurski, A., Pierce, L., Retrieving reusable software by sampling behavior, ACM
TOSEM, Volume 2 , No. 3 (1993) 286–303.

[25] Stroulia E., Leitch R., K., Understanding the Economics of Refactoring. In: Proc. of the Fifth
ICSE Workshop on Economics-Driven Software Engineering Research. Portland, 2003.

[26] Walter B., Analysis of Software Refactorings. PhD dissertation, Poznań University of
Technology, Poznań (Poland), 2004 (in Polish).

[27] White, S., Introduction to BPMN,
http://www.bpmn.org/Documents/ Introduction%20to%20BPMN.pdf, visited in 2005.

[28] Williams, L.: The Collaborative Software Process. PhD Dissertation at the Department of
Computer Science, University of Utah, Salt Lake City (2000).

[29] Williams, L. et al.: Strengthening the Case for Pair Programming. IEEE Software,
Volume 17, No. 4 (2000) 19–25.

	Introduction
	Team Structure
	Project Lifecycle
	Requirements Engineering with UC Workbench
	Text or Diagram?
	UC Workbench

	Developing the Software
	To Do Pair Programming or Not To Do?
	Code Refactoring
	Integration of Code Reuse and Test-First Coding

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

