
 

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 203 – 217, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Synthesized UML, a Practical Approach to Map UML 
to VHDL 

Medard Rieder, Rico Steiner, Cathy Berthouzoz, Francois Corthay, 
and Thomas Sterren 

Infotronics Unit (www.infotronics.ch), 
University of applied Sciences Valais (www. hevs.ch), 

Rte du Rawyl 47, 1950 Sion, Switzerland 
{rim, sti, bet, cof, sth}@hevs.ch 

Abstract. Embedded Systems are complex systems with limited resources such 
as reduced processor power or relatively small amounts of memory and so on. 
The real time aspect may also play an important role, but is definitely not a 
main consideration of this work. Complexity of recent embedded systems is 
growing as rapidly as the demand for such systems and only can be managed by 
the use of a model-driven design approach. Since modeling languages such as 
UML are semi-formal they allow the design of systems that can’t be 
implemented using formal languages such as C/C++ or VHDL. This paper 
intends to show how the gap between model and formal language can be 
bridged. First of all a set of rules restricts the use of model elements in a way 
that the model will become executable. Furthermore a unique mapping between 
UML and formal language elements enables automatic code generation. Formal 
verification at model level is an important consideration and becomes possible 
by the fact that rules restrict the application of model elements. UML to 
software (C/C++) and UML to hardware (VHDL) mapping form the base for a 
practical codesign approach where a part of the system is realized through 
software and another part trough hardware. Mapping of UML to programming 
languages is well known today and realized in many tools. Mapping of UML to 
hardware description languages is less known and not realized in tools. This 
paper documents an attempt to define a set of rules and to implement UML to 
VHDL mapping in a practical code generator. It also shows parts of a real world 
sample that was realized to verify usability and stability of rules and mapping. 
Finally, an outlook on further developments, improvement of the UML to 
VHDL mapping and a simple codesign process called 6qx will be given. 

1   Introduction 

While Embedded Systems were not widespread before 1990, nowadays they have 
become very popular. Affordable prices of big sized memory and powerful processors 
form the ideal alchemy for the birth of numerous embedded systems. Another 
component of this alchemy is the fact that hardware has become programmable. Field 
Programmable Gate Arrays (FPGA) with sufficient number of gates at reasonable 
prices made the borderline between hardware and software vanish. 
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Even though there are a rising number of basic components for embedded systems, 
and new technologies appear in rapid succession, the system development cycle is 
still quite traditional as illustrated by figure 1. 

 

Fig. 1. Traditional Embedded System Development Cycle 

2   Codesign 

In such a traditional process, hardware and software are developed parallel, which 
brings up several issues, such as: 

• Need of early hardware and software partitioning. 
• Asynchronous development of hardware and software. 
• Late integration with possible need of redesign. 
• Missing hardware prevents testing the software before integration. 

An important reason why development of hardware and software is not integrated 
is the lack of simple model-based approaches. Several reasons prevent the use of 
model-driven development. 

Existing Codesign tools are very expensive and mostly dedicated: If codesign tools 
exist, these are almost certainly very expensive and dedicated to a specific thematic 
and platform. Readapting to other thematic and /or other platforms is practically 
impossible. 

Developers think in terms of code and not model: Traditional thinking [1, 2, 3] and 
often also investments that have been made into some existing platform inhibit a 
change of attitude. Since formal descriptions are what they are and do not heal lack of 
methodic approach, first experiences in modeling are mostly disappointing and many 
hardware and software programmers therefore fall back into well-known territory, 
which means thinking either in hardware or in software code. 
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Therefore the HEVs approach of a codesign method was to use existing software 
modeling techniques already established on the market and to bridge the gap between 
software engineering and system engineering (codesign) by adding the hardware 
engineering part. How this was done will be described in detail in the following 
chapters and sections. 

2.1   A Theoretical Codesign Approach 

As a theoretical approach, we have developed a quite simple pyramid with the 
integrated system model as its top. 

As underlying layer, we split up the model into a hardware model and a software 
model section. This process is called partitioning. The partitioning is done manually 
to give us the most flexibility to draw the boarder line (Figure 3) between hardware 
and software. However all needed interfaces between hardware and software are 
automatically created. Each of the models will then be translated into either hardware 
code (VHDL) [4] or software code (C/C++) [5]. Afterwards, the code will get 
synthesized or compiled and then uploaded into the target system. These last two 
steps are automated and require no user interaction. Figure 2 shows the theoretical 
model. 

Finally there has to be a formal verification step. The produced code has to be 
verified against the model. Not only the software and the hardware code have to be 
verified, also the semantics of the overall system have to be tested. Timing constraints 
has to be tested to. 

 

Fig. 2. Model Driven Codesign of Embedded Systems 
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It can easily be seen that integration problems will be minimized, since integration 
is already part of the model. It also can be seen that different degrees of partitioning 
are possible throughout this model. Figure 3 shows both, one hardware (a) and one 
software centric (b) partition (solution) of a given system. 

 

Fig. 3. Different Degrees of Partitioning 

2.2   A Practical Codesign Approach 

Theoretical approaches are nice to have a basic understanding, but to come to true 
results, practical models have to be developed out of the theoretical ones. We did this 
by instantiating a codesign model using realistic tools and targets. Figure 4 shows an 
overview of this practical approach. 

To make complexity of this problem reasonable some constraints are introduced: 

• Actually, we can do the two extreme partitions: either full hardware or full 
software. 

• A formal verification of the produced code against the model is not yet possible. 
• Real time aspects are only partially taken into account. The system has to 

reproduce the behavior specified by the model. The code is not able to handle hard-
real-time situations. But it is possible to generate very compact and target specific 
code due to the flexible translation mechanism. 

To understand figure 4, one must understand the UML approach we use to manage 
different partitions of the embedded system on model level. Packages, classes and state 
charts are used to model the target independent elements and the behavior of the system. 
Further on one component is defined for each of the partitions (hardware / software). 
Interfaces allow using the same system description for several partitions and targets. 
Doing so makes it possible to define an arbitrary number of hardware respectively 
software components for an arbitrary number of targets. A partition specific component 
holds all the information that is model-level related such as which packages or classes 
are part of this specific partition. It also holds all target specific information such as 
which tool will generate the code, how this code will be translated, how it will be 
synthesized or compiled and how it will be uploaded to the embedded system. In this 
way it is possible to automate the entire build and execute command chain. 
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Fig. 4. A Practical Codesign Approach 

Basically, the build command is run with the components name as parameter, the 
entire model will then be exported and either the hardware or software translator 
parses and translates information related to the specific component (partition) out of 
the exported model. It would also be possible to have a single translator, which 
receives one more parameter that determines whether to translate model information 
into hardware or software code. For reasons of simplicity (a translator is a quite 
complex matter) we decided to build two separated ones. 

It has to be emphasized that the partitioning is done manually by defining 
components and assigning packages and classes to them. Also, components have to be 
equipped with target specific information. But it has also to be emphasized that 
partitioning is done after modeling the system and just before generating the code. 

3   Translation 

Correct translation of the UML elements into code is the core problem of any realistic 
codesign approach. Many researchers have already worked on this problem. The 
translation of UML to software code has been thoroughly researched and today offers 
good stability and performance. When it comes to translation of UML to hardware the 
papers of McUmber & Cheng [6, 7] are good examples. Unfortunately many of these 
works lead towards code that can’t be compiled/synthesized because they have their 
main focus on the model level. For our work it is a main consideration that the 
generated code has to be compileable/synthesizable. To do real codesign, both, model 
and generated code have to be adapted to each other. Therefore the main effort of our 
research went towards this problem [8]. The next sections describe the main results of 
this work. 
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3.1   Hardware Thinks Differently 

To communicate, using events is very common in UML. But the concept of events 
known from software doesn’t exist in hardware. The one and only event in hardware 
is the continuous clock signal, the system clock. All other communication is done 
using signals that hold their value until they are told to change it. 

In software, events can be used for communication tasks. But in hardware that isn’t 
true. Even if one defines a signal with a pulse width of one period of the system clock 
as an event, this won’t be an event, because only the value of the signal is taken in 
consideration and not the pulse width. In UML this would mean that state transitions 
are only decorated with a guard and no trigger. 

This, and the fact that UML is closely related to software, brings us to filling the 
gap between UML and hardware. Therefore it’s needed to develop a communication 
mechanism that can act as expected in UML (see section 3.3). Further on we need do 
define some rules, which coordinate the use of UML for hardware and software 
systems. There are three reasons to do this: 

• In every Hardware Description Language (HDL) one can describe functions and 
situations that can’t be synthesized. But if the designer follows some basic and 
simple rules, he can be sure that the design is synthesizable. In UML, the same 
situation exists. One can design a model, which can be translated neither to 
software nor to hardware. 

• Till now, UML [9] was used to design software [10, 11] only. There is a lack of 
experience when it comes to creating models that can be translated to hard- and 
software. Defining some rules will help the designers to improve their know-how 
and it will bring a certain amount of quality to a model. 

• Guided by these rules, the designer can be sure that a model is suitable for 
software/hardware codesign. 

Above-mentioned rules would normally be part of a hardware/software process. 
Currently we are working on such a process (see section 5.2) and describing these 
rules now would go beyond the scope of this document. Instead, we would like to 
concentrate on the mapping of UML elements to VHDL code, which is done in the 
next section. 

3.2   UML Elements 

Since there are a big number of elements in UML, not all of them have been taken 
into account for this first approach of the UML to VHDL translation. The 
elements taken are classes, attributes, operations, class diagrams, objects, object 
diagrams, associations, ports, interfaces, events and state charts. As our real world 
sample shows, these elements are sufficient to model the behavior of simple 
systems [6, 7]. 

Comparing these elements to the traditional concepts used by hardware designers 
shows a strong parallelism [10, 12, 13]. Using state charts became a very popular 
concept for hardware designers to describe a design before implementing it. The 
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top-down concept for analyzing hardware designs is also widely used. The system is 
seen as a black box with inputs and outputs. The black box will be broken down in 
smaller parts seen as black boxes again. The inputs and outputs of the black boxes 
will be connected to establish communication. This process continues until a certain 
granularity is achieved and finally the black boxes will be equipped with a behavior 
described e.g. with a state chart. Using object diagrams, the same analyses and design 
process is possible while an object corresponds to a black box. Also communication 
between objects is possible by using ports and interfaces. An object can be equipped 
with ports and interfaces, and ports are interconnected by links. Figure 5 shows a 
typical sample. 

The next section provides more details of the translation technique we used. 

 

Fig. 5. UML Object Diagram 

3.3   UML to VHDL Mapping 

It’s important to find optimal patterns to translate UML elements to VHDL. Due to 
the fact that an UML element can have several decorations, it is important to find a 
general description in VHDL that can handle all the decorations of an UML element. 
Not going too deep into details we will show now, which UML element looks how in 
VHDL. To give an idea of the translations result, figure 6 shows the VHDL code 
corresponding to the UML elements in figure 5. The following lines will give an 
overview and a brief description of the patterns used. 

• The class Factory is translated to an entity construct. The entity named Factory 
consists of a list of ports and of an architecture section. By default the two 
inputs reset and clock are added to the entity’s port list. Depending on the ports 
and interfaces of the class, other input and output ports may be added to the port 
list. In the architecture the main implementation (the behavior) of the class can 
be found. 

• An object is an instance of a class. In VHDL it’s possible to create an instance of 
an entity. To do this, first a component has do be defined inside the architecture 
containing the instance. According to figure 5 the components named Class_A and 
Class_B are defined (cf A:, B: at figure 6). The second step is to create an instance 
and to map the ports to other ports or to signals. The instances are called 
theClass_A and theClass_B (cf C:, D: at figure 6). 
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library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity Factory is 
port( 
 reset : in STD_LOGIC; 
 clock : in STD_LOGIC 
 -- other ports here. 
 ); 
end Factory; 
 
architecture FA of Factory is 
---- Declare signals to 
 interconnect nested blocks. 
Signal 
link_0_Interface_A_methode_0: 
STD_LOGIC; 
Signal 
link_0_Interface_B_methode_0: 
STD_LOGIC; 
 
---- A: Declare class Class_A 
component Class_A 
port( 
 clock : in STD_LOGIC; 
 reset : in STD_LOGIC; 
 port_0_Interface_A_methode
_0 : in STD_LOGIC; 
 port_0_Interface_B_methode
_0 : out STD_LOGIC 
 ); 
end component; 
 
---- B: Declare class Class_B 
component Class_B 
port( 
 clock : in STD_LOGIC; 

  reset : in STD_LOGIC; 
 port_0_Interface_B_methode 
_0 : in STD_LOGIC; 
 port_0_Interface_A_methode 
_0 : out STD_LOGIC 
 ); 
end component; 
 
begin 
---- C: Instantiate 
theClass_A 
theClass_A: Class_A 
port map ( 
 reset => reset, 
 clock => clock, 
 port_0_Interface_A_methode 
_0 => 
link_0_Interface_A_methode_0, 
 port_0_Interface_B_methode 
_0 => 
link_0_Interface_B_methode_0 
 ); 
 
---- D: Instantiate 
theClass_B 
theClass_B: Class_B 
port map ( 
 reset => reset, 
 clock => clock, 
 port_0_Interface_A_methode 
_0 => 
link_0_Interface_A_methode_0, 
 port_0_Interface_B_methode 
_0 => 
link_0_Interface_B_methode_0 
 ); 
end Factory 

Fig. 6. Generated Code of UML Diagram in Figure 5 

• The UML elements port and interface are translated to input and output ports of 
an entity. Provided interfaces are translated as input ports and required 
interfaces are translated as output ports. The names of VHDL ports are the same 
ones as the names of the ports and interfaces in the UML model (cf A:, B: at 
figure 6). 

• In UML, links are used to interconnect objects via ports and interfaces (see link 
between the two objects in figure 5). Depending on the interfaces, ports and objects 
used, several signals will be defined in VHDL. These signals will be used in the 
port map sections of components to realize a connection between components (cf 
C:, D: at figure 6). 

The second type of UML diagrams discussed here are state charts. Figure 7 shows 
a simple but complete state chart that is equipped with all common elements. 
Comparing the state chart in figure 7 to its implementation in VHDL (figure 8), we 
will explain the mapping rules for state charts. 

As state charts are used to describe the behavior of a class, the corresponding 
translation is put into the architecture of the VHDL entity. State charts are translated 
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into a case structure where every case represents a state of the state chart. Within 
every case an if-construction prevents reentrant execution of the state’s embedded 
instructions. Another if-construction is used to handle the transitions and the 
transition conditions. 

 

Fig. 7. UML State Chart 

• The code in figure 8 shows a state chart called Statemachine_0 within the Class 
Class_A. A state chart is realized within a VHDL process (cf A:, B: at figure 8). 
The process is triggered by the two signals reset and clock. The process consists of 
an a synchronous reset a part (cf C: figure 8) and of a main part synchronous to the 
clock (cf D: figure 8). If the reset signal goes to ‘1’ then the circuit gets initialized 
and initial state is defined. The synchronous part implements the behavior of the 
state chart. 

• Defining a new data type called TFSM_States does represent the set of states need 
to implement the state chart. Further on a signal called FSM_Statemachine_0 is 
created, which type is TFSM_States (cf E: figure 8). 

• The state chart its self is translated to a case structure (cf F: figure 8) that treats all 
possible values defined by the data type TFSM_States. Each state corresponds to a 
well-defined value of the signal FSM_Statemachine_0. A very special case or an 
undefined value of FSM_Statemachine_0 is caught by the when others statement. 
This grants that the state chart does not get deadlocked and that it goes back to the 
initial state. 
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Library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_unsigned.all; 
entity Class_A is 
port( 
 reset : in STD_LOGIC; 
 clock : in STD_LOGIC; 
 evEvent_0_reception: in STD_LOGIC 
); 
end Class_A; 
 
-- A: declare the class Class_A 
architecture Cl_A of Class_A is 
 
-- E: state chart type and signal 
-- definition 
type TFSM_States is 
( 
 S_state_0, 
 S_state_1, 
 S_state_2 
); 
 
signal FSM_Statemachine_0: 
TFSM_States; 
 
-- multiple action exe. prevention 
signal enAction: STD_LOGIC; 
 
-- Event Reception signal def. 
signal evEvent_0: STD_LOGIC; 
 
begin 
-- B: process for Statemachine_0 
 Statemachine_0:process(clock, 
reset) 
 Begin 
  -- C: asynchrony reset 
  if reset = '1' then 
   FSM_Statemachine_0 <= 
S_state_0; 
   enAction <= '1'; 
-- D: synchrony part 
  elsif RISING_EDGE(clock) then 
-- F: state chart implementation 
   case FSM_Statemachine_0 is 
     when S_state_0 => 
-- H: multiple execution prevention 
   if enAction = '1' then 
     -- state’s operartions 
     enAction <= '0'; 
   end if; 
 
-- J: event handling 

   if evEvent_0 = '1' then 
-- K: guard handling 
   if guard_0 = '1'then 
-- G: state assignment 
     FSM_Statemachine_0 
<= 
      S_state_1; 
-- I: enable actions 
     enAction <= '1'; 
   else 
     FSM_Statemachine_0 
<= 
      S_state_2; 
      
 enAction <= '1'; 
   end if; 
  end if; 
  when S_state_1 => 
   if enAction = '1' then 
---- operartions of the state 
     enAction <= '0'; 
   end if; 
 
   FSM_Statemachine_0 <= 
S_state_0; 
     enAction <= '1'; 
  when S_state_2 => 
   if enAction = '1' then 
---- operartions of the state 
     enAction <= '0'; 
   end if; 
   FSM_Statemachine_0 <= 
S_state_0; 
   enAction <= '1'; 
   end if; 
  when others => 
   FSM_Statemachine_0 <= 
S_state_0; 
   end case; 
  end if; 
 end process; 
  evEvent_0_ev_generator: 
ev_generator 
 port map ( 
  reset => reset, 
  clock => clock, 
  trigger => 
evEvent_0_reception, 
  evOut => evEvent_0 
 ); 
end Class_A 

Fig. 8. Generated Code of UML Diagram in Figure 7 

• Each state has one or more subsequent states. These subsequent states are assigned 
by statements like FSM_Statemachine_0 <= s_state_1 (cf G: figure 8). 

• If in UML a state is provided with an operation, it is assumed that this operation is 
executed only once. To reproduce this behavior in VHDL an additional signal 
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called enAction is introduced. After a reset enAction has the value ‘1’. Inside the 
case structure, the value of enAction is checked for each state. If enAction’s value 
is ‘1’ then the state-related actions are executed. That followed, enAction is set to 
‘0’. Doing so prohibits execution of the state’s actions when reentering the same 
state (cf H: figure 8). 

• In order to enable execution of action in case of going to another state, enAction 
has to be reset to ‘1’. This is done in the same moment as the signal 
FSM_Statemachine_0 becomes a new state (cf I: figure 8). 

• As one can see in figure 7 UML defines several types of transitions. A transition can 
be decorated with triggers and guards. Triggers are events (generated from other 
parts of the model or timer events), which bring the system into another state. Guards 
are additional conditions that can allow or reject a state change in case of an 
occurring event. In this example occurring of the event evEvent_0 means that the 
signal evEvent_0 becomes ‘1’ for exactly one clock period. If this is the case the 
guards are evaluated and the next state is defined as explained above (cf J: figure 8). 

• Guards are realized in a simple If structure (cf K: figure 8). If the transition’s guard 
is evaluated and the result is true, the system goes to the transition’s target state. 
There can always be maximum one transition of the same source state without 
guard. If all transition’s guards are evaluated as false, the system goes to the target 
state of the guardless transition. 

As mentioned in section 3.1 we had to establish a communication mechanism 
between components. This necessity comes from the fact that within e.g. a state we 
can have a method call. To keep the generated VHDL code human-readable we avoid 
changing the anatomy of the case structure representing the state chart. To introduce a 
pseudo-event to translate e.g. method calls we defined a communication mechanism 
as shown in figure 9. 

• Generating an event means changing a signals value from ‘0’ to ‘1’ or from ‘1’ 
to ‘0’. 

• Receiving an event is as simple as to detect a signal’s value changing. 
• If the event transmitting signal is initialized properly, throwing an event is as 

simple as inverting the signal’s value. Detecting an event is slightly more complex. 
It’s managed by a simple edge detection mechanism. As soon as the event’s signal 
is changed, an output signal changes from ‘0’ to ‘1’ for exactly one period of the 
system clock. Figure 9 shows the different signals as mentioned above. This is not 
the best approach to solve the problem. E.g. sending two events to the same 
receiver is not possible and quickly occurring events could be missed. 

For the hardware mapping we use basic elements of VHDL and well-known 
structures. This has a number of advantages: 

• If the generated code is semantically correct, it is granted that the generated code is 
synthesizable. 

• The generated code is platform and manufacturer independent. This is because we 
don’t use target specific elements such as memory or multiplier blocks. 

The next chapter describes a demonstrator that was created to verify the techniques 
exposed in this chapter. 
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Fig. 9. Communication Mechanism to handle Events 

4   Experimentation 

As usual in research projects, at the end all obtained results have to be verified and 
proven. 

A simple chronometer demonstrator was built up. As software target, we used an 
ARM 7 equipped board with a minimal operating system called IDF (Interrupt Driven 
Framework) and as hardware target a Xilinx Spartan II equipped board. The 
chronometer itself consists of a stepper motor, some pushbuttons and an optical 
sensor. An UML model of the system was created and then once synthesized for the 
hardware target and once compiled for the software target. Both systems were 
working without touching the model. All code was automatically generated, 
compiled, uploaded and started in the targets. Figure 10 shows the schematic of the 
demonstrator. 

 

Fig. 10. Principle of the Chronometer Codesign Demonstrator 
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The following conclusions could be made out of the chronometer experience: 

• The software code generator we used, was the built-in one of the modeling tool. 
For future development of the codesign project, it has to be replaced by one of the 
same types as the hardware code generator. This is necessary to allow correct 
interface integration between hardware and software. 

• Moving the partition line in between of hardware and software means to involve 
interfaces. For this time, we implemented interfaces manually but for a real world 
development process it will be a must to at least semi-automate this action. This 
means that it should be possible to “drag & drop” ready-made interface blocks into 
the model and to connect them to the correct locations in the hardware and 
software fragment of the system’s model.  

• The mapping for the hardware should also be optimized. Especially it would be 
nice to be able to parameterize target specific matter inside the model and not to 
find these adaptations somewhere in the translator. 

• Not all elements of UML 2.0 [9] have been used. This was partially due to the fact 
that the software built-in translator did not recognize them, at least not in the 
version of the tools we were using. This problem will automatically be corrected 
by introducing the “homebrew” software translator.  

• More complex demonstrators must be implemented to stress- test the codesign 
approach we are using currently. But it must be stated that the results we obtained 
until now are very encouraging and that the generated systems are amazingly 
stable. 

Having a frame, inside of which development is rolling down, would be nice. A 
first approach of such an all-over Development Process is briefly touched in the 
conclusion. 

5   Conclusion 

The above-mentioned experiences lead to a certain number of conclusions that have 
to be applied in the very near future to the described codesign approach. 

5.1   Tool Chain Improvement 

The most important improvements concerning the tool chain are shown in the 
following list: 

• Improved hardware code generation patterns will be implemented in the hardware 
translator. 

• A separate software translator will be added to the tool chain.  
• Standard interfaces will be defined in UML as patterns that can be applied to a 

given situation. 
• The whole approach will be intensively tested by the means of real world projects 

and demonstrators. 
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These are all developments that will be done around the tool chain. Another, more 
important development, will be to introduce a general formalism that embeds the 
present experimental codesign process. The reason for this is that any modeling 
activity requests formalism and sequencing. An outlook on this process is presented in 
the next section. 

5.2   The 6qx Process 

The definition of a simple codesign process is the logical consequence of this 
conclusion and because we already had defined a software centric process (6q) [14], 
we will extend this one into a codesign process. The 6q process has been developed in 
an embedded systems context and therefore provides a quite good potential to cover 
also hardware development aspects. The method of the 6q process is object oriented 
and the model is incremental. It consists of six major steps: System specification, 
analysis, design, translation, validation and integration. 

These steps will also be contained in the new 6qx process, but will be adopted to 
meet codesign requirements as follows: 

The first two steps, system specification and analysis, gather information about the 
system to be developed and map results into an UML model by the means of use-case 
diagrams, interaction diagrams, class diagrams, state charts and deployment diagrams. 
Since these steps try to specify and analyze the system, they do not care about 
implementation details (hardware / software). The major difference of these steps 
compared to the original 6q process, where hardware and software are developed in 
parallel, will be the removal of the hardware software partitioning decision. It is 
delayed into the design step, because the model covers both hardware and software of 
the system. 

The design step will transform the flat analysis model into a well-structured model 
that can be partitioned into a hardware (HW) and a software (SW) partition according 
to various criteria (costs, speed, physical limitations and so on). The hardware 
partition may be split up once again into a programmable hardware (PHW) partition 
and an analog / digital hardware partition (DHW). Interfaces between both partitions 
have to be defined after partitioning or even while partitioning. The 6qx process will 
contain recommendations about use and implementation of interfaces in the form of 
interface patterns defined in UML. It will also contain hardware and software design 
rules (cf. section 3.1) in form of patterns defined in UML. 

The translation step will regulate implementation details. Important elements that 
will be introduced at this moment into the system model are components that will 
bind the hardware and the software partition to specific targets (cf. section 3.2). 

The validation step is responsible to verify correct functioning of the designed 
hardware and/or software. This is achieved by reusing formal descriptions of behavior 
from the specification and analysis step. Simulators are used to verify correct 
behavior. 

The integration step will put it all together and finally verify correct all-over 
system behavior and stability. Erroneous behavior results in feedback towards the 
analysis pipe, insufficient stability in feedback towards the design pipe.  
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Figure 11 gives an idea of the 6qx process. 

 

Fig. 11. Overview of the 6qx codesign process 
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