

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 203 – 217, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Synthesized UML, a Practical Approach to Map UML
to VHDL

Medard Rieder, Rico Steiner, Cathy Berthouzoz, Francois Corthay,
and Thomas Sterren

Infotronics Unit (www.infotronics.ch),
University of applied Sciences Valais (www. hevs.ch),

Rte du Rawyl 47, 1950 Sion, Switzerland
{rim, sti, bet, cof, sth}@hevs.ch

Abstract. Embedded Systems are complex systems with limited resources such
as reduced processor power or relatively small amounts of memory and so on.
The real time aspect may also play an important role, but is definitely not a
main consideration of this work. Complexity of recent embedded systems is
growing as rapidly as the demand for such systems and only can be managed by
the use of a model-driven design approach. Since modeling languages such as
UML are semi-formal they allow the design of systems that can’t be
implemented using formal languages such as C/C++ or VHDL. This paper
intends to show how the gap between model and formal language can be
bridged. First of all a set of rules restricts the use of model elements in a way
that the model will become executable. Furthermore a unique mapping between
UML and formal language elements enables automatic code generation. Formal
verification at model level is an important consideration and becomes possible
by the fact that rules restrict the application of model elements. UML to
software (C/C++) and UML to hardware (VHDL) mapping form the base for a
practical codesign approach where a part of the system is realized through
software and another part trough hardware. Mapping of UML to programming
languages is well known today and realized in many tools. Mapping of UML to
hardware description languages is less known and not realized in tools. This
paper documents an attempt to define a set of rules and to implement UML to
VHDL mapping in a practical code generator. It also shows parts of a real world
sample that was realized to verify usability and stability of rules and mapping.
Finally, an outlook on further developments, improvement of the UML to
VHDL mapping and a simple codesign process called 6qx will be given.

1 Introduction

While Embedded Systems were not widespread before 1990, nowadays they have
become very popular. Affordable prices of big sized memory and powerful processors
form the ideal alchemy for the birth of numerous embedded systems. Another
component of this alchemy is the fact that hardware has become programmable. Field
Programmable Gate Arrays (FPGA) with sufficient number of gates at reasonable
prices made the borderline between hardware and software vanish.

204 M. Rieder et al.

Even though there are a rising number of basic components for embedded systems,
and new technologies appear in rapid succession, the system development cycle is
still quite traditional as illustrated by figure 1.

Fig. 1. Traditional Embedded System Development Cycle

2 Codesign

In such a traditional process, hardware and software are developed parallel, which
brings up several issues, such as:

• Need of early hardware and software partitioning.
• Asynchronous development of hardware and software.
• Late integration with possible need of redesign.
• Missing hardware prevents testing the software before integration.

An important reason why development of hardware and software is not integrated
is the lack of simple model-based approaches. Several reasons prevent the use of
model-driven development.

Existing Codesign tools are very expensive and mostly dedicated: If codesign tools
exist, these are almost certainly very expensive and dedicated to a specific thematic
and platform. Readapting to other thematic and /or other platforms is practically
impossible.

Developers think in terms of code and not model: Traditional thinking [1, 2, 3] and
often also investments that have been made into some existing platform inhibit a
change of attitude. Since formal descriptions are what they are and do not heal lack of
methodic approach, first experiences in modeling are mostly disappointing and many
hardware and software programmers therefore fall back into well-known territory,
which means thinking either in hardware or in software code.

 Synthesized UML, a Practical Approach to Map UML to VHDL 205

Therefore the HEVs approach of a codesign method was to use existing software
modeling techniques already established on the market and to bridge the gap between
software engineering and system engineering (codesign) by adding the hardware
engineering part. How this was done will be described in detail in the following
chapters and sections.

2.1 A Theoretical Codesign Approach

As a theoretical approach, we have developed a quite simple pyramid with the
integrated system model as its top.

As underlying layer, we split up the model into a hardware model and a software
model section. This process is called partitioning. The partitioning is done manually
to give us the most flexibility to draw the boarder line (Figure 3) between hardware
and software. However all needed interfaces between hardware and software are
automatically created. Each of the models will then be translated into either hardware
code (VHDL) [4] or software code (C/C++) [5]. Afterwards, the code will get
synthesized or compiled and then uploaded into the target system. These last two
steps are automated and require no user interaction. Figure 2 shows the theoretical
model.

Finally there has to be a formal verification step. The produced code has to be
verified against the model. Not only the software and the hardware code have to be
verified, also the semantics of the overall system have to be tested. Timing constraints
has to be tested to.

Fig. 2. Model Driven Codesign of Embedded Systems

206 M. Rieder et al.

It can easily be seen that integration problems will be minimized, since integration
is already part of the model. It also can be seen that different degrees of partitioning
are possible throughout this model. Figure 3 shows both, one hardware (a) and one
software centric (b) partition (solution) of a given system.

Fig. 3. Different Degrees of Partitioning

2.2 A Practical Codesign Approach

Theoretical approaches are nice to have a basic understanding, but to come to true
results, practical models have to be developed out of the theoretical ones. We did this
by instantiating a codesign model using realistic tools and targets. Figure 4 shows an
overview of this practical approach.

To make complexity of this problem reasonable some constraints are introduced:

• Actually, we can do the two extreme partitions: either full hardware or full
software.

• A formal verification of the produced code against the model is not yet possible.
• Real time aspects are only partially taken into account. The system has to

reproduce the behavior specified by the model. The code is not able to handle hard-
real-time situations. But it is possible to generate very compact and target specific
code due to the flexible translation mechanism.

To understand figure 4, one must understand the UML approach we use to manage
different partitions of the embedded system on model level. Packages, classes and state
charts are used to model the target independent elements and the behavior of the system.
Further on one component is defined for each of the partitions (hardware / software).
Interfaces allow using the same system description for several partitions and targets.
Doing so makes it possible to define an arbitrary number of hardware respectively
software components for an arbitrary number of targets. A partition specific component
holds all the information that is model-level related such as which packages or classes
are part of this specific partition. It also holds all target specific information such as
which tool will generate the code, how this code will be translated, how it will be
synthesized or compiled and how it will be uploaded to the embedded system. In this
way it is possible to automate the entire build and execute command chain.

 Synthesized UML, a Practical Approach to Map UML to VHDL 207

Fig. 4. A Practical Codesign Approach

Basically, the build command is run with the components name as parameter, the
entire model will then be exported and either the hardware or software translator
parses and translates information related to the specific component (partition) out of
the exported model. It would also be possible to have a single translator, which
receives one more parameter that determines whether to translate model information
into hardware or software code. For reasons of simplicity (a translator is a quite
complex matter) we decided to build two separated ones.

It has to be emphasized that the partitioning is done manually by defining
components and assigning packages and classes to them. Also, components have to be
equipped with target specific information. But it has also to be emphasized that
partitioning is done after modeling the system and just before generating the code.

3 Translation

Correct translation of the UML elements into code is the core problem of any realistic
codesign approach. Many researchers have already worked on this problem. The
translation of UML to software code has been thoroughly researched and today offers
good stability and performance. When it comes to translation of UML to hardware the
papers of McUmber & Cheng [6, 7] are good examples. Unfortunately many of these
works lead towards code that can’t be compiled/synthesized because they have their
main focus on the model level. For our work it is a main consideration that the
generated code has to be compileable/synthesizable. To do real codesign, both, model
and generated code have to be adapted to each other. Therefore the main effort of our
research went towards this problem [8]. The next sections describe the main results of
this work.

208 M. Rieder et al.

3.1 Hardware Thinks Differently

To communicate, using events is very common in UML. But the concept of events
known from software doesn’t exist in hardware. The one and only event in hardware
is the continuous clock signal, the system clock. All other communication is done
using signals that hold their value until they are told to change it.

In software, events can be used for communication tasks. But in hardware that isn’t
true. Even if one defines a signal with a pulse width of one period of the system clock
as an event, this won’t be an event, because only the value of the signal is taken in
consideration and not the pulse width. In UML this would mean that state transitions
are only decorated with a guard and no trigger.

This, and the fact that UML is closely related to software, brings us to filling the
gap between UML and hardware. Therefore it’s needed to develop a communication
mechanism that can act as expected in UML (see section 3.3). Further on we need do
define some rules, which coordinate the use of UML for hardware and software
systems. There are three reasons to do this:

• In every Hardware Description Language (HDL) one can describe functions and
situations that can’t be synthesized. But if the designer follows some basic and
simple rules, he can be sure that the design is synthesizable. In UML, the same
situation exists. One can design a model, which can be translated neither to
software nor to hardware.

• Till now, UML [9] was used to design software [10, 11] only. There is a lack of
experience when it comes to creating models that can be translated to hard- and
software. Defining some rules will help the designers to improve their know-how
and it will bring a certain amount of quality to a model.

• Guided by these rules, the designer can be sure that a model is suitable for
software/hardware codesign.

Above-mentioned rules would normally be part of a hardware/software process.
Currently we are working on such a process (see section 5.2) and describing these
rules now would go beyond the scope of this document. Instead, we would like to
concentrate on the mapping of UML elements to VHDL code, which is done in the
next section.

3.2 UML Elements

Since there are a big number of elements in UML, not all of them have been taken
into account for this first approach of the UML to VHDL translation. The
elements taken are classes, attributes, operations, class diagrams, objects, object
diagrams, associations, ports, interfaces, events and state charts. As our real world
sample shows, these elements are sufficient to model the behavior of simple
systems [6, 7].

Comparing these elements to the traditional concepts used by hardware designers
shows a strong parallelism [10, 12, 13]. Using state charts became a very popular
concept for hardware designers to describe a design before implementing it. The

 Synthesized UML, a Practical Approach to Map UML to VHDL 209

top-down concept for analyzing hardware designs is also widely used. The system is
seen as a black box with inputs and outputs. The black box will be broken down in
smaller parts seen as black boxes again. The inputs and outputs of the black boxes
will be connected to establish communication. This process continues until a certain
granularity is achieved and finally the black boxes will be equipped with a behavior
described e.g. with a state chart. Using object diagrams, the same analyses and design
process is possible while an object corresponds to a black box. Also communication
between objects is possible by using ports and interfaces. An object can be equipped
with ports and interfaces, and ports are interconnected by links. Figure 5 shows a
typical sample.

The next section provides more details of the translation technique we used.

Fig. 5. UML Object Diagram

3.3 UML to VHDL Mapping

It’s important to find optimal patterns to translate UML elements to VHDL. Due to
the fact that an UML element can have several decorations, it is important to find a
general description in VHDL that can handle all the decorations of an UML element.
Not going too deep into details we will show now, which UML element looks how in
VHDL. To give an idea of the translations result, figure 6 shows the VHDL code
corresponding to the UML elements in figure 5. The following lines will give an
overview and a brief description of the patterns used.

• The class Factory is translated to an entity construct. The entity named Factory
consists of a list of ports and of an architecture section. By default the two
inputs reset and clock are added to the entity’s port list. Depending on the ports
and interfaces of the class, other input and output ports may be added to the port
list. In the architecture the main implementation (the behavior) of the class can
be found.

• An object is an instance of a class. In VHDL it’s possible to create an instance of
an entity. To do this, first a component has do be defined inside the architecture
containing the instance. According to figure 5 the components named Class_A and
Class_B are defined (cf A:, B: at figure 6). The second step is to create an instance
and to map the ports to other ports or to signals. The instances are called
theClass_A and theClass_B (cf C:, D: at figure 6).

210 M. Rieder et al.

library IEEE;
use IEEE.std_logic_1164.all;

entity Factory is
port(
 reset : in STD_LOGIC;
 clock : in STD_LOGIC
 -- other ports here.
);
end Factory;

architecture FA of Factory is
---- Declare signals to
 interconnect nested blocks.
Signal
link_0_Interface_A_methode_0:
STD_LOGIC;
Signal
link_0_Interface_B_methode_0:
STD_LOGIC;

---- A: Declare class Class_A
component Class_A
port(
 clock : in STD_LOGIC;
 reset : in STD_LOGIC;
 port_0_Interface_A_methode
_0 : in STD_LOGIC;
 port_0_Interface_B_methode
_0 : out STD_LOGIC
);
end component;

---- B: Declare class Class_B
component Class_B
port(
 clock : in STD_LOGIC;

 reset : in STD_LOGIC;
 port_0_Interface_B_methode
_0 : in STD_LOGIC;
 port_0_Interface_A_methode
_0 : out STD_LOGIC
);
end component;

begin
---- C: Instantiate
theClass_A
theClass_A: Class_A
port map (
 reset => reset,
 clock => clock,
 port_0_Interface_A_methode
_0 =>
link_0_Interface_A_methode_0,
 port_0_Interface_B_methode
_0 =>
link_0_Interface_B_methode_0
);

---- D: Instantiate
theClass_B
theClass_B: Class_B
port map (
 reset => reset,
 clock => clock,
 port_0_Interface_A_methode
_0 =>
link_0_Interface_A_methode_0,
 port_0_Interface_B_methode
_0 =>
link_0_Interface_B_methode_0
);
end Factory

Fig. 6. Generated Code of UML Diagram in Figure 5

• The UML elements port and interface are translated to input and output ports of
an entity. Provided interfaces are translated as input ports and required
interfaces are translated as output ports. The names of VHDL ports are the same
ones as the names of the ports and interfaces in the UML model (cf A:, B: at
figure 6).

• In UML, links are used to interconnect objects via ports and interfaces (see link
between the two objects in figure 5). Depending on the interfaces, ports and objects
used, several signals will be defined in VHDL. These signals will be used in the
port map sections of components to realize a connection between components (cf
C:, D: at figure 6).

The second type of UML diagrams discussed here are state charts. Figure 7 shows
a simple but complete state chart that is equipped with all common elements.
Comparing the state chart in figure 7 to its implementation in VHDL (figure 8), we
will explain the mapping rules for state charts.

As state charts are used to describe the behavior of a class, the corresponding
translation is put into the architecture of the VHDL entity. State charts are translated

 Synthesized UML, a Practical Approach to Map UML to VHDL 211

into a case structure where every case represents a state of the state chart. Within
every case an if-construction prevents reentrant execution of the state’s embedded
instructions. Another if-construction is used to handle the transitions and the
transition conditions.

Fig. 7. UML State Chart

• The code in figure 8 shows a state chart called Statemachine_0 within the Class
Class_A. A state chart is realized within a VHDL process (cf A:, B: at figure 8).
The process is triggered by the two signals reset and clock. The process consists of
an a synchronous reset a part (cf C: figure 8) and of a main part synchronous to the
clock (cf D: figure 8). If the reset signal goes to ‘1’ then the circuit gets initialized
and initial state is defined. The synchronous part implements the behavior of the
state chart.

• Defining a new data type called TFSM_States does represent the set of states need
to implement the state chart. Further on a signal called FSM_Statemachine_0 is
created, which type is TFSM_States (cf E: figure 8).

• The state chart its self is translated to a case structure (cf F: figure 8) that treats all
possible values defined by the data type TFSM_States. Each state corresponds to a
well-defined value of the signal FSM_Statemachine_0. A very special case or an
undefined value of FSM_Statemachine_0 is caught by the when others statement.
This grants that the state chart does not get deadlocked and that it goes back to the
initial state.

212 M. Rieder et al.

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity Class_A is
port(
 reset : in STD_LOGIC;
 clock : in STD_LOGIC;
 evEvent_0_reception: in STD_LOGIC
);
end Class_A;

-- A: declare the class Class_A
architecture Cl_A of Class_A is

-- E: state chart type and signal
-- definition
type TFSM_States is
(
 S_state_0,
 S_state_1,
 S_state_2
);

signal FSM_Statemachine_0:
TFSM_States;

-- multiple action exe. prevention
signal enAction: STD_LOGIC;

-- Event Reception signal def.
signal evEvent_0: STD_LOGIC;

begin
-- B: process for Statemachine_0
 Statemachine_0:process(clock,
reset)
 Begin
 -- C: asynchrony reset
 if reset = '1' then
 FSM_Statemachine_0 <=
S_state_0;
 enAction <= '1';
-- D: synchrony part
 elsif RISING_EDGE(clock) then
-- F: state chart implementation
 case FSM_Statemachine_0 is
 when S_state_0 =>
-- H: multiple execution prevention
 if enAction = '1' then
 -- state’s operartions
 enAction <= '0';
 end if;

-- J: event handling

 if evEvent_0 = '1' then
-- K: guard handling
 if guard_0 = '1'then
-- G: state assignment
 FSM_Statemachine_0
<=
 S_state_1;
-- I: enable actions
 enAction <= '1';
 else
 FSM_Statemachine_0
<=
 S_state_2;

 enAction <= '1';
 end if;
 end if;
 when S_state_1 =>
 if enAction = '1' then
---- operartions of the state
 enAction <= '0';
 end if;

 FSM_Statemachine_0 <=
S_state_0;
 enAction <= '1';
 when S_state_2 =>
 if enAction = '1' then
---- operartions of the state
 enAction <= '0';
 end if;
 FSM_Statemachine_0 <=
S_state_0;
 enAction <= '1';
 end if;
 when others =>
 FSM_Statemachine_0 <=
S_state_0;
 end case;
 end if;
 end process;
 evEvent_0_ev_generator:
ev_generator
 port map (
 reset => reset,
 clock => clock,
 trigger =>
evEvent_0_reception,
 evOut => evEvent_0
);
end Class_A

Fig. 8. Generated Code of UML Diagram in Figure 7

• Each state has one or more subsequent states. These subsequent states are assigned
by statements like FSM_Statemachine_0 <= s_state_1 (cf G: figure 8).

• If in UML a state is provided with an operation, it is assumed that this operation is
executed only once. To reproduce this behavior in VHDL an additional signal

 Synthesized UML, a Practical Approach to Map UML to VHDL 213

called enAction is introduced. After a reset enAction has the value ‘1’. Inside the
case structure, the value of enAction is checked for each state. If enAction’s value
is ‘1’ then the state-related actions are executed. That followed, enAction is set to
‘0’. Doing so prohibits execution of the state’s actions when reentering the same
state (cf H: figure 8).

• In order to enable execution of action in case of going to another state, enAction
has to be reset to ‘1’. This is done in the same moment as the signal
FSM_Statemachine_0 becomes a new state (cf I: figure 8).

• As one can see in figure 7 UML defines several types of transitions. A transition can
be decorated with triggers and guards. Triggers are events (generated from other
parts of the model or timer events), which bring the system into another state. Guards
are additional conditions that can allow or reject a state change in case of an
occurring event. In this example occurring of the event evEvent_0 means that the
signal evEvent_0 becomes ‘1’ for exactly one clock period. If this is the case the
guards are evaluated and the next state is defined as explained above (cf J: figure 8).

• Guards are realized in a simple If structure (cf K: figure 8). If the transition’s guard
is evaluated and the result is true, the system goes to the transition’s target state.
There can always be maximum one transition of the same source state without
guard. If all transition’s guards are evaluated as false, the system goes to the target
state of the guardless transition.

As mentioned in section 3.1 we had to establish a communication mechanism
between components. This necessity comes from the fact that within e.g. a state we
can have a method call. To keep the generated VHDL code human-readable we avoid
changing the anatomy of the case structure representing the state chart. To introduce a
pseudo-event to translate e.g. method calls we defined a communication mechanism
as shown in figure 9.

• Generating an event means changing a signals value from ‘0’ to ‘1’ or from ‘1’
to ‘0’.

• Receiving an event is as simple as to detect a signal’s value changing.
• If the event transmitting signal is initialized properly, throwing an event is as

simple as inverting the signal’s value. Detecting an event is slightly more complex.
It’s managed by a simple edge detection mechanism. As soon as the event’s signal
is changed, an output signal changes from ‘0’ to ‘1’ for exactly one period of the
system clock. Figure 9 shows the different signals as mentioned above. This is not
the best approach to solve the problem. E.g. sending two events to the same
receiver is not possible and quickly occurring events could be missed.

For the hardware mapping we use basic elements of VHDL and well-known
structures. This has a number of advantages:

• If the generated code is semantically correct, it is granted that the generated code is
synthesizable.

• The generated code is platform and manufacturer independent. This is because we
don’t use target specific elements such as memory or multiplier blocks.

The next chapter describes a demonstrator that was created to verify the techniques
exposed in this chapter.

214 M. Rieder et al.

Fig. 9. Communication Mechanism to handle Events

4 Experimentation

As usual in research projects, at the end all obtained results have to be verified and
proven.

A simple chronometer demonstrator was built up. As software target, we used an
ARM 7 equipped board with a minimal operating system called IDF (Interrupt Driven
Framework) and as hardware target a Xilinx Spartan II equipped board. The
chronometer itself consists of a stepper motor, some pushbuttons and an optical
sensor. An UML model of the system was created and then once synthesized for the
hardware target and once compiled for the software target. Both systems were
working without touching the model. All code was automatically generated,
compiled, uploaded and started in the targets. Figure 10 shows the schematic of the
demonstrator.

Fig. 10. Principle of the Chronometer Codesign Demonstrator

 Synthesized UML, a Practical Approach to Map UML to VHDL 215

The following conclusions could be made out of the chronometer experience:

• The software code generator we used, was the built-in one of the modeling tool.
For future development of the codesign project, it has to be replaced by one of the
same types as the hardware code generator. This is necessary to allow correct
interface integration between hardware and software.

• Moving the partition line in between of hardware and software means to involve
interfaces. For this time, we implemented interfaces manually but for a real world
development process it will be a must to at least semi-automate this action. This
means that it should be possible to “drag & drop” ready-made interface blocks into
the model and to connect them to the correct locations in the hardware and
software fragment of the system’s model.

• The mapping for the hardware should also be optimized. Especially it would be
nice to be able to parameterize target specific matter inside the model and not to
find these adaptations somewhere in the translator.

• Not all elements of UML 2.0 [9] have been used. This was partially due to the fact
that the software built-in translator did not recognize them, at least not in the
version of the tools we were using. This problem will automatically be corrected
by introducing the “homebrew” software translator.

• More complex demonstrators must be implemented to stress- test the codesign
approach we are using currently. But it must be stated that the results we obtained
until now are very encouraging and that the generated systems are amazingly
stable.

Having a frame, inside of which development is rolling down, would be nice. A
first approach of such an all-over Development Process is briefly touched in the
conclusion.

5 Conclusion

The above-mentioned experiences lead to a certain number of conclusions that have
to be applied in the very near future to the described codesign approach.

5.1 Tool Chain Improvement

The most important improvements concerning the tool chain are shown in the
following list:

• Improved hardware code generation patterns will be implemented in the hardware
translator.

• A separate software translator will be added to the tool chain.
• Standard interfaces will be defined in UML as patterns that can be applied to a

given situation.
• The whole approach will be intensively tested by the means of real world projects

and demonstrators.

216 M. Rieder et al.

These are all developments that will be done around the tool chain. Another, more
important development, will be to introduce a general formalism that embeds the
present experimental codesign process. The reason for this is that any modeling
activity requests formalism and sequencing. An outlook on this process is presented in
the next section.

5.2 The 6qx Process

The definition of a simple codesign process is the logical consequence of this
conclusion and because we already had defined a software centric process (6q) [14],
we will extend this one into a codesign process. The 6q process has been developed in
an embedded systems context and therefore provides a quite good potential to cover
also hardware development aspects. The method of the 6q process is object oriented
and the model is incremental. It consists of six major steps: System specification,
analysis, design, translation, validation and integration.

These steps will also be contained in the new 6qx process, but will be adopted to
meet codesign requirements as follows:

The first two steps, system specification and analysis, gather information about the
system to be developed and map results into an UML model by the means of use-case
diagrams, interaction diagrams, class diagrams, state charts and deployment diagrams.
Since these steps try to specify and analyze the system, they do not care about
implementation details (hardware / software). The major difference of these steps
compared to the original 6q process, where hardware and software are developed in
parallel, will be the removal of the hardware software partitioning decision. It is
delayed into the design step, because the model covers both hardware and software of
the system.

The design step will transform the flat analysis model into a well-structured model
that can be partitioned into a hardware (HW) and a software (SW) partition according
to various criteria (costs, speed, physical limitations and so on). The hardware
partition may be split up once again into a programmable hardware (PHW) partition
and an analog / digital hardware partition (DHW). Interfaces between both partitions
have to be defined after partitioning or even while partitioning. The 6qx process will
contain recommendations about use and implementation of interfaces in the form of
interface patterns defined in UML. It will also contain hardware and software design
rules (cf. section 3.1) in form of patterns defined in UML.

The translation step will regulate implementation details. Important elements that
will be introduced at this moment into the system model are components that will
bind the hardware and the software partition to specific targets (cf. section 3.2).

The validation step is responsible to verify correct functioning of the designed
hardware and/or software. This is achieved by reusing formal descriptions of behavior
from the specification and analysis step. Simulators are used to verify correct
behavior.

The integration step will put it all together and finally verify correct all-over
system behavior and stability. Erroneous behavior results in feedback towards the
analysis pipe, insufficient stability in feedback towards the design pipe.

 Synthesized UML, a Practical Approach to Map UML to VHDL 217

Figure 11 gives an idea of the 6qx process.

Fig. 11. Overview of the 6qx codesign process

References

[1] Keith Edwards, “Real Time Structured Methods”, John Wiley & Sons, 1993.
[2] Jean J. Labrosse, “Embedded Systems Building Blocks”, R&D Publications, 1995.
[3] D. L. Perry, “VHDL”, second edition, McGraw-Hill, New York, 1994.
[4] IEEE, “IEE Standards VHSL Language Reference Manual”, IEEE standard 1076-1987,

IEEE Computer Society Press, Los Alamitos, 1987.
[5] Marylène Micheloud, Medard Rieder, “Programmation orientée objets en C++”, Presses

polytechniques et universitaires Romandes, 2003.
[6] McUmber & Cheng, “A general Framework for formalizing UML with Formal

Languages”, ICSE 2001.
[7] W. E. McUmber and B. H. Cheng, “UML-based analysis of embedded systems using a

mapping to VHDL”, In Proc. of IEEE High Assurance Software Engineering (HASE99),
Washington, DC, November 1999.

[8] Rico Steiner, “Hardware & Software Co-Design”, Diploma Thesis, HEVs, 2004.
[9] www.uml.org.

[10] Bruce Powel Douglass, “Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems”, Addison-Wesley, 2004.

[11] Bruce Powel Douglass, “Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns”, Addison-Wesley, 1999.

[12] S. Jones, D. Naylor, “VHDL, a logic synthesis approach”, Chapman & Hall, London,
1995.

[13] Rajan “Essentials VHDL, RTL synthesis done right”, USE, June1998.
[14] Medard Rieder, “A simple and complete Process for embedded Systems Development”,

Proceeding embedded world conference 2005, pages 876–885.

	Introduction
	Codesign
	A Theoretical Codesign Approach
	A Practical Codesign Approach

	Translation
	Hardware Thinks Differently
	UML Elements
	UML to VHDL Mapping

	Experimentation
	Conclusion
	Tool Chain Improvement
	The 6qx Process

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

