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Abstract. The state space explosion is the key obstacle of model check-
ing. Even a relatively small system specification may yield a very large
state space. The case-based approach based on search space partition has
been proposed in [18, 19] for reducing model checking complexity. This
paper extends the approach by considering wider ranges of case-bases
of models and multiple case-bases such that it can be applied to more
types of applications. The improved approach also combines the search
space partition and static analysis or expert knowledge for guaranteeing
the completeness of the cases. The case study demonstrates the potential
advantages of the strategy and show that the strategy may improve the
efficiency of system verification and therefore scale up the applicability
of the verification approach.

1 Introduction

Designing and studying (software) systems using abstract behavioral models is
becoming more and more feasible due to the increased capabilities of verifica-
tion techniques developed lately. The most important of such techniques is model
checking, where the validity of formally-specified requirements can be checked
automatically on the model. As the state space explosion is the major bottleneck
to model checking, much research is devoted to state space reduction techniques.
It is crucial that such state space reduction preserves the properties under in-
vestigation. Related works can for instance be found in [2, 4–6, 8, 14]. The topics
include compositional techniques [1, 16] for splitting verification tasks, bounded
model checking [3] for checking satisfiability, symmetric reduction [10, 11] for
applying symmetries, abstraction techniques [12] for reducing models and par-
tial order reduction [13] for exploiting the partial order semantics for concurrent
systems.

In addition to general techniques which can be used to a wide range of model,
it is also important to develop techniques for special types of models in order
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to enhance the applicability of model checking to these types of models. In
previous works, we have investigated search space partition using case basis
for the purpose of reduction in verification of models with non-deterministic
choices and open environment. The reductions have been implemented, and show
appropriate size on the subgoal, and therefore allowed for analysis of larger
systems. The approach is to partition a model checking task into several cases
and prove that the collection of these cases covers all possible cases, in which the
former is done by model checking and the latter is done by using static analysis
or by expert judgment to decide whether a model satisfies given criteria.

In [18, 19], the condition which the case-based approach can be used to model
checking tasks is that there is some variable which is changed at most once
during every execution of the model. Here, we extend the condition, so that
we do not need to consider the number of the changes of the values of the
variable during every execution of the model, as long as there is a corresponding
variable satisfying some property when the variable does not take the given value.
This is an extension of the condition of [18, 19], as it is a special case of the new
condition. We further use multiple case-bases which can divide the task into a set
of simpler tasks for reducing the need of memory in model checking. Hence, this
work extends the capability of the approach such that it can be applied to wider
ranges of models and to more types of applications. The modeling language of
systems used in this paper is Promela – a high level specification language for
system descriptions used by SPIN [7].

The paper is organized as follows. In section 2, we introduce the improved
partition strategy. In section 3, we discuss static analysis of Promela models. In
section 4, An application example is presented. Section 5 is concluding remarks
and future work.

2 The Improved Partition Strategy

The motivation of the strategy is the verification of models with non-
deterministic choice and open environment. The basic idea is to find a method
for adequately representing different cases in such models, in order to reduce
memory usage in model checking. The strategy partitions a model checking task
into several cases and proves that the collection of these cases covers all possi-
ble case. We first give an introduction to the background of the basic strategy
described in [18, 19] and then discuss the extensions of this strategy to wider
ranges of case-bases and to multiple case-bases.

2.1 Basic Strategy

Let M be a system and −→x be the variable array of M . The system is in the
state −→v , if the value of −→x at the current moment is −→v . A path of M is a sequence
of states. The property of such a path can be specified by PLTL (propositional
linear temporal logic) formulas [17].
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– ϕ is a PLTL formula, if ϕ is of the form z = w where z ∈ −→x and w is a
value.

– Logical connective of PLTL include:
¬(negation), ∧(conjunction), ∨(disjunction) and → (implication).
If ϕ and ψ are PLTL formulas, then so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ → ψ.

– Temporal operations include:
X(nexttime), U(until), ♦(future) and �(always).
If ϕ and ψ are PLTL formulas, then so are Xϕ, ϕUψ, ♦ϕ, and �ϕ.

Let π be a path of M . Let HEAD(π) be the first element of π and TAILi(π)
be the path constructed from π by removing the first i elements of π. For con-
venience, we write TAIL(π) for TAIL1(π). Let π |= ϕ denote the relation “π
satisfies ϕ”.

Definition 1. π |= ϕ is defined as follows:

π |= x = v iff the statement x = v is true in HEAD(π).
π |= ¬ϕ iff π �|= ϕ.
π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ.
π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ.
π |= ϕ → ψ iff π |= ϕ implies π |= ψ.
π |= Xϕ iff TAIL(π) |= ϕ.
π |= ϕUψ iff ∃ k such that TAILk(π) |= ψ and TAILi(π) |=ϕ for 0≤ i<k.
π |= ♦ϕ iff ∃ k such that TAILk(π) |= ϕ.
π |= �ϕ iff π |= ϕ and TAIL(π) |= �ϕ.

Let τ be a set of paths.

Definition 2. τ |= ϕ if and only if ∀π ∈ τ : π |= ϕ.

Definition 3. τ �|= ϕ if and only if ∃π ∈ τ : π �|= ϕ.

Let HEAD(τ) be the set consisting of HEAD(π) for all π ∈ τ and TAIL(τ) be
the set consisting of TAIL(π) for all π ∈ τ . From the above definitions, we can
derive the following:

τ |= x = v iff the statement x = v is true in s for all s ∈ HEAD(τ).
τ |= ¬ϕ iff τ �|= ϕ.
τ |= ϕ ∨ ψ iff there are τ ′ and τ ′′ : τ = τ ′ ∪ τ ′′ and τ ′ |= ϕ and τ ′′ |= ψ.
τ |= ϕ ∧ ψ iff τ |= ϕ and τ |= ψ.
τ |= ϕ → ψ iff there are τ ′ and τ ′′ : τ = τ ′ ∪ τ ′′ and τ ′ �|= ϕ and τ ′′ |= ψ.
τ |= Xϕ iff TAIL(τ) |= ϕ.
τ |= ϕUψ iff there are τ ′ and τ ′′ :

τ = τ ′ ∪ τ ′′ and τ ′ |= ψ, τ ′′ |= ϕ and TAIL(τ ′′) |= ϕUψ.
τ |= ♦ϕ iff there are τ ′ and τ ′′ :

τ = τ ′ ∪ τ ′′ and τ ′ |= ϕ and TAIL(τ ′′) |= ♦ϕ.
τ |= �ϕ iff τ |= ϕ and TAIL(τ) |= �ϕ.

Now let τ be the set of the paths of system M and ϕ be the propositional
linear temporal logic formula. Let M |= ϕ denote the relation “M satisfies ϕ”.
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Definition 4. M |= ϕ if and only if τ |= ϕ.

Suppose that there is a model M and a formula ϕ, and the task is to check
whether ϕ holds in M , i.e. we would like to prove:

M |= ϕ.

The principle of case-based partition is to partition the search space of M ,
so the formula ϕ can be proved within each portion of the search space. The
technique for this characterization is to attach formulas to ϕ, so that in the
verification of M |= ϕ, only the paths relevant to the attached formulas are fully
explored (or paths irrelevant to the attached formulas are discarded at an early
phase of model checking).

Theorem 1. Let ψ1, . . . , ψn be formulas such that M |= ψ1 ∨ · · · ∨ ψn. M |= ϕ
if and only if

M |= ψi → ϕ

for all i ∈ {1, 2, . . . , n}.

Proof. It is obviously that M |= ϕ implies M |= ψi → ϕ. We prove that M |=
ψi → ϕ for all i ∈ {1, 2, . . . , n} implies M |= ϕ as follows.

– Let τ be the set of paths of M . Since M |= ψ1 ∨ · · ·∨ψn, there are τ1, . . . , τn

such that τ = τ1 ∪ · · · ∪ τn and τi |= ψi for all i.
– On the other hand, we have τ |= ψi → ϕ, hence τi |= ψi → ϕ and τi |= ψi

for all i. Therefore, τ |= ϕ. ��

Remark 1. A similar strategy is the assume-guarantee paradigm in composi-
tional reasoning. But they are different. The strategy of Theorem 1 partitions a
model checking task into several cases ( the verification of which is done sepa-
rately by model checking ), and proves that the collection of these cases covers
all possible case, then establishes the correctness of the entire system. On the
other hand, the assume-guarantee technique verifies each component process (or
group of component processes) separately by combining the set of assumed and
guaranteed properties of component processes in an appropriate manner, such
that it can verify the correctness of the entire systems without constructing the
global state-transition graph provided that the finite state system is composed
of multiple processes running in parallel.

For a given model M , in order to be successful with this strategy, we have to
be sure that the proof of M |= ψi → ϕ is simpler than the proof of M |= ϕ
for each i. Therefore τ (the set of paths representing the behavior of M) should
have the following properties: τ can be partitioned into τ ′

i and τ ′′
i such that:

– τ ′
i �|= ψi and τ ′′

i |= ϕ;
– τ ′

i �|= ψi can be checked with high efficiency;
– τ ′′

i is significantly smaller than τ .
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For the selection of ψi (which determines τ ′
i and τ ′′

i ), it would be better
to ensure τ ′′

i (i = 1, . . . , n) be pair-wise disjoint, whenever this is possible. In
addition, we shall discharge M |= ψ1 ∨ · · · ∨ψn by one of the following methods:

– Application of static analysis;
– Application of expert knowledge.

The reason for not verifying M |= ψ1 ∨ · · · ∨ ψn with model checking is that
the verification of this formula is not necessarily simpler than the verification
of M |= ϕ. In order to be able to discharge M |= ψ1 ∨ · · · ∨ ψn easily by the
proposed methods, in [18, 19] the formula ψi is restricted to be of the form
�(x = v0 ∨ x = vi) where x is a variable and v0, vi are constants. We call
the variable x the basic case-basis of a partitioning. Consequently, we have the
following theorem.

Theorem 2. [18, 19] Let v be a variable, {v0, v1,, . . . , vn} be the range of v and
v0 be the initial value of v. Suppose that v is changed at most once during every
execution of M . M |= ϕ if and only if

M |= �(v = v0 ∨ v = vi) → ϕ

for all vi �= v0 in the range of variable v.

2.2 The Improved Strategy

In contrast to the case-based approach described above, the new approach is
based on the new types of case-bases which is a generalization of basic case-bases.

Definition 5. Let v be a variable of M , and {v0, v1, . . . , vn} be the range of v,
where v0 is the initial value of v. If there exists a variable u satisfying: if variable
v first takes value vk after v = v0, then �((v �= v0) → (v = vk ∨ φ(u))) is true
during the execution of M , where vk ∈ {v1, . . . , vn} and φ(u) is a propositional
formula related to u, then we call u a conjugate variable of v, and (v, u) the
case-basis of M .

Remark 2. The conjugate variable of v may be v itself. If v satisfies: v is changed
at most once during each execution of M , and assume variable v first takes value
vk after v = v0, where vk ∈ {v1, . . . , vn}, then �((v �= v0) → (v = vk)) is true
during the execution of M , where φ(v) ≡ (v = vk). Hence, the basic case-basis
is the special case of the newly defined case-basis.

In order to make the analysis of the case-basis easy, the formula φ(u) is restricted
to be of the form (u=up) or (u �=up) , where up is a value belonging to its range.

Lemma 1. Let v be a variable of M and {v0, v1, . . . , vn} be the range of v.
Suppose u is a conjugate variable of v. Then we have

M |=
n∨

i=1

�(v = v0 ∨ v = vi ∨ φ(u)).
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Proof. Let x be an arbitrary execution path of M , assume variable v first takes
value vi (1 ≤ i ≤ n) in trace x after v = v0. Since u is a conjugate variable
of v, �(v �= v0 → (v = vi ∨ φ(u))) is true during the execution of M . i.e.
�(v = v0 ∨ v = vi ∨ φ(u)) is true during the execution of M (i ∈ {1, . . . , n}).
Hence, x |= �(v = v0∨v = vi ∨φ(u)). Then M |=

∨n
i=1 �(v = v0∨v = vi ∨φ(u)).

��

Theorem 3. Let v be a variable of M and {v0, v1, . . . , vn} be the range of v.
Suppose u is a conjugate variable of v. M |= ϕ if and only if

M |= �(v = v0 ∨ v = vi ∨ φ(u)) → ϕ

for all vi �= v0 in the range of variable v.

Proof. It follows from Lemma 1 and Theorem 1 by taking ψi = �(v = v0 ∨ v =
vi ∨ φ(u)). ��

2.3 Multiple Case-Bases Strategy

A complicated (software) system may have multiple case-bases, i.e. there may
be several (xj , yj) satisfying the condition that M |= ψ1 ∨· · ·∨ψm where ψj is of
the form �(xj = v0∨xj = vj ∨φ(yj)), and yj is a conjugate variable of xj . In case
of two case-bases: (u1, v1) and (u2, v2), we have M |= ψ1

1 ∨ · · · ∨ ψ1
m for (u1, v1)

and M |= ψ2
1 ∨ · · · ∨ ψ2

n for (u2, v2). For the model M , it can be divided in even
smaller pieces τij , where τij |= ψ1

i ∧ ψ2
j . Then the verification task τ |= ϕ can be

divided into a set of simpler verification tasks τ |= ψ1
i ∧ ψ2

j → ϕ. Generally, we
have the following theorem.

Theorem 4. Let (xi, yi)(i = 1, . . . , l) be a set of case-bases of M , where yi is the
conjugate variable of xi, and let {vi0, vi1, . . . , vini} be the range of xi. Assume
that M |= ψi

1 ∨ · · · ∨ ψi
ni

holds, where ψi
j = �(xi = vi0 ∨ xi = vij ∨ φ(yi))

(1 ≤ i ≤ l, 1 ≤ j ≤ ni). Then M |= ϕ if and only if

M |= ψ1
m ∧ ψ2

n ∧ · · · ∧ ψl
k → ϕ

for 1 ≤ m ≤ n1 , 1 ≤ n ≤ n2 and 1 ≤ k ≤ nl.

Proof. It can be proved with induction on the number of case-bases of M by
applying Theorem 3. ��

This theorem is an extension of Theorem 3, and also an extension of the basic
case-basis in [18, 19].

3 Static Analysis

In order to successfully find the variables satisfying the conditions of
Theorem 3, we should use static analysis to find the case-bases of models. We
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consider models of particular types with a situation where the non-deterministic
choice is present. Let the non-deterministic choice be represented by
choice(−→x , y), where −→x ={v0, v1, . . . , vn} is the set of possible values of variable x
and v0 is the initial value of x, y is the conjugate variable of x. We consider two
types of the choice(−→x , y):

do
...
if
:: x == v1; ...; φ(y); ...
...
:: x == vn; ...; φ(y); ...
fi;
...
od;

do
...
if
:: run p(. . . , v1, . . .); ...; run p(. . . , vm, . . .);...
...
:: run p(. . . , vk, . . .); ...; run p(. . . , vn, . . .);...
fi;
...
od;

φ(y) is restricted to be a disjunction of terms like (u = up) or (u �= up) , where
up is a value belonging to its range. We refer to the first type as choice1(−→x , y)
and the second type as choice2(−→x , y). The set of paths of a model of these types
has the potential (depending on the successfully static analysis) to be divided
into subsets such that each subsets satisfies one of the following formulas:

�(x = v0 ∨ x = v1 ∨ φ(y)), . . . , �(x = v0 ∨ x = vn ∨ φ(y)).

The purpose of the static analysis is to show that the partition of the search
space into these cases is complete, i.e. to show

M |= �(x = v0 ∨ x = v1 ∨ φ(y)) ∨ · · · ∨ �(x = v0 ∨ x = vn ∨ φ(y)).

Basically, we analyze the model in order to determine the set of cases and to
ensure that (x, y) is the case-basis of a partition (in accordance with
Theorem 1), i.e. checking the following conditions:

– the range of x is {v0, v1, . . . , vn}, and the range of y is {u0, u1, . . . , um}.
– φ(y) is of the form (y = up) or (y �= up), where up ∈ {u0, u1, . . . , um}.
– during the execution of the model, if x first takes value vk, �(x �= v0 → (x =

vk ∨ φ(y))) is true.

To locate choice(−→x , y), We analyze the structure of Promela programs to find
out for a given pair (x, y), whether choice(−→x , y) satisfies all of the conditions, in
order to determine whether (x, y) can be used as the case-basis of the verification
task.

Summarizing the above discussion, we refine the steps of the verification strat-
egy as follows:

– Use static analysis to analyze the model to get the case-basis (x, y) and their
ranges −→v , −→u .

– For each vi ∈ −→v , construct ϕi = �(x = v0 ∨x = vi ∨φ(y)) → ϕ as a subgoal
for verification.
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– Use the model checker SPIN to check whether M |= ϕi holds for i = 1, . . . , n.
– When find more than one case-bases, we pick some or all of them to construct

subgoals according to Theorem 4.

Limitations. It is worth mentioning some limitations of our static analysis. The
first drawback is that it is hard to trace the value in channel, such that we cannot
analyze the accurate range of variable x, if there are communication processes
like ch?x or ch!x. For the second, it may not find all of the case-bases of the
Promela model because the above mentioned types of choice(−→x , y) do not cover
all the cases that may yield the case-bases of the model. Therefore, analysis
techniques need to be improved in the future research. Even so, the strategy and
static analysis are very useful to model checking large models which is shown in
the next section by application example.

Parallel Computation. It is easy to take advantage of parallel and networked
computing power when the problem can be decomposed in independent subprob-
lems. One problem is how to fully exploit the available computing resources. It
may not be possible (with the proposed strategy) to divide a problem in such
a way that all subproblems require approximately the same amount of time. It
could be better with respect to the utilization of the available computing power,
if there are more subproblems than available computing units. In such cases,
we may estimate the difficulty of the subproblem and make a schedule for the
subproblems.

4 Case Study

We have chosen an application example from security protocol verification which
is of the type choice2(−→x , y). The verification of security protocols is the main
application area for model checking techniques (e.g. [15]). We have chosen the
Needham-Schroeder-Lowe Protocol. Needham-Schroeder-Lowe Protocol is a well
known authentication protocol. It aims at establishing mutual authentication be-
tween an initiator A and a responder B, after which some session involving the
exchange of messages between A and B can take place. We use the model of
Needham-Schroeder-Lowe protocol (the fixed version) created to the principle
presented in [9]. We first consider a simple version of the protocol, then the com-
plicated version of this protocol. The following is a description of this protocol.

A → B : {na, A}PK(B)
B → A : {na, nb, B}PK(A)
A → B : {nb}PK(B)

Here A is an initiator who seeks to establish a session with responder B.
A selects a nonce na, and sends it along with its identity to B encrypted using
B’s public key. When B receives this message, it decrypts the message to obtain
the nonce na. It then returns the nonce na along with a new nonce nb and its
identity to A, encrypted using A’s public key. When A receives this message, he



198 F. Pu, W. Zhang, and S. Wang

should be assured that he is talking to B, since only B should be able to decrypt
the first message to obtain na. A then returns the nonce nb to B, encrypted
using B’s public key. Then B should be assured that he is talking to A.

The simple version of the protocol includes one initiator, one responder and
one intruder. The property to be checked can be expressed as following PLTL
formulas.

– ψ1 : �(�¬IniCommitAB ∨ (¬IniCommitAB U ResRunningAB));
– ψ2 : �(�¬ResCommitAB ∨ (¬ResCommitAB U IniRunningAB)).

In which

– IniRunningAB is true iff initiator A takes part in a session of the protocol
with B;

– ResRunningAB is true iff responder B takes part in a session of the protocol
with A;

– IniCommitAB is true iff initiator A commits to a session with B;
– ResCommitAB is true iff responder B commits to a session with A.

We now consider a more complicated version of this protocol which includes
two initiators, one responder, and one intruder, namely, A1, A2, B, and I. Sim-
ilarly, the property to be checked can be represented as:

– ψ1 : �(�¬IniCommitA1B ∨ (¬IniCommitA1B U ResRunningA1B));
– ψ2 : �(�¬ResCommitA1B ∨ (¬ResCommitA1B U IniRunningA1B)).

The Promela model includes the proctype PIni which has the structure as
follows:

proctype PIni(mtype self; mtype party; mtype nonce)
{
mtype g1;
atomic{
g1=self;
IniRunning(self, party);
ca!self, nonce, self, party;
}

atomic{
ca?eval(self), eval(nonce), g1, eval(self);
IniCommit(self,party);
cb!self, g1, party;
}
}

Parameter self represents the identity of the host where the initiator process
is running, whereas party is the identity of the host with which the self host
wants to run a protocol session. Finally, nonce is the nonce that the initiator
process will use during the protocol run.



An Improved Case-Based Approach to LTL Model Checking 199

In this proctype, Since �((PIni : party �= 0) → (PIni : party = v∨PIni : g1 �=0))
is true provided that PIni : party first takes value v(v = I or B) during the
execution of the Promela model, and proctype PIni is used in the following
context:

if
:: run PIni(A1, I, Na1); run PIni(A2, I, Na2)
:: run PIni(A1, B, Na1); run PIni(A2, I, Na2)
:: run PIni(A1, I, Na1); run PIni(A2, B, Na2)
fi

thus the conditions of choice2(−→x , y) are satisfied. We obtain a case-basis (PIni :
party,P Ini : g1). Note that the range of PIni : party is {0, B, I} and PIni : party

is changed more than once (it may be changed twice) during an execution of the
protocol. The strategy of search space partition in [18, 19] will not be applicable
for this case. We also detect (PIni : self, P Ini : g1) and (PIni : nonce, P Ini : g1)
as case-bases, however they have less cases than PIni : party and may be used
as a part of multiple base-cases. After choosing (PIni : party,P Ini : g1) as the
case-basis, for each property ψi to be checked, two subgoals are constructed as
follows:

– ψi1: �(PIni : party = 0 ∨ PIni : party = I ∨ PIni : g1 �= 0) → ψi ,
– ψi2: �(PIni : party = 0 ∨ PIni : party = B ∨ PIni : g1 �= 0) → ψi.

Table 1. Verification of Needham-Schroeder-Lowe protocol using case-basis

Verification Task States Transitions
ψ1 7179 32090
ψ11 6285 28768
ψ12 901 3329
ψ2 7172 33740
ψ21 6285 31332
ψ22 894 2415

The verification results are shown in table 1. As shown, the maximum and
minimum numbers of states during the verification have been reduced to about
87% and 12% of those of the original task respectively.

Remark 3. To illustrate how the case-based verification works, we arbitrarily
choose a formula ψi1:

�(PIni : party = 0 ∨ PIni : party = I ∨ PIni : g1 �= 0) → ψi

the second term of the precondition of ψi1, namely, PIni : party = I means that
only those options which the first proctype PIni(...) satisfying PIni : party = I

can be chosen to run. Thus, in the above context of PIni, the first and the
third lines (options) can run. If PIni : party = B, then only the second line
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(option) can run. The third term of the precondition of ψi1, i.e. PIni : g1 �= 0
guarantees that during the execution of the protocol, �(PIni : party = 0 ∨ PIni :
party = I ∨ PIni : g1 �= 0) is true provided that PIni:party first takes value I after
PIni:party=0.

We can also use multiple case-bases to verify this protocol. As previously dis-
cussed, (PIni : self, P Ini : g1) and (PIni : nonce, P Ini : g1) can also be used
as case-bases, the ranges of PIni : self and PIni : nonce are {0, A1, A2} and
{0, Na1, Na2} respectively. We take

{(PIni : party,P Ini : g1), (PIni : self, P Ini : g1), (PIni : nonce, P Ini : g1)}

as multiple case-bases. Then for each property to be verified eight subgoals are
constructed as follows:

− ψi1: �((PIni : party = 0) ∨ (PIni : party = I) ∨ (PIni : g1 �= 0))∧
�((PIni : self = 0) ∨ (PIni : self = A1) ∨ (PIni : g1 �= 0))∧
�((PIni : nonce = 0) ∨ (PIni : nonce = Na1) ∨ (PIni : g1 �= 0)) → ψi

− ψi2: �((PIni : party = 0) ∨ (PIni : party = I) ∨ (PIni : g1 �= 0))∧
�((PIni : self = 0) ∨ (PIni : self = A1) ∨ (PIni : g1 �= 0))∧
�((PIni : nonce = 0) ∨ (PIni : nonce = Na2) ∨ (PIni : g1 �= 0)) → ψi

...

− ψi8: �((PIni : party = 0) ∨ (PIni : party = B) ∨ (PIni : g1 �= 0))∧
�((PIni : self = 0) ∨ (PIni : self = A2) ∨ (PIni : g1 �= 0))∧
�((PIni : nonce = 0) ∨ (PIni : nonce = Na2) ∨ (PIni : g1 �= 0)) → ψi

The verification results are shown in table 2. As shown, the maximum and
minimum numbers of states during the verification have been reduced to about
99%, 12% of those of the original task respectively.

Table 2. Verification of Needham-Schroeder-Lowe protocol using multiple case-bases

Verification Task States Transitions Verification Task States Transitions
ψ1 7179 32090 ψ2 7172 33740
ψ11 6285 28768 ψ21 6285 31332
ψ12 7 7 ψ22 7 7
ψ13 7 7 ψ23 7 7
ψ14 7 7 ψ24 7 7
ψ15 901 3329 ψ25 894 2415
ψ16 7 7 ψ26 7 7
ψ17 7 7 ψ27 7 7
ψ18 7 7 ψ28 7 7

From the above example, we have been assured that the maximum and mini-
mum reduced numbers of states of subgoals using multiple case-bases are not less
than any those of subgoals using only one case-basis. If there are several case-
bases, it will be hard to determine which case-bases get the best reduction on
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the number of states of subgoals before verification of the model, then multiple
case-bases are practical in model checking large (software) systems.

5 Concluding Remarks and Future Work

The results presented in this paper extend those achieved previously in [18, 19].
Firstly, the new case-bases which have wider ranges of applications are intro-
duced such that the basic case-bases are the special case of the new case-bases.
Secondly, the use of multiple case-bases for further reduction of potential high
memory requirements has been considered. Since multiple case-bases can achieve
better reduction on the state space than only one case-basis (in the sense of
maximum and minimum reduced numbers of state space of subgoals), it may
improve the efficiency of (software) system verification. Finally, the principle of
static analysis for case-bases exploration is introduced.

With respect to [1], a similar strategy is proposed. The basic idea is to break
the proof of temporal property �ϕ into cases based on the value of a given
variable v. However, there are two differences: first, it is only applicable to safety
properties; second, when the strategy is used alone, it does not do well with the
model checker SPIN, because the whole state space still have to be searched to
check whether the safety property holds (in each of the subtask).

The approach presented here can also be used as the basis for utilizing par-
allel and networked computing power for model checking (software) systems,
although, the complexity of each subgoal with respect to model checking mem-
ory (time) may be different.

Further improvement of this approach can be achieved by investigating static
analysis techniques that can be used to detect the (multiple) case-bases auto-
matically, and by using symmetric reduction for reducing the number of subgoals
when multiple case-bases is used to verifying complicated (software) systems.
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