
Prototyping Domain Specific Languages
with COOPN

Luis Pedro, Levi Lucio, and Didier Buchs

University of Geneva, Centre Universitaire d’Informatique,
24, rue du Général-Dufour CH-1211 Genève, Switzerland

{Luis.Pedro, Levi.Lucio, Didier.Buchs}@cui.unige.ch

Abstract. The work described in this article presents how we use
COOPN in the context of the MDA (Model Driven Architecture) phi-
losophy for prototyping Domain Specific Languages. With this principle
we increase the abstraction of COOPN language representation enabling
standard data interchange with other applications that use the same
approach. In particular we will present the architecture of the transfor-
mation from Domain Specific Languages; its advantages concerning the
ability to have COOPN models as a standard format for representing the
semantics of Domain Specific Languages and to reuse software prototyp-
ing and testing techniques developped for this formalism. As example we
will show how our work is proceeding towards transformation from UML
to COOPN.

We also argue how our approach can be easily used in order to produce
rapid system prototyping and verification for Domain Specific Languages
(DSLs).

1 Introduction

This paper exposes how Concurrent Object-Oriented Petri Nets [2] (COOPN)
language and COOPBuilder Integrated Development Environment (IDE) have
been provided with Model Driven Architecture (MDA) concepts and function-
alities with the aim of building a fully integrated solution for the prototyping
of Domain Specific Languages (DSLs). In this particular subject, the main goal
of our work is to achieve a full functional Model-Based test case generation and
verification framework [7]. Our technique aims to create an infrastructure for
providing translation semantics (and tools) to automate testing and verifica-
tion for complex object oriented systems that can be specified in some Domain
Specific Language (DSL). Up to now, our main targets are Fondue [11] (UML
dialect), Critical Complex Control System Specification Language [10] (C3S2L)
and Workflow Languages. Partial experiments have also been conducted on toy
imperative language for teaching.

Expressing COOPN language by means of its Meta Model - defined as a Meta
Object Facility [5] (MOF) model - it is possible to use Model Transformation
from (and to) any other specification language (e.g. UML) that uses the same
approach. The use of model-driven approaches as a requirement is emphasized by

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 174–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Prototyping Domain Specific Languages with COOPN 175

the need of building reliable systems towards a solution based on modeling rather
than on programing issues - model-driven development enables development at a
higher level of abstraction by using concepts closer to the problem domain. Our
goal is to achieve a level of abstraction that allows easy and intuitive system
specifications providing at the same time an extremely accurate specification
using concepts of a formal based specification language.

Taking into account that COOPN is a formal specification language allowing
symbolic execution and state space exploration, it is our objective to provide
COOPN a higher level of abstraction for its internal data description and for-
mat (the data that is responsible to handle the information of COOPN spec-
ifications). At the same time, keeping in mind the maximum standardization
possible, we provide a set of interfaces which main goal is exactly to give access
to COOPN data repositories for model transformation purposes. This procedure
is the natural path for us to regulate access to COOPN data and being able
to use a development methodology that encompasses Analysis − Prototyping −
Implementation, as well as automated test case generation and verification. Us-
ing COOPN as the basis for prototyping and verification of DSLs is the natural
step in our work: COOPN can be seen as an intermediate format for a DSL,
giving it a formal and precise semantics.

Fig. 1 depicts the process of prototype generation and verification using
COOPN as intermediate format. The process involves the specification of each
DSL abstract syntax (UML Fondue and D3S2L as example in the figure) us-
ing its Meta-Model (an instance of MOF). A model transformation must be
defined via a transformation language and transformation mapping in order to
apply transformation from a DSL to obtain a COOPN model which will serve as

Fig. 1. Prototype generation and verification using CCOPN as an intermediary format



176 L. Pedro, L. Lucio, and D. Buchs

semantics. Transformations are composed of a series of rules which are applied to
the source Fondue model. Each rule attempts to find some pattern in the source
model and, if successful, generate some corresponding pattern in an target CO-
OPN model. One see can the transformation mapping as a set of transformation
rules consisting of two parts of a graph: a left-hand side (LHS); and a right-hand
side (RHS).

Under some restrictions, the COOPN existing utilities allow to: a) generate a
prototype for a given specification; b) enrich it with specific code; c) execute it or
perform verification of implementations through testing. In this sense COOPN
is both the intermediary semantic format for a given DSL and the instrument
that consents the transformation from Platform Independent Model (PIM) to
Platform Specific Models (PSM) allowing code generation.

There are various reasons why we argue that COOPN is suitable to be chosen
as an intermediate format. Some of the more relevant are:

– It is modular specification language allowing to specify different DSL com-
ponents and their relationships;

– The specifications are described in a completely abstract axiomatized
fashion;

– The system states can be completely defined and explored.

Being able to describe COOPN data format within the MDA framework and
integrating it in the COOPNBuilder IDE it is a very important step. It is fun-
damental towards a methodology that will allow full system specification and
prototype generation using a formal language as core. This process will be de-
tailed in section 3.

In this paper we will present:

– Some backgrounds on how to use COOPN for language prototyping;
– How we developed the infrastructure to take COOPN to the MDA level;
– Our ongoing work towards a complete development methodology in order to

achieve Model Transformation for DSL prototyping;
– The tools that we are developing in our lab to support our methodology;
– Fondue as an example of DSL that we are working on.

2 Background

2.1 COOPN Specification Language

COOPN is a formal specification language built to allow the expression of models
of complex concurrent systems. Its semantics is formally defined in [1], making it
a precise tool not only for modeling, but, thanks to its operational semantics, also
for prototyping and test generation. COOPN’s richness gives us the possibility to
specify in a formal fashion models of the systems. It groups a set of object-based
concepts such as the notion of class (and object), concurrency, sub-typing and
inheritance that we use to define the system specification coherently regarding
notions used by other standard modeling approaches. An additional coordination



Prototyping Domain Specific Languages with COOPN 177

Fig. 2. General example of COOPN syntax

layer provides the designer with an abstract way of representing interaction
between modeling entities and an abstract mapping to distributed computations.

Using COOPN we can profit from the advantages of having the system spec-
ified in a formal language: the unambiguous representation of the system; the
easy reusability based on the fact that, usually, formal expressions are mathe-
matically based and by definition more robust with respect to the evolution of
the target systems; and also the fact that verification is more precise and more
independent of the context. As such, with COOPN it is possible to completely
define each state of the transition system - a requirement for model based test
case generation.

The COOPN object oriented modeling language is based on Algebraic Data
Types (ADT) and Petri Nets. It provides a syntax and semantics that allow
using Heterogeneous Object Oriented (OO) concepts for system specification.
The specifications are collections of ADT s, classes and context - the COOPN
modules.

Syntactically speaking, each module encompasses the same overall structure
including: Name - which represents the name of the module; Interface - that
mainly comprises the types and elements accessible from the outside; Body - that
includes the internal (private) information of the module. In addition, the Body
section includes different parts like Axioms - operations’ properties expressed by
means of conditional equations; Use - field that indicates the list of dependencies
of other modules. Class and context modules also have convenient graphical
representations that denote its Petri net model. In figure 2 it is possible to see a
general example from the COOPN syntax - detailed information about COOPN
language can be found in [3].

2.2 The MDA Framework and DSL

The key of model-driven development is transforming high-level models into
platform-specific models that can be used, for example, for automatically gen-
erating code or transforming models of the same level of abstraction. If, on one
hand, it is possible to use the abstract syntax defined by a MOF model to store



178 L. Pedro, L. Lucio, and D. Buchs

data in an XMI format that is coherent with that abstract syntax, on the other
hand it is also possible to use the abstract definition of a language to define
transformation rules. The general idea is to give part of the semantics using the
transformation rules applied to the abstract syntax, being the other part provide
directly and automatically by the fact that the transformation leads to a COOPN
model. Using model-driven development with definition of MOF models for each
language provides us with the necessary artifacts to perform transformations
both at the PIM to PIM level and at the PIM to PSM one. We thus think the
integration of MDA approach compliant techniques in COOPNBuilder plays a
fundamental rule concerning the need of a fully automatic framework that goes
from system specification in a DSL to system prototyping and verification.

2.3 System Prototyping with COOPN

Development using the COOPN language and in particular the COOPNBuilder
IDE supports a general model based software development as well as various in-
teractive development aspects at the specification level providing the possibility
to deal with the high level of expressivity intrinsic to the COOPN language .

The life-cycle of a specification with COOPNBuilder it is composed by dif-
ferent steps going from writing a COOPN specification (step 1 in Fig. 3) using
textual or graphical editors, to system simulation and deployment. In between,
a checker tool (point 2 in Fig. 3) verifies that a COOPN specification is syntacti-
cally correct and well typed, being also possible to generate different prototypes
of the system (e.g. in Java language). The code generation (prototype generation
in Fig. 3) feature in COOPNBuilder is one of the approaches that enables exe-
cution of COOPN specifications. The generated Java code that corresponds to a
COOPN specification includes algebraic data types, implementation of concur-
rency and the implementation of transactional mechanisms for the synchroniza-
tions between events. These artifacts can be used as a interpreted specifications
within COOPNBuilder. This means that the generated code can be executed by
using the Java reflexive mechanisms. In particular, the code generator can be
used for simulation in order to allow an interactive follow up of the development
methodology - implementation choices and their consequences are easily ob-
served using the functionalities of the simulation provided by the IDE. COOPN
prototypes are not rigidly defined, they can be enriched by manually written
code either for particularising data structures or algorithms or by linking this
code to external libraries.

3 Generalization of COOPN Data Format Using MDA
Framework

This section concerns the basis of our work for performing transformations from
any MDA compliant specification language into COOPN, and vice-versa.

We provide an overview of the technologies involved and how the export
procedure from COOPN standard data format to XMI based data format is



Prototyping Domain Specific Languages with COOPN 179

achieved. Although the text is focused on the particular transformation from
COOPN standard data format to an XMI based format, it uses concepts and
functionalities that we are exploring in other parts of the work being developed in
our laboratory. We expect this work will provide the basis of the transformation
we are currently working from a sub-set of UML. This methodology is named
Fondue, uses a collection of UML diagrams with extensions of Object Constraint
Language (OCL) and is our DSL example explored in section 6. Fondue can be
seen as a Domain Specific Model (DSM) for reactive systems that includes a
description of both the problem domain and of the functional requirements of
the system.

The basis for the generalization of the COOPN data format using MDA con-
cepts is to have a self described, accurate and standard way of storing COOPN
specifications. At the same time we want to be able to achieve an abstraction level
were transformations could be easily accomplished. The re-usablility of the work
developed is one of the main concerns allowing, e.g. transformations to be per-
formed redefining only the set of transformation rules and their algorithms. The
re-usability is accomplished mainly by modularization of meta models and com-
position of transformation rules. The concepts behind the ideas of re-usability
for easily perform transformation are detailed in section 6.1 and 6.3. As we are
going further detail, even the process of exporting COOPN sources to XMI for-
mat uses general purpose techniques that are going to be re-used in other parts
of our work.

The general approach includes the automatic generation of a set of Java inter-
faces that can be used both to populate a COOPN specification source file(s) or
to browse existing ones. These interfaces are generated based on COOPN MOF
model. The technology used is named Java Meta Data Interfaces [9] (JMI) that
is a platform independent, vendor-neutral specification for modeling, creating,
storing, accessing, querying, and interchanging metadata using UML, XML, and
Java.

The Java APIs generated from the COOPN Meta-Model are used to interface
with COOPNBuilder core in order to populate a COOPN specification source in
XMI format. Steps 5 and 6 of figure 3 illustrate the process that concerns the op-
eration of exporting a COOPN specification into a format based on XMI (XML
Metadata Interchange) [6]. This process allows using COOPN data manipula-
tion for transformation towards, for example, other specification languages. This
procedure ill be detailed in this article and it is illustrated in point 6 of Fig. 3.
At the same time, this procedure will be also used in the other direction: using
the exact same technology (and base) framework a transformation from other
DSLs to COOPN is possible to achieve defining a set of transformation rules.

According to the previous description what we do is to add to COOPNBuilder
IDE the functionality to export data using a standard approach - this means
that, if we combine the procedure illustrated by Fig. 1 and Fig. 3 we are able to,
giving a system specification described in any DSM, transform it to COOPN.
Using COOPN we can enhance DSLs with a formally and rigorous semantics.
This allows to check the specification, generate a prototype, validate it.



180 L. Pedro, L. Lucio, and D. Buchs

Fig. 3. COOPN Development Life-Cicle

4 Model Transformation for DSL Prototyping

The core elements for prototyping a DSL are the model transformation from
the DSL to COOPN (PIM to PIM transformation) and the code generator in
COOPN (PIM to PSM transformation). The DSL to COOPN transformation,
although executed at a very abstract level, is responsible for giving to any DSL
the semantics that are available in COOPN. This well defined semantics guaran-
tees that a prototype generation and verification is possible and coherent with
the principles given in the translation.

4.1 Semantics Enrichment of a DSL

No matter what is the semantics (or lack of it) of a DSL, when we transform it
into COOPN it gains automatically COOPN semantics. This means that, if a
transformation between a DSL and COOPN is possible, the DSL can be easily
enriched with all the concepts and functionalities of COOPN language. Taking
into account that COOPN can be seen is a General Propose Language (GPL)
usually a mapping between a DSL and COOPN is possible but not always the
reverse.

The gains of model transformation from a DSL to COOPN exist at various lev-
els. Typical examples are the possibility of adding concurrent and transactional
aspects to a language that, initially defined without such capabilities. Other ex-
amples might be pointed out but the big achievement of the transformation in



Prototyping Domain Specific Languages with COOPN 181

terms of giving precise semantics is to be able to use COOPN mechanisms for pro-
totype generation, execution and state space exploration (verification). COOPN
has precise semantics that, after the transformation are loaned to the DSL.

4.2 Prototyping and Verification of a DSL Specification

Prototyping of a DSL can be achieved by using COOPNBuilder’s prototyping
mechanisms. As was previously explained, COOPN has a precisely defined se-
mantics allowing the automatic generation of Java code. As long as the transla-
tion algorithms into COOPN are semantically correct with respect to the DSL,
a prototype with the functionality described on the DSL can be automatically
produced. Obviously, the functionality of the produced prototype will be “raw”
in the sense that no interaction with the exterior can be modeled in COOPN.
This kind of functionality will have to be added by hand.

In what concerns verification issues, COOPNBuilder includes a test language
that allows building black-box tests for Class and Context modules of a COOPN
specification. These tests can be later applied to an implementation of that
specification. Given that COOPN specifications are hierarchical in the sense
that modules include other modules, producing black-box tests for a Class or a
Context module C implies producing integration tests for the modules C1..Cn
that compose C. There is however an open issue while testing DSL specifications:
where will the test intentions be defined? We can define them using the test
language editor included in COOPNBuilder, after having transformed the DSL
specification into COOPN. The problem with this approach is that some of the
clarity of the specification concepts defined in the DSL may be lost during the
translation into COOPN, making the test definition harder. A simple solution
for this problem would be to define test templates that would produce generic
tests with certain properties. Example properties for generated tests would be:
number of operations in the test inferior to a given number; all possible methods
called; all possible gates stimulated.

4.3 Architecture for Meta-Model Based Transformation

The detailed architecture of our process can be depicted in Fig. 4. The left
(darker side) of the picture shows how the process of data transformation works
interfacing with COOPN. The right side (in light grey) illustrates how the more
general process of transformation works.

From the left darker side of the picture we can see how the export procedure
to COOPN XMI data format is performed. A COOPN specification is furnished
and used by COOPN checker that verifies its integrity. The Export Procedure
task takes both the checked COOPN specification using the COOPN kernel
interfaces to parse it and the (already generated from the COOPN Meta-Model)
JMI interfaces. This tasks generates a COOPN XMI based specification fully
equivalent to the one that was supplied in the COOPN standard data format.

The right side of the figure 4 shows how the exact same technologies are
used to transform from any specification which Meta-Model is MOF based into



182 L. Pedro, L. Lucio, and D. Buchs

Fig. 4. General behavior of COOPN data format export and Model transformation

COOPN. This process is of course possible if a coherent mapping is provided.
The mapping functions will intervene in what is performed by the Transf. arrow
in the picture. Although the transformation process is completely dependent on
what are the functionalities and concepts intrinsic to the DSL X, the technol-
ogy and general procedure is the same whatever the DSL X is. The Transf.
function can either be a simple mapping algorithm the uses source and tar-
get JMI or be based on transformation languages (like YATL [8] or MTL [12])
that make also use of MOF technologies. The cycle is complete once we use
the COOPN2COOPN one to one mapping that transforms back to COOPN
standard data format so that can be used by COOPN kernel, specially by the
COOPN checker. This step is fundamental since the result from a direct trans-
formation from a DSL X to COOPN, although syntactically correct, does not
know anything about COOPN semantics - the XMI result of a transformation
is a COOPN non-checked specification.

5 Meta-Modeling Utilities

By the time we are writing this paper, Meta-Modeling and transformation tools
are being developed in our laboratory. A description of its functionalities and
architecture follows:

The tool supports MOF models exploration, generic model browsing and JMI
interfaces generation. The fact that transformations from a source to a target
model are required is also foreseen. The tool is capable to cope with plugins
(basically the definition of the transformation rules and their algorithms) that



Prototyping Domain Specific Languages with COOPN 183

will use existing generated JMI interfaces (and consequently the Meta-Models
of each language) to achieve transformation.

5.1 Functionalities

The tool being developed supports projects handling functionality. The user can
create a new project or open an existing one. Each project has a pre-defined
structure that is suitable to deal with:

– Meta-Model information in: XMI[UML] format (this is typically the format
that results from the process of creating a Meta-Model using a given case
tool that supports XMI type data manipulation); in XMI[MOF] format (this
is the standard format for the Meta-Models);

– JMI interfaces both in source code and compiled;
– Different models of the language for which the project applies to - in

XMI[Language X ];
– Transformation algorithms that can be seen as plugins to the tool and that

will relate (in terms of transformation) the Language that is represented by
the project to other in other language also present in the project repository
of the toll.

In terms of basic functionalities, and apart from the project handling func-
tionality, the tool also supports:

– Automatic transformation from XMI[UML] to XMI[MOF];
– Generation and compilation of the JMI interfaces for the Meta-Model refer-

ent to project;
– Generic browsing of the Meta-Model structure via Java reflective interfaces.

This provides the possibility to browse the elements (classes, associations,
etc.) present in the Meta-Model;

– Generic browsing capabilities for the models present in the project repository.
This is a kind of a raw browse in terms of a simple tree that represents the
data in a model using the previously generated JMI interfaces;

– Specific model browsing capabilities. A configuration procedure is made
available in order to support more than just a generic model browse;

– Transformation definitions in terms of algorithms written in Java. This func-
tionality provides the possibility to add different transformation programs to
the project repository that relate two models present in the repository.

With all this functionalities present in our tool we expect to be able to cover
the full process of model transformation and model browsing from any pre-
defined DSL to COOPN.

5.2 Browsing

The model browsing functionality (already pointed in the previous subsection),
includes both generic and specific (specialized and configurable) model browsing.



184 L. Pedro, L. Lucio, and D. Buchs

This section concerns the specific model browsing functionality and the definition
of the rules that will provide a visual syntax to the models.

This tasks includes providing the possibility to configure in terms of visual
representation the elements (and associations between them) present in a Meta-
Model of a Language X. The goal is to be able to specify a map between the
elements of each language and the syntax of the Scalable Vector Graphics (SVG).

SVG is a language for describing two-dimensional graphics in XML. SVG
allows different types of graphic objects like: vector graphic shapes (e.g., paths
consisting of straight lines and curves), images and text. Graphical objects can be
grouped, styled, transformed and composited into previously rendered objects.
The feature set includes nested transformations, clipping paths, alpha masks,
filter effects and template objects [13].

With SVG is used to create a definition between the elements available in a
Meta-Model for a language and SVG elements: it is possible to access to SVG
Document Object Model (DOM), which provides complete access to all elements,
attributes and properties. A set of event handlers (such as onmouseover and
onclick) can also be assigned to any SVG graphical object.

By providing the possibility to the user to define the map between his language
and a standard like SVG the tool that we are developing goes in a direction of
a complete utility that supports model transformation, browsing and interface
creation for data access and manipulation.

5.3 Editing

In order to provide edition of DSL language at a general level, generic tools must
be devised from the Abstract syntax contained in Meta level. We are currently
implementing in our tool functionalities that allow edition of models of a given
language. Although our tools are based in the Meta-Model of a language and
the abstract syntax is available, the edition (as well as the creation) of a model
from a given language must also be based on the verified abstract syntax - the
type checked syntax.

The functionalities that provide access to DSL editing must combine knowl-
edge from three different levels: 1) Concrete Syntax, provided by XMI but can
be easily managed by special purpose Java interfaces; 2) Abstract Syntax, im-
posed by the Meta-Model and that can be accessed by JMI that also enforce its
correctness - OCL constraints might be added to the Meta-Model in order to
re-enforce some rules; 3) Type Checked Syntax.

The DSL edit operation can be seen as the composition of the browsing and
modification functionalities. Where modification can both creation and destruc-
tion operations. We expect to provide general functionalities to perform this
operation for any DSL.

6 Example of DSL: Fondue

In our approach, supporting Fondue is the result of providing Fondue Models
with semantics in term of COOPN.



Prototyping Domain Specific Languages with COOPN 185

The transformation from Fondue to COOPN must be as automatic as possi-
ble. By basing the transformation rules in the two meta models (Fondue as the
source model and COOPN as the target one) and developing tools to use them,
it is possible to pass from Fondue to COOPN - the other components of the test
case generation framework will take the COOPN model, generates and applies
tests to the System implementation.

In terms of model analysis, the Fondue methodology provides two main arti-
facts: Concept and Behavior Models. The first one is represented as UML class di-
agrams and defines the static structure of the system information. The Behavior
Model defines the input and output communication of the system, and is divided
in three models: Environment, Protocol and Operation - represented respectively
by UML collaboration diagrams, UML state diagrams and OCL operations.

6.1 Modularisation of the Meta Models

The abstract syntax of a formalism is usually factorized into several separated
concepts aggregated together, for instance Algebraic abstract data types are
the basis of class models expressed by Petri Nets in the COOPN formalism.
According [4] it is possible to parameter language sub-models and consequently
to be able to have full meta model seen as composition and instanciation of
fragment of languages.

Give a language Meta-Model L based on a language(Meta-Model) P , we note
L(P ) this parameterized view. If P is abstract enough to describe only the exter-
nal definitions necessary for defining L, the instanciation process will described
the concrete language P that can be used with L.

As an example, Horn logic is based on functional elements that can be for
first order logic Herbrand functional terms Horn(Terms) (corresponding to the
prolog language) or for a simpler logic just propositional variables Horn(Prop).
In the modular approach Horn clauses will be defined independently of the func-
tional terms Horn(T ), and later instanciated with specific elements.

– Horn(T )= {t1 : −t2, ..., tn|t1, t2, ..., tn ∈ T };
– TermsOP ={op ∈ OPs1,s2,...,sn |∀t1, t2, .., tn ∈ TermsOP , op(t1, t2, ..., tn) ∈

TermsOP };
– T is a set of values.

This approach has a consequence on the way transformation can be defined.
The idea is to define also abstract transformation and to instanciate them in
a synchonous way with the instanciation of the modular parametrized meta
models.

6.2 Composition of the Meta Models

Composing meta models is based on union of models and instanciation. The
complete meta model that fully describes the abstract syntax of a language can
be seen as the composition of smaller other meta models.

Taking Fondue as an example we can empathize that its complete meta model
(Fonduemm) is composed by four different ones:



186 L. Pedro, L. Lucio, and D. Buchs

Fonduemm = Emm + Cmm + Pmm + Omm

being: Emm the Fondue Environment meta model; Cmm the Fondue Concept
meta model; Pmm the Fondue Protocol meta model and Omm the Fondue Op-
eration Schema meta model.

This does not means that relations between meta models do not exist, but
rather that we can achieve full description of a specific domain using a DSL by
means of composition of its different meta models. Each meta model can repre-
sent a part of the domain description and their relationships and combination
allows complete characterization of the domain specific language.

6.3 Modularization of the Transformation Process

With this approach, Fondue models will have a unique COOPN equivalent ele-
ment model (for instance a class in Fondue Concept Model is a class in COOPN).
An association in Fondue is a class in COOPN and cardinalities in Fondue will
become decoration in the COOPN axioms. The same approach is used for Fon-
due environment models and protocol - each environment model will have a
Context and Petri-Net, receptively, as its equivalent in COOPN.

The modularization of the transformation process goes in the same line as the
modularization of the meta models. A transformation from Fondue to COOPN
is a function:

∀M ∈ Fondue, ∃C ∈ COOPN : Tr(M) = C

At the same time, the transformation Tr(M) is a composition of the trans-
formation of each one of the Fondue models:

∀M =< e, c, p, o >∈ Fondue, e ∈ E, c ∈ C, p ∈ P, o ∈ O : Tr(M)
= Tr(e) + Tr(c) + Tr(p) + Tr(o)

with,

E the set of Fondue Environment diagrams, C the set of Fondue Concept
diagrams, P the set of Fondue Protocol diagrams and O the set of Fondue
Operation Schemas. The ‘+’ operator is the disjoint union.

In particular, lets take the Fondue Environment diagrams and Operation
Schemas:

Environment diagram: The Environment diagram in Fondue is composed of
one System, messages going to the system and messages sent by the system
to the outside. Being S, Mi, Mo the System, the set of input messages and the
set output messages respectively we can formalize the trivial transformation
of a Fondue Environment diagram as:

∀s ∈ S, mi ∈ Mi, mo ∈ Mo ⊃ E, ∃Tr(E) : Tr(E) = Tr(s)+Tr(mi)+Tr(mo)

Taking into account that one system is transformed in a COOPN Context,
the input messages into methods of the Context and the output messages
into gates of the COOPN Context, and being CCOOPN the set of COOPN
Contexts, M the set of COOPN Methods and G the set of COOPN gates:



Prototyping Domain Specific Languages with COOPN 187

∀s ∈ S, mi ∈ Mi, mo ∈ Mo ⊃ E, ∃ccoopn, m, g ∈ CCOOPN , M, G : Tr(s)
= ccoopn; Tr(mi) = m; Tr(mo) = g ⇒ Tr(E) = ccoopn + m + g

Operation Schemas: The Fondue Operation Schemas are more complex mod-
els, they are basically composed by OCL expressions. The Fig. 5 shows the
skeleton of a Fondue Operation Schema that we will base to define the trans-
formation Tr(o).

The composition of the transformation in what concerns the Operations
Schemas can be defined as:

∀op, message ∈ (Mi ∪ Mo), pre ∈ PRE, post ∈ POST, ∃o ∈ O : Tr(o)
=< Tr(op), Tr(message), Tr(pre)..Tr(post) >

taking into account that: O is the set of Fondue Operation Schemas; PRE set
of pre-conditions; POST the set of post-conditions.

In fact, the transformations Tr(op) ad Tr(message) in this context are iden-
tities. They are just to express that the Operation Schema that is being trans-
formed refers to input and output messages previously transformed from Fondue
Environment diagram.

The pre- and post-conditions are based on control operators (if then...
else ...), affectation based on OCL expressions. For simplicity we are not go-
ing to differentiate any Tr(pre) and Tr(post) since they are of the same nature.
Given expr ∈ FEXP , with FEXP being the set of Fondue expressions and
lexpr ∈ FLEXP . We need also to define the following sets:

Fig. 5. Transformation of Fondue Environment diagram

Fig. 6. Operation Schema skeleton



188 L. Pedro, L. Lucio, and D. Buchs

FEXP = {if lexpr then expr else expr|logicalvar := oclexpr|expr, expr}, and
FLEXP = {oclexpr = oclexpr}

For transformation, all these expressions will be transformed into only positive
conditional axioms.

For example:

if cond1 then
if cond2 then do1 else do2
else

do3

Will be transformed into 3 positive conditional axioms:

if cond1 and cond2 then do1;
if cond1 and not(cond2) then do2;

if not(cond1) then do3;

These axioms will be transformed as follows:

∀expr ∈ FEXP, T r(expr) = Tr(if lexpr then exp1, exp2, exp3) =
TrOCL(lexp) => Tr(exp1)..T r(exp2)...

This transformation will produce several components in COOPN of format:

TrOCL(lexpr) =< logical expr, synchronisation >

We should note that, for logical expressions that are simple boolean conditions
without access to elements in Class model, we will have synchronization = �.
Moreover, the .. operator is used to gather the result of each sub expressions. It
means conjunction of logical expressionss and sequence of synchronizations. The
result will be one COOPN axiom for each flatenned axioms.

Due to the complexity of the OCL language, describing its translation to
COOPN is out of the scope of this paper. Abstractly, the transformation will
mainly be a constructive semantic definition of the OCL operators in terms of
COOPN.

7 Conclusion

In this paper we have presented our ideas on how to provide semantics to Do-
main Specific Languages by mapping them into our formal specification language
COOPN. In order to do that we propose using techniques and tools from the
Model Driven Architecture philosophy. In particular, we have used: MOF as a
way of expressing in a common syntax metamodels of our source and target
languages (respectively the DSL and COOPN); JMI as a way of interfacing with
the metamodel repositories in XMI format. A side effect of our approach is that
we need to provide our COOPN IDE (COOPNBuilder) a way of exporting and
importing specifications in XMI format. This will not only make COOPNBuilder
up to date with current standards for data interchange, but will also allow us to
directly import into COOPNBuilder the products of an MDA transformation.



Prototyping Domain Specific Languages with COOPN 189

The final goal of our work will be to prototype and verify (by testing) a
model expressed in any DSL. COOPNBuilder includes tools for prototyping and
verification, so these activities will be possible in the measure of the correct-
ness of the mapping of the DSL semantics in to COOPN. We are also working
on generalizing these transformations by modularizing the metamodels and the
transformation process itself.

References

1. Olivier Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specifica-
tion of Concurrent Systems. PhD thesis, University of Geneva, 1997.

2. Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. CO-OPN/2: A concurrent
object-oriented formalism. In Proc. Second IFIP Conf. on Formal Methods for
Open Object-Based Distributed Systems, Canterbury, UK, pages 57–72. Chapman
and Hall, Lo, 1997.

3. Didier Buchs and Nicolas Guelfi. A formal specification framework for object-
oriented distributed systems. IEEE Transactions on Software Engineering,
26(7):635–652, July 2000.

4. F. Fondement and R. Silaghi. Defining model driven engineering processes. Tech-
nical Report IC/2004/94, Swiss Federal Institute of Technology in Lausanne,
Switzerland, November 2004.

5. Object Management Group. Meta-Object Facility. URL: http://www.omg.org/
technology/documents/formal/mof.htm.

6. Object Management Group. XML Metadata Interchange.
URL: http://www.omg.org/technology/documents/formal/xmi.htm.

7. Levi Lucio, Luis Pedro, and Didier Buchs. A Methodology and a Framework for
Model-Based Testing. In N. Guelfi, editor, Rapid Integration of Software Engineer-
ing techniques, volume LNCS 3475, page 5770. LNCS, 2005.

8. Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceed-
ings of the 1st European MDA Workshop, MDA-IA, pages 83–90. University of
Twente, the Nederlands, January 2004.

9. Java Comunity Process. Java Metadata Interface(JMI) Specification. Technical
report, Sun, June 2002.

10. M. Risoldi and D. Buchs. Model-based prototyping of graphical user interfaces for
complex control systems. Submited to MoDELS 2005 conference.

11. Alfred Strohmeier. Fondue: An Object-Oriented Development Method based
on the UML Notation. In X Jornada Técnica de Ada-Spain, Documentación,
ETSI de Telecommunicación, Universidad Politécnica de Madrid,, Madrid, Spain,
November 2001.

12. Triskell team. MTL Documentation.
URL: http://modelware.inria.fr/rubrique4.html.

13. W3C. Scalable Vector Graphics (SVG) 1.1. Technical Specification, January 2005.


	Introduction
	Background
	COOPN Specification Language
	The MDA Framework and DSL
	System Prototyping with COOPN

	Generalization of COOPN Data Format Using MDA Framework
	Model Transformation for DSL Prototyping
	Semantics Enrichment of a DSL
	Prototyping and Verification of a DSL Specification
	Architecture for Meta-Model Based Transformation

	Meta-Modeling Utilities
	Functionalities
	Browsing
	Editing

	Example of DSL: Fondue
	Modularisation of the Meta Models
	Composition of the Meta Models
	Modularization of the Transformation Process

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




