
Context-Aware Service Composition in Pervasive
Computing Environments

Sonia Ben Mokhtar, Damien Fournier, Nikolaos Georgantas, and Valérie Issarny

INRIA Rocquencourt 78153 Le Chesnay, France
{Sonia.Ben Mokhtar, Damien.Fournier, Nikolaos.Georgantas,

Valerie.Issarny}@inria.fr
http://www-rocq.inria.fr/arles/

Abstract. A major challenge in pervasive computing environments is to pro-
vide users with complex, context-sensitive applications, dynamically composed
from networked services. In this paper, we present an approach to the dynamic,
context-aware composition of services to perform user tasks, i.e., software ap-
plications abstractly described on the user’s handheld device. Both networked
services and user tasks are modeled as semantic Web services in OWL-S extended
with context information. The distinctive feature of our solution is the ability to
compose Web services that expose complex behaviors (conversations) to realize
a user task that itself has a complex behavior. Furthermore, the context-related
requirements of the task are met by aggregating the context-sensitive behaviors
of the individual services.

1 Introduction

The user-centric view promoted by the pervasive computing paradigm advocates placing
less demand on user attention [25]. Thus, pervasive computing applications need to be
more autonomous and sensitive to context. In this domain, one of most challenging ob-
jectives to be achieved is to automatically enable software applications by dynamically
composing services of the pervasive environment. In this direction, our work presented
herein aims at enabling users to perform tasks (i.e., abstract user applications modeled as
workflows) on the fly by composing various networked service capabilities provided in
the pervasive environment. While service composition allows some degree of autonomy
to be achieved, context-awareness allows user applications to be more sensitive to the
environment’s changes, leading to a higher level of autonomy and adaptation.

A number of research effort have been conducted in the area of context-aware
systems. In particular, various models have been proposed to represent context informa-
tion, among which attributes and values models, object oriented models and ontologies.
Ontologies have proved to be the most suitable model for representing and reason-
ing on context information for the following reasons [5] : (i) ontologies enable knowl-
edge sharing in open, dynamic systems; (ii) ontologies with well defined declarative
semantics allow efficient reasoning on context information; and (iii) ontologies enable
service interoperability and provide the means for networked services to collaborate
in a non-ambiguous manner. The Ontology Web Language (OWL1) is a recent W3C

1 OWL: Ontology Web Language. http://www.w3.org/TR/owl-ref/

N. Guelfi and A. Savidis (Eds.): RISE 2005, LNCS 3943, pp. 129–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 S. Ben Mokhtar et al.

recommendation for formally specifying ontologies. A number of context ontologies
proposed in the literature are based on OWL.

Most existing approaches to context-aware systems propose either a user-centric or
a service-centric view of context. User-centric approaches promote applications that
move with the users and follow their preferences [20]. Service-centric approaches
promote service adaptability to the context changes [12]. We propose a solution that
combines both views. Indeed, both users-related and services-related contextual re-
quirements are taken into account in our approach to service composition. This leads us
to extend the Ontology Web Language for Services (OWL-S2) for modeling services-
related context but also user tasks contextual requirements. Our OWL-S-based model
for services and user tasks has various advantages. First, our model captures both
services-related and user-related context enabling service composition to effectively
be context-sensitive. Second, as our model is based on OWL-S, it is easily extensi-
ble. Third, our model can employ any existing context ontology to describe context
information.

We present in this paper a solution for context-aware service composition based
on workflow integration. More precisely, both networked services and user tasks have
workflow descriptions in OWL-S enriched with context, and our aim is to integrate
services’ workflows to realize a target user task, further enabling context-awareness.

The remainder of this paper is structured as follows. The next section introduces
definition of context and context awareness and presents effort on modeling context. In
Section 3, we present our context model extending OWL-S for modeling context-aware
services and tasks. Then, we present our approach to context-aware service discovery
and composition in Section 4. Further in Section 5, we employ a scenario inspired from
the networked home environment, as investigated in the IST Amigo project3, that we
adopt in our work to illustrate our solution. Finally, in Section 6 we review related
research effort in the area of context-aware service composition and conclude with a
summary of our contribution and future work.

2 Background

In this section, we present our adopted definition of context and context-awareness
(§2.1). We also survey various efforts that have been undertaken for modeling con-
text (§2.2).

2.1 Context-Awareness

Definitions of context and context-awareness are rather subjective in the literature. We
adopt the generic definitions proposed by Dey et al. [6]:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and application themselves.”

2 OWL-S: Semantic Markup for Web Service. http://www.daml.org/services/owl-s
3 Amigo: Ambient intelligence for the networked home environment.

http://www.extra.research.philips.com/euprojects/amigo/

Context-Aware Service Composition in Pervasive Computing Environments 131

“Context-awareness is a property of a system that uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task.”

Different categories of context can be distinguished. For example, Schilit defines
three categories of context [21]: (i) Device context, which is contextual information
related to devices, such as available CPU, memory, reachable networks etc.; (ii) User
context, including the user’s profile and preferences, but also information about the
user’s applications; and (iii) Physical context such as location, weather, light etc. All
these contextual information coming from various entities in the environment (e.g.,
sensors, applications, devices) are heterogeneous and have to be represented in a well
defined shared model in order to be understandable by user applications.

2.2 Context Modeling

Context modeling defines how context data are structured and maintained which play a
key role in supporting efficient context management. Context modeling mainly relies on
two important features [29]. First, it is essential to adopt a flexible structure with explicit
concepts and associations to model knowledge, define semantic relations and enable
data sharing and reuse. Second, logic reasoning or inference mechanisms on raw data
are necessary to deduce high-level contextual information from low-level context data
(e.g., sensed data). Choosing an adequate context model is crucial to enable context-
aware services. We survey below, proposed approaches to model context information.

The most simple way to model and maintain context information is to define a set
of context attributes and associated values. The most known system using this kind
of model, is the PARC’s mobile computing environment, proposed by Schilit et al.
in [22]. This is an easy solution to enable sharing of context information among appli-
cations. But, although it is fast and easy to set and update context modeled with such
a data structure, context-awareness is only possible if applications use attributes with
the given names. Moreover, such a model is not sufficient for describing concepts and
associations between them, and for making abstraction of raw data. Markup languages
are another way to model contextual knowledge. Flexibility and structural properties
are strong advantages of this approach. In context-aware systems, markup languages
are commonly used to describe profiles. For example, CC/PP (Composite Capabilities /
Preferences Profile) is an RDF-based language designed for describing user preferences
and hardware capabilities, well suited for mobile computing. A number of research
effort have been made to adapt CC/PP to define context (e.g., [9]). Markup languages
are simple, flexible, structured, and seem to be suitable for pervasive computing. But,
data ambiguity must be solved by applications, complex relationships between data can
not be defined, and a more formal definition of context can not be expressed. Another
approach to model context, lies in using object-oriented concepts [26]. Object-oriented
modeling allows defining a structured and scalable context model. Object implementa-
tion further uses aggregation mechanisms for abstraction, retrieving high-level concepts
and solving data ambiguity and consistency. But, object-oriented models are often de-
fined for a specific context domain. Sharing data and interoperability between different
context applications may be difficult. Ranganathan et al. [19], and Seng W. Loke [11]
have tried to model context with predicates and logic deduction. Modeling context using

132 S. Ben Mokhtar et al.

first order logic allows higher-level context retrieval. However, this model lacks defin-
ing structures and relations between context information and does not resolve ambiguity
between context data.

The last modeling approach that we consider in this section is the use of ontolo-
gies. Ontology-based models are very close to the requirements of context modeling.
While the overall objective of using ontologies is to define common vocabularies, con-
text modeling in pervasive computing uses ontology models to represent relevant in-
formation for users. Like many recent approaches, we choose to define context using
ontologies built upon the Ontology Web Language (OWL) for the following reasons:

– Ontologies allow defining concepts, entities, properties and also relationships be-
tween concepts.

– Since OWL is based on RDF Schema, OWL ontologies can be validated with tools
as Jena4 or OWLP5.

– OWL is dynamic and flexible, allowing context data to be easily added, deleted,
and updated with programming interfaces for OWL (e.g., Jena, OWL API6).

– Many tools have been developed for reasoning on OWL ontologies to deduce ab-
stract concepts (e.g., Racer7, Jena).

– Knowledge sharing can be achieved between heterogeneous context sources.

Among recent approaches to ontology-based context modeling, SOUPA [5] and
CONON [29] define two-level ontologies for context modeling. A core ontology defines
generic concepts that are usually modeled in context such as platform or users, while
more specific ontologies introduce concepts for a particular application domain such as
characteristics of users and devices, and location (vertical extensions), or the definition
of intelligent environments such as home or office (horizontal extensions). SOUPA also
addresses security and privacy with the protection of users’ personal information, and
proposes a set of policies to restrict data access. CONON focuses on characterizing user
situation with a set of user-defined first order logic rules. More generic, Preuveneers
et al. in [17] define a simple context ontology which is easily extensible and allows
the description of semantic Web services. Interoperability is also studied in [3], which
proposes an approach for mapping concepts between different ontologies.

3 Modeling Context-Aware Services and Tasks

Our objective is to allow a user to perform a task any where and at any time, on the
fly, without any previous knowledge about the services available in the environment.
Moreover, accounting for both the user’s actual context and the services’ contextual
requirements, but also ensuring a QoS that fulfills the requirements specified by the
user. In our approach, we consider as QoS all context information related to resource
consumption such as the device context (§2.1). In this paper, we focus on managing the
remaining context information, such as user context and physical context, while QoS
management has been described in [2].

4 Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/
5 OWLP: http://www-db.research.bell-labs.com/user/pfps/owlp/
6 OWL API: sourceforge.net/projects/owlapi
7 Racer: http://www.sts.tu-harburg.de/ r.f.moeller/racer/

Context-Aware Service Composition in Pervasive Computing Environments 133

3.1 OWL-S Based Context Model for Pervasive Services

Semantic Web services results from the combination of the Semantic Web and Web
Services. A number of research effort have been conducted in order to bring se-
mantics to Web services [16, 7, 24]. These effort aim at the semantic specification
of Web Services towards automating Web services discovery, invocation, composi-
tion and execution monitoring. In this area, the Ontology Web Language for Services
(OWL-S) is the most complete effort for describing semantic Web services. Besides
describing high-level capabilities of services, OWL-S allows the description of ser-
vices’ behaviors using conversations. OWL-S defines Web services capabilities in
three parts: the Service Profile, the Process Model and the Service Grounding. The
Service Profile gives a high-level description of a service and its provider. It is gen-
erally used for service publication and discovery. The Process Model describes the
service’s behavior as a process. This description contains the specification of a set
of sub-processes coordinated by a set of control constructs. These control constructs
are: Sequence, Split, Split + Join, Choice, Unordered, If-Then-Else, Repeat-
While, and Repeat-Until. The sub-processes can be either composite or atomic.
Composite processes are decomposable into other atomic or composite processes,
while atomic ones correspond to WSDL8 operations. The Service Grounding speci-
fies the information necessary for service invocation, such as underlying communica-
tion protocols, message formats, serialization, transport and addressing information.
The Service Grounding defines mapping rules to link OWL-S atomic processes to
WSDL operations.

In our approach, networked services are described in OWL-S extended with con-
text information. This information decomposes to: (i) high-level context attributes;
and (ii) contextual preconditions and effects. A high-level context attribute makes a
service aware of some context information, such as location or physical conditions.
Then, the service may use this context information to provide the user with appro-
priate context-sensitive responses. Contextual preconditions are conditions to be ful-
filled for the valid execution of a service, while contextual effects result from this ex-
ecution and affect the current context. For example the operation Turn On The Light
of a Light Management Service requires as preconditions that there is some one in
the room, the light level is low, and nobody is sleeping; this operation has as effect the
lighting of the corresponding room.

OWL-S allows the description of non-functional properties of services by extend-
ing the Service Profile ontology. Thus we extend the Service Profile to allow service
providers to specify context attributes that characterize a service (see Figure 1). In ad-
dition to this, as our composition approach involves services’ atomic processes (op-
erations) [1], further context information is needed at the atomic process level. This
context information is provided in the form of contextual preconditions and effects.
Thus, we propose to extend OWL-S to allow atomic processes to provide contextual
preconditions and effects. As shown in Figure 1, contextual preconditions and effects
are subclasses of the Condition and Expression classes defined in the OWL-S specifi-
cation. These classes allow the description of logical expressions in the form of literals

8 WSDL: Web Services Description Language. http://www.w3.org/TR/wsdl

134 S. Ben Mokhtar et al.

Service

Service Profile Process Model

has a has a
has a

Process
+name: xsd#string

hasContextualEffect

hasContextualPrecondition

Service Grounding

ContextualCondition

Atomic Process Composite Process

Condition

Expression

ContextualEffect

QoS attribute

has

Context Attribute

hasContextAttribute

Service Parameter

...

...

...
OWL-S class

added class

subclass
property

object
property

Fig. 1. Context-Aware Service Description

encoded in XML by using existing logic languages such as SWRL9, KIF10 and PDDL11.
Another extension that we have introduced to OWL-S is the specification of QoS at-
tributes at the atomic process level. This allows specifying, among others, resource
consumption due to the invocation of a service operation. For example, based on ex-
ecution histories a service can publish for each operation the latency induced by the
invocation on this operation. This information can be further exploited to compose ser-
vices in a way that fulfills the QoS requirements specified by the user task [2].

3.2 OWL-S Based Context Model for User Tasks

As for networked services, the description of the user task is given in the form of
an abstract OWL-S process. Furthermore, we extend the OWL-S process description
in order to allow the specification of non-functional requirements, such as QoS re-
quirements and contextual conditions (see Figure 2). QoS requirements correspond to
global requirements that have to be fulfilled by the resulting service composition (e.g.,
latency < 2sec, availability > 80%). On the other hand, contextual conditions can
be either global or local. A global contextual requirement has to be fulfilled by the re-
sulting service composition. For example, a global contextual requirement can be: “the
commission of a travel reservation composite service < 10 euros” or “the distance to
be covered by the user wishing to use a printer and a scanner < 300 m”. These global
requirements have to be checked during the service composition, by aggregating con-
textual information provided by the individual services. Local contextual requirements

9 SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.daml.org/2003/11/swrl/

10 KIF: Knowledge Interchange Format. http://logic.stanford.edu/kif/kif.html
11 PDDL: Planning Domain Definition Language. http://planning.cis.strath.ac.uk/competition/

pddl.html

Context-Aware Service Composition in Pervasive Computing Environments 135

Task

Process Model

has a

Process
+name: xsd#string

Atomic Process Composite Process

hasGlobalContextCondition

ContextualCondition

Condition

QoS Condition

hasQoSRequirements

hasLocalContextCondition

...

...

...
OWL-S class

added class

subclass
property

object
property

Fig. 2. User task description

Context
Manager

Sensors

Services

Devices

Context
Ontology

uses

provides
contextual
information

Users

Fig. 3. Context manager service

are associated to a part of the task’s description (some of the task’s atomic processes)
and have to be fulfilled by services’ operations. For example, if the user task involves
looking for a movie theater, the operation that will be selected will have to take into
account the user’s actual location and return to the user the nearest movie theater. Thus,
the service providing this operation should have as a context attribute the physical dis-
tance awareness. Other examples of local contextual requirements can be the selection
of the least loaded printer, or the selection of the road with least traffic. The main
difference between user task descriptions and service descriptions is that in contrast
to the atomic processes involved in the services processes, those involved in user task
processes are not bound to any service, since services to be invoked are dynamically
discovered. Thus the OWL-S Grounding corresponding to a task’s process is generated
at runtime from the Groundings of the composed services.

Context management associated with context-sensitive services relies on a context
manager, which provides on demand contextual information in terms of a specific on-
tology as depicted in Figure 3. We do not enforce the use of a specific context ontol-
ogy, any existing OWL-based context ontology can be used (e.g., [18, 5, 29, 17]). What
we define is a model for services and tasks enabling context-aware service composi-
tion. This model can easily be used in conjunction with any OWL context ontology. In
Figure 3, the context manager collects information from different entities that affects
context (e.g., sensors, users, devices, etc.). Then, it uses a context ontology to provide

136 S. Ben Mokhtar et al.

contextual information formatted in this ontology. The context manager has two modes.
A normal running mode in which it returns the actual context, and a simulation mode
in which it returns a simulated context. The latter mode is used during the composition
process in which we need to know what will be the new context if a specific opera-
tion is performed. Further information about the use of the simulation mode is given in
Section 4.2. The context manager can be a central entity that aggregates the heteroge-
neous information provided by various entities in the environment [5], but it can also be
distributed [14]. A distributed context manager can be a set of collaborating intelligent
agents that exchange context knowledge fragments to synthesize context information.

3.3 Modeling OWL-S Processes as Finite State Automata

Towards dynamic composition of services, we introduce formal modeling of OWL-S
processes as finite state automata. Other approaches for formalizing Web services con-
versations and composition have been proposed in the literature based on Petri nets
[27], process algebras [10] or finite state machines [8]. Our objective in using finite
state automata is to translate the problem of integrating complex processes to an au-
tomata analysis problem. Figure 4 describes the mapping rules that we have defined
for translating an OWL-S Process Model to a finite state automaton. In this model,
automata symbols correspond to the OWL-S atomic processes (the services opera-
tions) involved in the OWL-S process. The initial state corresponds to the root OWL-S
composite process, and a transition between two states is performed when an atomic
process is executed. Each process involved in the OWL-S Process Model, either

.

.

Choice(P1,P2,...,Pn)

ε

ε

ε

P2

Pn

...

...

...

...

ε
...

P1 P2

ε
...

Pn

ε
...

Sequence(P1,P2,...,Pn)

... ...

P1 P2

ε

... ...

P2 P1

ε

ε

ε

Split(P1,P2), Split+Join(P1,P2),
 Unordered(P1,P2)

...

P1

ε

Repeat-While(P1)

...

P1

ε

Repeat-Until(P1)

ap

Atomic Process ap

Start state

Final state

Former final state

Former start state

P1

Fig. 4. Modeling OWL-S processes as finite state automata

Context-Aware Service Composition in Pervasive Computing Environments 137

atomic or composite, is mapped to an automaton and linked together with the other
automata in order to build the OWL-S process automaton. This is achieved by follow-
ing the OWL-S process description and the mapping rules shown in Figure 4. Further
details about modeling OWL-S processes as automata can be found in [1].

4 Context-Aware Dynamic Service Composition

Our approach to context-aware service composition is performed in two steps. First,
context-aware service discovery provides a set of services that are candidate to the com-
position (§4.1). Second, starting from the automata descriptions of the selected services
and user task, context-aware process integration provides a set of composition schemes
that conform to the task’s behavior further meeting all the context requirements (§4.2).

4.1 Context-Aware Service Discovery

In this section, we present our semantic- and context-aware service discovery, which
aims at selecting a set of services providing atomic processes that are semantically
equivalent in terms of provided capabilities to the atomic processes involved in the
user task. Additionally, during the discovery of services, the contextual requirements of
the task are matched against the context attributes of services. This discovery algorithm
compares semantically the atomic processes of the user task with those of the networked
services.

Semantic-aware service discovery is based on the matching algorithm proposed by
Paolucci et al. in [15]. This algorithm is used to match a requested service with a set
of advertised ones. The requested service has a set of provided inputs inReq , and a
set of expected outputs outReq , whereas each advertised service has a set of expected
inputs inAdv and a set of provided outputs outAdv. This matching algorithm defines
four levels of matching between two concepts in an ontology, a requested concept CReq

and an advertised concept CAdv .

– Exact: if CReq = CAdv or CReq is a direct subclass of CAdv

– Plug in: if CAdv subsumes12 CReq , in other words, CAdv could be used in the place
of CReq

– Subsumes: if CReq subsumes CAdv, in this case, the service does not completely
fulfill the request. Thus, another service may be needed to satisfy the rest of the
expected data.

– Fail: failure occurs when no subsumption relation between the advertised concept
and the requested one is identified.

We have introduced a number of modifications to adapt the above algorithm to our
composition approach:

– We match atomic processes rather than high level service capabilities.
– The previous algorithm recognizes an exact match between two concepts CReq and

CAdv if CReq = CAdv or CReq is a direct subclass of CAdv . For the latter case, our
algorithm recognizes a plug in match.

12 Subsumption means the fact to incorporate something under a more general category.

138 S. Ben Mokhtar et al.

– We are not interested in subsumes matches as we consider that this degree of match
cannot guarantee that the required functionality will be provided by the advertised
service. Moreover, as we match operations we do not want to split them between
two or more services.

– We do not define priorities between matching inputs and outputs. Thus, we consider
that a match between an advertised atomic process and a requested atomic process
is recognized when all outputs of the request are matched against all outputs of the
advertisement; and all the inputs of the advertisement are matched against all the
inputs of the request.

In order to optimize semantic service discovery, we assume that services are classi-
fied according to their context-attributes. This classification is done off-line (not during
the composition process) by the service discovery protocol each time a new service
appears in the network. This classification allows minimizing the number of semantic
matches performed during the composition. Specifically, we propose to classify ser-
vices’ descriptions by using the context attributes specified in the service descriptions
(§3.1). For example, location-aware services, i.e., services that provide information ac-
cording to the user’s location, will be put together. Thus, when looking for an operation
involved in the user task, which has a contextual requirement such as physical distance
awareness, we will only perform semantic matching within the above group of services.
Once a set of services that provide semantically equivalent operations with those of the
user task, further meeting the contextual requirements of the task, is selected, the next
step is to compose those services in a way that meets the task’s conversation structure.
This service composition involves the integration of the selected services’ processes, as
described in the following section.

4.2 Context-Aware Process Integration

Our context-aware process integration algorithm aims at integrating the processes of
services, selected by semantic service discovery, to reconstruct the process of the target
user task. To perform such an integration, we employ the finite state automata model
that we have defined earlier. Thus, we consider the automaton representing the process
of the user task and the automata representing the processes of the selected services.
In a first stage, we connect the automata of selected services to form a global automa-
ton. This global automaton contains a new start state, empty transitions that connect
this state with the start states of all selected automata, and other empty transitions that
connect final states of each selected automata with the new start state. This allows the
use of the selected services more than once in the same service composition. The next
stage of our process integration algorithm is to parse each state of the task’s automaton
starting with the start state and following the automaton transitions. Simultaneously,
a parsing of the global automaton is carried out in order to find for each state of the
task’s automaton an equivalent state of the global automaton. An equivalence is de-
tected between a task’s automaton state and a global automaton state when for each
incoming operation13 of the former, there is at least one semantically equivalent incom-
ing operation of the latter. We recall that equivalence relationship between operations is

13 Incoming operations are the set of symbols attached to a state’s following transitions.

Context-Aware Service Composition in Pervasive Computing Environments 139

a semantic equivalence that have already been checked during the semantic discovery.
Each state of the task’s automaton is parsed just once.

In addition to checking for each state the equivalence between incoming operations,
management of contextual information is performed. This management is composed
of two parts. First, contextual preconditions and effects of service operations have to
be taken into account, and second, global task’s contextual requirements have to be
checked. The first part implies the verification of the contextual preconditions of the se-
lected operations. Furthermore, each time an operation is selected, its contextual effects
have to be taken into account as a new parameter of the user’s actual context. Thus,
a simulation of the user’s context based on the assumed contextual effects of the se-
lected operations added to the current context, have to be done each time an operation
is selected. This simulation is performed by the context manager (§3.2). Note that we
assume that the user’s context does not change during the composition process. This
assumption is valid because we consider that the composition duration (in milliseconds
[2]), is very short compared to a user activity that affects the context, such as moving
to the button switch and turning on the light (may take a few seconds). The second part
implies that each time an operation is selected, some context attributes from the above
simulated context have to be compared to the task’s global requirements.

During the composition process, various paths in the global automaton that repre-
sent intermediate composition schemes, are investigated. Some of these paths will be
rejected during the composition while some others will be kept. A path can be rejected
for one of the following reasons:

1. Starting from the actual state of the path, the task’s following symbols cannot be
reached in the global automaton;

2. The simulated context, i.e., the contextual effects of the path’s operations added to
the current context, does not fulfill the contextual preconditions of the incoming
operations;

3. Some attributes of the simulated context do not meet the global contextual require-
ments of the user task.

The remaining paths, represent the possible composition schemes that can be performed
to realize the user task, further meeting both the task’s contextual requirements, and the
contextual precondition and effects of the involved services.

The proposed process integration algorithm gives a set of sub-automata from the
global automaton that behave like the task’s automaton. The last step is then to select
arbitrarily one of these automata as they all behave as the user task. Using the sub-
automaton that has been selected, an executable description of the user task that includes
references to existing environment’s services is generated, and sent to an execution
engine that executes this description by invoking the appropriate service operations.

5 Scenario

We present a simple example that illustrates how our context-aware composition algo-
rithm can be used in a networked home environment. This example is inspired from one
of the Amigo scenarios.

140 S. Ben Mokhtar et al.

“...Robert, (Maria’s and Jerry’s son) is waiting for his best friend to play video
games. Robert’s friend arrives bringing his new portable DVD player. He proposes to
watch a film rather than playing games, and asks Robert if he prefers to watch one
of the films brought on his device or if he rather prefers to watch any films from his
home databases. In order to use his friend’s DVD player, Robert has asked the system
to consider this device as a guest device and to authorize it to use the home’s ser-
vices. This player is quite complex as it takes into consideration some user’s contextual
and access rights information. The former is used to display the video streams accord-
ing to the user’s physical environment and preferences (for example by adapting the
lighting and the sound volume or displaying the film on other devices more pleasant
for the user, such as a plasma or a home cinema), while the latter is used to check
whether the user is authorized to visualize a specific stream (for example some violent
films may be unsuitable for children)...”

Robert’s friend DVD player contains a Video Application that uses Web ontologies
to describe its offered and required capabilities. The conversation that is published by
this application is depicted in Figure 5 (left higher corner). This conversation is de-
scribed as an OWL-S process that contains concrete offered operations (in white) and
abstract required operations (in gray) that have to be bound to environment’s operations.
On the other hand, Robert’s home environment contains a number of services among
which a Digital Resource Database Service a Context Manager Service and a
Location-Aware Display Service; all publish OWL-S conversations as shown in the
same figure (on the right higher, left lower and right lower corners respectively). In this
case, the context manager is a networked home service, which provides different kinds
of context information, among which the user’s location (using a network of cameras
or radio receivers and a transmitter embedded on the user’s device).

Check
Access Rights

PersonID, VideoResource
Response

Display Error
Message

Get noise
Info

PersonID
Noise-Info

Stream,
Context-Info

abs

abs

abs

Location-aware
Display

Check
Access Rights

PersonID, DR

Response

Get
DR

Send Error
Message

DR,
certificate
Stream

Ask
Parents

DR,
 PersonID

Response

Display Error
Message

Error

Get noise Info Get lignthing
Info

...
PersonID

Ctxt-Info

Location

Ctxt-Info

Request

Ctxt-Info

Video Application

Digital Resource (DR) Database Service

Context Manager Service

matching

matching

Video List
Get Films

List

Request
abs

DR List
Get DR
List

Request

Get
DR

DR

Stream

Get
Film

VideoResource
Stream

Get
DR

DR
Stream

abs

Get lighting
Info

PersonID
Light-Info

abs

SPLIT

JOIN

CHOICE

CHOICE

Local
Display

Stream,
Ctxt-Info

abs

CHOICE

CHOICE

CHOICE

CHOICE

 Location-Aware
Display Service

Stream,
Context-Info

Location-aware
Display

Get Person's
Context

Stream,
Context-Info

Location-aware
Display

matching
CHOICE

A

B

C

Fig. 5. Example of the context-aware process integration

Context-Aware Service Composition in Pervasive Computing Environments 141

At execution time, the DVD player will discover the missing abstract conversation
fragments included in its description. The semantic discovery step will allow the se-
lection of the three previous services as they contain operations that match the op-
erations of the video application. Furthermore, the location-aware context condition
specified in the operation Location-aware Display of the user task will lead to the se-
lection of the display service which provides the location-awareness context attribute.
The second step of the composition is the process integration step. In this step our al-
gorithm attempts to reconstruct the abstract conversation of the Video Application by
using the conversations of the selected services. The selected fragments after matching
are shown in Figure 5. In this step, the fragment A of the task’s conversation will be
matched against a part of the DR Database service, while the fragments B and C will
be matched against parts of the Context Manager Service and the Display Service
respectively.

In addition to the composition of services’ conversations, the fulfillment of the con-
textual preconditions of some operations have to be checked. For example, the operation
Get Film may have as precondition that there is enough free disk on the user’s device.
On the other hand the operation Location-aware Display may have as precondition
that nobody is sleeping in the current user’s location.

6 Conclusion

Compared to existing work in the field of context-aware service composition, our com-
position approach is more flexible. Indeed, most existing approaches, such as
[14, 28, 23] propose simple composition solutions based on planning techniques.
Planning is an automated service composition approach, generally performed by a plan-
ner, that starts from a set of user’s required outputs and provided inputs and performs
a combinatorial service chaining based on signatural compatibility, i.e., compatibility
between exchanged inputs/outputs. Then, the planner gives a set of plans (service com-
positions) that meets the user’s request. In this area, Vukolvic et al. propose a syntactic
model to represent context attributes [28]. The composition approach proposed in that
work is based on HTN planning using the SHOP2 planner. In this approach, a descrip-
tion of a composition is given in BPEL4WS. Within this description, predefined actions
are specified according to static context conditions. Then, this description is translated
into SHOP2 goals, and the planner gives a plan meeting these goals. Finally, the re-
turned plan is translated to BPEL4WS and sent to a BPEL execution engine. Mostefaoui
et al. use an RDF-based model for describing context information [14]. The composi-
tion approach proposed in that work considers a complex service request that is de-
composed into basic services. These services are discovered in the environment using
context information and constraints specified in the service description such as “free
memory > 128 KB”. While composing the discovered services, additional constraints
extracted from the user preferences are taken into account, such as “commission < 500
euros” for a travel reservation composite service. Sheshagiri et al. propose an approach
for managing context information, in which context information sources are represented
as semantic Web services [23]. This enables context information to be automatically dis-
covered and accessed. In that approach context knowledge is represented in OWL, and

142 S. Ben Mokhtar et al.

services are represented as OWL-S atomic processes. A backward-chaining approach is
then used to build a plan corresponding to a service composition. While planning allows
an automated service composition, we argue that it presents the following limitations: (i)
the resulting service compositions are based on service signatural compatibility; how-
ever, this does not guarantee that the resulting composition will really meet the user’s
intended semantics; and (ii) since it is a combinatorial solution, planning is a costly
computational approach, and we argue that it is not well suited for resource-constrained
devices.

Coming from the software engineering community, complex composition appro-
aches have been proposed in the literature [4, 13]. Compared to these approaches our
composition approach deals with a higher level of flexibility. More precisely, the dis-
tinctive feature of our solution is the ability to compose Web services that expose com-
plex behaviors (i.e., workflows) to realize a user task that itself has a complex behavior.
Existing approaches generally assume that either the services or the task have a simple
behavior (i.e., services are described as a list of provided operations, and/or tasks are
described as a single or a set of required operations), thus leading to simple integra-
tion solutions. In our case, we assume complex behaviors for both services and tasks
described as OWL-S processes, and we propose a matching algorithm that attempts to
integrate the services’ processes to realize the user task.

In the last few years, context-awareness and dynamic composition of services have
been very active fields of research. However, there is a little work combining both
efforts. Researchers working on context-aware systems generally focus on modeling
context knowledge and defining software architectures for the perception and aggre-
gation of context information from heterogeneous sources in the environments. Thus,
most service composition approaches proposed in this area are simple composition ap-
proaches, generally based on planning techniques. On the other hand, researchers from
the software engineering domain have been very active in the field of dynamic service
composition, and very interesting approaches have been proposed in this area. However,
most of these approaches poorly deal with context-awareness.

Based on a flexible service composition approach, our solution deals at the same
time with context information, combining both user-centric and service-centric views.
We are developing a prototype for evaluating our approach to context- and QoS-aware
service composition. Currently, the prototype contains only an implementation of our
QoS- aware service composition approach. The preliminary results show that the run-
time overhead of our algorithm is reasonable, and further, that QoS-awareness improves
its performance [2]. Finally, our ongoing research effort aims at introducing context-
awareness to our prototype and at evaluating the efficiency and performance of our
solution to context-awre service composition.

References

1. Sonia Ben Mokhtar, Nikolaos Georgantas, and Valerie Issarny. Ad hoc composition of user
tasks in pervasive computing environments. In Proceedings of the 4th Workshop on Software
Composition (SC 2005). Edinburgh, UK, April 2005. LNCS 3628.

2. Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas, and Valerie Issarny. QoS-aware dy-
namic service composition in ambient intelligence environments. Submitted for publication.

Context-Aware Service Composition in Pervasive Computing Environments 143

3. Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and Heiner
Stuckenschmidt. C-owl: Contextualizing ontologies. In International Semantic Web Con-
ference, pages 164–179, 2003.

4. A. Brogi, S. Corfini, and R. Popescu. Composition-oriented service discovery. In Proceed-
ings of the 4th Workshop on Software Composition (SC 2005). Edinburgh. UK. LNCS 3628.

5. Harry Chen, Filip Perich, Timothy W. Finin, and Anupam Joshi. Soupa: Standard ontology
for ubiquitous and pervasive applications. In MobiQuitous, pages 258–267. IEEE Computer
Society, 2004.

6. A. Dey, D. Salber, and G. Abowd. A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications. In Human-ComputerInteraction, vol-
ume 16, pages 97–166, 2001.

7. Andreas Eberhart. Ad-hoc of invocation semantic web services. In IEEE International
Conference on Web Services (San Diego, California ICWS 2004), pages 116–124, June 2004.

8. Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer. Model-based verification
of web service compositions. In IEEE International Conference on Automated Software
Engineering, 2003.

9. Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen. Experi-
ences in using cc/pp in context-aware systems. In Ming-Syan Chen, Panos K. Chrysanthis,
Morris Sloman, and Arkady B. Zaslavsky, editors, Mobile Data Management, volume 2574
of Lecture Notes in Computer Science, pages 247–261. Springer, 2003.

10. M. Koshkina and F. van Breugel. Verification of business processes for web services. Tech-
nical report, York University, 2003.

11. Seng Wai Loke. Logic programming for context-aware pervasive computing: Language
support, characterizing situations, and integration with the web. In Web Intelligence,
pages 44–50. IEEE Computer Society, 2004.

12. Zakaria Maamar, Soraya Kouadri, and Hamdi Yahyaoui. A web services composition
approach based on software agents and context. In SAC ’04: Proceedings of the 2004
ACM symposium on Applied computing, pages 1619–1623, New York, NY, USA, 2004.
ACM Press.

13. Shalil Majithia, David W. Walker, and W. A. Gray. A framework for automated service
composition in service-oriented architecture. In 1st European Semantic Web Symposium,
2004.

14. Soraya Kouadri Mostéfaoui, Amine Tafat-Bouzid, and Béat Hirsbrunner. Using context in-
formation for service discovery and composition. In iiWAS, 2003.

15. Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara. Semantic match-
ing of Web services capabilities. Lecture Notes in Computer Science, 2342:333–347, 2002.

16. Joachim Peer. Bringing together Semantic Web and Web services. The Semantic Web - ISWC
2002: First International Semantic Web Conference, Sardinia, Italy, 2002., 2342:279, 2002.

17. Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Peter Rigole, Tim
Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and Koenraad De Bosschere.
Towards an extensible context ontology for ambient intelligence. In Panos Markopoulos,
Berry Eggen, Emile H. L. Aarts, and James L. Crowley, editors, EUSAI, volume 3295 of
Lecture Notes in Computer Science, pages 148–159. Springer, 2004.

18. Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy Georges, Peter Rigole, Tim
Clerckx, Yolande Berbers, Karin Coninx, Viviane Jonckers, and Koenraad De Bosschere.
Towards an extensible context ontology for ambient intelligence. In EUSAI, pages 148–159,
2004.

19. Anand Ranganathan, Roy H. Campbell, Arathi Ravi, and Anupama Mahajan. Conchat: A
context-aware chat program. IEEE Pervasive Computing, 1(3):51–57, 2002.

144 S. Ben Mokhtar et al.

20. Manuel Roman and Roy H. Campbell. A user-centric, resource-aware, context-sensitive,
multi-device application framework for ubiquitous computing environments. Technical re-
port, Department of Computer Science, University of Illinois at Urbana-Champaign, 2002.

21. B. Schilit, N. Adams, and R. Want. Context-aware computing applications. In IEEE Work-
shop on Mobile Computing Systems and Applications, 1994.

22. Bill N. Schilit, Norman Adams, Rich Gold, Michael M. Tso, and Roy Want. The parctab
mobile computing system. In Workshop on Workstation Operating Systems, pages 34–39,
1993.

23. Mithun Sheshagiri, Norman Sadeh, and Fabien Gandon. Using semantic web services for
context-aware mobile applications. In MobiSys 2004 Workshop on Context Awareness.

24. Kaarthik Sivashanmugam, Kunal Verma, Amit P. Sheth, and John A. Miller. Adding se-
mantics to web services standards. In Proceedings of the International Conference on Web
Services, ICWS ’03, 2003, Las Vegas, Nevada, USA, pages 395–401, June 2003.

25. João Pedro Sousa and David Garlan. Aura: an architectural framework for user mobil-
ity in ubiquitous computing environments. In Proceedings of the IFIP 17th World Computer
Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture, pages 29–43.
Kluwer, B.V., 2002.

26. Maria Strimpakou, Ioanna Roussaki, Carsten Pils, Michael Angermann, Patrick Robertson,
and Miltiades E. Anagnostou. Context modelling and management in ambient-aware perva-
sive environments. In Thomas Strang and Claudia Linnhoff-Popien, editors, LoCA, volume
3479 of Lecture Notes in Computer Science, pages 2–15. Springer, 2005.

27. W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yet another workflow language. Ac-
cepted for publication in Information Systems, 2004.

28. Maja Vukovic and Peter Robinson. Adaptive, planning-based, web service composition for
context awareness. In International Conference on Pervasive Computing, Vienna, April 2004.

29. Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology based context
modeling and reasoning using owl. In PerCom Workshops, pages 18–22, 2004.

	Introduction
	Background
	Context-Awareness
	Context Modeling

	Modeling Context-Aware Services and Tasks
	OWL-S Based Context Model for Pervasive Services
	OWL-S Based Context Model for User Tasks
	Modeling OWL-S Processes as Finite State Automata

	Context-Aware Dynamic Service Composition
	Context-Aware Service Discovery
	Context-Aware Process Integration

	Scenario
	Conclusion
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

