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Abstract. Syntactic structures based on standard syntactic assignments
model knowledge directly rather than as truth in all possible worlds as
in modal epistemic logic, by assigning arbitrary truth values to atomic
epistemic formulae. This approach to epistemic logic is very general and
is used in several logical frameworks modeling multi-agent systems, but
has no interesting logical properties — partly because the standard logi-
cal language is too weak to express properties of such structures. In this
paper we extend the logical language with a new operator used to repre-
sent the proposition that an agent “knows at most” a given finite set of
formulae and study the problem of strongly complete axiomatization of
syntactic structures in this language. Since the logic is not semantically
compact, a strongly complete finitary axiomatization is impossible. In-
stead we present, first, a strongly complete infinitary system, and, sec-
ond, a strongly complete finitary system for a slightly weaker variant of
the language.

1 Introduction

Epistemic logic [1, 2] describe the knowledge of one or several agents. The by
far most popular approach to epistemic logic has been to interpret knowledge
as truth in all worlds considered possible. To this end, the formalisms of modal
logic (see, e.g., [3]) are used: the logical language includes formulae of the form
Kiφ, and the semantics is defined by Kripke structures describing the possible
worlds. While the modal approach to epistemic logic has been highly successful
in many applications, in some contexts it is less applicable. An example of the
latter is when we need to model the explicit knowledge an agent has computed,
e.g., stored in his knowledge base, at a specific point in time. In modal epistemic
logic, an agent necessarily knows all the logical consequences of his knowledge
– the logical omniscience problem [4]. Furthermore, an agent cannot know a
contradiction without knowing everything. Modal epistemic logic fails as a logic
of the explicitly computed knowledge of real agents, because it assumes a very
particular and extremely powerful mechanism for reasoning. In reality, different
agents have different reasoning mechanisms (e.g. non-monotonic or resource-
bounded) and representations of knowledge (e.g. as propositions or as syntactic
formulae).
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In this paper we study a radically different approach to epistemic logic – the
syntactic approach. In the syntactic approach, a formula Kiφ can be assigned a
truth value independently of the truth value assigned to any other formula of the
form Kiψ. Thus the syntactic approach allows, e.g., an agent’s knowledge to not
be closed under logical consequence or other conditions, and to contain contra-
dictions. Several logical frameworks modeling agents in general [5, 6, 7, 1, 8, 9, 10]
and multi-agent systems in particular [11, 12, 13, 14, 15] are based on the syn-
tactic approach. Of particular recent interest has been the body of work on the
Logic of General Awareness [16, 17, 18, 11, 19, 20, 21], which combine an aware-
ness operator with syntactic semantics with a traditional epistemic operator with
possible worlds semantics.

We use the formalisation of the syntactic approach by [1], called syntactic
structures, and present several new results about the axiomatisation of certain
properties of such structures. A syntactic structure is an isolated abstraction of
syntactic knowledge, but the results we obtain are also relevant for logics with,
e.g., a combination of syntactic and semantic operators.

Knowledge can also be modeled directly by a semantic, rather than a syntac-
tic, approach, by using, e.g., Montague-Scott structures [22, 23, 24]). Syntactic
structures are generalizations of both Kripke structures and Montague-Scott
structures. The literature contains numerous proposed solutions to the logical
omniscience problem, see, e.g., [25, 26, 1] for reviews. Wansing [27] shows that
many of these approaches can be modeled using Rantala models [28, 29], and
that Rantala models can be seen as the most general models of knowledge. It
is easy to see that syntactic structures are as general as Rantala models; any
Rantala model can be simulated by a syntactic structure. However, syntactic
structures are so general that they have no interesting logical properties that
can be expressed in the traditional language of epistemic logic – indeed, they are
completely axiomatized by propositional logic.

In this paper, in order to be able to express interesting properties of syntactic
structures, we extend the logical language with an epistemic operator �i for
each agent. �iX , where X is a finite set of formulae, expresses the fact that
agent i knows at most X . The main problem we consider is the construction of
a strongly complete axiomatization of syntactic structures in this language. A
consequence of the addition of the new operator is that semantic compactness
is lost, and thus that a strongly complete finitary axiomatization is impossible.
Instead we, first, present a strongly complete infinitary system, and, second, a
strongly complete finitary system for syntactic structures for a slightly weaker
variant of the epistemic operators.

Our motivation for pursuing the syntactic approach is not that we view it as
an alternative to the modal approach for all purposes. Rather, we view it as a
complementary approach, which can be more suitable than the modal approach
in some circumstances. A disadvantage of the syntactic approach is that it does
not explain knowledge in terms of more fundamental concepts such as possible
worlds. But on the other hand, in some cases knowledge of formulae is the fun-
damental concept, for example when an agent stores its knowledge as syntactic
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strings in a database. Advantages of the syntactic approach include the fact that
it can be used to model certain types of agents and certain types of situations
which are difficult if not impossible to model with the modal approach; e.g.,
non-ideal – rather than ideal – agents, and situations where we are interested
in explicit – rather than implicit – knowledge. As a concrete example, consider
the explicitly computed knowledge of a (non-ideal) agent at a point in time at
which it has computed p → q and p but not (yet) q. The formulae K(p → q),
Kp and ¬Kq can never be true at the same time in modal epistemic logic, but
they can in the syntactic approach.

Rather than dictating the properties of knowledge, the syntactic approach
is a general framework in which different properties can be explored. In this
paper we are interested in logical systems describing syntactic knowledge which
are strongly complete. If these systems are extended with a set of axioms, the
resulting systems are automatically strongly complete with respect to the models
of the axioms. For example, if we want to include the assumption that an agent
cannot know both a formula and its negation at the same time, we can add the
axiom schema Kiα → ¬Ki¬α to one of the systems we discuss, and the resulting
system will again be strongly complete with respect to syntactic structures with
the mentioned property.

In Section 2 syntactic structures based on standard syntactic assignments
and their use in epistemic logic are introduced, before the “at most” operator
�i and its interpretation in syntactic structures are presented in Section 3. The
completeness results are presented in Section 4, and we discuss some related work
and conclude in Sections 5 and 6. We presently define some logical concepts and
terminology used in the remainder.

1.1 Logic

By “a logic” we henceforth mean a language of formulae together with a class
of semantic structures and a satisfiability relation |=. The semantic structures
considered in this paper each have a set of states, and satisfiability relations relate
a formula to a pair consisting of a structure M and a state s of M . A formula
φ is satisfiable if there is a model M with a state s such that (M, s) |= φ. A
formula φ is a (local) logical consequence of a theory (set of formulae) Γ , Γ |= φ,
iff (M, s) |= ψ for all ψ ∈ Γ implies that (M, s) |= φ. The usual terminology and
notation for Hilbert-style proof systems are used: Γ �S φ means that formula
φ is derivable from theory Γ in system S, and when Δ is a set of formulae,
Γ �S Δ means that Γ �S δ for each δ ∈ Δ. We use the following definition
of maximality: a theory in a language L is maximal if it contains either φ or
¬φ for each φ ∈ L. A logical system is weakly complete, or just complete, if
|= φ (i.e. ∅ |= φ, φ is valid) implies �S φ (i.e. ∅ �S φ) for all formulae φ, and
strongly complete if Γ |= φ implies Γ �S φ for all formulae φ and theories Γ . If a
logic has a (strongly) complete logical system, we say that the logic is (strongly)
complete. A logic is semantically compact if for every theory Γ , if every finite
subset of Γ is satisfiable then Γ is satisfiable. It is easy to see that under the
definitions used above:
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Fact 1. A weakly complete logic has a sound and strongly complete finitary
axiomatization iff it is compact.

2 The Epistemic Logic of Syntactic Structures

Syntactic structures are defined, and used to interpret the standard epistemic
language, as follows. Given a number of agents n we write Σ for the set {1, . . . , n}.
The standard epistemic language:

Definition 2 (L). Given a set of primitive propositions Θ and a number of
agents n, L(Θ, n) (or just L) is the least set such that:

– Θ ⊆ L
– If φ, ψ ∈ L then ¬φ, (φ ∧ ψ) ∈ L
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L �

The set of epistemic atoms is LAt = {Kiφ : φ ∈ L, i ∈ Σ}. An epistemic
formula is a propositional combination of epistemic atoms. A syntactic structure
[1] assigns a truth value to the primitive propositions and epistemic atoms.

Definition 3 (Syntactic Structure). A syntactic structure is a tuple

(S, σ)

where S is a set of states and

σ(s) : Θ ∪ LAt → {true, false}

for each s ∈ S. The function σ is called a standard syntactic assignment. �

Satisfaction of an L formula φ by a state s of a syntactic structure M , written
(M, s) |= φ, is defined as follows:

(M, s) |= p ⇔ σ(s)(p) = true
(M, s) |= ¬φ ⇔ (M, s) �|= φ

(M, s) |= (φ ∧ ψ) ⇔ (M, s) |= φ and (M, s) |= ψ

(M, s) |= Kiφ ⇔ σ(s)(Kiφ) = true

We note that although [1] define syntactic structures in a possible worlds frame-
work, the question of satisfaction of φ in a state s does not depend on any other
state (((S, σ), s) |= φ ⇔ (({s}, σ), s) |= φ). We nevertheless keep the possible
worlds framework in this paper, while pointing out that it does not play any
significant role, for easier comparison with the standard formalisation. A con-
sequence of this independence of states is the following: if a system is strongly
complete with respect to all syntactic structures, then the system extended with
a set of axioms Γ is strongly complete with respect to the models of Γ . For exam-
ple, a strongly complete system extended with the axiom schema Kiα → ¬Ki¬α
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will be strongly complete with respect to syntactic structures never assigning
true to both α and ¬α for any formula α in any state.

Syntactic structures are very general descriptions of knowledge – in fact so
general that no epistemic properties of the class of all syntactic structures can
be described by the standard epistemic language:

Theorem 4. Propositional logic, with substitution instances for the language
L, is sound and complete with respect to syntactic structures. �

In the next section we increase the expressiveness of the epistemic language.

3 Knowing at Most

The formula Kiφ denotes that fact that i knows at least φ – he knows φ but he
may know more. We can generalize this to finite sets X ⊆ L of formulae:

�iX ≡
∧

{Kiφ : φ ∈ X}

representing the fact that i knows at least X . The new operator we introduce
here1 is a dual to �i, denoting the fact that i knows at most X :

�iX

denotes the fact that every formula an agent knows is included in X , but he may
not know all the formulae in X . If L was finite, the operator �i could (like �i)
be defined in terms of Ki:

�iX =
∧

{¬Kiφ : φ ∈ L \ X}

But since L is not finite (regardless of whether or not Θ is finite), �i is not defin-
able by Ki. We also use a third, derived, epistemic operator: ♦iX ≡ �iX ∧�iX
meaning that the agent knows exactly X . The extended language is called L�.

Definition 5 (L�). Given a set of primitive propositions Θ, and a number of
agents n, L�(Θ, n) (or just L�) is the least set such that:

– Θ ⊆ L�
– If φ, ψ ∈ L� then ¬φ, (φ ∧ ψ) ∈ L�
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L�
– If X ∈ ℘fin(L) and i ∈ Σ then �iX ∈ L� �

The language L�(Θ, n) is defined to express properties of syntactic structures
over the language L(Θ, n) (introduced in Section 2), and thus the epistemic

1 The �iX operator was also used in a similar logic for the special case of agents
who can know only finitely many formulae at one time in [30]. The results in the
current paper has been used to further investigate the case with the finiteness as-
sumption [31].
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operators Ki and �i operate on formulae from L(Θ, n). We assume that Θ
is countable, and will make use of the fact that it follows that L�(Θ, n) is
(infinitely) countable.

If X is a finite set of L� formulae, we write �iX as discussed above (i.e., as
a shorthand for

∧
φ∈X Kiφ). In addition, we use ♦iX for �iX ∧ �iX , and the

usual derived propositional connectives.
The interpretation of L� in a state s of a syntactic structure M is defined in

the same way as the interpretation of L, with the following clause for the new
epistemic operator:

(M, s) |= �iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊆ X

It is easy to see that

(M, s) |= �iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊇ X

(M, s) |= ♦iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} = X

3.1 Properties

The following schemata, where X, Y, Z range over finite sets of formulae and φ
over single formulae, show some properties of syntactic structures, in the lan-
guage L�.

�i ∅ E1
(�iX ∧ �iY ) → �i(X ∪ Y ) E2
(�iX ∧ �iY ) → �i(X ∩ Y ) E3
¬(�iX ∧ �iY ) when X � Y E4
(�i(Y ∪ {φ}) ∧ ¬Kiφ) → �iY E5
�i X → �iY when Y ⊆ X KS

�i X → �iY when X ⊆ Y KG

The properties are self-explanatory. KS and KG stands for knowledge speciali-
sation and generalisation, respectively.

It is straightforward to prove the following.

Lemma 6. E1–E5, KG, KS are valid. �

4 Axiomatizations of Syntactic Structures

In this section we discuss axiomatizations of syntactic structures in the language
L�. The following lemma shows that the logic is not compact, and thus it does
not have a strongly complete finitary axiomatization (Fact 1).
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Lemma 7. The logic of syntactic structures in the language L� is not compact.�

Proof. Let p ∈ Θ and let Γ1 be the following L� theory:

Γ1 = {Kip, ¬ �i {p}} ∪ {¬Kiφ : φ �= p}

Let Γ ′ be a finite subset of Γ1. Clearly, there exists a φ′ such that ¬Kiφ
′ �∈ Γ ′.

Let M = ({s}, σ) be such that σ(s)(Kiφ) = true iff φ = p or φ = φ′. It is easy
to see that (M, s) |= Γ ′. If there was some (M ′, s′) such that (M ′, s′) |= Γ1, then
(M ′, s′) |= ¬ �i {p} i.e. there must exist a φ �= p such that σ(s)(Kiφ) = true –
which contradicts the fact that (M ′, s′) |= ¬Kiφ for all φ �= p. Thus, every finite
subset of Γ1 is satisfiable, but Γ1 is not.

We present a strongly complete infinitary axiomatization in Section 4.1. Then,
in Section 4.2, a finitary axiomatization for a slightly weaker language than L�
is proven strongly complete for syntactic structures.

4.1 An Infinitary System

We define a proof system ECω for the language L� by using properties presented
in Section 3 as axioms, in addition to propositional logic. In addition, EC ω

contains an infinitary derivation clause R*. After presenting EC ω, the rest of
the section is concerned with proving its strong completeness with respect to the
class of all syntactic structures. This is done by the commonly used strategy of
proving satisfiability of maximal consistent theories. Thus we need an infinitary
variant of the Lindenbaum lemma. However, the usual proof of the Lindenbaum
lemma for finitary systems is not necessarily applicable to infinitary systems.
In order to prove the Lindenbaum lemma for EC ω, we use the same strategy
as [32] who prove strong completeness of an infinitary axiomatization of PDL
(there with canonical models). In particular, we use the same way of defining the
derivability relation by using a weakening rule W, and we prove the deduction
theorem in the same way by including a cut rule Cut.

Definition 8 (ECω). EC ω is a logical system for the language L� having the
following axiom schemata

All substitution instances of tautologies
of propositional calculus Prop

¬(�iX ∧ �iY ) when X � Y E4
(�i(Y ∪ {γ}) ∧ ¬Kiγ) → �iY E5
�i X → �iY when X ⊆ Y KG

The derivation relation �ECω – written �ω for simplicity – between sets of L�
formulae and single L� formulae is the smallest relation closed under the fol-
lowing conditions:
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�ω φ when φ is an axiom Ax

{φ, φ → ψ} �ω ψ MP
⋃

j∈J

{αj → ¬Kiγ : γ �∈ Xj} �ω

∧

j∈J

αj → �iX R*

when X =
⋂

j∈J

Xj and X and J are finite

Γ �ω φ

Γ ∪ Δ �ω φ
W

Γ �ω Δ, Γ ∪ Δ �ω φ

Γ �ω φ
Cut

In the above schemata, X , Y , Z, Xj range over sets of L formulae, γ over L
formulae, Γ, Δ over sets of L� formulae, φ, ψ, αj over L� formulae, i over
agents, and J over sets of indices. �

It is easy to see that E1, E2, E3 and KS are derivable in EC ω.
In order to understand the meaning of the R* rule, first consider the following

instance, obtained by taking J = {1, . . . , k} and αj to be a tautology for every
j ∈ J , where X1, . . . , Xk are arbitrary sets of L formulae and i an agent:

{¬Kiγ : γ �∈ X1} ∪ · · · ∪ {¬Kiγ : γ �∈ Xk} �ω �i

⋂

1≤j≤k

Xj

This expression says that if it is the case that, for each Xj , the agent (i) does not
know anything which is not in Xj , then the agent knows at most the intersection
of X1, . . . , Xk. The general case when αj is not necessarily an tautology is easily
understood in light of this special case: if, for each Xj , αj implies that i does not
know any formula outside Xj , then the conjunction of α1, . . . , αk implies that i
knows at most the intersection of X1, . . . , Xk.

The use of the weakening rule instead of more general schemata makes induc-
tive proofs easier, but particular derivations can sometimes be more cumbersome.
For example:

Lemma 9.

Γ ∪ {φ} �ω φ R1
�ω ψ → φ

Γ ∪ {ψ} �ω φ
R2
�

Proof.

R1: {φ, φ → φ} �ω φ by MP; �ω φ → φ by Ax; {φ} �ω φ → φ by W; {φ} �ω φ
by Cut and Γ ∪ {φ} �ω φ by W.

R2: Let �ω ψ → φ. By W, {ψ} �ω ψ → φ; by MP {ψ, ψ → φ} �ω φ and thus
{ψ} �ω φ by Cut. By W, Γ ∪ {ψ} �ω φ.
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In order to prove the Lindenbaum lemma, we need the deduction theorem. The
latter is shown by first proving the following rule.

Lemma 10. The following rule of conditionalization is admissible in EC ω.

Γ ∪ Δ �ω φ

Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ
Cond

�

Proof. The proof is by infinitary induction over the derivation Γ ∪ Δ �ω φ
(derivations are well-founded). The base cases are Ax, MP and R*, and the
inductive steps are W and Cut.

Ax: Γ = Δ = ∅. We must show that �ω ψ → φ when �ω φ. By W we get
φ → (ψ → φ) �ω φ, then φ, φ → (ψ → φ) �ω ψ → φ is an instance of MP,
and by Cut we get φ → (ψ → φ) �ω ψ → φ. By Prop, �ω φ → (ψ → φ), so
by Cut once more we get �ω ψ → φ.

MP: Γ ∪ Δ = {φ′, φ′ → φ} �ω φ. That Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ can
be shown for each of the four possible combinations of Γ and Δ in a similar
way to the Ax case.

R*: φ = ∧j∈Jαj → �iX and Γ ∪ Δ = ∪j∈J{αj → ¬Kiφ
′ : φ′ ∈ L \ Xj} where

J is finite and X = ∩j∈JXj is finite, i.e. there exist for each j ∈ J sets Yj

and Zj such that L \ Xj = Yj � Zj and

Γ =
⋃

j∈J

{αj → ¬Kiφ
′ : φ′ ∈ Yj}

Δ =
⋃

j∈J

{αj → ¬Kiφ
′ : φ′ ∈ Zj}

Let

Γ ′ =
⋃

j∈J

{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ Yj}

Δ′ =
⋃

j∈J

{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ Zj}

Γ ′ ∪ Δ′ = ∪j∈J{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ L \ Xj}, and thus Γ ′ ∪ Δ′ �ω γ′,

where γ′ = ∧j∈J (ψ ∧ αj) → �iX , by R*. By W, Γ ′ ∪ Δ′ ∪ Γ �ω γ′. By
Prop, �ω (αj → ¬Kiφ

′) → ((ψ ∧ αj) → ¬Kiφ
′) for each αj → ¬Kiφ

′ ∈ Γ ,
and by R2 (once for each formula in Γ ) Δ′ ∪Γ �ω Γ ′. By Cut, Δ′ ∪Γ �ω γ′,
and it only remains to convert the conjunctions in Δ′ and γ′ to implications:
Δ′∪Γ ∪{γ′} �ω ψ → φ by Prop and R2, and by Cut and W it follows that
Δ′∪Γ∪{ψ → δ : δ ∈ Δ} �ω ψ → φ. By Prop and R2 (once of each formula in
Δ), Γ ∪{ψ → δ : δ ∈ Δ} �ω Δ′, and by Cut Γ ∪{ψ → δ : δ ∈ Δ} �ω ψ → φ,
which is the desired conclusion.

W: Γ ′ ∪ Δ′ �ω φ for some Γ ′ ⊆ Γ and Δ′ ⊆ Δ. By the induction hypothesis
we can use Cond to obtain Γ ′ ∪ {ψ → δ : δ ∈ Δ′} �ω ψ → φ, and thus
Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ by W.
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Cut: Γ ∪Δ �ω Δ′ and Γ ∪Δ∪Δ′ �ω φ, for some Δ′. By the induction hypothesis
on the first derivation (once for each δ′ ∈ Δ′), Γ ∪{ψ → δ : δ ∈ Δ} �ω φ → δ′

for each δ′ ∈ Δ′. By the induction hypothesis on the second derivation,
Γ ∪ {ψ → δ : δ ∈ Δ ∪ Δ′} �ω ψ → φ. By Cut, Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ
→ φ.

Theorem 11 (Deduction Theorem). The rule

Γ ∪ {φ} �ω ψ

Γ �ω φ → ψ
DT

is admissible in EC ω. �

Proof. If Γ ∪ {φ} �ω ψ, then Γ ∪ {φ → φ} �ω φ → ψ by Cond. Γ �ω φ → φ
by Ax and W, and thus Γ �ω φ → ψ by Cut.

Now we are ready to show that consistent theories can be extended to maximal
consistent theories. The proof relies on DT.

Lemma 12 (Lindenbaum lemma for ECω). If Γ is EC ω-consistent, then
there exists an L�-maximal and EC ω-consistent Γ ′ such that Γ ⊆ Γ ′. �

Proof. Recall R*:
⋃

j∈J

{αj → ¬Kkψ : ψ �∈ Xj} �ω

∧

j∈J

αj → �kX.

Formulae which can appear on the right of �ω in its instances will be said to
have R*-form. A special case of this schema is when

∧
j αj is a tautology (i.e.,

each αj is), from which
⋃

j∈J

{¬Kkφ : ψ �∈ Xj} �ω �kX.

can be obtained. Now, Γ ′ ⊃ Γ is constructed as follows. L� is countable, so
let φ1, φ2, . . . be an enumeration of L� respecting the subformula relation (i.e.,
when φi is a subformula of φj then i < j).

Γ0 = Γ

Γi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

Γi ∪ {φi+1} if Γi �ω φi+1
Γi ∪ {¬φi+1} if Γi ��ω φi+1 and φi+1 does not have the R*-form
Γi ∪ {¬φi+1, Kkψ} if Γi ��ω φi+1 and φi+1 has the R*-form, where ψ

is arbitrary such that ψ �∈ X and Γi ��ω ¬Kkψ

Γ ′ =
ω⋃

i=0

Γi

The existence of ψ in the last clause in the definition of Γi+1 is verified as follows:
since Γi ��ω φi+1, there must be, to prevent an application of R*, at least one
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αj and ψ �∈ X such that Γi ��ω αj → ¬Kkψ. By construction (and the ordering
of formulae), each αj or its negation is included in Γi. If Γi �ω ¬αj then also
Γi �ω αj → ¬Kkψ, and this would be the case also if Γi �ω ¬Kkψ. So Γi �ω αj

and Γi ��ω ¬Kkψ.
It is easy to see that Γ ′ is maximal.
We show that each Γi is consistent, by induction over i. For the base case, Γ0

is consistent by assumption. For the inductive case, assume that Γi is consistent.
Γi+1 is constructed by one of the three cases in the definition:

1. Γi+1 is obviously consistent.
2. If Γi+1 = Γi ∪ {¬φi+1} �ω ⊥, then Γi �ω φi+1 by DT and Prop, contra-

dicting the assumption in this case.
3. Consider first the special case (when all αj are tautologies). Assume that

Γi+1 = Γi ∪ {¬ �k X, Kkψ} �ω ⊥. Then Γi �ω Kkψ → �kX by DT and
Prop and by E4, since ψ �∈ X , Γi �ω Kkψ → ¬�k X , and thus Γi �ω ¬Kkψ
contradicting the assumption in this case.
In the general case, assume that Γi+1 = Γi∪{¬(

∧
j αj → �kX), Kkψ} �ω ⊥:

i Then Γi �ω Kkψ → (¬(
∧

j αj → �kX) → ⊥), i.e., Γi �ω Kkψ →
(
∧

j αj → �kX), i.e., Γi �ω

∧
j αj → (Kkψ → �kX).

ii By assumption in the construction, Γi ��ω ¬(
∧

j αj) (for otherwise it
would prove

∧
j αj → �kX), but since

∧
j αj (as well as each αj) is a

subformula of φi+1, it or its negation is already included in Γi. But this
means that Γi �ω

∧
j αj . Combined with (i), this gives Γi �ω Kkψ →

�kX , i.e., Γi �ω ¬Kkψ ∨ �kX .
iii On the other hand, by E4, since ψ �∈ X : Γi �ω ¬(Kkψ ∧ �kX), i.e.,

Γi �ω ¬Kkψ∨¬�k X . Combined with (ii) this means that Γi �ω ¬Kkψ,
but this contradicts the assumption in the construction of Γi+1.

Thus each Γi is consistent.
To show that Γ ′ is consistent, we first show that

Γ ′′ �ω φ ⇒ (Γ ′′ ⊆ Γ ′ ⇒ φ ∈ Γ ′) (1)

holds for all derivations Γ ′′ �ω φ, by induction over the derivation. The base
cases are Ax, MP and R*, and the inductive steps are W and Cut. Let i be
the index of the formula φ, i.e. φ = φi.

Ax: If �ω φ, then φ ∈ Γi by the first case in the definition of Γi.
MP: Γ ′′ = {φ′, φ′ → φ}. If Γ ′′ ⊆ Γ ′, there exists k, l such that φ′ ∈ Γk and

φ′ → φ ∈ Γl. If φ �∈ Γ ′, ¬φ ∈ Γ ′ by maximality, i.e. there exists a m such that
¬φ ∈ Γm. But then ¬φ, φ′, φ′ → φ ∈ Γmax(k,l,m), contradicting consistency
of Γmax(k,l,m).

R*: Γ ′′ = ∪j∈J{αj → ¬Kkψ : ψ �∈ Xj} and φ =
∧

j αj → �kX , where
X =

⋂
j Xj , and Γ ′′ ⊆ Γ ′. If φ �∈ Γ ′ then, by maximality, ¬φ ∈ Γ ′, and thus

¬φ ∈ Γi. Then, by construction of Γi, Γi−1 ��ω φ (otherwise φ ∈ Γ ′) and
Kkψ ∈ Γi for some ψ �∈ X . By the same argument as in point 3.(ii) above,
Γi �ω

∧
j αj , and hence also Γ ′ �ω

∧
j αj . But then, for an appropriate m
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(namely, for which φm = αj → ¬Kkψ): Γm−1 �ω αj and Γm−1 �ω Kkψ,
i.e., ¬(αj → ¬Kkψ) ∈ Γm, and so αj → ¬Kkψ �∈ Γ ′, which contradicts the
assumption that Γ ′′ ⊆ Γ ′.

W: Γ ′′ = Γ ′′′ ∪ Δ, and Γ ′′′ �ω φ. If Γ ′′ ⊆ Γ ′, Γ ′′′ ⊆ Γ and by the induction
hypothesis φ ∈ Γ ′.

Cut: Γ ′′ �ω Δ and Γ ′′ ∪ Δ �ω φ. Let Γ ′′ ⊆ Γ ′. By the induction hypothesis
on the first derivation (once for each of the formulae in Δ), Δ ⊆ Γ ′. Then
Γ ′′ ∪ Δ ⊆ Γ ′, and by the induction hypothesis on the second derivation
φ ∈ Γ ′.

Thus (1) holds for all Γ ′′ �ω φ; particularly for Γ ′ �ω φ. Consistency of Γ ′

follows: if Γ ′ �ω ⊥, then ⊥ ∈ Γ ′, i.e. ⊥ ∈ Γl for some l, contradicting the fact
that each Γl is consistent.

The following Lemma is needed in the proof of the thereafter following Lemma
stating satisfiability of maximal consistent theories.

Lemma 13. Let Γ ′ ⊆ L� be an L�-maximal and EC ω-consistent theory. If
there exists an X ′ such that Γ ′ �ω �iX

′, then there exists an X such that
Γ ′ �ω ♦iX . �

Proof. Let Γ ′ be maximal consistent, and let Γ ′ �ω �iX
′. Let

X =
⋂

Y ⊆X′ and Γ ′�ω�iY

Y

Since every Y is included in the finite set X ′, X is finite, and Γ ′ �ω �iX can
be obtained by a finite number of applications of E3. Let

Z =
⋃

Γ ′�ω	iY

Y

If Γ ′ �ω �iY , then Y ⊆ X , since otherwise Γ ′ would be inconsistent by E4. Thus
Z is finite. By a finite number of applications of E2, Γ ′ �ω �iZ. If Z � X , then
Γ ′ would be inconsistent by E4, so Z ⊆ X . We now show that X ⊆ Z. Assume
the opposite: φ ∈ X but φ �∈ Z for some φ. Let X− = X \ {φ}. Γ ′ ��ω Kiφ,
since otherwise φ ∈ Z by definition of Z. By maximality, Γ ′ �ω ¬Kiφ. By E5,
Γ ′ �ω �iX

− – but by construction of X it follows that X ⊆ X− which is a
contradiction. Thus, X = Z, and Γ ′ �ω ♦iX .

Lemma 14. Every maximal EC ω-consistent L� theory is satisfiable. �

Proof. Let Γ be maximal and consistent. We construct the following syntactic
structure, which is intended to satisfy Γ :

MΓ = ({s}, σΓ )
σΓ (s)(p) = true ⇔ Γ �ω p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i
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where:

XΓ
i =

{
Z where Γ �ω ♦iZ if there is an X ′ such that Γ �ω �iX

′

{γ : Γ �ω Kiγ} otherwise

In the definition of XΓ
i , the existence of a Z such that that Γ �ω ♦iZ in the

case that there exists an X ′ such that Γ �ω �iX
′ is guaranteed by Lemma 13.

We show, by structural induction over φ, that

(MΓ , s) |= φ ⇐⇒ Γ �ω φ (2)

This is a stronger statement than the lemma; the lemma is given by the direction
to the left. We use three base cases: when φ is in Θ, φ = Kiψ and φ = �iX . The
first base case and the two inductive steps negation and conjunction are trivial,
so we show only the two interesting base cases. For each base case we consider
the situations when XΓ

i is given by a) the first and b) the second case in its
definition.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a), XΓ

i = Z where Γ �ω ♦iZ and by KS, Γ �ω Kiψ.
In case b), Γ �ω Kiψ by construction of XΓ

i .
⇐) Let Γ �ω Kiψ. In case a), Γ �ω �iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = �iX : (MΓ , s) |= �iX iff XΓ

i ⊆ X .
⇒) Let XΓ

i ⊆ X . In case a), Γ �ω ♦iZ where Z = XΓ
i ⊆ X , so Γ �ω �iX

by KG. In case b), XΓ
i must be finite, since X is finite. For any ψ �∈ XΓ

i ,
Γ ��ω Kiψ by construction of XΓ

i , and Γ �ω ¬Kiψ by maximality. Thus,
by R* (with J = {1}, α1 = � and X1 = XΓ

i ), Γ �ω �iX
Γ
i , contradicting

the assumption in case b). Thus, case b) is impossible.
⇐) Let Γ �ω �iX . In case a), Γ �ω �iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X . Case b) is impossible by definition.

Theorem 15. ECω is a sound and strongly complete axiomatization of syntactic
structures, in the language L�. �

Proof. Soundness follows from Lemma 6, and the easily seen facts that Γ |= φ
for every instance Γ �ω φ of both MP and of R*, and that W and Cut preserve
logical consequence, by induction over the definition of the derivation relation.
Strong completeness follows from Lemmas 12 and 14.

4.2 A System for a Weaker Language

In the previous section we proved strong completeness of EC ω by using R*.
It turns out that strong completeness can be proved without R*, if we restrict
the logical language slightly. The restriction is that for some arbitrary primitive
proposition p̂ ∈ Θ, Kip̂ and �iX are not well-formed formulae for any i and
any X with p̂ ∈ X . The semantics is not changed; we are still interpreting the
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language in syntactic structures over L(Θ, n) as described in Sections 2 and 3.
Thus, in the restricted logic agents can know something which is not expressible
in the logical language.

Lp̂
� ⊂ L� is the restricted language for a given primitive proposition p̂.

Definition 16 (Lp̂
�). Given a set of primitive propositions Θ, a proposition

p̂ ∈ Θ and a number of agents n, Lp̂
�(Θ, n) (or just Lp̂

�) is the least set such
that:

– Θ ⊆ Lp̂
�

– If φ, ψ ∈ Lp̂
� then ¬φ, (φ ∧ ψ) ∈ Lp̂

�
– If φ ∈ (L \ {p̂}) and i ∈ Σ then Kiφ ∈ Lp̂

�
– If X ∈ ℘fin(L \ p̂) and i ∈ Σ then �iX ∈ Lp̂

� �

The finitary logical system EC p̂ is defined by the same axiom schemata as EC ω.
The two systems do not, however, have the same axioms since they are defined for
different languages – the extensions of the schemata are different. The derivation
relation for EC p̂ is defined by the axioms and the derivation rule modus ponens.
Particularly, the infinitary derivation clause R* from ECω is not included.

Definition 17 (EC p̂). EC p̂ is the logical system for the language Lp̂
� consisting

of the following axiom schemata:

All substitution instances of tautologies
of propositional calculus Prop

¬(�iX ∧ �iY ) when X � Y E4
(�i(Y ∪ {γ}) ∧ ¬Kiγ) → �iY E5
�i X → �iY when X ⊆ Y KG

The derivation relation �EC p̂ – written �p̂ for simplicity – between sets of Lp̂
� for-

mulae and single Lp̂
� formulae is the smallest relation closed under the following

conditions:

Γ �p̂ φ when φ ∈ Γ Prem
Γ �p̂ φ when φ is an axiom Ax
Γ �p̂ φ, Γ �p̂ φ → ψ

Γ �p̂ ψ
MP

�

It is easy to see that E1, E2, E3, KS and DT are derivable in ECω.
The restriction Lp̂

� ⊂ L� is sufficient to prove strong completeness without
R* in a manner very similar to the proof in Section 4.1. The first step, existence
of maximal consistent extensions, can now be proved by the standard proof since
the system is finitary.

Lemma 18 (Lindenbaum lemma for EC p̂) . If Γ is EC p̂-consistent, then
there exists an Lp̂

�-maximal and EC p̂-consistent Γ ′ such that Γ ⊆ Γ ′. �
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Second, we establish the result corresponding to Lemma 13 for Lp̂
� and EC p̂.

Lemma 19. Let Γ ′ ⊆ Lp̂
� be a Lp̂

�-maximal and EC p̂-consistent theory. If there
exists a X ′ such that Γ ′ �p̂ �iX

′, then there exists a X such that Γ ′ �p̂ ♦iX .�

Proof. The proof is essentially the same as for Lemma 13, for the language Lp̂
�

instead of L� (note that in that proof we did not rely on R*, and that p̂ �∈ X
since X ⊆ X ′).

Third, we show satisfiability.

Lemma 20. Every maximal EC p̂-consistent Lp̂
� theory is satisfiable. �

Proof. Let Γ be maximal and consistent. The proof is very similar to that
of the corresponding result for EC ω (Lemma 14). We construct the following
syntactic structure, which is intended to satisfy Γ :

MΓ = ({s}, σΓ )
σΓ (s)(p) = true ⇔ Γ �p̂ p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i

where:

XΓ
i =

⎧
⎨

⎩

Z where Γ �p̂ ♦iZ if there is an X ′ such that Γ �p̂ �iX
′

{γ : Γ �p̂ Kiγ} ∪ {p̂} if ∀X′Γ ��p̂ �iX
′ and

⋃
Γ�p̂	iY

Y is finite
{γ : Γ �p̂ Kiγ} if ∀X′Γ ��p̂ �iX

′ and
⋃

Γ�p̂	iY
Y is infinite

The existence of Z is guaranteed by Lemma 19, and, again, we show, by struc-
tural induction over φ, that

(MΓ , s) |= φ ⇐⇒ Γ �p̂ φ (3)

for all φ ∈ Lp̂
�. As in the proof of Lemma 14 we only show the epistemic base

cases. For each base case we consider the situations when

a) there is an X ′ such that Γ �p̂ �iX
′ or

b) Γ ��p̂ �iX
′ for every X ′

corresponding to the first and to the second and third cases in the definition of
XΓ

i , respectively.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a), XΓ

i = Z where Γ �p̂ ♦iZ and by KS, Γ �p̂ Kiψ.
In case b), ψ �= p̂ (since Kiψ ∈ Lp̂

�) and thus Γ �p̂ Kiψ by construction
of XΓ

i .
⇐) Let Γ �p̂ Kiψ. In case a), Γ �p̂ �iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = �iX : (MΓ , s) |= �iX iff XΓ

i ⊆ X .



72 T. Ågotnes and M. Walicki

⇒) Let XΓ
i ⊆ X . In case a), Γ �p̂ ♦iZ where Z = XΓ

i ⊆ X , so Γ �p̂ �iX
by KG. In case b), if p̂ ∈ XΓ

i then p̂ ∈ X which is impossible since �iX
is a formula. But if p̂ �∈ XΓ

i then XΓ
i is infinite (by construction) which

is also impossible since X is finite – thus case b) is impossible.
⇐) Let Γ �p̂ �iX . In case a), Γ �p̂ �iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X . Case b) is impossible by definition.

Theorem 21. EC p̂ is a sound and strongly complete axiomatization of syntactic
structures, in the language Lp̂

�. �

Proof. Soundness follows from the soundness of EC ω and the fact that Γ �p̂ φ
implies Γ �ω φ, the latter which can be seen by induction on the length of a
proof in EC p̂ (every Lp̂

� formula is also a L� formula): the base case Prem
follows by R1 (Lemma 9), the base case Ax follows by Ax and W, and the
inductive case MP follows by MP, W and Cut. Strong completeness follows
from Lemmas 20 and 18.

5 Only Knowing

Apart from the syntactic approaches mentioned in the introduction, the work
maybe most closely related to the ideas discussed in this paper is the body of
work on only knowing [33] which try to model concepts similar to our “knowing
at most” and “knowing exactly”. Here, we compare these ideas.

Several authors have analyzed the knowledge state of an agent who knows a
(set of) formula(e) [34, 35, 36, 37]. Levesque [33] introduced a logic in which only
knowing can be expressed in the logical language. Briefly speaking, Levesque’s
language is of first order2 and has two unary epistemic connectives B and O.3

Semantically, a world is a truth assignment to the primitive sentences, and sat-
isfaction of a formula is defined relative to a pair W, w where W is the set of
worlds the agent considers possible and w is the “real” world4 (the world corre-
sponding to the correct state of affairs). A sentence Bα is true in W, w iff α is
true in W, w′ for every w′ ∈ W ; B is the traditional belief/knowledge operator
in modal epistemic logic. A sentence Oα is true in W, w iff Bα is true in W, w
and w′ ∈ W for every w′ such that α is true in W, w′. Oα expresses that the
agent only knows α; the set of possible worlds is as large as possible consistent
with believing α. The O operator can be modeled by a “natural dual” to the
B operator — an operator N. The intended meaning of Nα is that α at most
is believed to be false, and Nα is true in W, w iff α is true in W, w′ for every
w′ �∈ W . Then, Oα is true iff Bα and N¬α is true; B specifies a lower bound
and N specifies an upper bound on what is believed.
2 The logic was only shown to be complete for the unquantified version of the language,

the full version was later shown to be incomplete [38].
3 Levesque only considers a single agent, but his approach has later been extended to

the multi-agent case [39].
4 Note that this corresponds to the semantical assumptions of the modal logic S5 for

one agent.
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Levesque’s logic of only knowing and the extended syntactic epistemic logic
we have discussed in this paper set out to model similar concepts, i.e. all an
agent knows — expressed as Oα by Levesque and ♦X by us (for simplicity,
we here assume the single-agent case and write the epistemic operators without
subscript). In order to compare these two notions, we take a closer look at a
possible correspondence between the operators N and �.

The first question is whether given a formula α there is an X such that �X
corresponds to Nα. The intended interpretation of Nα is that the agent “knows
at most ¬α”, so “corresponds” should at least require that ¬α ∈ X . However,
the following is a sound inference rule in Levesque’s logic:

α → β

Nα → Nβ

and it should thus be the case that ¬β ∈ X too. That does not follow automat-
ically in our logic, and we cannot define X to include all such ¬βs since there
are infinitely many and X must be finite. Thus, we cannot express Nα directly
by �iX .

The second question is the other direction: given a set X , is there an α such
that Nα corresponds to �X? Again, we should at least require N¬

∧
X to hold,

since otherwise the agent might know something which is not specified by X .
It follows that, to get the proper semantics for negation, we should require that
¬N¬

∧
X holds whenever ¬ � X holds. But take X such that the conjunction

is an inconsistency:
∧

X = ⊥. Now N¬⊥ does hold — but it holds trivially: it
is in fact valid in Levesque’s logic. So if ¬ � X , for the given X , it can never
be the case that ¬N¬

∧
X holds. Thus, for inconsistent X , these two formulae

�X and Nα do not have corresponding semantics since the latter can never be
false while the former can. In other words, we cannot express �X directly by
Nα, either.

As an illustration of a situation where our ♦ operator might express an agent’s
knowledge more realistically than the O operator is when we want to model an
agent’s explicit knowledge at a point in time when it has computed only the
formulae p → q and p (and not yet q). From O((p → q) ∧ p) it follows that Bq
– which is not true – but from ♦{p → q, p} it does not follow that Kq.

Although these observations are not a full formal analysis of the respective ex-
pressive power of the two logics, they seem to confirm the idea that the syntactic
and semantic approaches are fundamentally different.

6 Conclusions

In this paper we investigated syntactic operators, similar to those used in several
logical models of multi-agent systems such as the logic of general awareness [11].

We introduced a “knows at most” operator in order to increase the expressive-
ness of the epistemic language with respect to syntactic structures, and investi-
gated strong axiomatization of the resulting logic. The new operator destroyed
semantic compactness and thus the possibility of a strongly complete finitary



74 T. Ågotnes and M. Walicki

axiomatization, but we presented a strongly complete infinitary axiomatization.
An interesting result is that we have a strongly complete finitary axiomatization
if we make the assumption that the agents can know something which is not
expressible in the logical language. The results are a contribution to the logical
foundation of multi-agent systems.

Related work include the classical syntactic treatment of knowledge mentioned
in the introduction and modeled in a possible worlds framework by [1] as de-
scribed in Section 2. The �i operator is new in the context of syntactic models.
It is however, as we discussed in Section 5, similar to Levesque’s N operator
[33]. Although a full formal comparison between the relative expressive power of
these two logics are outside the scope of this paper, and is left as an opportunity
for future work, the discussion in Section 5 indicates that despite apparent sim-
ilarities the syntactic and the semantic approaches are fundamentally different
— also when it comes to “only knowing”. We saw that a correspondence be-
tween the operators was obstructed by that fact that the syntactic logic has no
closure condition (in the first “question” in Section 5) and the fact that it has
no consistency condition (in the second “question” in Section 5). The syntactic
“at most” operator is an alternative to the “only knowing” operator when these
two conditions cannot be assumed.

In [31] we investigate the �i and �i operators in the special case of agents who
can know only finitely many syntactic formulae at the same time. Completeness
results for such finitely restricted agents build upon the results presented in this
paper. Another possibility for future work is to study other special classes of
syntactic structures.

In this paper we have only studied the static aspect of syntactic knowledge.
In [14], we discuss how syntactic knowledge can evolve as a result of reasoning
and communication, i.e. a dynamic aspect of knowledge.
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grants 166525/V30 and 146967/431 (MoSIS) from the Norwegian Research
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14. Ågotnes, T., Walicki, M.: Syntactic knowledge: A logic of reasoning, communication
and cooperation. In Ghidini, C., Giorgini, P., van der Hoek, W., eds.: Proceedings
of the Second European Workshop on Multi-Agent Systems (EUMAS), Barcelona,
Spain (2004)

15. Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-
bounded agents. In: Proc. of the Third Intern. Joint Conf. on Autonomous Agents
and Multi-Agent Syst. (AAMAS 2004), ACM Press (2004) 606–613

16. Fagin, R., Halpern, J.Y.: Belief, awareness and limited reasoning. In: Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
CA (1985) 491–501

17. Hadley, R.F.: Fagin and halpern on logical omniscience: A critique with an alter-
native. In: Proc. Sixth Canadian Conference on Artificial Intelligence, Montreal,
University of Quebec Press (1986) 49 – 56

18. Konolige, K.: What awareness isn’t: A sentential view of implicit and explicit be-
lief. In Halpern, J.Y., ed.: Theoretical Aspects of Reasoning About Knowledge:
Proceedings of the First Conference, Los Altos, California, Morgan Kaufmann Pub-
lishers, Inc. (1986) 241–250

19. Huang, Z., Kwast, K.: Awareness, negation and logical omniscience. In van Eijk, J.,
ed.: Logics in AI, Proceedings JELIA’90. Volume 478 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin (1991) 282–300

20. Thijsse, E.: On total awareness logics. In de Rijke, M., ed.: Diamonds and Defaults.
Kluwer Academic Publishers, Dordrecht (1993) 309–347

21. Halpern, J.: Alternative semantics for unawareness. Games and Economic Behav-
iour 37 (2001) 321–339

22. Montague, R.: Pragmatics. In Klibansky, R., ed.: Contemporary Philosophy: A
Survey. I. La Nuova Italia Editrice, Florence (1968) 102–122 Reprinted in [40, pp.
95 – 118].

23. Montague, R.: Universal grammar. Theoria 36 (1970) 373–398 Reprinted in [40,
pp. 222 – 246].

24. Scott, D.S.: Advice on modal logic. In Lambert, K., ed.: Philosophical Problems
in Logic. D. Reidel Publishing Co., Dordrecht (1970) 143–173

25. Moreno, A.: Avoiding logical omniscience and perfect reasoning: a survey. AI
Communications 11 (1998) 101–122

26. Sim, K.M.: Epistemic logic and logical omniscience: A survey. International Journal
of Intelligent Systems 12 (1997) 57–81
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