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Abstract. In multi-agents systems, incompleteness, due to either com-
munication failure or response delay, is a major problem to handle. To
face incompleteness, frameworks for speculative computation were pro-
posed (see references [5L[6L[7]). The idea developed in such frameworks is
to allow the asking agent, while waiting for the slave agents to reply, to
reason using default beliefs until replies are sent.

In particular, K. Satoh and K. Yamamoto [7] proposed a framework
that allows an agent not only to perform speculative computation, but
also to accept iterative answer revision for yes/no questions. In this pa-
per, we present an extension of the framework for more general types of
questions using constraint logic programming (CLP).

1 Introduction

Multi-agent systems are very fashionable and convenient, because they make it
possible, for instance, to take advantage of multi-processor machines, and also
make it possible to design human-like efficient organizations of agents. The main
limitation to such an approach is that, as also arises in human organizations,
communication may be an issue: delayed or broken, it leads to incompleteness
of the information in the reasoning structure.

This is a concrete concern when we consider distributed systems such as the
Internet, in which communication is indeed not guaranteed, and even if we could
guarantee it, communication may either take time, or agents themselves may
delay their sending information.

For such non-ideal, but as we believe, practical situations, when problem-
solving is at stake, frameworks for speculative computations were proposed: first
for yes/no questions only [6], and then for general questions [B] using constraints.

K. Satoh et al. [6] and K. Satoh, P. Codognet, and H. Hosobe [5] only provided
the possibility for the master agent to perform speculations and a returned
answer from the slave agent is final and with no possibility of a change in answers.
However, if we let every agent perform speculative computation, the asked agent
may revise his answer since the previous answer sometimes depends on the asked
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agent’s belief, which might turn out to be false. Therefore, a chain reaction of
belief revision among agents might occur, which was firstly observed by K. Satoh
and K. Yamamoto [7], and they provide a revisable speculative computation
method for yes/no questions. The essential part of their work is a dynamic
iterative belief revision mechanism that can handle a revision of an answer for
query even during the execution.

Belief revision is indeed very important for both the sake of flexibility (infor-
mation is processed before it is complete), and speed of computation (time is
saved in case prior information is later entailed).

We combine the methods proposed by K. Satoh et al. [B,[7], and extend them,
so that we can handle iterative answer revision for a query with constraints. We
also complete these methods with the ability to incorporate disjunctive answers.
So, the main contribution from this paper is the definition of the framework
that enables to perform speculative computations on constraints, while handling
belief revision, and that handles disjunctive answers as well. In particular, the
main challenges with this framework are the following;:

— First, processing speculative constraints, as shown by K. Satoh et al. [5], is
manageable when belief revision is not considered. In our research, belief re-
vision is made possible because it enables more speculative computation in
multi-agent systems. This makes the problem much harder: the process man-
agement needs to be modified to enable changes in the computation at any
time, while maintaining a reasonable balance between not being too space-
consuming, and not loosing too much time (i.e., we don’t want to start from
scratch all the time). The process management is presented in detail in this
paper, as well as the results on the space complexity of our operational model.

— The second challenging point described in this paper is the way disjunction
is now handled in the framework we propose. Indeed, considering the situ-
ation where each agent’s behavior is specified as a CLP program, we need
to handle alternative answers, since these answers may come from differ-
ent derivations in CLP. By manipulating such alternative answers, we face
another complication, in that we need to distinguish a revised answer of
a previous answer, from an answer derived from an alternative derivation
path. To solve this problem, we devise an answer entry that keeps track of
the usage status of the answer in processes. This new feature impacts the
way processes are managed, as described in Section [3 and therefore makes
the problem more complicated.

For an iterative belief revision, many proposals have been described. As far
as we know, existing frameworks separate reasoning and belief revision, except
those by K. Satoh et al. [5L6L[7] and that by F. Sadri and F. Toni [4]. Our frame-
work in this paper is along the line of the works of K. Satoh et al. in a more
general setting. F. Sadri and F. Toni proposed an abductive logic programming
proof procedure, called LIFF, that enables the interleaving of belief revision and
reasoning. The advantage of LIFF is that it allows the addition and deletion
of rules, while our framework processes only the addition and deletion of con-
straints. However, our framework allows predicate cases, while LIFF handles
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only propositional cases. In addition, our framework does not require recompu-
tation for constraint narrowing, whereas LIFF needs to recompute goals related
to updated rules. Also, our framework performs computation along plausible
paths by using default rules, while LIFF does not adopt such explicit control.

There are works on the formalization of an agent in terms of logic program-
ming, such as that conducted by R. A. Kowalski and F. Sadri [3]. Although
these works are important in their own right, our paper pursues another branch
of investigation in the context of speculative computation.

The most closely related research would be constraint programming languages,
such as Andorra Kernel Language (AKL) [2] and Oz [8], which perform a kind
of speculative computation. AKL allows local speculative variable bindings in
a guard of each clause until one of the guards succeeds, and Oz can control
multiple computation spaces, each of which represents an alternative path of
constraint processing. As far as we understand, however, speculative computa-
tion used in these languages is mainly meant for or-parallel computing, where all
alternative paths of computation are executed in parallel, until one of the paths
eventually succeeds. On the other hand, we regard a speculative computation
as a default computation where the most plausible paths of computation are
executed. Moreover, they do not consider any revision of the answers.

The structure of the paper is as follows. We firstly define the framework for spec-
ulative constraint processing and semantics of the framework. Then, we describe
an operational model, show an example of an execution, and state correctness of
our model. Finally, we discuss space complexity issues, before concluding.

2 Speculative Constraint Processing

In this section, we provide a framework of speculative constraint computation
based on the CLP framework [I]. This framework is designed so that an agent not
only performs speculative constraint processing but also accepts revised and alter-
native answers. We then define the semantics of this framework, in Sub-section[Z.2

2.1 Framework Definition

Definition 1. Let X be a finite set of constants. We call an element in X a slave
agent identifier. An atom is of the form either p(t1, ..., tn) orp(t1, ..., t,)QS, where
p is a predicate, t;(1 <1 < n)is a term, and S is in X.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system, is a triple (X, A, P), where:

— X is a finite set of constants;
— A is a set of rules of the following form, called default rule w.r.t. QQS':

QQS — 1,
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where QQS is an askable atom, each of whose arguments is a variable, and C'
is a set of constraints, called default constraint for QQ.S;
— P is a constraint logic program, that is, a set of rules R of the form:

H C’”.Bl7 BQ, ceny Brm

where:
e H is a non-askable atom; we refer to H as the head of R, denoted as
head(R);
o C is a set of constraints, called the constraint of R, and denoted as
const(R);

e cach B; of By, ..., By, is either an askable atom or a non-askable atom, and
we refer to By, ..., By as the body of R denoted as body(R).

Note that a default is not necessarily specified for every askable atom. Moreover,
we allow multiple defaults for the same askable atom.

Example 1. We consider the following example of a hotel room reservation. There
is a master agent m: m asks travelers a and b. If both travel, m reserves a twin
room. If only one of them travels, m reserves a single room. Agent m has default
information about the status of a and b for days 1, 2 and 3, but the real status will
be obtained directly from a and b, and the status is therefore likely to be changed.

T example can be represented as the following multi-agent system (X,
A, P)Y:

— X is the set of slave agents. Here, there is one master agent, m, and two slave
agents, a and b. Therefore, X' = {a,b}.

— A is the set of default information (default rules), assumed by the master
agent. In particular, let us suppose that m assumes that a is free on days 1
and 2, but busy on day 3, and that b is free on day 2, and busy on day 1. Then
the corresponding set A is as follows:

A={dy: fr(D)Qa—D=1]|,
dy: fr(D)Qa—D=2|, d3: bs(D)Qa— D=3,
dy: fr(D)@Qb—D=2|, ds5: bs(D)@Qb—D=1|.}

Let us remark that it is not necessary for default information to exist for all
cases. In particular, m has no default information concerning the status of b
on day 3.

— P is a constraint logic program, to be solved by agent m. In our case of the
hotel room reservation with the two travelers, it is made of the following set
of rules:

L A string beginning with an upper-case letter represents a variable and a string be-
ginning with a lower-case letter represents a constant. We abbreviate “free” as fr,
“busy” as bs, “travel” as trvl, “reserve” as rsv, “twin room” as tr, and “single room”
as sr.
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rsv(R, L, D) «— R=tr, L=[a,b]||fr(D)Qa, fr(D)Qb.
rsv(R, L, D) «— R=sr, L=|a]|| fr(D)Qa, bs(D)Qb.
rsv(R, L, D) «— R=sr, L=[b]||bs(D)Qa, fr(D)Qb.

In order to solve this constraint satisfaction problem, agent m will have to ask
agents a and b about fr(D)Qa, bs(D)Qa, fr(D)Qb, bs(D)Qb.

2.2 Semantics of Speculative Constraint Processing

For the semantics of the above framework, we index the semantics of a constraint
logic program by a reply set, which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules in the form:
Qas < |,

where QQS is an askable atom, each of whose arguments is a variable, and C is a
constraint over these variables.

Let (X, A, P) be a framework for speculative constraint computation, and R be
a reply set. A belief state w.r.t. R and A is a reply set defined as:

RU{“QQS — C|7e A| -3 s.t. “QQS « C'||” € R}
and denoted as BEL(R, A).

We introduce the above belief state since, if the answer is not returned, we use a
default rule for an unreplied askable atom.

Definition 4. A goalis of the form «— C|| By, ..., By, where C is a set of constraints
and the B;’s are atoms. We call C' the constraint of the goal and By, ..., B, the body
of the goal.

Definition 5. A reduction of a goal — C||Bx, ..., B, w.r.t. a constraint logic pro-
gram P, a reply set R, and an atom By, is a goal — C'||B’ such that:

— thereis a rule R in P UR s.t. C A (B; = head(R)) A const(R) is consistenfd;
— C"=C A (B; = head(R)) A const(R);
- B' = {Bl7 ~-~Bi—17 Bi+1, veey Bn} ] bOdy(R)

Definition 6. A derivation of a goal G =« C||Bs w.r.t. a framework for spec-
ulative constraint computation F = (X, A, P) and a reply set R is a sequence of
reductions “— C||Bs”,..., “— C'|0’B w.r.t. P and BEL(R, A), where in each, re-
duction step, an atom in the body of the goal in each step is selected. C' is called
an answer constraint w.r.t. G, F, and R. We call a set of all answer constraints
w.r.t. G, F, and R the semantics of G w.r.t. F and R.

2 A notation B; = head(R) represents a conjunction of constraints equating the argu-
ments of atoms B; and head(R).
3 () denotes an empty goal.
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In the above definition, we only consider the most recent reply set, whereas a reply
set might be varied during execution according to the slave agent’s answer revi-
sion. We use the most recent reply set because it reflects the current situation of
the slave agents. Let us remark that the order of reply messages is assumed to be
preserved; that is, reply messages are always received by the master agent in the
order that they are sent by the slave agent.

3 Operational Model for Speculative Computation with
Iterative Answer Revision

3.1 Overview of the Operational Model

The execution of the speculative framework is based on two phases: a process re-
duction phase and a fact arrival phase. The process reduction phase is a normal
execution of a program in a master agent, and the fact arrival phase is an inter-
ruption phase when an answer arrives from a slave agent.

For the operational model, we use the following two kinds of objects: a process
and an answer entry.

Each process represents an alternative way of computation. Processes are cre-
ated when a choice point of computation is encountered, such as case splitting,
default handling, and answer arrival. A process becomes a finished process when
the body of the associated goal with the process becomes empty. A process fails
when some used default constraints are found to contradict the newly returned
answer.

An answer entryis used to distinguish alternative answers and to detect which
old answer corresponds to the newly revised answer. This detection is done by
attaching an ID to each answer. If a new answer with an ID different from any
existing answer comes, it is an alternative answer. Otherwise, the new answer is
considered as a revised answer to the old answer with the same ID.

Figures [[H4] intuitively explain how processes are updated according to ask-
able atoms. In the tree, each node represents a process, but we only show con-
straints associated with the process. The top node represents a constraint for
the original process, and the other nodes represent added constraints for the re-
duced processes. Let us note that we specify true for non-top nodes without added
constraints, since the addition of the ¢rue constraint does not influence the so-
lutions of existing constraints. The leaves of the process tree represent the cur-
rent processes. Therefore, the processes that are not in the leaves are deleted
processes.

Figure[[lshows a situation of the processes represented as a tree when an askable
atom, whose reply has not yet arrived, is executed in the process reduction phase.
In this case, the current process, represented by the processed constraints C, is
split into two different kinds of processes: the first one is a process using default
information, Cy, and is called default process@; and the other one is the current
process C'itself, called original process, suspended at this point.

4 In this figure, we assume that there is only one default for brevity.
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/\

true
suspended

Fig. 1. When QQS is processed during the process reduction phase

/\

true
true true CrAN=Cq true
suspended suspended suspended

Fig. 2. When first answer Cy for QQS arrives

Note that, if there are multiple definitions of defaults, we will have more than
one default process, but still only one suspended process. In addition, let us note
that the reason for suspending the processes (which is, keeping them in memory),
is that in case of a contradictory revision of the default, or the arrival of later
alternative answers, it is essential to remember the original processes to be able
to restore them.

When, after some reduction of the default processes (represented in Fig. 2 by
dashed lines), the first answer comes from a slave agent, expressing constraint C'y
for this askable literal, we update the default processes as well as the original sus-
pended process as follows:

— Default processes are reduced to two different kinds of processes: the first kind
is a process adding Cy to the problem to solve, and the other is the current
process itself which is suspended at this pomtﬁ

— The original process is reduced to two different kinds of processes as well: the
first kind is a process adding -Cyq A C, and the other is the original process,
suspended at this point.

Let us remark that although the tree of processes grows, only the leaves are kept
in memory.

To intuitively explain the correctness of the above process update, we define the
frontier, which represents the computation status of all alternative derivations. A
frontier w.r.t. a goal « C||Bs, a framework for speculative constraint computa-
tion (¥, A, P), and a reply set R, is a set of goals defined as follows:

5 Let us remark that this splitting process is similar to the splitting process above-
described for the case of a first default used.
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1. The set consisting of the initial goal, {< C||Bs} is a frontier.

2. Let F' be a frontier w.r.t. the above initial goal, the framework, and the reply
set. If a goal G is in F', B is an atom in G, and RGs = {G'| G’ is a reduction
of G wr.t. P, BEL(R, A), and B}, then F\{G} U RGs is a frontier.

Then we have the following properties.

Lemma 1. Let «+ C||Bs be a goal, F be a frontier of this goal, and C' be a con-
straint. If we add C' to the constraints of every goal in F', then the disjunctions of all
answer constraints of these modified goals is logically equivalent to the disjunction
of all answer constraints of the goal — C N C'||Bs.

Lemma 2. Let— C||Bs be a goal, R be a reply set, and C' be a constraint. Then,
the disjunction of answer constraints of — C A C'||Bs and «— C A —C'||Bs is
logically equivalent to the disjunction of all answer constraints of <— C||Bs.

Let «— C||Bs be a goal containing Q@S. Suppose that it is reduced into «
C A Cq||Bs\{QQ@S} by a default rule “Q@QS — Cyl||”. Let F be a frontier of
— C A Cq||Bs\{QQ@S} when the first reply “Q@QS «— C[||” is returned. Since
our semantics considers the most recent replies, at this point, we should consider:

— C A Oy Bs\{Qas},

instead of:

— C ACy||Bs\{QQS}.

One possibility to implement this change is that we just discard F' and invoke a
new goal «— C A Cy||Bs\{Q@S}. However, in this case, we throw every compu-
tation away before F' is obtained. To retain the previous computation as much as
possible, we propose the following execution.

1. We add Cy to the constraint of every goal in F'. Let us remark that the dis-
junction of all answer constraints from this new frontier is logically equivalent
to the disjunction of all answer constraints of «<— C' A Cq A Cf||Bs\{Q@QS}, as
Lemma [l states. This computation keeps the previous computation, which is
consistent with the new reply (Cy).

2. In addition to the above computation, we also start computing a new goal:

— C A—=Cqy A Cy||Bs\{Q@S}

to guarantee completeness. This is because the disjunction of all answer con-
straints derived from « C A Cyq A Cy||Bs\{QQS} and — C A =Cy A
Cy||Bs\{QQS} is logically equivalent to the disjunction of all answer con-
straints derived from < C A C¢|| Bs\{Q@S}, as Lemma 2 states.

When an alternative answer, with the constraint C,, comes from a slave agent
(Fig. B)), we need to follow the same procedure as when the first answer comes
(Fig.[2)), except that now the processes handling only default information are sus-
pended. So, this is done by splitting the suspended default process(es), in order
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C, true C.  true Co N=Cyq  true
suspended suspended suspended

Fig. 3. When alternative answer C, for Q@QS arrives

to obtain the answer constraints that are logically equivalent to the answer con-
straints of:

— C'ACyAC,|Bs\{Q@S},

as well as by splitting the suspended original process, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of «— C' A—=Cy A
C.||Bs\{Q@S} (Fig.B). By gathering these answer constraints, we can compute
all answer constraints for the alternative reply.

On the other hand, when a revised answer with the constraint C,. arrives, all
processes using the first (or current) answer are split, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of:

— CACy AC,||Bs\{QasS},

and the suspended original process is split as well, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of < C'A—=Cy A
C,||Bs\{QQS} (Fig. H). By gathering these answer constraints, we can override
the previous reply by the revised reply.

3.2 Preliminary Definitions

A process is either an ordinary process or a finished process. An ordinary process
P is an expression of the form (PID,C,GS, WA, AA), where:

— PID: the ID for a process denoted as pid(P);

— C'" the current constraint in the goal denoted as pconst(P);

— GS: the body in the goal denoted as gs(P);

— W A: aset of pairs (QQS, WAID), where QQS is an askable atom and WAI D
is the ID of an answer entry whose answer is awaited by the process. We denote
W A as wa(P);

— AA: aset of pairs (QQ@QS, AAI D), where QQS is an askable atom and AAID
is the ID of an answer entry whose answer is used in the process. We denote
AA as aa(P).
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Cr  true Cy  true CyN=Cy true
/’4‘ suspended ’/’\‘ suspended /'A\

e 0 "

G G ¢ G Cr G GGy susgélﬁ%ed

Fig. 4. When revised answer C, for QQS arrives

A finished process F'P is an expression of the form (Query, FPID, C), where:

— Query: an initial query for this process. It is used to send an answer to the
asking agent;

— FPID: the ID for a process. This is also used when this answer is returned to
the asking agent;

— (' the current constraint in the process.

For simplicity, an ordinary process is sometimes just called a process.
An answer entry A is an expression of the form (QQS, AID, C,U PIDs), where:

— QQS: the query given to the other agent denoted as agq(A);

— AID: the ID for an answer entry denoted as aid(A). We have the special IDs,
“o0” for the answer entry created when this query is firstly asked, and “d;”,...
for default answers. We call an answer entry with the ID “0” an original answer
entry for Q@S an answer entry with an ID of “d;” ... a default answer entry,
and other answer entries ordinary answer entries;

— C': the most recent answer constraint for Q@S for answer entry A denoted as
aconst(A). The constraint of the original answer entry is defined as true;

— UPIDs: the set of IDs of processes using an answer in A denoted as ups(A).

3.3 Process Reduction Phase

In the process reduction phase, we process the constraints in a regular CLP way.
The only difference is that we may have to consider default information, or an-
swers. In this subsection, we describe how we manage processes, following the
above-given definitions.

We do the following until no more processes can be processed.

— When a query Qinit@Sseiy is asked from another agent S’, where S ¢ is the
ID for this agent, we record Qi as the initial query and S’ as the asking
agent. We then create a new process (PID, true, Qinit, 0, ), where PID is a
new process 1D.
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— If there is an ordinary process P such that gs(P) = wa(P) = 0,
1. We send an answer to the asking agent S’ that is of the form:
<Qinit@sself7pid(P)7pcon5t(P)>'
2. We change this process into a finished process of the form:
(Qinit@Sserr, pid(P), pconst(P)).
— Else if there is a process P such that gs(P) # () and wa(P) = ), then we select
an atom L in gs(P) and reduce L as follows:
e If L is a non-askable atom,
1. For every rule R such that pconst(P) A (L = head(R)) A const(R) is
consistent, we do the following:
(a) We create a new process (newPID,newC,GS, 0, AA), where
* newPID is a new process ID;
*x newC := pconst(P) A (L = head(R)) A const(R);
* GS :=body(R) U gs(P)\{L};
x AA = aa(P).
(b) For every answer entry A s.t. (aq(A), aid(A)) in aa(P),
ups(A) := ups(A) U {newPID}.
2. For every answer entry A s.t. {aq(A), aid(4)) in aa(P),
ups(A) = ups(A)\{pid(P)}.
3. We delete P.
e If L is an askable atom QQS,
1. We do either of the following according to non-arrival/arrival of the
answer.
* If there is no ordinary answer entry of the form
(QQS, AID,C,UPIDs), then for each default “Q@QS «— Cy||”
such that pconst(P) A Cy is consistent, we do the following:
(a) We create a new process (newPID, newC,GS, 0, AA), where
- newPID is a new process 1D;
- newC = pconst(P) A Cyg;
. GS = gs(P)\{QUS};
- AA = aa(P)U{{QQS, d)}, where d is an ID for this default.
(b) We associate the newly created process with a default d of Q@S
as follows:
- If there is a default answer entry
Aq = (QQS,d,Cy, UPIDSd>7 then
ups(Aq) := UPIDsg U {newPID}.
- Else if there is no default answer of the form
(QQS,d,Cy,UPIDsg), we create an answer entry
(QQS,d,Cy, {newPID}).
(c) For every answer entry A s.t. (ag(A), aid(A)) in aa(P),
ups(A) = ups(A) U {newPID}.
% Else if there is an ordinary answer entry of the form
(QQS, AID,C,UPIDs), then for each ordinary answer entry

(QQS, AID,C,,UPIDs) s.t. pconst(P)AC, is consistent, we do
the following:
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(a) We create a new process (newPID, newC,GS, ), AA), where
- newPID is a new process 1D;
- newC := pconst(P) A Cy;
- GS:=GS\{Qas};
- AA = aa(P)U {{QQS, AID)}.

(b) For every answer entry A s.t. (ag(4), aid(A))in aa(P),
ups(A) := ups(A) U {pid(P)}.

2. We associate P with Q@S as follows:

+ If there is an original answer entry
A, = (QQS, o, true,UPIDs,), then
ups(A,) := UPIDs, U {pid(P)}.

+ Else if there is no original answer entry of the form
(QQS, o, true, U PIDs), we create an answer entry
(QQS, o, true, {pid(P)}), and send a question @ to S.

3. wa(P) := {{QQS,0)}.

3.4 Fact Arrival Phase

Suppose that an answer is returned from an agent .S for a question Q@S of the form
(QQS, AID, C). Then, we do the following after one step of process reduction is
finished.

— If there is no answer entry of the form (QQS, AID, Cy, UPIDs’)E,

1. We create an answer entry (Q@S, AID, C,UPIDs), where UPIDs is ini-
tially set to (), but will be incremented as shown below.

2. For every default answer entry for a default d of the form
(QQS,d,Cy,UPIDsg) and for every process Py such that pid(P;) €
UPIDsgy, we do the following:

o If P; is a finished process of the form (Qinit@Ssers, PID,
Crinal) 8t. C A Crinai # Crinal, we send an answer of the form
(QinitQSserf, PID,C A Crinal) to the asking agent S’.
e If P, is an ordinary process, we do the following:
(a) wa(Py) :=wa(Py) U {{QQS,d)}.
(b) aa(Py) == aa(P)\{(QES, d)}.
(¢) If C A pconst(Py) is consistent, we do the following:
i. We create anew process (newPID,newC,GS,W A, AA), where
newPID is a new process 1D;
newC = C A pconst(Py);
GS = gs(Pa);
WA = wa(P)\{(QQS, )}
AA = aa(Py) U{{QQS, AID)\{(QQS,d)}.
ii. UPIDs:=UPIDsU {newPID}.
3. Pick up the original answer entry of the form (QQS, o, true, U PIDs,).
4. For every process P, such that pid(P,) € UPIDs, and C Apconst(P,) A\
A@as—c,|yea Ca is consistent, do the following:

EE S R

5 This means that the arriving answer is a first or alternative answer to the query Q@5.
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(a) We create a new process (newPID, newC,GS, WA, AA), where
e newPID is a new process ID;

newC := C A peonst(P) N \gas—cy|yea "Cas

GS = 98(P0)3

WA = wa(P,)\{(QGS, )}

AA = aa(P,) U {{QQS, AID)}.
(b) UPIDs :=UPIDsU {newPID}.

— Else if there is an answer entry of the form (Q@S, AID, Cy, UPIDs'\I,

1. We change (QQS,AID,C;, UPIDs') into (QQS,AID,C,UPIDs),
where UPIDs := UPIDs' initially but will be incremented/decremented
as shown below.

2. For every process P such that pid(P) € UPIDs' do the following;:

e If P is a finished process of the form (Qinit@QSseif, PID, Crinal) s.t.
C A CFinal # Crinal, we send an answer of the form
(QinitQSseif, PID,C A Crinar) to the asking agent S’.
e If P is an ordinary process, we do the following:
x If C' A pconst(P) is consistent,
peonst(P) := C A pconst(P).
* Otherwise, delete P and
UPIDs := UPIDs\{pid(P)}.

3. Pick up the original answer entry of the form (QQS, o, true, U PIDs,).

4. For every process P, such that pid(P,) € UPIDs, and C A pconst(P,) A
—C's is consistent, we do the following:

(a) We create a new process (newPID,newC,GS,W A, AA), where
e newPID is a new process 1D;
o newC := C A pconst(P,) A =Cy;
e GS = 98(P0)3
WA := wa(P,)\{{QQS, 0)};
o AA :=aa(P,)U{(QQS, AID)}.
(b) UPIDs :=UPIDsU {newPID}.

3.5 Execution Trace Example

We show a part of an execution trace for a question rsv(R, L, D) in Example [
In this trace, we consider a scenario that highlights process updates upon arrivals
of an alternative answer and a revised answer. We firstly give the initial process
(po, true, {rsv(R,L,D)},0,0).

1. Select process pg and reduce it to p1, p2, ps3.

Processes:
<p1,{R=tT, L= [a b]}’ {fT(D)@aa f’l“(D)@b},@,@),
(p2,{R=sr, L= fr(D)Qa,bs(D)@b},0,0),

al}. {
(p3,{R=sr, L=1b]}, {bs(D)Qa, fr(D)Qb},0,0).

)

" This means that the arriving answer is a revised answer of one of the previous answers
to the query QQS.
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2. Select p1, and ask a question fr(D)@a, and create answer entries for fr(D)Qa
and new processes py, ps for default answers.
Answer entries:
(fr(D)Qa,o,true, {p1}),
(fr(D)Qa,di,{D =1}, {ps}),
(fr(D)Qa,ds, {D = 2}, {ps}).
Processes: ps, p3,
(pa, 0, U{D = 1}, {fr(D)@b}, 0, {({fr(D)Qa,d;)} B,
e (D = 2}, L (D)aby.0.{ (17D o
(p1. bur. { Fr(D)@bY, {{fr(D)@a, o)}, 0).

3. Suppose that (fr(d)Qa, a;, {D=2}) is returned from agent a. We suspend py
and ps since they use a default answer and then create new processes pg from
ps5 since the default answer used in ps is consistent with the returned answer.
Note that we create no new process from p; since the returned answer contra-
dicts one of the negations of default answers.

Answer entries: fra,, fraq,, fmdﬂ,

<fT(D)@a7 ai, {D = 2}’ {p6}>'

Processes: p1, p2, ps,

(p6; Our2, { fr(D)@b}, 0, {(fr(D)Qa, a1)}),

(pa, Opr1, { fr(D)@b}, {(fr(D)Qa,dy)},0)

(95 Our2. {Fr(D) @b}, {(Fr(D)aa, )}, 010

4. Suppose that (fr(D)Qa, az, {D = 3}) is returned from the agent a. Since this
has a different answer ID from the previous answer in the last step, this an-
swer is an alternative answer. Then, we create a new process from p; that is
the original process for query fr(D)@a. Note that we create no new process
from the processes created by default answers for fr(D)Qa since this answer
contradicts the defaults.

Answer entries: frao, fraq,, frad,, fraal,
(fr(D)Qa,az,{D = 3}, {pr}).
Processes: p1,p2, p3, p4, ps, D6,

(p7, 01 U{D =3,D # 1, D # 2}, {fr(D)@b}, 0, {(fr(D)Qa, as)}).

5. Suppose that (fr(D)@a,a1,{D = 1}) is returned from the agent a. The ID
a1 for the returned answer indicates that this answer is a revised answer for
“D = 27. Therefore, we revise every process using a1, which is recorded in the
answer entry fra,,. This is pg, but its associated constraint is contradictory
to the returned answer, and therefore we kill this process. Then, we create a
new process pg from p;.

80, = {R=1tr,L = [a,b]}.
% fra, = (fr(D)Qa, o, true,{p1}),
fraa, = (fr(D)Qa,d1,{D = 1},{pa}),
fraq, = <f7‘(D)@a7 dz, {D = 2}» {p5}>'
10 Ot = 04 U {D = 2} and 0,1 = 04 U {D = 1}.
Y fraa, = (fr(D)Qa, a1, {D =2}, {pe}).

)
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Answer entries: fra,, fraq,, fraq,, fraa2,
(fr(D)Qa,a1,{D = 1}, {ps}).

Processes: p1,p2, p3, pa, ps, p7,

<p87 O U {D =1,D 7é 2}7 {fT(D)@b}v ®7 {(fr(D)@a, a1>}>'

4 Correctness of the Operational Model

We guarantee that the above operational model gives a correct answer w.r.t. the
most recent replies. Let us note that the order of reply messages is assumed to be
preserved.

Theorem 1. Let (¥, A, P) be a framework for speculative constraint computa-
tion. Suppose that there is an ordinary process P such that gs(P) = wa(P) = ()
for the initial query Qinqt. Let

R ={“QQS — C||” | there exists an answer entry (QQS, AID,C,UPIDs)
s.t. (QQS, AID) € aa(P)}.

Then, there exists an answer constraint C' w.r.t. Q;nit, the framework, and R s.t.
v (peconst(P)) entails wy (C'), where V is the set of the variables that occur in
Qinit, and my is the projection of constraints onto V.

Proof Sketch. See Appendix. (]

5 Space Complexity of Our Approach

Our approach, compared to traditional approaches (no belief revision), generates
an additional cost in terms of space. In this section, we briefly show that the ad-
ditional cost in space is linear. This cost is observed based on the size of the set
PS of processes related to the revised or alternative answer to handle.

When a revised answer comes, say C., as shown in Fig. [t

— If C; entails the previous answer, say Cr, PS either remains the same size, or
reduces (because some processes in P.S may now have inconsistent constraints
and therefore be killed);

— If C, is inconsistent with Cy, then all the processes using Cy in PSS are killed,
the original suspended processes are duplicated and resumed with C)., and
therefore P.S grows by at most, the number of original suspended processes;

— If C. is consistent with C'y but does not entail it, P.S grows by at most, the
number of original suspended processes.

These three cases exhibit only linear (or less) behavior.

When an alternative answer comes, say C,, as shown in Fig.[3] all the processes
suspended by the first answer, as well as the original suspended processes, are
duplicated and resumed with C,. Therefore, P.S grows by at most, the number of
these suspended processes.

' fraa, = (fr(D)Qa, a2, {D = 3}, {pr}).
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As briefly covered here, the growth of the set of processes on the arrival of re-
vised and alternative answers follows a linear behavior.

6 Conclusion

In this paper, we presented an operational model for speculative constraint
processing with iterative revision for alternative answers. This paper is a general-
ization of two previous works; the work of revisable speculative computation for
yes/no questions [7] and the work of non-revisable speculative computation for
queries with constraints [5].

As for future work, we will prove the correctness and completeness for more
general forms of multi-agent systems, where every agent can perform speculative
computation. Our current framework is focused on master-slave multi-agent sys-
tems, and defines the operational model of the master agents. To handle a more
general multi-agent system, we need to guarantee the appropriate computation
of the overall system by additionally considering communication paths among
agents. For another direction, we will also consider applications for this frame-
work.
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Appendix

Proof Sketch of Theorem 1. To prove the property described in Theorem 1,
we show that a more general property holds for any existing ordinary process at
any “step” in the process reduction or fact arrival phase. By a “step”, we mean the
execution of operations in the process reduction or fact arrival phase from its be-
ginning to its end, without returning to the beginning, and without transferring to
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the other phase. Then the property that we show is the following: at any n-th step,
for any ordinary process P’, there exists a sequence of reductions “«— ||Qinit”, - - -,

“— C"|{QQS [ (QQS, o) € wa(P')} Ugs(P')”
w.r.t. P and BEL(RYY, A), such that
7y (pconst(P’)) entails my (C”),

where Rgl,) is the most recent reply set for P’ at the n-th step, which is defined in
the same way as R in Theorem 1.

Below we prove this property by induction on the progress of process reduction
and fact arrival steps.

Induction base. When a query Qinit@Ssers is asked in the initial step, a process
P’ = (PID,true, Qinit, 0, 0) is created. This process corresponds to the initial
goal “— ||Qinit”. The above property holds since pconst(P’) = true and C” =
true.

Induction step. Assume that, at the n-th step, the property holds.

Now consider the (n+1)-th step. It is straightforward to show that the property
holds for the process reduction phase.

Here we consider the processing of a first or alternative answer in the fact arrival
phase. Let the returned answer be (Q@QS, AID, C). In this case, there is no answer
entry in the form (QQS, AID,Cy, UPIDs').

Let (QQS, d, Cyq, UPIDsg) be any default answer entry and P, be any ordinary
process such that pid(P;) € UPIDsg4. By the induction hypothesis, Py satisfies
the above property for some C"" and Rg;); that is, there is a sequence of reductions
“e |Qinit”s - -, “e= C1|{QQ@SYUGS”, “ C1 A Cy||GS”, ..., “e— C1 ACq A
O {Q'QS’ |{Q'@S', 0) € wa(Py)} U gs(Py)” w.r.t. P and BEL(RY, A), such
that my (pconst(P,)) entails my (C1 ACgACs), where Cy and Cy are the constraints
obtained before and after processing Q@S respectively.

Assume that C A pconst(Py) is consistent. Then a process P’ = (newPID,C A
peonst(Py), gs(Pa), wa(Pa)\{(QQS, d)}, aa(Fy) U{(QQS, AID)}\{(QQS, d)}) is
created, and we have R = Rg) U{QQS « C||} \ {QQ@S « Cyl|}. Then we
can consider the sequence of reductions “— ||Qinit”, ..., “— C1|[{QQS}UGS”,
“— C1AC|GS?, ..., “— C1 NCAC|{Q'QS" | (Q'QS’, 0) € wa(P')} Ugs(P')”
w.r.t. P and BEL(RE?,H), A). Then, my (pconst(P')) entails m (C1 A C A C2)
since pconst(P') = C Apconst(Py) and my (pconst(Py)) entails my (C1 ACy A Ca).
Thus, the above property holds for P'.

For the processing of a first answer, this step changes Py by setting wa(Py) :=
wa(Py) U {(QQS,d)} and aa(Py) := aa(Py) \ {{QQS,d)}, and hence we have
Rgﬂ) = T\’,g:) \ {Q@S — Cy||}. In the other case (that is, for processing an
alternative answer), Py is unchanged since (QQS,d) € wa(P;) and (QQS,d) ¢
aa(Py) hold for the original Py, and therefore, we have T\’,gj_l) = Rg;). In both

cases, BEL(RS;;H), A) = BEL(REZ), A) since “QQS «— Cy||” € A. Therefore,
the above property is kept satisfied for Py.
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Next, let (QQS, o, true, UPIDs,) be the original answer entry and P, be any
ordinary process such that pid(P,) € UPIDs,. By the induction hypothesis, P,

satisfies the above property for some C”" and Rg) ; that is, there is a sequence of re-
ductions “— ||Qinit”, - .., “— C"|{QQS}Ugs(P,)” w.r.t. P and BEL(’Rgi), A),

such that my (pconst(P,)) entails 7y (C”). Since this step does not change P,, the
above property is kept satisfied for P,.

Assume that C' A peonst(P,) A A (gas—c,|pea 7 Ca is consistent. Then a
process P’ = (newPI1D,C A pconst(P,) A\ gas—c,|yea ™ Ca, 95(Fo), wa(Po) \

{{QRQAS,0)},aa(P,) U{(QQS, AID)}}) is created, and we have RgL,H) = T\’,g;) U
{Q@S — C||}. Then we can consider the sequence of reductions “— ||Qnit”, - . .,
“ C"{Q@SY U gs(P')?, “— C" A Cllgs(P')” wr.t. P and BEL(RETY, A).
Then 7y (pconst(P')) entails my (C” A C) since pconst(P’') = C A pconst(P,) A
N@as—c,|yea " Ca and my (pconst(F,)) entails my (C"). Therefore, the above
property holds for P’.

The above property is kept satisfied for the other processes that are not handled
in this case, since those processes and their most recent reply sets are unchanged.

Therefore, the above property holds for any processes after processing a first or
alternative answer in the fact arrival phase.

Similarly, we can show that the above property holds for the processing of a
revised answer in the fact arrival phase. Thus, the above property holds in all the
cases.

Since the property described in Theorem 1 corresponds to the special case of the
above property, where gs(P') = wa(P’) = (), Theorem 1 holds. O



	Introduction
	Speculative Constraint Processing
	Framework Definition
	Semantics of Speculative Constraint Processing

	Operational Model for Speculative Computation with Iterative Answer Revision
	Overview of the Operational Model
	Preliminary Definitions
	Process Reduction Phase
	Fact Arrival Phase
	Execution Trace Example

	Correctness of the Operational Model
	Space Complexity of Our Approach
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




