

Lecture Notes in Artificial Intelligence 3900
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Francesca Toni Paolo Torroni (Eds.)

Computational Logic
in Multi-Agent Systems

6th International Workshop, CLIMA VI
London, UK, June 27-29, 2005
Revised Selected and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Francesca Toni
Imperial College London
Department of Computing
180 Queen’s Gate, SW7 2BZ London, UK
E-mail: ft@doc.ic.ac.uk

Paolo Torroni
Università di Bologna
Dipartimento di Elettronica, Informatica e Sistemistica
Viale Risorgimento 2, 40136 Bologna, Italy
E-mail: paolo.torroni@unibo.it

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2.11, I.2, C.2.4, F.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-33996-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33996-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11750734 06/3142 5 4 3 2 1 0

Preface

Computational Logic in Multi-Agent Systems (CLIMA) is a series of workshops
aimed at promoting activity and exchange in the intersection of two vivid re-
search areas. Since 2000, CLIMA has provided an opportunity to researchers
to present their work on the application of general and declarative theories
grounded on computational logic to multi-agent systems specification, semantics
and procedures, and to confront ideas such as autonomy, deliberation, knowl-
edge, commitment, openness, and trust with the computational logic paradigms.
This research has encouraged the use of formal approaches to multi-agent sys-
tems research, and it has dealt with disparate issues such as implementations,
environments, tools, and verification of computational systems.

The sixth edition of CLIMA was held at City University London, UK, on June
27–29, 2005. The workshop lasted three days and included an invited lecture by
Robert A. Kowalski (Imperial College London) based on his last book. Sixty
delegates from 15 countries (UK, Italy, France, Japan, Norway, The Nether-
lands, Cyprus, Germany, Canada, Ireland, Lithuania, Poland, Spain, Sweden,
and Switzerland) attended the three-day event. Many of them were students.

CLIMA VI was innovative in many respects: beside the regular paper sessions,
where the speakers presented papers selected from around 30 submissions, and
the invited lecture, it hosted:

– a small tutorial program, with six lectures on cutting-edge CL-based agent
technology,

– the first edition of the CLIMA contest, organized by Jürgen Dix and Mehdi
Dastani, and

– the SOCS dissemination event reporting important results of an EU-funded
project at the intersection of MAS and Logic Programming.

As we felt that we had enough material in our hands, motivated by the success
of CLIMA VI we decided to propose a special edition to Springer. This volume
features an invited article by Robert Kowalski, five tutorial papers presenting
a view on the state of the art in CL-based MAS programming, four papers
describing the implemented systems that participated in the contest, introduced
by an invited paper by Jürgen Dix, Mehdi Dastani, and Peter Novak, a selection
of technical papers, and an article about SOCS. All in all, this book is a state-of-
the-art survey, authored by 56 researchers worldwide. A Program Committee of
26 top-level researchers and 40 additional reviewers contributed with their hard
work and very fruitful comments and suggestions to the technical quality of this
book: each of the 14 technical papers, 4 contest papers, and 7 invited papers
enjoyed 3 to 5 reviews, in a 2-round process in which authors could reply to the
reviewers’ comments and argue in favor of their claims.

This volume opens with an invited article by Kowalski, presenting abductive
logic programming (ALP) and its application in intelligent agents research. In

VI Preface

The Logical Way to Be Artificially Intelligent, Kowalski shows that ALP can
be used to model reactive, proactive and preactive thinking, which can be per-
formed by an agent as needed, or in advance, transforming high-level goals and
beliefs into lower-level condition-action rule form. Kowalski also shows how ALP,
proposed as a framework for constructing artificial agents, can also be used as a
cognitive model of human agents.

The book continues with three sets of papers, covering foundational aspects
of agency, agent programming, and agent interaction and normative systems.
The articles of these sections are partly extended versions of papers presented
at CLIMA VI, are partly novel, invited contributions that present, in a didactic
style, advanced topics in CL-based MAS research.

Foundational Aspects of Agency

Setting the foundations of a theory of agency involves reasoning about notions
such as agent knowledge, trust, beliefs, competence, abilities, and their relation
with the environment, e.g., through actions or access to information. To this
end, several formalisms have been used, adapted and refined, such as epistemic
and doxastic logics and the situation calculus. This part of the book presents
a selection of papers presented at CLIMA VI dealing with such foundational
aspects of agency.

In Ability in a Multi-Agent Context: a Model in the Situation Calculus, Cholvy
et al. provide a model of the notion of ability and its relation with the notion
of action in a multi-agent context in the situation calculus. The authors provide
a formal definition of the notion of ability of an agent to perform an action as
the combination of its competences and some favorable conditions that allow it
to perform that action, through the intermediary notion of “theoretical ability.”
The article is also concerned with the notion of ability of a group of agents. It
deals with the dynamic notion of “occasional ability” (depending on the state of
the world in which it is evaluated) and with the nontrivial problem of inferring
the ability of the group from the abilities of the individuals of the group.

Nguyen advocates the use of modal logic programming to deal with reason-
ing about epistemic states of agents. In Reasoning about Epistemic States of
Agents by Modal Logic Programming, he starts from the consideration that an
agent should have knowledge about other agents in the system, and when such
knowledge is only partial, it should nevertheless be able to reason about their
epistemic states, possibly by simulating them, using some assumptions. To this
end, Nguyen proposes an SLD-resolution calculus for modal logic programs in
the multi-modal logicKD4Ig5a. Such logic is intended for reasoning about belief
and common belief of agents. The author provides soundness and completeness
results and a formalization of McCarty’s wise men puzzle using KD4Ig5a to
demonstrate his ideas.

Epistemic logic frameworks for agents is also dealt within the paper Strongly
Complete Axiomatizations of “Knowing At Most” in Syntactic Structures. The
authors extend the logic language of syntactic structures based on syntactic as-
signments to model knowledge, with a new operator used to represent the posi-

Preface VII

tion that an agent “knows at most” a given finite set of formulae. The syntactic
approach is presented as a complementary approach to the modal approach,
which can be used to model certain types of agents and certain types of situa-
tions that are difficult if not impossible to model with the modal approach, e.g.,
non-ideal – rather than ideal – agents, and situations where one is interested in
explicit – rather than implicit – knowledge. In this paper, Ågotnes and Walicki
present a strongly complete infinitary system and a strongly complete finitary
system for a slightly weaker variant of the language.

Logical Spaces in Multi-Agent Only Knowing Systems presents a weak multi-
agent system of “only knowing” and an analysis of the logical spaces that can
be defined in it. Logical spaces can be used to express one agent’s apprehension
of the relations between concepts as understood by another agent, or, as the
authors demonstrate, to define a situation in which an agent cannot conceive of
a situation in which another agent has certain assumptions. Solhaug and Waaler’s
logic complements the approach to generalizing Levesque’s “All I Know” system
made by Halpern and Lakemeyer. The logic is defined entirely at the object level,
with no reference to meta-concepts in the definition of the axiom system.

Trustworthiness by Default opens with an epigraph taken from Moses’ address
to the Israelites, which the authors use to introduce a framework for reason-
ing about relative trustworthiness. The framework considers sets of information
sources as the basic trusted units, and is applied to conflict resolution and be-
lief formation at various degrees of reliability. Klüwer and Waaler show how to
construct a lattice of degrees of trustworthiness based on an assignment of rel-
ative trustworthiness to information source sets, to derive a priority structure,
and apply it to the problem of forming the right opinion. Consolidated with an
unquestioned knowledge base, this provides an unambiguous account of what an
agent should believe, conditionally on which information sources are trusted.

Decision Procedure for a Fragment of Mutual Belief Logic with Quantified
Agent Variables presents a deduction-based decision procedure for a fragment
of mutual belief logic with quantified agent variables, MBQL. The language of
MBQL contains belief, everybody believes and mutual belief modalities, vari-
ables and constants for agents. The language of MBQL is especially convenient
to describe the properties of rational agents when the number of agents is not
known in advance, and helps simplifying expressions when the exact number of
agents is known instead. In this article, Pliuškevičius and Pliuškevičienė also pro-
pose a sequent calculus with invertible rules MBQ∗ for the language of MBQL,
and a loop-check-free sequent calculus for a fragment of MBQL.

Agent Programming

While modal logics have proven very useful to model and reason about agent
mental states and their relations, the use of temporal logics and declarative
programming is favored by many researchers when it comes to constructing op-
erational agent systems and to implementing MAS based on their logical speci-
fications. This volume includes four papers about state-of-the-art (multi-)agent
frameworks based on extensions of logic programming, and one presenting tools

VIII Preface

for execution and proof based on temporal logic. This part contains four of them,
followed by two CLIMA papers about agent programming.

In Implementing Temporal Logics: Tools for Execution and Proof, Fisher
presents an overview of a selection of tools for execution and proof based on tem-
poral logic, and outlines both the general techniques used and problems encoun-
tered in implementing them. The tools considered are mainly theorem-provers
and (logic-based) agent programming languages, including clausal temporal res-
olution and executable temporal logics, and several of their implementations.
This tutorial paper concentrates on general principles, with the aim of giving
the reader an overview of the ways temporal logics are handled and used as the
basis for both programming and verification.

Jason is a multi-agent systems development platform based on an interpreter
for an extended version of AgentSpeak: an elegant, logic-based programming
language based on the best known and most studied architecture for cognitive
agents (the BDI architecture). In the tutorial paper BDI Agent Programming
in AgentSpeak Using Jason, Bordini and Hübner give an overview of the var-
ious features available in Jason . The paper is intended for a general audience
although some parts might be clearer for readers familiar with agent-oriented
programming. The authors focus on the main features of Jason , so that read-
ers can assess whether Jason might be of interest, and give plenty of references
to other papers and documentation where more detail and examples can be
found.

The KGP model of agency, defined within the SOCS project, gives concrete
guidelines for the formal specification of the knowledge of agents based on LP via
a modular knowledge base and of the behavior of computees via a cycle theory
providing flexible, declarative control of operation. In the tutorial paper Using
the KGP Model of Agency to Design Applications, Sadri describes the main
features of the KGP and gives user guidance on how the model can be used to
develop applications. The paper concentrates on the abstract component of the
KGP , which consists of formal specifications of a number of different modules,
including the knowledge bases, capabilities, transitions and control. For each of
these, Sadri summarizes what is provided by the model, and through the platform
implementing the model, and what is left to the users to specify according to
the application requirements.

In Multi-threaded Communicating Agents in Qu-Prolog, Clark et al. summa-
rize the key features of the multi-threaded Qu-Prolog language for implementing
communicating agent applications. Internal threads of an agent communicate us-
ing the shared dynamic database used as a generalization of Linda tuple store.
Threads in different agents communicate using either a thread-to-thread store
and forward communication system or by a publish and subscribe mechanism in
which messages are routed to their destinations based on content test subscrip-
tions. The authors illustrate the features using an auction house application,
which makes essential use of the three forms of inter-thread communication of
Qu-Prolog. The agent bidding behavior is specified graphically as a finite state

Preface IX

automaton and its implementation is essentially the execution of its state tran-
sition function.

Is an agent that focuses on one goal at a time better than an agent that
frequently re-examines his commitments to ensure that he honors only those
that are feasible? Or, how can such behaviors be compared with each other?
The cycle theories of KGP agents define declaratively the possible alternative
behaviors of agents, depending on their internal state and their perception of
the external environment in which they are situated. In Variety of Behaviors
Through Profiles in Logic-based Agents, Sadri and Toni show how by using this
form of control specification one can specify different profiles of agents. In the
paper, three different profiles are introduced, called “careful,” “focussed,” and
“full planner” profile. The authors demonstrate how agent profiles would vary
agent behaviors and what advantages they have with respect to factors in the
application and in the environment, such as time-criticality.

This part is concluded by Knottenbelt and Clark’s proposal: a simple event
calculus representation of contracts and a reactive BDI agent architecture can be
used to enable the monitoring and execution of contract terms and conditions.
In Contract-Related Agents, the authors use the event calculus to deduce current
and past obligations, obligation fulfilment and violation. By associating meta-
information with the contracts, the agent is able to select which of its contracts
with other agents are relevant to solving its goals by outsourcing. The agent is
able to handle an extendable set of contract types such as standing contracts,
purchase contracts and service contracts, without the need for a first-principles
planner.

Agent Interaction and Normative Systems

A great deal of MAS research is devoted to studying specification and verification
of interaction protocols, design of normative systems, representation of contexts,
modelling other agents’ mental states during interaction, and operational pro-
cedures for distributed intelligent reasoning, such as composition of information
sources and reasoning using default beliefs about the possible outcomes of agent
interaction. A tutorial and six technical papers compose this part, whose focus
is not on individual agents but on social agents, their interaction and the norms
that govern their systems.

Specification and Verification of Agent Interaction Using Abductive Reasoning,
based on Chesani and Gavanelli’s tutorial, provides an overview of the theory
and tools produced within SOCS to design, define and test agent interaction
protocols. The SOCS language for protocol specification is grounded on ALP.
Its main element are social integrity constraints, used to specify relationships
among happened events (e.g., messages or timeouts), expectations about future
events, and predicates defined in the social knowledge base. This language aims
to define open, extensible and not over-constrained protocols, following a social
approach to agent interaction. A software tool called SOCS-SI allows one to
verify at execution time if the agents conform to the defined protocols.

X Preface

A complementary approach to verification of agents’ conformance to protocols
consists of inspecting the programs that encode their communicative behavior
(“policies”), and verifying a priori, rather than at execution time, that they will
actually produce interactions conforming to the public protocols. In this case, an
issue is whether the test preserves the agents’ capability of interacting, besides
certifying the legality of their possible conversations. In the paper Verification of
Protocol Conformance and Agent Interoperability, Baldoni and colleagues pro-
pose an approach based on the theory of formal languages. The conformance
test is based on the acceptance of both the policy and the protocol by a special
finite state automaton and it guarantees the interoperability of agents that are
individually proven conformant.

How to connect norms specified by means of abstract terms (“persons driving
vehicles may not access public parks”) to norms specified via more concrete ones
(“persons wheeling bicycles are allowed to access public parks”)? An answer to
this question is found in Grossi and coworkers’ contextual taxonomies (“A counts
as B in context C”) for representing categorizing features of normative systems.
Contextual Terminologies builds on work done on contextual taxonomies so as to
add the possibility to deal with attributes or roles, i.e., binary relations besides
concepts. This shift from simple taxonomies to rich description logic terminolo-
gies allows one to model more complex scenarios. The formalization is obtained
by means of a formal semantics framework to reason within contexts and about
contexts and their interplay.

Boella and van der Torre consider the design of normative multi-agent sys-
tems composed of both constitutive and regulative norms in their paper Consti-
tutive Norms in the Design of Normative Multiagent Systems. They analyze the
properties of constitutive norms, in particular their lack of reflexivity, and the
trade-off between constitutive and regulative norms in the design of normative
systems. As a methodology they use the metaphor of describing social entities
as agents and of attributing mental attitudes to them. In this agent metaphor,
regulative norms expressing obligations and permissions are modelled as goals of
social entities, and constitutive norms expressing “counts as” relations are their
beliefs.

Sakama and Inoue address the issue of combining knowledge of different in-
formation sources. Suppose a multi-agent system in which each agent has a
knowledge base written in a common logic programming language. When two
programs do not contradict each other, they may be combined into one by tak-
ing the union of programs. In non-monotonic logic programs, however, simple
merging does not always reflect the meaning of individual programs. In Com-
bining Answer Sets of Nonmonotonic Logic Programs, the authors study the
compositional semantics of non-monotonic logic programs, supposing the an-
swer set semantics of extended disjunctive programs. They provide methods for
computing program composition and discuss their properties.

Speculative computation was first defined to cope with the incompleteness
generated by communication failure or response delays. The idea is to allow the
asking agent, while waiting for the slave agents to reply, to reason using default

Preface XI

beliefs until replies are sent. Speculative Constraint Processing with Iterative
Revision for Disjunctive Answers extends the framework proposed by Satoh and
Yamamoto for speculative computation and iterative answer revision for yes/no
questions. In this paper, Ceberio et al. present an extension of the framework for
more general types of questions using constraint logic programming. They equip
the framework with a sound operational model, which provably gives a correct
answer with respect to the most recent replies.

When two agents have to interact it is important for each agent to know
the other agent’s intentions because this knowledge allows one to anticipate
his future behavior. A method for this is presented in Demolombe and Oter-
min Fernandez’s Intention Recognition in the Situation Calculus and Probability
Theory Frameworks, and instantiated in the particular context of a pilot that
interacts with an aircraft. The method is restricted to contexts where the agent
only performs procedures in a given library of procedures, and where the system
that intends to recognize the agent’s intentions has a complete knowledge of the
actions performed by the agent. An original aspect is that the procedures are
defined for human agents and not for artificial agents, which makes the problem
more complex than the standard one of plan recognition.

The First CLIMA Contest

The first CLIMA contest represented an important step towards collecting im-
portant benchmarks, identifying advantages/shortcomings, and advertising the
use of CL to the broader MAS audience, and fostering integration of CL into
existing agent-oriented software engineering frameworks. Dastani et al. open
this section with the article The First Contest on Multi-Agent Systems Based
on Computational Logic. In this paper, the authors describe the contest scenario
and the winning criteria, and compare the performance of the competitors in the
difficult task of determining the winning system. The other four short articles
contain the description of the competing systems.

Coffey and Gaertner used ant-style pheromone trails as the basis for a pseudo-
random walk procedure. Their agents, implemented in the concurrent LP lan-
guage Qu-Prolog described in this book by Clark et al., explore the world
uniformly based on information disseminated globally via a publish/subscribe
mechanism. Interesting features of this approach, presented in Implementing
Pheromone-Based, Negotiating Forager Agents, are the distribution of roles (col-
lector/explorer) and the ability of agents to negotiate so as to increase the per-
formance of collection/delivery task allocation. All in Prolog! (or almost all).

Cares et al. took the challenge from an agent-oriented software engineering
perspective. The paper Extending Tropos for a Prolog Implementation: a Case
Study Using the Food-Collecting Agent Problem uses the contest scenario as a
case study to illustrate a method of obtaining a Prolog MAS implementation
starting from a Tropos design. This solution includes autonomous behavior, be-
liefs, multiple role playing, communication and cooperation, and it ranked first
in the contest together with the one implemented by Coffey and Gaertner.

XII Preface

In Reactive Food Gathering, Logie et al. describe a simple system, imple-
mented as a collection of purely reactive agents, with no internal representation
of their environment, which dynamically switch between a number of behaviors
depending on interaction with their environment. The agents co-operate indi-
rectly via environmental markers, generating an emerging global behavior that
solves the problem.

This part closes with Strategies for Multi-Agent Coordination in a Grid World
Using Petri Nets, by Nunes Gonçalves and Bittencourt. A distinguishing feature
of the authors’ solution is the focus on coordination. Their agents implement a
strategy to select the most capable agent in the environment so as to execute
tasks that they cannot execute themselves. The specification of the multi-agent
system is made using Petri Nets.

Project Report

The SOCS dissemination event, affiliated to CLIMA VI, presented several key
aspects of the EU-funded European project SOCS (SOcieties of ComputeeS),
one of the main sponsors of CLIMA VI. Computees are agents in computational
logic. From January 2001 to June 2005, in a joint research effort involving six
European academic institutions, SOCS pushed the state of the art in LP and
in MAS research, producing as its main results the KGP model of agency and
the SOCS social model based on social integrity constraints. During this event,
the speakers Toni, Kakas, Bracciali, and Alberti presented the declarative and
operational models for agents and multi-agent systems and the formal properties
of agents and agent systems developed within SOCS. Torroni discussed possible
guidelines for evaluating intelligent systems of reasoning agents, building on the
SOCS experience. In the last paper of this volume, Toni presents the challenges
and outcomes of SOCS.

Further information about CLIMA VI is available from the website http:
//clima.deis.unibo.it/. General information about the workshop series, with
links to past and future events, can be found on the CLIMA workshop series
home page, http://centria.di.fct.unl.pt/~clima/. The next CLIMA edi-
tion is organized by Katsumi Inoue, Ken Satoh and Francesca Toni. It will take
place in Hakodate, Japan, on May 8-9, 2006, in conjunction with AAMAS and
it will host the second CLIMA contest.

While wishing you a good read, we thank the local organizer, the contest
organizers, the website administrators, the Program Committee members, the
additional reviewers, the authors and the delegates, who contributed to a very
interesting and inspiring event, and the sponsors: the Association for Logic Pro-
gramming, AgentLink III, and the Fifth Framework EU Programme through the
SOCS Project.

March 2006 Francesca Toni
Paolo Torroni

Organization

Workshop Chairs

Francesca Toni, Imperial College London, UK
Paolo Torroni, University of Bologna, Italy

Program Committee

José Alferes, New University of Lisbon, Portugal
Rafael Bordini, University of Durham, UK
Gerd Brewka, University of Leipzig, Germany
Jürgen Dix , Technical University of Clausthal, Germany
Thomas Eiter, Vienna University of Technology, Austria
Klaus Fischer, DFKI, Germany
Michael Fisher, The University of Liverpool, UK
James Harland, Royal Melbourne Institute of Technology, Australia
Katsumi Inoue, National Institute of Informatics, Japan
Antonis Kakas, University of Cyprus, Cyprus
Evelina Lamma, University of Ferrara, Italy
João Leite, New University of Lisbon, Portugal
Paolo Mancarella, University of Pisa, Italy
Paola Mello, University of Bologna, Italy
John-Jules Ch. Meyer, Utrecht University, The Netherlands
Leora Morgenstern, IBM, USA
Wojciech Penczek, Polish Academy of Sciences, Poland
Jeremy Pitt, Imperial College, London, UK
Enrico Pontelli, New Mexico State University, USA
Fariba Sadri, Imperial College London, UK
Ken Satoh, National Institute of Informatics, Japan
Renate Schmidt, The University of Manchester, UK
Tran Cao Son, New Mexico State University, USA
Kostas Stathis, City University London, UK
Wiebe van der Hoek, The University of Liverpool, UK
Cees Witteveen, Delft University of Technology, The Netherlands

CLIMA Steering Committee

Jürgen Dix, Technical University of Clausthal, Germany
Michael Fisher, The University of Liverpool, UK
João Leite, New University of Lisbon, Portugal
Fariba Sadri, Imperial College London, UK
Ken Satoh, National Institute of Informatics, Japan

XIV Organization

Francesca Toni, University of Pisa, Italy
Paolo Torroni, University of Bologna, Italy

Contest Organizers

Mehdi Dastani, Utrecht University, The Netherlands
Jürgen Dix, Technical University of Clausthal, Germany

Additional CLIMA Reviewers

Marco Alberti
Federico Banti
Jamal Bentahar
Andrea Bracciali
Andreas Brüning
Lisette van der Burgh
Marco Cadoli
Carlos Cares
Federico Chesani
Pierangelo Dell’Acqua
Agostino Dovier
Nivea Ferreira
Marco Gavanelli
Davide Grossi

Jomi Hubner
Ullrich Hustadt
Magdalena Kacprzak
Peep Küngas
S�lawomir Lasota
Ambra Molesini
Àlvaro Moreira
Adriaan ter Mors
Yasuo Nagai
Brendan Neville
Peter Novak
Regimantas Pliuškevičius
Ian Pratt-Hartmann
Daniel Ramirez-Cano

Rossella Rubino
Claudio Schifanella
Kostas Stathis
Andrzej Sza�las
Giacomo Terreni
Arianna Tocchio
Satoshi Tojo
Krzysztof Trojanowski
Francesco Viganò
Gregory Weeler
Mathijs de Weerdt
Pınar Yolum

Web Support

Fabio Bucciarelli Federico Chesani

Local Organisation

Kostas Stathis

Sponsoring Institutions

Table of Contents

The Logical Way to Be Artificially Intelligent
Robert Kowalski . 1

Foundational Aspects of Agency

Ability in a Multi-agent Context: A Model in the Situation
Calculus

Laurence Cholvy, Christophe Garion, Claire Saurel 23

Reasoning About Epistemic States of Agents by Modal Logic
Programming

Linh Anh Nguyen . 37

Strongly Complete Axiomatizations of “Knowing at Most” in Syntactic
Structures

Thomas Ågotnes, Michal Walicki . 57

Logical Spaces in Multi-agent Only Knowing Systems
Bjørnar Solhaug, Arild Waaler . 77

Trustworthiness by Default
Johan W. Klüwer, Arild Waaler . 96

Decision Procedure for a Fragment of Mutual Belief Logic with
Quantified Agent Variables

Regimantas Pliuškevičius, Aida Pliuškevičienė . 112

Agent Programming

Implementing Temporal Logics: Tools for Execution and Proof
(Tutorial Paper)

Michael Fisher . 129

BDI Agent Programming in AgentSpeak Using Jason
(Tutorial Paper)

Rafael H. Bordini, Jomi F. Hübner . 143

Using the KGP Model of Agency to Design Applications
(Tutorial Paper)

Fariba Sadri . 165

XVI Table of Contents

Multi-threaded Communicating Agents in Qu-Prolog (Tutorial Paper)
Keith L. Clark, Peter J. Robinson,
Silvana Zappacosta Amboldi . 186

Variety of Behaviours Through Profiles in Logic-Based Agents
Fariba Sadri, Francesca Toni . 206

Contract-Related Agents
John Knottenbelt, Keith Clark . 226

Agent Interaction and Normative Systems

Specification and Verification of Agent Interaction Using Abductive
Reasoning (Tutorial Paper)

Federico Chesani, Marco Gavanelli, Marco Alberti, Evelina Lamma,
Paola Mello, Paolo Torroni . 243

Verification of Protocol Conformance and Agent Interoperability
Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti . 265

Contextual Terminologies
Davide Grossi, Frank Dignum, John-Jules Ch. Meyer 284

Constitutive Norms in the Design of Normative Multiagent Systems
Guido Boella, Leendert van der Torre . 303

Combining Answer Sets of Nonmonotonic Logic Programs
Chiaki Sakama, Katsumi Inoue . 320

Speculative Constraint Processing with Iterative Revision for
Disjunctive Answers

Martine Ceberio, Hiroshi Hosobe, Ken Satoh . 340

Intention Recognition in the Situation Calculus and Probability Theory
Frameworks

Robert Demolombe, Ana Mara Otermin Fernandez 358

The First CLIMA Contest

The First Contest on Multi-agent Systems Based on Computational
Logic

Mehdi Dastani, Jürgen Dix, Peter Novak . 373

Table of Contents XVII

Implementing Pheromone-Based, Negotiating Forager Agents
Simon Coffey, Dorian Gaertner . 385

Extending Tropos for a Prolog Implementation: A Case Study Using
the Food Collecting Agent Problem

Carlos Cares, Xavier Franch, Enric Mayol . 396

Reactive Food Gathering
Robert Logie, Jon G. Hall, Kevin G. Waugh . 406

Strategies for Multi-agent Coordination in a Grid World Using
Petri Nets

Eder Mateus Nunes Gonçalves, Guilherme Bittencourt 414

Project Report

Multi-agent Systems in Computational Logic: Challenges and Outcomes
of the SOCS Project

Francesca Toni . 420

Author Index . 427

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 1 – 22, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The Logical Way to Be Artificially Intelligent

Robert Kowalski

Imperial College London
rak@doc.ic.ac.uk

http://www.doc.ic.ac.uk/~rak/

Abstract. Abductive logic programming (ALP) can be used to model reactive,
proactive and pre-active thinking in intelligent agents. Reactive thinking
assimilates observations of changes in the environment, whereas proactive
thinking reduces goals to sub-goals and ultimately to candidate actions. Pre-
active thinking generates logical consequences of candidate actions, to help in
deciding between the alternatives. These different ways of thinking are
compatible with any way of deciding between alternatives, including the use of
both decision theory and heuristics.

The different forms of thinking can be performed as they are needed, or they
can be performed in advance, transforming high-level goals and beliefs into
lower-level condition-action rule form, which can be implemented in neural
networks. Moreover, the higher-level and lower-level representations can
operate in tandem, as they do in dual-process models of thinking. In dual
process models, intuitive processes form judgements rapidly, sub-consciously
and in parallel, while deliberative processes form and monitor judgements
slowly, consciously and serially.

ALP used in this way can not only provide a framework for constructing
artificial agents, but can also be used as a cognitive model of human agents. As
a cognitive model, it combines both a descriptive model of how humans
actually think with a normative model of humans can think more effectively.

1 Introduction

Symbolic logic is one of the main techniques used in Artificial Intelligence, to
develop computer programs that display human intelligence. However, attempts to
use symbolic logic for this purpose have identified a number of shortcomings of
traditional logic and have necessitated the development of various improvements and
extensions. This paper - and the draft book [6] on which it is based - aims to show that
many of these developments can also be used for the original purpose of logic – to
improve the quality of human thinking.

I have written the book informally, both to reach a wider audience and to
demonstrate that the enhanced logic is in fact relevant and congenial for human
thinking. However, in this paper, I will draw attention to some of the more technical
issues, for the consideration of a more academic audience.

The logic used in the book is based on an extension of abductive logic
programming (ALP) to logic-based agents [7]. In ALP agents, beliefs are represented
by logic programs and goals are represented by integrity constraints. The agent’s

2 R. Kowalski

observations and actions are represented by abducible predicates. Beliefs and goals
have both a declarative interpretation in logical terms, as well as a procedural
interpretation in computational terms.

ALP agents are both reactive to changes they observe in the environment and
proactive in planning ahead and reducing goals to sub-goals. In this paper I show that
ALP agents can also be pre-active in thinking about the possible consequences of
actions before deciding what to do.

In conventional ALP, the logical consequences of abductive hypotheses are
checked to determine whether they violate any integrity constraints. However, in ALP
agents, where abductive hypotheses include alternative, candidate actions, the pre-
actively generated consequences of candidate actions are used to decide between the
alternatives. This decision can be made in different ways. One way is to use
conventional Decision Theory, judging the utilities and probabilities of the
consequences of the alternative candidates and choosing an action that maximizes
expected utility. However, other ways of deciding between actions are also
compatible with ALP, including ways that compile decision making into heuristics.

The combination of reactive, proactive and pre-active thinking is obtained in ALP
agents by combining forward and backward reasoning. This reasoning can be
performed whenever the need arises, or it can be performed once and for all by
reasoning in advance. Reasoning in advance transforms and compiles higher-level
goals and beliefs into lower-level goals, which are similar to condition-action rules,
which implement stimulus-response associations compiled into neural networks.

In modern computing, it is common to develop programs in a high-level
representation and then to transform or compile them into a lower-level representation
for the sake of efficiency. If it later becomes necessary to correct or enhance the
resulting lower-level program, this is generally done by first modifying the higher-
level representation and then recompiling it into a new lower-level form.

However, many existing computer systems are legacy systems developed before
the existence of higher-level programming languages. It is often possible to
decompile these lower-level programs into higher-level form, although, because of
the undisciplined nature of lower-level languages, sometimes the relationship is only
approximate.

The relationship between higher-level and lower-level computer programs is
analogous to the relationship between higher-level and lower-level representations in
ALP agents. It is also similar to the relationship between deliberative and intuitive
thinking in the dual process model of human thinking [10]. In the dual process model,
one system, which is older in evolutionary terms, is responsible for intuitive thinking.
It is associative, automatic, unconscious, parallel, and fast. The other system, which is
distinctively human, is responsible for deliberative thinking. It is rule-based,
controlled, conscious, serial, and slow.

In computing, high-level and low level representations normally operate
separately, but can be compiled or decompiled from one into the other. In the dual
process model, however, intuitive and deliberative thinking can operate in tandem, as
when the intuitive, subconscious level “quickly proposes intuitive answers to
judgement problems as they arise”, while the deliberative, conscious level “monitors
the quality of these proposals, which it may endorse, correct, or override” [3]. This
interaction between intuitive and deliberative thinking can be mimicked in part by the

 The Logical Way to Be Artificially Intelligent 3

use of pre-active thinking in ALP agents, to monitor and evaluate candidate actions
generated by reactive thinking. In ALP agents both the deliberative level and the
intuitive level are represented in logical form.

These topics are expanded upon in the remainder of the paper. Section 2 outlines
the basic features of the ALP agent model, including reactive, proactive, and pre-
active thinking. Section 3 investigates the relationship between thinking and deciding.
Section 4 discusses the transformation of high-level representations into lower-level,
more efficient form, and the way in which high-level and lower-level representations
interact. Section 5 shows how low-level feed-forward neural networks can be
represented in logical form and can be simulated by forward reasoning. Section 6
discusses some of the implications of this for the notion that logic can serve as a
wide-spectrum language of thought. Section 7 addresses some of the arguments
against logic as a model of human thinking, and section 8 is the conclusion.

2 The Basic ALP Agent Model

2.1 Putting Logic in its Place in the Agent Cycle

The logic used in the book is based on an extension of abductive logic programming
(ALP) to logic-based agents [7]. The most important feature of the extension is that it
embodies logic in the thinking component of an agent’s observe-think-decide-act
cycle:

To cycle,
observe the world,
think,
decide what actions to perform,
act,
cycle again.

The agent cycle can be viewed as a generalisation of production systems, in which
thinking is performed by using condition-action rules of the form:

If conditions then candidate actions.

Condition-action rules look a lot like logical implications, but they do not have the
declarative semantics of implications. Nonetheless, as we will later see, in ALP
agents, condition-action rules are represented by goals expressed in logical form.

This view of logic in the mind of an agent embodied in the world is pictured in
figure 1. In this picture, the agent uses logic to represent its goals and beliefs, and to
help control its interactions with the world. It transforms its experience into
observations in logical form and uses its goals and beliefs to generate candidate
actions, to satisfy its goals and to maintain itself in a satisfactory relationship with the
changing world.

The agent’s body, in addition to being a part of the world, transforms both raw
experience into observations and the will to act into physical changes in the world.
This is analogous to the way in which hardware and software are related in a
computer. The hardware transforms stimuli from the environment into inputs and

4 R. Kowalski

transforms outputs into physical changes in the environment. The internal processing
of inputs into outputs is performed by the hardware, but is controlled conceptually by
software. In this analogy, the brain and body of an agent are to the mind as hardware
is to software.

observe act

An agent

perceptual
processing

motor
processing

The world

think decide

Fig. 1. The agent cycle

In general, the result of thinking is a set of candidate actions, which are the input to
the decision-making component of the agent cycle. In the same way that Logic is only
one way of thinking, there are many ways of deciding what to do. Decision theory,
which combines judgements about the utility of the outcomes of actions with
judgements about their probability, is one such way of deciding. As we will see in an
example later, it is also possible to compile decision-making directly into lower-level
goals and beliefs. In production systems, decision making is called “conflict
resolution”.

An agent’s ultimate goal is to maintain itself in a satisfactory relationship with the
surrounding world, and thinking and deciding are only one way of achieving that
goal. An agent can also act to satisfy its goals instinctively, by means of stimulus-
response associations, in a way that might be characterised as acting without
thinking. Instinctive behaviour can be hardwired into an agent’s body, without
entering into its mind. Or it might be learned as the result of repeated performance
and feedback. Instinctive behaviour is a near relation of intuitive thinking in the dual
process model.

The agent cycle, as described above, concerns the real time behaviour of an agent,
and does not address the processes involved in learning new behaviours and updating
old ones. Suffice it to say that learning, belief revision and goal revision are essential
activities for a real agent interacting with the real world. Because of the logical nature

 The Logical Way to Be Artificially Intelligent 5

of ALP agents, such techniques as inductive logic programming are especially
suitable to model such activities. They are, however, beyond the scope of this paper.

2.2 ALP Combines Forward and Backward Reasoning

Abductive logic programming [4] comes in many forms and variations, both in terms
of its semantics and in terms of its proof procedures. However, in all of these forms,
abductive logic programs have two components: ordinary logic programs and
integrity constraints. They also have two, corresponding kinds of predicates –
ordinary predicates that are defined by logic programs and abducible predicates that
are, directly or indirectly, constrained by integrity constraints.

In ALP agents, logic programs are used to represent an agent’s beliefs, and
integrity constraints to represent its goals. The abducible predicates are used to
represent the agent’s observations and actions. The integrity constraints are active, in
the sense that they can generate representations of actions that the agent can perform,
in order to maintain integrity.

Consider, for example, the goal of getting help in an emergency on the London
underground.

Goal If there is an emergency then I get help.

Beliefs There is an emergency if there is a fire.
 There is an emergency if one person attacks another.
 There is an emergency if someone becomes seriously ill.
 There is an emergency if there is an accident.

 There is a fire if there are flames.1
 There is a fire if there is smoke.

 A person gets help
 if the person alerts the driver.

 A person alerts the driver
 if the person presses the alarm signal button.

Here, for simplicity, the abducible predicates associated with observations are the
predicates “there are flames”, “there is smoke”, “one person attacks another”,
“someone becomes seriously ill”, and “there is an accident”. The only abducible
predicate associated with candidate actions is “the person presses the alarm signal
button”. All of these abducible predicates are indirectly constrained by the goal of
getting help whenever there is an emergency. All the other predicates, including the
higher-level actions of getting help and alerting the driver are ordinary predicates,
defined by the agent’s beliefs.

1 These two rules, relating fire, flames and smoke are the converse of the causal rules, which

state that if there is a fire then there are flames and smoke. The causal rules are a higher-level
representation, whereas the rules used here are a lower-level, more efficient representation.
The higher-level, causal representation would need abduction to explain that an observation
of smoke or flames can be caused by fire. In fact, the term “abduction” normally refers to
such generation of hypotheses to explain observations. The lower-level representation used
here replaces abduction by deduction.

6 R. Kowalski

The goal itself is a maintenance goal, which an agent can use to derive actions to
maintain itself in a desired relationship with the changes that it observes in its
environment. Maintenance goals can be viewed as a generalization of condition-
action rules.

Maintenance goals are triggered as a consequence of observations, similarly to the
way in which integrity constraints in a database are triggered as the result of updates.
An agent reasons forwards from its beliefs, to derive consequences of its
observations. Suppose, for example, that I am travelling as a passenger on the
underground and that my body experiences a combination of sensations that my mind
interprets as an observation of smoke. The observation triggers my beliefs, which I
use to reason forward in two steps, to recognize that there is an emergency.

The conclusion that there is an emergency triggers the maintenance goal, which I
then use to reason forward one more step, to derive the achievement goal of getting
help. The achievement goal triggers other beliefs, which I use to reason backwards in
two steps, to reduce the achievement goal to the action sub-goal of pressing the alarm
signal button. Since there are no other candidate actions in this simple example, I
decide to press the alarm signal button, which my body then transforms into a
combination of motor activities that is intended to accomplish the desired action.

The fact that pure logic programs are declarative means that they can be used to
reason in many different ways. In the procedural interpretation, they are used only to
reason backwards, as procedures that reduce goals to sub-goals. However, in ALP
they are used to reason both backwards and forwards.

 If there is an emergency then get help

There is an emergency

Maintenance goal

Forward
reasoning

Backward
reasoning

Achievement goal get help

press the
alarm signal
button

There is a fire alert the driver

There is smoke

The world

Fig. 2

 The Logical Way to Be Artificially Intelligent 7

This combination of forward and backward reasoning, together with the interface
between the agent’s mind and the world, is pictured in figure 2. Arguably, this
treatment of maintenance goals as integrity constraints generalizes condition-action
rules in production systems. Condition-action rules are the special case where no
forward reasoning is needed to trigger the maintenance goal and no backward
reasoning is needed to reduce the achievement goal to actions. Thus maintenance
goals include condition-action rules as a special case, but in general are much higher-
level.

Vickers [12], in particular, championed the idea that human activity and
organizations should be viewed as maintaining relationships with the changing
environment. He characterized Simon’s view of management and problem solving as
the narrower view of only solving achievement goals. Vickers view-point has been
taken up by in recent years by the soft systems school of management [2].

2.3 ALP Combines Reactive and Proactive Thinking

The combination of forward and backward reasoning enables ALP agents to be both
reactive and proactive. They are reactive when they use forward reasoning to respond
to changes in the environment, and they are proactive when they use backward
reasoning to achieve goals by reducing them to sub-goals. In everyday life, human
agents are both reactive and proactive to varying degrees.

Consider, as another example, a simplified ALP version of Aesop’s fable of the fox
and the crow. Suppose the fox has the following achievement goal and beliefs:

Goal I have the cheese.

Beliefs The crow has the cheese.

 An animal has an object
 if the animal is near the object
 and the animal picks up the object.

 I am near the cheese
 if the crow has the cheese
 and the crow sings.

 The crow sings if I praise the crow.

The fox can use its beliefs as a logic program, to reason backwards, to reduce its
goal to the actions of praising the crow and picking up the cheese.2 The fox’s
reduction of its goal to sub-goals is pictured in figure 3.

In keeping with the view that the primary goals of an agent are all maintenance
goals, the fox’s achievement goal almost certainly derives from a maintenance goal,
such as this:

 If I become hungry, then I have food and I eat it.

2 The story is simplified partly because the element of time has been ignored. Obviously, the

fox needs to praise the crow before picking up the cheese.

8 R. Kowalski

Here the condition of being hungry is triggered by an observation of being hungry,
which the fox receives from its body. Notice that the achievement goal of having the
food is only half of the story. To satisfy the maintenance goal, the fox also needs to
eat the food.

I have the cheese.

I am near the cheese and I pick up the cheese

The crow has the cheese and the crow sings
and I pick up the cheese

The crow sings and I pick up the cheese

I praise the crow and I pick up the cheese

The fox

The world

Fig. 3

In Aesop’s fable, the fox’s belief about the behaviour of the crow is true. The crow
is a purely reactive agent, which responds to praise as the fox believes. The reactivity
of the crow can be viewed as reasoning forwards in one step from an observation to
derive an achievement goal, which is an action, from a maintenance goal. This is
pictured in figure 4.

This view of the crow’s behaviour is a logical abstraction of behaviour that might
be hardwired into the crow as a system of lower-level stimulus-response associations.
The relationship between such a logical abstraction and the stimulus-response
associations is, arguably, like the relationship between software and hardware.

Notice the difference between the sentence

 If the fox praises me, then I sing.

which is a goal for the crow, and the sentence

 The crow sings if I praise the crow.

 The Logical Way to Be Artificially Intelligent 9

The world

If the fox praises me, then I sing.

The fox praises me. I sing.

The crow

Fig. 4

which is a belief for the fox. Both sentences are implications. However, for the crow,
the implication is used as a goal, to generate its behaviour. But for the fox, the
implication is used as a belief, to describe the crow’s behaviour and to reduce goals to
sub-goals.

The difference between the two sentences has nothing to do with the order in
which the conclusion and condition of the implication is written, because there is no
semantic difference between writing an implication forwards in the form

 If conditions then conclusion.

and writing it backwards in the form

 Conclusion if conditions.

Semantically both implications have the same declarative meaning. (In the same way
that both inequalities 1 < 2 and 2 > 1 have the same meaning.)

However, no matter how implications are written, there is an important distinction
between them depending upon whether they are used as goals or as beliefs. When
they are used as beliefs, they represent the world as it actually is. When they are used
as goals, they represent the world as the agent would like it to be. When a goal is an
implication, the agent performs actions to make the implication true. It only needs to
perform these actions to make the conclusion of the implication true when the world
makes the conditions of the implication true. It need not worry about performing
actions when the world makes the conditions of the implication false. The analogous
distinction in deductive databases between implications used as integrity constraints
and implications used as rules was first investigated by Nicolas and Gallaire [17].

10 R. Kowalski

2.4 ALP Includes Pre-active Thinking

Aesop’s fable shows how a proactive fox outwits a reactive crow. But there is an
even more important moral to the story - namely that an intelligent agent should
think before it acts. Thinking before acting is more than just proactive thinking. It is
thinking about the possible consequences of candidate actions - pre-actively –
before deciding what to do. Pre-active thinking is obtained in ALP by reasoning
forward from candidate actions, whether derived proactively or reactively, and
whether generated by symbolic reasoning or by instinctive stimulus-response
associations.

Suppose, for example, that the crow not only has the maintenance goal of singing
whenever it is praised, but also has the achievement goal (for whatever reason) of
having the cheese. If the crow also has the same beliefs as the fox, then the crow
would be able to reason forward, pre-actively, to deduce the possible consequences of
singing:

 I want to sing.

 But if I sing,
 then the fox will be near the cheese.

 Perhaps the fox will pick up the cheese.
 Then the fox will have the cheese,
 and I will not have the cheese.

 Since I want to have the cheese,
 I will not sing.

Notice that the crow can not consistently achieve the goal of having the cheese and
also maintain the goal of singing whenever it is praised. In real life, an agent needs to
weigh its goals, trading one goal off against another.3

Notice too that the outcome of an agent’s actions typically depends also on
external events, over which the agent may have little or no control. In the story of the
fox and crow, the outcome of the crow’s singing depends on whether or not the fox
decides to pick up the cheese.

3 Thinking Needs to be Combined with Deciding What to Do

In ALP, pre-active thinking simply checks whether candidate actions satisfy the
integrity constraints. However, in real life, we also have to choose between actions,
taking into consideration the relative utilities and probabilities of their possible
consequences. In Decision Theory, the agent uses these considerations to choose an
action that has maximum expected utility.

3 Alternatively, if the crow wants to have the cheese in order to eat it, then the crow could

satisfy both goals by first eating the cheese and then singing.

 The Logical Way to Be Artificially Intelligent 11

3.1 Combining ALP with Decision Theory

Suppose, for example, that I have the following beliefs:

I get wet if it rains and I do not carry an umbrella.
I stay dry if I carry an umbrella.
I stay dry if it doesn’t rain.

Assume also that I am about to leave home, and that as a sub-goal of leaving home I
have to decide what to take with me, and in particular whether or not to take an
umbrella. I can control whether to take an umbrella, but I can not control whether it
will rain. At best I can only judge the probability of rain.

Reasoning forward from the assumption that I take an umbrella and then have
to carry it, I can derive the certain outcome that I will stay dry. However, reasoning
forward from the assumption that I do not carry an umbrella, I derive the uncertain
outcome that I will get wet or I will stay dry, depending on whether or not it
will rain.

In classical logic, that would be the end of the story. But, in Decision Theory, I can
judge the likelihood that it is going to rain, judge the positive utility of staying dry
compared with the negative utility of having to carry the umbrella, weigh the utilities
by their associated probabilities, and then choose an action that has the maximum
expected utility.

For the record, here is a simple, example calculation:

 Utility of getting wet = – 8.
 Utility of staying dry = 2.
 Utility of carrying an umbrella = – 3

 Utility of not carrying an umbrella = 0
 Probability of raining = .1
 Probability of not raining = .9

Assume I take an umbrella.
Then Probability of staying dry = 1

 Expected utility = 2 – 3 = - 1

Assume I do not take an umbrella .
Then Probability of staying dry = .9

 Probability of getting wet =.1
 Expected utility = .9 ·2 - .1 ·8 = 1.8 - .8 = 1

Decide I do not take an umbrella!

Given the same utilities, the probability of rain would have to be greater than .3
before I would decide to take an umbrella.

Because thinking and deciding are separate components of the agent cycle, any
way of thinking is compatible with any way of deciding. Thus the use of ALP
for thinking can be combined with Decision Theory or any other way of deciding
what to do. This combination of thinking and deciding in ALP agents is pictured in
figure 5.

12 R. Kowalski

Pre-active
thinking

Reactive
thinking

Proactive
thinking

Consequences
of alternative
candidate actions

Decide

Maintenance goal
Achievement goal

Observe
Act

The world

Fig. 5

A combination of abductive logic programming and Decision Theory has been
developed by David Poole in his Independent Choice Logic [8]. He shows how the
logic can be used to represent Bayesian networks, influence diagrams, Markov
decision processes and the strategic and extensive form of games.

Poole focuses on the semantics of ICL, whereas I focus on the logical and
computational procedures an individual agent might use in practice. One consequence
of this difference is that he views condition-action rules as policies, and represents
them by ordinary logic programs, whereas I view them as goals, and represent them
as integrity constraints.

3.2 Decision Making Can Often Be Compiled into the Thinking Component of
the Agent Cycle

The problem with Decision Theory is that it requires an unrealistic amount of
information about utilities and probabilities and too much computation. Nonetheless,
Decision Theory represents a normative ideal against which other, more practical
decision-making methods can be evaluated.

In the case of taking or not taking an umbrella, a more practical alternative might
be to use maintenance goals or condition-action rules instead4:

4 In this representation the decision not to take an umbrella is implicit. It holds if the decision to

take an umbrella does not hold.

 The Logical Way to Be Artificially Intelligent 13

 If I leave home and it is raining then I take an umbrella.
 If I leave home and there are dark clouds in the sky then I take an umbrella.
 If I leave home and the weather forecast predicts rain then I take an umbrella.

The maintenance goals in this example compile decision-making into the thinking
component of the agent cycle. In some cases, the compilation might be an exact
implementation of the Decision Theoretic specification. In other cases, it might only
be an approximation.

Other alternatives to Decision Theory include the use of priorities between
different actions, goals or condition-action rules, and the use of default reasoning.

4 Combining Higher-Level and Lower-Level Thinking

4.1 Higher Levels of Thinking Can Be Compiled into Lower Levels

Abductive logic programs have a computational, as well as a logical, interpretation.
Goals and beliefs expressed in logical form can be viewed as programs written in a
high-level programming language. Programs written at this high, logical level are
executed by backward and forward reasoning.

For the sake of efficiency, high-level programs are often compiled into lower-level
programs and are executed using corresponding lower-level computational
mechanisms. Usually the higher and lower-level programs are written in distinct
programming languages. However, they can also be written in the same language.

Compiling a high level program into a more efficient, lower level program written
in the same language is called program transformation. Program transformation
typically gains efficiency by performing at compile time, once and for all, execution
steps that would otherwise have to be performed repeatedly, at run time. In the case of
abductive logic programs, higher-level programs can be transformed into lower-level,
more efficient programs, by performing reasoning steps in advance, before they are
needed.

This is easy to see in the London underground example. The original high-level
ALP representation can be compiled/transformed into the equivalent, more efficient
condition-action rule representation:

If there are flames then I press the alarm signal button.
If there is smoke then I press the alarm signal button.
If one person attacks another then I press the alarm signal button.
If someone becomes seriously ill then I press the alarm signal button.
If there is an accident then I press the alarm signal button.

This lower-level program is written in the same higher-level ALP language as the
original representation, but it now consists of five maintenance goals, rather than one
maintenance goal and eight beliefs. It is obtained by reasoning in advance, replacing
the concept of “emergency” by all of the alternative types of emergency, replacing the
concept of “fire” by the two different ways of recognizing a fire, and reducing
“getting help” to the action of pressing the alarm signal button.

14 R. Kowalski

The two representations are computationally equivalent, in the sense that they give
rise to the same externally observable behaviour. However, the lower-level program is
more efficient. Not only does it require fewer steps to execute at run time, but it uses
simpler reasoning techniques, consisting of forward reasoning alone, instead of the
combination of forward and backward reasoning needed by the higher-level program.

The two representations are not logically equivalent. The high-level representation
logically implies the lower-level representation, but not vice versa. In particular, the
higher-level representation has an explicit representation of the concepts of there
being an emergency and of getting help, which are only implicit in the lower-level
representation. Moreover, the higher-level representation also has an explicit
representation of the purpose of the agent’s behaviour, namely to get help whenever
there is an emergency, which is only implicit as an emergent goal in the lower-level
representation.

In computing, higher-level representations (including program specifications) are
generally developed, before they are compiled/transformed into lower-level
representations for the sake of efficiency. However, if anything then goes wrong with
the lower-level representation, it is generally easier to debug and correct the higher-
level representation and to recompile it into the lower-level form, than it is to change
the lower-level representation itself.

For example, if something goes wrong with the condition-action rule formulation
of the London underground rules - if the button doesn’t work, or if the driver doesn’t
get help - then the rules will fail, but the passenger might not even recognise there is a
problem. Or, if the environment changes – if new kinds of emergencies arise or if
better ways of getting help are developed – then it is easier to extend the higher-level
representation than it is to modify the lower-level rules.

In computing, it is common to iterate the compilation of programs into a number of
increasingly lower-levels, and ultimately into hardware. Historically, however, lower-
level languages were used before higher-level, more human-oriented languages were
developed. Because legacy systems originally developed and implemented in such
lower-level languages are difficult to maintain, it is common to re-implement them in
modern higher-level languages. This can sometimes be done by an inverse process of
decompiling lower-level programs into higher-level programs. However, because of
the undisciplined nature of low-level programming languages, the attempt to
decompile such programs may only be partially successful. In many cases it may only
be possible to approximate the lower-level programs by higher-level ones, sometimes
only guessing at their original purpose.

4.2 Combining Deliberative and Intuitive Thinking

The relationship between deliberative and intuitive thinking is analogous to the
relationship between higher-level and lower-level program execution.

The simplest relationship is when, as the result of frequent repetition, deliberative
thinking migrates to the intuitive level – when, for example, a person learns to use a
keyboard, play a musical instrument, or drive a car. This is like compiling or
transforming a high-level program into a lower-level program. After a particular
combination of high-level, general-purpose procedures has been used many times
over, the combination is compressed into a computationally equivalent, lower-level

 The Logical Way to Be Artificially Intelligent 15

shortcut. The shortcut is a special-purpose procedure, which achieves the same result
as the combination of more general procedures, but it does so more efficiently and
with less awareness of its purpose.

Conversely, intuitive thinking and tacit knowledge can sometimes be made explicit
– for example, when a linguist constructs a formal grammar for a natural language, a
coach explains how to swing a golf club, or a knowledge engineer develops an expert
system. This is like decompiling a low-level representation into a higher-level
representation. In many cases it can be hard to distinguish whether the low-level
representation is implemented in hardware or in software, and the resulting higher-
level representation may only be approximate.

In computing, higher-level and lower-level programs can operate in tandem, as
when the lower-level program is used on a routine basis, but the higher-level program
is used to modify and recompile the lower-level program when it goes wrong or needs
to be updated. In human thinking, however, intuitive and deliberative thinking are
often coupled together more closely. Intuitive thinking generates candidate judgments
and actions rapidly and unconsciously, while deliberative thinking consciously
monitors the results. This close coupling of deliberative and intuitive thinking is like
the use of pre-active thinking in ALP agents to monitor candidate actions generated
reactively by condition-action rules.

These relationships between different levels of thinking are pictured, somewhat
imperfectly, in figure 6.

Pre-active
thinking

Reactive
thinking

Proactive
thinking

Decide

Maintenance goal
Achievement goal

Observe

Act

The world

condition-action rules or
stimulus-response
associations

conscious

sub-conscious

Fig. 6

16 R. Kowalski

5 Neural Networks

It is a common view in Cognitive Science that intuitive thinking is best modelled by
sub-symbolic neural networks [13], which employ distributed representations with
hidden nodes that do not have a symbolic interpretation. However, in their text book,
Computational Intelligence: A Logical Approach, Poole et al [9] show how to
represent any feed-forward neural network as a logic program. Forward reasoning
with the logic program simulates forward execution of the neural network.

Poole et al illustrate their representation with the example (figure 7) of a person’s
decision whether to read an article. The decision is based upon such factors as
whether the author is known or unknown, the article starts a new thread or is a follow-
up article, the article is short or long, and the person is at home or at work.

The weights on the arcs are obtained by training an initial version of the network
with a training set of examples. In the logic program, “f” is a sigmoid function that
coerces the real numbers into the range [0,1]. Similarly, the “strengths” of the inputs
lie in the range [0,1], where 0 is associated with the Boolean value false and 1 with
true.

It is generally held that neural networks are unlike logic, in that they can have
hidden units that can not be interpreted as concepts or propositions. Indeed, Poole et
al characterize their example as illustrating just that point. However, in my
formulation of the logic program, to make it more readable, I have given the predicate
symbols “meaningful” predicate names, interpreting the hidden units in the middle
layer of the network as summarizing the arguments for and against reading the paper.

Example Action Author Thread Length Where read

E1 skip known new long home
E2 reads unknown new short work
E3 skips unknown follow-up long work

Neural network

 inputs hidden units output

known

new
 read

short

home

Fig. 7

 The Logical Way to Be Artificially Intelligent 17

Logic program

I read with strength S3
if there is an argument for reading with strength S1
and there is an argument against reading with strength S2
and S3 = f(-2.98 + 6.88 S1 – 2.1 S2)

There is an argument for reading with strength S1
if known with strength S4
and new with strength S5
and short with strength S6
and home with strength S7
and S1 = f(– 5.25 + 1.98 S4 + 1.86 S5 + 4.71 S6 – .389 S7)

 There is an argument against reading with strength S2

if known with strength S4
and new with strength S5
and short with strength S6
and home with strength S7
and S2 = f(.493 - 1.03 S4 - 1.06 S5 - .749 S6 + .126 S7)

The logic program is an exact, logical representation of the neural network.
However, it employs numerical values and functions, which can only be
approximated by a natural language representation, such as this:

 I read an article
 if the argument for reading the article is strong
 and the argument against reading the article is weak.

 There is an argument for reading an article
 if the article is short.

There is an argument against reading an article
if the thread is a follow-up and the author is unknown.

The terms “strong” and “weak” are explicitly vague, whereas the notions of “an
article being short”, “a thread being new” and “an author being known” are implicitly
vague. Taking this into account, the representation can be transformed into a simpler
form, where all vagueness is implicit and where the arguments for and against reading
an article are also implicit:

 I read an article
 if the article is short and the thread is new.

 I read an article
 if the article is short and the thread is a follow-up and the author is known.

Expressed in this way and treating the sentences as goals rather than as beliefs, the
problem of deciding whether to read an article is similar to the problem of deciding
whether to take an umbrella when leaving home. In both cases, the decision depends

18 R. Kowalski

upon the interpretation of implicitly vague concepts, such as an article being short or
there being dark clouds in the sky.

In both cases, moreover, the decision can also be made at a higher-level, by
analysing the goals and other outcomes that the decision might be expected to
achieve. In the case of reading an article, is the higher-level goal to gain information?
Or is it simply to be entertained? If it is to gain information, how likely is it that the
article will contain the information I am looking for? Is it worth the effort involved?
Or would it be better to consult an expert instead?

In the case of taking an umbrella when I leave home, is the higher-level goal to
keep my hair and clothing neat and tidy? Or is it to avoid catching a chill and coming
down with a cold? In the first case, maybe it should just wear a hat and some suitable
outdoor clothing. In the second case, if I am so fragile, then maybe I should stay home
or travel by taxi.

6 Logic as Wide-Spectrum Language of Thought

The neural network example suggests that logic can represent a wide spectrum of
levels of thought, ranging from subconscious thought at the neural network level to
conscious thought in natural language. At the neural network level, logic programs
can represent connections among vague concepts that hold with varying degrees of
strength. Although these degrees might have precise values at the neurological level,
they are not accessible to higher-levels of consciousness and can only be
approximated in natural language.

A number of authors have investigated the relationship between neural networks
and logic programs. One of the earliest of these investigations, by Holldobler and
Kalinke [15], studied the problem of translating normal logic programs into neural
networks. More recently, Stenning and van Lambalgen [16] have argued that the
implementation of logic programs by neural networks shows that logic can model
intuitive thinking in the dual process model. D’Avila Garcez, Broda and Gabbay [14],
on the other hand, studied the problem of extracting higher-level, “meaningful” logic
programs from neural networks. Taken together with the direct translation of neural
networks into correspondingly low-level logic programs of Poole et al [9], these
studies suggest that logic can model different levels of thought, from neural networks
to natural language.

The relationship between logic and natural language is normally viewed from the
linguistic perspective, by studying the problem of extracting logical meaning from
natural language. But it can also be viewed from the knowledge representation
perspective, by comparing the logical form of an agent’s thoughts with the
communication of those thoughts to another agent in natural language.

Although logical representations are normally presented in symbolic, mathematical
form, they can also be expressed in a stylized form of natural language, as in this
paper. Both of these forms are unambiguous and context-independent. Thus, to the
extent that some form of logic is adequate for knowledge representation, this provides
evidence that human agents might think in a mental language that is a logical form of
natural language.

 The Logical Way to Be Artificially Intelligent 19

In contrast with the thoughts we have in our mind, our natural language
communication of those thoughts is generally more ambiguous and context-sensitive
than we intend. This suggests that our thoughts may be more logical than their natural
language expression might suggest. Even natural language communications that seem
to be in explicit logical form can be more ambiguous than they seem on the surface.

As Stenning and van Lambalgen [16] argue, natural language communications
need to be interpreted to determine their intended logical form, even when those
communications are already expressed in logical form. They argue that the gap
between the surface logical structure of sentences and the deeper logical structure of
their intended meanings helps to explain and refute certain psychological experiments
that suggest that people are not logical. They show, moreover, that human
performance in these experiments is compatible with the thesis that people apply
logical reasoning to the intended meanings of sentences rather than to their surface
form. In fact, in their main example, they show, not only that the intended meanings
of sentences can be expressed in logical form, but that they have logic programming
form, and that the minimal model semantics of logic programs gives a better analysis
of human performance in these experiments than the classical semantics of traditional
logic.

This difference between the surface structure of natural language and its
underlying logical form is illustrated also by the second sentence of the London
underground Emergency Notice:

 If there is an emergency then you press the alarm signal button.
 The driver will stop if any part of the train is in a station.

The second sentence has an explicitly logical form, due to its use of the logical
connective “if” and the quantifier “any”. However, taken literally, the sentence
doesn’t express what its authors probably had in mind:

 The driver will stop the train if someone presses the alarm signal button
 and any part of the train is in a station.

It is likely that most people interpret the second sentence of the Notice as it is
intended, rather than as it is expressed. This suggests that people are more logical than
many psychologists are inclined to believe.

7 Thinking = Logic + Control

The view that logic can serve as a wide-spectrum language of thought is in marked
contrast with conventional views of logic in cognitive science. Paul Thagard [11], for
example, in his introductory textbook, “Mind: Introduction to Cognitive Science”
(page 45) writes:

“In logic-based systems the fundamental operation of thinking is logical
deduction, but from the perspective of rule-based systems the fundamental
operation of thinking is search.”

Here he uses the term “rule-based system” to refer to condition-action rule
production systems. He then goes on to say that among the various models of thinking

20 R. Kowalski

investigated in cognitive science, rule-based systems have “the most psychological
applications” (page 51).

Jonathan Baron [1] in his textbook, “Thinking and Deciding” writes, page 4:

“Thinking about actions, beliefs and personal goals can all be described in
terms of a common framework, which asserts that thinking consists of
search and inference. We search for certain objects and then make
inferences from and about the objects we have found.”

Baron associates logic with making inferences, but not with performing search. He
also distinguishes thinking from deciding, but restricts the application of logic to the
pre-active, inference-making component of thinking.

Both Thagard and Baron fail to recognize that, to be used in practice, logic needs
to be controlled. This could be put in the form of a pseudo-equation5:

 Thinking = Logic + Control.

Here the term “Logic” refers to goals and beliefs expressed in logical form and
“Control” refers to the manner in which the inference rules of logic are applied.
Control includes the use of forward and backward reasoning. In the case of backwards
reasoning, it includes strategies for selecting sub-goals, as well as strategies for
searching for alternative ways of solving goals and sub-goals. It also includes the
application of inference rules in sequence or in parallel.

Frawley [13] argues that the analysis of algorithms into logic plus control also
applies to mental algorithms and helps to explain different kinds of language
disorders. He argues that Specific Language Impairment, for example, can be
understood as a defect of the logic component of mental algorithms for natural
language, whereas Williams syndrome and Turner syndrome can be understood as
defects of the control component.

In fairness to Thagard and Baron, it has to be acknowledged that they are simply
reporting generally held views of logic, which do not take into account some of the
more recent developments of logic in Artificial Intelligence. Moreover, both, in their
different ways, draw attention to characteristics of thinking that are missing both from
traditional logic and from the simple pro-active model of thinking associated with
logic programming. Thagard draws attention to the importance of reactive thinking
with condition-action rules, and Baron to the importance of pre-active thinking by
inference after search.

8 Conclusions

There isn’t space in this paper to discuss all of the arguments that have been made
against logic. Instead, I have considered only some of the most important alternatives
that have been advocated – production systems, decision theory, and neural networks,
in particular.

In the case of production systems, I have argued that condition-action rules are
subsumed by maintenance goals in logical form. They are the special case of

5 In the same sense that Algorithm = Logic + Control [5].

 The Logical Way to Be Artificially Intelligent 21

maintenance goals in which no forward reasoning is necessary to process
observations, and no backward reasoning is necessary to reduce goals to sub-goals.

In the case of decision theory, I have argued that forward reasoning can be used
pre-actively to derive possible consequences of candidate actions, and can be
combined with any way of deciding between the alternatives. One such possibility is
to use decision theory directly to choose a candidate action having maximum
expected utility. Another is to compile such decisions into heuristic maintenance
goals that approximate the decision-theoretic normative ideal.

In the case of neural networks, I have considered how the low-level logic-
programming representation of feed-forward networks, given by Poole et al, might be
approximated by higher-level logical representations. I have also suggested that such
lower-level and higher-level logical representations might interact in a manner similar
to the way in which intuitive and deliberative thinking interact in the dual process
model. The lower-level representation proposes intuitive answers to problems as they
arise, and the higher-level representation monitors and modifies the proposals as time
allows.

I have restricted my attention in this paper to the way in which logic can be used to
help control the routine, real-time behaviour of an intelligent agent. Except for
program transformation, in which a higher-level representation is compiled into a
more efficient, lower-level form, I have not considered the wider issues of learning
and of revising goals and beliefs. Fortunately, there has been much work in this area,
including the work on inductive logic programming, which is relevant to this issue.

Again for lack of space, I have not been able to discuss a number of extensions of
logic that have been developed in Artificial Intelligence and that are important for
human thinking. Among the most important of these is the treatment of default
reasoning and its interpretation in terms of argumentation. Also, I do not want to give
the impression that all of the problems have been solved. In particular, the treatment
of vague concepts and their approximations is an important issue that needs further
attention.

Despite the limitations of this paper, I hope that it will suggest, not only that logic
deserves greater attention in Cognitive Science, but that it can be applied more
effectively by ordinary people in everyday life.

Acknowledgements

Many thanks to the anonymous reviewers and to Ken Satoh for their helpful
comments on an earlier draft of this paper.

References

1. Baron, J.: Thinking and Deciding (second edition). Cambridge University Press(1994)
2. Checkland, P.: Soft Systems Methodology: a thirty year retrospective. John Wiley

Chichester (1999)
3. Kahneman, D., Shane F.: Representativeness revisited: Attributive substitution in intuitive

judgement. In: Heuristics of Intuitive Judgement: Extensions and Applications, Cambridge
University Press (2002)

22 R. Kowalski

4. Kakas, T., Kowalski, R., Toni, F.: The Role of Logic Programming in Abduction. In:
Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artificial
Intelligence and Programming 5. Oxford University Press (1998) 235-324

5. Kowalski, R.: Logic for Problem Solving. North Holland Elsevier (1979)
6. Kowalski, R.: How to be artificially intelligent. http://www.doc.ic.ac.uk/~rak/ (2002-

2006)
7. Kowalski, R., Sadri, F.: From Logic Programming towards Multi-agent Systems. Annals

of Mathematics and Artificial Intelligence. Vol. 25 (1999) 391-419
8. Poole, D.L.: The independent choice logic for modeling multiple agents under

uncertainty. Artificial Intelligence. Vol. 94 (1997) 7-56
9. Poole, D.L., Mackworth, A.K., Goebel, R.: Computational intelligence: a logical

approach. Oxford University Press (1998)
10. Smith, E.R., DeCoster, J.: Dual-Process Models in Social and Cognitive Psychology:

Conceptual Integration and Links to Underlying Memory Systems. Personality and Social
Psychology Review. Vol. 4 (2000) 108-131

11. Thagard, P.: Mind: Introduction to Cognitive Science. MIT Press (1996)
12. Vickers, G.: The Art of Judgement. Chapman and Hall, London (1965)
13. Frawley, W.: Control and Cross-Domain Mental Computation: Evidence from Language

Breakdown. Computational Intelligence, 18(1), (2002) 1-28
14. d’Avila Garcez, A.S., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from

trained neural networks: A sound approach. Artificial Intelligence 125 (2001) 155–207
15. Holldobler, S. Kalinke, Y. : Toward a new massively parallel computational model for

logic programming. In Proceedings of the Workshop on Combining Symbolic and
Connectionist Processing, ECAI 94, (1994) 68-77

16. Stenning, K., van Lambalgen, M.: Semantic interpretation as computation in non-
monotonic logic. Cognitive Science (2006)

17. Nicolas, J.M., Gallaire, H.: Database: Theory vs. interpretation. In Gallaire, H.,Minker, J.
(eds.): Logic and Databases. Plenum, New York (1978)

Ability in a Multi-agent Context: A Model in
the Situation Calculus

Laurence Cholvy1, Christophe Garion2, and Claire Saurel1

1 ONERA Centre de Toulouse,
2 Avenue Édouard Belin,
31055 Toulouse, France

{cholvy, saurel}@cert.fr
2 SUPAERO,

10 Avenue Édouard Belin,
31055 Toulouse, France
garion@supaero.fr

Abstract. This paper studies the notion of ability and its relation with
the notion of action in a multi-agent context. It introduces the distinction
between two notions respectively called “theoretical ability” and “abil-
ity”. The main contribution of this paper is a model of these notions in
the Situation Calculus.

1 Introduction

Allocating tasks or planning in a multi-agent context [8, 3], requires taking into
account what the agents are able to do, i.e. the agents abilities, in order to assign
tasks to agents who are able to perform them. The notion of ability must then
be modelled and this implies to explicit the parameters which define this notion.

Obviously, the agent itself, or the group of agents, is one of these parameters.
But what is the nature of what the ability applies on? For instance, when we
say that John is able to paint the door, do we mean that John is able to perform
a particular action which consists in applying paint with a specific brush on the
door? Or do we mean that John is able to see to it that the door is painted,
by the means he wants, for instance by delegating this task to someone else?
Modelling ability thus implies modelling actions.

In the literature, there are two main approaches to action theory. The first one
consists in giving in the language means to explicitly represent actions. This is
the case of dynamic logic for instance [9], which offers modal operators to speak
about the execution of an action, and also the execution of an action by an agent.
This is also the case of situation calculus [14, 16], which allows one to represent
actions, their preconditions and their effects, but also situations considered as
results of the successive application of actions in an initial situation. On the
contrary, actions are not explicitly represented in the second approach. The
operators defined there only allow to express the fact that the agent sees about
some property to be true (cf. the stit operator [11] and the notion of agency
in [7]).

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 23–36, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 L. Cholvy, C. Garion, and C. Saurel

As the notion of ability is strongly linked to the notion of action, it has
been studied according to these two approaches. For instance, the multi modal
dynamic logic KARO [18] aims at defining agent’s ability to perform an action
according to the first approach. Primitive concepts are the agent’s knowledge,
its capacity to perform an action, the effects of an action and the opportunity
associated with an action. Ability and opportunity are two intertwined notions,
we will come back on it later.

Concerning the second approach, the notion of ability does not bear on ac-
tions, but on the fact that a property is true [10, 7]. These two formalisms are
based on propositional modal logics. In [7], Elgesem defines ability and action as
primitive notions. He considers a function f which determines for a given world
w and a goal ϕ the worlds in which the agent has realized its ability to see to it
that ϕ is true from w. Thus, an agent is able to see to it that ϕ is true if and
only if the set of worlds f(w,ϕ) is not empty. With this definition, ability and
action, which is also defined by f , are two binded notions. For instance, if an
agent sees to it that ϕ is true, then this agent is able to see to it that ϕ. In [10],
Horty uses temporal models to represent actions: an agent sees to it that ϕ is
true at a moment m if it restricts the “histories” which m belongs to in order
that ϕ is true. The ability for an agent to see to it that ϕ is true is defined as
the possibility (in the classical sense, see [2]) for the agent to see to it that ϕ is
true. Let us notice that with this formalism, Horty avoids several paradoxes. In
particular, it cannot be deduced that if ϕ is true, then the agent has the ability
to see to it that ϕ.

We must also mention [12], in which the authors use the situation calculus to
model the notion of “ability to reach a goal”, i.e. “ability to make a proposition
true”. Two definitions are given in a mono-agent context. According to the one
the authors find the simplest to use, the agent has the ability in a situation s to
make ϕ true (i.e. the agent is able to reach the goal ϕ) if there exists a sequence
of actions such that the agent knows in s that executing these actions will make
ϕ true. In other terms, the agent has the ability to make ϕ true if he knows a
plan to achieve ϕ.

This brief state of the art shows that there is no consensus on what the
ability applies on. However, we find in the literature several points of agreement
relatively to the notion of ability.

First, the notion of ability must not be confused with the notion of possibility
nor with the notion of permission [17]. These possible confusions are due to
ambiguities of the natural language. For instance, the sentence “I can open the
door” is sometimes used to say “I am able to open the door” according to the
notion of ability we study here. But this sentence is also sometimes used to say
“I have now the possibility to open the door” (because, for instance, the door is
now unlocked), but this does not mean that I am able to do so. Here, it refers to
a notion of possibility. Finally, this sentence is sometimes used to mean “I have
the permission to open the door”, which still does not imply that I am able to
do so and which refers here to a deontic notion.

Ability in a Multi-agent Context: A Model in the Situation Calculus 25

Secondly, several people agree on the fact that two kinds of ability must be
distinguished [17, 18, 5, 1].

One can first distinguish what is called “generic ability” by some people (or
“ability”by others) and which refers to the agent’s competences to perform an
action in normal conditions. “I can open the door” means here that I know what
to do to open the door, independently of my current intellectual or physical state
and of the current state of the world. Thus, with this point of view, I can say “I
am able to open the door” even if my arms are broken or the door is locked.

One can also distinguish what is called “occasional ability” by some people
(or “pragmatic possibility”, or “opportunity to exercise an ability” by others)
and which refers to the current situation. Here, “I can open the door” means
that I have the generic ability to open the door and the current situation is such
that conditions are favourable for me to use this generic ability (for instance,
my arms are not broken and the door is unlocked).

Finally, in a multi-agent context, one of the main problems is to define the
notion of ability relatively to a group of agents, and in particular to infer the
ability of the group from the abilities of the individuals of the group. For instance,
what are the conditions for saying that a group of people is able to paint the
door? Or a group of people is able to first sand the door, then to paint it? The
problem is not trivial since the notion of ability previously called “occasional”
is a dynamic notion which depends on the state of the world in which it is
evaluated. But in a multi-agent context, the dynamic of the world is hard to
foresee because several agents may change the world.

This paper presents a preliminary study of the notion of ability in a multi-
agent context. As far as we know, no previous work has already attacked the
same question in a multi-agent context. In particular, it must be noticed that
the notion we are trying to model here is different from the one Pauly has
studied [15]. Indeed, in his work “an agent (or a group of agents) can bring
about a proposition” means that this agent (or group of agents) has a (collective)
efficient strategy which makes this proposition true, whatever the other people
do. In particular, the logic defined by Pauly does not apply when a first agent
can bring about a proposition and another one can bring about its contrary.

This paper is organized as follows. In section 2, we informally discuss some
requirements about the notion of ability. In section 3 we propose a formal model,
in the Situation Calculus, of concepts related to ability and we justify the use of
such formalism. Some properties of this model are given in 4, and an example
is detailed in 5. Section 6 presents an implementation of our modelling and
section 7 is devoted to a discussion and presents some perspectives.

2 Informal Requirements About Ability

Our modelling lies on the following choices:

– The ability we focus on bears on actions. We aim at characterizing the mean-
ing of being able to perform actions, i.e. to perform a procedure [6].

26 L. Cholvy, C. Garion, and C. Saurel

– We aim at explicitly representing actions, their preconditions and their ef-
fects. We consider the general case when some primitive actions may require
several agents to be performed (for instance, lifting an heavy door requires
two agents).

– We aim at defining the ability of an agent to perform an action as the
combination of its competences and some favourable conditions that allow it
to perform that action. But we also aim at making a difference between the
conditions which are related to the agent only from those which are not. For
doing so, we introduce an intermediary notion called “theoretical ability”.

2.1 Model of Action

In our model of action, any primitive action is specified by its preconditions
which are the conditions under which it can be performed, independently of any
agent. When these conditions are true, we say that the action is possible [16].

Example 1. For instance, “painting” is only possible if there is some paint and
a brush.

2.2 Model of Ability

In our model, the primitive notion is the notion of competence described as
follows:

Competence. Competence represents the knowing-how of the agent (or agents)
relatively to an action. This knowledge may be inborn or may result from a
learning phase. In our model, this information is considered as primitive.

For instance, we will have initial data like: “John is competent to paint a
door” or “John and Peter are competent together to lift the door”. The first
sentence means that John knows the successive gestures he has to make so that
the door is painted. The second sentence means that they both know how to
coordinate their gestures in order to lift the door.

In this work, we will assume that the competences of the agents can not be
deleted: once an agent is competent to perform an action, he will always be.
This assumption seems to be justified in many applications with rather short
temporal horizon where it can be assumed that the agents do not loose their
competences. As we will see, this assumption can be easily removed.

It must be noticed that this notion of competence is different from the one Co-
hen and Levesque consider in [4], where, if an agent competent for a proposition
p believes p, then p is true.

Theoretical Ability. From the notion of competence,we first define the notion
of theoretical ability as follows:

Definition 1. Let A be a non empty group of agents (possibly a singleton) and
α be a primitive action. A is theoretically able to perform α if:

Ability in a Multi-agent Context: A Model in the Situation Calculus 27

1. A is competent to perform α
2. some conditions, related to the agents of A, are true.

Remember that competence is considered to be a primitive notion. The condi-
tions expressed in point 2 concern the agent (its physical state for instance), but
not all the environment.

Example 2. For instance, an agent is theoretically able to paint a door if it is
competent for paint a door and if it is not tired.

Notice that this notion is close to the notion of ability of [18].

Ability. The notion of ability is finally defined from the notion of theoretical
ability by taking into account the conditions which define the possibility to
perform the action.

Definition 2. Let A be a non empty group of agents (possibly a singleton) and
α be a primitive action. A is able to perform α if:

1. A is theoretically able to perform α
2. α is possible.

Notice that the notion of possibility in this definition is the one defined by Reiter
in [16]. The possibility here is a set of conditions concerning the state of the world
excepting the agent.

Example 3. For instance, an agent is able to paint a door if it is theoretically
able to paint the door (i.e, competent for painting the door, not tired) and if
there is some paint and a brush.

This notion of ability is a kind of occasional ability in the sense of section 1.
It can also be noticed that the previous condition “α is possible” is very close

to the notion of “opportunity to exercise an ability” mentioned in [5], as well as
the one mentioned in [18]. It means that, in our approach, an agent is able to
perform an action if it has the opportunity to exercise the theoretical ability to
perform this action.

2.3 Extensions to More Complex Actions

Considering only primitive actions is not enough and we must also consider more
complex actions obtained by composition of primitive ones. In this preliminary
work, we focus on sequences (like for instance: “lift the door, then paint it”.)

We would like to validate the following assertion (cf. [18]): agent a is able
to perform the sequence α then β if a is able to perform α and, once a has
performed α, a is able to perform β.

Example 4. For instance, assume that sanding a door is tiring. Then, we would
like to deduce that John is not able to sand then to paint the door (i.e, not able
to perform the action “sand then paint”). Indeed, even if John is able to sand
the door, once he will have sanded it, he will be tired. Thus, he will not be able
to paint the door.

28 L. Cholvy, C. Garion, and C. Saurel

2.4 Deriving Ability of a Group from Abilities of Individuals

In a multi-agent context, it is necessary to extend these previous notions for a
group of agents. We will say that a group of agents is able to perform a primitive
action if one of its sub-group (possibly a singleton) is able to perform it. Notice
that in some cases, only a subgroup may be competent to do some action: an
agent does not have the competence to carry a piano, but a group of three agents
may have it.

As for the sequences, we would like to validate the fact that a group is able to
perform the action “α then β” if one of its sub-group is able to perform α and,
once this sub-group has performed α, the group is able to perform β.

Example 5. Consider now that Peter is also competent to paint the door and is
not tired. Then the group {John, Peter} is able to sand the door then to paint
it. Indeed, John is able to sand it (see previously) and, once John has sanded
the door, the group is still able to paint the door (because Peter has remained
not tired).

3 Model of Ability in the Situation Calculus

3.1 The Situation Calculus

We suggest to use the Situation Calculus to model these notions for two reasons:

– firstly, this formalism is a good candidate for modelling actions since it offers
means to explicitly express preconditions and effects of actions;

– secondly, an important problem underlying this present work, the frame
problem (i.e, how to express what are the changings induced by the perfor-
mance of an action by an agent and how to express what remains unchanged),
has been provided a solution in the Situation Calculus by Reiter.

3.2 The Language

We consider a first order language LCS which will allow us to model and reason
about actions and ability. In this language, the changes of the world are resulting
from action performances. It is defined as follows:

– a set of constants to represent agents A.
– a set of functions and constants used to represent primitive actions, with

parameters or without.
For instance the term “paint(x)” will represent the action “to paint the

object x”.
– A unary predicate primitive(.) used to list the primitive actions.

Thus, primitive(paint(x)) means that paint(x) is a primitive action.
– a binary function ; used to represent the sequence of actions.

sand(x); paint(x) will represent the action which consists in sanding the ob-
ject x then painting it.

Ability in a Multi-agent Context: A Model in the Situation Calculus 29

– a constant S0 used to represent the initial situation.
– a ternary function do.

do(A, paint(x), s) represents the situation which follows from the situation
s, when the group of agents A has painted the object x.

Notice that here, unlike the “classical” Situation Calculus, the agent is not
a parameter of the function which represents the action, but is a parameter
of the function do which represents the performance of the action.

– a set of predicates called relational fluents which represent properties which
may be changed by the performance of an action. The last argument of a
fluent is a situation.

For instance, painted(door, S0) expresses that the door is painted in the
initial situation S0.

– a particular binary fluent Poss used to express that an action is possible in
a situation.

– a particular binary fluent competent used to represent the fact that an agent
(or a group) is competent for performing a primitive action.

For instance, competent({a}, paint(door), s) expresses that agent a is com-
petent to paint the door in situation s.

– a particular ternary fluent able t used to represent the fact that an agent (or
a group) is theoretically able to perform an action.

able t({a}, paint(door), S0) expresses that agent a is, in situation S0, the-
oretically able to paint the door.

– a particular ternary fluent able used to represent the fact that an agent (or
a group) is able to perform an action.

able({a}, paint(door), S0) expresses that agent a is, in situation S0, able
to paint the door.

3.3 The Axioms

Description of the Initial Situation. First, the initial state of the world
must be represented. For doing so, for any fluent f and for any tuples t1, . . . , tn
of ground terms such that f(t1, . . . , tn) is true in the initial situation, we consider
the following axiom:

f(t1, . . . , tn, S0) (1)

In particular, since competent is a fluent, for any group G competent for
performing the primitive action α in the initial situation S0, we consider the
following axiom:

competent(G,α, S0) (2)

Primitive Actions. For any primitive action α, we consider an axiom of the
following form:

primitive(α) (3)

Precondition Axioms for Primitive Actions. We represent the precondi-
tions of the primitive actions (i.e. the conditions that make the performance of
the action possible) by an axiom of the following type:

∀α∀S Poss(α, S) ↔ pre(α, S) (4)

30 L. Cholvy, C. Garion, and C. Saurel

Precondition Axioms for Sequence. We then extend this kind of axioms
for a sequence α;β where α is a primitive action and β is a complex action as
follows:

∀S∀G∀α∀β Poss(α, S) ∧ Poss(β, do(G,α, S)) ↔ Poss(α;β, S) (5)

Axiom (5) expresses that α;β is possible in S iff α is possible in S and β is
possible after the performance of α in S.

Successor State Axioms. Following Reiter [16], for any fluent f(t1, . . . , tn),
we consider a successor state axiom which specifies all the ways the value of the
fluent may change.

∀S∀G∀α Poss(α, S) → f(t1, . . . , tn, do(G,α, S)) ↔ (6)

γ+
f (t1, . . . , tn, α, S) ∨ (f(t1, . . . , tn, S) ∧ ¬γ−f (t1, . . . , tn, α, S))

γ+
f (t1, . . . , tn, α, S) represents the conditions which make f true after α has

been performed in S. γ−f (t1, . . . , tn, α, S) represents the conditions which make
f false after α has been performed in S.

Since competent is a fluent, we have to express a successor state axiom for it.
In this paper, we assume that the competence is not deleted, i.e. once an agent
is competent to perform an action. This is expressed by:

∀α∀β∀G∀S Poss(β, S) → (competent(G,α, do(G, β, S)) ↔ competent(G,α, S))
(7)

One can wonder why we have chosen to use a fluent to represent competence
if we assume that competence does not change during execution of action. Let
us claim that our modelling allows to relax this assumption easily by modifying
axiom (7).

Theoretical Ability Axioms. For any primitive action α, we consider an
axiom of the following form:

∀G∀S competent(G,α, S) ∧ conditions t(G,α, S) → able t(G,α, S) (8)

It expresses that a group G is theoretically able to perform α in situation S if
G is competent for α in S and if some conditions related to G and α are satisfied.

Finally, in order to derive the theoretical ability for a group of agents, we
consider:

∀G∀G′∀α∀S primitive(α) ∧ (G′ ⊆ G) ∧ able t(G′, α, S) → able t(G,α, S) (9)

∀G∀G′∀α∀β∀S (G′ ⊆G)∧able t(G′, α, S)∧able t(G, β, do(G′, α, S))→able t(G, α; β, S)
(10)

Axiom (9) expresses the fact that if a sub group G′ of G is theoretically able
to perform a primitive action α, then the group G is also theoretically able to
perform α. Axiom (10) expresses that if a sub-group G′ of G is theoretically able
to perform α and if G is theoretically able to perform β once G′ has performed
α, then G is theoretically able to perform α;β (i.e. to perform α then β).

Ability in a Multi-agent Context: A Model in the Situation Calculus 31

Ability Axioms. Finally, the following axiom allows to derive the ability of a
group:

∀G∀α∀S able t(G,α, S) ∧ Poss(α, S) → able(G,α, S) (11)

4 Some Properties of This Model

Proposition 1. Let Σ = {(1), . . . , (11)} be the set of axioms presented previ-
ously. Then :

Σ � ∀α∀β∀G∀G′∀S able(G,α, S)∧able(G′, β, do(G,α, S)) → able(G∪G′, α;β, S)

Proof. This proposition is proved by an inductive proof on the length of the
sequence α;β.

This proposition means that if the group G is able to perform α in the situation
s and if the group G′ is able to perform β after G has performed α in S, then
the group G ∪G′ is able to perform α;β in S.

A corollary is the following:

Proposition 2. Let Σ = {(1), . . . , (11)} be the set of axioms presented previ-
ously. Then :

Σ � ∀α∀β∀G∀S able(G,α, S) ∧ able(G, β, do(G,α, S)) → able(G,α;β, S)

Proposition 3. Let Σ = {(1), . . . , (11)} be the set of axioms presented pre-
viously, f be a fluent and α a primitive action. Σ � ∀G∀S Poss(α, S) →
f(. . . , do(G,α, S))
=⇒ Σ � ∀S∀G′ f(. . . , S) → able(G′, α, S).

Proof. This proposition is proved by finding a counter example. Let us consider
an action α such that a postcondition of α is that f is true (i.e, after any
performance of α by a group of agents G, f is true). Let us suppose that f is
true in a situation S, then if we consider a group of agents G′ such that each
agent in G′ is not competent for doing α (for instance), then G′ is not able to
perform α according to axiom (8)1.

This result guaranties that we do not validate the paradox mentioned in intro-
duction: “if ϕ is true, then the agent has the ability to see to it that ϕ”.

5 Example
5.1 Description of the Example

Let a, b and c be three agents.

– Primitive actions we consider are: to lift the door (lift), to sand the door
(sand), to paint the door (paint).

1 Notice that this is true because able t cannot be deduced in our model without using
competent.

32 L. Cholvy, C. Garion, and C. Saurel

– Competence of agents are: a is competent for sanding the door and for paint-
ing it. b is only competent for painting the door. a and b together are com-
petent for lifting the door. c is not competent for any action.

– The initial situation is such that there is a sander (sander(S0)) and it works,
there is some paint and the agents are not tired (for each agent a, ok(a, S0)
holds).

– Sanding is possible if the sander works.
– Painting is possible if there is some paint (paintr).
– An agent is theoretically able to sand the door if it is competent for doing

so and if it is not tired ; an agent is theoretically able to paint the door is
it is competent for doing so and if it is not tired ; two agents are together
theoretically able to lift the door is they are together competent for doing
so and if they are not tired.

– Successive state axioms are defined as follows:
An agent is tired iff it has sanded the door, or it has participated in lifting
the door.
There is paint left after the execution of an action, except if it is a painting
action.
No action makes the sander out.

5.2 Formulas in the Situation Calculus

Description of the Initial Situation (Axioms (1) and (2))

ok(a, S0)
ok(b, S0)
ok(c, S0)

paint r(S0)
sander(S0)

competent({a, b}, lift, S0)
competent({b, a}, lift, S0)
competent(a, sand, S0)
competent(a, paint, S0)
competent(b, paint, S0)

Primitive Actions (Axioms (3))

primitive(lift)
primitive(sand)
primitive(paint)

Preconditions Axioms for Primitive Actions (Axioms (4))

∀S Poss(lift, S)

∀S sander(S) ↔ Poss(sand, S)

∀S paint r(S) ↔ Poss(paint, S)

Ability in a Multi-agent Context: A Model in the Situation Calculus 33

Successive State Axioms (Axioms (6))

∀B∀Y ∀S Poss(Y, S) → (sander(do(B, Y, S)) ↔ sander(S))

∀A∀X∀S Poss(X,S) → (paint r(do(A,X, S)) ↔ paint r(S) ∧ ¬(X = paint))

∀A∀B∀X∀S poss(X,S) → (ok(A, do(B,X, S)) ↔
((ok(A,S) ∧ (B = A) ∧ ¬(X = sand))∨
(ok(A,S) ∧ (A ∈ B) ∧ ¬(X = lift))∨

(ok(A,S) ∧ ¬(A ∈ B))))

Theoretical Ability Axioms (Axioms (8))

∀A∀B∀S competent(A,B, lift, S) ∧ ok(A,S) ∧ ok(B,S) → able t({A,B}, lift, S)

∀A∀S competent(A, sand, S) ∧ ok(A,S) → able t(A, sand, S)

∀A∀S competent(A, paint, S) ∧ ok(A,S) → able t(A, paint, S)

5.3 Some Conclusions

Let us denote Σ the set of axioms (1),. . . ,(11). Then,

– � Σ → able t(a, paint, S0)
In the initial situation, a is theoretically able to paint the door because it is
competent for doing it and it is not tired.

– � Σ → able t(a, paint, do(a, paint, S0))
Since painting does not make the agent tired, a is still theoretically able to
paint after he has painted.

–
� Σ → able(a, paint, do(a, paint, S0))
But, after a has painted the door, there is no more paint, so it cannot be
proved that a is able to paint the door again (even if it is theoretically able
as it is shown previously)

–
� Σ → able t(a, sand; paint, S0)
Indeed, after having sanded the door, a will be tired, so he will not be
theoretically able to paint the door.

–
� Σ → able t(a, paint, do({a, b}, lift, S0))
After the group a, b has lifted the door, a and b are tired. Thus, a is not
theoretically able to paint the door.

– � Σ → able({a, b}, paint; lift, S0)
The group a, b is able to paint then lift the door. Indeed once a or b will have
painted the door, a and b will not be tired. So they will be able to lift the
door.

–
� Σ → able({a, b}, lift; paint, S0)
The group a, b is not able to lift then to paint the door. Indeed once a and
b will have lifted the door, a and b will both be tired. So none of them will
be able to paint the door.

34 L. Cholvy, C. Garion, and C. Saurel

– Let us add now that agent c is competent for painting the door:
Let Σ′ the set obtained by adding the formula competent(c, paint, S0) to Σ.
Thus � Σ′ → able({a, b, c}, lift; paint, S0)
The group a, b, c is now able to lift then to paint the door. Indeed, if agents
a and b lift the door, then this does not make c tired. So c is able to paint
the door after a and b have lifted the door.

6 Implementation

This model has been implemented in Prolog. As in [13], we use a binary predicate
holds in order to represent fluents. For instance, ok(a, S0) is represented by
holds(ok([a]), S0). The successor state axiom for fluent ok is expressed by
the following clause:

holds(ok(A), do(B,X,S)) :- B=A, \+ (X=sand), holds(ok(A),S), Poss(X,S).
holds(ok(A), do(B,X,S)) :- member(A,B), \+ (X=lift), holds(ok(A),S),

Poss(X,S).
holds(ok(A), do(B,X,S)) :- \+ member(A,B), holds(ok(A),S), Poss(X,S).

We can show that, given a group of agents G and an action α primitive
or not, we have Σ � able t(G,α, S0) (resp. Σ � able(G,α, S0)) if and only
if Prolog with negation as failure proves holds(able_t(G,alpha),S0) (resp.
holds(able(G,alpha),S0)). For instance, resuming the example presented in
section 5.3 using negation as failure, we can now show that the answer to the
question holds(able([a,b], [paint,lift], S0)) is yes and the answer to
holds(able([a,b], [lift,paint], S0) is no2.

7 Discussion

In this paper, we have presented an attempt to model in the Situation Calculus
the notions of theoretical ability and ability of an agent towards an action in
a multi-agent context. Definitions of these two notions to groups of agents has
also been given.

In this model, agents’ theoretical ability depends on their competence and on
some conditions depending on the agents. Agents’ ability is then defined from
theoretical ability and from some conditions which do not depend on the agents.

Introducing the notion of theoretical ability is of course interesting from a
modelling point of view since it makes a distinction between conditions which
are related to the agents who perform the actions and conditions which are
not. But it may also be interesting in the preliminary phase of planning when
choosing the agents who will be in charge of the task to be performed. Indeed,
proving that the chosen agents are not even theoretically able to perform the
global task is enough to prove that the task will never be performed by these
agents and that changing agents is required.
2 Notice that we implement sequence of actions as lists in Prolog.

Ability in a Multi-agent Context: A Model in the Situation Calculus 35

However, if one is only interested in proving that a group of agents is able
to perform an action, the intermediary notion of theoretical ability is not useful
and definitions have to be compacted as follows:

∀G∀S competent(G,α, S) ∧ conditions t(G,α, S) ∧ Poss(α, S) → able(G,α, S)

This preliminary work has many perspectives.
First, some more formal properties on this model must be proved. In particu-

lar, formal relations with existing works mentioned in the introduction have to
be established.

Secondly, another assumption could be made when inferring the ability of a
group from the abilities of its agents. Indeed, the model presented here assumes
that a group of agents is able to perform an action if one of its member is able to
do so. But this assumes that the conditions for an agent to be theoretically able
to perform an action do not depend on the fact that this agent belongs or not to
a group. But it could happen that a single agent is theoretically able to perform
an action but when it belongs to a group, it is no longer able (not because the
others agents prevent him to do so but because belonging to a group changes
the conditions sufficient for him to be theoretically able to perform the action).

Thirdly, we have to extend this work by considering more types of complex
actions like concurrence, iteration or conditionals. We must also take into account
time and action durations. For doing so, the solution provided in [6] can be
adopted.

Finally, the model presented here does not take external actions into account.
In particular, fluents are changed only by actions performed by the agents we
consider. But in many applications, the world may change because some other
agents we don’t know change it. An immediate solution we could study, consists
in introducing an “external agent” who could be used to model the evolution of
the world which are independent from the other agents.

Acknowledgements

This work has been funded by DGA (Délégation Générale de l’Armement) under
contract: SPOTI/0373088.

References

1. B. Chaib-Draa and R. Demolombe. L’interaction comme champ de recherche.
Information - Interaction - Intelligence, numéro spécial Modèles Formels de
l’Interaction, pages 5–24, 2001.

2. B.F. Chellas. Modal logic. An introduction. Cambridge University Press, 1980.
3. L. Cholvy and C. Garion. Distribution of goals addressed to a group of agents.

In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo, editors, Pro-
ceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 765–772. ACM Press, July 2003.

4. P.R. Cohen and H.J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42:213–261, 1990.

36 L. Cholvy, C. Garion, and C. Saurel

5. R. Demolombe. Formalisation en logique des interactions entre agents : quels
concepts formaliser ? Technical report, ONERA/DTIM, 2000. In French.

6. R. Demolombe and E. Hamon. What does it mean that an agent is performing a
typical procedure: a formal definition in the Situation Calculus. In Proceedings of
the First International Joint Conference an Autonomous Agents and Multiagent
Systems (AAMAS’02), pages 905–911, Bologna, Italy, 2002.

7. D. Elgesem. The modal logic of agency. Nordic Journal of Philosophical Logic,
2(2):1–46, 1997.

8. B.J. Grosz, L. Hunsberger, and S. Kraus. Planning and acting together. AI Mag-
azine, 20(4):23–34, 1999.

9. D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, volume 2, pages 497–604. D. Reidel Publishing Company,
1984.

10. J.F. Horty. Agency and obligation. Synthese, 108:269–307, 1996.
11. J.F. Horty and N. Belnap. The deliberative stit : a study of action, omission, ability

and obligation. Journal of Philosophical Logic, 24:583–644, 1995. Reprinted in The
Philosopher’s Annual, Volume 18-1995, Ridgeview Publishing Company, 1997.

12. Y. Lespérance, H.J. Levesque, F. Lin, and R.B. Scherl. Ability and knowing how
in the situation calculus. Studia Logica, 66(1):165–186, oct 2000.

13. H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog: A logic pro-
gramming language for dynamic domains. Journal of Logic Programming, 31:59–84,
1997.

14. J. MacCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In D. Michie and B. Melzer, editors, Machine Intelligence 4,
pages 463–502. Edinburgh University Press, 1969.

15. M. Pauly. A modal logic for conditional power in games. Journal of Logic and
Computation, 12(1):149–166, 2000.

16. R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, pages
359–380. Academic Press, New York, 1991.

17. R. Thomason. Ability, action and context. Presentation at the Temporality and
Discourse Context: Dynamic and Modal Approaches Workshop, 2001.

18. B. van Linder, W. van der Hoek, and J.-J. Ch. Meyer. Formalizing abilities and
opportunities of agents. Fundamenta Informaticae, 34(1-2):53–101, 1998.

Reasoning About Epistemic States of Agents by
Modal Logic Programming

Linh Anh Nguyen

Institute of Informatics, University of Warsaw,
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. Modal logic programming is one of appropriate approaches
to deal with reasoning about epistemic states of agents. We specify here
the least model semantics, the fixpoint semantics, and an SLD-resolution
calculus for modal logic programs in the multimodal logic KD4Ig5a,
which is intended for reasoning about belief and common belief of agents.
We prove that the presented SLD-resolution calculus is sound and com-
plete. We also present a formalization of the wise men puzzle using a
modal logic program in KD4Ig5a. This shows that it is worth to study
modal logic programming for multi-agent systems.

1 Introduction

Reasoning is an important aspect of agents. In order to be able to make right
actions, an agent should have general knowledge of the field it works on, infor-
mation about the environment, and abilities to interact with the environment, to
make inferences, and to revise its knowledge base. In multi-agent systems, agents
should be able to communicate, collaborate, and sometimes compete with each
other. For this aim, an agent should have knowledge about other agents in the
system and be able to reason about their epistemic states. It is not that an agent
can have all information it wants or can reason exactly as the others, but at least
it can simulate epistemic states of the other agents, using some assumptions. The
wise men puzzle introduced by McCarthy [20] is an example of reasoning about
epistemic states of agents. We will study it in Section 3.

Modal logics and logic programming are useful instruments for multi-agent
systems. Using modal logics is a natural way to represent and reason about
knowledge and belief of agents (see, e.g., [11, 33, 32, 17, 8, 1]). Logic programming
is also useful because logical implication is probably the inference form humans
use most and want to adopt for multi-agent systems. Thus, one can think about
modal logic programming as an approach to deal with reasoning about epistemic
states of agents.

Modal logic programming has been studied in a number of works (see the ear-
lier surveys [29, 13] and the later works [28, 5, 22, 26]). There are two approaches:
the direct approach [12, 3, 5, 22, 26] and the translation approach [9, 28]. The first
approach directly uses modalities, while the second one translates modal logic

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 37–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 L.A. Nguyen

programs to classical logic programs. In this paper we will use the direct ap-
proach. This approach is justifiable, as the direct approach deals with modalities
more closely, and modalities allow us to separate object-level and epistemic-level
notions nicely.

In [22], we developed a fixpoint semantics, the least model semantics, and an
SLD-resolution calculus in a direct way for modal logic programs in all of the
basic serial monomodal logics. In that work we do not assume any special restric-
tion on occurrences of � and � in programs and goals. In [26], we generalized
the methods of [22] and gave a general framework for developing fixpoint seman-
tics, the least model semantics, and SLD-resolution calculi for logic programs in
normal multimodal logics whose frame restrictions consist of the conditions of
seriality and some classical first-order Horn formulas.

In this work, we instantiate the above mentioned framework for the multi-
modal logic KD4Ig5a, which was introduced in [23] for reasoning about belief
and common belief. We prove that the obtained SLD-resolution calculus is sound
and complete. We also give a purely logical formalization of the wise men puzzle
using a modal logic program in KD4Ig5a.

The rest of this paper is structured as follows. In Section 2, we give def-
initions for multimodal logics, define the multimodal logic KD4Ig5a and the
modal logic programming language MProlog. In Section 3, we recall the wise
men puzzle and formalize it by an MProlog program in KD4Ig5a. In Section 4,
we instantiate the framework given in [26] for KD4Ig5a in order to specify the
least model semantics, the fixpoint semantics, and an SLD-resolution calculus
for MProlog programs in KD4Ig5a. Soundness and completeness of the obtained
SLD-resolution calculus is proved in Section 5. In Section 6, we give two more
examples illustrating the usefulness of modal logic programming for multi-agent
systems. In Section 7, we briefly mention related works and discuss how to ex-
tend our system to deal with actions and time. Finally, Section 8 contains some
concluding remarks.

2 Preliminaries

2.1 Syntax and Semantics of Quantified Multimodal Logics

A language for quantified multimodal logics is an extension of the language of
classical predicate logic with modal operators �i and �i, for 1 ≤ i ≤ m (where
m is fixed). The modal operators �i and �i can take various meanings. For
example, �i can stand for “the agent i believes” and �i for “it is considered
possible by agent i”. The operators �i are called universal modal operators,
while �i are called existential modal operators. Terms and formulas are defined
in the usual way, with an emphasis that if ϕ is a formula then �iϕ and �iϕ are
also formulas.

A Kripke frame is a tuple 〈W, τ,R1, . . . , Rm〉, where W is a nonempty set of
possible worlds, τ ∈ W is the actual world, and Ri is a binary relation on W ,
called the accessibility relation for the modal operators �i, �i. If Ri(w, u) holds
then we say that the world u is accessible from the world w via Ri.

Reasoning About Epistemic States of Agents by Modal Logic Programming 39

A fixed-domain Kripke model with rigid terms, hereafter simply called a
(Kripke) model, is a tuple M = 〈D,W, τ,R1, . . . , Rm, π〉, where D is a set called
the domain, 〈W, τ,R1, . . . , Rm〉 is a Kripke frame, and π is an interpretation of
symbols. For a constant symbol a, π(a) is an element of D, denoted by aM . For
an n-ary function symbol f , π(f) is a function from Dn to D, denoted by fM .
For an n-ary predicate symbol p and a world w ∈W , π(w)(p) is an n-ary relation
on D, denoted by pM,w. (We adopt here the version with fixed-domain and rigid
terms, as it is most popular. This work can be extended for other versions of
Kripke semantics, e.g. with varying domain and flexible terms; see a discussion
in [26].)

A model graph is a tuple 〈W, τ,R1, . . . , Rm, H〉, where 〈W, τ,R1, . . . , Rm〉 is
a Kripke frame and H is a function that maps each world of W to a set of
formulas.

Every model graph 〈W, τ,R1, . . . , Rm, H〉 corresponds to a Herbrand model
M = 〈U ,W, τ, R1, . . . , Rm, π〉 specified by: U is the Herbrand universe (i.e. the set
of all ground terms), cM = c, fM (t1, . . . , tn) = f(t1, . . . , tn), and ((t1, . . . , tn) ∈
pM,w) ≡ (p(t1, . . . , tn) ∈ H(w)), where t1, . . . , tn are ground terms. We will
sometimes treat a model graph as its corresponding model.

A variable assignment V w.r.t. a Kripke model M is a function that maps
each variable to an element of the domain of M . The value of tM [V] for a term
t is defined as usual.

Given some Kripke model M = 〈D,W, τ,R1, . . . , Rm, π〉, some variable as-
signment V , and some world w ∈ W , the satisfaction relation M,V,w |= ψ for a
formula ψ is defined as follows:

M,V,w |= p(t1, . . . , tn) iff (tM1 [V], . . . , tMn [V]) ∈ pM,w;
M,V,w |= �iϕ iff for all v ∈W such that Ri(w, v), M,V, v |= ϕ;
M,V,w |= ∀x.ϕ iff for all a ∈ D, (M,V ′, w |= ϕ),

where V ′(x) = a and V ′(y) = V (y) for y
= x;
and as usual for other cases (treating �iϕ as ¬�i¬ϕ, and ∃x.ϕ as ¬∀x.¬ϕ). We
say that M satisfies ϕ, or ϕ is true in M , and write M |= ϕ, if M,V, τ |= ϕ for
every V . For a set Γ of formulas, we call M a model of Γ and write M |= Γ if
M |= ϕ for every ϕ ∈ Γ .

If as the class of admissible interpretations we take the class of all Kripke mod-
els (with no restrictions on the accessibility relations) then we obtain a quantified
multimodal logic which has a standard Hilbert-style axiomatization denoted by
Km. Other normal (multi)modal logics are obtained by adding certain axioms
to Km. Mostly used axioms are ones that correspond to a certain restriction on
the Kripke frame defined by a classical first-order formula using the accessibility
relations. For example, the axiom (D) : �iϕ → �iϕ corresponds to the frame
restriction ∀x∃y Ri(x, y).

For a normal modal logic L whose class of admissible interpretations can be
characterized by classical first-order formulas of the accessibility relations, we
call such formulas L-frame restrictions, and call frames with such properties
L-frames. We call a model M with an L-frame an L-model. We say that ϕ is L-
satisfiable if there exists an L-model of ϕ, i.e. an L-model satisfying ϕ. A formula

40 L.A. Nguyen

ϕ is said to be L-valid and called an L-tautology if ϕ is true in every L-model.
For a set Γ of formulas, we write Γ |=L ϕ and call ϕ a logical consequence of Γ
in L if ϕ is true in every L-model of Γ .

2.2 The Multimodal Logic KD4Ig5a

Suppose that there are n agents and m = 2n−1. Let g be an one-to-one function
that maps every natural number less than or equal to m to a non-empty subset
of {1, . . . , n}. Suppose that an index 1 ≤ i ≤ m stands for the group of agents
whose indices form the set g(i). To capture belief and common belief of agents,
we can extend Km with the following axioms

– (D) : �iϕ→ ¬�i¬ϕ (belief is consistent),
– (4) : �iϕ→ �i�iϕ (belief satisfies positive introspection),
– (Ig) : �iϕ → �jϕ if g(i) ⊃ g(j) (if i indicates a supergroup of a group j

then every common belief of i is also a common belief of j).
– (5a) : ¬�iϕ→ �i¬�iϕ if g(i) is a singleton (belief of a single agent satisfies

negative introspection).

Thus, for reasoning about belief and common belief, we can use:

KD4Ig5a = Km + (D) + (4) + (Ig) + (5a)

Here we want to catch the most important properties of belief and common
belief, and the aim is not to give an exact formulation of belief or common
belief. The logic KD4Ig5a was introduced in [23]. It is different in the nature
from the well-known multimodal logic of common knowledge. It also differs from
the modal logic with mutual belief [1].

In [15] (an extension of [14]), Goré and Nguyen show that the satisfiabil-
ity problem in the propositional version of KD4Ig5a is in EXPTIME. Clearly,
the problem is PSPACE-hard (as KD4Ig5a contains KD4). We guess that the
problem is EXPTIME-hard when n ≥ 3 (i.e. m ≥ 7). It is an open problem.

The given axioms correspond to the following frame restrictions:

Axiom Corresponding Condition
(D) ∀u ∃v Ri(u, v)
(4) ∀u, v, w (Ri(u, v) ∧Ri(v, w) → Ri(u,w))
(Ig) Rj ⊆ Ri if g(i) ⊃ g(j)
(5a) ∀u, v, w (Ri(u, v) ∧Ri(u,w) → Ri(w, v)) if g(i) is a singleton

For further reading on epistemic logics, see, e.g., [11, 33, 8, 1].

2.3 Modal Logic Programs

A modality is a (possibly empty) sequence of modal operators. A universal modal-
ity is a modality which contains only universal modal operators. We use � to
denote a modality and � to denote a universal modality. Similarly as in classi-
cal logic programming, we use a clausal form �(ϕ ← ψ1, . . . , ψn) to denote the

Reasoning About Epistemic States of Agents by Modal Logic Programming 41

formula ∀(�(ϕ ∨ ¬ψ1 . . . ∨ ¬ψn)). We use E to denote a classical atom and A,
B1, . . . , Bn to denote formulas of the form E, �iE, or �iE.

A program clause is a formula of the form �(A← B1, . . . , Bn), where n ≥ 0. �
is called the modal context, A the head, and B1, . . . , Bn the body of the program
clause. An MProlog program is a finite set of program clauses.

An MProlog goal atom is a formula of the form �E or ��iE. An MProlog
goal is a formula written in the clausal form ← α1, . . . , αk, where each αi is an
MProlog goal atom. The empty goal (i.e. the empty clause) is denoted by �.

In KD4Ig5a, if g(i) is a singleton then we have the equivalence ∇i∇′
iϕ ≡ ∇′

iϕ
for any modal operators∇i and ∇′

i with the same modal index i. For this reason,
we adopt some restrictions to simplify the form of MProlog programs and goals
in KD4Ig5a. An MProlog program is called a KD4Ig5a-MProlog program if the
modal contexts of its program clauses do not contain subsequences of the form
�i�i if g(i) is a singleton. An MProlog goal is called a KD4Ig5a-MProlog goal
if each of its goal atoms �E satisfies the condition that � does not contain
subsequences of the form �i�i or �i�i if g(i) is a singleton.

Let P be an KD4Ig5a-MProlog program and G = ← α1, . . . , αk be an
KD4Ig5a-MProlog goal. An answer θ for P∪{G} is a substitution whose domain
is the set of all variables of G. We say that θ is a correct answer in KD4Ig5a for
P ∪ {G} if θ is an answer for P ∪ {G} and P |=KD4Ig5a ∀((α1 ∧ . . . ∧ αk)θ).

It is shown in [23] that MProlog has the same expressiveness power as the gen-
eral Horn fragment in normal modal logics. Moreover, the restrictions adopted
for KD4Ig5a-MProlog do not reduce expressiveness of the language (see [23]).

3 The Wise Men Puzzle

Before considering technical details of semantics of KD4Ig5a-MProlog, we give
a formalization of the three wise men puzzle in MProlog. The puzzle is a famous
benchmark introduced by McCarthy [20] for AI. It can be stated as follows
(cf. [18]). A king wishes to know whether his three advisors (A, B, C) are as
wise as they claim to be. Three chairs are lined up, all facing the same direction,
with one behind the other. The wise men are instructed to sit down in the order
A, B, C. Each of the men can see the backs of the men sitting before them (e.g. C
can see A and B). The king informs the wise men that he has three cards, all
of which are either black or white, at least one of which is white. He places one
card, face up, behind each of the three wise men, explaining that each wise man
must determine the color of his own card. Each wise man must announce the
color of his own card as soon as he knows what it is. All know that this will
happen. The room is silent; then, after a while, wise man A says “My card is
white!”.

The wise men puzzle has been previously studied in a number of works (e.g.,
[20, 18, 10, 7, 2, 28, 4]). McCarthy [20] directly used possible worlds to formalize
the puzzle. Konolige [18], Nonnengart [28], and Baldoni [4] also used modal logics
for the puzzle. Konolige [18] focused on limited reasoning, Nonnengart [28] used
semi-functional translation for modal logic programming, and Baldoni [4] used

42 L.A. Nguyen

a prefixed tableau system. Both McCarthy [20] and Nonnengart [28] used some
feature of mutual belief, but they did not define it purely. Baldoni [4] adopted
too strong versions of axioms 4 and 5, which are rather not suitable for the
puzzle. As other approaches for the wise men puzzle, Elgot-Drapkin [10] used
step-logics, while Cimatti and Serafini [7], Attardi and Simi [2] studied reasoning
in belief-contexts. Our formalization of the wise men puzzle given below uses
KD4Ig5a-MProlog. It is more elegant than the above-mentioned formalizations,
as it uses a modal logic with a clear semantics of common belief in a direct way.

As reported in [24], we have designed and implemented a modal logic pro-
gramming system, also called MProlog. In that system, SLD-resolution cal-
culi for MProlog can be specified according to the theoretical framework
given in [26]. An instantiation of that framework for KD4Ig5a is presented
in the next section. Its implementation (of SLD-resolution) is denoted by
ccKD4Ig5a. In that implementation, bel denotes belief and pos denotes possi-
bility, and modalities are represented by lists, e.g. �i〈X〉j�kq(a) is represented
by [bel(I), pos(J,X), pos(K)] : q(a). The implemented calculus requires defini-
tions of predicates singleton group/1, subgroup/2, and union group/3. Denote
the wise men by a, b, c, and the possible groups by gAB, gAC, gBC, gABC,
where, e.g., gABC = {a, b, c}. Thus, [bel(gABC)] : ϕ means that ϕ is a common
belief of the group {a, b, c}. Define the mentioned required predicates in the usual
way. The three wise men problem can be formalized by the following program:

:- calculus ccKD4Ig5a.
% If Y sits behinds X then X’s card is white if Y considers this as possible.
[bel(gABC)]: (white(X) :-

member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, [pos(Y)]:white(X)).

% The following formula is “dual” to the above formula.
[bel(gABC)]: ([bel(Y)]:black(X) :-

member(X, [a,b,c]), member(Y, [a,b,c]), X @< Y, black(X)).
% At least one of the wise men has a white card.
[bel(gABC)]: (white(a) :- black(b), black(c)).
[bel(gABC)]: (white(b) :- black(c), black(a)).
[bel(gABC)]: (white(c) :- black(a), black(b)).
/* Each of B and C does not know the color of his own card. In particular, each
of the men considers that it is possible that his own card is black. */
[bel(gABC),pos(b)]:black(b).
[bel(gABC),pos(c)]:black(c).

The question is whether A believes that his card is white. It is passed to the
interpreter as mcall([bel(a)] : white(a)) and solved in less than 1 second1 using
certain option settings.

The above program uses the syntax of the implemented system. We give
below a version using the purely logical formalism of MProlog. For clarity,
instead of numeric indices we use a, b, c, ab, ac, bc, abc with the meaning that

1 On TravelMate 230X, 1.7GHz-M.

Reasoning About Epistemic States of Agents by Modal Logic Programming 43

g(a) = {a}, g(b) = {b}, g(c) = {c}, . . . , and g(abc) = {a, b, c}. Let Pwise men be
the following program:

ϕ1 = �abc (white(a) ← �bwhite(a))
ϕ2 = �abc (white(a) ← �c white(a))
ϕ3 = �abc (white(b) ← �cwhite(b))
ϕ4 = �abc (�b black(a) ← black(a))
ϕ5 = �abc (�c black(a) ← black(a))
ϕ6 = �abc (�c black(b)← black(b))
ϕ7 = �abc (white(a) ← black(b), black(c))
ϕ8 = �abc (white(b) ← black(c), black(a))
ϕ9 = �abc (white(c) ← black(a), black(b))
ϕ10 = �abc�b black(b)
ϕ11 = �abc�c black(c)

The goal is ← �awhite(a). We will continue this example in Section 4.5.
For a formalization of the puzzle with n wise men, see [26].

4 Semantics of KD4Ig5a-MProlog Programs

In this section, we present the least model semantics, the fixpoint semantics and
an SLD-resolution calculus for KD4Ig5a-MProlog programs. For abbreviation,
from now on we use L to denote KD4Ig5a.

4.1 Labeled Modal Operators

When applying the direct consequence operator TL,P for an MProlog program
P in L, if we obtain an “atom” of the form ��iE, then to simplify the task we
label the modal operator �i. Labeling allows us to address the chosen world(s)
in which this particular E must hold. A natural way is to label �i by E to obtain
〈E〉i. On the other hand, when dealing with SLD-derivation, we cannot change
a goal ← �i(A ∧ B) to ← �iA,�iB. But if we label the operator �i, let’s say
by X , then we can safely change ← 〈X〉i(A ∧B) to ← 〈X〉iA, 〈X〉iB.

We will use the following notations:

– � : the truth symbol, with the usual semantics2;
– E, F : classical atoms (which may contain variables) or �;
– X , Y , Z : variables for classical atoms or �, called atom variables;
– 〈E〉i, 〈X〉i : �i labeled by E or X ;
– ∇ : �i, �i, 〈E〉i, or 〈X〉i, called a modal operator;
– � : a (possibly empty) sequence of modal operators, called a modality;
– � : a universal modality;
– A, B : formulas of the form E or ∇E, called simple atoms;
– α, β : formulas of the form �E, called atoms;
– ϕ, ψ : (labeled) formulas (i.e. formulas that may contain 〈E〉i and 〈X〉i).

2 i.e. it is always true that M, V, w |= �.

44 L.A. Nguyen

We use subscripts beside ∇ to indicate modal indexes in the same way as for
� and �. To distinguish a number of modal operators we use superscripts of the
form (i), e.g. �(1), �(2), ∇(i), ∇(i′).

A ground formula is a formula with no variables and no atom variables. A
modal operator is said to be ground if it is �i, �i, or 〈E〉i with E being �
or a ground classical atom. A ground modality is a modality that contains only
ground modal operators. A labeled modal operator is a modal operator of the
form 〈E〉i or 〈X〉i.

Denote EdgeLabels = {〈E〉i | E ∈ B ∪ {�} and 1 ≤ i ≤ m}, where B is
the Herbrand base (i.e. the set of all ground classical atoms). The semantics
of 〈E〉i ∈ EdgeLabels is specified as follows. Let M = 〈D,W, τ,R1, . . . , Rm, π〉
be a Kripke model. A �-realization function on M is a partial function σ :
W × EdgeLabels → W such that if σ(w, 〈E〉i) = u, then Ri(w, u) holds and
M,u |= E. Given a �-realization function σ, a world w ∈ W , and a ground
formula ϕ, the satisfaction relation M,σ,w |= ϕ is defined in the usual way,
except that M,σ,w |= 〈E〉iψ iff σ(w, 〈E〉i) is defined and M,σ, σ(w, 〈E〉i) |= ψ.
We write M,σ |= ϕ to denote that M,σ, τ |= ϕ. For a set I of ground atoms, we
write M,σ |= I to denote that M,σ |= α for all α ∈ I; we write M |= I and call
M a model of I if M,σ |= I for some σ.

4.2 Model Generators

We define that a modality∇(1)
i1
. . .∇(k)

ik
is in the L-normal form if for all 1 ≤ j < k

if g(ij) is a singleton then ij
= ij+1. (Note that if g(i) is a singleton then
∇i∇′

iϕ ≡ ∇′
iϕ is KD4Ig5a-valid.) A modality is in L-normal labeled form if it

is in L-normal form and does not contain modal operators of the form �i or
〈�〉i. An atom is in L-normal (labeled) form if it is of the form �E with � in
L-normal (labeled) form. An atom is in almost L-normal labeled form if it is of
the form �A with � in L-normal labeled form.

A model generator is a set of ground atoms not containing �i, 〈�〉i, �. An
L-normal model generator is a model generator consisting of atoms in L-normal
labeled form.

We will define the standard L-model of an L-normal model generator I so that
it is a least L-model of I (where a model M is less than or equal to a model M ′

if for every positive ground formula ϕ without labeled operators, if M |= ϕ then
M ′ |= ϕ). In the construction we will use the operator ExtL defined below.

A forward rule is a schema of the form α → β, while a backward rule is a
schema of the form α ← β. A rule can be accompanied with some conditions
specifying when the rule can be applied.

The operator ExtL is specified by the corresponding forward rules given in
Table 1. Given an L-normal model generator I, ExtL(I) is the least extension
of I that contains all ground atoms in L-normal labeled form that are derivable
from some atom of I using the rules specifying ExtL. Note that ExtL(I) is an
L-normal model generator if so is I.

Denote SerialL = {�〈�〉i� | 1 ≤ i ≤ m and �〈�〉i is in L-normal form}.

Reasoning About Epistemic States of Agents by Modal Logic Programming 45

Table 1. A schema for semantics of KD4Ig5a-MProlog

L = KD4Ig5a, L-MProlog

�L is defined in page 46.
The L-normal form of modalities is defined in page 44.

Rules specifying operators ExtL, SatL, NFL, rNFL, rSatL:
(Both sides of each rule are in almost L-normal labeled form.)

ExtL ��iα → ��jα if g(i) ⊃ g(j) (1)
��iα → ��i�iα (2)

SatL the rules specifying ExtL plus
�〈F 〉iE → ��i�iE if g(i) is a singleton (3)
�∇∇′E → ��iE if �i �L ∇ and �i �L ∇′ (4)

NFL �∇i∇′
iE → �∇′

iE if g(i) is a singleton and
∇′

i is of the form �i or 〈E〉i (5)

rNFL �∇iE ← �〈X〉i∇iE if g(i) is a singleton,
∇i is of the form �i or 〈E〉i, and X is a fresh atom variable (6)

rSatL ��iE ← �〈X〉iE for X being a fresh atom variable (7)
�∇iα ← ��jα if g(i) ⊆ g(j) (8)
��iE ← ��jE if g(i) ⊃ g(j) (9)
��i�iα ← ��iα (10)
�∇i�iE ← ��iE if g(i) is a singleton (11)
��iE ← �〈X〉j�iE if g(i) ⊇ g(j) and

X is a fresh atom variable (12)

Let I be an L-normal model generator. The standard L-model of I is con-
structed by building an L-model for ExtL(I) ∪ SerialL according to the se-
mantics of ground labeled modal operators, and formally is defined as fol-
lows. Let W ′ = EdgeLabels∗ (i.e. the set of finite sequences of elements of
{〈E〉i | E ∈ B ∪ {�} and 1 ≤ i ≤ m}), τ = ε, H(τ) = ExtL(I) ∪ SerialL. Let
R′

i ⊆W ′ ×W ′ and H(u), for u ∈W ′, u
= τ , be the least sets such that:

– if 〈E〉iα ∈ H(w), then R′
i(w,w〈E〉i) holds and {E,α} ⊆ H(w〈E〉i);

– if �iα ∈ H(w) and R′
i(w,w〈E〉i) holds, then α ∈ H(w〈E〉i).

Let Ri, for 1 ≤ i ≤ m, be the least3 extension of R′
i such that {Ri | 1 ≤ i ≤ m}

satisfies all the L-frame restrictions except seriality (which is cared by SerialL).
Let W be W ′ without worlds not accessible directly nor indirectly from τ via
the accessibility relations Ri. We call the model graph 〈W, τ,R1, . . . , Rm, H〉
3 The least extension exists due to the assumption that all L-frame restrictions not

concerning seriality are classical first-order Horn formulas.

46 L.A. Nguyen

the standard L-model graph of I, and its corresponding model M the standard
L-model of I. {R′

i | 1 ≤ i ≤ m} is called the skeleton of M . By the standard �-
realization function on M we call the �-realization function σ defined as follows:
if R′

i(w,w〈E〉i) holds then σ(w, 〈E〉i) = w〈E〉i, else σ(w, 〈E〉i) is undefined.
It can be shown that the standard L-model of an L-normal model generator I

is a least L-model of I.

4.3 Fixpoint Semantics

We now consider the direct consequence operator TL,P . Given an L-normal model
generator I, how can TL,P (I) be defined? Based on the axioms of L, I is first
extended to the L-saturation of I, denoted by SatL(I), which is a set of atoms.
Next, L-instances of program clauses of P are applied to the atoms of SatL(I).
This is done by the operator T0L,P . The set T0L,P (SatL(I)) is a model generator
but not necessary in L-normal form. Finally, the normalization operator NFL

converts T0L,P (SatL(I)) to an L-normal model generator. TL,P (I) is defined as
NFL(T0L,P (SatL(I))).

To compare modal operators we define �L to be the least reflexive and
transitive relation between modal operators such that �i �L 〈E〉i �L �i,
�i �L 〈X〉i �L �i, and if g(i) ⊆ g(j) then �i �L �j and �j �L �i.

An atom ∇(1) . . .∇(n)α is called an L-instance of an atom ∇(1′) . . .∇(n′)α′

if there exists a substitution θ such that α = α′θ and ∇(i) �L ∇(i′)θ for all
1 ≤ i ≤ n (treating ∇(i′) as an expression). For example, if g(1) ⊆ g(2) then
�1�2E is an L-instance of �2〈F 〉1E.

A modality � is called an L-instance of �′, and we also say that �′ is equal to
or more general in L than � (hereby we define a pre-order between modalities),
if �E is an L-instance of �′E for some ground classical atom E.

Let � and �′ be universal modalities in L-normal form. We say that � is an
L-context instance of �′ if �′ϕ→ �ϕ is L-valid (for every ϕ). (It can be shown
that the propositional version of the logic L is decidable. So, the problem of
checking whether a given universal modality is an L-context instance of another
one is also decidable.)

Let � and �′ be universal modalities in L-normal form, ϕ and ϕ′ be program
clauses with empty modal context. We say that �ϕ is an L-instance of (a program
clause) �′ϕ′ if � is an L-context instance of �′ and there exists a substitution
θ such that ϕ = ϕ′θ.

For example, if g(1) ⊆ g(2) then �2�1 is an L-context instance of �2 and
�2�1(p(a) ← q(a)) is an L-instance of �2(p(x) ← q(x)).

We now give definitions concerning SatL, T0L,P , and NFL.
The saturation operator SatL is specified by the corresponding forward rules

given in Table 1. Given an L-normal model generator I, SatL(I) is the least
extension of I that contains all ground atoms in almost L-normal labeled
form that are derivable from some atom in I using the rules specifying SatL.
For example, if g(1) is a singleton and g(2) is not, then �2�2�1�1p(a) ∈
SatL({�2〈q(b)〉1 p(a)}).

Reasoning About Epistemic States of Agents by Modal Logic Programming 47

When computing the least fixpoint of a modal logic program, whenever
an atom of the form ��iE is introduced, we “fix” the � by replacing the
atom by �〈E〉iE. This leads to the following definition. The forward labeled
form of an atom α is the atom α′ such that if α is of the form ��iE then
α′ = �〈E〉iE, else α′ = α. For example, the forward labeled form of �1s(a) is
〈s(a)〉1s(a).

Let P be an L-MProlog program. The operator T0L,P is defined as follows:
for a set I of ground atoms in almost L-normal labeled form, T0L,P (I) is the
least (w.r.t. ⊆) model generator such that if �(A ← B1, . . . , Bn) is a ground
L-instance of some program clause of P and � is a maximally general4 ground
modality in L-normal labeled form such that � is an L-instance of � and �Bi is
an L-instance of some atom of I (for every 1 ≤ i ≤ n), then the forward labeled
form of �A belongs to T0L,P (I).

For example, if g(1) ⊆ g(2) and P contains the clause �2(�1p(x) ← q(x), r(x),
�1s(x), �2t(x)) and I = {〈q(a)〉1q(a), 〈q(a)〉1r(a), �2�2s(a), �2〈t(a)〉1t(a)},
then 〈q(a)〉1〈p(a)〉1p(a) ∈ T0L,P (I).

The normalization operator NFL is specified by the corresponding forward
rules given in Table 1. Given a model generator I, NFL(I) is the set of all
ground atoms in L-normal labeled form that are derivable from some atom
of I using the rules specifying NFL. For example, if g(1) is a singleton then
NFL({〈q(a)〉1〈p(a)〉1p(a)}) = {〈p(a)〉1p(a)}.

Define TL,P (I) = NFL(T0L,P (SatL(I))). By definition, the operators SatL,
T0L,P , and NFL are all increasingly monotonic and compact. Hence the operator
TL,P is monotonic and continuous. By the Kleene theorem, it follows that TL,P

has the least fixpoint TL,P ↑ω =
⋃ω

n=0 TL,P ↑n, where TL,P ↑0 = ∅ and TL,P ↑n
= TL,P (TL,P ↑(n− 1)) for n > 0. Denote the least fixpoint TL,P ↑ω by IL,P and
the standard L-model of IL,P by ML,P .

It can be shown that for an L-MProlog program P , ML,P is a least L-model
of P . See also Lemma 1 given in Section 5.

4.4 SLD-Resolution

The main work in developing an SLD-resolution calculus for L-MProlog is to
specify a reverse analogue of the operator TL,P . The operator TL,P is a com-
position of SatL, T0L,P , and NFL. So, we have to investigate reversion of these
operators.

A goal is a clause of the form ← α1, . . . , αk, where each αi is an atom.
The following definition concerns reversion of the operator T0L,P .
Let G = ← α1, . . . , αi, . . . , αk be a goal and ϕ = �(A ← B1, . . . , Bn) a

program clause. Then G′ is derived from G and ϕ in L using mgu θ, and called
an L-resolvent of G and ϕ, if the following conditions hold:

– αi = �′A′, with �′ in L-normal labeled form, is called the selected atom,
and A′ is called the selected head atom;

4 W.r.t. the pre-order between modalities described earlier for L.

48 L.A. Nguyen

– �′ is an L-instance of a universal modality �′ and �′(A ← B1, . . . , Bn) is
an L-instance of the program clause ϕ;

– θ is an mgu of A′ and the forward labeled form of A;
– G′ is the goal ← (α1, . . . , αi−1,�′B1, . . . ,�′Bn, αi+1, . . . , αk)θ.

For example, if g(1) ⊆ g(2) then ← �1�2q(x),�1r(x) is an L-resolvent of
← �1p(x) and �2(p(x) ← �2q(x), r(x)) (here, � = �2 and �′ = �′ = �1).

As a reverse analogue of the operator SatL, we provide the operator rSatL,
which is specified by the corresponding backward rules given in Table 1. We say
that β = rSatL(α) using an rSatL rule α′ ← β′ if α← β is of the form α′ ← β′.
We write β = rSatL(α) to denote that “β = rSatL(α) using some rSatL rule”.

As a reverse analogue of the operator NFL, we provide the operator rNFL,
which is specified by the corresponding backward rules given in Table 1. We
say that β =θ rNFL(α) using an rNFL rule α′ ← β′ if θ is an mgu such
that αθ ← β is of the form α′ ← β′. We write β =θ rNFL(α) to denote that
“β =θ rNFL(α) using some rNFL rule”. For example, if g(1) is a singleton then
we have 〈Y 〉1〈E〉1E =θ rNFL(〈X〉1E) with θ = {X/E} and Y being a fresh
atom variable.

Let G = ← α1, . . . , αi, . . . , αk be a goal. If α′
i = rSatL(αi) using an rSatL

rule ϕ, then G′ = ← α1, . . . , αi−1, α
′
i, αi+1, . . . , αk is derived from G and ϕ, and

we call G′ an (L-)resolvent of G and ϕ, and αi the selected atom of G.
Similarly, G′ is derived from G and an rNFL rule ϕ using an mgu θ, and called

an (L-)resolvent of G and ϕ, if αi is called the selected atom, α′
i =θ rNFL(αi)

using ϕ, and G′ = ← α1θ, . . . , αi−1θ, α
′
i, αi+1θ, . . . , αkθ.

For example, resolving ← �1�1p(x) with the rule ��i�iα ← ��iα results
in ← �1p(x), since � is instantiated to the empty modality, i is instantiated
to 1, and α is instantiated to p(x).

Observe that rSatL rules and rNFL rules are similar to program clauses and
the way of applying them is similar to the way of applying classical program
clauses, except that we do not need mgu’s for rSatL rules.

We now define SLD-derivation and SLD-refutation.
Let P be an L-MProlog program and G a goal. An SLD-derivation from

P ∪ {G} in L consists of a (finite or infinite) sequence G0 = G,G1, . . . of goals,
a sequence ϕ1, ϕ2, . . . of variants of program clauses of P , rSatL rules, or rNFL

rules, and a sequence θ1, θ2, . . . of mgu’s such that if ϕi is a variant of a program
clause or an rNFL rule then Gi is derived from Gi−1 and ϕi in L using θi, else
θi = ε (the empty substitution) and Gi is derived from Gi−1 and (the rSatL
rule variant) ϕi. Each ϕi is called an input clause/rule of the derivation.

We assume standardizing variables apart as usual (see [19]).
An SLD-refutation of P ∪ {G} in L is a finite SLD-derivation from P ∪ {G}

in L with the empty clause as the last goal in the derivation.
Let P be an L-MProlog program and G a goal. A computed answer θ in L of

P ∪ {G} is the substitution obtained by restricting the composition θ1 . . . θn to
the variables of G, where θ1, . . . , θn is the sequence of mgu’s used in an SLD-
refutation of P ∪ {G} in L.

Reasoning About Epistemic States of Agents by Modal Logic Programming 49

4.5 Example

We give here an SLD-refutation of Pwise men ∪ {← �awhite(a)} in KD4Ig5a,
where Pwise men is the KD4Ig5a-MProlog program given in Section 3.

Goals Input clauses/rules MGUs
← �a white(a)
← �a�bwhite(a) ϕ1
← �a〈X2〉b white(a) (7)
← �a〈X2〉b�cwhite(a) ϕ2
← �a〈X2〉b〈X4〉c white(a) (7)
← �a〈X2〉b〈X4〉c black(b),�a〈X2〉b〈X4〉c black(c) ϕ7
← �a〈X2〉b black(b),�a〈X2〉b〈X4〉c black(c) ϕ6
← �a〈black(b)〉b〈X4〉c black(c) ϕ10 {X2/black(b)}
� ϕ11 {X4/black(c)}

5 Soundness and Completeness

In this section, we prove soundness and completeness of the SLD-resolution
calculus given for KD4Ig5a-MProlog, which is stated as follows.

Theorem 1. Let P be an KD4Ig5a-MProlog program and G an KD4Ig5a-
MProlog goal. Then every computed answer in KD4Ig5a of P ∪ {G} is a cor-
rect answer in KD4Ig5a of P ∪ {G}. Conversely, for every correct answer θ in
KD4Ig5a of P ∪{G}, there exists a computed answer γ in KD4Ig5a of P ∪{G}
such that Gθ = Gγδ for some substitution δ.

In [26], we presented a general framework for developing fixpoint semantics, the
least model semantics, and SLD-resolution calculi for logic programs in multi-
modal logics, and proved that under certain expected properties of a concrete
instantiation of the framework for a specific multimodal logic, the SLD-resolution
calculus is sound and complete. The semantics of KD4Ig5a-MProlog presented
in the previous section and summarized in Table 1 is based on and compatible
with the framework given in [26].

By the results of [26], to prove soundness and completeness of SLD-resolution
of KD4Ig5a-MProlog, we can prove Expected Lemmas 4 – 10 of [26] (w.r.t. the
schema given in Table 1). The Expected Lemma 6 is trivial, and the Expected
Lemmas 7 – 10, which concern properties of the operators SatL, NFL, rSatL,
and rNFL, can be verified in a straightforward way. The remaining Expected
Lemmas 4 and 5 are renumbered respectively as Lemmas 1 and 2 given below.

A model generator I is called an L-model generator of P if TL,P (I) ⊆ I.

Lemma 1. Let P be an L-MProlog program and I an L-model generator of P .
Then the standard L-model of I is an L-model of P .

Lemma 2. Let I be an L-normal model generator, M the standard L-model
of I, and α a ground L-MProlog goal atom. Suppose that M |= α. Then α is an
L-instance of some atom of SatL(I).

50 L.A. Nguyen

To prove these lemmas we need Lemmas 3 and 4 given below.
If a modality � is obtainable from �′ by replacing some (possibly zero) ∇i

by �i then we call � a �-lifting form of �′. If � is a �-lifting form of �′ then
we call an atom �α a �-lifting form of �′α. For example, �1〈p(a)〉1�2q(b) is a
�-lifting form of 〈X〉1〈p(a)〉1�2q(b).

Lemma 3. Let I be an L-normal model generator and M =
〈W, τ,R1, . . . , Rm, H〉 the standard L-model graph of I. Let w = 〈E1〉i1 . . . 〈Ek〉ik

be a world of M and � = w be a modality. Then for α not containing �,
α ∈ H(w) iff there exists a �-lifting form �′ of � such that �′α ∈ ExtL(I).

This lemma can be easily proved by induction on the length of �.
The following lemma is labeled Expected Lemma 2 in [26]. It states that the

standard L-model of I is really an L-model of I.

Lemma 4. Let I be an L-normal model generator, M the standard L-model of
I, and σ the standard �-realization function on M . Then M is an L-model and
M,σ |= I.

Proof. By the definition, M is an L-model. Let {R′
i | 1 ≤ i ≤ m} be the skeleton

ofM . We prove by induction on the length of α that for any w ∈ W , if α ∈ H(w)
then M,σ,w |= α. The cases when α is a classical atom or α = 〈E〉iβ are trivial.
Consider the remaining case when α = �iβ. Let u be a world such that Ri(w, u)
holds. Because ExtL(I) contains only atoms in L-normal form and �iβ ∈ H(w),
there does not exist v such that R′

i(v, w) holds. Consequently, since Ri(w, u)
holds, there exist worlds w0 = w, w1, . . . , wh−1, wh = u and indices j1, . . . , jh
with h ≥ 1 such that R′

j1
(w0, w1), . . . , R′

jh
(wh−1, wh), and g(k) ⊆ g(i) for all

k ∈ {j1, . . . , jh}. Since �iβ ∈ H(w), by Lemma 3, there exists a �-lifting form
�′ of � = w such that �′�iβ ∈ ExtL(I). By the rules specifying ExtL, it
follows that �′�j1 . . .�jh

β ∈ ExtL(I). Hence, by Lemma 3, β ∈ H(u). By the
inductive assumption, M,σ, u |= β. Hence M,σ,w |= �iβ.

Proof of Lemma 1. Let M be the standard L-model of I and σ the standard
�-realization function onM . By the definition of L-instances of program clauses
and the construction ofM , it is sufficient to prove that for any ground L-instance
�(A ← B1, . . . , Bn) of some program clause of P , for any w ∈ W being an L-
instance of �, M,w |= (A ← B1, . . . , Bn). Suppose that M,w |= Bi for all
1 ≤ i ≤ n. We show that M,w |= A.

Let � = w = 〈E1〉i1 . . . 〈Ek〉ik
. We first show that for any ground simple atom

B of the form E, �iE, or �iE, if M,w |= B then �B is an L-instance of some
atom from SatL(I). Suppose that M,w |= B. If k ≥ 1 and i = ik and g(i) is a
singleton, then let v = 〈E1〉i1 . . . 〈Ek−1〉ik−1 , else let v = w.

If B = E, then by Lemma 3, some �-lifting form of �B belongs to ExtL(I),
and hence �B is an L-instance of some atom from SatL(I).

Now suppose that B = �iE. Let u = v〈�〉i and �′ = v�i. We have Ri(w, u),
and hence M,u |= E. By Lemma 3, it follows that some �-lifting form of �′E
belongs to ExtL(I). Hence, �B is an L-instance of some atom from SatL(I).

Reasoning About Epistemic States of Agents by Modal Logic Programming 51

Next, suppose that B = �iE. Consider the case w
= v (i.e. i = ik and g(i)
is a singleton). Since M,w |= B, there exists F such that v〈F 〉i is a world of M
and M, v〈F 〉i |= E. Let �′ = v〈F 〉i. By Lemma 3, some �-lifting form of �′E
belongs to ExtL(I). Hence, by the rules (2) and (3) of SatL, �B is an L-instance
of some atom from SatL(I). Now consider the case w = v (i.e. k = 0 or i
= ik or
g(i) is not a singleton). Since M,w |= �iE, there exists u = w〈F1〉j1 . . . 〈Fh〉jh

such that M,u |= E, h ≥ 1, and g(l) ⊆ g(i) for all l ∈ {j1, . . . , jh}. By Lemma 3,
some �-lifting form of w〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I). It follows that
some �-lifting form of �〈F1〉j1 . . . 〈Fh〉jh

E belongs to SatL(I). By the rules of
SatL, some �-lifting form of ��iE belongs to SatL(I). Hence �B is an L-
instance of some atom from SatL(I).

Since M,w |= Bi for 1 ≤ i ≤ n, it follows that �Bi is an L-instance of
some atom from SatL(I). Consequently, �A is an L-instance of some atom α
from T0L,P (SatL(I)). Let α′ be the L-normal form of α, i.e. NFL({α}) = {α′}.
We have α′ ∈ TL,P (I) ⊆ I. By Lemma 4, M,σ |= α′. If α′ = α then we can
derive from M,σ |= α′ that M,w |= A. Suppose that α′
= α. Thus, α is of the
form �′′∇i∇′

iE, where �′′∇i = �, g(i) is a singleton, and ∇′
i is �i or 〈E〉i. If

∇′
i = 〈E〉i then A = �iE. We have that α′ = �′′∇′

iE. Since M,σ |= α′ and g(i)
is a singleton, it follows that M,σ |= �′′�iA. Hence M,w |= A. This completes
the proof.

Proof of Lemma 2. Let 〈W, τ,R1, . . . , Rm, H〉 be the standard L-model graph
of I, � = �i1 . . .�ik

be a modality, and w = 〈�〉i1 . . . 〈�〉ik
. Suppose that α is

of the form �E. Since M |= α, we have M,w |= E. Hence, by Lemma 3,
�E ∈ ExtL(I), and we also have �E ∈ SatL(I). Now suppose that α is of
the form ��iE with the property that if g(i) is a singleton then i
= ik. Since
M |= α, we have M,w |= �iE. Hence there exists u = w〈F1〉j1 . . . 〈Fh〉jh

such
that E ∈ H(u), h ≥ 1, and g(l) ⊆ g(i) for all l ∈ {j1, . . . , jh}. By Lemma 3, some
�-lifting form of w〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I). It follows that some
�-lifting form of �〈F1〉j1 . . . 〈Fh〉jh

E belongs to ExtL(I) and SatL(I). Hence
��iE is an L-instance of some atom from SatL(I).

We have proved Lemmas 1 and 2, which completes the proof of Theorem 1.

6 More Examples

In this section, we give two more examples illustrating the usefulness of modal
logic programming for multi-agent systems.

6.1 Inheritance in a Hierarchy of Classes

In [5], Baldoni et al. formalizes an example taken from [6] of inheritance in a
hierarchy of classes by a modal logic program. We adopt here their example with
a small modification. Let us consider four classes: animal, horse, bird, and tweety.
Since what is true for animals is also true for birds and horses, the bird and horse
classes inherit from the animal class. Moreover, the class tweety inherits from
bird and thus from animal.

52 L.A. Nguyen

Animals are not agents in the normal sense, but there is a similarity between
the mentioned hierarchy of classes with a multi-agent system. We can treat the
class animal as a group of agents, the class bird as its subgroup of agents, and
so on. Program clauses with modal context animal can be applied for horse,
bird, and tweety. Apparently, this feature is useful for defining epistemic states
of groups of agents.

In the following, we use the mentioned classes as modal indices and write,
e.g., [animal] and 〈animal〉 respectively for �animal and �animal (and 〈X〉animal

can be denoted by 〈animal,X〉). We use KD4Ig5a, and for the hierarchy, we
adopt the conditions that g(animal) ⊃ g(horse), g(animal) ⊃ g(bird), and
g(bird) ⊃ g(tweety). Furthermore, treating tweety as an object, we assume that
g(tweety) is a singleton.

As an example, we have the following clauses:

[animal]mode(walk).
[animal](mode(run) ← no of legs(X), X ≥ 2).
[animal](mode(gallop)← no of legs(X), X = 4).
[horse]no of legs(4).
[horse]covering(hair).
[bird]no of legs(2).
[bird]covering(feather).
[tweety]owner(fred).

The atom [tweety]mode(run) can be derived from the above program
in KD4Ig5a. If the program contains also [bird](mode(fly) ← light) or
[bird](mode(fly) ← 〈bird〉light), and 〈tweety〉light, then we can derive
〈tweety〉mode(fly) (i.e. have a refutation for the goal ← 〈tweety〉mode(fly)).
This and the example about the wise men puzzle demonstrate that using
KD4Ig5a-MProlog we can reason about possibility. This feature was not in-
corporated in the work [5] by Baldoni et al. (as they studied only modal logic
programs without existential modal operators).

6.2 An Example for Modal Deductive Databases

For distributed systems of belief we can use the logic system

KD4s5s = Km + (D) + (4s) + (5s)

where axioms (4s): �iϕ → �j�iϕ and (5s): ¬�iϕ → �j¬�iϕ say that agents
have full access to belief bases of each other. They are members of a united
system and viewed as “friends”. An SLD-resolution for MProlog in KD4s5s is
given in [23]. The following example is taken from our paper [27].

Let us consider the situation when a company has some branches and a central
database. Each of the branches can access and update the database, and sup-
pose that the company wants to distinguish data and knowledge coming from
different branches. Also assume that data coming from branches can contain
noises and statements expressed by a branch may not be highly recognized by

Reasoning About Epistemic States of Agents by Modal Logic Programming 53

other branches. This means that data and statements expressed by branches
are treated as “belief” rather than “knowledge”. In this case, we can use the
multimodal logic KD4s5s, where each modal index represent a branch of the
company, also called an agent. Recall that in this logic each agent has a full
access to the belief bases of the other agents. Data put by agent i are of the
form �iE (agent i believes in E) or �iE (agent i considers that E is possible).
A statement expressed by agent i is a clause of the form �i(A ← B1, . . . , Bn),
where A is an atom of the form E, �iE, or �iE, and B1, . . . , Bn are simple
modal atoms that may contain modal operators of the other agents. For com-
municating with normal users, the central database may contain rules with the
empty modal context, i.e. in the form E ← B1, . . . , Bn, which hide sources of
information. As a concrete example, consider the following program/database in
KD4s5s:

agent 1:
�1(�1likes(x,Coca) ← likes(x, Pepsi)) (1)
�1(�1likes(x, Pepsi)← likes(x,Coca)) (2)
�1likes(Tom,Coca)← (3)
�1likes(Peter, Pepsi)← (4)
agent 2:
�2(likes(x,Coca) ← likes(x, Pepsi)) (5)
�2(likes(x, Pepsi)← likes(x,Coca)) (6)
�2likes(Tom,Pepsi)← (7)
�2likes(Peter, Coca)← (8)
�2likes(Peter, beer)← (9)
agent 3:
�3(very much likes(x, y) ← likes(x, y),�1likes(x, y),�2likes(x, y)) (10)
�3likes(Tom,Coca)← (11)
�3likes(Peter, Pepsi)← (12)
�3likes(Peter, beer)← (13)
for communicating with users:
very much likes(x, y) ← �3very much likes(x, y) (14)
likes(x, y) ← �3very much likes(x, y) (15)
possibly likes(x, y) ← �ilikes(x, y) (for i ∈ {1, 2, 3}) (16)

In the above example, we assume that data and rules are stored in a central
database. They can be stored also in a distributed database, where each agent
(i.e. branch) has its own database. Such a distributed database can be treated
as a multi-agent system.

7 Related Works and Possible Extensions

This paper considers only one of different aspects of multi-agent systems. In
particular, we did not consider temporal dimension, actions, and events. Thus
the current version of MProlog is not yet an agent programming language like
AgentSpeak(L) [30], 3APL [16], and KARO [21]. In this work, we concentrated

54 L.A. Nguyen

on reasoning about common/mutual belief, which was also considered in the
paper [21] on KARO, but neglected in [31, 30, 16].

To deal with actions and time, possible solutions are to adopt CTL like the
BDI-architecture [31], (concurrent) dynamic logic like the KARO system [21], or
discrete linear temporal logic. Extending MProlog with dynamic logic or discrete
linear temporal logic is possible, because such logics can be treated as modal
logics. In our opinion, extending MProlog with concurrent dynamic logic is an
interesting problem. Some temporal operators can be defined by modal operators
of actions. Interaction between time and belief/knowledge is also a problem to
be considered. For simplicity, one can study the case when temporal operators
are outside the scope of belief/knowledge.

However, this is still not sufficient for practical multi-agent systems. There
remain a lot of problems to be solved. In our opinion, multi-agent planning de-
serves for more attention. Also, perhaps we should use rewards and penalties for
cooperative and competitive5 multi-agent systems to deal with negotiation and
cooperation. But in that case, it seems not easy to adopt logics for specification
and verification of multi-agent systems.

Our related works are listed in the next section. Works involving with the
wise men puzzle have been discussed in Section 3.

8 Conclusions

Our contributions in this paper are: the schema for semantics of KD4Ig5a-
MProlog given in Table 1, proofs of the soundness and completeness of SLD-
resolution for KD4Ig5a-MProlog, and a formalization of the wise men puzzle
in the purely logical formalism of KD4Ig5a-MProlog together with its SLD-
refutation.

In this text, we recalled a large number of definitions and constructions from
[26] (which in turn is an extension of [22]) in order to make the paper self-
contained and understandable. Thus, the method used in this work for speci-
fying and proving correctness of semantics of KD4Ig5a-MProlog is not new. It
originates or relates to our other works [22, 23, 24, 25, 26]. However, this does
not reduce the originality of the above-mentioned contributions. They are first
published in this paper.

The SLD-refutation given in Section 4.5 for the wise men puzzle does not uses
rules or properties involving with axiom (5a). Consequently, the puzzle can be
solved in the logic KD4Ig = Km + (D) + (4) + (Ig). The choice of KD4Ig5a

is justified as one of possible multimodal logics of belief and common/mutual
belief that can be used to formalize the wise men puzzle. Our framework for
modal logic programming [26] is applicable for a wide class of multimodal logics
(see [23, 25]) and it can be extended for other versions of Kripke semantics, e.g.
with varying domain or flexible terms (see a discussion in [26]).

In summary, this paper is on reasoning about common/mutual belief. It shows
that the wise men puzzle can be nicely formalized in a multimodal logic of belief
5 Environment can be treated as a competitive agent.

Reasoning About Epistemic States of Agents by Modal Logic Programming 55

using modal logic programming. Our system is goal-driven and we focused on
theoretical aspects like soundness and completeness. We did not incorporate ac-
tions and temporal dimension into our system, and this remains as an interesting
problem.

Acknowledgements

I would like to thank the reviewers for helpful comments and suggestions.

References

1. H. Aldewereld, W. van der Hoek, and J.-J.Ch. Meyer. Rational teams: Logical
aspects of multi-agent systems. Fundamenta Informaticae, 63(2–3):159–183, 2004.

2. G. Attardi and M. Simi. Proofs in context. In J. Doyle, E. Sandewall, and
P. Torasso, editors, KR’94: Principles of Knowledge Representation and Reasoning,
pages 16–26, San Francisco, 1994. Morgan Kaufmann.

3. Ph. Balbiani, L. Fariñas del Cerro, and A. Herzig. Declarative semantics for modal
logic programs. In Proceedings of the 1988 International Conference on Fifth Gen-
eration Computer Systems, pages 507–514. ICOT, 1988.

4. M. Baldoni. Normal multimodal logics with interaction axioms. In D. Basin,
M. D’Agostino, D.M. Gabbay, and L. Viganò, editors, Labelled Deduction, pages
33–57. Kluwer Academic Publishers, 2000.

5. M. Baldoni, L. Giordano, and A. Martelli. A framework for a modal logic program-
ming. In Joint International Conference and Symposium on Logic Programming,
pages 52–66. MIT Press, 1996.

6. A. Brogi, E. Lamma, and P. Mello. Inheritance and hypothetical reasoning in logic
programming. In Proceedings of ECAI’90, pages 105–110, Stockholm, 1990.

7. A. Cimatti and L. Serafini. Multi-agent reasoning with belief contexts: The ap-
proach and a case study. In M. Wooldridge and N.R. Jennings, editors, Proceedings
of ECAI-94, LNCS 890, pages 71–85. Springer, 1995.

8. N. de Carvalho Ferreira, M. Fisher, and W. van der Hoek. Practical reasoning for
uncertain agents. In J.J. Alferes and J.A. Leite, editors, Proceedings of JELIA’2004,
volume 3229 of LNCS, pages 82–94. Springer-Verlag, 2004.

9. F. Debart, P. Enjalbert, and M. Lescot. Multimodal logic programming using
equational and order-sorted logic. Theoretical Comp. Science, 105:141–166, 1992.

10. J.J. Elgot-Drapkin. Step-logic and the three-wise-men problem. In AAAI, pages
412–417, 1991.

11. R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning About Knowledge.
MIT Press, 1995.

12. L. Fariñas del Cerro. Molog: A system that extends Prolog with modal logic. New
Generation Computing, 4:35–50, 1986.

13. M. Fisher and R. Owens. An introduction to executable modal and temporal
logics. In M. Fisher and R. Owens, editors, Executable Modal and Temporal Logics,
IJCAI’93 workshop, pages 1–20. Springer, 1995.

14. R. Goré and L.A. Nguyen. A tableau system with automaton-labelled formulae for
regular grammar logics. In B. Beckert, editor, Proceedings of TABLEAUX 2005,
LNAI 3702, pages 138–152. Springer-Verlag, 2005.

56 L.A. Nguyen

15. R. Goré and L.A. Nguyen. Tableaux for regular grammar logics of agents using
automaton-modal formulae. To be submitted to JAR, 2006.

16. K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401,
1999.

17. M. Kacprzak, A. Lomuscio, and W. Penczek. Bounded versus unbounded model
checking for interpreted systems (invited talk at FAAMAS’03). In B. Dunin-Keplicz
and R. Verbrugge, editors, Proceedings of FAAMAS’03, pages 5–20, 2003.

18. K. Konolige. Belief and incompleteness. Technical Report 319, SRI Inter., 1984.
19. J.W. Lloyd. Foundations of Logic Programming, 2nd Ed. Springer-Verlag, 1987.
20. J. McCarthy. First order theories of individual concepts and propositions. Machine

Intelligence, 9:120–147, 1979.
21. J.-J.Ch. Meyer, F.S. de Boer, R.M. van Eijk, K.V. Hindriks, and W. van der Hoek.

On programming KARO agents. Logic Journal of the IGPL, 9(2), 2001.
22. L.A. Nguyen. A fixpoint semantics and an SLD-resolution calculus for modal logic

programs. Fundamenta Informaticae, 55(1):63–100, 2003.
23. L.A. Nguyen. Multimodal logic programming and its applications to modal deduc-

tive databases. Manuscript (served as a technical report), available on Internet at
http://www.mimuw.edu.pl/~nguyen/papers.html, 2003.

24. L.A. Nguyen. The modal logic programming system MProlog. In J.J. Alferes
and J.A. Leite, editors, Proceedings of JELIA 2004, LNCS 3229, pages 266–278.
Springer, 2004.

25. L.A. Nguyen. An SLD-resolution calculus for basic serial multimodal logics. In
D.V. Hung and M. Wirsing, editors, Proceedings of ICTAC 2005, LNCS 3722,
pages 151–165. Springer, 2005.

26. L.A. Nguyen. The modal logic programming system MProlog: Theory, design, and
implementation. Manuscript, available at
http://www.mimuw.edu.pl/~nguyen/mprolog, 2005.

27. L.A. Nguyen. On modal deductive databases. In J. Eder, H.-M. Haav, A. Kalja,
and J. Penjam, editors, Proceedings of ADBIS 2005, LNCS 3631, pages 43–57.
Springer, 2005.

28. A. Nonnengart. How to use modalities and sorts in Prolog. In C. MacNish,
D. Pearce, and L.M. Pereira, editors, Proceedings of JELIA’94, LNCS 838, pages
365–378. Springer, 1994.

29. M.A. Orgun and W. Ma. An overview of temporal and modal logic programming.
In D.M. Gabbay and H.J. Ohlbach, editors, Proc. First Int. Conf. on Temporal
Logic - LNAI 827, pages 445–479. Springer-Verlag, 1994.

30. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Proceedings of the 7th European Workshop MAAMAW, volume 1038 of LNCS,
pages 42–55. Springer, 1996.

31. A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture.
In KR, pages 473–484, 1991.

32. R.A. Schmidt and D. Tishkovsky. Multi-agent logic of dynamic belief and knowl-
edge. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of
JELIA’2002, volume 2424 of LNAI, pages 38–49. Springer, 2002.

33. W. van der Hoek and J.-J. Meyer. Modalities for reasoning about knowledge and
uncertainties. In P. Doherty, editor, Partiality, Modality, and Nonmonotonicity.
CSLI Publications, 1996.

Strongly Complete Axiomatizations of
“Knowing at Most” in Syntactic Structures

Thomas Ågotnes and Michal Walicki

Department of Informatics, University of Bergen,
PB. 7800, N-5020 Bergen, Norway
{agotnes, walicki}@ii.uib.no

Abstract. Syntactic structures based on standard syntactic assignments
model knowledge directly rather than as truth in all possible worlds as
in modal epistemic logic, by assigning arbitrary truth values to atomic
epistemic formulae. This approach to epistemic logic is very general and
is used in several logical frameworks modeling multi-agent systems, but
has no interesting logical properties — partly because the standard logi-
cal language is too weak to express properties of such structures. In this
paper we extend the logical language with a new operator used to repre-
sent the proposition that an agent “knows at most” a given finite set of
formulae and study the problem of strongly complete axiomatization of
syntactic structures in this language. Since the logic is not semantically
compact, a strongly complete finitary axiomatization is impossible. In-
stead we present, first, a strongly complete infinitary system, and, sec-
ond, a strongly complete finitary system for a slightly weaker variant of
the language.

1 Introduction

Epistemic logic [1, 2] describe the knowledge of one or several agents. The by
far most popular approach to epistemic logic has been to interpret knowledge
as truth in all worlds considered possible. To this end, the formalisms of modal
logic (see, e.g., [3]) are used: the logical language includes formulae of the form
Kiφ, and the semantics is defined by Kripke structures describing the possible
worlds. While the modal approach to epistemic logic has been highly successful
in many applications, in some contexts it is less applicable. An example of the
latter is when we need to model the explicit knowledge an agent has computed,
e.g., stored in his knowledge base, at a specific point in time. In modal epistemic
logic, an agent necessarily knows all the logical consequences of his knowledge
– the logical omniscience problem [4]. Furthermore, an agent cannot know a
contradiction without knowing everything. Modal epistemic logic fails as a logic
of the explicitly computed knowledge of real agents, because it assumes a very
particular and extremely powerful mechanism for reasoning. In reality, different
agents have different reasoning mechanisms (e.g. non-monotonic or resource-
bounded) and representations of knowledge (e.g. as propositions or as syntactic
formulae).

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 57–76, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 T. Ågotnes and M. Walicki

In this paper we study a radically different approach to epistemic logic – the
syntactic approach. In the syntactic approach, a formula Kiφ can be assigned a
truth value independently of the truth value assigned to any other formula of the
form Kiψ. Thus the syntactic approach allows, e.g., an agent’s knowledge to not
be closed under logical consequence or other conditions, and to contain contra-
dictions. Several logical frameworks modeling agents in general [5, 6, 7, 1, 8, 9, 10]
and multi-agent systems in particular [11, 12, 13, 14, 15] are based on the syn-
tactic approach. Of particular recent interest has been the body of work on the
Logic of General Awareness [16, 17, 18, 11, 19, 20, 21], which combine an aware-
ness operator with syntactic semantics with a traditional epistemic operator with
possible worlds semantics.

We use the formalisation of the syntactic approach by [1], called syntactic
structures, and present several new results about the axiomatisation of certain
properties of such structures. A syntactic structure is an isolated abstraction of
syntactic knowledge, but the results we obtain are also relevant for logics with,
e.g., a combination of syntactic and semantic operators.

Knowledge can also be modeled directly by a semantic, rather than a syntac-
tic, approach, by using, e.g., Montague-Scott structures [22, 23, 24]). Syntactic
structures are generalizations of both Kripke structures and Montague-Scott
structures. The literature contains numerous proposed solutions to the logical
omniscience problem, see, e.g., [25, 26, 1] for reviews. Wansing [27] shows that
many of these approaches can be modeled using Rantala models [28, 29], and
that Rantala models can be seen as the most general models of knowledge. It
is easy to see that syntactic structures are as general as Rantala models; any
Rantala model can be simulated by a syntactic structure. However, syntactic
structures are so general that they have no interesting logical properties that
can be expressed in the traditional language of epistemic logic – indeed, they are
completely axiomatized by propositional logic.

In this paper, in order to be able to express interesting properties of syntactic
structures, we extend the logical language with an epistemic operator �i for
each agent. �iX , where X is a finite set of formulae, expresses the fact that
agent i knows at most X . The main problem we consider is the construction of
a strongly complete axiomatization of syntactic structures in this language. A
consequence of the addition of the new operator is that semantic compactness
is lost, and thus that a strongly complete finitary axiomatization is impossible.
Instead we, first, present a strongly complete infinitary system, and, second, a
strongly complete finitary system for syntactic structures for a slightly weaker
variant of the epistemic operators.

Our motivation for pursuing the syntactic approach is not that we view it as
an alternative to the modal approach for all purposes. Rather, we view it as a
complementary approach, which can be more suitable than the modal approach
in some circumstances. A disadvantage of the syntactic approach is that it does
not explain knowledge in terms of more fundamental concepts such as possible
worlds. But on the other hand, in some cases knowledge of formulae is the fun-
damental concept, for example when an agent stores its knowledge as syntactic

Strongly Complete Axiomatizations 59

strings in a database. Advantages of the syntactic approach include the fact that
it can be used to model certain types of agents and certain types of situations
which are difficult if not impossible to model with the modal approach; e.g.,
non-ideal – rather than ideal – agents, and situations where we are interested
in explicit – rather than implicit – knowledge. As a concrete example, consider
the explicitly computed knowledge of a (non-ideal) agent at a point in time at
which it has computed p → q and p but not (yet) q. The formulae K(p → q),
Kp and ¬Kq can never be true at the same time in modal epistemic logic, but
they can in the syntactic approach.

Rather than dictating the properties of knowledge, the syntactic approach
is a general framework in which different properties can be explored. In this
paper we are interested in logical systems describing syntactic knowledge which
are strongly complete. If these systems are extended with a set of axioms, the
resulting systems are automatically strongly complete with respect to the models
of the axioms. For example, if we want to include the assumption that an agent
cannot know both a formula and its negation at the same time, we can add the
axiom schema Kiα→ ¬Ki¬α to one of the systems we discuss, and the resulting
system will again be strongly complete with respect to syntactic structures with
the mentioned property.

In Section 2 syntactic structures based on standard syntactic assignments
and their use in epistemic logic are introduced, before the “at most” operator
�i and its interpretation in syntactic structures are presented in Section 3. The
completeness results are presented in Section 4, and we discuss some related work
and conclude in Sections 5 and 6. We presently define some logical concepts and
terminology used in the remainder.

1.1 Logic

By “a logic” we henceforth mean a language of formulae together with a class
of semantic structures and a satisfiability relation |=. The semantic structures
considered in this paper each have a set of states, and satisfiability relations relate
a formula to a pair consisting of a structure M and a state s of M . A formula
φ is satisfiable if there is a model M with a state s such that (M, s) |= φ. A
formula φ is a (local) logical consequence of a theory (set of formulae) Γ , Γ |= φ,
iff (M, s) |= ψ for all ψ ∈ Γ implies that (M, s) |= φ. The usual terminology and
notation for Hilbert-style proof systems are used: Γ �S φ means that formula
φ is derivable from theory Γ in system S, and when Δ is a set of formulae,
Γ �S Δ means that Γ �S δ for each δ ∈ Δ. We use the following definition
of maximality: a theory in a language L is maximal if it contains either φ or
¬φ for each φ ∈ L. A logical system is weakly complete, or just complete, if
|= φ (i.e. ∅ |= φ, φ is valid) implies �S φ (i.e. ∅ �S φ) for all formulae φ, and
strongly complete if Γ |= φ implies Γ �S φ for all formulae φ and theories Γ . If a
logic has a (strongly) complete logical system, we say that the logic is (strongly)
complete. A logic is semantically compact if for every theory Γ , if every finite
subset of Γ is satisfiable then Γ is satisfiable. It is easy to see that under the
definitions used above:

60 T. Ågotnes and M. Walicki

Fact 1. A weakly complete logic has a sound and strongly complete finitary
axiomatization iff it is compact.

2 The Epistemic Logic of Syntactic Structures

Syntactic structures are defined, and used to interpret the standard epistemic
language, as follows. Given a number of agents n we writeΣ for the set {1, . . . , n}.
The standard epistemic language:

Definition 2 (L). Given a set of primitive propositions Θ and a number of
agents n, L(Θ, n) (or just L) is the least set such that:

– Θ ⊆ L
– If φ, ψ ∈ L then ¬φ, (φ ∧ ψ) ∈ L
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L �

The set of epistemic atoms is LAt = {Kiφ : φ ∈ L, i ∈ Σ}. An epistemic
formula is a propositional combination of epistemic atoms. A syntactic structure
[1] assigns a truth value to the primitive propositions and epistemic atoms.

Definition 3 (Syntactic Structure). A syntactic structure is a tuple

(S, σ)

where S is a set of states and

σ(s) : Θ ∪ LAt → {true, false}

for each s ∈ S. The function σ is called a standard syntactic assignment. �

Satisfaction of an L formula φ by a state s of a syntactic structure M , written
(M, s) |= φ, is defined as follows:

(M, s) |= p ⇔ σ(s)(p) = true
(M, s) |= ¬φ ⇔ (M, s)
|= φ

(M, s) |= (φ ∧ ψ) ⇔ (M, s) |= φ and (M, s) |= ψ
(M, s) |= Kiφ ⇔ σ(s)(Kiφ) = true

We note that although [1] define syntactic structures in a possible worlds frame-
work, the question of satisfaction of φ in a state s does not depend on any other
state (((S, σ), s) |= φ ⇔ (({s}, σ), s) |= φ). We nevertheless keep the possible
worlds framework in this paper, while pointing out that it does not play any
significant role, for easier comparison with the standard formalisation. A con-
sequence of this independence of states is the following: if a system is strongly
complete with respect to all syntactic structures, then the system extended with
a set of axioms Γ is strongly complete with respect to the models of Γ . For exam-
ple, a strongly complete system extended with the axiom schema Kiα→ ¬Ki¬α

Strongly Complete Axiomatizations 61

will be strongly complete with respect to syntactic structures never assigning
true to both α and ¬α for any formula α in any state.

Syntactic structures are very general descriptions of knowledge – in fact so
general that no epistemic properties of the class of all syntactic structures can
be described by the standard epistemic language:

Theorem 4. Propositional logic, with substitution instances for the language
L, is sound and complete with respect to syntactic structures. �

In the next section we increase the expressiveness of the epistemic language.

3 Knowing at Most

The formula Kiφ denotes that fact that i knows at least φ – he knows φ but he
may know more. We can generalize this to finite sets X ⊆ L of formulae:

�iX ≡
∧
{Kiφ : φ ∈ X}

representing the fact that i knows at least X . The new operator we introduce
here1 is a dual to �i, denoting the fact that i knows at most X :

�iX

denotes the fact that every formula an agent knows is included in X , but he may
not know all the formulae in X . If L was finite, the operator �i could (like �i)
be defined in terms of Ki:

�iX =
∧
{¬Kiφ : φ ∈ L \X}

But since L is not finite (regardless of whether or not Θ is finite), �i is not defin-
able by Ki. We also use a third, derived, epistemic operator: ♦iX ≡ �iX∧�iX
meaning that the agent knows exactly X . The extended language is called L�.

Definition 5 (L�). Given a set of primitive propositions Θ, and a number of
agents n, L�(Θ, n) (or just L�) is the least set such that:

– Θ ⊆ L�
– If φ, ψ ∈ L� then ¬φ, (φ ∧ ψ) ∈ L�
– If φ ∈ L and i ∈ Σ then Kiφ ∈ L�
– If X ∈ ℘fin(L) and i ∈ Σ then �iX ∈ L� �

The language L�(Θ, n) is defined to express properties of syntactic structures
over the language L(Θ, n) (introduced in Section 2), and thus the epistemic

1 The �iX operator was also used in a similar logic for the special case of agents
who can know only finitely many formulae at one time in [30]. The results in the
current paper has been used to further investigate the case with the finiteness as-
sumption [31].

62 T. Ågotnes and M. Walicki

operators Ki and �i operate on formulae from L(Θ, n). We assume that Θ
is countable, and will make use of the fact that it follows that L�(Θ, n) is
(infinitely) countable.

If X is a finite set of L� formulae, we write �iX as discussed above (i.e., as
a shorthand for

∧
φ∈X Kiφ). In addition, we use ♦iX for �iX ∧�iX , and the

usual derived propositional connectives.
The interpretation of L� in a state s of a syntactic structure M is defined in

the same way as the interpretation of L, with the following clause for the new
epistemic operator:

(M, s) |= �iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊆ X

It is easy to see that

(M, s) |= �iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} ⊇ X
(M, s) |= ♦iX ⇔ {φ ∈ L : σ(s)(Kiφ) = true} = X

3.1 Properties

The following schemata, where X,Y, Z range over finite sets of formulae and φ
over single formulae, show some properties of syntactic structures, in the lan-
guage L�.

�i ∅ E1
(�iX ∧�iY) →�i(X ∪ Y) E2
(�iX ∧�iY) →�i(X ∩ Y) E3
¬(�iX ∧�iY) when X � Y E4
(�i(Y ∪ {φ}) ∧ ¬Kiφ) →�iY E5
�i X →�iY when Y ⊆ X KS

�i X →�iY when X ⊆ Y KG

The properties are self-explanatory. KS and KG stands for knowledge speciali-
sation and generalisation, respectively.

It is straightforward to prove the following.

Lemma 6. E1–E5, KG, KS are valid. �

4 Axiomatizations of Syntactic Structures

In this section we discuss axiomatizations of syntactic structures in the language
L�. The following lemma shows that the logic is not compact, and thus it does
not have a strongly complete finitary axiomatization (Fact 1).

Strongly Complete Axiomatizations 63

Lemma 7. The logic of syntactic structures in the language L� is not compact.�

Proof. Let p ∈ Θ and let Γ1 be the following L� theory:

Γ1 = {Kip,¬�i {p}} ∪ {¬Kiφ : φ
= p}

Let Γ ′ be a finite subset of Γ1. Clearly, there exists a φ′ such that ¬Kiφ
′
∈ Γ ′.

Let M = ({s}, σ) be such that σ(s)(Kiφ) = true iff φ = p or φ = φ′. It is easy
to see that (M, s) |= Γ ′. If there was some (M ′, s′) such that (M ′, s′) |= Γ1, then
(M ′, s′) |= ¬�i {p} i.e. there must exist a φ
= p such that σ(s)(Kiφ) = true –
which contradicts the fact that (M ′, s′) |= ¬Kiφ for all φ
= p. Thus, every finite
subset of Γ1 is satisfiable, but Γ1 is not.

We present a strongly complete infinitary axiomatization in Section 4.1. Then,
in Section 4.2, a finitary axiomatization for a slightly weaker language than L�
is proven strongly complete for syntactic structures.

4.1 An Infinitary System

We define a proof system ECω for the language L� by using properties presented
in Section 3 as axioms, in addition to propositional logic. In addition, EC ω

contains an infinitary derivation clause R*. After presenting EC ω, the rest of
the section is concerned with proving its strong completeness with respect to the
class of all syntactic structures. This is done by the commonly used strategy of
proving satisfiability of maximal consistent theories. Thus we need an infinitary
variant of the Lindenbaum lemma. However, the usual proof of the Lindenbaum
lemma for finitary systems is not necessarily applicable to infinitary systems.
In order to prove the Lindenbaum lemma for EC ω, we use the same strategy
as [32] who prove strong completeness of an infinitary axiomatization of PDL
(there with canonical models). In particular, we use the same way of defining the
derivability relation by using a weakening rule W, and we prove the deduction
theorem in the same way by including a cut rule Cut.

Definition 8 (ECω). EC ω is a logical system for the language L� having the
following axiom schemata

All substitution instances of tautologies
of propositional calculus Prop

¬(�iX ∧�iY) when X � Y E4
(�i(Y ∪ {γ}) ∧ ¬Kiγ) →�iY E5
�i X →�iY when X ⊆ Y KG

The derivation relation �ECω – written �ω for simplicity – between sets of L�
formulae and single L� formulae is the smallest relation closed under the fol-
lowing conditions:

64 T. Ågotnes and M. Walicki

�ω φ when φ is an axiom Ax

{φ, φ→ ψ} �ω ψ MP⋃
j∈J

{αj → ¬Kiγ : γ
∈ Xj} �ω

∧
j∈J

αj →�iX R*

when X =
⋂
j∈J

Xj and X and J are finite

Γ �ω φ

Γ ∪Δ �ω φ
W

Γ �ω Δ,Γ ∪Δ �ω φ

Γ �ω φ
Cut

In the above schemata, X , Y , Z, Xj range over sets of L formulae, γ over L
formulae, Γ,Δ over sets of L� formulae, φ, ψ, αj over L� formulae, i over
agents, and J over sets of indices. �

It is easy to see that E1, E2, E3 and KS are derivable in EC ω.
In order to understand the meaning of the R* rule, first consider the following

instance, obtained by taking J = {1, . . . , k} and αj to be a tautology for every
j ∈ J , where X1, . . . , Xk are arbitrary sets of L formulae and i an agent:

{¬Kiγ : γ
∈ X1} ∪ · · · ∪ {¬Kiγ : γ
∈ Xk} �ω �i

⋂
1≤j≤k

Xj

This expression says that if it is the case that, for each Xj , the agent (i) does not
know anything which is not in Xj , then the agent knows at most the intersection
of X1, . . . , Xk. The general case when αj is not necessarily an tautology is easily
understood in light of this special case: if, for each Xj , αj implies that i does not
know any formula outside Xj , then the conjunction of α1, . . . , αk implies that i
knows at most the intersection of X1, . . . , Xk.

The use of the weakening rule instead of more general schemata makes induc-
tive proofs easier, but particular derivations can sometimes be more cumbersome.
For example:

Lemma 9.

Γ ∪ {φ} �ω φ R1
�ω ψ → φ

Γ ∪ {ψ} �ω φ
R2
�

Proof.

R1: {φ, φ→ φ} �ω φ by MP; �ω φ→ φ by Ax; {φ} �ω φ→ φ by W; {φ} �ω φ
by Cut and Γ ∪ {φ} �ω φ by W.

R2: Let �ω ψ → φ. By W, {ψ} �ω ψ → φ; by MP {ψ, ψ → φ} �ω φ and thus
{ψ} �ω φ by Cut. By W, Γ ∪ {ψ} �ω φ.

Strongly Complete Axiomatizations 65

In order to prove the Lindenbaum lemma, we need the deduction theorem. The
latter is shown by first proving the following rule.

Lemma 10. The following rule of conditionalization is admissible in EC ω.

Γ ∪Δ �ω φ

Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ
Cond

�

Proof. The proof is by infinitary induction over the derivation Γ ∪ Δ �ω φ
(derivations are well-founded). The base cases are Ax, MP and R*, and the
inductive steps are W and Cut.

Ax: Γ = Δ = ∅. We must show that �ω ψ → φ when �ω φ. By W we get
φ → (ψ → φ) �ω φ, then φ, φ → (ψ → φ) �ω ψ → φ is an instance of MP,
and by Cut we get φ→ (ψ → φ) �ω ψ → φ. By Prop, �ω φ→ (ψ → φ), so
by Cut once more we get �ω ψ → φ.

MP: Γ ∪ Δ = {φ′, φ′ → φ} �ω φ. That Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ can
be shown for each of the four possible combinations of Γ and Δ in a similar
way to the Ax case.

R*: φ = ∧j∈Jαj → �iX and Γ ∪Δ = ∪j∈J{αj → ¬Kiφ
′ : φ′ ∈ L \Xj} where

J is finite and X = ∩j∈JXj is finite, i.e. there exist for each j ∈ J sets Yj

and Zj such that L \Xj = Yj ! Zj and

Γ =
⋃
j∈J

{αj → ¬Kiφ
′ : φ′ ∈ Yj}

Δ =
⋃
j∈J

{αj → ¬Kiφ
′ : φ′ ∈ Zj}

Let

Γ ′ =
⋃
j∈J

{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ Yj}

Δ′ =
⋃
j∈J

{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ Zj}

Γ ′ ∪Δ′ = ∪j∈J{(ψ ∧ αj) → ¬Kiφ
′ : φ′ ∈ L \Xj}, and thus Γ ′ ∪Δ′ �ω γ

′,
where γ′ = ∧j∈J (ψ ∧ αj) → �iX , by R*. By W, Γ ′ ∪ Δ′ ∪ Γ �ω γ

′. By
Prop, �ω (αj → ¬Kiφ

′) → ((ψ ∧ αj) → ¬Kiφ
′) for each αj → ¬Kiφ

′ ∈ Γ ,
and by R2 (once for each formula in Γ) Δ′∪Γ �ω Γ

′. By Cut, Δ′∪Γ �ω γ
′,

and it only remains to convert the conjunctions in Δ′ and γ′ to implications:
Δ′∪Γ ∪{γ′} �ω ψ → φ by Prop and R2, and by Cut and W it follows that
Δ′∪Γ∪{ψ → δ : δ ∈ Δ} �ω ψ → φ. By Prop and R2 (once of each formula in
Δ), Γ ∪{ψ → δ : δ ∈ Δ} �ω Δ

′, and by Cut Γ ∪{ψ → δ : δ ∈ Δ} �ω ψ → φ,
which is the desired conclusion.

W: Γ ′ ∪ Δ′ �ω φ for some Γ ′ ⊆ Γ and Δ′ ⊆ Δ. By the induction hypothesis
we can use Cond to obtain Γ ′ ∪ {ψ → δ : δ ∈ Δ′} �ω ψ → φ, and thus
Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ → φ by W.

66 T. Ågotnes and M. Walicki

Cut: Γ∪Δ �ω Δ
′ and Γ∪Δ∪Δ′ �ω φ, for someΔ′. By the induction hypothesis

on the first derivation (once for each δ′ ∈ Δ′), Γ∪{ψ → δ : δ ∈ Δ} �ω φ→ δ′

for each δ′ ∈ Δ′. By the induction hypothesis on the second derivation,
Γ ∪ {ψ → δ : δ ∈ Δ ∪Δ′} �ω ψ → φ. By Cut, Γ ∪ {ψ → δ : δ ∈ Δ} �ω ψ
→ φ.

Theorem 11 (Deduction Theorem). The rule

Γ ∪ {φ} �ω ψ

Γ �ω φ→ ψ
DT

is admissible in EC ω. �

Proof. If Γ ∪ {φ} �ω ψ, then Γ ∪ {φ → φ} �ω φ → ψ by Cond. Γ �ω φ → φ
by Ax and W, and thus Γ �ω φ→ ψ by Cut.

Now we are ready to show that consistent theories can be extended to maximal
consistent theories. The proof relies on DT.

Lemma 12 (Lindenbaum lemma for ECω). If Γ is EC ω-consistent, then
there exists an L�-maximal and EC ω-consistent Γ ′ such that Γ ⊆ Γ ′. �

Proof. Recall R*:⋃
j∈J

{αj → ¬Kkψ : ψ
∈ Xj} �ω

∧
j∈J

αj →�kX.

Formulae which can appear on the right of �ω in its instances will be said to
have R*-form. A special case of this schema is when

∧
j αj is a tautology (i.e.,

each αj is), from which ⋃
j∈J

{¬Kkφ : ψ
∈ Xj} �ω �kX.

can be obtained. Now, Γ ′ ⊃ Γ is constructed as follows. L� is countable, so
let φ1, φ2, . . . be an enumeration of L� respecting the subformula relation (i.e.,
when φi is a subformula of φj then i < j).

Γ0 = Γ

Γi+1 =

⎧⎪⎪⎨⎪⎪⎩
Γi ∪ {φi+1} if Γi �ω φi+1
Γi ∪ {¬φi+1} if Γi
�ω φi+1 and φi+1 does not have the R*-form
Γi ∪ {¬φi+1,Kkψ} if Γi
�ω φi+1 and φi+1 has the R*-form, where ψ

is arbitrary such that ψ
∈ X and Γi
�ω ¬Kkψ

Γ ′ =
ω⋃

i=0

Γi

The existence of ψ in the last clause in the definition of Γi+1 is verified as follows:
since Γi
�ω φi+1, there must be, to prevent an application of R*, at least one

Strongly Complete Axiomatizations 67

αj and ψ
∈ X such that Γi
�ω αj → ¬Kkψ. By construction (and the ordering
of formulae), each αj or its negation is included in Γi. If Γi �ω ¬αj then also
Γi �ω αj → ¬Kkψ, and this would be the case also if Γi �ω ¬Kkψ. So Γi �ω αj

and Γi
�ω ¬Kkψ.
It is easy to see that Γ ′ is maximal.
We show that each Γi is consistent, by induction over i. For the base case, Γ0

is consistent by assumption. For the inductive case, assume that Γi is consistent.
Γi+1 is constructed by one of the three cases in the definition:

1. Γi+1 is obviously consistent.
2. If Γi+1 = Γi ∪ {¬φi+1} �ω ⊥, then Γi �ω φi+1 by DT and Prop, contra-

dicting the assumption in this case.
3. Consider first the special case (when all αj are tautologies). Assume that
Γi+1 = Γi ∪ {¬ �k X,Kkψ} �ω ⊥. Then Γi �ω Kkψ → �kX by DT and
Prop and by E4, since ψ
∈ X , Γi �ω Kkψ → ¬�kX , and thus Γi �ω ¬Kkψ
contradicting the assumption in this case.
In the general case, assume that Γi+1 = Γi∪{¬(

∧
j αj →�kX),Kkψ} �ω ⊥:

i Then Γi �ω Kkψ → (¬(
∧

j αj → �kX) → ⊥), i.e., Γi �ω Kkψ →
(
∧

j αj →�kX), i.e., Γi �ω

∧
j αj → (Kkψ →�kX).

ii By assumption in the construction, Γi
�ω ¬(
∧

j αj) (for otherwise it
would prove

∧
j αj → �kX), but since

∧
j αj (as well as each αj) is a

subformula of φi+1, it or its negation is already included in Γi. But this
means that Γi �ω

∧
j αj . Combined with (i), this gives Γi �ω Kkψ →

�kX , i.e., Γi �ω ¬Kkψ ∨�kX .
iii On the other hand, by E4, since ψ
∈ X : Γi �ω ¬(Kkψ ∧ �kX), i.e.,
Γi �ω ¬Kkψ∨¬�kX . Combined with (ii) this means that Γi �ω ¬Kkψ,
but this contradicts the assumption in the construction of Γi+1.

Thus each Γi is consistent.
To show that Γ ′ is consistent, we first show that

Γ ′′ �ω φ⇒ (Γ ′′ ⊆ Γ ′ ⇒ φ ∈ Γ ′) (1)

holds for all derivations Γ ′′ �ω φ, by induction over the derivation. The base
cases are Ax, MP and R*, and the inductive steps are W and Cut. Let i be
the index of the formula φ, i.e. φ = φi.

Ax: If �ω φ, then φ ∈ Γi by the first case in the definition of Γi.
MP: Γ ′′ = {φ′, φ′ → φ}. If Γ ′′ ⊆ Γ ′, there exists k, l such that φ′ ∈ Γk and

φ′ → φ ∈ Γl. If φ
∈ Γ ′, ¬φ ∈ Γ ′ by maximality, i.e. there exists am such that
¬φ ∈ Γm. But then ¬φ, φ′, φ′ → φ ∈ Γmax(k,l,m), contradicting consistency
of Γmax(k,l,m).

R*: Γ ′′ = ∪j∈J{αj → ¬Kkψ : ψ
∈ Xj} and φ =
∧

j αj → �kX , where
X =

⋂
j Xj , and Γ ′′ ⊆ Γ ′. If φ
∈ Γ ′ then, by maximality, ¬φ ∈ Γ ′, and thus

¬φ ∈ Γi. Then, by construction of Γi, Γi−1
�ω φ (otherwise φ ∈ Γ ′) and
Kkψ ∈ Γi for some ψ
∈ X . By the same argument as in point 3.(ii) above,
Γi �ω

∧
j αj , and hence also Γ ′ �ω

∧
j αj . But then, for an appropriate m

68 T. Ågotnes and M. Walicki

(namely, for which φm = αj → ¬Kkψ): Γm−1 �ω αj and Γm−1 �ω Kkψ,
i.e., ¬(αj → ¬Kkψ) ∈ Γm, and so αj → ¬Kkψ
∈ Γ ′, which contradicts the
assumption that Γ ′′ ⊆ Γ ′.

W: Γ ′′ = Γ ′′′ ∪ Δ, and Γ ′′′ �ω φ. If Γ ′′ ⊆ Γ ′, Γ ′′′ ⊆ Γ and by the induction
hypothesis φ ∈ Γ ′.

Cut: Γ ′′ �ω Δ and Γ ′′ ∪ Δ �ω φ. Let Γ ′′ ⊆ Γ ′. By the induction hypothesis
on the first derivation (once for each of the formulae in Δ), Δ ⊆ Γ ′. Then
Γ ′′ ∪ Δ ⊆ Γ ′, and by the induction hypothesis on the second derivation
φ ∈ Γ ′.

Thus (1) holds for all Γ ′′ �ω φ; particularly for Γ ′ �ω φ. Consistency of Γ ′

follows: if Γ ′ �ω ⊥, then ⊥ ∈ Γ ′, i.e. ⊥ ∈ Γl for some l, contradicting the fact
that each Γl is consistent.

The following Lemma is needed in the proof of the thereafter following Lemma
stating satisfiability of maximal consistent theories.

Lemma 13. Let Γ ′ ⊆ L� be an L�-maximal and EC ω-consistent theory. If
there exists an X ′ such that Γ ′ �ω �iX

′, then there exists an X such that
Γ ′ �ω ♦iX . �

Proof. Let Γ ′ be maximal consistent, and let Γ ′ �ω �iX
′. Let

X =
⋂

Y ⊆X′ and Γ ′	ω�iY

Y

Since every Y is included in the finite set X ′, X is finite, and Γ ′ �ω �iX can
be obtained by a finite number of applications of E3. Let

Z =
⋃

Γ ′	ω
iY

Y

If Γ ′ �ω �iY , then Y ⊆ X , since otherwise Γ ′ would be inconsistent by E4. Thus
Z is finite. By a finite number of applications of E2, Γ ′ �ω �iZ. If Z � X , then
Γ ′ would be inconsistent by E4, so Z ⊆ X . We now show that X ⊆ Z. Assume
the opposite: φ ∈ X but φ
∈ Z for some φ. Let X− = X \ {φ}. Γ ′
�ω Kiφ,
since otherwise φ ∈ Z by definition of Z. By maximality, Γ ′ �ω ¬Kiφ. By E5,
Γ ′ �ω �iX

− – but by construction of X it follows that X ⊆ X− which is a
contradiction. Thus, X = Z, and Γ ′ �ω ♦iX .

Lemma 14. Every maximal EC ω-consistent L� theory is satisfiable. �

Proof. Let Γ be maximal and consistent. We construct the following syntactic
structure, which is intended to satisfy Γ :

MΓ = ({s}, σΓ)
σΓ (s)(p) = true ⇔ Γ �ω p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i

Strongly Complete Axiomatizations 69

where:

XΓ
i =

{
Z where Γ �ω ♦iZ if there is an X ′ such that Γ �ω �iX

′

{γ : Γ �ω Kiγ} otherwise

In the definition of XΓ
i , the existence of a Z such that that Γ �ω ♦iZ in the

case that there exists an X ′ such that Γ �ω �iX
′ is guaranteed by Lemma 13.

We show, by structural induction over φ, that

(MΓ , s) |= φ⇐⇒ Γ �ω φ (2)

This is a stronger statement than the lemma; the lemma is given by the direction
to the left. We use three base cases: when φ is in Θ, φ = Kiψ and φ = �iX . The
first base case and the two inductive steps negation and conjunction are trivial,
so we show only the two interesting base cases. For each base case we consider
the situations when XΓ

i is given by a) the first and b) the second case in its
definition.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a),XΓ

i = Z where Γ �ω ♦iZ and by KS, Γ �ω Kiψ.
In case b), Γ �ω Kiψ by construction of XΓ

i .
⇐) Let Γ �ω Kiψ. In case a), Γ �ω �iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = �iX : (MΓ , s) |= �iX iff XΓ

i ⊆ X .
⇒) Let XΓ

i ⊆ X . In case a), Γ �ω ♦iZ where Z = XΓ
i ⊆ X , so Γ �ω �iX

by KG. In case b), XΓ
i must be finite, since X is finite. For any ψ
∈ XΓ

i ,
Γ
�ω Kiψ by construction of XΓ

i , and Γ �ω ¬Kiψ by maximality. Thus,
by R* (with J = {1}, α1 = � andX1 = XΓ

i), Γ �ω �iX
Γ
i , contradicting

the assumption in case b). Thus, case b) is impossible.
⇐) Let Γ �ω �iX . In case a), Γ �ω �iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X . Case b) is impossible by definition.

Theorem 15. ECω is a sound and strongly complete axiomatization of syntactic
structures, in the language L�. �

Proof. Soundness follows from Lemma 6, and the easily seen facts that Γ |= φ
for every instance Γ �ω φ of both MP and of R*, and that W and Cut preserve
logical consequence, by induction over the definition of the derivation relation.
Strong completeness follows from Lemmas 12 and 14.

4.2 A System for a Weaker Language

In the previous section we proved strong completeness of EC ω by using R*.
It turns out that strong completeness can be proved without R*, if we restrict
the logical language slightly. The restriction is that for some arbitrary primitive
proposition p̂ ∈ Θ, Kip̂ and �iX are not well-formed formulae for any i and
any X with p̂ ∈ X . The semantics is not changed; we are still interpreting the

70 T. Ågotnes and M. Walicki

language in syntactic structures over L(Θ, n) as described in Sections 2 and 3.
Thus, in the restricted logic agents can know something which is not expressible
in the logical language.
Lp̂
� ⊂ L� is the restricted language for a given primitive proposition p̂.

Definition 16 (Lp̂
�). Given a set of primitive propositions Θ, a proposition

p̂ ∈ Θ and a number of agents n, Lp̂
�(Θ, n) (or just Lp̂

�) is the least set such
that:

– Θ ⊆ Lp̂
�

– If φ, ψ ∈ Lp̂
� then ¬φ, (φ ∧ ψ) ∈ Lp̂

�
– If φ ∈ (L \ {p̂}) and i ∈ Σ then Kiφ ∈ Lp̂

�
– If X ∈ ℘fin(L \ p̂) and i ∈ Σ then �iX ∈ Lp̂

� �

The finitary logical system EC p̂ is defined by the same axiom schemata as EC ω.
The two systems do not, however, have the same axioms since they are defined for
different languages – the extensions of the schemata are different. The derivation
relation for EC p̂ is defined by the axioms and the derivation rule modus ponens.
Particularly, the infinitary derivation clause R* from ECω is not included.

Definition 17 (EC p̂). EC p̂ is the logical system for the language Lp̂
� consisting

of the following axiom schemata:

All substitution instances of tautologies
of propositional calculus Prop

¬(�iX ∧�iY) when X � Y E4
(�i(Y ∪ {γ}) ∧ ¬Kiγ) →�iY E5
�i X →�iY when X ⊆ Y KG

The derivation relation �EC p̂ – written �p̂ for simplicity – between sets of Lp̂
� for-

mulae and single Lp̂
� formulae is the smallest relation closed under the following

conditions:

Γ �p̂ φ when φ ∈ Γ Prem
Γ �p̂ φ when φ is an axiom Ax
Γ �p̂ φ, Γ �p̂ φ→ ψ

Γ �p̂ ψ
MP

�

It is easy to see that E1, E2, E3, KS and DT are derivable in ECω.
The restriction Lp̂

� ⊂ L� is sufficient to prove strong completeness without
R* in a manner very similar to the proof in Section 4.1. The first step, existence
of maximal consistent extensions, can now be proved by the standard proof since
the system is finitary.

Lemma 18 (Lindenbaum lemma for EC p̂) . If Γ is EC p̂-consistent, then
there exists an Lp̂

�-maximal and EC p̂-consistent Γ ′ such that Γ ⊆ Γ ′. �

Strongly Complete Axiomatizations 71

Second, we establish the result corresponding to Lemma 13 for Lp̂
� and EC p̂.

Lemma 19. Let Γ ′ ⊆ Lp̂
� be a Lp̂

�-maximal and EC p̂-consistent theory. If there
exists a X ′ such that Γ ′ �p̂ �iX

′, then there exists a X such that Γ ′ �p̂ ♦iX .�

Proof. The proof is essentially the same as for Lemma 13, for the language Lp̂
�

instead of L� (note that in that proof we did not rely on R*, and that p̂
∈ X
since X ⊆ X ′).

Third, we show satisfiability.

Lemma 20. Every maximal EC p̂-consistent Lp̂
� theory is satisfiable. �

Proof. Let Γ be maximal and consistent. The proof is very similar to that
of the corresponding result for EC ω (Lemma 14). We construct the following
syntactic structure, which is intended to satisfy Γ :

MΓ = ({s}, σΓ)
σΓ (s)(p) = true ⇔ Γ �p̂ p when p ∈ Θ

σΓ (s)(Kiφ) = true ⇔ φ ∈ XΓ
i

where:

XΓ
i =

⎧⎨⎩
Z where Γ �p̂ ♦iZ if there is an X ′ such that Γ �p̂ �iX

′

{γ : Γ �p̂ Kiγ} ∪ {p̂} if ∀X′Γ
�p̂ �iX
′ and

⋃
Γ	p̂
iY

Y is finite
{γ : Γ �p̂ Kiγ} if ∀X′Γ
�p̂ �iX

′ and
⋃

Γ	p̂
iY
Y is infinite

The existence of Z is guaranteed by Lemma 19, and, again, we show, by struc-
tural induction over φ, that

(MΓ , s) |= φ⇐⇒ Γ �p̂ φ (3)

for all φ ∈ Lp̂
�. As in the proof of Lemma 14 we only show the epistemic base

cases. For each base case we consider the situations when

a) there is an X ′ such that Γ �p̂ �iX
′ or

b) Γ
�p̂ �iX
′ for every X ′

corresponding to the first and to the second and third cases in the definition of
XΓ

i , respectively.

– φ = Kiψ: (MΓ , s) |= Kiψ iff ψ ∈ XΓ
i .

⇒) Let ψ ∈ XΓ
i . In case a), XΓ

i = Z where Γ �p̂ ♦iZ and by KS, Γ �p̂ Kiψ.
In case b), ψ
= p̂ (since Kiψ ∈ Lp̂

�) and thus Γ �p̂ Kiψ by construction
of XΓ

i .
⇐) Let Γ �p̂ Kiψ. In case a), Γ �p̂ �iZ and thus ψ ∈ Z = XΓ

i by E4 and
consistency of Γ . In case b), ψ ∈ XΓ

i by construction.
– φ = �iX : (MΓ , s) |= �iX iff XΓ

i ⊆ X .

72 T. Ågotnes and M. Walicki

⇒) Let XΓ
i ⊆ X . In case a), Γ �p̂ ♦iZ where Z = XΓ

i ⊆ X , so Γ �p̂ �iX
by KG. In case b), if p̂ ∈ XΓ

i then p̂ ∈ X which is impossible since �iX
is a formula. But if p̂
∈ XΓ

i then XΓ
i is infinite (by construction) which

is also impossible since X is finite – thus case b) is impossible.
⇐) Let Γ �p̂ �iX . In case a), Γ �p̂ �iZ and by E4 and consistency of Γ

XΓ
i = Z ⊆ X . Case b) is impossible by definition.

Theorem 21. EC p̂ is a sound and strongly complete axiomatization of syntactic
structures, in the language Lp̂

�. �

Proof. Soundness follows from the soundness of EC ω and the fact that Γ �p̂ φ
implies Γ �ω φ, the latter which can be seen by induction on the length of a
proof in EC p̂ (every Lp̂

� formula is also a L� formula): the base case Prem
follows by R1 (Lemma 9), the base case Ax follows by Ax and W, and the
inductive case MP follows by MP, W and Cut. Strong completeness follows
from Lemmas 20 and 18.

5 Only Knowing

Apart from the syntactic approaches mentioned in the introduction, the work
maybe most closely related to the ideas discussed in this paper is the body of
work on only knowing [33] which try to model concepts similar to our “knowing
at most” and “knowing exactly”. Here, we compare these ideas.

Several authors have analyzed the knowledge state of an agent who knows a
(set of) formula(e) [34, 35, 36, 37]. Levesque [33] introduced a logic in which only
knowing can be expressed in the logical language. Briefly speaking, Levesque’s
language is of first order2 and has two unary epistemic connectives B and O.3

Semantically, a world is a truth assignment to the primitive sentences, and sat-
isfaction of a formula is defined relative to a pair W,w where W is the set of
worlds the agent considers possible and w is the “real” world4 (the world corre-
sponding to the correct state of affairs). A sentence Bα is true in W,w iff α is
true in W,w′ for every w′ ∈ W ; B is the traditional belief/knowledge operator
in modal epistemic logic. A sentence Oα is true in W,w iff Bα is true in W,w
and w′ ∈ W for every w′ such that α is true in W,w′. Oα expresses that the
agent only knows α; the set of possible worlds is as large as possible consistent
with believing α. The O operator can be modeled by a “natural dual” to the
B operator — an operator N. The intended meaning of Nα is that α at most
is believed to be false, and Nα is true in W,w iff α is true in W,w′ for every
w′
∈ W . Then, Oα is true iff Bα and N¬α is true; B specifies a lower bound
and N specifies an upper bound on what is believed.
2 The logic was only shown to be complete for the unquantified version of the language,

the full version was later shown to be incomplete [38].
3 Levesque only considers a single agent, but his approach has later been extended to

the multi-agent case [39].
4 Note that this corresponds to the semantical assumptions of the modal logic S5 for

one agent.

Strongly Complete Axiomatizations 73

Levesque’s logic of only knowing and the extended syntactic epistemic logic
we have discussed in this paper set out to model similar concepts, i.e. all an
agent knows — expressed as Oα by Levesque and ♦X by us (for simplicity,
we here assume the single-agent case and write the epistemic operators without
subscript). In order to compare these two notions, we take a closer look at a
possible correspondence between the operators N and �.

The first question is whether given a formula α there is an X such that �X
corresponds to Nα. The intended interpretation of Nα is that the agent “knows
at most ¬α”, so “corresponds” should at least require that ¬α ∈ X . However,
the following is a sound inference rule in Levesque’s logic:

α→ β

Nα→ Nβ

and it should thus be the case that ¬β ∈ X too. That does not follow automat-
ically in our logic, and we cannot define X to include all such ¬βs since there
are infinitely many and X must be finite. Thus, we cannot express Nα directly
by �iX .

The second question is the other direction: given a set X , is there an α such
that Nα corresponds to �X? Again, we should at least require N¬

∧
X to hold,

since otherwise the agent might know something which is not specified by X .
It follows that, to get the proper semantics for negation, we should require that
¬N¬

∧
X holds whenever ¬ �X holds. But take X such that the conjunction

is an inconsistency:
∧
X = ⊥. Now N¬⊥ does hold — but it holds trivially: it

is in fact valid in Levesque’s logic. So if ¬ � X , for the given X , it can never
be the case that ¬N¬

∧
X holds. Thus, for inconsistent X , these two formulae

�X and Nα do not have corresponding semantics since the latter can never be
false while the former can. In other words, we cannot express �X directly by
Nα, either.

As an illustration of a situation where our♦ operator might express an agent’s
knowledge more realistically than the O operator is when we want to model an
agent’s explicit knowledge at a point in time when it has computed only the
formulae p → q and p (and not yet q). From O((p → q) ∧ p) it follows that Bq
– which is not true – but from ♦{p→ q, p} it does not follow that Kq.

Although these observations are not a full formal analysis of the respective ex-
pressive power of the two logics, they seem to confirm the idea that the syntactic
and semantic approaches are fundamentally different.

6 Conclusions

In this paper we investigated syntactic operators, similar to those used in several
logical models of multi-agent systems such as the logic of general awareness [11].

We introduced a “knows at most” operator in order to increase the expressive-
ness of the epistemic language with respect to syntactic structures, and investi-
gated strong axiomatization of the resulting logic. The new operator destroyed
semantic compactness and thus the possibility of a strongly complete finitary

74 T. Ågotnes and M. Walicki

axiomatization, but we presented a strongly complete infinitary axiomatization.
An interesting result is that we have a strongly complete finitary axiomatization
if we make the assumption that the agents can know something which is not
expressible in the logical language. The results are a contribution to the logical
foundation of multi-agent systems.

Related work include the classical syntactic treatment of knowledge mentioned
in the introduction and modeled in a possible worlds framework by [1] as de-
scribed in Section 2. The �i operator is new in the context of syntactic models.
It is however, as we discussed in Section 5, similar to Levesque’s N operator
[33]. Although a full formal comparison between the relative expressive power of
these two logics are outside the scope of this paper, and is left as an opportunity
for future work, the discussion in Section 5 indicates that despite apparent sim-
ilarities the syntactic and the semantic approaches are fundamentally different
— also when it comes to “only knowing”. We saw that a correspondence be-
tween the operators was obstructed by that fact that the syntactic logic has no
closure condition (in the first “question” in Section 5) and the fact that it has
no consistency condition (in the second “question” in Section 5). The syntactic
“at most” operator is an alternative to the “only knowing” operator when these
two conditions cannot be assumed.

In [31] we investigate the�i and�i operators in the special case of agents who
can know only finitely many syntactic formulae at the same time. Completeness
results for such finitely restricted agents build upon the results presented in this
paper. Another possibility for future work is to study other special classes of
syntactic structures.

In this paper we have only studied the static aspect of syntactic knowledge.
In [14], we discuss how syntactic knowledge can evolve as a result of reasoning
and communication, i.e. a dynamic aspect of knowledge.

Acknowledgements. The work in this paper has been partly supported by
grants 166525/V30 and 146967/431 (MoSIS) from the Norwegian Research
Council.

References

1. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Press, Cambridge, Massachusetts (1995)

2. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge, England (1995)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press, Cambridge University Press (2001)

4. Hintikka, J.: Impossible possible worlds vindicated. Journal of Philosophical Logic
4 (1975) 475–484

5. Eberle, R.A.: A logic of believing, knowing and inferring. Synthese 26 (1974)
356–382

6. Moore, R.C., Hendrix, G.: Computational models of beliefs and the semantics of
belief sentences. Technical Note 187, SRI International, Menlo Park, CA (1979)

Strongly Complete Axiomatizations 75

7. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. Journal of the ACM 37 (1990) 549–587

8. Konolige, K.: A Deduction Model of Belief and its Logics. PhD thesis, Stanford
University (1984)

9. Konolige, K.: Belief and incompleteness. In Hobbs, J.R., Moore, R.C., eds.: Formal
Theories of the Commonsense World. Ablex Publishing Corporation, New Jersey
(1985) 359 – 403

10. Konolige, K.: A Deduction Model of Belief. Morgan Kaufmann Publishers, Los
Altos, California (1986)

11. Fagin, R., Halpern, J.Y.: Belief, awareness and limited reasoning. Artificial Intel-
ligence 34 (1988) 39–76 A preliminary version appeared in [16].

12. Drapkin, J., Perlis, D.: Step-logics: An alternative approach to limited reasoning.
In: Proceedings of the European Conference on Artificial Intelligence, Brighton,
England (1986) 160–163

13. Elgot-Drapkin, J., Kraus, S., Miller, M., Nirkhe, M., Perlis, D.: Active logics: A
unified formal approach to episodic reasoning. Techn. Rep. CS-TR-4072 (1999)

14. Ågotnes, T., Walicki, M.: Syntactic knowledge: A logic of reasoning, communication
and cooperation. In Ghidini, C., Giorgini, P., van der Hoek, W., eds.: Proceedings
of the Second European Workshop on Multi-Agent Systems (EUMAS), Barcelona,
Spain (2004)

15. Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resource-
bounded agents. In: Proc. of the Third Intern. Joint Conf. on Autonomous Agents
and Multi-Agent Syst. (AAMAS 2004), ACM Press (2004) 606–613

16. Fagin, R., Halpern, J.Y.: Belief, awareness and limited reasoning. In: Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
CA (1985) 491–501

17. Hadley, R.F.: Fagin and halpern on logical omniscience: A critique with an alter-
native. In: Proc. Sixth Canadian Conference on Artificial Intelligence, Montreal,
University of Quebec Press (1986) 49 – 56

18. Konolige, K.: What awareness isn’t: A sentential view of implicit and explicit be-
lief. In Halpern, J.Y., ed.: Theoretical Aspects of Reasoning About Knowledge:
Proceedings of the First Conference, Los Altos, California, Morgan Kaufmann Pub-
lishers, Inc. (1986) 241–250

19. Huang, Z., Kwast, K.: Awareness, negation and logical omniscience. In van Eijk, J.,
ed.: Logics in AI, Proceedings JELIA’90. Volume 478 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin (1991) 282–300

20. Thijsse, E.: On total awareness logics. In de Rijke, M., ed.: Diamonds and Defaults.
Kluwer Academic Publishers, Dordrecht (1993) 309–347

21. Halpern, J.: Alternative semantics for unawareness. Games and Economic Behav-
iour 37 (2001) 321–339

22. Montague, R.: Pragmatics. In Klibansky, R., ed.: Contemporary Philosophy: A
Survey. I. La Nuova Italia Editrice, Florence (1968) 102–122 Reprinted in [40, pp.
95 – 118].

23. Montague, R.: Universal grammar. Theoria 36 (1970) 373–398 Reprinted in [40,
pp. 222 – 246].

24. Scott, D.S.: Advice on modal logic. In Lambert, K., ed.: Philosophical Problems
in Logic. D. Reidel Publishing Co., Dordrecht (1970) 143–173

25. Moreno, A.: Avoiding logical omniscience and perfect reasoning: a survey. AI
Communications 11 (1998) 101–122

26. Sim, K.M.: Epistemic logic and logical omniscience: A survey. International Journal
of Intelligent Systems 12 (1997) 57–81

76 T. Ågotnes and M. Walicki

27. Wansing, H.: A general possible worlds framework for reasoning about knowledge
and belief. Studia Logica 49 (1990) 523–539

28. Rantala, V.: Impossible worlds semantics and logical omniscience. Acta Philosoph-
ica Fennica 35 (1982) 106–115

29. Rantala, V.: Quantified modal logic: non-normal worlds and propositional atti-
tudes. Studia Logica 41 (1982) 41–65

30. Ågotnes, T., Walicki, M.: A logic for reasoning about agents with finite explicit
knowledge. In Tessem, B., Ala-Siuru, P., Doherty, P., Mayoh, B., eds.: Proc. of
the 8th Scandinavian Conference on Artificial Intelligence. Frontiers in Artificial
Intelligence and Applications, IOS Press (2003) 163–174

31. Ågotnes, T., Walicki, M.: Complete axiomatizations of finite syntactic epistemic
states. In Baldoni, M., Endriss, U., Omicini, A., Torroni, P., eds.: The Third
International Workshop on Declarative Agent Languages and Technologies (DALT
2005), Workshop Notes, Utrecht, the Netherlands (2005) To appear in Lecture
Notes in Artificial Intelligence (LNAI), Springer-Verlag, 2006.

32. de Lavalette, G.R., Kooi, B., Verbrugge, R.: Strong completeness for propositional
dynamic logic. In Balbiani, P., Suzuki, N.Y., Wolter, F., eds.: Preliminary Pro-
ceedings of AiML2002, Institut de Recherche en Informatique de Toulouse IRIT
(2002) 377–393

33. Levesque, H.J.: All I know: a study in autoepistemic logic. Artificial Intelligence
42 (1990) 263–309

34. Konolige, K.: Circumscriptive ignorance. In Waltz, D., ed.: Proceedings of the
National Conference on Artificial Intelligence, Pittsburgh, PA, AAAI Press (1982)
202–204

35. Moore, R.C.: Semantical considerations on nonmonotonic logic. In Bundy, A., ed.:
Proceedings of the 8th International Joint Conference on Artificial Intelligence,
Karlsruhe, FRG, William Kaufmann (1983) 272–279

36. Halpern, J.Y., Moses, Y.: Towards a theory of knowledge and ignorance. In Apt,
K.R., ed.: Logics and Models of Concurrent Systems. Springer-Verlag, Berlin (1985)
459–476

37. Halpern, J.Y.: A theory of knowledge and ignorance for many agents. Journal of
Logic and Computation 7 (1997) 79–108

38. Halpern, J.Y., Lakemeyer, G.: Levesque’s axiomatization of only knowing is in-
complete. Artificial Intelligence 74 (1995) 381–387

39. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. In Shoham, Y., ed.:
Theoretical Aspects of Rationality and Knowledge: Proceedings of the Sixth Con-
ference (TARK 1996). Morgan Kaufmann, San Francisco (1996) 251–265

40. Montague, R.: Formal Philosophy. Yale University Press, New Haven, CT (1974)

Logical Spaces in
Multi-agent Only Knowing Systems

Bjørnar Solhaug1,2 and Arild Waaler3,4

1 SINTEF ICT, Norway
2 Dep. of Information Science and Media Studies, University of Bergen, Norway

3 Finnmark College, Norway
4 Dep. of Informatics, University of Oslo, Norway

Abstract. We present a weak multi-agent system of Only knowing and
an analysis of the logical spaces that can be defined in it. The logic
complements the approach to generalizing Levesque‘s All I Know system
made by Halpern and Lakemeyer. A novel feature of our approach is
that the logic is defined entirely at the object level with no reference to
meta-concepts in the definition of the axiom system. We show that the
logic of Halpern and Lakemeyer can be encoded in our system in the
form of a particular logical space.

1 Introduction

Designing systems capable of representing defeasible patterns of reasoning within
a multi-agent context is a non-trivial exercise, especially since most non-
monotonic systems are not equipped with modalities and hence do not gen-
eralize smoothly to multi-agent situations. Exceptions to this are systems in the
autoepistemic family, for which multi-modal generalizations exist. Both Halpern
and Lakemeyer [2, 3, 4, 6] and Waaler [12] have proposed such generalizations of
Levesque’s system of only knowing [7], and we have recently introduced a formal
Kripke-semantics [13] for these systems. A variety of multi-modal only knowing
languages have been analyzed semantically in [5].

A basic idea underlying all the above cited systems is to generalize a notion
of consistency. Halpern and Lakemeyer [4] achieves this by formalizing a seman-
tic notion of satisfiability, while Waaler [12] takes the syntactical definition of
consistency as his point of departure and builds this into the definition of his
multi-agent system LI . In both cases this gives a compact formalization which
in many cases is an advantage. However, from a conceptual point of view the
systems hide a number of details, a fact which makes them hard to penetrate.
The precise effect of the circular “consistency” axioms is particularly difficult to
grasp, even though the formal semantics come to aid.

Building so closely on a notion of logical consistency, the above mentioned
systems sacrifice the ability to naturally distinguish propositions that an agent
believes because they cannot possibly be conceived false, from propositions that
the agent believes only by virtue of explicit evidence. This distinction can be

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 77–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

78 B. Solhaug and A. Waaler

expressed in the single agent system Æ [11], a system relative to Levesque’s
only knowing system in which the “consistency axiom” is replaced by an explicit
axiomatization of what the authors call a logical space. A logical possibility of
the form ♦ϕ, ϕ purely Boolean, is in the system of Levesque deduced from the
consistency of ϕ. A logical space in Æ is a formula λ such that for each purely
Boolean ϕ, either λ � ♦ϕ or λ � ¬♦ϕ. We may then e.g. define a logical space
λ such that λ � �(penguin(Tweety) ⊃ bird(Tweety)), expressing that the agent
cannot conceive of a penguin not being a bird.

Compared to the only knowing system of Levesque, the system Æ has an
increased expressive power due to the possibility of varying the logical space.
In particular, the “consistency axiom” of Levesque corresponds to one of many
possibilities. In Levesque’s system [7], as in the generalizations found in [4] and
[13], the necessity operator only captures the logical relation between concepts.

The aim of this paper is to present a multi-agent only knowing system along
the lines of Æ. A feature of this is, first, that we can express multi-agent general-
izations of logical spaces. We can use a well-known example of Frege to illustrate
a situation in which this expressiveness can be needed. Suppose that an agent
has reason to believe that another agent is unaware of the identity of “The morn-
ing star” and “The evening star”. Since the reference in this case is a matter of
definition, it is natural for him to think that the other agent is simply unaware of
the definition and hence that the other agent finds it inconceivable that the two
names denote one and the same object. The system proposed in this paper can
naturally express that an agent a has a model of another agent’s logical space,
and that this space differs from the space of agent a.

The previous example illustrates the use of logical spaces to express one
agent’s apprehension of the relations between concepts as understood by an-
other agent. The situation is slightly more complex in situations involving three
agents. Assume for instance a scenario in which there are two agents a and
b that are studying together, both holding the degree of bachelor. Being fa-
miliar with the educational system, agent a cannot conceive of a master not
being a bachelor. This may be captured by a logical space λa such that λa �
�a(master(Fred) ⊃ bachelor(Fred)) for any given agent Fred. The common back-
ground of a and b may furthermore be encoded into the logical space of agent a
such that λa � �a�b(master(Fred) ⊃ bachelor(Fred)). This expresses that agent
a cannot conceive of a situation in which agent b assumes that a master is not
a bachelor. Assume, now, a third agent, let us say a’s younger brother c, that
does not share this background. In fact he is almost totally unfamiliar with the
educational system. Agent a, knowing his brother well, may then have a logical
space λa such that λa � ♦a♦c(bachelor(Fred) ∧ ¬master(Fred)).

The logical space is hence of conceptual importance by introducing more flex-
ibility and expressiveness to the representations of epistemic states. The notion
of necessity embedded in the logical space also has implications for the formal-
ization of defeasible reasoning as we shall see in Sect. 4.

A second feature of the logic that we propose here is that it is closed under
uniform substitution. The reason for this is that it employs no meta-concepts in

Logical Spaces in Multi-agent Only Knowing Systems 79

the definition of its rules. Third, it can naturally accommodate all the systems
cited in this introduction by virtue of being more general than them. Fourth, it
explicates what the complex, circular “consistency axioms” hide, a point which
makes it interesting as a foundational study.

In order to bring the task of defining a multi-agent logical space to a man-
ageable level, we will address the problem inductively at different levels of com-
plexity, each level corresponding to a sub-language within which the set of pos-
sibilities is outlined. The base case is equivalent to the single-agent case: Let L0
denote the language of propositional logic. The set of possibilities is derived by
closing a subset of L0, each element of which describes a possibility, under the
♦a-operator for each agent a. The resulting set of formulae is then a subset of
the language of the next level, denoted L1. Inductively, the set of possibilities
for agent a at level k + 1 is derived from a subset of the a-objective formulae of
Lk (“objective” because it does not contain any modal operators).

The main task of this paper is to construct the sets of formulae that, for
each agent and each language level, express each and every logical possibility. In
Sect. 4, we will show how the logic of ÆI applies to examples from the paper of
Halpern and Lakemeyer [4] as well as some new examples. In Sect. 6, we relate
ÆI to the systems of Halpern and Lakemeyer [4] and Waaler [12]. Specifically
we show the equivalence of the three systems when a particular logical space is
added to the axioms of ÆI .

In [13] a modal reduction property for LI is established, which states that
any “only knowing” expression is provably equivalent to a disjunction of “only
knowing” expressions of a particular simple form. Each of these latter expressions
provides us with an explicit syntactical representation of a particular model of
the original formula. The latter expressions explicitly characterize the possible
cognitive states of the agent, given the initial “only knowing” expression. In Sect.
5 we shall see that the same property holds also in ÆI .

2 The Logic ÆI

2.1 Syntax

The object language L contains a countable set of propositional letters P , the
propositional constant ⊥, the Boolean connectives ¬ and ∧ and the modal op-
erators Ba and Ca for each a in a countable non-empty set of indices I. The
index set I represents the set of agents, Ba is a belief operator, and Ca is a
complementary co-belief operator for agent a ∈ I. The propositional constant
� is defined as ¬⊥, while the Boolean connectives ∨, ⊃ and ≡ are the usual
abbreviations. Other modal operators defined as abbreviations are the follow-
ing: baϕ (ϕ is compatible with belief) is ¬Ba¬ϕ, caϕ (ϕ is compatible with
co-belief) is ¬Ca¬ϕ, �aϕ (ϕ is necessary) is Baϕ∧Caϕ and ♦aϕ (ϕ is possible)
is baϕ∨caϕ. Observe that necessity and possibility are relative to the extension
of a given agent’s belief and co-belief; the notion of necessity hence captures
personal necessity.

80 B. Solhaug and A. Waaler

The more accurate interpretation of the Ba-operator is that a formula Baϕ
states that agent a believes at least ϕ to be true, but perhaps more. The Ba-
operator thus puts a lower bound on the extension of belief. The complementary
operator Ca puts an upper bound on the belief in the sense that a formula Caϕ
states that agent a believes at most ϕ to be false, but perhaps less. The formula
Baϕ ∧Ca¬ϕ states that ϕ is exactly what is believed. The introduction of the
Ca-operator thus allows an “All a knows”-proposition Oaϕ to be defined as
Baϕ ∧Ca¬ϕ.

A formula not mentioning any modal operator is called purely Boolean. ϕ is
an a-modal atom if it is of the form Baψ or Caψ, a ∈ I. An a-modal literal
is an a-modal atom or the negation of an a-modal atom. ϕ is a completely a-
modalized formula if it is a Boolean combination of a-modal atoms. ϕ is free
of modality a if it is a Boolean combination of propositional letters and modal
atoms not of modality a. Notice, however, that a formula free of modality a may
have occurrences of a-modal operators within the scope of a b-modal operator,
a
= b. ϕ is a first-order formula if, for each a ∈ I and each subformula Baψ
and Caψ in ϕ, ψ is free of modality a. If Γ is a set of formulae, Γ \a = {ϕ ∈
Γ | ϕ free of modality a} and Γ a = {ϕ ∈ Γ | ϕ completely a-modalized}. If Γ
is a set of formulae, Sf(Γ) denotes the set of subformulae of the formulae in Γ .
When Γ is a singleton set containing ϕ, Sf(ϕ) denotes Sf({ϕ}).

The modal depth d(ϕ) of a formulaϕ expresses the nesting of alternating modal-
ities in ϕ. Formally, the modal depth of a purely Boolean ϕ is 0. Otherwise, if ϕ
is Baψ or Caψ, let Ψ be the set of modal atoms which occur as subformulae in ψ.
Then d(ϕ) is the maximal number in {d(χ)+1 | χ ∈ Ψ and χ is not a-modalized}
∪ {d(χ) | χ ∈ Ψ and χ is a-modalized}. Otherwise, the modal depth of ϕ is the
maximal d(ψ) for a subformula ψ of ϕ. The modal depth of an a-modal formula ϕ
is hence increased by prefixing ϕ with any other modal operator than an a-modal
operator.

Example 1. Let ϕ and ψ be purely Boolean. Then d(ϕ) = 0, d(Baϕ) = 1,
d(Baϕ ∧Bbψ) = 1, d(BaCaϕ) = 1 and d(BaBbϕ) = 2.

If Γ is a set of formulae, Γk = {ϕ ∈ Γ | d(ϕ) ≤ k}. We will in this paper be
interested in sub-languages relative to a given modal depth and a given agent.
Since L denotes the language of ÆI (which is just a set of formulae) these
sub-languages are denoted Lk, L\a

k and La
k following the set indexing notation

introduced above.
A tautology is a substitution instance of a formula valid in propositional logic,

e.g. �aϕ ⊃ �aϕ. The deducibility relation ’�’ of the logic ÆI is defined as the
least relation that contains all tautologies, is closed under all instances of the
rules

� ϕ
� �aϕ

(RN)
� ϕ � ϕ ⊃ ψ

� ψ (MP)

and contains all instances of the following schemata for each a ∈ I:

Logical Spaces in Multi-agent Only Knowing Systems 81

KB: Ba(ϕ ⊃ ψ) ⊃ (Baϕ ⊃ Baψ) B�: ¬Baϕ ⊃ �a¬Baϕ
KC: Ca(ϕ ⊃ ψ) ⊃ (Caϕ ⊃ Caψ) C�: ¬Caϕ ⊃ �a¬Caϕ
B�: Baϕ ⊃ �aBaϕ T : �aϕ ⊃ ϕ
C�: Caϕ ⊃ �aCaϕ

We write � ϕ if ϕ is theorem of ÆI , and ϕ1, . . . , ϕn � ψ for � (ϕ1∧· · ·∧ϕn) ⊃
ψ. Γ � ϕ means that there is a finite number of formulae γ1, . . . , γn in Γ such
that γ1, . . . , γn � ϕ. If Γ � ⊥, Γ is inconsistent otherwise Γ is consistent. We
will without reference use the well-known principles of modal logic, especially
substitution of provable equivalents, the derived rule

ϕ1, . . . , ϕn � ψ
Baϕ1, . . . ,Baϕn � Baψ

and the corresponding rule for Ca.

Lemma 1. �a is an S5 modality.

Lemma 2. Any formula is provably equivalent to a first-order formula with the
same modal depth.

The former of these two results is Lemma 1 of [13]; the latter is Lemma 2 of [12].
For proofs and further details about the results in the rest of this section, the
reader may consult [13].

2.2 Semantics

A frame is a structure (W, {Ra, Sa | a ∈ I}), where W is a non-empty set of
points and Ra and Sa are binary relations satisfying the following two conditions:

(f1) Let X be either Ra or Sa and Y be either Ra or Sa or their complements
Ra or Sa. Then the composition X ◦ Y ⊆ Y .

(f2) Ea = Ra ∪ Sa is reflexive.

Note that in standard terminology two of the eight sub-conditions of (f1)
state that Ra and Sa are transitive, e.g. Ra ◦Ra ⊆ Ra, while two of them state
that they are Euclidean, e.g. Ra ◦Ra ⊆ Ra.

Lemma 3. Ea is an equivalence relation.

An a-cluster is an equivalence class of W modulo Ea. Let C be an a-cluster. We
define the belief part C+ and the co-belief part C− of C by: C+ = {x ∈ C | xRax}
and C− = {x ∈ C | xSax}. C is bisected if C+ ∩ C− = ∅.
Lemma 4. C = C+ ∪ C−.

A model M = (W, {Ra, Sa | a ∈ I}, V) is a frame with a valuation function
V , which maps each propositional letter onto a subset of W . The satisfiability
relation �x, x ∈ W , is defined by

M �x p ↔ x ∈ V (p), p a propositional letter,
M �x ¬ϕ ↔M �x ϕ,
M �x Baϕ↔ ∀y (xRay →M �y ϕ),
M �x Caϕ↔ ∀y (xSay →M �y ϕ),

82 B. Solhaug and A. Waaler

and in the usual way for the other Boolean connectives. We write M |=X ϕ iff
(∀x ∈ X)(M |=x ϕ). A formula is valid in a frame if it is true at all points in
all models on the frame. If ϕ is valid in all frames, we write � ϕ, and say that
ϕ is valid. Γ |= ϕ means that for all models, ϕ is true at all points which satisfy
all formulae in Γ . Note that if C is an a-cluster, all points in C agree on every
completely a-modalized formula in every model on the frame.

Theorem 1. ÆI is sound, complete and decidable.

Proof. This can be proved by the use of standard techniques from modal logic,
see [13]. &'

3 Finitely Bounded Sub-languages

The analysis of a belief representation designed for the formalization of defeasible
reasoning depends on the set of formulae that is considered possible by the agent
in question. A particular logical possibility is represented by a formula of the
form ♦aϕ. What we aim to do is to encode the logical possibilities into a logical
space λa such that for all formulae ϕ from a particular set of formulae free of
modality a, either λa � ♦aϕ or λa � ¬♦aϕ. The way to do this is to generalize
the single-agent notion of an atom to the multi-agent case.

In the single-agent system Æ, assuming a finite set of propositional letters in
the language, say p1, . . . , pm, an atom is defined as a conjunction ±p1∧· · ·∧±pm,
where ±p means either p or ¬p. The notion of an atom is a twin to the notion
of a complete theory: Given any language L∗, a formula ϕ ∈ L∗ is a complete
theory for L∗ iff for all formulae ψ ∈ L∗, either ϕ � ψ or ϕ � ¬ψ. As an atom
can be interpreted as a propositional valuation, it is easy to see that each atom
is a complete theory for the language of propositional logic.

There are 2m non-equivalent atoms given the set {p1, . . . , pm} of propositional
letters. Each atom represents a complete characterization of a state of affairs,
and where α1, . . . , αn characterize the states of affairs conceivable to a given
agent, the logical space is defined as the formula

♦α1 ∧ · · · ∧ ♦αn ∧�(α1 ∨ · · · ∨ αn).

In the maximal logical space, all atoms are possible, i.e. n = 2m.
In order to generalize the notion of an atom, and hence the notion of a logical

space, to the multi-agent case we must be precise about the properties that
must be satisfied by the atoms. To begin with, the set of atoms is defined over
an objective language, i.e. a language free of modalities. In the multi-agent case,
we need for each agent a to operate with a language that is a-objective, i.e. free
of modality a.

An agent’s epistemic state is in the single-agent case furthermore represented
in the language L1 whereas the atoms are defined over L0, i.e. the language
of propositional logic. In the multi-agent case we hence want for each agent a
to represent the generalized atoms over a language L\a

k while the logical space

Logical Spaces in Multi-agent Only Knowing Systems 83

is given in the language La
k+1, which is the former language closed under the

a-modal operators.
The explication of the set of propositional atoms requires the assumption of a

propositional language defined over a finite set of propositional letters. For the set
of generalized atoms to be finite, they must be defined over a finite multi-modal
language. For such a language to be finite, the set of propositional letters and the
set of different modalities, i.e. the index set I, obviously need to be finite. As we
may construct new formulae by prefixing a formula free of modality a with any
a-modal operator, the finite language must moreover be bounded by an upper
modal depth. Under the assumption that the set of propositional letters and the
set of agents are finite, we will for each modal depth k operate with the finitely
bounded sub-language Lk.

The crucial property of an atom in the single agent case is that it is a complete
theory for the language of propositional logic. This property will serve as a
test for for deciding whether a suggested multi-modal logical space is a correct
generalization of the single-agent logical space. In other words, if

♦aϕ1 ∧ · · · ∧ ♦aϕn ∧�a(ϕ1 ∨ · · · ∨ ϕn)

is a multi-modal logical space for a given agent a, where {ϕ1, . . . , ϕn} ⊆ L\a
k for

a given integer k, then each ϕ ∈ {ϕ1, . . . , ϕn} should be a complete theory for
L\a

k . The formula ϕ is then a complete characterization of the material content
of a state of affairs as well as a complete characterization of the epistemic state
of every agent b ∈ I\{a}.

Observe finally that the set of propositional atoms completely characterizes
the language of propositional logic in the sense that for all PL formulae ψ, there
exists a set of atoms the disjunction of which is equivalent to ψ. The set of gen-
eralized atoms from a sub-language L\a

k over which the logical space of agent a
is defined must hence satisfy this property with respect to the formulae of L\a

k .

Convention. We will use the following notation for the distribution of a modal-
ity over a set of formulae: BaΓ = {Baγ | γ ∈ Γ}, and the same for any other
modality.

Definition 1. Let Φ ⊆ L\a. The functions Bela, Cobela and Lspacea, all of them
from a set of formulae free of modality a to a completely a-modalized formula,
are defined as follows:

Bela(Φ) =
∧

baΦ ∧Ba(
∨
Φ),

Cobela(Φ) =
∧

caΦ ∧Ca(
∨
Φ),

Lspacea(Φ) =
∧

♦aΦ ∧�a(
∨
Φ).

Lspacea(Φ) is the logical space for agent a spanned by Φ. If Φ+ ∪Φ− = Φ, then
Bela(Φ+) ∧ Cobela(Φ−) is a doxastic a-alternative spanned by Φ. Notice that a
doxastic a-alternative spanned by Φ entails Lspacea(Φ). The set of all doxastic
a-alternatives spanned by every nonempty subset of Φ is denoted Doxa(Φ).

84 B. Solhaug and A. Waaler

Two properties will play a central role in our analysis. A set of formulae Φ satisfies
the property of mutual inconsistency if every two elements of Φ are consistent iff
they are equivalent. Φ is representationally complete for L∗ if Φ ⊆ L∗ and every
formula ϕ ∈ L∗ is equivalent to a disjunction of formulae in Φ (L∗ any language
addressed in this paper).

Lemma 5. If Φ ⊆ L\a satisfies mutual inconsistency, then so does Doxa(Φ).

Proof. Let δ1 and δ2 be two distinct elements of Doxa(Φ). Then δ1 and δ2 must dis-
agree on the belief set or the co-belief set. We treat the former. Let δ1 � Bela(Γ1)
and δ2 � Bela(Γ2). There is then a formula ϕ such that either ϕ ∈ Γ1 and ϕ /∈ Γ2
or vice verca. In the first case, ϕ∧γ � ⊥ for each γ ∈ Γ2 by mutual inconsistency.
Hence ϕ ∧

∨
Γ2 � ⊥. By modal logic, Ba(

∨
Γ2) � Ba¬ϕ. Since δ2 � Ba(

∨
Γ2)

and δ1 � baϕ, we get δ1 ∧ δ2 � ⊥. The latter case is symmetrical. &'

Lemma 6. Let L∗ be any Boolean closed set of formulae and Φ be representa-
tionally complete for L∗. Then �

∨
Φ.

Proof. Assume that ¬
∨
Φ is consistent. Since Φ is representationally complete

for L∗ and L∗ is Boolean closed, there must then be a non-empty set Γ ⊆ Φ
such that �

∨
Γ ≡ ¬

∨
Φ. But this is clearly impossible. &'

Lemma 7. Let Φ be representationally complete for L\a
k . Then Doxa(Φ) is rep-

resentationally complete for La
k+1.

Proof. Let ϕ ∈ La
k+1. We may without loss of generality assume that ϕ is first-

order. Since Φ is representationally complete for L\a
k , the formulae inside the

scope of the a-modalities are equivalent to disjunctions of formulae from Φ. By
standard propositional reasoning and normal modal logic and, ϕ is equivalent to
a formula on DNF, where each disjunct is of the form ψ =

∧
baΓ1 ∧Ba(

∨
Γ2)∧∧

caΓ3 ∧Ca(
∨
Γ4), Γ1, . . . , Γ4 subsets of Φ. Let

Δ = {δ ∈ Doxa(Φ) | δ = Bela(Φ+) ∧ Cobela(Φ−), Γ1 ⊆ Φ+ ⊆ Γ2, Γ3 ⊆ Φ− ⊆ Γ4}.

Then � ψ ≡
∨
Δ. To see that

∨
Δ � ψ, observe that if Γ1 ⊆ Φ+, then Bela(Φ+) �

baγ for each γ ∈ Γ1, and if Φ+ ⊆ Γ2, then Ba(
∨
Φ+) � Ba(

∨
Γ2). Conversely,

assume that ψ �
∨
Δ, i.e. that ψ is consistent with ¬

∨
Δ. This entails that ψ

is consistent with a formula θ constructed as a conjunction out of the negation
of one conjunct from each δ in Δ. But by construction of ψ there is no such θ
which is consistent with ψ. &'

Lemma 8. Let Φ be representationally complete for L\a
k and satisfy mutual in-

consistency, and let δ be a doxastic a-alternative spanned by Γ ⊆ Φ. Then δ is
a complete theory over La

k+1.

Proof. We need to prove that either δ � ψ or δ � ¬ψ for every ψ ∈ La
k+1.

By Lemma 2, we may without loss of generality assume that ψ is first-order.
The result for Boolean combinations of formulae follows easily once the result is

Logical Spaces in Multi-agent Only Knowing Systems 85

established for modal atoms. It suffices to deal with the case where ψ is of the
form Baϕ, as the other cases are symmetrical.

Let δ � Bela(Γ1) and � ϕ ≡
∨
Γ2, Γ1 and Γ2 subsets of Φ. There are two cases.

Either Γ1 ⊆ Γ2, or there is a formula γ such that γ ∈ Γ1 and γ /∈ Γ2. In the
first case,

∨
Γ1 �

∨
Γ2. By modal logic, Ba(

∨
Γ1) � Ba(

∨
Γ2), and so δ � Baϕ.

In the second case, γ ∧
∨
Γ2 � ⊥ by mutual inconsistency. By modal logic,

baγ � ba¬(
∨
Γ2). Since δ � baγ, we get that δ � ba¬(

∨
Γ2), i.e. δ � ¬Baϕ. &'

We are now ready to generalize the single-agent notion of an atom to the multi-
agent case. In the single-agent case, an atom α can be interpreted as a complete
characterization of the material content of a state of affairs. In the multi-agent
case, we want for each agent ai ∈ I, I = {a1, . . . , am}, and each modal depth
k to define a doxastic alternative δi, such that δi completely characterizes the
cognitive state of agent ai. A conjunction α ∧ δ1 ∧ · · · ∧ δm is then a complete
characterization of the material content of a state of affairs, as well as a com-
plete characterization of the cognitive state of every agent. As we shall see, the
conjunction α ∧ δ1 ∧ · · · ∧ δm is a complete theory for Lk. This conjunction will
be referred to as an I-atom with depth k.

Given a set of I-atoms with depth k, the doxastic alternatives for agent a
with depth k + 1 will be defined over this set. Intuitively, where Φ is the set
of I-atoms with depth k, the set of formulae Doxa(Φ) is the set of doxastic a-
alternatives with depth k + 1. This is, however, not the correct generalization
of the single-agent case, since in the single-agent case, a doxastic alternative is
defined over a set of purely Boolean formulae. Generalizing this is to define a
doxastic alternative for agent ai over a set of formulae free of modality a. To
this end, we will define a set of formulae from L\a

k each formula of which forms
a complete theory for L\a

k .

Convention. Let ϕ = α∧ δ1 ∧ · · · ∧ δm be a formula such that α ∈ L0 and δi is
a doxastic a-alternative. Then ϕ[ai/�] = α∧ δ1 ∧ · · · ∧ δi−1 ∧�∧ δi+1 ∧ · · · ∧ δm.
If Φ is a set of I-atoms, Φ[ai/�] = {ϕ[ai/�] | ϕ ∈ Φ}.

Definition 2 (I-atoms). The set of I-atoms Φk with depth k is defined as
follows: Φ0 is the set of atoms, while Φk+1 is all formulae α∧ δ1 ∧ · · · ∧ δm such
that

– α is an atom,
– δi is a doxastic ai-alternative spanned by the set Γi ⊆ Φk[ai/�],
– ∃ϕ ∈ Φk such that ϕ � α and for each ai, ϕ[ai/�] ∈ Γi.

From now on Φk refers to the set of I-atoms with depth k. The third condition
in the definition above is a consistency condition as witnessed by the following
result.

Lemma 9. Assume that each Φk satisfies mutual inconsistency and that Φk[a/�]
is representationally complete for L\a

k for each agent a. Let α be an atom and δi
be a doxastic ai-alternative spanned by Γi ⊆ Φk[ai/�]. Then α ∧ δ1 ∧ · · · ∧ δm is
consistent if and only if ∃ϕ ∈ Φ such that ϕ � α and for each ai, ϕ[ai/�] ∈ Γi.

86 B. Solhaug and A. Waaler

Proof. Note that if δi is spanned by the set Γi ⊆ Φk[ai/�], then δi � �ai(
∨
Γi).

By axiom T , δi �
∨
Γi. Since the conjuncts of ψ are of different modalities (the

atom purely Boolean, however), inconsistency of ψ can stem from axiom T only.
Hence, it suffices to prove that the consistency condition ensures consistency of
ψ = α ∧

∨
Γ1 ∧ · · · ∧

∨
Γm.

Also note that Φ0 is the set of atoms (which trivially is representationally
complete for L0) and that the condition for k = 1 then simply states that there
is an atom α such that α ∈ Γi for each Γi. If there is a Γi such that α /∈ Γi,
Lemma 6 gives that

∨
Γi � ¬α. Hence ψ is inconsistent. Conversely, if ψ is

inconsistent, there must be a Γi such that α /∈ Γi, and hence the condition is
not satisfied.

If k > 1, suppose that the condition is not satisfied. Then, for each ϕ ∈ Φk

which entails α there is a Γi such that ϕ[ai/�] /∈ Γi. It follows from this that
given any two distinct sets Γi and Γj , each two elements ϕ1[ai/�] ∈ Γi and
ϕ2[aj/�] ∈ Γj must disagree on a doxastic al-alternative, ai
= aj
= al. In
other words, there are two distinct doxastic al-alternatives δ1 and δ2 such that
ϕ1[ai/�] � δ1 and ϕ2[aj/�] � δ2. By the mutual inconsistency assumption,
δ1 ∧ δ2 � ⊥, and so ϕ1[ai/�] ∧ ϕ2[aj/�] � ⊥. Since this holds for any two
distinct sets Γi and Γj , ψ must be inconsistent.

Suppose conversely that ψ is inconsistent. There are two cases. In the first
case, there is a set Γi such that

∨
Γi � ¬α, i.e. for each ϕ ∈ Φk such that

ϕ � α, there is a set Γi such that ϕ[ai/�] /∈ Γi. Then the condition is not
satisfied. In the second case, there are two distinct sets Γi and Γj such that∨
Γi ∧

∨
Γj � ⊥. Then, for each two elements ϕ1[ai/�] ∈ Γi and ϕ2[aj/�] ∈ Γj ,

ϕ1[ai/�]∧ ϕ2[aj/�] � ⊥. We may assume that α is entailed by both ϕ1 and ϕ2
since this was treated in the first case. Since ϕ1[ai/�] ∧ ϕ2[aj/�] � ⊥, the two
formulae must disagree on a doxastic al-alternative, and hence ϕ1 and ϕ2 are
two distinct elements of Φk. The condition is then not satisfied. &'

Lemma 10. The set Φk[a/�] satisfies mutual inconsistency.

Proof. The base case is when k = 0. Φ0[a/�] is the set of atoms, and it is imme-
diate that the set of atoms satisfies mutual inconsistency. Suppose inductively
that ϕ and ψ are two distinct elements of Φk+1[a/�]. Then ϕ and ψ either dis-
agree on an atom or on a doxastic b-alternative, b
= a. In the first case, it is
immediate that ϕ ∧ ψ � ⊥. In the second case, let ϕ � δ1b and ψ � δ2b , where δ1b
and δ2b are doxastic b-alternatives spanned by Γ1 and Γ2, respectively, Γ1 and
Γ2 subsets of Φk[b/�]. By the induction hypothesis, Φk[b/�] satisfies mutual
inconsistency. By Lemma 5, δ1b ∧ δ2b � ⊥. Hence ϕ ∧ ψ � ⊥. &'

Corollary 1. The set of doxastic a-alternatives spanned by subsets of Φk[a/�]
satisfies mutual inconsistency.

Proof. Immediate from Lemma 10 and Lemma 5. &'

Lemma 11. Φk[a/�] is representationally complete for L\a
k and Doxa(Φk[a/�])

is representationally complete for La
k+1.

Logical Spaces in Multi-agent Only Knowing Systems 87

Proof. Both properties are proved by simultaneous induction on k. In the base
case Φ0 = Φ\a

0 . It is easy to see that the first condition holds. Since Φ0 is repre-
sentationally complete for L0, the second holds by Lemma 7.
Φk+1[a/�] is representationally complete for L\a

k+1 (induction step). We have
to prove that for each ϕ ∈ L\a

k+1 there is a subset of Φk+1[a/�] the disjunction
of which is equivalent to ϕ. It is easy to see (using the DNF equivalent of each
formula) that it is sufficient to prove this for ϕ of the form ϕP ∧ϕa1 ∧ · · · ∧ϕam

where ϕP is purely Boolean, ϕa is � and every other ϕai is in Lai

k+1. Let the
atom set ϕ̂P be the set of atoms which imply ϕP , ϕ̂a be {�} and ϕ̂ai be the set
of all δ ∈ Doxai(Φk[ai/�]) such that δ � ϕ. Let ϕ̂ be the set of every formula
α ∧ δ1 ∧ · · · ∧ δm in Φk+1[a/�] such that α ∈ ϕ̂P and δi ∈ ϕ̂ai .

It follows by construction that
∨
ϕ̂ � ϕ. Conversely, assume that ϕ is con-

sistent with ¬
∨
ϕ̂. By induction hypothesis and Lemma 6, � Doxai(Φk[ai/�]).

This entails that there must be a consistent ψ of the form α∧δ1∧· · ·∧δm which
implies ϕ and which is not in Φk+1[a/�]. But this is only possible if δ violates
the third subcondition in the definition of Φk+1 (Definition 2). By Lemma 9, ψ
is inconsistent. Contradiction. Hence � ϕ ≡

∨
ϕ̂.

Doxa(Φk[a/�]) is representationally complete for La
k+1 (induction step). By

the induction hypothesis, Φk[a/�] is representationally complete for L\a
k . Then,

by Lemma 7, Doxa(Φk[a/�]) is representationally complete for La
k+1. &'

Theorem 2. Each formula ϕ ∈ Φ\a
k is a complete theory over L\a

k . Each dox-
astic alternative δ ∈ Doxa(Φk[a/�]) is a complete theory over La

k+1.

Proof. By Lemma 10, Φk[a/�] satisfies mutual inconsistency and by Lemma
11 Φk[a/�] is representationally complete for L\a

k . By Lemma 8, each δ ∈
Doxa(Φk[a/�]) is a complete theory over La

k+1. Since each δ ∈ Doxa(Φk−1[a/�])
is a complete theory over Lk, it follows that each ϕ ∈ Φk[a/�] is a complete
theory over L\a

k . &'

Having defined the set of I-atoms, we may now define the logical space for the
multi-agent case. A logical space of agent a up to depth k is defined over a subset
Γ of Φk[a/�] by the formula Lspacea(Γ). Observe that for k = 0, the logical
space is defined by the formula Lspacea(Δ), Δ ⊆ Φ0, which is a logical space as
defined for the single-agent system Æ.

Corollary 2. Let λa be a logical space for agent a up to k and ϕ ∈ L\a
k . Then

either λa � ♦aϕ or λa � ¬♦aϕ.

4 Examples: Belief Representations with Defaults

Generally we represent the beliefs of an agent a by formulae of the form λa∧Oaϕ
where ϕ is the conjunction of a knowledge base κ and a number of default
conditionals baψ ⊃ ψ, κ and ψ free of modality a. We may read the default
conditionals as “agent a believes ψ provided that ψ is compatible with the rest of

88 B. Solhaug and A. Waaler

the beliefs”. κ captures the rest of the beliefs whereas the logical space determines
whether or not ψ is compatible with κ.

A crucial point illustrated in this section is that the logical space serves as
a possibility operator and as such determines whether or not two formulae are
compatible; the logical space hence also determines whether or not a default
conditional is triggered.

This is in contrast to both the approach formalized in the system LI [13]
and the approach by Halpern and Lakemeyer [4]. In these approaches the set of
possibilities is fixed and determined by the axiomatic system: The axiom sys-
tem LI refers to consistency within the system while the system of Halpern and
Lakemeyer has a number of axioms and rules for reasoning about satisfiabil-
ity. Formulae that as such are consistent or satisfiable within the system then
constitute the set of logical possibilities.

The difference between ÆI and these approaches is shown in the formal analy-
ses of belief representations by the fact that the logical possibilities are explicitly
given in ÆI , while the other approaches need additional formal reasoning for
determining these possibilities.

In Section 6.1 of [4], Halpern and Lakemeyer give examples of how their logic
can be used to represent default reasoning in a multi-agent situation. We will
show how the inferences are carried out in the logic ÆI . (Notice that in these
examples the knowledge base is empty, i.e. κ = �.)

Example 2. The first example of Halpern and Lakemeyer is this. Let p be agent
a’s secret and suppose he makes the assumption that unless he believes that b
knows his secret, he assumes that she does not know it. We will now prove that
if this is all he believes and if it is conceivable that b does not know his secret,
then he believes that she does not know his secret. Formally, we show

λa ∧Oa(¬BaBbp ⊃ ¬Bbp) � Ba¬Bbp,

where λa is the logical space of agent a. Let ϕ denote ¬BaBbp ⊃ ¬Bbp. Note
that the assumption that it is conceivable to a that b does not know his secret
implies that λa � ♦a¬Bbp. Let us turn to the formal derivation.

1. λa ∧Oaϕ � Baϕ PL
2. λa ∧Oaϕ � Ca¬ϕ PL
3. � (Baϕ ∧ ¬BaBbp) ⊃ Ba¬Bbp normal logic, ÆI

4. � Ca¬ϕ ⊃ (Ca¬BaBbp ∧CaBbp) normal logic
5. λa ∧Oaϕ � ♦a¬Bbp assumption
6. λa ∧Oaϕ � CaBbp ⊃ ¬BaBbp 5, PL
7. λa ∧Oaϕ � ¬BaBbp 2, 4, 6, PL
8. λa ∧Oaϕ � Ba¬Bbp 1, 3, 7, PL

In the third line, we made use of the modal reductive strength of the logic. The
critical point in the derivation is of course the fifth line. This theorem rests on
the assumption that ¬Bbp is conceivable to agent a. The derivation in the system
of Halpern and Lakemeyer is somewhat longer, since they need to apply some
extra machinery to reason about validity and satisfiability.

Logical Spaces in Multi-agent Only Knowing Systems 89

The non-monotonicity becomes apparent when we add Bbp to the belief set
of agent a, or we define the logical space such that λa � ¬♦a¬Bbp. Then BaBbp
is deducible.

Example 3. In their next example, Halpern and Lakemeyer show how one agent
reasons about another agent’s ability to reason non-monotonically. The letter p
stands for “Tweety flies”. It is then shown that if a believes that all b believes
is that by default Tweety flies, then a believes that b believes that Tweety flies.

Again, it is the logical space that makes the deduction go through in our sys-
tem. But here, since a is reasoning about b’s ability to reason non-monotonically,
if a is to derive the conclusion that b believes p, a must believe that p is con-
ceivable to b, i.e that the logical space λb of b implies ♦bp. Note that since the
non-monotonicity in this example is about b, we need not consult the logical
space of a.

What we want to prove is thus that Ba(λb ∧ Ob(bbp ⊃ p)) � BaBbp. The
formal derivation is as follows:

1. λb ∧Ob(bbp ⊃ p) � Bb(bb ⊃ p) PL
2. λb ∧Ob(bbp ⊃ p) � Cb¬(bb ⊃ p) PL
3. � (Bb(bbp ⊃ p) ∧ ¬Bb¬p) ⊃ Bbp normal logic, ÆI

4. � Cb¬(bb ⊃ p) ⊃ (Cbbbp ∧Cb¬p) normal logic
5. λb ∧Ob(bbp ⊃ p) � ♦bp assumption
6. λb ∧Ob(bbp ⊃ p) � Cb¬p ⊃ ¬Bb¬p 5, PL
7. λb ∧Ob(bbp ⊃ p) � ¬Bb¬p 2, 4, 6, PL
8. λb ∧Ob(bbp ⊃ p) � Bbp 1, 3, 7, PL
9. Ba(λb ∧Ob(bbp ⊃ p)) � BaBbp 8, normal logic

The assumption to the effect that a believes λb is stronger than what we
actually need. The assumption we need is that every logical space of agent b
compatible with a’s beliefs implies ♦bp.

In these examples the logical space is essential by serving as a possibility op-
erator. The logical space may also be decisive in the interpretation of belief
representations with defaults. In Section 1 we addressed a scenario in which
one agent b, being familiar with the educational system, had a logical space
λb such that λb � �b(master(Fred) ⊃ bachelor(Fred)) where Fred is any given
agent. Assume now that agent c, which is quite ignorant about educational
matters, has confused the two concepts and that his logical space λc is such
that λc � �c(bachelor(Fred) ⊃ master(Fred)). Should they both learn that,
with very few exceptions, a person holding the degree of master may apply
for the admission to candidature for the PhD, they will add this to their belief
set as a default. They both know that agent a is a bachelor. Agent b further-
more knows that ¬master(a), and so the default is not relevant for his beliefs
about a. Agent c on the other hand deduces that a indeed is a master since
�c(bachelor(a) ⊃ master(a)) � Bc(bachelor(a) ⊃ master(a)). If c does not al-
ready believe otherwise, he will by default deduce that a may apply for the
admission to the PhD candidature. Two agents that believe the same set of

90 B. Solhaug and A. Waaler

default conditionals may hence interpret them differently because of the differ-
ent ways in which they relate concepts as represented by their respective logical
spaces.

We will in the rest of the section list a number of illuminating theorems of ÆI

that show the relation between the logical space one the one hand and a belief
representation with defaults on the other hand.

Assume first a belief representation λa ∧ Oaϕ1 where ϕ1 = κ ∧ (baψ ⊃ ψ).
The formula Oaϕ1 should be related to the following theorems of ÆI :

1. ¬♦a(κ ∧ ψ) � Oaϕ1 ≡ Oaκ
2. ♦a(κ ∧ ψ) � Oaϕ1 ≡ Oa(κ ∧ ψ)

It is now easy to see that an analysis of the belief representation λa ∧Oaϕ1 is
determined by the logical space λa. If λa � ¬♦a(κ∧ψ), then λa � Oaϕ1 ≡ Oaκ,
and if λa � ♦a(κ ∧ ψ), then λa � Oaϕ1 ≡ Oa(κ ∧ ψ).

Observe that the case in which λa � ♦a(κ ∧ ψ) generalizes Example 2 above
and that the theorem λa � Oaϕ1 ≡ Oa(κ∧ψ) is a stronger result than what was
proven in the example: It immediately follows here that λa ∧ Oaϕ1 � Ba(κ ∧
ψ) which corresponds to the result in Example 2 when κ = �, i.e. when the
knowledge base is empty.

Let us now turn to the more interesting case in which there are two default
conditionals. Assume the belief representation λa∧Oaϕ2 where ϕ2 = κ∧(baψ ⊃
ψ) ∧ (baγ ⊃ γ). The logical space λa is again the key in the analysis of this
representation as illustrated as follows.

1. If λa � ¬♦a(κ ∧ ψ) ∧ ¬♦a(κ ∧ γ), then λa � Oaϕ2 ≡ Oaκ.
2. If λa � ¬♦a(κ ∧ ψ) ∧ ♦a(κ ∧ γ), then λa � Oaϕ2 ≡ Oa(κ ∧ γ)
3. If λa � ♦a(κ ∧ ψ) ∧ ¬♦a(κ ∧ γ), then λa � Oaϕ2 ≡ Oa(κ ∧ ψ)
4. If λa � ♦a(κ ∧ ψ) ∧ ♦a(κ ∧ γ) ∧ ¬♦a(κ ∧ ψ ∧ γ),

then λa � Oaϕ2 ≡ Oa(κ ∧ ψ) ∨Oa(κ ∧ γ)
5. If λa � ♦a(κ ∧ ψ ∧ γ), then λa � Oaϕ2 ≡ Oa(κ ∧ ψ ∧ γ)

The first theorem corresponds to the situation in which none of the defaults
apply, whereas the second and third theorem correspond to the situation in
which one of the defaults apply but not the other. In the fourth case both
defaults apply in isolation, but are mutually exclusive. The belief representation
is hence ambiguous in the sense that there are more than one interpretations. In
the fifth case both defaults apply.

Formal proofs of the above theorems are not easily obtained syntactically.
Given the semantics of ÆI together with the soundness and completeness theo-
rems, the proofs are however quite straightforward. This illustrates an important
technical advantage over the system by Halpern and Lakemeyer [4].

We will not provide the semantic proofs here as they are very similar to the
proofs of the examples in Section 4 of [13]. We will, however, in the following
point out the aspects in which the analysis here differs from the reasoning in [13].

A given logical space λa is by construction consistent and hence, by com-
pleteness, satisfiable. By soundness λa � ¬♦aψ implies λa �C ¬♦aψ for every

Logical Spaces in Multi-agent Only Knowing Systems 91

a-cluster C in all models M. By definition of the satisfiability relation M �x ¬ψ
for all points x ∈ C. By similar reasoning, if λa � ♦aψ, there exists a point
x ∈ C such that M �x ψ for all a-clusters C in all models M satisfying λa.

Given these observations about models satisfying a specific logical space, we
semantically prove theorems of the form λa � Oaϕ ≡ Oaϕ

′ by showing that
λa � Oaϕ ≡ Oaϕ

′ and then argue by completeness. The way of reasoning is to
prove that for any a-cluster C in any model M such that M �C λa ∧Oaϕ, then
M �x ϕ ≡ ϕ′ for all points x ∈ C. The desired result then follows.

The contrast to the system LI in the semantic argument lies in the role of the
logical space. The semantics of LI is identical to the semantics of ÆI except that
the models in LI additionally satisfy three specific properties. These properties
are used in an essential way in the semantic analysis of the belief representations
with defaults. In the system ÆI the essence lies in the properties of the a-clusters
satisfying a logical space λa.

Observe finally that a reduction property of the system is used in the analysis
of belief representations with defaults: We start with a formula Oaϕ where ϕ is
a conjunction of formulae some of which are not free of modality a and deduce a
disjunction of formulae Oaϕ

′ in which ϕ′ is free of modality a. This is a special
case of the modal reduction theorem that is addressed in the following section.

5 The Modal Reduction Theorem

We will in this section assume a sub-language Lk bounded by a finite set of
propositional letters P , a finite set of indices I and a given modal depth k. Let
the logical space λ of agent a be given, and let β be any formula. The modal
reduction theorem states that there are formulae β1, . . . , βn free of modality a,
such that

λ � Oaβ ≡ Oaβ1 ∨ · · · ∨Oaβn.

Moreover, each formula Oaβi, i ≤ n, is defined directly from one of the a-clusters
satisfying λ ∧Oaβ, and each such a-cluster is represented by a formula Oaβi.

Let λ ∧ Oaϕ have depth k. We will say that λ ∧ Oaϕ is an explicit belief
representation if for any formula ψ ∈ La

k, either λ ∧Oaϕ � ψ or λ ∧Oaϕ � ¬ψ.
In other words, an explicit belief representation is a formula that determines the
agent’s attitude towards any formula in the language.

Theorem 3. Let ϕ be any formula free of modality a. Then λ ∧ Oaϕ is an
explicit belief representation.

Related to the notion of an explicit belief representation is the notion of an
implicit belief representation, i.e. formulae of the form λ ∧Oaϕ that allow am-
biguity with respect to a-modalized formulae. An implicit belief representation
is a formula λ ∧Oaϕ where ϕ is not free of modality a. By applying the modal
reduction theorem, such formulae are reduced to disjunctions of formulae, each
of them an explicit belief representation.

92 B. Solhaug and A. Waaler

6 Related Work

We will in this section prove the equivalence of the system ÆI with two earlier
attempts of generalizing the system of Levesque [7]. The first of these other
systems is the system HL of Halpern and Lakemeyer [4], where a generalization
of Levesque’s system is provided by coding the satisfiability relation into the
system. Notice that the language of HL is an extension of L. We will prove the
equivalence with ÆI with respect to the common part of the languages. The
second system is the system LI of Waaler [12], where the ♦-axiom of Levesque’s
system is generalized to the statement that ♦aϕ is a theorem provided that ϕ is
a consistent formula free of modality a.

The deducibility relations ofHL and LI are denoted �HL and �LI , respectively.
In [12], the equivalence of LI and HL was established. We will in this section
prove the equivalence of the system ÆI and the system LI . The equivalences of
the three systems then follow as a corollary.

6.1 The System LI

Let �′ be the deducibility relation given by removing the axiom schema T from
the system ÆI . The deducibility relation �LI of the system LI is defined as the
least relation extending �′ containing every instance of the following schema for
each agent a ∈ I:

♦a : ♦aϕ provided ϕ �LI ⊥, ϕ free of modality a.

There is a circular pattern to the ♦a-axiom, but in [12], it is shown that the
circularity is not vicious. This result is captured by Lemma 12 below.

As in ÆI any formula is provably equivalent to a first-order formula in LI .
Moreover, T is a theorem of LI . Hence, LI is an extension of ÆI . For proof of
these claims consult [13].

6.2 Equivalence of ÆI and LI

LI is a proper extension of ÆI . However, equivalence between the systems can
be established for sub-languages up to a given depth by strengthening ÆI with
a particular set of formulae. In the single-agent case, when the maximal logical
space is added to the axioms of Æ, the system Æ is equivalent to the propositional
fragment of Levesque’s system. What we need to do in the multi-agent case is
to identify a set of formulae that, when added to the axioms of ÆI , yields
equivalence of ÆI and LI .

Definition 3 (Maximal I-atoms). The set of maximal I-atoms with depth k
is defined as follows: Φ0 is the set of atoms, while Φk+1 is all formulae α ∧ δ1 ∧
· · · ∧ δm such that

– α is an atom,
– δi is a doxastic ai-alternative spanned by Φk[ai/�],

Logical Spaces in Multi-agent Only Knowing Systems 93

The critical difference between the definition of a maximal I-atom and the defi-
nition of an I-atom as defined in Definition 2 is that δi in the inductive step of
the definition of a maximal I-atom is spanned by Φk[ai/�], and not subsets of
Φk[ai/�]. The consistency condition is furthermore omitted. This is because for-
mulae α∧δ1∧· · ·∧δm trivially satisfy the consistency condition in the definition
of the maximal I-atoms. (We omit the easy proof of this claim.)

The maximal logical space of agent ai with depth k is now defined as λi =
Lspacea(Φk−1[ai/�]). We will prove that the set of formulae Λ = {λi | ai ∈ I}
added to the axioms of ÆI yields equivalence with LI up to depth k.

Before we proceed, we need an important result from [12]. This result states
that LI -consistency of a formula ϕ free of modality a is established without
reference to the theorem ♦aϕ.

Lemma 12. Let ϕ be LI-provable. Then there is an LI-proof π of ϕ such that
d(ψ) < d(ϕ) for every instance of an axiom ♦aψ which is used in π.

Theorem 4. Let Λ be the set of maximal logical spaces with depth k for each
agent ai ∈ I and d(ϕ) ≤ k. Then Λ � ϕ iff �LI ϕ.

Proof. The proof is by induction on the depth of the logical spaces, and both
directions are proved simultaneously. As � ⊆ �LI , we need for the ’only if’
direction to prove that �LI

∧
Λ. For the ’if’ direction, we need to prove that LI

is a strengthening of ÆI by
∧
Λ only. That is, we need to prove that ♦aiϕ is

deducible in ÆI from Λ, where ♦aiϕ is derivable in LI by an application of ♦ai

to a formula ϕ, where d(ϕ) < d(λi).
The base case is when each λi is spanned by the set of atoms Φ0. ’Only if’:

As every atom α is LI -consistent, �LI ♦aiα by the ♦ai -axiom, and since
∨
Φ0

is a PL-tautology, we get �LI �ai(
∨
Φ0) by RN. So �LI λi for every λi ∈ Λ.

’If’: Suppose �LI ♦aiϕ is deduced in LI by an application of ♦ai . It must then
be the case that ϕ is a purely Boolean formula such that ϕ �LI ⊥. Since LI

extends ÆI , ϕ � ⊥. There is then an atom α such that α � ϕ. By modal logic,
♦aiα � ♦aiϕ, and so λi � ♦aiϕ.

In the inductive step, let d(λi) = k+1, λi spanned by Φk[ai/�]. ’Only if’: We
need to establish that ψ �LI ⊥ for every ψ ∈ Φk[ai/�] and that �LI

∨
Φk[ai/�].

Once these two properties are established, we may apply ♦ai to the first and RN
to the latter to get the desired result.

Note that ψ is a conjunction of an atom and a doxastic aj-alternative δj for
each aj
= ai. Each δj entails the maximal logical space λ′j , d(δj) = k. Let Λ′ be
the set of maximal logical spaces with depth k for each aj
= ai. By construction
of the logical space, we have ψ ∧Λ′ � ⊥. By the induction hypothesis, ψ �LI ⊥.
By axiom ♦ai , we get �LI ♦aiψ.

Let Δj be the doxastic aj-alternatives spanned by Φk−1[aj/�]. Observe that
for each δj ∈ Δj , d(δj) = k and δj � λ′j , where λ′j is the maximal logical space
with depth k for agent aj . Notice that the set of conjunctions of an atom and
a formula δj ∈ Δj for each aj
= ai is exactly the set of formulae Φk[aj/�]. In
order to prove �LI

∨
Φk[ai/�], we will prove that �LI

∨
Δj for each aj
= ai.

94 B. Solhaug and A. Waaler

The result then follows by standard propositional reasoning and the fact that
�LI

∨
Φ0.

We will first prove that λ′j �
∨
Δj . Suppose that λ′j �

∨
Δj , i.e. λ′j∧¬(

∨
Δj) �

⊥. By Lemma 11, there is a doxastic aj-alternative δ′j with depth k such that
δ′j � λ′j ∧ ¬(

∨
Δj). But then δ′j � λ′j , and so δj ∈ Δj . Contradiction. Since

λ′j �
∨
Δj , we get �LI

∨
Δj by the induction hypothesis. �LI

∨
Φk[ai/�] follows

by standard propositional reasoning, and �LI �ai(
∨
Φk[ai/�]) by RN.

’If’: Suppose �LI ♦aiϕ, d(ϕ) < d(λi), λi ∈ Λ, is deduced in LI by an applica-
tion of ♦ai . It must then be the case that ϕ is a formula free of modality ai such
that ϕ �LI ⊥. By Lemma 12, any application of the ♦ai -axiom to establish the
consistency of ϕ is to formulae with depth < d(ϕ). By the induction hypothesis,
Λ′ ∧ ϕ � ⊥, where Λ′ is the set of maximal logical spaces with depth k for each
aj
= ai.

We may without loss of generality assume that ϕ is first-order and on DNF.
Since Λ′∧ϕ � ⊥, there is a disjunct ψ of φ such that Λ′∧ψ � ⊥. ψ is a conjunction
of a purely Boolean formula ψP and a completely aj-modalized formula ψaj for
each aj
= ai. Since λ′j ∧ ψaj � ⊥, λ′j ∈ Λ′, there is by Lemma 11 a doxastic
aj-alternative δj with depth k such that δj � λ′j ∧ψaj . Let Δ be the set of these
formulae δj for each aj
= ai. As to ψP , there is an atom α such that α � ψP .
Since each δj entails the maximal logical space, the consistency condition is
trivially satisfied, and so α ∧ Δ � ⊥. Since each element of {α} ∪ Δ entails a
respective conjunct of ψ, we have α ∧Δ � ψ, and so α ∧Δ � ϕ. Observe that
the conjunction α ∧

∧
Δ is an element of Φk[aj/�] and that ♦ai(α ∧

∧
Δ) is a

conjunct of the maximal logical space λi with depth k. Since α∧Δ � ϕ, we have
♦ai(α ∧

∧
Δ) � ♦aiϕ by modal logic, and so λi � ♦aiϕ as desired. &'

Corollary 3. Λ � ϕ iff �LI ϕ iff �HL ϕ, ϕ ∈ L, provided d(ϕ) ≤ d(λi) for each
λi ∈ Λ.

Proof. Follows immediately from Theorem 15 of [12] and Theorem 4. &'

7 Conclusion and Future Work

The focus of this paper is on the logical foundation of multi-agent systems.
We have successfully developed a notion of logical space for agents in a multi-
modal only knowing language. Clearly, a practical application will require a
more economical way of representing and reasoning within logical spaces, typi-
cally achieved by means of highly restricted languages. However, to implement
constraints like this, one needs to know what “all the options” are. This paper
presents an answer to this fundamental and conceptually important question.

A number of interesting questions can be raised on the basis of this logical
clarification. First, we have not presented any complexity analysis. The size of a
logical space grows quickly beyond any tractable level. However, in a particular
situation one will not need to span the entire space syntactically, exactly like
one in Æ can provide an implicit definition of a logical space by means of a
characteristic formula [8, 11]. We plan to address this question in a subsequent

Logical Spaces in Multi-agent Only Knowing Systems 95

paper. We also plan to extend the reduction method used to give a constructive
proof of the Modal Reduction Theorem in Æ to ÆI and to extend the language
with language constructs to express different degrees of confidence for each agent
(like in Æ). The latter task is in itself straightforward; however, a non-trivial use
of this would be to develop a theory of multi-agent default reasoning within this
language which generalizes the encoding of default logic in Æ [1].

References

1. Engan, I., Lian, E. H., Langholm, T. and Waaler, A.: Default Reasoning with Pref-
erence within Only Knowing Logic. The 8th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), Lecture Notes in Com-
puter Science 3662 (2005) 304–316

2. Halpern, J. Y.: Reasoning about Only Knowing with Many Agents. Proceedings of
the 11th National Conference on Artificial Intelligence (AAAI-93) (1993) 655–661

3. Halpern, J. Y.: A Theory of Knowledge and Ignorance for many agents. Journal
of Logic and Computation 7:1 (1997) 79–108

4. Halpern, J. Y. and Lakemeyer, G.: Multi-Agent Only Knowing. Journal of Logic
and Computation 11:1 (2001) 40–70

5. Hoek, W. and Thijsse, E.: A General Approach to Multi-Agent Minimal Knowl-
edge: With Tools and Samples. Studia Logica 72:1 (2002) 61–84

6. Lakemeyer, G.: All They Know: A Study in Multi-Agent Autoepistemic Reasoning.
Proc. of the 13th International Joint Conference on Artificial Intelligence (IJCAI-
93) (1993) 376–381

7. Levesque, H. J.: All I know: A study in autoepistemic logic. Artificial Intelligence
42 (1990) 263–309

8. Lian, E. H., Langholm, T. and Waaler, A.: Only Knowing with Confidence Levels:
Reductions and Complexity. In J. J. Alferes and J. Leite, editors, Proceedings of
JELIA’04, Lecture Notes in Artificial Intelligence 3229 (2004) 500–512

9. Solhaug, B.: Logical Spaces in Multi-Modal Only Knowing Logics. Master’s Thesis,
University of Oslo (2004)

10. Waaler, A.: Logical Studies in Complementary Weak S5. Doctoral thesis, University
of Oslo (1994)

11. Waaler, A., Klüwer, J.W., Langholm, T. and Lian, E.: Only Knowing with Degrees
of Confidence. Journal of Applied Logic, 2006. To appear. A preprint is available
at http://folk.uio.no/johanw/ok-doc.pdf .

12. Waaler, A.: Consistency proofs for systems of multi-agent only knowing. Advances
in Modal Logic, 5 (2005) 347–366

13. Waaler, A. and Solhaug, B.: Semantics for Multi-Agent Only Knowing (extended
abstract). In R. van der Meyden, editor, Proceedings of the 10th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK X), ACM Digital Li-
brary (2005) 109–125

Trustworthiness by Default

Johan W. Klüwer1 and Arild Waaler2

1 Dep. of Philosophy, University of Oslo
johanw@filosofi.uio.no

2 Finnmark College and Dep. of Informatics, University of Oslo
arild@ifi.uio.no

But never put a person to death on the testimony of only one
witness. There must always be at least two or three witnesses.

Deuteronomy 17:6 (New Living Translation)

Abstract. We present a framework for reasoning about information
sources, with application to conflict resolution and belief formation at
various degrees of reliability. On the basis of an assignment of relative
trustworthiness to sets of information sources, a lattice of degrees of
trustworthiness is constructed; from this, a priority structure is derived
and applied to the problem of forming the right opinion. Consolidated
with an unquestioned knowledge base, this provides an unambiguous
account of what an agent should believe, conditionally on which infor-
mation sources are trusted. Applications in multi-agent doxastic logic
are sketched.

1 Introduction

To trust an information source, in the simplest, unconditional form, is to believe
every piece of information that the source provides. While providing a paradigm,
this notion of trust has limited application to realistic scenarios. In general, the
trust we have in our information sources, which may vary in kind from teachers
to newspapers to legal witnesses, is not unconditional: we believe what we are
told by a trusted source only as long as we don’t possess knowledge to the
contrary. This simple observation motivates the approach to trust that we will
be discussing in this paper. Conditional trust in an information source is a default
attitude: To believe what you are told, unless you know better.

When looking for information, we often need to consider several sources.
Sources may vary widely with regard to their reliability, and a cautious default
approach then informs us to let the more trustworthy ones take priority over
those that are less trustworthy. Furthermore, we often need to consider more
than one source at a time. Notions of agreement or corroboration, as well as the
consolidation of information drawn from different sources, are essential.

What we present here is a framework for reasoning about relative trustwor-
thiness, with sets of information sources as the basic trusted units. The main
part of the paper is structured as follows. Section 2 addresses properties of the
trustworthiness relation itself, making only informal reference to notions of in-
formation. Building on a simple relation between sets of sources (2.1), rational

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 96–111, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Trustworthiness by Default 97

trust attitudes are identified and ordered according to strength (2.2, 2.3), and
ordered in a tree structure of “fallbacks” (2.4). Section 3 employs this structure
to provide an account of trust in terms of default conditionals. Notions of infor-
mation, as provided by individual sources as well as collections of sources, are
defined in 3.1. The prioritized default logic Æ� is briefly presented in section
3.2. The defaults approach is then made explicit in section 3.3, which presents
a method for expressing trust attitudes as formulae of Æ�.

The expression of trusting attitudes in terms of prioritized defaults provides
an answer to the following non-trivial question: Given that we possess a body of
antecedent knowledge, and are provided with information from a set of variously
trusted sources, what is it reasonable to believe?

For the presentation of the core theory, we assume that the information pro-
vided by sources is expressed in propositional logic, but the approach to relative
trustworthiness is equally applicable if one wants to use a more, or less, complex
language. Looking forward, section 3.4 outlines how the analysis can be applied
to multi-agent doxastic logic, to enable the representation of doxastic agents
with varying degrees of trust that the beliefs of other agents are true.

This work builds on two main sources. For the theory of trustworthiness, the
most important is the work of John Cantwell [1, 2], in which the basic relation
of trustworthiness is defined in a way that is close to the one given here. For the
aspects that relate to default inference and belief, the prioritized belief logic Æ
[9, 10, 12], which is closely related to that of [7], has been the primary source of
reference.

We consider the following to be guiding principles for what follows.

Given a collection of sources, what all sources agree on is at least as
trustworthy as what only some agree on. (1)

If some unit x is trusted, and y is at least as trustworthy as x, then
rationality demands that y should be trusted too. (2)

Accept information from a trusted unit as true, unless it is inconsistent
with what you have already accepted. (3)

2 A Trustworthiness Relation

2.1 The Basic Pre-order on Information Sources

Let S be a (possibly empty) finite set of sources. The trustworthiness relation
� is a relation between subsets of S; we will often refer to these as source
units. A source unit is an entity that is capable of providing information, as
follows: A singleton unit {a} provides exactly what the single source a does.
A non-singleton unit provides only what follows from the contribution of every
member. Informally, think of a non-singleton source unit as making a “common
statement”, i.e., the strongest that its members all agree on.

Notation: Small Latin letters a, b, c denote sources, small variable letters x, y, z
range over source units, capital Latin letters A,B,C denote particular sets of
source units, and capital variable letters X,Y, Z range over arbitrary sets of

98 J.W. Klüwer and A. Waaler

source units. We will sometimes have to collect sets of source units, for which
we shall use capital Greek letters Γ,Δ.

We assume that the trustworthiness relation is reflexive and transitive (a pre-
order). Two source units x and y may be trustworthiness-equivalent, written
x ∼ y.

x ∼ y =def x� y and y � x (4)

We write x� y to express that y is strictly more trustworthy than x.

x� y =def x� y and not x ∼ y (5)

Source units that are unrelated by � will be called independent, denoted x)
y. Intuitively, we interpret independence as a consequence of lack of evidence;
neither of x � y, x � y, and x ∼ y is believed to obtain. If no two source units
are independent, we say � is connected.

We assume that every source, however it is combined with other sources,
makes a non-negative contribution of information. Together with (1), this implies
that enlargement of a source unit with new members may never yield a unit that
provides a stronger set of information. Hence, a source unit will be at least as
trustworthy as every unit that it contains as a subset. This motivates taking the
following principle, which we will refer to as monotonicity, to be valid.

x� x ∪ y . (6)

It follows that for each source unit x, the following hold.

x� S , (7)
∅� x . (8)

To see why (7) is valid, note that S only provides information which is agreed
upon by all the sources. At the other extreme, we stipulate that the empty set
is a limit case that always provides inconsistent information, motivating (8).

In referring to particular source units in examples we will consistently simplify
notation by omitting brackets: a�bc is, e.g., shorthand for {a}�{b, c}. Likewise,
the set {{a}, {a, b}} will be denoted a, ab. Observe that the symbol a should,
depending on the context, either be taken as a reference to the source a or to
the singleton source set {a} or to the singleton source set collection {{a}}.

2.2 The Poset of Trust-Equivalent Source Units

We will use the term trust attitude, given a set of sources S, to mean the belief
that a set of source units can be trusted. (Note that this employs the non-relative
sense of trust in an entity, as opposed to the relative notion of trusting one entity
more than another.) Our aim in this and the following section is to identify the
permissible trust attitudes.

Trustworthiness by Default 99

We start by noting that the empty set represents the attitude of placing trust
in none of the sources. This maximally sceptical attitude is obviously permissi-
ble, and it amounts to regarding even information that all the sources support
as unreliable. Given a trust relation �, we can distinguish those further trust
attitudes that respect the relation, according to principle (2), that x may only
be trusted if every y � x is trusted as well. In the following, we allow ourselves
to talk about attitudes as being the sets of source units themselves, and to say
that a source unit is “included” in an attitude of trust, meaning that that source
unit is among those trusted.

We use the following standard terminology. In a poset (S,≤) the ≤-relation is
reflexive, transitive and anti-symmetric. The poset has a unique cover relation
�, defined as x � y iff x < y and x ≤ z < y implies z = x. C ⊆ S is an
antichain if every two distinct elements in C are incomparable by ≤. Note in
particular that ∅ is an antichain. Every subset of S has ≤-minimal elements,
and the set of these elements is an antichain. ↑C denotes an up-set, defined as
{x | (∃y ∈ C)(y ≤ x)}. The set of antichains in a poset is isomorphic to the set
of up-sets under set inclusion.

If an attitude of trust includes a source unit x, but not an equivalently trust-
worthy source unit y, then the attitude is not permissible. This motivates a focus
on the equivalence classes of S modulo ∼. Where x ⊆ S,

[x] =def {y : x ∼ y} (9)

Let Ṡ be the set of all equivalence classes of S modulo ∼. We will say a source
unit x is vacuous with regard to trustworthiness if x ∈ [∅]. In the extreme case
that every source unit is a member of [∅], the trustworthiness relation itself is
said to be vacuous.

Where X and Y are in Ṡ, define a relation �̇ of relative strength between
them as follows.

X �̇ Y =def (∃x ∈ X)(∃y ∈ Y)(x � y) (10)

Let X �̇ Y designate X �̇ Y or X = Y and let X)̇Y designate independence.

Lemma 1. (Ṡ, �̇) is a poset in which [∅] is the unique minimum and [S] the
unique maximum. (Ṡ, �̇) is a linear order iff (℘S,�) is connected.

Proof. Monotonicity entails the unique minimum and maximum. The other
properties follow easily from the construction of (Ṡ, �̇).

Example 1. Assume that the set of sources S contains just a and b, and that
a�ab, b�ab, ∅�a, and ∅� b (i.e., the source units a, b, and ab are non-vacuous,
and ab is more trustworthy than both a and b). The following figure shows Hasse
diagrams of the poset (Ṡ, �̇), given 1. a� b, 2. a ∼ b, and 3. a) b.

100 J.W. Klüwer and A. Waaler

1. ab

a

b

∅

2. ab

a, b

∅

3. ab

a
��

∅
���

b
��

���

Relation 1 requires information provided by a to take precedence over informa-
tion provided by b. Relation 2 emerges from taking a to be precisely as reliable
as b. This implies it is only rational to accept a’s contribution given that b’s
is accepted as well, and in the event that a and b contradict each other, it is
ruled out that either can be trusted separately. Relation 3 reflects a situation in
which less is known about the relative trustworthiness of a and b than in 1 and
2: neither is known to be better than or equivalent to the other. With this rela-
tion, trusting b but not a is not irrational, so the range of admissible attitudes
is wider. In particular, if the information a provides is incompatible with what
b provides, the relation does not rule out making a choice of trusting just one
of the two.1 Compared to 1 and 2, this relation offers more freedom, but less
guidance.

The following example, which is developed further in later sections, describes a
reasonably realistic scenario in which assessment of the relative trustworthiness
of source units is called for.

Example 2 (Traffic accident). A traffic accident has occurred. We have been
assigned the task of finding witnesses, assessing their relative trustworthiness,
gathering their statements on what came to pass, weighing the evidence accord-
ing to trustworthiness and finally presenting an account of the accident that
meets a reasonable standard (threshold) of reliability.

At the outset, we know that there are three witnesses, a, b, and c, but nothing
about their respective trustworthiness. We are however provided with a drawing,
illustrating the accident 	 and the positions of the witnesses.

	

a

c
b

Assume that the criterion according to which sources are deemed trustworthy
or not is their viewpoint relative to the incident, and nothing else. Making no
prior assumptions, we start out with the weakest possible trust relation (relation
0 below). By applying information provided by the drawing, we are able to
considerably strengthen the trust relation. We will consider a sequence of three
steps.
1 When the case arises that a and b contradict each other, a choice will implicitly

favour a revision of the trust relation to be like 1 or 2. If the subject opts to trust a
over b, 1 is favored; if neither, this favors 2.

Trustworthiness by Default 101

0. abc

ab
��

a

∅
���
b

��
ac

���
c

���

���

bc

��

��

1. abc

ab
��

c
��

a
���

∅
���

b
���

���

ac bc

��

��

2. abc

ab
��

ac

c
���

a
���

∅
���

b
���

���

bc

��

��
��
��

3. abc

ab

ac

bc

c

a
���

∅
���

b
���

���

1. Seeing that c was closer to where the accident took place than the others,
we take c to be more trustworthy than both: a� c and b� c.

2. Because a and b are farther apart than a and c, their viewpoints are likely to
be more divergent. Whatever can be observed from widely different perspectives
is likely to hold true. Therefore, we will assume ac� ab.

3. Because b and c are close together, we add bc� ac as well.
We choose to make no further additions to the relation. In particular, we

refrain from making a judgment whether a is more trustworthy than b, or vice
versa, or just as trustworthy as b: we consider a and b to be independent. This
means it will be consistent with the trust relation to make a choice between
which of a and b to trust. If they should happen to contradict each other, our
lack of commitment as to which is more trustworthy then presents us with the
option to trust just one of the two.

In steps 2 and 3, the unit c is more trustworthy than the unit b, but this
relationship is reversed when the units are enlarged with source a, as ac � ab
holds. Indeed, the following substitution principles are not valid; given z[y/x] =
(z \ x) ∪ y,

If x� y and x ⊂ z, then z � z[y/x] ,
If x ∼ y and x ⊂ z, then z ∼ z[y/x] .

2.3 A Lattice of Trust Levels

We know from Lemma 1 that (Ṡ, �̇) is a poset. Given the poset it is straightfor-
ward to identify the permissible trust attitudes: a trust attitude is permissible if
it is an up-set in (Ṡ, �̇). Technically, we will represent an attitude by its set of
minima, or equivalently, by an antichain in the partial order (Ṡ, �̇). We define
the set T of permissible trust attitudes as follows,

T = {∪Γ | Γ is an antichain in (Ṡ, �̇)} .

Let the symbol
 denote the attitude that no source unit is trusted, ∪∅.
Having a weak trust attitude means trusting only what many sources agree

on, or perhaps none; a strong attitude means trusting many sources, or perhaps

102 J.W. Klüwer and A. Waaler

all. Let Γ and Δ be antichains in (Ṡ, �̇). Then we define the natural relation
of strength between permissible trust attitudes ≤,

∪Γ ≤ ∪Δ iff ↑Δ ⊆ ↑Γ.

By definition,
 is ≤-maximal in T. This is natural, as the corresponding atti-
tude of trusting no source unit will always have a maximal degree of reliability.
Ordered by ≤, the members of T form a lattice in which lesser nodes represent
stronger trust attitudes. It is natural to talk about the permissible trust attitudes
as corresponding to a hierarchy of degrees of trust. We shall hence occasionally
refer to T as the set of trust levels. The following figure displays the lattices of
trust levels corresponding to the posets of example 2.

Example 3 (Lattices for example 2).

0.

abc

ab
���

�

ab, ac

a
��

�

a, bc

��
�

a, b

a, b, c

���

∅

a, c
���

ab, ac, bc

���

���

ac, b
���

b, c
���

���

ab, c

���

ab, bc

���
�

b
����

����

ac
���

�

ac, bc

���
�

���

c
��

�

��
�

bc
���

�

���
�

���

1.

abc

ab
���

�

ab, ac

ab, ac, bc

���

c

a
���

�

a, b

��
�

∅

b
���

�

��
�

ab, bc

���
� ac
���

�

ac, bc

���
�

���

bc
���

�

���
�

2.

abc

ab
���

ac

ac, bc

��
�

c

a
���

�

a, b

��
�

∅

b
���

�

��
�

ab, bc
�����

��

bc

���

3.

abc

ab

ac

bc

c

a
���

�

a, b

��
�

∅

b
���

�

��
�

In the lattice (T,≤) A < B intuitively means that B is a level of trustworthi-
ness that is genuinely greater than A. The lattice of trust levels makes explicit
what the permissible trust attitudes are and how they are related with regard to
strength. This can form the basis for choosing, in a given scenario, a threshold
of trust: a level that is deemed sufficiently trustworthy.

Let & denote meet and ' denote join. Then A'B is the weakest trust level
that is at least as strong as both A and B; if A and B are not comparable by ≤,
then it is stronger. A&B is the strongest trust level that is at least as weak as
both A and B. A threshold of trust can be conveniently specified by reference
to the source units trusted. Observe that each member of Ṡ is a member of T.
Therefore, any expression using members of Ṡ (i.e., equivalence classes of source
units), & and ' denotes a unique level of trust.

The function of a threshold may also be described in terms of risk. If A < B,
then to choose A as the threshold of trust is to take a greater risk with regard
to trusting sources than if B is chosen. Fixing a threshold of trustworthiness
amounts to fixing a “limit” of risk, to draw a line between what is trusted,

Trustworthiness by Default 103

and not trusted, in the non-relative sense of the word. For example, with a
threshold at A'B, if A and B are comparable, risk is limited to what follows
from commitment to the more reliable of the two; if incomparable, then to the
greatest degree of risk that represents comparably less risk than both A and
B. To say that A&B lies above the risk limit means that A and B are both
considered reliable (i.e., that all source units in both A and B provide only true
information).

Example 4 (Threshold for example 3). Say that we adopt the attitude to “trust
all that ab and ac deliver, as long as it is confirmed by bc” as a threshold. This
attitude is expressible as ([ab]&[ac])'[bc]. Given relations 0, 1, and 2, the atti-
tude amounts to trusting only what a, b, and c agree on, because (ab&ac)' bc =
(ab, ac)' bc = abc. With the stronger relation 3, it denotes the level ab.

2.4 A Tree of Fallbacks for Broken Trust

The core of a default conception of trust in information sources is the default
rule (3) to accept what you are told, as long as it does not contradict what you
have already accepted. We presently interpret this rule with respect to relative
trustworthiness. Let us consider a trusting subject that has only permissible
trust attitudes. In the non-relative sense of trust,
 is always trusted, and a
level X is trusted, on condition that every Y ≥ X is also trusted, by default.

Now, if trusting the source units at level X is incompatible with trusting the
units at a superior level Y , trust at X is blocked; X is not trustable. This will
obtain whenever information provided by the source units at X is inconsistent
either with antecedent knowledge, or with information accepted at a superior
level. The significance of of trusting at X should in such a case be identified
with trusting some superior, trustable level; call this the fallback of X . The
fallback, as the value of a blocked default, is the key notion that allows us to
view relative trust as a default attitude.

Let X be an element of T different from
, and let Γ be the ≤-cover of X .
Given that Γ is singleton, we straightforwardly identify

⋃
Γ as the appropriate

fallback of X . Where not, note that by construction of the lattice, X is a level
composed of a set of simpler levels, the members of Γ . That trust is broken at
X means at least one of these levels is not trustable. In this case, the fallback
of X should be identified as a level with greater trustworthiness than every Y
immediately superior to X . Let the fallback f(X) of X be defined as

f(X) = lub(Γ) in (T,≤) .

The fallback function is undefined for
; otherwise every node has a unique fall-
back.
, representing the trust level of antecedent knowledge, is always the fall-
back of [S]. Note that every path from the lattice maximum
 to a trust level X
must go through f(X), and that f(X) is the ≤-minimal node with this property.

The fallback tree (T,≺) is defined as the weakest relation such that for all
X ∈ T, f(X) ≺ X . It is easy to show that the fallback tree is indeed a tree with
root
. The following figure illustrates fallback trees to match the lattices of
example 3.

104 J.W. Klüwer and A. Waaler

Example 5 (Fallback trees for example 3).

1.

abc

ab

ab, ac

ab, ac, bc

c

a a, b

∅

b

ab, bc

ac

ac, bc

bc
���

�

��
��

��
��			

���
� ���

�

��
��

��
��

�
���

�

2.

abc

ab

ac

ac, bc

c

a a, b

∅

b

ab, bc

bc
���

��
��

��
�

���
� ���

�

��
��

��
� ���

3.

abc

ab

ac

bc

c

a a, b

∅

b
���

� ���
�

3 Trust in Terms of Defaults

The aim of this section is to implement the default approach to the information
trust model based on a function i which assigns propositional content to each
source in S. The basic assignment of information to sources is a mapping from
members of S to expressions in a formal language. In section 3.1 we use the
simple language of propositional logic to this end. Besides the basic assignment
we must also specify information processing operations corresponding to the
constructions of source units and trust attitudes.

The default interpretation of fallback trees is then encoded into the logic Æ�.
Encoding fallback trees in Æ� will allow us to give precise answers to questions
such as, “which trustworthiness levels support a belief in a proposition φ?”, and
“is φ entailed by the beliefs of a given degree of trustworthiness?”. Æ� is a
natural choice as representation language for default inferences; in particular it
allows a simple representation of ordered supernormal defaults theories. There
is a natural encoding of prescriptively ordered default logic into Æ� [3], and
the encoding of supernormal defaults exploits this encoding. Contrary to the
language of Reiter-style default logic Æ� has a natural extension to multi-agent
languages

However, there is no intrinsic reason for restricting the co-domain of the as-
signment function to a language of propositional logic; one can easily conceive of
using more complex languages for this purpose. Section 3.4 explores possibilities
for using multi-agent languages. The encoding of the fallback tree is in this case
a straightforward application of the technique to multi-modal Æ�.

3.1 Agreement and Consolidation

Basically the information interpretation of the trust model assigns formal expres-
sions to each source in S. The assignment function i must be extended to source

Trustworthiness by Default 105

units (sets of sources) and trust attitudes (sets of source units). To implement
this we identify the corresponding operations of agreement and consolidation of
information content. Identifying these operations is one of the key factors in the
default interpretation of the trust theory.

In propositional logic these operations will be implemented simply by means
of disjunctions and conjunctions. Let us denote the informational content of a
source a in S by ia, which is a formula of propositional logic. Intuitively, the
information ix provided by a source unit is defined to be the strongest proposition
that every member of the unit supports – the strongest that the members all
agree on. If x = {a1, . . . , an}, ai ∈ S, then ix = ia1 ∨ · · · ∨ ian . The value of i∅,
on the common understanding of 0-ary disjunctions, will be assumed to be the
propositional falsity constant ⊥. The empty set hence gives a contribution which
is always unacceptable.

We define the consolidated informational contribution of x1, . . . , xn ⊆ S as
iX = ix1 ∧ · · ·∧ixn , where X = {x1, . . . , xn}. That is, we define the informational
contribution of a set of source units as the strongest consequence that would
follow from taking each unit as a source of evidence. Observe in particular that
i[∅] will always be ⊥ since ⊥ is always one of its conjuncts. By convention i�
is �.

3.2 Intermezzo: The Logic Æ�

Æ� is an “Only knowing” logic, generalizing the pioneering system of Levesque [7]
with language constructs for the representation of various degrees of confidence
for a doxastic subject.

The object language of Æ� extends the language of propositional logic by
the addition of modal operators: � (necessity) and modalities Bk (belief) and
Ck (co-belief) for each k in a finite index set I. The index set represents the
distinct degrees of confidence and comes along with a partial order which gives
the indices relative strength. bkϕ is defined as ¬Bk¬ϕ and denotes that ϕ is
compatible with belief at degree of confidence k.

A formula ϕ is completely modalized if every occurrence of a propositional
letter occurs within the scope of a modal operator and purely Boolean if it
contains no occurrences of modal operators. The “all I know at k” expression
Okϕ abbreviates Bkϕ ∧ Ck¬ϕ, meaning that precisely ϕ is believed with degree
of confidence k. A formula of the form

∧
k∈IOkϕk is called an OI -block. If each

ϕk is purely Boolean, the OI -block is said to be prime.
Æ� is a special instance of the system Æρ introduced in [8] and further an-

alyzed and motivated in [12]; the references contain in particular an axiomati-
zation, a formal semantics and proofs of soundness, completeness and the finite
model property. A particularly strong property of Æ� is the Modal Reduction
Theorem: for each OI -block ϕI and for some m ≥ 0, there are prime OI -blocks
ψI

1 , . . . , ψ
I
m such that � ϕI ≡ (ψI

1 ∨ · · · ∨ ψI
m).2

2 In the sequel � denotes the provability relation of Æ� (which extends the provability
relation of classical logic).

106 J.W. Klüwer and A. Waaler

A prime OI -block determines the belief state of the agent in a unique and
transparent way; if such a formula is satisfiable, it has essentially only one model.
A non-prime OI -block only implicitly defines the belief state and has in general
a number of different models. The Modal Reduction Theorem relates an implicit
belief representation to an explicit representation by a provable equivalence. It
is is Σp

2 -hard to determine whether m > 0 in the statement of the theorem.
If there is only one degree of confidence, Æ� is equivalent to Levesque’s system

of only knowing, for which there is a direct correspondence between a stable
expansion in autoepistemic logic and a prime formula Oϕ. A prime OI -block
is a natural generalization of the notion of stable expansion to a hierarchical
collection of expansions.

3.3 Encoding the Fallback Tree as Defaults in Æ�

We now describe how to use a fallback tree to extract information, both between
contributions of the sources, which may be more or less mutually compatible,
and between these contributions and a set of antecedently given information.

To facilitate the discussion let us say that a fallback tree is information labelled
if each node X in the tree is labelled with iX . The labels express the information
contribution attached to the trust level X .

We will assume that a knowledge base, denoted κ, is given with unconditional
trustworthiness. Informally, say that (precisely) κ, a formula of propositional
logic, is believed with full conviction. The notion of trustworthiness is directly
relevant to the notions of confidence and belief, as is clear by the simple obser-
vation that information stemming from highly trustworthy sets of sources will
be considered reliable with a greater degree of confidence than that which is
provided by less trustworthy sources. Following the default interpretation for-
mulated in principle (3), we can define a simple procedure which reveals what
information may reliably be said to be supported at each level of trustworthiness.
Define the following formula by induction over the fallback tree.

β� = κ

βX =

{
βf(X) ∧ iX if βf(X) ∧ iX is PL-consistent,
βf(X) otherwise.

Then βX denotes what a rational agent should believe at a degree of confidence
corresponding to the trust attitude X .

The modal logic Æ� is suitable for the representation of fallback trees and
the associated default principle. In the encoding we use the set of trust levels T
as the index set which individuates modalities in the language of Æ�. Let (T,≺)
be the fallback tree and ≺∗ be the reflexive, transitive closure of ≺. For X ∈ T
we define

δX = bX iX ⊃ iX .

Note that δX is equivalent to ¬ iX ⊃ BX¬ iX , i.e., should ϕ be false, the subject
will believe that it is. We will refer formulae of this form as default conditionals

Trustworthiness by Default 107

when they occur within a modal O-context, since the conditional then has the
force of formalizing the property corresponding to the statement “the proposition
iX holds by default”.

The default interpretation of the default structure is formalized by the follow-
ing encoding:

�T,≺, κ�� = O�κ

�T,≺, κ�X = OX(κ ∧
∧

Y ≺∗X
δY)

�T,≺, κ� =
∧

X∈T
�T,≺, κ�X

The encoding is structurally similar to the encoding of ordered default theories
into Æ� in [3].

Theorem 1. � �T,≺, κ� ≡
∧

X∈TOXβX .

Proof. The proof uses simple properties from the model theory of Æ�, cf. [12]. In
an Æ� model M all points agree on the truth value of every completely modal-
ized formula. We will hence use the notation M |= ϕ whenever a completely
modalized ϕ is satisfied at some point in M . We use the following two facts in
the proof. Let M satisfy OXϕ for an index X .

1. If M satisfies OXψ, then ϕ ≡ ψ is true at every point in M .
2. If ϕ and ψ are purely Boolean, M satisfies bXψ iff ϕ
� ¬ψ.

We show, by induction on X , the more general result that for any Z ∈ T

�
∧

X≺∗Z
�T,≺, κ�X ≡

∧
X≺∗Z

OXβX .

Note that the base case is trivial since X in this case is
. For the induction
step, it is sufficient to show that M |= �T,≺, κ�X ≡ OXβX for any Æ�-model
satisfying both �T,≺, κ�f(X) and Of(X)βf(X). By fact 1, every such model M
satisfies

M |= (κ ∧
∧

Y ≺∗f(X)
δY) ≡ βf(X)

and hence trivially

M |= (κ ∧
∧

Y ≺∗X
δY) ≡ (βf(X) ∧ δX) .

Thus M |= �T,≺, κ�X ≡ OX(βf(X) ∧ δX). It only remains to show

M |= OX(βf(X) ∧ (bX iX ⊃ iX)) ≡ OXβX .

But since M |= Of(X)βf(X), it follows directly from the definition of βX and fact
2 that M |= bX iX iff βf(X)
� ¬ iX , and we are done. &'

The theorem shows that the encoding of a node X and its information content
can be reduced to the OT-block

∧
X∈TOXβX within the logic itself, where at

each node X in the tree the formula βX is the proposition that the rational
agent will entertain at this level of trust.

108 J.W. Klüwer and A. Waaler

Example 6 (Example 5, with information). The witnesses a, b, and c are inter-
viewed for their accounts of the accident scenario. We assign content to propo-
sitional variables as follows: p = The green car was veering; q = There was a
cat in the road; r = The red car was veering; s = The red car was speeding.
The following figure records the witnesses’ statements (left), and the resulting
post-evaluation propositions at each trust level decorate the fallback tree (3.).3

a : q ∧ (r ∨ s)
b : p ∧ ¬q
c : p ∧ r

 : p ∨ r3.

abc : (p ∨ r) ∧ (q ∧ (r ∨ s) ∨ p ∧ (¬q ∨ r))

ab : (p ∨ r) ∧ (q ∧ (r ∨ s) ∨ p ∧ ¬q)

ac : (p ∨ r) ∧ (q ∧ s ∨ (q ∨ p) ∧ r)

bc : p ∧ r

c : p ∧ r

p ∧ r ∧ q : a

a, b : p ∧ r [⊥]

∅ : p ∧ r [⊥]

b : p ∧ r ∧ ¬q
���

� ���
�

For nodes a, b and ∅, the value ⊥ is displayed in brackets to emphasize that the
information contribution of these nodes is inconsistent with information provided
at more trustworthy levels. These nodes will then take values from the consistent
fallback node c, i.e., p∧ r. Note that even though a and b may not both be fully
trusted, choosing either of them is consistent. Also note that the proposition
s, which figures as a disjunct in a’s account, is eliminated from the node bc
onwards.

3.4 From Information Sources to Doxastic Agents

There is no intrinsic reason to use the language of propositional logic to represent
the information delivered by sources. This section addresses the use of multi-
modal languages for this purpose. The expressive power of such languages is
needed in cases where the sources deliver information about agents; typically,
about what the agents believe. To generalize the approach of section 3.3 we need
to extend the language of Æ� such that it extends the information representation
language.

The logic Æ� has been extended to a multi-modal language. An interest-
ing proof-theoretical property of this extension of Æ� is that it has a sequent
calculus formulation which admits constructive cut-elimination and hence cut-
free proofs; this is proved in [11] for a multi-agent language in which the beliefs of

3 Formulae computed using The Logics Workbench, http://www.lwb.unibe.ch/.

Trustworthiness by Default 109

each subject are represented relative to different degrees of confidence. A Kripke
semantics for the logic has been presented in [13].4

Let us assume that the modalities in the multi-agent language is defined by
a collection I0, . . . , Im of index sets, one for each agent. The indices in each
index set are partially ordered, while two indices in different index sets are
unrelated.

The notion of an OI -block transfers to the multi-modal language: An OIj -
block is a formula

∧
k∈Ij

Okϕk. If each formula ϕk is Ij-objective, i.e. all occur-
rences of a Ij -modality occurs within the scope of a modality which belongs to
another agent, the OIj -block is prime. An OI -block can now be defined as a
conjunction of OIj -blocks, one for each agent. Given these concepts the Modal
Reduction Theorem transfers to the multi-modal logic.

Let us first assume that the sources deliver information about the beliefs
of agents α1, . . . , αm without being agents themselves, i.e. they do not deliver
information about other sources, or about themselves, or about the observer
who collects the information. Assume also that the beliefs of these agents are
represented in the multi-modal system K45m, i.e., a sub-language of multi-modal
Æ�, so that the i function now delivers K45m formulae.

The index sets for the multi-modal Æ�-representation are T, {α1}, . . . , {αm}.
We will use the same simple functions for agreement and consolidation as intro-
duced for propositional logic in section 3.1, and since the two facts of Æ�-models
which we use in the proof of Theorem 1 can be lifted to models of multi-modal
Æ�, the multi-modal generalization of Theorem 1 is straightforward. The two
following examples illustrate some simple properties that we can express within
this framework.

Example 7 (Modal information). A simple case in which sources provide formu-
lae in a modal language. Let the trustworthiness relation be given as in example
1, relation 3. Let the knowledge base be empty, and assign information to sources
as below (left). The fallback tree shows the outcome of evaluation (right). Here,
trusting what a and b agree on (source unit ab) implies accepting that agent 1
has a full belief regarding p. Trusting both sources (node a, b) implies accepting
that 1 is inconsistent.

a : B1p

b : B1¬p

ab : B1p ∨ B1¬p

B1p : a ���
�

b : B1¬p
��

�

a, b : B1(p ∧ ¬p)

∅ : B1(p ∧ ¬p) [⊥]

4 The semantics has been given for a multi-agent language without confidence levels.
An extension to the language addressed in this section is straightforward.

110 J.W. Klüwer and A. Waaler

Example 8 (Modal information II). Trusting both a and b implies accepting that
agent 2 is ignorant about the truth value of p if agent 1 believes p.

a : B1p ⊃ b2p

b : B1p ⊃ b2¬p

ab : B1p ⊃ ¬B2⊥

B1p ⊃ b2p : a ���
�

b : B1p ⊃ b2¬p
��

�

a, b : B1p ⊃ b2p ∧ b2¬p

∅ : B1p ⊃ b2p ∧ b2¬p [⊥]

If the information sources are themselves agents, the same representation
scheme can clearly be used as long as we do not take the information supplied
by an agent as an expression of what that agent believes.

It is, however, in many cases natural to take an a report of agent a that ϕ pre-
cisely as evidence for Baϕ, in which case we have to modify the structure of the
representation. Basically, we now want to include the formula Baϕ in the repre-
sentation (one solution is to add this to the knowledge base κ), and still infer a
belief that ϕ by default at the trust level at hand (as we do in the two examples
above). However, the situation is now more subtle since forms of Moore’s paradox
(i.e., “ϕ, but I do not believe it!”) can arise while the fallback tree is processed. It
is not clear what the appropriate analyses of these situations amount to. Interest-
ingly, the agreement function will in these cases give rise to a kind of group belief,
while consolidation gives rise to a kind of distributed belief (see e.g. [4]).

We plan to address this subtle and interesting application domain in a follow-up
paper, along with an analyses of how one can make use of the full expressive power
of multi-modal Æ� to specify very complex formulae delivered by each agent.

4 Related Work

The present account of trustworthiness generalizes and clarifies the approach in-
troduced by John Cantwell [1, 2]. Our approach improves on Cantwell’s by mak-
ing a clear separation between the notion of trustworthiness on the one hand, and
information and belief on the other, which allows for the notion of trustworthi-
ness level to be separated from a given model. Furthermore, the present theory
gives informative results for various weak kinds of trustworthiness relations that
yield vacuous output on Cantwell’s approach. (Cantwell incorporates his theory
of trustworthiness into a theory of belief revision. This is an application that we
have not gone into.)

In this paper, no attempt has been made to give an account of the basic, non-
relative notion of trust; for this, we refer to Jones [5]. We have however shown
that a generalization of the present theory is possible, in [6], where the rela-
tive trustworthiness structures are reinterpreted to fit Jones’ general analysis of
trust. This complements the present paper by demonstrating that the relational
framework is applicable to any type of trust, within the scope of Jones’ theory.

Trustworthiness by Default 111

We believe there are several areas in which the theory we have presented can
be applied as a framework for trust in information sources. Consider two ex-
amples: A security protocol may employ the concept of trust levels, to assess
input from multiple sources in authentication procedures, as well as for manag-
ing trust thresholds in response to threats. A query tool for the Semantic Web
could use the method of fallbacks to consolidate information from a variety of
complementary databases, and to track relative reliability of query results. Each
such application of a relative-trust perspective will have different requirements
with regard to representation languages. It is also likely that domain-specific,
efficient algorithms for evaluating outcomes at trust levels can be found. One
major issue we have not discussed is the proper construction of a trust relation;
however, it is clear that the relevant parameters will vary widely with the appli-
cation at hand. (A minimal account of relation revision is given in [6].) We hope
this theory provides a suitable starting point for domain-specific investigations
of relative trustworthiness.

Bibliography

[1] John Cantwell. Resolving conflicting information. Journal of Logic, Language,
and Information, 7:191–220, 1998.

[2] John Cantwell. Non-Linear Belief Revision. Doctoral dissertation, Uppsala Uni-
versity, Uppsala, 2000.

[3] Iselin Engan, Tore Langholm, Espen H. Lian, and Arild Waaler. Default reasoning
with preference within only knowing logic. In Proceedings of LPNMR’05, volume
3662 of Lecture Notes in Artificial Intelligence, 2005.

[4] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, Mass., 1995.

[5] Andrew J. I. Jones. On the concept of trust. Decision Support Systems, 33:225–
232, 2002.

[6] Johan W. Klüwer and Arild Waaler. Relative trustworthiness. In Proceedings of
FAST 2005, volume 3866 of Lecture Notes in Computer Science, pages 158–170,
2006.

[7] Hector J. Levesque. All I know: A study in autoepistemic logic. Artificial Intelli-
gence, 42:263–309, 1990.

[8] E. H. Lian, T. Langholm, and A Waaler. Only knowing with confidence levels:
Reductions and complexity. In J. J. Alferes and J. Leite, editors, Proceedings of
JELIA’04, volume 3225 of Lecture Notes in Artificial Intelligence, pages 500–512,
2004.

[9] K. Segerberg. Some modal reduction theorems in autoepistemic logic. Uppsala
Prints and Preprints in Philosophy. Uppsala University, 1995.

[10] Arild Waaler. Logical Studies in Complementary Weak S5. Doctoral thesis, Uni-
versity of Oslo, 1994.

[11] Arild Waaler. Consistency proofs for systems of multi-agent only knowing. Ad-
vances in Modal Logic, 5:347–366, 2005.

[12] Arild Waaler, Johan W. Klüwer, Tore Langholm, and Espen H. Lian. Only know-
ing with degrees of confidence. Journal of Applied Logic, 2006. To appear.

[13] Arild Waaler and Bjørnar Solhaug. Semantics for multi-agent only knowing (ex-
tended abstract). In R. van der Meyden, editor, Proceedings of TARK X, ACM
Digital Library, pages 109–125, 2005.

Decision Procedure for a Fragment of Mutual Belief
Logic with Quantified Agent Variables

Regimantas Pliuškevičius and Aida Pliuškevičienė

Institute of Mathematics and Informatics,
Akademijos 4, Vilnius 08663, Lithuania

{regis, aida}@ktl.mii.lt

Abstract. A deduction-based decision procedure is presented for a fragment of
mutual belief logic with quantified agent variables (MBQL). The language of
MBQL contains belief, everybody believes and mutual belief modalities, vari-
ables and constants for agents. The language of MBQL is convenient to describe
the properties of rational agents when the number of agents is not known in ad-
vance. On the other hand, even if the exact number of agents is known, a language
with quantified agent variables allows us to use more compact expressions. For
the MBQL a sequent calculus MBQ∗ with invertible (in some sense) rules is
proposed. The presented decision procedure is realized by means of the calculus
MBQ∗ that allows us to simplify a procedure of loop-check sharply. For a frag-
ment of MBQL (without positive occurrences of mutual belief modality), the
loop-check-free sequent calculus is proposed. To this end, special rules for belief
and everybody believes modalities (introducing marked modalities and indices)
and special sequents serving as a termination criterion for non-derivability are in-
troduced. For sequents containing positive occurrences of mutual belief modality
sequents of special shape are used to specialize a loop-check and to find non-
logical (loop-type) axioms.

1 Introduction

Mutual belief (common knowledge) logics are multi-modal logics extended with mu-
tual belief (common knowledge) and everybody believes (everybody knows) modali-
ties. Sequent-like calculi (with an analytic cut rule instead of loop-type axioms) and
Hilbert-style calculi for propositional common knowledge logics (based on a finite set
of agents) are constructed in several works (see, e.g., [1], [4], [14]). In [7], the Hilbert-
style calculus for the common knowledge logic with an infinite set of agents is pre-
sented. This calculus involves some restrictions on cardinality of the set of agents and
contains rather a complex axiom for an everybody knows operator. A propositional
Hilbert-type calculus for the mutual belief logic (based on a finite set of agents) is con-
structed in several works (see, e.g., [2]).

Propositional agent-based logics are often insufficient for more complex real world
situations. First-order extensions of these logics are necessary whenever the cardinal-
ity of an application domain and/or the number of agents are not known in advance.
On the other hand, even if the exact number of agents is known, we get more com-
pact expressions using quantified agent variables. In [19], it is described a rich logic

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 112–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decision Procedure for a Fragment of Mutual Belief Logic 113

LORA (Logic of Rational Agents), based on a three-sorted first-order logic (contain-
ing variables for agents, actions, and other individuals), a multi-agent BDI logic, and
a dynamic logic. In [13], a logic QLB (quantified logic for belief) with the Barcan ax-
iom containing variables for agents and other individuals is presented. The same idea
as in [13] and [19], namely, use of term as an agent, is utilized in term-modal logics
[5]. The variables for agents are used to define the notions of alternating belief and
mutual belief [20]. In [16], a decision procedure for a fragment of temporal logic of
belief and actions with restricted occurrences of quantified agent and action variables is
presented.

In this paper, a fragment of mutual belief logic with quantified agent variables
(MBQL) is considered. Unlike [5], [13], and [19], the language of MBQL does not
contain function symbols. The aim of this paper is to present a deduction-based deci-
sion procedure for MBQL. For the MBQL a sequent calculus MBQ with invertible
(in some sense) rules is proposed. The invertibility property is very significant because
it allows us to preserve a derivability backward applying the rules. The calculusMBQ∗

contains so called separation and splitting rules. The separation rules incorporate “bad”
quantifier rules for agent variables, the rules for everybody believes modality, as well as
rules for belief modalities. Some deduction tools similar to the separation rules are used
informally in [15] for the propositional (single agent) BDI logic. The splitting rule is
used to separate belief, everybody believes, and mutual belief modalities in a succedent
of a special shape sequent. The splitting rule and some of separation rules are not in-
vertible in the usual sense but they are existentially invertible. In contrast to the usual
deterministic invertibility, the existential invertibility is non-deterministic. Despite this
non-determinism, we get a possibility to preserve derivability when constructing deriva-
tions. The decision procedure for a subset of MBQL (without positive occurrences of
mutual belief modality) is an important point of the decision procedure presented. For
this fragment ofMBQL, a loop-check-free sequent calculus is proposed. This calculus
corresponds to the contraction-free sequent calculus. However, the loop-check-free type
sequent calculus differs from a contraction-free sequent calculus. In the contraction-free
sequent calculus (see [3], [9]) the duplication of the main formula in the premise of any
rule is eliminated at all. In the loop-check-free sequent calculus there are rules with the
duplication of the main formula in the premise of a rule, but backward applications of
the rules that can induce loops are restricted. It allows us to eliminate loop-check and
does not require to translate sequents to a certain normal form as in [9]. Special rules
for belief and everybody believes modalities and special sequents serving as a termina-
tion criterion for non-derivability are introduced. These special rules introduce marked
modalities and indices allowing us to terminate backward applications of these rules.
These tools enable us to use sequents without histories employed in several works (e.g.,
[8]). Constructing derivations of the sequents containing positive occurrences of mu-
tual belief modality, sequents of special shape are used to specialize a loop-check and
to find non-logical (loop-type) axioms. Special weakening rules are backward applied
implicitly (together with other rules). Backward application of special weakening rules
works as special contraction rules. These rules play the essential role in terminating the
procedure proposed.

114 R. Pliuškevičius and A. Pliuškevičienė

A procedural approach of decidable logical calculi is used here and we assume
that the notions of a decidable calculus and a deduction-based decision procedure are
identical.

The paper is organized as follows. In Section 2, the language and semantics of the
MBQL are presented. In Section 3, auxiliary tools for the presented decision proce-
dure are described. In Section 4, a decision algorithm based on the sequent calculus
MBQ∗ is presented, and examples demonstrating the algorithm presented are given. In
Section 5, a foundation of the decision algorithm is presented.

2 Language and Semantics of MBQL

The MBQL consists of the multi-modal logic KD45n (doxastic logic or weak-S5n),
extended with restricted occurrences of quantifiers for agent variables, and a logic con-
taining mutual belief and everybody believes modalities [2].

The language ofMBQL contains: (1) a set of propositional symbols P , P1, . . ., Q,
Q1, . . .; (2) a set of agent constants i, i1, . . ., a1, . . . , b1, . . . (i, ij , ak, bl ∈ {1, 2, . . .});
(3) a set of agent variables x, x1, . . . , y, y1, . . .; (4) a set of belief modality of the shape
B(t), where t is an agent term, i.e., an agent constant or an agent variable; everybody
believes modality EB; mutual belief modality MB; (5) logical operators:⊃, ∧, ∨, ¬,
∀, ∃.

The formula ofMBQL is defined inductively as follows: every propositional symbol
is a formula; if A, B are formulas, then A ⊃ B, A ∧ B, A ∨ B, ¬A are formulas; if i
is an agent constant, A is a formula, then B(i)A is a formula; if x is an agent variable,
A is a formula,Q ∈ {∀, ∃}, thenQxB(x)A is a formula; if A is a formula, then EBA
and MBA are formulas. The formula A is a logical one if A contains only logical
operators and propositional symbols.

As it follows from the definition of a formula, we do not consider, for example, ex-
pressions of the shape ∀x∃yB(x)B(y)A, while the expressions of the shape ∀xB(x)∃
yB(y)A are considered.

When the formula under consideration contains occurrences of operators EB and/or
MB, it is assumed that the number of agents is finite. In this case, the formula∀xB(x)A
means informally the same as the formula

∧n
i=1 B(i)A, and the formula ∃xB(x)A – as

the formula
∨n

i=1 B(i)A, where n is the number of agents. Since, in general, the exact
number of agents is not known in advance, it is convenient to use formulas with quan-
tified agent variables. On the other hand, even if the exact number of agents is known,
a language with quantified agent variables allows us to use more compact expressions.
Such expressions are used in [13], [19], [20].

The formula B(i)A means “agent i believes A”. Formal semantics of the formula
B(i)A satisfies the semantics of the logicKD45n (see, e.g., [14]). The formula EBA
means “every agent believes A”, i.e., EBA ≡

∧n
i=1 B(i)A, where n is the number

of agents. The formula MBA means “A is mutual belief of all agents”. Therefore we
use only the so-called public mutual belief modality and assume that there is perfect
communication between agents. For simplicity we consider only one group of agents.
The formula MBA has the same meaning as the infinite formula

∧
k≥1 EBkA, where

EB1A = EBA, and EBkA = EBk−1 EBA, if k > 1. Infinitary nature of the

Decision Procedure for a Fragment of Mutual Belief Logic 115

modality MB is explained in [19]. The modality MB behaves as that of logicKD4.
In addition, this modality along with the modality EB satisfies the following powerful
properties:

EBA ∧ MB(A ⊃ EBA) ⊃ MBA (induction);
MBA ≡ EBA ∧ EBMBA (fixed point).

All belief modalities can be nested. For example, the formula B(i1)B(i2)P , where
P is a proposition “John is a good programmer”, means “agent i1 believes that agent
i2 believes that John is a good programmer”. The formula ∃xB(x)∀yB(y)P , where
P means the same as above, means “some agent believes that each agent believes that
John is a good programmer”.

To define the formal semantics of the formula QxB(x)A (Q ∈ {∀, ∃}) we must
present an interpretation of agent variables. This interpretation is obtained by means of
an assignment: V →D (agent assignment), where V is a set of agent variables, D is
a domain of agent constants. The model M is a pair < I, a >, where a is an agent
assignment, I is a tuple < D,St, π,R >, where D is a domain of agent constants;
St is a set of states; π is an interpretation function of the propositional variables; R
are the accessibility relations. All these relations satisfy transitive, serial, and Euclidean
properties (e.g., [14]).

The concept “formula A is valid in M =< I, a > at the state s ∈ St” (in symbols
M, s |= A) is defined by induction on the structure of the formula of MBQL. Let us
define only the cases where A is QxB(x)N (Q ∈ {∀, ∃}). Other cases are defined in
the usual way (see, e.g., [2], [4], [14], [19]).
M, s |= ∀xB(x)N if and only if for every agent assignment a′ which differs from

a at most with respect to the agent constant i, < I, a′ > |= B(i)N ;
M, s |= ∃xB(x)N if and only if for some agent assignment a′ which differs from

a at most with respect to the agent constant i, < I, a′ > |= B(i)N .
Along with formulas we consider sequents, i.e., formal expressions A1, . . . ,

Ak → B1, . . . , Bm, where A1, . . . , Ak (B1, . . . , Bm) is a multiset of formulas. A se-
quent is interpreted as the formula

∧k
i=1Ai ⊃

∨m
j=1 Bj . The sequent S is a logical one

if S contains only logical formulas.
Recall the notions of positive and negative occurrences.
A formula (or some symbol) occurs positively in some formulaB if it appears within

the scope of no negation sign or in the scope of an even number of the negation sign,
once all the occurrences of A ⊃ C have been replaced by ¬A∨C; in the opposite case,
the formula (symbol) occurs negatively in B. For a sequent A1, . . . , Ak→B1, . . . , Bm

positive and negative occurrences are determined just like for the formula
∧k

i=1Ai ⊃∨m
j=1Bj .

3 Some Auxiliary Tools of the Decision Algorithm

The decision procedure presented here is based on the sequent calculus with invertible
(in some sense, see Section 5) rules. All derivations are constructed as backward deriva-
tions. In this section, we present the main auxiliary tools of the decision algorithm:
logical calculus, reduction, separation and splitting rules, and special weakening rules.

116 R. Pliuškevičius and A. Pliuškevičienė

Let (j) be any rule of a sequent calculus. The rule (j) is applied to get the conclu-
sion of (j) from the premises of (j). If the rule (j) is backward applied, i.e., to get
premises of (j) from the conclusion of (j) we have a “bottom-up application of (j)”
instead of “application of (j)”. The rule (j) is called invertible in the sequent calcu-
lus I , if the derivability in I of the conclusion of (j) implies the derivability in I of
each premise of (j). If all rules of the calculus I are invertible, then, constructing the
backward derivation of a derivable sequent, in each step bottom-up applying the rule
we get premises which are derivable, i.e., bottom-up application of any invertible rule
preserves a derivability (see, e.g., [10]).

The decidable calculus Log is defined by the axiom: Γ,A → Δ,A (where A is
the main formula of the axiom) and traditional invertible rules for logical operators
⊃,∨,∧,¬ (see, e.g., [10]).

A derivation in the calculus Log is constructed as a tree using bottom-up applica-
tions of the rules. The derivation V is successful, if each leaf of V is an axiom, and
unsuccessful, if there exists a leaf which is not an axiom.

Let us define reduction rules by means of which a sequent is reduced to a set of
sequents in some canonical forms (see below).

Reduction rules consist of the following rules:

– Logical rules: all the rules of the calculus Log and the following rules:

Γ→Δ, B(c)A
Γ→Δ, ∀xB(x)A

(→∀) B(c)A,Γ→Δ
∃xB(x)A,Γ→Δ (∃ →),

where the variable x is an agent variable and the agent constant c (called an eigen-
constant) does not enter the conclusion of the rules.

– Modal rules:

Γ
c→ Δ, EBA; Γ → Δ, EBMBA

Γ → Δ, MBA
(→ MB),

where the letter c over → in a sequent means that a sequent is a critical one and
it will be used to define non-logical axioms (see next section). If the conclusion of
an application of the rule (i), where (i)
= (→ MB), is a critical sequent, then the
premises of this application are also critical ones, i.e., they are of the shape Γ

c→ Δ.
In the rule (→ MB), the left premise is a critical sequent, while the right premise
is not a critical sequent.

EBA, EBMBA,Γ → Δ

MBA,Γ → Δ
(MB →).

Γ → Δ,
∧n

i=1 B(i)A
Γ → Δ, EBA

(→ EB)
∧n

i=1 B(i)A,Γ → Δ

EBA,Γ → Δ
(EB →),

where n is the number of agents.

To define separation rules and the splitting rule, some canonical forms of sequents
are introduced.

The sequent S is a primary sequent, if S is of the following shape:
Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, ∃BΔ, EBΠ2, MBΘ2, where

Decision Procedure for a Fragment of Mutual Belief Logic 117

– for every i (i ∈ {1, 2})Σi is empty or consists of logical formulas;
– ∀BΓ denotes a list ∀xB(x)Γ0, BΓ̃ , where ∀xB(x)Γ0 is empty or consists of for-

mulas of the shape ∀xj B(xj)Mj , j ∈ {1, 2, . . .}; BΓ̃ denotes a list B(1)Γ1, . . . ,
B(n)Γn, where n is the number of agents and B(l)Γl (1 ≤ l ≤ n) is empty or
consists of formulas of the shape B(l)C;

– ∃BΔ denotes a list ∃xB(x)Δ0, BΔ̃, where ∃xB(x)Δ0 is empty or consists of for-
mulas of the shape ∃xj B(xj)Nj , j ∈ {1, 2, . . .}; BΔ̃ denotes a list B(1)Δ1, . . . ,
B(n)Δn, where n is the number of agents and B(r)Δr (1 ≤ r ≤ n) is empty or
consists of formulas of the shape B(r)D;

– for every i (i ∈ {1, 2}) EBΠi (MBΘi) is empty or consists of formulas of the
shape EBA (MBA, correspondingly).

A primary sequent S is a B-reduced primary one, if S is of the following shape
Σ1, ∀BΓ→Σ2, ∃BΔ, where Γ, Δ may contain modalities MB, EB.

By definition of a primary sequent, it follows that each memberM of the primary se-
quent S is either a logical formula, or has the shape γA, where γ ∈ {QxB(x◦), MB,
EB}, Qx ∈ {∅, ∀x,∃x}, x◦ = i (i is an agent constant), if Qx = ∅, and x◦ = x,
if Qx
= ∅ (in this case, Q = ∀, if M is in antecedent of S and Q = ∃, if M is in
succedent of S). By definition of the B-reduced primary sequent, it follows that the B-
reduced primary sequent S contains the same members as the primary sequent except
for members of the shape γA, where γ ∈ {MB, EB}.

For example, let S′ be a sequent P, ∀xB(x)A, B(2)P, B(5)Q→ MBQ, ∃xB(x)
MBQ, B(1)P and S∗ be a sequent P, ∀xB(x)A ∧ B(2)P, B(5)Q → MBQ ∨
∃xB(x)MBQ ∨ B(1)P , where A = EBP ⊃ MBQ. Then S′ is a primary se-
quent but S∗ is not a primary one. However, bottom-up applying logical rules (∧ →)
and (→ ∨), we get S′ from S∗.

In general, it is easy to see that, bottom-up applying logical rules, each sequent can
be reduced to a set of primary sequents. In turn, a primary sequent can be reduced to a
set of B-reduced primary sequents.

For example, in order to reduce the primary sequent S′, considered just now, to a set
of B-reduced primary sequents, let us bottom-up apply the reduction rule (→ MB)
to S′. Then we get two primary sequents: S1 = P, ∀xB(x)A, B(2)P, B(5)Q c→
EBQ,∃xB(x)MBQ, B(1)P and S2=P, ∀xB(x)A, B(2)P, B(5)Q→ EBMBQ,
∃xB(x)MBQ, B(1)P . Let a set {1, 2, 3, 4, 5} be a set of agent constants, then bottom-
up applying the reduction rules (→ EB), (→ ∧) from S1 we get five B-reduced
primary sequents of the shape: S1i = P, ∀xB(x)A, B(2)P, B(5)Q c→ B(i)Q,∃x
B(x)MBQ, B(1)P , where i ∈ {1, 2, 3, 4, 5}. Analogously, from S2 we get five
B-reduced primary sequents of the shape: S2i = P, ∀xB(x)A, B(2)P, B(5)Q →
B(i)MBQ,∃xB(x)MBQ, B(1)P . In general, bottom-up applying modal reduction
rules and logical reduction rules (→ ∧) and (∧ →), each primary sequent can be re-
duced to a set of B-reduced primary sequents. Therefore a B-reduced primary sequent
is a general canonical form of an arbitrary sequent of MBQL.

Using the notation from the definition of a primary sequent, let us introduce the
following specific canonical forms. These forms are helpful because they allow us to
decrease the space of derivation and to find non-logical axioms (see next section).

118 R. Pliuškevičius and A. Pliuškevičienė

The primary sequent S is a B-primary one, if S is of the following shape:

Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, ∃BΔ.

From the shape of the B-primary sequent it is easy to see that, bottom-up applying
non-branching reduction rules (MB →), (EB →), each B-primary sequent can be
reduced to a B-reduced primary sequent.

The primary sequent S is an EB-primary one, if S is of the following shape:

Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, EBA.

The primary sequent S is an MB-primary one, if S is of the following shape:

Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, MBA.

The primary sequent S is a non-splittable primary one, if S is either a B-primary
or an EB-primary or an MB-primary sequent. Otherwise, the primary sequent S is a
splittable primary one.

The primary sequent S is an EB-reduced primary one, if S is of the following
shape Σ1, ∀xB(x)Γ0, EBΠ1, MBΘ1 → Σ2, EBA. Otherwise, the sequent S is not
an EB-reduced primary one. The EB-reduced primary sequent is a special case of the
EB-primary sequent which allows us to bottom-up apply the separation rule (SR1)
(see below).

To specify loop-check in MBQL let us introduce indices and marked modalities.
The marked modalities are used in the separation rules for modalities B(t) and EB.
The marked modalities have the shape Υ∗ (Υ∗ ∈ {B∗(t), EB∗, MB∗}). The marked
modalities are defined as follows: A∗ = A, where A is a logical formula; (A+ B)∗ =
A∗ + B∗, where + ∈ {∧,∨,⊃}; (¬A)∗ = ¬A∗; (ΥA)∗ = Υ∗A∗ and Υ∗∗ = Υ∗,
where Υ ∈ {B(t), EB, MB}. The notation Υ∗Π means (ΥA1)∗, . . . , (ΥAn)∗,
where n ≥ 1 and ΥΠ is a sequence of formulas ΥA1, . . . ,ΥAn.

Along with the marked modalities, we use indexed formulas. These formulas are
of the following shape ∃x◦ Bk(x◦)A, where k ∈ {0, . . . ,m}, ∃x◦ ∈ {∅, ∃x} and
x◦ = i if ∃x◦ = ∅. At the very beginning, a formula has no index and the index k
is treated as zero. Only positive occurrences of formulas of the shape ∃x◦ B(x◦)A in
the succedent of a sequent may contain indices. The index k denotes the number of
bottom-up applications of the separation rule (SR2) to belief modality with the same
main formula. The marked modalities and indices allow us to use sequents without
histories employed in several works (e.g., [8]).

The primary sequent S is a B-saturated one, if S = Σ1, ∀B∗Γ, EB∗Π1,
MB∗Θ1 → Σ2, ∃BlΔ, where ∃BlΔ denotes a list ∃xB(x)Δ0, BΔ̃ (see definition
of a primary sequent) and Log � Σ1 → Σ2. Otherwise, S is not a B-saturated sequent.
B-saturated sequents will be used as a termination criterion for non-derivability.

The primary sequent S is an EB-saturated one, if S = Σ1, ∀B∗Γ, EB∗Π1,
MB∗Θ1 → Σ2, EB∗A, whereLog � Σ1 → Σ2. Otherwise,S is not an EB-saturated
sequent. EB-saturated sequents will be used as a stopping device for bottom-up appli-
cation of the separation rule (SR1) (see below).

Let us introduce a separation rule for the everybody believes modality EB. The
conclusion of this separation rule is an EB-reduced primary sequent S such thatLog �
Σ1→Σ2 and S is not an EB-saturated sequent.

Decision Procedure for a Fragment of Mutual Belief Logic 119

Separation rule (SR1) for everybody believes modality EB:

∀xB∗(x)Γ0, Γ0, Π
∗
1 , Θ1, MB∗Θ1→A◦

Σ1, ∀xB(x)Γ0, EBΠ1, MBΘ1→Σ2, EBA◦ (SR1),

where EBA◦ is either empty or a formula EBA; if EBA◦ is empty, thenA◦ is empty,
otherwise A◦ = A.

Remark 1. (a) Let S be an EB-primary sequent B(1)P → EBP . This sequent is
not an EB-reduced primary one. Therefore we cannot apply the rule (SR1) to S. A
modified rule (SR1), when ∀xB(x)Γ0 is replaced by ∀BΓ , can be applied to S. It is
obvious that S is invalid. Bottom-up applying the modified rule (SR1) to S, we get a
valid sequent B∗(1)P, P → P . Thus, the restriction that the separation rule (SR1)
can be applied only to an EB-reduced primary sequent but not to any EB-primary
sequent, is essential.

(b) Bottom-up applications of (SR1) to an EB-saturated primary sequent can in-
duce loops. Therefore if an EB-saturated sequent S is obtained, then S is reduced to
a set of B-reduced primary sequents and the rules (SR2) and (SR3) (see below) are
bottom-up applied to these sequents.

Let us introduce two separation rules for the belief modality B(t) denoted as (SR2)
and (SR3). The conclusion of these separation rules is a B-reduced primary sequent S
such that Log � Σ1→Σ2 and S is not a B-saturated sequent.

Separation rule (SR2) for belief modality B(t):

Θ∗
1, Γ0, B∗(l)Γl, Γl→Θ2, B(r)Δr , ∃x◦ Bk+1(x◦)M,M

Σ1, ∀BΓ→Σ2, ∃BΔ, ∃x◦ Bk(x◦)M
(SR2),

where ∀BΓ , ∃BΔ are determined in the definition of a primary sequent; Θ1 means
∀xB(x)Γ0 and Θ2 means ∃xB(x)Δ0; ∃x◦ ∈ {∅, ∃x} and it is assumed that ∃
x◦ B∗k(x◦)M = ∃x◦ Bk(x◦)M . The formula ∃x◦ Bk(x◦)M is the main formula of
(SR2).

To define the values of the agent constants l and r let us consider two cases.
(1) ∃x◦ = ∅, then x◦ = i and ∃x◦ Bk(x◦)M is of the shape Bk(i)M . In this case,

l=r= i, i.e., B(l)Γl, and B(r)Δr consist of formulas of the shape B(i)D.
(2) ∃x◦ = ∃x. In this case, the pairs consisting of B∗(l)Γl (1 ≤ l ≤ n) and

B(r)Δr (1 ≤ r ≤ n), where l = r, must be reset, i.e., all possible values of agent
constants must be tested.

The separation rule (SR2) corresponds to transitivity and Euclidean properties of
belief modality.

Separation rule (SR3) for belief modality B(t):

Θ∗
1, Γ0, B∗(l)Γl, Γl→
Σ1, ∀BΓ→Σ2, ∃BΔ

(SR3),

where ∀BΓ , ∃BΔ, and Θ1 are the same as in the rule (SR2). Applying the rule (SR3)
all the possible values of the agent constant l must be tested.

120 R. Pliuškevičius and A. Pliuškevičienė

The rule (SR3) corresponds to the serial property of belief modality.
It should be noted that the rule (SR3) is a special case of the rule (SR2) where ∃BΔ

is empty, or all the formulas from ∃BΔ are not essential.
Splitting rule:

S1 or S2 or S3

Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, ∃BΔ, EBΠ2, MBΘ2
(Sp),

where the conclusion of the rule is a splittable primary sequent S such that the logical
part Σ1 → Σ2 of S is not derivable in the calculus Log; S1 is a B-primary sequent
of the shape Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, ∃BΔ; S2 is an EB-primary sequent
of the shape Σ1, ∀BΓ, EBΠ1, MBΘ1 → Σ2, EBA, where EBA is a formula from
EBΠ2; S3 is an MB-primary sequent of the shape Σ1, ∀BΓ, EBΠ1, MBΘ1 →
Σ2, MBA, where MBA is a formula from MBΘ2.

Remark 2. In the succedent of the premises S2 and S3 of the splitting rule (Sp) we
choose only one modalized formula (however we must test all possible modalized for-
mulas). Whereas in the succedent of the premise S1 all formulas from ∃BΔ must be
left. Indeed, it is easy to see, for example, that a B-primary sequent B(1)(B(1)P1 ∨
B(1)P2) → B(1)P1, B(1)P2 is valid, but the sequentSj = B(1)(B(1)P1∨B(1)P2)
→ B(1)Pj (j ∈ {1, 2}) is invalid.

Special weakening rules:

Γ→Δ,A
Γ→Δ,A,A1

(→W)
A,Γ→Δ

A,A1, Γ→Δ
(W→),

Γ→Δ,Υ∗
1A

Γ→Δ,Υ∗
1A,Υ1A1

(→W ∗)
∀x◦Υ∗A,Γ→Δ

∀x◦Υ∗A, ∀x◦ΥA1, Γ→Δ
(W ∗→),

Γ→Δ, ∃x◦ Bk(x◦)A
Γ→Δ, ∃x◦ Bk(x◦)A, ∃x◦ B+(x◦)A1

(→W k) (+ ∈ {∅, ∗}),

where A and A1 are coincidental or congruent [12], Υ1 ∈ {EB, MB},
Υ ∈ {B(t), EB, MB}, ∀x◦ ∈ {∅, ∀x}, ∃x◦ ∈ {∅, ∃x}.

Remark 3. (a) The separation rules (SRi) (i ∈ {2, 3}) incorporate the quantifier
rules for agent variables, the traditional structural rules of weakening, and the rule of
Shwarts for a single belief modality [17] (see also [15]).

(b) A bottom-up application of the separation rule (SR1) can be replaced by bottom-
up applications of the reduction rules (→ EB), (EB →), separation rules (SR2),
(SR3), and traditional weakening rules. However, the rule (SR1) is convenient because
it allows us to shorten derivations.

4 Description of the Decision Algorithm

The decision algorithm for an arbitrary sequent is realized by means of a calculusMBQ
for a considered fragment of the mutual belief logic. The calculus MBQ is obtained

Decision Procedure for a Fragment of Mutual Belief Logic 121

from the calculus Log adding the separation rules (SRl) (1 ≤ l ≤ 3), reduction rules,
special weakening rules, the splitting rule (Sp), and non-logical axioms (defined be-
low). When constructing derivations in the calculus MBQ, termination criteria are
used for derivability and non-derivability. Along with non-derivability of logical se-
quents in Log, B-saturated sequents (defined in the previous section) serve as special
sequents determining the termination criterion for non-derivability.

Let us describe the termination criterion for derivability. As indicated in Section 2,
the modality MB satisfies the induction axiom, i.e., a deductive principle involving
the periodicity property. This fact necessitates a departure from ordinary Gentzen-like
calculi. The logical axiom Γ,A→ Δ,A of the calculus Log (described in the previous
section) is a traditional termination criterion for derivability. But it is not sufficient for
an arbitrary sequent containing positive occurrences of the modality MB. For such
sequents, non-logical axioms are introduced as another termination criterion for deriv-
ability of sequents. To this end, inspection of sequents other than a logical axiom in
a leaf of derivation is required. This inspection always terminates because nothing es-
sentially new can be generated in constructing derivations (it will be shown later and
is demonstrated in Example 3). Such a situation is a common phenomenon for other
temporal and agent-like logics with induction-type axioms. For the first time this idea
was realized in [6], [18] for a propositional linear temporal logic.

Let us introduce some notions to define non-logical axioms.
First we define parametrically identical formulas and sequents. Namely, formulas A

and A′ are parametrically identical ones (in symbols A ≈ A′) if either A = A′, or
A and A′ are congruent (see, e.g., [12]), or differ only by respective occurrences of
eigen-constants of the rules (→ ∀), (∃ →); moreover, the occurrences of modality Υ
and marked modality Υ∗ (Υ ∈ {B(t), EB, MB}), as well as Bj(t) and Bk(t), are
treated as coincidental.

Sequents S = A1, . . . , Ak → Ak+1, . . . , Ak+m and S′ =A′
1, . . . , A

′
k →A′

k+1, . . . ,
A′

k+m are parametrically identical (in symbols S ≈ S′), if for all j (1 ≤ j ≤ k +m)
formulas Aj and A′

j are parametrically identical ones.
A sequent S = Γ → Δ subsumes a sequent S′ = Π,Γ ′ → Δ′, Θ (in symbols

S . S′) if Γ → Δ ≈ Γ ′ → Δ′ (in a special case, S = S′). We always can test this
relation automatically. The sequent S′ is subsumed by S.

Let V be a derivation in the calculus MBQ and i be a branch in V . A primary
sequent S′ from the branch i is a non-logical axiom if, in the branch i below S′, there
exists an MB-primary sequent S such that S . S′ and the sequent S′ is not a critical
one (a critical sequent was defined in the previous section). Therefore a non-logical
axiom is a primary sequent of the shape Γ → Δ, MBA provided that this sequent is
not a critical one.

The introduction of non-logical axioms means employment of loop-check in a spe-
cific way. From the shape of the rules of MBQ it follows that nothing new can be
obtained when constructing an ordered derivation of a sequent. From this fact we get
that the non-logical axioms are constructed in a finite way.

If there exists a derivation V of the sequent S such that a leaf of each branch i of V
is an axiom (either logical or non-logical), then MBQ � S (termination criterion for
derivability). In this case, the derivation V is successful.

122 R. Pliuškevičius and A. Pliuškevičienė

If in all possible derivations Vk of the sequent S there exists a branch having a se-
quent which is either non-derivable in Log or a B-saturated one, thenMBQ � S (ter-
mination criterion for non-derivability). In this case, the derivation V is unsuccessful.

In the next section, it will be justified, that for any sequent the process of construction
of a derivation proceeds automatically and always terminates.

To justify the termination of a derivation, it is convenient to modify the rule (SR2)
adding the following restriction: if k > 0 then ∃BΔ is empty or consists of indexed
formulas. If the succedent of the conclusion of this rule contains an indexed formula
∃x◦ Bk(x◦)M (k > 0) and a non-indexed formula ∃y◦ B(y◦)A then the main formula
of this rule is the latter. As well as in the rule (SR2), the conclusion of a modified rule
must be the B-reduced primary sequent S such that Log � Σ1→Σ2 and S is not a B-
saturated sequent. This rule, denoted as (SR∗

2), is justified in the next section.MBQ∗

is a calculus obtained from the calculus MBQ replacing the rule (SR2) by the rule
(SR∗

2).
In the next section, it is shown that all the rules of the calculus MBQ∗, except for

the separation rules (SR∗
2) , (SR3) and the splitting rule, are invertible. The separation

rules (SR∗
2) , (SR3) and the splitting rule are existentially invertible (see Lemma 4).

The existential invertibility of the mentioned rules means that repeating applications
of these rules are necessary, in general, and a backtracking is used. The invertibility,
existential invertibility and termination of backward applications of the rules of the
calculusMBQ∗ are crucial in the presented decision algorithm.

The decision algorithm is realized by constructing an ordered derivation in the cal-
culusMBQ∗. An ordered derivation consists of several levels. Each level contains six
main parts.

1. Let S be an arbitrary sequent. Then S is reduced to a set of primary sequents Si

bottom-up applying logical reduction rules. This process terminates because (a)
bottom-up application of each logical reduction rule (j) eliminates the main logical
symbol from the main formula of the rule and (b) the complexity of a premise of
the rule (j) is less than the complexity of a conclusion of the rule (j).

2. Let the considered primary sequent Si be such that neither the logical part of Si

is derivable in Log, nor Si is a non-logical axiom, and Si is a splittable sequent.
Then the rule (Sp) is bottom-up applied to Si. As a result we get a non-splittable
sequent Siq (q ∈ {B, EB, MB}). As it follows from the shape of the rule (Sp)
this process terminates.

3. Let the considered primary sequent Si be such that either the logical part of Si

is derivable in Log, or Si is a non-logical axiom. Then the considered branch of
derivation is finished and the process of constructing the ordered derivation of the
next sequent is started, i.e., a new level of construction of a derivation begins. If Si

is one of the sequents obtained during the reduction of sequent S to a set of primary
sequents Si (see points 1 and 5) and not all the sequents from this set are tested,
then the next sequent is a sequent from the set of primary sequents. Otherwise, the
next sequent is chosen using backtracking. The process of determination whether
the sequent Si is an axiom always terminates. In the case of the logical axiom,
termination follows from the decidability of the calculus Log. In the case of the

Decision Procedure for a Fragment of Mutual Belief Logic 123

non-logical axiom, termination follows from the fact that the relation Sj . Si can
always be tested automatically.

4. Let the considered primary sequent Sj be an EB-reduced primary sequent such
that the rule (SR1) can be applied to Sj . Then the rule (SR1) is applied and a
sequent S′ is obtained. The process of constructing the ordered derivation of the
obtained sequent S′ is started, i.e., a new level of construction of the derivation
begins.

5. Let the considered primary sequent Sj be either an EB-primary sequent such that
the rule (SR1) cannot be applied to Sj , or a B-primary sequent or an MB-primary
one. Then Sj is reduced to a set of B-reduced primary sequents Sjk bottom-up
applying modal reduction rules. Each sequent Sjk is such that Log � Σ1 → Σ2,
where Σ1 →Σ2 is the logical part of Sjk. The case where Log � Σ1 →Σ2 was
fixed earlier and considered in point 3.

6. Let us consider the following cases:
(a) a sequent Sjk from the set of B-reduced primary sequents is a B-saturated
sequent. Then a sequent Sj is not derivable. If Sj is obtained as a premise of the
rule (Sp), then using backtracking we must test another premise of the application
of (Sp), i.e., a new level of construction of the derivation begins. If Sj is one of the
sequents obtained during the reduction of sequent S to a set of primary sequents Si

(see point 1), then S is not derivable;
(b) if the sequent Sjk from the set of B-reduced primary sequents is such that the
separation rules (SR∗

2) and (SR3) can be applied to Sjk, then all possible (using
backtracking and choosing other values of agent constants and/or the main formula
of the rules) bottom-up applications of the rules (SR∗

2) and (SR3) are realized.

A calculusMBQ1 is obtained from the calculusMBQ∗ by removing the reduction
rule (→ MB) and non-logical axioms. MBQ1 is a loop-check-free calculus and is
applied to sequents without positive occurrences of MB.

Let us demonstrate the performance of the described algorithm by examples. In the
examples derivations are presented in a linear form. At each step of a derivation the
explanation of the step is given in the brackets. For simplicity, in all the examples,
presented below, it is assumed that the set {1, 2} is a set of agent constants. First, let us
construct an ordered derivation in MBQ1 such that all the branches of the derivation
end with a logical axiom.

Example 1. Let S be an EB-primary sequent of the shape B(1)P → EB(P ∨
¬B(2)P). The derivation of S is as follows.

(1)B(1)P → EB(P ∨ ¬B(2)P) [considered sequent]
(2)B(1)P → B(1)(P ∨ ¬B(2)P) [B-reduced primary sequent obtained from

(1) bottom-up applying (→ EB), (→ ∧)]
(3)B(1)P → B(2)(P ∨ ¬B(2)P) [B-reduced primary sequent obtained from

(1) bottom-up applying (→ EB), (→ ∧)]
(4)B∗(1)P, P, B(2)P→ B1(1)(P ∨ ¬B(2)P), P [logical axiom obtained from

(2) bottom-up applying (SR∗
2), (→ ∨), (→ ¬)]

(5)B(2)P → B1(2)(P ∨ ¬B(2)P), P [from (3) bottom-up applying (SR∗
2),

(→ ∨), (→ ¬)]

124 R. Pliuškevičius and A. Pliuškevičienė

(6)B∗(2)P, P → B2(2)(P∨¬B(2)P), P [logical axiom obtained from (5) bottom-
up applying (SR∗

2), (→ ∨), (→ ¬) and the special weakening rule (W ∗→)]
ThereforeMBQ1 � S.

Let us demonstrate termination criterion for non-derivability in MBQ1.

Example 2. (a) Let S be an EB-reduced primary sequent of the shape EBP →
EBEBP . This sequent expresses the transitivity property for the modality EB. The
derivation of S is as follows.

(1)EBP→ EBEBP [considered sequent]
(2)P→ EBP [from (1) bottom-up applying (SR1)]
(3) → P [from (2) bottom-up applying (SR1)]
Since Log � (3) we getMBQ1 � S. Therefore the transitivity property fails for the

modality EB.
(b) Let S be a B-reduced primary sequent of the shape → B(1)A, where A =

P ∨ EB¬B(1)P . The derivation of S is as follows.
(1) → B(1)(P ∨ EB¬B(1)P) [considered sequent]
(2) → B1(1)A,P, EB¬B(1)P [from (1) bottom-up applying (SR∗

2), (→ ∨);
this sequent is splittable primary sequent]

(3) → B1(1)A,P [from (2) bottom-up applying (Sp) and choosing the premise
S1; since this sequent is a B-saturated sequent we cannot bottom-up apply any rule to
this sequent; thusMBQ1 � (3) and we must backtrack to sequent (2)]

(4) → P, EB¬B(1)P [from (2) bottom-up applying (Sp) and choosing the premise
S2; this sequent is an EB-reduced primary sequent]

(5)B(1)P → [from (4) bottom-up applying (SR1), (→ ¬)]
(6)B∗(1)P, P → [from (5) bottom-up applying (SR3)]
Since (6) is a B-saturated sequent we cannot bottom-up apply any rule to this se-

quent. ThereforeMBQ1 � S.

Let us construct an ordered derivation in MBQ∗ containing non-logical axioms along
with logical ones.

Example 3. Let S be an MB-primary sequent of the shape MBP → MBMB
(P ∨Q). The derivation of S is as follows.

(1)MBP→ MBMB(P∨Q) [considered sequent; since this sequent is an MB-
primary one it can be used to get a non-logical axiom]

(2)EBP, EBMBP c→ EBMB(P ∨Q) [from (1) bottom-up applying (→ MB),
and to left branch applying (MB →); this sequent is an EB-reduced primary sequent]

(3)EBP, EBMBP → EBMBMB(P ∨ Q) [from (1) bottom-up applying
(→ MB), and to right branch applying (MB →); this sequent is an EB-reduced
primary sequent]

(4)P, MBP c→ MB(P ∨ Q) [from (2) bottom-up applying (SR1); since this
sequent is an MB-primary one it can be used to get a non-logical axiom]

(5)P, EBP, EBMBP c→ EB(P ∨ Q) [from (4) bottom-up applying (→ MB),
and to left branch applying (MB →); this sequent is an EB-reduced primary sequent]

(6)P, MB∗P c→ P,Q [from (5) bottom-up applying (SR1), (→ ∨); this sequent
is a logical axiom]

Decision Procedure for a Fragment of Mutual Belief Logic 125

(7)P, EBP, EBMBP → EBMB(P ∨ Q) [from (4) bottom-up applying (→
MB), and to right branch applying (MB →); this sequent is an EB-reduced primary
sequent]

(8)P, MB∗P → MB(P ∨ Q) [from (7) bottom-up applying (SR1); since this
sequent is not a critical one, and in the same branch below there is an MB-primary
sequent (4) such that (4) . (8), this sequent is a non-logical axiom; return to (3)]

(9)P, MB∗P → MBMB(P ∨ Q) [from (3) bottom-up applying (SR1); since
this sequent is not a critical one and in the same branch below there is an MB-primary
sequent (1) such that (1) . (9), this sequent is a non-logical axiom]

ThereforeMBQ∗ � S.
(b) Let S1 be a sequent obtained from the sequent S considered in point (a) of this

example replacing (P ∨ Q) by P . Analogously as in the previous point we can get
MBQ∗ � S1. Thus the modality MB (opposite to the modality EB) satisfies the
transitivity property.

5 Foundation of Presented Decision Procedure

A foundation of presented decision procedure consists of two parts: syntactical and
semantical ones. The semantical part includes soundness and completeness ofMBQ∗.
The syntactical part includes a justification of (1) termination of the procedure, and (2)
invertibility and existential invertibility of the rules of the calculusMBQ∗.

5.1 Termination of Presented Decision Procedure

First let us prove that use of the separation rule (SR∗
2) instead of the rule (SR2) does

not change the class of sequents derivable inMBQ.
Let Σ1, ∀BΓ → Σ2, ∃BΔ, ∃x◦ Bk(x◦)M , where k > 0, be the conclusion of

bottom-up application of the rule (SR2) and ∃x◦ Bk(x◦)M is the main formula of this
application. Let ∃BΔ = ∃BΔ1, ∃BΔ2, where ∃xBΔ1 (∃xBΔ2) consists of indexed
(non-indexed, correspondingly) formulas of the shape ∃x◦ B(x◦)A. Then n = |∃ BΔ2|
(i.e., the number of members of ∃BΔ2) is called a non-indexed degree (n-degree, in
short) of the considered bottom-up application of the rule (SR2).

Lemma 1. IfMBQ �V S thenMBQ∗ � S.

Proof. Let in the derivation V there are l bottom-up application of the rule (SR2). Let
ni be the n-degree of i-th application of the rule (SR2). The proof is carried out by
induction on N , where N = max(n1, . . . , ni, . . . , nl). Let N = ni and ni > 0. Then
let us consider an i-th bottom-up application of (SR2). This application can be replaced
by bottom-up applications of (SR2) having n-degree less then ni.

Let us justify the finiteness of bottom-up applications of the rules (SR∗
2) and (SR3). Let

(SRD
2) ((SRD

3)) be the rule obtained from the rule (SR∗
2) ((SR3), correspondingly)

dropping the restriction that the conclusion of the rule is not a B-saturated sequent, i.e.,
the conclusion of the rules (SRD

i) (i ∈ {2, 3}) is any reduced primary sequent logical
part of which is not derivable in Log.

126 R. Pliuškevičius and A. Pliuškevičienė

A bottom-up application of the rule (SRD
i) (i ∈ {2, 3}) is a degenerate one if the

conclusion of this rule is a B-saturated sequent. Let MBQD be a calculus obtained
from the calculus MBQ∗ replacing the rules (SR∗

2) and (SR3) by the rules (SRD
2)

and (SRD
3), correspondingly.

Lemma 2. Let MBQD �V S. Then MBQ∗ �V ∗
S, where V ∗ does not contain de-

generate applications of the rules (SRD
2) and (SRD

3).

Proof. Proof is carried out using induction on the number n(V) of degenerate bottom-
up applications of the rules (SRD

2) and (SRD
3) in the derivation V . If n(V) = 0 then

V = V ∗. Let n(V) > 0. Let us consider the lowest degenerate bottom-up application
one of these rules. Let S∗ (S+) be the premise (conclusion, correspondingly) of this
lowest degenerate application of (SRD

i), i ∈ {2, 3}. Below this bottom-up degenerate
application of the considered rule must be a non-degenerate application of the same rule.
Let S∗∗ be a premise of this non-degenerate bottom-up application of (SRD

i). Using
special weakening rules, and the fact that S+ is B-saturated sequent we get S∗ . S∗∗.
Using the admissibility of structural rule of weakening in MBQD we get derivation
of S∗∗ without the considered lowest degenerate application of the rule (SRD

i). So by
induction assumption we get derivation V ∗ inMBQ∗.

Now let us justify the termination criterion for non-derivability by means of B-saturated
sequents.

Lemma 3. Let in each possible ordered derivation Vk of a sequent S there exists a
branch such that a leaf of this branch is a B-saturated sequent S∗. ThenMBQ∗ � S.

Proof. Relaying on Lemmas 1, 2 it is impossible to bottom-up apply to a sequent S∗

neither the rule (SR∗
2) nor the rule (SR3). Since logical part of B-saturated sequent

S∗ is not derivable in Log we getMBQ∗ � S∗.

From Lemmas 2, 3 it follows that the restrictions on the rules (SR∗
2) and (SR3) are

correct. Therefore the finite number of applications of the separation rules (SR∗
2) and

(SR3) in a derivation is sufficient. According to Remark 3 (b) the finiteness of bottom-
up applications of the separation rule (SR1) follows from the finiteness of bottom-up
applications of (SR∗

2) and (SR3). The finiteness of bottom-up applications of the re-
duction and special weakening rules as well as the splitting rule follows from the shape
of these rules. From these facts termination of the presented decision procedure follows.

5.2 Soundness and Completeness of MBQ∗

To justify semantical part of the presented decision procedure and invertibility of the
rules ofMBQ∗ let us introduce an infinite calculusMBQω.

The calculus MBQω is obtained from MBQ∗ by dropping the non-logical axioms
and replacing the reduction rule (→ MB) by infinite reduction rule:

Γ → Δ, EBA; . . . ;Γ → Δ, EBkA; . . .
Γ → Δ, MBA

(→ MBω),

k ∈ {1, . . .}; EB1A = EBA, EBkA = EBEBk−1A, k > 1.

Decision Procedure for a Fragment of Mutual Belief Logic 127

We can prove an invertibility of the reduction rules (including (→ MBω)), the sep-
aration rule (SR1), and special weakening rules in calculus MBQω using traditional
proof-theoretical methods.

It is easy to see that the separation rules (SR∗
2), (SR3), and the splitting rule (Sp)

are not invertible in the usual sense. However, mentioned rules are existential invertible.
Namely, using induction on the height of a derivation (see [16]) and invertibility of
reduction rules we can prove the following lemma.

Lemma 4 (existential invertibility of rules (SR∗
2), (SR3), and splitting rule).

(a) Let S be a B-reduced primary sequent and S is not a B-saturated. LetMBQω � S
and Σ1 → Σ2 be the logical part of S, such that Log � Σ1→Σ2. Then either

– there exists a formula ∃x◦ Bk(x◦)M from ∃BΔ, such that MBQω � S2, where
the sequent S2 is a premise of the rule (SR∗

2), or
– there exists l ≥ 0 such thatMBQω � S3, where the sequent S3 is a premise of the

rule (SR3).

(b) Let S be a splittable primary sequent, MBQω � S and Σ1 → Σ2 is the logical
part of S, such that Log � Σ1→Σ2. ThenMBQω � Si, where either i = 1, or i = 2,
or i = 3, and Si is a premise of the splitting rule (Sp).

Using invertibility of the rules ofMBQω and Schütte method [11]) (other than in [11],
we get more than one reduction tree used in [11]) we can prove

Theorem 1 (soundness and ω-completeness of MBQω). Let S be a sequent. Then
∀M |= S if and only if MBQω � S. The cut rule is admissible inMBQω.

From the fact that MBQω � MBA ≡ EBA ∧ EBMBA and admissibility of cut
inMBQω we get that the rule (→ MB) is admissible and invertible inMBQω. Thus
we get the following

Lemma 5. All reduction rules ofMBQω, the separation rule (SR1), special weaken-
ing rules, and the rule (→ MB) are invertible inMBQω.

To get an equivalence between calculiMBQ∗ andMBQω we introduce invariant cal-
culus INMBQ. An invariant calculus INMBQ is obtained from MBQ∗ replacing
the non-logical axioms by the following invariant rule:

Γ → Δ, I; I → EB(I); I → EBA
Γ → Δ, MBA

(→ MBI),

where an invariant formula I is constructed automatically (similarly to [16]).
Analogously as in [16] we can prove

MBQ∗ � S if and only if INMBQ � S if and only if MBQω � S (∗).
From (*) and Lemmas 4, 5 we get that all reduction rules, the separation rule (SR1),

and special weakening rules are invertible inMBQ∗, while the separation rules (SR∗
2),

(SR3), and splitting rule are existentially invertible in MBQ∗. Therefore the non-
logical axioms are constructed not only in finite way, but also in an automatic way.

From Theorem 1 and (*) follows thatMBQ∗ is sound and complete.

128 R. Pliuškevičius and A. Pliuškevičienė

Using these facts, Lemmas 2, 3, we get the following

Theorem 2. Let S be an arbitrary sequent. Then one can automatically construct a
successful or an unsuccessful ordered derivation V of the sequent S in MBQ∗ such
that V always terminates.

References

1. Alberucci, L., The modal μ-calculus and the logic of common knowledge. Ph.D. thesis,
Institut für Informatic and angewandte mathematik, Universität Bern, (2002).

2. Aldewereld, H., van der Hoek, W., Meyer, J.J.Ch., Rational teams: logical aspects of multi-
agent systems. Fundamenta Informaticae, 63(2-3), (2004), 159 – 183.

3. Dyckhoff, R., Contraction-free sequent calculi for intuitionistic logic, Journal of Symbolic
Logic, 57, (1992), 795–807.

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y., Reasoning about knowledge, MIT Press,
Cambridge, Mass. (1995).

5. Fitting M., Thalmann L., Voronkov A., Term-modal logics. Studia Logica, 69(1), (2001),
133-169.

6. Gough, G.D., Decision procedures for temporal logic. Master’s thesis, Department of Com-
puter Science, Manchester University, Oxford Rd., Manchester, M139PL, UK, October
(1984).

7. Halpern, J.Y., Shore R.A., Reasoning about common knowledge with infinitely many agents.
Information and Computation, 191 (2004), 1–40.

8. Heuerding A., Seyfried M., Zimmermann H., Efficient loop-check for backward proof search
in some non-classical propositional logics. Lecture Notes in Computer Science, 1071 (1996),
210–225.

9. Hudelmaier, J., A contraction-free sequent calculus for S4, in Proof Theory for Modal Logic,
H. Wansing, Ed. Kluwer Academic Publishers, Dordrechts, Boston/London (1996), 3–16.

10. Kanger, S. A simplified proof method for elementary logic. Computer Programming and For-
mal Systems, Studies in Logic and the Foundations of Mathematics, North-Holland, (1963),
87-93.

11. Kawai, H., Sequential calculus for a first-order infinitary temporal logic. Zeitchr. für Math.
Logic and Grundlagen der Math., 33, (1987), 423–432.

12. Kleene, S.C., Introduction to metamathematics, D.Van Nostrand Company, North-Holland
Publishing Co., P. Noordhoff LTD (1952).

13. Lomuscio A., Colombetti M., QLB: A quantified logic for belief. Lecture Notes in Artificial
Intelligence, 1193, (1996), 71-85.

14. Meyer, J.J.Ch., van der Hoek, W., Epistemic Logic for AI and Computer Science. Cambridge
University Press, Cambridge, 1995.

15. Nide, N., Takata, S., Deduction systems for BDI logics using sequent calculus. In Proc. of
AAMAS’02, (2002), 928–935.

16. Pliuškevičius, R., Pliuškevičienė, A., Decision procedure for a fragment of temporal logic
of belief and actions with quantified agent and action variables. Annals of Mathematics,
Computing & Teleinformatics, 1(2), (2004), 51–72.

17. Shwarts G.F., Gentzen style systems for K45 and K45D. Lecture Notes in Computer Sci-
ence, 363, (1989), 245–256.

18. Wolper P., The tableaux method for temporal logic: an overview. Logique et Analyse, 28,
(1985), 119–136.

19. Wooldridge, M., Reasoning about Rational Agents. The MIT Press (2000).
20. Wooldridge, M., An introduction to multiagent systems. John. Wiley & Sons Ltd., (2002).

Implementing Temporal Logics:
Tools for Execution and Proof

Michael Fisher

Logic and Computation Group,
Department of Computer Science,

University of Liverpool, Liverpool L69, UK
M.Fisher@csc.liv.ac.uk

http://www.csc.liv.ac.uk/∼michael

1 Introduction

In this article I will present an overview of a selection of tools for execution and proof
based on temporal logic, and outline both the general techniques used and problems en-
countered in implementing them. This selection is quite subjective, mainly concerning
work that has involved researchers I have collaborated with at Liverpool (and, previ-
ously, Manchester). The tools considered will mainly be theorem-provers and (logic-
based) agent programming languages. Specifically:

– clausal temporal resolution [21, 28] and several of its implementations, namely
Clatter [14], TRP++ [42] and TeMP [44], together with its application to veri-
fication [35];

– executable temporal logics [24, 4] and its implementation as both METATEM [3]
and Concurrent METATEM [22, 49], together with its use as a programming lan-
guage for both individual agents [23, 26, 29] and multi-agent systems [33, 30, 32].

In addition, I will briefly mention work on induction-based temporal proof [5], temporal
logic programming [1], and model checking [7].

Rather than providing detailed algorithms, this presentation will concentrate on gen-
eral principles, outlining current problems and future possibilities. The aim here is to
give the reader an overview of the ways we handle temporal logics. In particular how
we use such logics as the basis for both programming and verification.

2 What Is Temporal Logic?

2.1 Some History

Temporal logic was originally developed in order to represent tense in natural lan-
guage [56]. Within Computer Science, it has achieved a significant role in a number
of areas, particularly the formal specification and verification of concurrent and distrib-
uted systems [55]. Much of this popularity has been achieved as a number of useful
concepts, such as safety, liveness and fairness can be formally, and concisely, specified
using temporal logics [20, 52].

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 129–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 M. Fisher

2.2 Some Intuition

In their simplest form, temporal logics can be seen as extensions of classical logic,
incorporating additional operators relating to time. These operators are typically: ‘ �’,
meaning “in the next moment in time”, ‘ ’, meaning “at every future moment”, and
‘♦’, meaning “at some future moment”. These additional operators allow us to express
statements such as

(send ⇒ ♦received)
to characterise the statement

“it is always the case that if we send a message then, at some future moment it
will be received”.

The flexibility of temporal logic allows us to use formulae such as

(send ⇒ �(received ∨ send))

which is meant to characterise

“it is always the case that, if we send a message then, at the next moment in
time, either the message will be received or we will send it again”

and
(received ⇒ ¬send)

meaning

“it is always the case that if a message is received it cannot be sent again”.

Thus, given formulae of the above form then, if we try to send a message, i.e. ‘send’,
we should be able to show that it is not the case that the system continually re-sends the
message (but it is never received) i.e. the statement

send ∧ ¬received

should be inconsistent.

2.3 Some Applications

The representation of dynamic activity via temporal formalisms is used in a wide va-
riety of areas within Computer Science and Artificial Intelligence, for example Tem-
poral Databases, Program Specification, System Verification, Agent-Based Systems,
Robotics, Simulation, Planning, Knowledge Representation, and many more. While I
am not able to describe all these aspects here, the interested reader should see, for ex-
ample, [52, 53, 7, 62, 47]. With respect to multi-agent systems, temporal logics provide
the formalism underlying basic dynamic/distributed activity, while this temporal frame-
work is often extended to incorporate rational agent aspects such as beliefs, goals and
knowledge [27].

There are many different temporal logics (see, for example [20]). The models of time
which underlie these logics can be discrete, dense or interval-based, linear, branching

Implementing Temporal Logics: Tools for Execution and Proof 131

or partial order, finite or infinite, etc. In addition, the logics can have a wide range of
operators, such as those related to discrete future-time (e.g: �,♦,), interval future-
time (e.g: U , W), past-time (e.g: �♦• , , S , Z), branching future-time (e.g: A,
E), fixed-point generation (e.g: μ, ν) and propositional, quantified propositional or full
first-order variations. Even then, such temporal logics are often combined with standard
modal logics. For example, typical combinations involve TL + S5 modal logic (often
representing ‘Knowledge’), or TL + KD45 (Belief) + KD (Desire) + KD (Intention).

Here, I will mainly concentrate on one very popular variety, namely discrete linear
temporal logic, which has an underlying model of time isomorphic to the Natural Num-
bers (i.e. an infinite sequence with distinguished initial point) and is also linear, with
each moment in time having at most one successor. (Note that the infinite and linear
constraints ensure that each moment in time has exactly one successor, hence the use of
a single ‘ �’ operator.)

3 Where’s the Difficulty?

Temporal Logics tend to be complex. To give some intuition why this is the case, let us
look at a few different ways of viewing (initially propositional) temporal logic.

Propositional temporal logic can be thought of as

1. A specific decidable (PSPACE-complete) fragment of classical first-order logic.
For example, the semantics of (discrete, linear) propositional temporal logic can

be given by translation to first-order logic as follows. Here, we interpret a temporal
formula at a moment in time (indexed by i), and encode this index as an argument
to the first-order formula. For simplicity, we consider just propositional symbols,
such as p. Then, the question of whether the formula p is satisfied at moment i
in a temporal model is translated to the question of whether p(i) is satisfied in a
classical first-order logic model:

i |=TL p → |= p(i)
i |=TL

�p → |= p(i+ 1)
i |=TL ♦p → |= ∃j. (j ≥ i) ∧ p(j)
i |=TL p → |= ∀j. (j ≥ i) ⇒ p(j)

However, this first-order translation can be a problem as proof/execution techniques
often find it hard to isolate exactly this fragment.

2. A multi-modal logic, comprising two modalities, [1] and [∗], which interact closely.
The modality [1] represents a move of one step forwards, while [∗] represents all

future steps.
Thus, the induction axiom in discrete temporal logic

� (ϕ⇒ �ϕ) ⇒ (ϕ⇒ ϕ)

can be viewed as the interaction axiom between modalities

� [∗](ϕ⇒ [1]ϕ) ⇒ (ϕ⇒ [∗]ϕ)

Usually, [1] is represented as ‘ �’, while [∗] is represented as ‘ ’.
However, while mechanising modal logics is relatively easy, multi-modal prob-

lems become complex when interactions occur between the modalities; in our case
the interaction is of an inductive nature, which can be particularly complex.

132 M. Fisher

3. A characterisation of simple induction.
The induction axiom in discrete temporal logic

� (ϕ⇒ �ϕ) ⇒ (ϕ⇒ ϕ)

can alternatively be viewed as

[∀i. ϕ(i) ⇒ ϕ(i+ 1)] ⇒ [ϕ(0) ⇒ ∀j. ϕ(j)]

Reformulated, this becomes

[ϕ(0) ∧ ∀i. ϕ(i) ⇒ ϕ(i+ 1)] ⇒ ∀j. ϕ(j)

which should be familiar as a version of arithmetical induction, i.e. if ϕ is true of
0 and if ϕ being true of i implies it is true of i + 1, then we know ϕ is true of all
Natural Numbers.

However, this use of induction can again cause problems for first-order proof
techniques.

4. A logic over sequences, trees or partial-orders (depending on the model of time).
For example, a sequence-based semantics can be given for discrete linear tem-

poral logic:

si, si+1, . . . , sω |= �p if, and only if, si+1, . . . , sω |= p
si, si+1, . . . , sω |=♦p if, and only if, there exists a j≥ i such that sj , . . . , sω |= p

si, si+1, . . . , sω |= p if, and only if, for all j ≥ i then sj , . . . , sω |= p

This shows that temporal logic can be used to characterise a great variety of, poten-
tially complex, computational structures.

5. A syntactic characterisation of finite-state automata over infinite words (ω-
automata).
For example

– formulae such as p⇒ �q give constraints on possible state transitions,
– formulae such as p ⇒ ♦r give constraints on accepting states within an au-

tomaton, and
– formulae such as p⇒ s give global constraints on states in an automaton.

This shows some of the power of temporal logic as a variety of differentω-automata
can be characterised in this way.

The decision problem for a simple propositional (discrete, linear) temporal logic is al-
ready PSPACE-complete [58]; other variants of temporal logic may be worse! When
we move to first-order temporal logics, things begin to get unpleasant. It is easy to
show that first-order temporal logic is, in general, incomplete (i.e. not recursively-
enumerable [59, 2]). In fact, until recently, it has been difficult to find any non-trivial
fragment of first-order temporal logic that has reasonable properties. A breakthrough by
Hodkinson et al. [39] showed that monodic fragments of first-order temporal logic could
be complete, even decidable. Monodic first-order temporal logics add quantification to
temporal logic but only allow at most one free variable in any temporal subformula.
Thus,

Implementing Temporal Logics: Tools for Execution and Proof 133

∀x. a(x) ⇒ b(x)
∀x. a(y) ⇒ ♦c(y, y)

∀z. (∃w. d(w, z)) ⇒ �(∀v. e(z, v))
are all monodic formulae, whereas

∀x. ∀y. f(x, y) ⇒ �g(y, x)

is not. The monodic fragment of first-order temporal logic is recursively enumerable [39]
and, when combined with a decidable first-order fragment, often produces a decidable
first-order temporal logic [38, 10, 9, 45].

4 What Tools?

The main tools that we are interested in are used to carry out temporal verification,
via resolution on temporal formulae, and temporal execution, via direct execution of
temporal formulae. In our case, both of these use temporal formulae within a specific
normal form, called Separated Normal Form (SNF) [25].

4.1 SNF

A temporal formula in Separated Normal Form (SNF) is of the form

n∧
i=1

(Pi ⇒ Fi)

where each of the ‘Pi ⇒ Fi’ (called clauses or rules) is one of the following

start ⇒
r∨

k=1

lk (an initial clause)

q∧
j=1

mj ⇒ �
r∨

k=1

lk (a step clause)

q∧
j=1

mj ⇒♦l (a sometime clause)

where each l, lk or mj is a literal and ‘start’ is a formula that is only satisfied at the
“beginning of time”.

Thus, the intuition is that:

– initial clauses provide initial constraints;
– step clauses provide constraints on the next step; and
– sometime clauses provide constraints on the future.

We can provide simple examples showing some of the properties that might be repre-
sented directly as SNF clauses.

134 M. Fisher

– Specifying initial conditions: start ⇒ reading
– Defining transitions between states: (reading ∧ ¬finished) ⇒ �reading
– Introducing new eventualities (goals): (tired ∧ reading) ⇒ ♦¬reading

reading ⇒ ♦finished
– Introducing permanent properties:

(increasing ∧ (value = 1)) ⇒ � (value > 1)

which, in SNF, becomes

(increasing ∧ (value = 1)) ⇒ �(value > 1)
(increasing ∧ (value = 1)) ⇒ �r

r ⇒ �(value > 1)
r ⇒ �r

Translation from an arbitrary propositional temporal formula into SNF is an operation
of polynomial complexity [25, 28].

We also need the concept of a merged SNF clause: any SNF clause is a merged SNF
clause and, given two merged SNF clauses A⇒ �B and C ⇒ �D, we can generate
a new merged SNF clause (A ∧ C) ⇒ �(B ∧D).

4.2 Clausal Resolution

Given a set of clauses in SNF, we can apply resolution rules, such as

Initial Resolution: start ⇒ (A ∨ l)
start ⇒ (B ∨ ¬l)
start ⇒ (A ∨B)

Step Resolution: P ⇒ �(A ∨ l)
Q⇒ �(B ∨ ¬l)

(P ∧Q) ⇒ �(A ∨B)

Temporal Resolution (simplified)1: A⇒ � ¬l
Q⇒♦l
Q⇒ (¬A)W l

As we will see later, it is this temporal resolution rule that causes much of the difficulty.
It should be noted here that the above is a basic explanation of clausal temporal

resolution. A number of refinements, both in terms of what resolution rules are used,
and the form of SNF, have been developed [11, 8].

There has also been considerable work on extending the clausal resolution approach
to handle logics formed by combining temporal logic with one or more modal logic. In
particular, resolution for a temporal logic of knowledge (i.e. temporal logic combined
with an S5 modal logic of knowledge) have been developed [19]. More recent work in
this area has concerned extending resolution to cope with more complex interactions
between the knowledge and time dimensions [18, 54] and application of such logics in
verification [17, 16].

1 (¬A)W l is satisfied either if ¬A is always satisfied, or if ¬A is satisfied up to a point when l
is satisfied.

Implementing Temporal Logics: Tools for Execution and Proof 135

4.3 Executable Temporal Logics

In executing temporal logic formulae, we use the Imperative Future approach [4]:

– transforming the temporal specification into SNF;
– from the initial constraints, forward chaining through the set of temporal rules rep-

resenting the agent; and
– constraining the execution by attempting to satisfy goals, such as ♦g (i.e. g even-

tually becomes true).

Since some goals might not be able to be satisfied immediately, we must keep track of
the outstanding goals and reconsider them later. The basic strategy used is to attempt to
satisfy the oldest outstanding eventualities first and keep a record of the others, retrying
them as execution proceeds.

Example. Imagine a search agent which can search, speedup and stop, but can also run
out of resources (empty) and reset.

The agent’s internal definition might be given by a temporal logic specification in SNF,
for example,

start ⇒ ¬searching
search ⇒♦searching

(searching ∧ speedup) ⇒ �(empty ∨ reset)

The agent’s behaviour is implemented by forward-chaining through these formulae.

– Thus, searching is false at the beginning of time.
– Whenever search is made true, a commitment to eventually make searching true is

given.
– Whenever both speedup and searching are made true, then either reset or empty

will be made true in the next moment in time.

This provides the basis for temporal execution, and has been extended with execution
for combinations with modal logics, deliberation mechanisms [26], resource-bounded
reasoning [29] and a concurrent operational model [22].

5 Implementations

5.1 Clausal Temporal Resolution

The essential complexity in carrying out clausal temporal resolution is implementing
the temporal resolution rule itself. First, let us note that the Temporal Resolution rule
outlined earlier is not in the correct form. The exact form of this rule is

Temporal Resolution (full): A1 ⇒ �B1
. . .⇒ . . .
An ⇒ �Bn

Q⇒♦l
Q⇒ (

∧n
i=1 ¬Ai)W l

136 M. Fisher

where each Ai ⇒ �Bi is a merged SNF clause and each Bi satisfies Bi ⇒ (¬l ∧
n∨

j=1

Aj).

Thus, in order to implement this rule, a set of step clauses satisfying certain proper-
ties must be found; such a set is called a loop. This process has undergone increasing
refinement, as has the implementation of clausal temporal resolution provers in general:

1. The original approach proposed was to conjoin all sets of step clauses to give, so
called, merged SNF clauses and then treat these merged clauses as edges/transitions
in a graph. Finding a loop is then just a question of extracting a strongly connected
component from the graph, which is a linear operation [60].

The problem here is explicitly constructing the large set of merged SNF clauses.
2. Dixon [12, 13, 14] developed an improved (breadth-first) search algorithm, which

formed the basis of the ‘Clatter’ prover. This search approach effectively aimed
to generate only the merged SNF clauses that were required to find a loop, rather
than generating all such clauses.

The problem with the Clatter family of provers was the relatively slow link
to the classical resolution system (which was used to carry out the step resolution
operations).

3. Hustadt then developed TRP [46]. The idea here was to use arithmetical transla-
tions to translate as much as possible of the process to classical resolution opera-
tions and then use an efficient classical resolution system. In addition, TRP used a
translation of the breadth-first loop search algorithm into a series of classical reso-
lution problems suggested in [15]. (TRP is also able to deal with the combination
of propositional temporal logic with various modal logics including KD45 and S5.)
The resulting system was evaluated against other decision procedures for this form
of temporal logic and was shown to be very competitive [46, 43].

The main problems with TRP were that it was implemented in Prolog and that
the data/term representation/indexing techniques could be improved.

4. A more recent variety of clausal resolution system for propositional temporal logic
is TRP++, implemented by Hustadt and Konev [42]. Here, TRP is re-implemented
in C++ and is refined with a number of contemporary data representation and in-
dexing techniques.
TRP++ currently performs very well in comparison with other provers for propo-

sitional temporal logic.
5. Finally, TeMP [44] is a clausal resolution prover specifically designed for monodic

first-order temporal logic [8, 50]. This utilises the Vampire [57] system to handle
much of the internal first-order proving.

Both TRP++ and TeMP are available online2.

5.2 Executable Temporal Logics

The Imperative Future style of execution provides a relatively simple approach to exe-
cuting temporal logic formulae. As described above, beginning at the initial conditions

2 See http://www.csc.liv.ac.uk/˜konev

Implementing Temporal Logics: Tools for Execution and Proof 137

we simply forward chain through the step clauses/rules generating a model, all the time
constraining the execution with formulae such as ‘♦g’.

The development in this area has not primarily been concerned with speed. As we
will see below, the developments have essentially involved refining and extending the
internal capabilities of the programs and allowing for more complex interactions be-
tween programs.

Thus, the implementations of this approach, beginning with METATEM, proceeded
as follows.

1. The first approach, reported in [34], essentially used a Prolog meta-interpreter to
implement the system. The forward chaining aspect is relatively standard, and the
management of outstanding eventualities (i.e. formulae such as ‘♦g’) was handled
with a queue structure.

In order to maintain completeness (in the propositional case) a form of past-time
loop checking had to be employed. This involved retaining a large proportion, and
sometimes all, of the history of the computation and checking for loops over this as
every new computation state was constructed. (Note that this loop-checking aspect
is usually omitted from the later languages.)

The main problems with this approach were the lack of features, particularly
those required for programming rational agents, such as internal reasoning, delib-
eration and concurrency.

2. In [22], Concurrent METATEM was developed. This allowed for multiple asyn-
chronous, communicating METATEM components and provided a clean interaction
between the internal (logical) computation and the concurrent operational model.

Concurrent METATEM was implemented in C++ but was relatively slow and
static (i.e. process scheduling was implemented directly).

3. Kellett, in [48, 49], developed more refined implementation techniques for Concur-
rent METATEM. Here, individual METATEM programs were compiled into (linked)
pairs of I/O automata [51], one to handle the internal computation, the other to han-
dle the interaction with the environment. Such automata can then, potentially, be
cloned (for process spawning) and moved (for load balancing and mobility).

While Concurrent METATEM provides an interesting model of simple multi-
agent computation, work was still required on the internal computation mechanism
for each individual agent.

4. More recently, the internal computation has been extended by providing a belief
dimension, allowing meta-control of the deliberation3, allowing resource-bounded
reasoning and incorporating agent abilities [26, 29, 30].

This has led to a programming language in which rational agents can be imple-
mented, and in which complex multi-agent organisations can be developed. Recent
work by Hirsch [37] has produced a Java implementation of both individual and
group aspects, and has applied this to multi-agent and pervasive computing appli-
cations [31, 32, 36].

3 Deliberation here means the process of deciding in which order to attempt outstanding even-
tualities at each computation step.

138 M. Fisher

5.3 Other Techniques

In this section, I will briefly mention a few other systems related to temporal logic.

Induction-based Temporal Proof. As mentioned above, first-order temporal logics are
complex. In particular, full first-order temporal logic is not recursively-enumerable.
However, as we still wish to prove theorems within such a logic, we have been devel-
oping techniques to support this. Such a system is described in [5], where an induction-
based theorem-prover is enhanced with heuristics derived from the clausal temporal
resolution techniques (see above) and implemented in λClam/λProlog.

Temporal Logic Programming. Standard logic programming techniques were trans-
ferred to temporal logic in [1]. However, because of the incompleteness of first-order
temporal logics, the language was severely restricted. In fact, if we think of SNF above
then the fragment considered is essentially that consisting of initial and step clauses.
Thus, implementation for such a language is a small extension of classical logic pro-
gramming techniques and constraint logic programming techniques.

Model Checking. Undoubtedly the most popular application of temporal logic is in
model checking. Here, a finite-state model capturing the executions of a system is
checked against a temporal formula. These finite state models often capture hardware
descriptions, network protocols or complex software [40, 7]. While much model-
checking technology was based on automata-theoretic techniques, advances in sym-
bolic [6] and on-the-fly [41] techniques have made model checking the success it is.
Current work on abstraction techniques and Java model checking, such as [61], promise
even greater advances.

6 Summary

I have overviewed a selection of tools for execution and proof within temporal logic.
While this selection has been heavily biased towards those in which I have been in-
volved, several of the techniques are at the forefront of their areas. Although these tools
are generally prototypes, they are increasingly used in realistic scenarios, and more so-
phisticated versions appear likely to have a significant impact in both Computer Science
and Artificial Intelligence.

Acknowledgments. Much of this work has been supported by funding from the UK’s
Engineering and Physical Sciences Research Council (EPSRC)4, and has involved col-
laboration with a variety of outstanding colleagues who work (or have worked) within
the Logic and Computation group at Liverpool5. I thank them all for their endeavours.
I would also like to thank the anonymous referees of the CLIMA VI post-proceedings
for their helpful comments.

4 http://www.epsrc.ac.uk
5 http://www.csc.liv.ac.uk/research/logics

Implementing Temporal Logics: Tools for Execution and Proof 139

References

1. M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Symbolic Computation,
8: 277–295, 1989.

2. M. Abadi. The Power of Temporal Proofs. Theoretical Computer Science, 64:35–84, 1989.
3. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An Introduction.

Formal Aspects of Computing, 7(5):533–549, 1995.
4. H. Barringer, M. Fisher, D. Gabbay, R. Owens, and M. Reynolds, editors. The Imperative Fu-

ture: Principles of Executable Temporal Logics. Research Studies Press, Chichester, United
Kingdom, 1996.

5. J. Brotherston, A. Degtyarev, M. Fisher, and A. Lisitsa. Implementing Invariant Search via
Temporal Resolution. In Proceedings of LPAR-2002, pages 86–101. Springer Verlag, 2002.
Lecture Notes in Computer Science, 2514.

6. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Check-
ing: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic in Computer
Science, Philadelphia, June 1990.

7. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, December 1999.
8. A. Degtyarev, M. Fisher, and B. Konev. Monodic Temporal Resolution. ACM Transactions

on Computational Logic 7(1), January 2006.
9. A. Degtyarev, M. Fisher, and B. Konev. Handling equality in monodic temporal resolution.

In Proceedings of 10th International Conference on Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR), volume 2850 of Lecture Notes in Computer Science, pages
214–228, Almaty, Kazakhstan, 2003. Springer-Verlag.

10. A. Degtyarev, M. Fisher, and A. Lisitsa. Equality and Monodic First-Order Temporal Logic.
Studia Logica, 72(2):147–156, November 2002.

11. A. Degtyarev, M. Fisher, and B. Konev. A simplified clausal resolution procedure for propo-
sitional linear-time temporal logic. In U. Egly and C. G. Fermüller, editors, Automated
Reasoning with Analytic Tableaux and Related Methods, volume 2381 of Lecture Notes in
Computer Science, pages 85–99. Springer-Verlag, July 30–August 1 2002.

12. C. Dixon. Strategies for Temporal Resolution. PhD thesis, Department of Computer Science,
University of Manchester, Manchester M13 9PL, U.K., December 1995.

13. C. Dixon. Search Strategies for Resolution in Temporal Logics. In Proceedings of the Thir-
teenth International Conference on Automated Deduction (CADE), volume 1104 of Lecture
Notes in Computer Science, New Jersey, July/August 1996. Springer-Verlag.

14. C. Dixon. Temporal Resolution using a Breadth-First Search Algorithm. Annals of Mathe-
matics and Artificial Intelligence, 22:87–115, 1998.

15. C. Dixon. Using Otter for Temporal Resolution. In Advances in Temporal Logic. Kluwer
Academic Publishers, 1999.

16. C. Dixon. Using Temporal Logics of Knowledge for Specification and Verification — a Case
Study. Journal of Applied Logic, 2005. To appear.

17. C. Dixon, M-C. Fernández Gago, M. Fisher, and W. van der Hoek. Using temporal logics of
knowledge in the formal verification of security protocols. In Proceedings of International
Symposium on Temporal Representation and Reasoning (TIME). IEEE CS Press, 2004.

18. C. Dixon and M. Fisher. Clausal Resolution for Logics of Time and Knowledge with Syn-
chrony and Perfect Recall. In Proceedings of Joint International Conference on Temporal
Logic and Advances in Modal Logic (AiML-ICTL), Leipzig, Germany, October 2000.

19. C. Dixon, M. Fisher, and M. Wooldridge. Resolution for Temporal Logics of Knowledge.
Journal of Logic and Computation, 8(3):345–372, 1998.

20. E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, pages 996–1072. Elsevier, 1990.

140 M. Fisher

21. M. Fisher. A Resolution Method for Temporal Logic. In Proc. Twelfth International Joint
Conference on Artificial Intelligence (IJCAI), Sydney, Australia, 1991. Morgan Kaufman.

22. M. Fisher. Concurrent METATEM — A Language for Modeling Reactive Systems. In Paral-
lel Architectures and Languages, Europe (PARLE), Munich, Germany, June 1993. (Published
in Lecture Notes in Computer Science, volume 694, Springer-Verlag).

23. M. Fisher. Representing and Executing Agent-Based Systems. In M. Wooldridge and N. R.
Jennings, editors, Intelligent Agents. Springer-Verlag, 1995.

24. M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineering Review,
11(1):43–56, March 1996.

25. M. Fisher. A Normal Form for Temporal Logic and its Application in Theorem-Proving and
Execution. Journal of Logic and Computation, 7(4):429–456, August 1997.

26. M. Fisher. Implementing BDI-like Systems by Direct Execution. In Proceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). Morgan-Kaufmann, 1997.

27. M. Fisher. Temporal Development Methods for Agent-Based Systems. Journal of Au-
tonomous Agents and Multi-Agent Systems, 10(1):41–66, January 2005.

28. M. Fisher, C. Dixon, and M. Peim. Clausal Temporal Resolution. ACM Transactions on
Computational Logic, 2(1):12–56, January 2001.

29. M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kauf-
mann, 1999.

30. M. Fisher and C. Ghidini. The ABC of Rational Agent Programming. In Proc. First In-
ternational Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
849–856. ACM Press, July 2002.

31. M. Fisher, C. Ghidini, and B. Hirsch. Organising Computation through Dynamic Grouping.
In Objects, Agents and Features, volume 2975 of Lecture Notes in Computer Science, pages
117–136. Springer-Verlag, 2004.

32. M. Fisher, C. Ghidini, and B. Hirsch. Programming Groups of Rational Agents. In Computa-
tional Logic in Multi-Agent Systems (CLIMA-IV), volume 3259 of 849–856. Springer-Verlag,
November 2004.

33. M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executable Temporal Logic. In
Proceedings of Twelfth International Symposium on Languages for Intensional Programming
(ISLIP). World Scientific Press, 1999.

34. M. Fisher and R. Owens. From the Past to the Future: Executing Temporal Logic Programs.
In Proceedings of Logic Programming and Automated Reasoning (LPAR), St. Petersberg,
Russia, July 1992. (Published in Lecture Notes in Computer Science, volume 624, Springer-
Verlag).

35. M-C. Fernández Gago, U. Hustadt, C. Dixon, M. Fisher, and B. Konev. First-Order Temporal
Verification in Practice. Accepted for publication in Journal of Automated Reasoning.

36. B. Hirsch, M. Fisher, C. Ghidini, and P. Busetta. Organising Software in Active Environ-
ments. In Computational Logic in Multi-Agent Systems (CLIMA-V), volume 3487 of Lecture
Notes in Computer Science. Springer-Verlag, 2005.

37. B. Hirsch. Programming Rational Agents. PhD thesis, Department of Computer Science,
University of Liverpool, United Kingdom, May 2005.

38. I. Hodkinson. Monodic Packed Fragment with Equality is Decidable. Studia Logica,
72(2):185–197, November 2002.

39. I. Hodkinson, F. Wolter, and M. Zakharyashev. Decidable fragments of first-order temporal
logics. Annals of Pure and Applied Logic, 2000.

40. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, Englewood
Cliffs, New Jersey, 1991.

Implementing Temporal Logics: Tools for Execution and Proof 141

41. G.J. Holzmann. The model checker spin. IEEE Trans. on Software Engineering, 23(5):279–
295, May 1997. Special issue on Formal Methods in Software Practice.

42. U. Hustadt and B. Konev. TRP++ 2.0: A temporal resolution prover. In Proceedings of
Conference on Automated Deduction (CADE-19), number 2741 in Lecture Notes in Artificial
Intelligence, pages 274–278. Springer, 2003.

43. U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision proce-
dures. In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Eighth International Con-
ference (KR’2002), pages 533–544. Morgan Kaufmann, 2002.

44. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A temporal monodic prover. In
D. A. Basin and M. Rusinowitch, editors, Proceedings of the Second International Joint Con-
ference on Automated Reasoning (IJCAR 2004), volume 3097 of Lecture Notes in Artificial
Intelligence, pages 326–330. Springer, 2004.

45. U. Hustadt, B. Konev, and R. A. Schmidt. Deciding monodic fragments by temporal res-
olution. In R. Nieuwenhuis, editor, Proceedings of the 20th International Conference on
Automated Deduction (CADE-20), volume 3632 of Lecture Notes in Artificial Intelligence,
pages 204–218. Springer, 2005.

46. U. Hustadt and R. A. Schmidt. Formulae which highlight differences between temporal logic
and dynamic logic provers. In E. Giunchiglia and F. Massacci, editors, Issues in the Design
and Experimental Evaluation of Systems for Modal and Temporal Logics, Technical Report
DII 14/01, pages 68–76. Dipartimento di Ingegneria dell’Informazione, Unversitá degli Studi
di Siena, 2001.

47. M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press, 2000.
48. A. Kellett. Implementation Techniques for Concurrent METATEM. PhD thesis, Department

of Computing and Mathematics, Manchester Metropolitan University, 2000.
49. A. Kellett and M. Fisher. Automata Representations for Concurrent METATEM. In Pro-

ceedings of the Fourth International Workshop on Temporal Representation and Reasoning
(TIME). IEEE Press, May 1997.

50. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising first-order tem-
poral resolution. Information and Computation, 199(1-2):55–86, 2005.

51. N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. Technical Report
MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technol-
ogy, November 1988.

52. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, New York, 1992.

53. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
New York, 1995.

54. C. Nalon, C. Dixon, and M. Fisher. Resolution for Synchrony and No Learning. In Pro-
ceedings of Advances in Modal Logic Confernece (AiML-5), Manchester, UK, September
2004.

55. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the Eighteenth Symposium
on the Foundations of Computer Science, Providence, USA, November 1977.

56. A. Prior. Past, Present and Future. Oxford University Press, 1967.
57. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In Proc. IJCAR 2001,

pages 376–380. Volume 2083 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
2001.

58. A. P. Sistla and E. M. Clarke. Complexity of propositional linear temporal logics. ACM
Journal, 32(3):733–749, July 1985.

142 M. Fisher

59. A. Szalas and L. Holenderski. Incompleteness of First-Order Temporal Logic with Until.
Theoretical Computer Science, 57:317–325, 1988.

60. R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing,
1:146–160, 1972.

61. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In International
Conference on Automated Software Engineering (ASE), September 2000.

62. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

BDI Agent Programming in
AgentSpeak Using Jason

Rafael H. Bordini1 and Jomi F. Hübner2

1 Department of Computer Science,
University of Durham,
Durham DH1 3LE, UK
R.Bordini@durham.ac.uk

2 Departamento de Sistemas e Computação,
Universidade Regional de Blumenau,

Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

Abstract. This paper is based on the tutorial given as part of the tuto-
rial programme of CLIMA-VI. The tutorial aimed at giving an overview
of the various features available in Jason , a multi-agent systems devel-
opment platform that is based on an interpreter for an extended ver-
sion of AgentSpeak. The BDI architecture is the best known and most
studied architecture for cognitive agents, and AgentSpeak is an elegant,
logic-based programming language inspired by the BDI architecture.

1 Introduction

The BDI agent architecture [27, 33, 29] has been a central theme in the multi-
agent systems literature since the early 1990’s. After a period of relative decline,
it seems BDI agents are back in vogue, with various conference papers refer-
ring again to elements of the BDI theory. Arguably, that theory provides the
grounding for some of the essential features of autonomous agents and multi-
agent systems, so it will always have an important role to play in the research
in this area. Besides, the software industry is beginning to use technologies that
clearly derived from the academic work on BDI-based systems.

AgentSpeak is an elegant agent-oriented programming language based on
logic programming, and inspired by the work on the BDI architecture [27] and
BDI logics [28] as well as on practical implementations of BDI systems such as
PRS [16] and dMARS [17]. However, in its original definition [26], AgentSpeak
was just an abstract programming language. For these reasons, our effort in
developing Jason was very much directed towards using AgentSpeak as the
basis, but also providing various extensions that are required for the practical
development of multi-agent systems.

The elegance of the AgentSpeak core of the language interpreted by Ja-
son makes it an interesting tool both for teaching multi-agent systems as well
as the practical development of multi-agent systems (in particular in associa-
tion with existing agent-oriented software engineering methodologies for BDI-

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 143–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 R.H. Bordini and J.F. Hübner

like systems). Jason is implemented in Java and is available Open Source at
http://jason.sourceforge.net. Some of the features available in Jason are:

– speech-act based inter-agent communication (and annotation of beliefs with
information sources);

– annotations on plan labels, which can be used by elaborate (e.g., decision
theoretic) selection functions;

– the possibility to run a multi-agent system distributed over a network (using
SACI, or some other agent middleware);

– fully customisable (in Java) selection functions, trust functions, and overall
agent architecture (perception, belief-revision, inter-agent communication,
and acting);

– straightforward extensibility (and use of legacy code) by means of user-
defined “internal actions”;

– clear notion of multi-agent environments, which can be implemented in Java
(this can be a simulation of a real environment, e.g., for testing purposes
before the system is actually deployed).

This paper is based on a CLIMA-VI tutorial which aimed at giving an over-
view of the various features available in Jason . It is intended for a general
audience although some parts might be clearer for readers familiar with agent-
oriented programming. To keep the paper at a reasonable size, we only de-
scribe the main features of Jason , so that readers can assess whether Ja-
son might be of interest, rather than aiming at a didactic presentation. For
the interested reader, we give here plenty of references to other papers and
documentation where more detail and examples can be found; a general ref-
erence giving a longer overview is [9], and see [8] for details. The paper is
organised as follows. Section 2 presents the language interpreted by Jason ,
and its informal semantics is given in Section 3. Some other features of the
language related to multi-agent communication and interaction are discussed
in Section 4. We then present the main feature of the platform which facili-
tate the development of multi-agent systems in Section 5. Section 6 discusses
various issues (such as formal verification) and we then make some final re-
marks.

2 Jason Extension of the AgentSpeak Language

The AgentSpeak(L) programming language was introduced in [26]. It is a natural
extension of logic programming for the BDI agent architecture, and provides an
elegant abstract framework for programming BDI agents. The BDI architecture
is, in turn, the predominant approach to the implementation of intelligent or
rational agents [33].

An AgentSpeak agent is defined by a set of beliefs giving the initial state of
the agent’s belief base, which is a set of ground (first-order) atomic formulæ,
and a set of plans which form its plan library. Before explaining exactly how a
plan is written, we need to introduce the notions of goals and triggering events.

BDI Agent Programming in AgentSpeak Using Jason 145

AgentSpeak distinguishes two types of goals : achievement goals and test goals.
Achievement goals are formed by an atomic formulæ prefixed with the ‘!’ op-
erator, while test goals are prefixed with the ‘?’ operator. An achievement goal
states that the agent wants to achieve a state of the world where the associated
atomic formulæ is true. A test goal states that the agent wants to test whether
the associated atomic formulæ is (or can be unified with) one of its beliefs.

An AgentSpeak agent is a reactive planning system. The events it reacts to
are related either to changes in beliefs due to perception of the environment,
or to changes in the agent’s goals that originate from the execution of plans
triggered by previous events. A triggering event defines which events can initiate
the execution of a particular plan. Plans are written by the programmer so that
they are triggered by the addition (‘+’) or deletion (‘-’) of beliefs or goals (the
“mental attitudes” of AgentSpeak agents).

An AgentSpeak plan has a head (the expression to the left of the arrow),
which is formed from a triggering event (specifying the events for which that
plan is relevant), and a conjunction of belief literals representing a context. The
conjunction of literals in the context must be a logical consequence of that agent’s
current beliefs if the plan is to be considered applicable at that moment in time
(only applicable plans can be chosen for execution). A plan also has a body,
which is a sequence of basic actions or (sub)goals that the agent has to achieve
(or test) when the plan is triggered. Plan bodies include basic actions — such
actions represent atomic operations the agent can perform so as to change the
environment. Such actions are also written as atomic formulæ, but using a set
of action symbols rather than predicate symbols.

Figure 1 give examples of three AgentSpeak plans, illustrating a scenario in
which a robot is instructed to be especially attentive to “green patches” on rocks
it observers while roving on Mars. The first plan says that whenever the rover
perceives a green patch on a certain rock (a belief addition), it should try and
examine that particular rock; however note that this plan can only be used (i.e.,
it is only applicable) in case the batteries are not too low. In order to examine the
rock, it has to retrieve, from its own belief base, the coordinates it has associated
with that rock (this is the test goal in the beginning of the plan’s body), then
achieve the goal of traversing to those coordinates and, once there, examining
the rock. Recall that each of these achievement goals will trigger the execution
of some other plan.

The two other plans (note the last one is only an excerpt) provide alternative
courses of actions that the Mars exploration rover has to take according to what
it believes about the environment when the rover has to achieve a new goal of
traversing towards some given coordinates. If the rover believes that there is a
safe path in that direction, then all it has to do is to take the action of moving
towards those coordinates (this is a basic action via which the rover can effect
changes in its environment). The alternative plan is not shown here; it should
provide alternative means for the agent to reach the rock but avoiding unsafe
paths.

146 R.H. Bordini and J.F. Hübner

+green patch(Rock)
: not battery charge(low)
<- ?location(Rock,Coordinates);

!traverse(Coordinates);
!examine(Rock).

+!traverse(Coords)
: safe path(Coords)
<- move towards(Coords).

+!traverse(Coords) :
: not safe path(Coords)
<- ...

Fig. 1. Examples of AgentSpeak Plans for a Mars Rover

The main differences between the language interpreted by Jason and the
original AgentSpeak(L) language described above are as follows. Wherever an
atomic formulæ1 was allowed in the original language, here a literal is used in-
stead. This is either an atomic formulæ p(t1,. . .,tn), n ≥ 0, or ~p(t1,. . .,tn),
where ‘~’ denotes strong negation2. Default negation is used in the context of
plans, and is denoted by ‘not’ preceding a literal. The context is therefore a con-
junction of default literals. For more details on the concepts of strong and default
negation, plenty of references can be found, e.g., in the introductory chapters
of [18]. Terms now can be variables, lists (with Prolog syntax), as well as inte-
ger or floating point numbers, and strings (enclosed in double quotes as usual);
further, any atomic formulæ can be treated as a term, and (bound) variables
can be treated as literals (this became particularly important for introducing
communication, but can be useful for various things). Infix relational operators,
as in Prolog, are allowed in plan contexts.

Also, a major change is that atomic formulæ now can have “annotations”. This
is a list of terms enclosed in square brackets immediately following the formula.
Within the belief base, annotations are used, e.g., to register the sources of
information. A term source(s) is used in the annotations for that purpose; s can
be an agent’s name (to denote the agent that communicated that information), or
two special atoms, percept and self, that are used to denote that a belief arose
from perception of the environment, or from the agent explicitly adding a belief
to its own belief base from the execution of a plan body, respectively. The initial
beliefs that are part of the source code of an AgentSpeak agent are assumed to
be internal beliefs (i.e., as if they had a [source(self)] annotation), unless the
belief has any explicit annotation given by the user (this could be useful if the
programmer wants the agent to have an initial belief about the environment or

1 Recall that actions are special atomic formulæ with an action symbol rather than a
predicate symbol. What we say next only applies to usual predicates, not actions.

2 Note that for an agent that uses Closed-World Assumption, all the user has to do
is not to use literals with strong negation anywhere in the program, nor negated
percepts in the environment (see “Creating Environments” under Section 5).

BDI Agent Programming in AgentSpeak Using Jason 147

as if it had been communicated by another agent). Fore more on the annotation
of sources of information for beliefs, see [21].

Plans also have labels, as first proposed in [3]. However, a plan label can
now be any atomic formula, including annotations, although we suggest that
plan labels use annotations (if necessary) but have a predicate symbol of arity 0,
as in aLabel or anotherLabel[chanceSuccess(0.7), expectedPayoff(0.9)].
Annotations in plan labels can be used for the implementation of sophisticated
applicable plan (i.e., option) selection functions. Although this is not yet pro-
vided with the current distribution of Jason , it is straightforward for the user
to define, e.g., decision-theoretic selection functions; that is, functions which use
something like expected utilities annotated in the plan labels to choose among
alternative plans. The customisation of selection functions is done in Java (by
choosing a plan from a list received as parameter by the selection functions),
and is explained in Section 5. Also, as the label is part of an instance of a plan
in the set of intentions, and the annotations can be changed dynamically, this
provides all the means necessary for the implementation of efficient intention
selection functions, as the one proposed in [3]. However, this also is not yet
available as part of Jason ’s distribution, but can be set up by users with some
customisation.

Events for handling plan failure are already available in Jason , although they
are not formalised in the semantics yet. If an action fails or there is no applicable
plan for a subgoal in the plan being executed to handle an internal event with
a goal addition +!g, then the whole failed plan is removed from the top of the
intention and an internal event for -!g associated with that same intention is
generated. If the programmer provided a plan that has a triggering event match-
ing -!g and is applicable, such plan will be pushed on top of the intention, so
the programmer can specify in the body of such plan how that particular failure
is to be handled. If no such plan is available, the whole intention is discarded
and a warning is printed out to the console. Effectively, this provides a means
for programmers to “clean up” after a failed plan and before “backtracking”
(that is, to make up for actions that had already been executed but left things
in an inappropriate state for next attempts to achieve the goal). For example,
for an agent that persist on a goal !g for as long as there are applicable plans
for +!g, it suffices to include a plan -!g : true <- !g. in the plan library. It
is also simple to specify a plan which, under specific condition, chooses to drop
the intention altogether (by means of a pre-defined internal action).

Finally, as also introduced in [3], internal actions can be used both in the
context and body of plans. Any action symbol starting with ‘.’, or having a ‘.’
anywhere, denotes an internal action. These are user-defined actions which are
run internally by the agent. We call them “internal” to make a clear distinction
with actions that appear in the body of a plan and which denote the actions
an agent can perform in order to change the shared environment (in the usual
jargon of the area, by means of its “effectors”). In Jason , internal actions are
coded in Java, or in indeed other programming languages through the use of
JNI (Java Native Interface), and they can be organised in libraries of actions for

148 R.H. Bordini and J.F. Hübner

specific purposes (the string to the left of ‘.’ is the name of the library; standard
internal actions have an empty library name).

There are several standard internal actions that are distributed with Jason ,
but we do not mention all them here (see [8] for a complete list). To give an
example, Jason has an internal action that implements KQML-like inter-agent
communication. The usage is: .send(+receiver, +illocutionary force,
+prop content) where each parameter is as follows. The receiver is simply
referred to using the name given to agents in the multi-agent system (see Sec-
tion 5). The illocutionary forces available so far are: tell, untell, achieve,
unachieve, tellHow, untellHow, askIf, askOne, askAll, and askHow. The ef-
fects of receiving messages with each of these types of illocutionary acts are ex-
plained in Section 4. Finally, the message’s propositional content prop content
is a literal.

Another important class of standard internal actions are related to query-
ing about the agent’s current desires and intentions as well as forcing itself to
drop desires or intentions. The notion of desire and intention used is exactly as
formalised for AgentSpeak agents in [11]. The standard AgentSpeak language
has provision for beliefs to be queried (in plan contexts and by test goals) and
since our earlier extensions beliefs can be added or deleted from plan bodies.
However, an equally important feature, as far as the generic BDI architecture
is concerned, is for an agent to be able to check current desires/intentions and
drop them under certain circumstances. In Jason , this can be done by the use
of certain special standard internal actions.

3 Informal Semantics

As we mentioned in the introduction, one of the important characteristics of
Jason is that it implements the operational semantics of an extension of
AgentSpeak. Having formal semantics also allowed us to give precise definitions
for practical notions of beliefs, desires, and intentions in relation to running
AgentSpeak agents, which in turn underlies the work on formal verification of
AgentSpeak programs, as discussed later in this section. The formal semantics,
using structural operational semantics [24] (a widely-used notation for giving
semantics to programming languages) was given then improved and extended
in a series of papers [20, 10, 11, 21, 31]. In particular, [31] presents a revised ver-
sion of the semantics and include some of the extensions we have proposed to
AgentSpeak, including rules for the interpretation of speech-act based commu-
nication. Due to space limitation, in this paper we will only provide the main
intuitions behind the interpretation of AgentSpeak programs.

Besides the belief base and the plan library, the AgentSpeak interpreter also
manages a set of events and a set of intentions, and its functioning requires three
selection functions. The event selection function (SE) selects a single event from
the set of events; another selection function (SO) selects an “option” (i.e., an ap-
plicable plan) from a set of applicable plans; and a third selection function (SI)

BDI Agent Programming in AgentSpeak Using Jason 149

selects one particular intention from the set of intentions. The selection functions
are supposed to be agent-specific, in the sense that they should make selections
based on an agent’s characteristics (though previous work on AgentSpeak did not
elaborate on how designers specify such functions3). Therefore, we here leave the
selection functions undefined, hence the choices made by them are supposed to be
non-deterministic.

Intentions are particular courses of actions to which an agent has committed in
order to handle certain events. Each intention is a stack of partially instantiated
plans. Events, which may start off the execution of plans that have relevant trig-
gering events, can be external, when originating from perception of the agent’s
environment (i.e., addition and deletion of beliefs based on perception are exter-
nal events); or internal, when generated from the agent’s own execution of a plan
(i.e., a subgoal in a plan generates an event of type “addition of achievement
goal”). In the latter case, the event is accompanied with the intention which
generated it (as the plan chosen for that event will be pushed on top of that
intention). External events create new intentions, representing separate focuses
of attention for the agent’s acting on the environment.

We next give some more details on the functioning of an AgentSpeak in-
terpreter, which is clearly depicted in Figure 2 (reproduced from [19]). Note,
however, that this is a depiction of the essential aspects of the interpreter for
the original (abstract) definition of AgentSpeak; it does not include the exten-
sions implemented in Jason . In the figure, sets (of beliefs, events, plans, and
intentions) are represented as rectangles. Diamonds represent selection (of one
element from a set). Circles represent some of the processing involved in the
interpretation of AgentSpeak programs.

At every interpretation cycle of an agent program, the interpreter updates
a list of events, which may be generated from perception of the environment,
or from the execution of intentions (when subgoals are specified in the body of
plans). It is assumed that beliefs are updated from perception and whenever
there are changes in the agent’s beliefs, this implies the insertion of an event
in the set of events. This belief revision function is not part of the AgentSpeak
interpreter, but rather a necessary component of the agent architecture.

After SE has selected an event, the interpreter has to unify that event with
triggering events in the heads of plans. This generates the set of all relevant
plans for that event. By checking whether the context part of the plans in that
set follows from the agent’s beliefs, the set of applicable plans is determined —
these are the plans that can actually be used at that moment for handling the
chosen event. Then SO chooses a single applicable plan from that set, which
becomes the intended means for handling that event, and either pushes that
plan on the top of an existing intention (if the event was an internal one), or

3 Our extension of AgentSpeak in [3] deals precisely with the automatic generation of
efficient intention selection functions. The extended language allows one to express
relations between plans, as well as quantitative criteria for their execution. We then
use decision-theoretic task scheduling to guide the choices made by the intention se-
lection function.

150 R.H. Bordini and J.F. Hübner

Belief
Base

SE

SI

Internal
Events

Relevant
Plans

Applicable
Plans

External
Events

Update
Intention

Means
Intended

Plan
Library

Events

Intentions

BRF

Unify
Context

Execute
Intention

Event
Unify

Perception

Action

Selected
Event

Beliefs

Intention

Events

Beliefs

Beliefs

Beliefs

SO

AgentSpeak(L) Agent

Intentions

Selected

Plans

...New
New

Intention
New

Subplan
Push

65

21

3

74

Fig. 2. An Interpretation Cycle of an AgentSpeak Program [19]

creates a new intention in the set of intentions (if the event was external, i.e.,
generated from perception of the environment).

All that remains to be done at this stage is to select a single intention to
be executed in that cycle. The SI function selects one of the agent’s intentions
(i.e., one of the independent stacks of partially instantiated plans within the
set of intentions). On the top of that intention there is a plan, and the formula
in the beginning of its body is taken for execution. This implies that either a
basic action is performed by the agent on its environment, an internal event is
generated (in case the selected formula is an achievement goal), or a test goal is
performed (which means that the set of beliefs has to be checked).

If the intention is to perform a basic action or a test goal, the set of intentions
needs to be updated. In the case of a test goal, the belief base will be searched for
a belief atom that unifies with the atomic formula in the test goal. If that search
succeeds, further variable instantiation will occur in the partially instantiated
plan which contained that test goal (and the test goal itself is removed from
the intention from which it was taken). In the case where a basic action is
selected, the necessary updating of the set of intentions is simply to remove that
action from the intention (the interpreter informs to the architecture component
responsible for the agent effectors what action is required). When all formulæ in
the body of a plan have been removed (i.e., have been executed), the whole plan
is removed from the intention, and so is the achievement goal that generated it
(if that was the case). This ends a cycle of execution, and everything is repeated

BDI Agent Programming in AgentSpeak Using Jason 151

all over again, initially checking the state of the environment after agents have
acted upon it, then generating the relevant events, and so forth.

4 Other Features of the Language

4.1 Agent Communication in Jason

The performatives that are currently available for agent communication in Ja-
son are largely inspired by KQML. We also include some new performatives,
related to plan exchange rather than communication about propositions. The
available performatives are briefly described below, where s denotes the agent
that sends the message, and r denotes the agent that receives the message. Note
that tell and untell can be used either for an agent to pro-actively send in-
formation to another agent, or as replies to previous ask messages.

tell: s intends r to believe (that s believes) the sentence in the message’s
content to be true;

untell: s intends r not to believe (that s believes) the sentence in the message’s
content to be true;

achieve: s requests that r try to achieve a state of the world where the message
content is true;

unachieve: s requests that r try to drop the intention of achieving a state of
the world where the message content is true;

tellHow: s informs r of a plan;
untellHow: s requests that r disregard a certain plan (i.e., delete that plan from

its plan library);
askIf: s wants to know if the content of the message is true for r;
askAll: s wants all of r’s answers to a question;
askHow: s wants all of r’s plans for a triggering event;

A mechanism for receiving and sending messages asynchronously is used. Mes-
sages are stored in a mail box and one of them is processed by the agent at the
beginning of a reasoning cycle. The particular message to be handled at the be-
ginning of the reasoning cycle is determined by a selection function, which can be
customised by the programmer, as three selection functions that are originally
part of the AgentSpeak interpreter.

Further, in processing messages we consider a “given” function, in the same
way that the selection functions are assumed as given in an agent’s specification.
This function defines a set of socially acceptable messages. For example, the re-
ceiving agent may want to consider whether the sending agent is even allowed
to communicated with it (e.g., to avoid agents being attacked by malicious com-
municating agents). For a message with illocutionary force achieve, the agent
will have to check, for example, whether the sending agent has sufficient social
power over itself, or whether it wishes to act altruistically towards that agent
and then do whatever it is being asked.

Note that notions of trust can also be programmed into the agent by consid-
ering the annotation of the sources of information during the agent’s practical

152 R.H. Bordini and J.F. Hübner

reasoning. When applied to tell messages, the function only determines if the
message is to be processed at all. When the source is “trusted” (in this limited
sense used here), the information source for a belief acquired from communica-
tion is annotated with that belief in the belief base, enabling further considera-
tion on degrees of trust during the agent’s reasoning.

When the function for checking message acceptance is applied to an achieve
message, it should be programmed to return true if, e.g., the agent has a subordi-
nation relation towards the sending agent. However this “power/subordination”
relation should not be interpreted with particular social or psychological nuances:
the programmer defines this function so as to account for all possible reasons for
an agent to do something for another agent (from actual subordination to true
altruism). Similar interpretations for the result of this function when applied to
other types of messages (e.g., askIf) can be derived easily. For more elaborate
conceptions of trust and power, see [14].

In order to endow AgentSpeak agents with the capability of processing com-
munication messages, we annotate, for each belief, what is its source. This an-
notation mechanism provides a very elegant notation for making explicit the
sources of an agent’s belief. It has advantages in terms of expressive power and
readability, besides allowing the use of such explicit information in an agent’s
reasoning (i.e., in selecting plans for achieving goals).

Belief sources can be annotated so as to identify which was the agent in
the society that previously sent the information in a message, as well as to
denote internal beliefs or percepts (i.e., in case the belief was acquired through
perception of the environment). By using this information source annotation
mechanism, we also clarify some practical problems in the implementation of
AgentSpeak interpreters relating to internal beliefs (the ones added during the
execution of a plan). In the interpreter reported in [3], we dealt with the problem
by creating a separate belief base where the internal beliefs were included or
removed.

Due to space restriction, we do not discuss the interpretation of received
messages with each of the available illocutionary forces. This is presented both
formally and informally in [31].

4.2 Cooperation in AgentSpeak

Coo-BDI (Cooperative BDI, [1]) extends traditional BDI agent-oriented pro-
gramming languages in many respects: the introduction of cooperation among
agents for the retrieval of external plans for a given triggering event; the ex-
tension of plans with access specifiers ; the extension of intentions to take into
account the external plan retrieval mechanism; and the modification of the in-
terpreter to cope with all these issues.

The cooperation strategy of an agent Ag includes the set of agents with which it
is expected to cooperate, the plan retrieval policy, and the plan acquisition policy.
The cooperation strategy may evolve during time, allowing greater flexibility and
autonomy to the agents, and is modelled by three functions:

BDI Agent Programming in AgentSpeak Using Jason 153

– trusted(Te,TrustedAgentSet), where Te is a (not necessarily ground) trig-
gering event and TrustedAgentSet is the set of agents that Ag will contact
in order to obtain plans relevant for Te.

– retrievalPolicy(Te,Retrieval), where Retrieval may assume the values
always and noLocal, meaning that relevant plans for the trigger Te must
be retrieved from other agents in any case, or only when no local relevant
plans are available, respectively.

– acquisitionPolicy(Te,Acquisition), where Acquisition may assume the val-
ues discard, add and replace meaning that, when a relevant plan for Te
is retrieved from a trusted agent, it must be used and discarded, or added
to the plan library, or used to update the plan library by replacing all the
plans triggered by Te.

Plans. Besides the standard components which constitute BDI plans, in this
extension plans also have a source which determines the first owner of the plan,
and an access specifier which determines the set of agents with which the plan
can be shared. The source may assume two values: self (the agent possesses
the plan) and Ag (the agent was originally from Ag). The access specifier may
assume three values: private (the plan cannot be shared), public (the plan can
be shared with any agent) and only(TrustedAgentSet) (the plan can be shared
only with the agents contained in TrustedAgentSet).

The Coo-AgentSpeak mechanism to be available in Jason soon will allow
users to define cooperation strategies in the Coo-BDI style, and takes care of
all other issues such as sending the appropriate requests for plans, suspending
intentions that are waiting for plans to be retrieved from other agents, etc. The
Coo-AgentSpeak mechanism is described in detail in [1].

One final characteristic of Jason that is relevant here is the configuration
option on what to do in case there is no applicable plan for a relevant event.
If an event is relevant, it means that there are plans in the agent’s plan li-
brary for handling that particular event (representing that handling that event
is normally a desire of that agent). If it happens that none of those plans are
applicable at a certain time, this can be a problem as the agent does not know
how to handle the situation at that time. Ancona and Mascardi [1] discussed
how this problem is handled in various agent-oriented programming languages.
In Jason , a configuration option is given to users, which can be set in the file
where the various agents and the environment composing a multi-agent system
are specified. The option allows the user to state, for events which have rele-
vant but not applicable plans, whether the interpreter should discard that event
altogether (events=discard) or insert the event back at the end of the event
queue (events=requeue). Because of Jason ’s customisation mechanisms, the
only modification that were required for Jason to cope with Coo-AgentSpeak
was a third configuration option that is available to the users — no changes to
the interpreter itself was required. When Coo-AgentSpeak is to be used, the op-
tion events=retrievemust be used in the configuration file. This makes Jason
call the user-defined selectOption function even when no applicable plans exist
for an event. This way, part of the Coo-BDI approach can be implemented by

154 R.H. Bordini and J.F. Hübner

providing a special selectOption function which takes care of retrieving plans
externally, whenever appropriate.

5 Main Features of the Jason Platform

5.1 Configuring Multi-agent Systems

The configuration of a complete multi-agent system is given by a very simple
text file. The EBNF grammar in Figure 3 gives the syntax that can be used in
the configuration file. In this grammar, <NUMBER> is used for integer numbers,
<ASID> are AgentSpeak identifiers, which must start with a lowercase letter, <ID>
is any identifier (as usual), and <PATH> is as required for defining file pathnames
as usual in ordinary operating systems.

The <ID> used after the keyword MAS is the name of the society. The keyword
infrastructure is used to specify which of the two infrastructures available
in Jason ’s distribution will be used. The options currently available are either
“Centralised” or “Saci”; the latter option allows agents to run on different
machines over a network. It is important to note that the user’s environment
and customisation classes remain the same with both infrastructures.

Next an environment needs to be referenced. This is simply the name of Java
class that was used for programming the environment. Note that an optional
host name where the environment will run can be specified. This only works if
the SACI option is used for the underlying system infrastructure.

The keyword agents is used for defining the set of agents that will take part
in the multi-agent system. An agent is specified first by its symbolic name given
as an AgentSpeak term (i.e., an identifier starting with a lowercase letter); this
is the name that agents will use to refer to other agents in the society (e.g., for

mas → "MAS" <ID> "{"
["infrastructure" ":" <ID>]
[environment]
agents

"}"
environment → "environment" ":" <ID> ["at" <ID>]
agents → "agents" ":" (agent ";")+
agent → <ASID>

[filename]
[options]
["agentArchClass" <ID>]
["agentClass" <ID>]
["#" <NUMBER>]
["at" <ID>]

filename → [<PATH>] <ID>
options → "[" option ("," option)* "]"
option → <ID> "=" (<ID> | <NUMBER> | <STRING>)

Fig. 3. EBNF of the Language for Configuring Multi-Agent Systems

BDI Agent Programming in AgentSpeak Using Jason 155

inter-agent communication). Then, an optional filename can be given where the
AgentSpeak source code for that agent is given; by default Jason assumes that
the AgentSpeak source code is in file <name>.asl, where <name> is the agent’s
symbolic name. There is also an optional list of settings for the AgentSpeak
interpreter available in Jason (these are explained below). An optional number
of instances of agents using that same source code can be specified by a num-
ber preceded by #; if this is present, that specified number of “clones” will be
created in the multi-agent system. In case more than one instance of that agent
is requested, the actual name of the agent will be the symbolic name concate-
nated with an index indicating the instance number (starting from 1). As for
the environment keyword, an agent definition may end with the name of a host
where the agent(s) will run (preceded by “at”). As before, this only works if the
SACI-based infrastructure was chosen.

The user can change the initial settings of the AgentSpeak interpreter available
in Jason , or pass on settings to the agent classes by enclosing in square brackets
certain configuration statements. These have the form of a keyword, followed by
‘=’ and then the value (possibly predefined keywords) attributed to them; see [8]
for further details. Finally, user-defined overall agent architecture and other user-
defined functions to be used by the AgentSpeak interpreter for each particular
agent can be specified with the keywords agentArchClass and agentClass.

5.2 Creating Environments

Jason agents can be situated in real or simulated environments. In the former
case, the user would have to customise the “overall agent architecture”, as de-
scribed in the next part of this section; in the latter case, the user must provide
an implementation of the simulated environment. This is done directly in a Java
class that extends the Jason base Environment class. A general example of an
environment class is shown in Figure 4.

All percepts (i.e., everything that is perceptible in the environment) should
be determined using the addPercept method; the argument is a literal, so strong
negation can be used in applications where there is open-world assumption. It
is possible to send individualised perception; that is, in programming the envi-
ronment the developer can determine what subset of the environment properties
will be perceptible to individual agents. Recall that within an agent’s overall ar-
chitecture you can further customise what beliefs the agent will actually aquire
from what it perceives. Intuitively, the environment properties available to an
agent from the environment definition itself are associated to what is actually
perceptible at all in the environment (for example, if something is behind my
office’s walls, I cannot see it). The customisation at the agent overall architecture
level should be used for simulating faulty perception (i.e., even though something
is perceptible for that agent in that environment, it may still not include some of
those properties in its belief revision process, because it failed to perceive it). De-
termination of an agent’s individual perception within the environment is done
by using the “addPercept(agentName, percept)” method, where agentName
is a string and percept is a literal.

156 R.H. Bordini and J.F. Hübner

public class myEnv extends Environment {

public myEnv() {
// environment initialisations

}

public String getPos(String ag) {
// some code that returns the agent position

}

public boolean executeAction(String ag, Term action) {
if (action.equals(...)) {

// execute the action
}
...
removePercept(ag); // remove all percepts of agent ag
addPercept(ag,Literal.parseLiteral("pos(r1," + getPos(ag) + ")"));
addPercept(p); // add p as a percept to all agents
return true;

}
}

Fig. 4. Example of an Environment Class

Most of the code for building environments should be (referenced) in the body
of the method executeAction which must be declared as described above. When-
ever an agent tries to execute a basic action (those which are supposed to change
the state of the environment), the name of the agent and a Term representing
the chosen action are sent as parameter to this method. So the code for this
method needs to check the Term (which has the form of a Prolog structure)
representing the action (and any parameters) being executed, and check which
is the agent attempting to execute the action, then do whatever is necessary
in that particular model of an environment — normally, this means changing
the percepts, i.e., what is true or false of the environment is changed according
to the actions being performed. Note that the execution of an action needs to
return a boolean value, stating whether the agent’s attempt at performing that
action on the environment was executed or not. A plan fails if any basic action
attempted by the agent fails.

5.3 Customising Agents

Certain aspects of the cognitive functioning of an agent can be customised by
the user overriding methods of the Agent class (see Figure 5). The three first
selection functions are discussed extensively in the AgentSpeak literature (see
Section 3 and Figure 2). The social acceptance function (socAcc, which is related
to pragmatics, e.g., trust and power social relations) and the message selection
function are discussed in [31] and Section 4. By changing the message selection
function, the user can determine that the agent will give preference to messages

BDI Agent Programming in AgentSpeak Using Jason 157

from certain agents, or certain types of messages, when various messages have
been received during one reasoning cycle. While basic actions are being exe-
cuted by the environment, before the (boolean) feedback from the environment
is available the intention to which that action belongs must be suspended; the
last internal function allows customisation of priorities to be given when more
than one intention can be resumed because feedback from the environment be-
came available during the last reasoning cycle.

Fig. 5. Agent Customisation

Similarly, the user can customise the functions defining the overall agent ar-
chitecture (see Figure 5, AgArch class). These functions handle: (i) the way the
agent will perceive the environment; (ii) the way it will update its belief base
given the current perception of the environment, i.e., the so called belief revision
function (BRF) in the AgentSpeak literature; (iii) how the agent gets messages
sent from other agents (for speech-act based inter-agent communication); and
(iv) how the agent acts on the environment (for the basic actions that appear in
the body of plans) — normally this is provided by the environment implementa-
tion, so this function only has to pass the action selected by the agent on to the
environment, but clearly for multi-agent systems situated in a real-world envi-
ronment this might be more complicated, having to interface with, e.g., available
process control hardware.

For the perception function, it may be interesting to use the function defined
in Jason ’s distribution and, after it has received the current percepts, then
process further the list of percepts, in order to simulate faulty perception, for
example. This is on top of the environment being modelled so as to send different
percepts to different agents, according to their perception abilities (so to speak)
within the given multi-agent system (as with ELMS environments, see [12]).

It is important to emphasise that the belief revision function provided with
Jason simply updates the belief base and generates the external events (i.e.,
additions and deletion of beliefs from the belief base) in accordance with current
percepts. In particular, it does not guarantee belief consistency. As percepts are
actually sent from the environment, and they should be lists of terms stating

158 R.H. Bordini and J.F. Hübner

everything that is true (and explicitly false too, if closed-world assumption is
dropped), it is up to the programmer of the environment to make sure that con-
tradictions do not appear in the percepts. Also, if AgentSpeak programmers use
addition of internal beliefs in the body of plans, it is their responsibility to ensure
consistency. In fact, the user might be interested in modelling a “paraconsistent”
agent, which can be done easily.

An important construct for allowing AgentSpeak agents to remain at the right
level of abstraction is that of internal actions, which allows for straightforward
extensibility and use of legacy code. As suggested in [3], internal actions that
start with ‘.’ are part of a standard library of internal actions that are distributed
with Jason . Internal actions defined by users should be organised in specific
libraries, which provides an interesting way of organising such code, which is
normally useful for a range of different systems. In the AgentSpeak program,
the action is accessed by the name of the library, followed by ‘.’, followed by
the name of the action. Libraries are defined as Java packages and each action
in the user library should be a Java class, the name of the package and class
are the names of the library and action as it will be used in the AgentSpeak
programs.

Fig. 6. Jason IDE

5.4 Available Tools and Documentation

Jason is distributed with an Integrated Development Environment (IDE) which
provides a GUI for editing a MAS configuration file as well as AgentSpeak code
for the individual agents. Figure 6 shows a screenshot of the Jason IDE, when
the user is editing the multi-agent systems configuration file; the AgentSpeak
code of each agent can also be edited (with syntax highlight) from the GUI.

Through the IDE, it is also possible to control the execution of a MAS, and to
distribute agents over a network in a very simple way. There are three execution
modes:

BDI Agent Programming in AgentSpeak Using Jason 159

Fig. 7. Jason ’s Mind Inspector

Asynchronous: in which all agents run asynchronously. An agent goes to its
next reasoning cycle as soon as it has finished its current cycle. This is the
default execution mode.

Synchronous: in which each agent performs a single reasoning cycle in every
“global execution step”. That is, when an agent finishes a reasoning cycle, it
informs Jason ’s execution controller, and waits for a “carry on” signal. The
Jason controller waits until all agents have finished their current reasoning
cycle and then sends the “carry on” signal to them.

Debugging: this execution mode is similar to the synchronous mode; however,
the Jason controller also waits until the user clicks on a “Step” button in
the GUI before sending the “carry on” signal to the agents.

There is another tool provided as part of the IDE which allows the user to in-
spect agents’ internal states when the system is running in debugging mode. This
is very useful for debugging MAS, as it allows “inspection of agents’ minds” across
a distributed system. The tool is called “mind inspector”, and is shown in Figure 7.

160 R.H. Bordini and J.F. Hübner

Jason ’s distribution comes with documentation which is also available on-
line at http://jason.sourceforge.net/Jason.pdf. The documentation has
something of the form of a tutorial on AgentSpeak, followed by a description of
the features and usage of the platform. Although it covers all of the currently
available features of Jason , we still plan to improve substantially the docu-
mentation, in particular because the language is at times still quite academic.
Another planned improvement in the available documentation, in the relatively
short term, is to include material (such as slides and practical exercises) for
teaching Agent-Oriented Programming with Jason .

6 Discussion

One of the reasons for the growing success of agent-based technology is that
it has been shown to be quite useful for the development of various types of
applications, including air-traffic control, autonomous spacecraft control, health
care, and industrial systems control, to name just a few. Clearly, these are ap-
plication areas for which dependable systems are in demand. Consequently, for-
mal verification techniques tailored specifically for multi-agent systems is also
an area that is attracting much research attention and is likely to have a ma-
jor impact in the uptake of agent technology. One of the advantages of the
approach to programming multi-agent systems resulting from the research re-
viewed in this paper is precisely the fact that it is amenable to formal ver-
ification. In particular, model checking techniques (and state-space reduction
techniques to be used in combination with model checking) for AgentSpeak have
been developed [6, 7, 5, 13].

Although very little has been considered so far in regards to using agent-
oriented software engineering methodologies for the development of designs for
systems to be implemented in Jason , existing methodologies that specifically
concern BDI agents, such as Prometheus [23], should be perfectly suitable for
that purpose. In that book, the authors show an example of the use of JACK
(see [32]) for the implementation, but they explicitly say that any platform
that provides the basic concepts of reactive planning systems (such as goals
and plans) would be most useful in the sense of providing all the required con-
structs to support the implementation of designs developed in accordance to
the Prometheus methodology. Because AgentSpeak code is considerably more
readable than other languages such as JACK and Jadex (see [25]), it is arguable
that Jason will provide at least a much more clear way of implementing such
designs. However, being an industrial platform, JACK has, currently, far bet-
ter supporting tools and documentation, but on the other hand, Jason is open
source, whereas JACK is not.

A construct that has an important impact in maintaining the right level
of abstraction in AgentSpeak code even for sophisticated systems is that of
internal actions (described earlier in Section 2). Internal actions necessarily
have a boolean value returned, so they are declaratively represented within a
logic program in AgentSpeak — in effect, we can keep the agent program as a

BDI Agent Programming in AgentSpeak Using Jason 161

high-level representation of the agent’s reasoning, yet allowing it to be arbitrar-
ily sophisticated by the use of existing software implemented in Java, or indeed
any programming language through the use of JNI. Thus, the way in which inte-
gration with traditional object-oriented programming and use of legacy code is
accomplished in Jason is far more elegant than with other agent programming
languages (again, such as JACK and Jadex).

As Jason is implemented in Java, there is no issue with portability, but very
little consideration has been given so far to standards compliance and interop-
erability. However, components of the platform can be easily changed by the
user. For example, at the moment there are two infrastructures available in Ja-
son ’s distribution: a centralised one (which means that the whole system runs
in a single machine) and another which uses SACI for distribution. It should
be reasonably simple to produce another infrastructure which uses, e.g., JADE
(see [2]) for FIPA-compliant distribution and management of agents in a multi-
agent system.

As yet, Jason has been used only for a couple of application described below,
and also for simple student projects in academia. However, due to its AgentSpeak
basis, it is clearly suited to a large range of applications for which it is known that
BDI systems are appropriate; various applications of PRS [16] and dMARS [17]
for example have appeared in the literature [34, Chapter 11].

Although we aim to use it for a wide range of applications in the future, in
particular Semantic Web and Grid-based applications, one particular area of
application in which we have great interest is Social Simulation [15]. In fact,
Jason is being used as part of a large project to produce a platform tailored
particularly to Social Simulation. The platform is called MAS-SOC and is de-
scribed in [12]; it includes a high-level language called ELMS [22] for defining
multi-agent environments. This approach was used to develop a simple social
simulation on social aspects of urban growth. Another area of application that
has been initially explored is the use of AgentSpeak for defining the behaviour
of animated characters for computer animation (or virtual reality) [30].

7 Final Remarks

Jason is being actively improved and extended. The long term objective is to
have a platform which makes available important technologies resulting from
research in the area of Multi-Agent Systems, but doing this in a sensible way so
as to avoid the language becoming cumbersome and, most importantly, having
formal semantics for most, if not all, of the essential features available in Jason .
There are ongoing projects to extend Jason with organisations, given that social
structure is an essential aspect of developing complex multi-agent systems, and
with ontological descriptions underlying the belief base, thus facilitating the use
of Jason for Semantic Web and Grid-based applications. We aim to contribute,
for example, to the area of e-Social Science, developing large-scale Grid-based
social simulations using Jason .

162 R.H. Bordini and J.F. Hübner

Acknowledgments

As seen from the various references throughout this document, the research
on AgentSpeak has been carried out with the help of many colleagues. We are
grateful for the many contributions received over the last few years from: Davide
Ancona, Marcelo G. de Azambuja, Deniel M. Basso, Ana L.C. Bazzan, Antônio
Carlos da Rocha Costa, Guilherme Drehmer, Michael Fisher, Rafael de O. Jan-
none, Romulo Krafta, Viviana Mascardi, Victor Lesser, Rodrigo Machado, Joyce
Martins, Álvaro F. Moreira, Fabio Y. Okuyama, Denise de Oliveira, Carmen Par-
davila, Marios Richards, Máıra R. Rodrigues, Rosa M. Vicari, Willem Visser,
Michael Wooldridge.

Rafael Bordini gratefully acknowledges the support of The Nuffield Founda-
tion (grant number NAL/01065/G).

References

1. D. Ancona, V. Mascardi, J. F. Hübner, and R. H. Bordini. Coo-AgentSpeak:
Cooperation in AgentSpeak through plan exchange. In N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, editors, Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New
York, NY, 19–23 July, pages 698–705, New York, NY, 2004. ACM Press.

2. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE — a java agent devel-
opment framework. In Bordini et al. [4], chapter 5, pages 125–147.

3. R. H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari, and
V. R. Lesser. AgentSpeak(XL): Efficient intention selection in BDI agents via
decision-theoretic task scheduling. In C. Castelfranchi and W. L. Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-2002), 15–19 July, Bologna, Italy, pages 1294–1302,
New York, NY, 2002. ACM Press.

4. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Number 15 in Multi-
agent Systems, Artificial Societies, and Simulated Organizations. Springer-Verlag,
2005.

5. R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
AgentSpeak. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and M. Yokoo,
editors, Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-2003), Melbourne, Australia, 14–18
July, pages 409–416, New York, NY, 2003. ACM Press.

6. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model checking rational
agents. IEEE Intelligent Systems, 19(5):46–52, September/October 2004.

7. R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space reduction
techniques in agent verification. In N. R. Jennings, C. Sierra, L. Sonenberg, and
M. Tambe, editors, Proceedings of the Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New York, NY,
19–23 July, pages 896–903, New York, NY, 2004. ACM Press.

8. R. H. Bordini, J. F. Hübner, et al. Jason: A Java-based agentSpeak interpreter
used with saci for multi-agent distribution over the net, manual, version 0.6 edition,
Feb 2005. http://jason.sourceforge.net/.

BDI Agent Programming in AgentSpeak Using Jason 163

9. R. H. Bordini, J. F. Hübner, and R. Vieira. Jason and the golden fleece of agent-
oriented programming. In Bordini et al. [4], chapter 1, pages 3–37.

10. R. H. Bordini and Á. F. Moreira. Proving the asymmetry thesis principles for a
BDI agent-oriented programming language. In J. Dix, J. A. Leite, and K. Satoh,
editors, Proceedings of the Third International Workshop on Computational Logic
in Multi-Agent Systems (CLIMA-02), 1st August, Copenhagen, Denmark, held as
part of FLoC-02, Electronic Notes in Theoretical Computer Science 70(5). Elsevier,
2002. URL: <http://www.elsevier.nl/locate/entcs/volume70.html>.

11. R. H. Bordini and Á. F. Moreira. Proving BDI properties of agent-oriented pro-
gramming languages: The asymmetry thesis principles in AgentSpeak(L). Annals
of Mathematics and Artificial Intelligence, 42(1–3):197–226, Sept. 2004. Special
Issue on Computational Logic in Multi-Agent Systems.

12. R. H. Bordini, F. Y. Okuyama, D. de Oliveira, G. Drehmer, and R. C. Krafta. The
MAS-SOC approach to multi-agent based simulation. In G. Lindemann, D. Moldt,
and M. Paolucci, editors, Proceedings of the First International Workshop on Reg-
ulated Agent-Based Social Systems: Theories and Applications (RASTA’02), 16
July, 2002, Bologna, Italy (held with AAMAS02) — Revised Selected and Invited
Papers, number 2934 in Lecture Notes in Artificial Intelligence, pages 70–91, Berlin,
2004. Springer-Verlag.

13. R. H. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. Model
checking multi-agent programs with CASP. In W. A. Hunt Jr. and F. Somenzi,
editors, Proceedgins of the Fifteenth Conference on Computer-Aided Verification
(CAV-2003), Boulder, CO, 8–12 July, number 2725 in Lecture Notes in Computer
Science, pages 110–113, Berlin, 2003. Springer-Verlag. Tool description.

14. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, so-
cial importance, and quantification. In Y. Demazeau, editor, Proceedings of the Third
International Conference on Multi-Agent Systems (ICMAS’98), Agents’ World, 4–7
July, Paris, pages 72–79, Washington, 1998. IEEE Computer Society Press.

15. J. Doran and N. Gilbert. Simulating societies: An introduction. In N. Gilbert
and J. Doran, editors, Simulating Society: The Computer Simulation of Social
Phenomena, chapter 1, pages 1–18. UCL Press, London, 1994.

16. M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning. In Proceedings
of the Sixth National Conference on Artificial Intelligence (AAAI’87), 13–17 July,
1987, Seattle, WA, pages 677–682, Manlo Park, CA, 1987. AAAI Press / MIT Press.

17. D. Kinny. The distributed multi-agent reasoning system architecture and lan-
guage specification. Technical report, Australian Artificial Intelligence Institute,
Melbourne, Australia, 1993.

18. J. A. Leite. Evolving Knowledge Bases: Specification and Semantics, volume 81
of Frontiers in Artificial Intelligence and Applications, Dissertations in Artificial
Intelligence. IOS Press/Ohmsha, Amsterdam, 2003.

19. R. Machado and R. H. Bordini. Running AgentSpeak(L) agents on SIM AGENT.
In J.-J. Meyer and M. Tambe, editors, Intelligent Agents VIII – Proceedings of the
Eighth International Workshop on Agent Theories, Architectures, and Languages
(ATAL-2001), August 1–3, 2001, Seattle, WA, number 2333 in Lecture Notes in
Artificial Intelligence, pages 158–174, Berlin, 2002. Springer-Verlag.

20. Á. F. Moreira and R. H. Bordini. An operational semantics for a BDI agent-oriented
programming language. In J.-J. C. Meyer and M. J. Wooldridge, editors, Pro-
ceedings of the Workshop on Logics for Agent-Based Systems (LABS-02), held in
conjunction with the Eighth International Conference on Principles of Knowledge
Representation and Reasoning (KR2002), April 22–25, Toulouse, France, pages
45–59, 2002.

164 R.H. Bordini and J.F. Hübner

21. Á. F. Moreira, R. Vieira, and R. H. Bordini. Extending the operational semantics
of a BDI agent-oriented programming language for introducing speech-act based
communication. In J. Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declar-
ative Agent Languages and Technologies, Proceedings of the First International
Workshop (DALT-03), held with AAMAS-03, 15 July, 2003, Melbourne, Australia
(Revised Selected and Invited Papers), number 2990 in Lecture Notes in Artificial
Intelligence, pages 135–154, Berlin, 2004. Springer-Verlag.

22. F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. ELMS: an envi-
ronment description language for multi-agent simulations. In D. Weyns, H. van
Dyke Parunak, F. Michel, T. Holvoet, and J. Ferber, editors, Environments for
Multiagent Systems, State-of-the-art and Research Challenges. Proceedings of the
First International Workshop on Environments for Multiagent Systems (E4MAS),
held with AAMAS-04, 19th of July, number 3374 in Lecture Notes in Artificial
Intelligence, pages 91–108, Berlin, 2005. Springer-Verlag.

23. L. Padgham and M. Winikoff, editors. Developing Intelligent Agent Systems: A
Practical Guide. John Wiley and Sons, 2004.

24. G. D. Plotkin. A structural approach to operational semantics. Technical report,
Computer Science Department, Aarhus University, Aarhus, 1981.

25. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI reasoning engine. In
Bordini et al. [4], chapter 6, pages 149–174.

26. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. Van de Velde and J. Perram, editors, Proceedings of the Seventh Workshop
on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25
January, Eindhoven, The Netherlands, number 1038 in Lecture Notes in Artificial
Intelligence, pages 42–55, London, 1996. Springer-Verlag.

27. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In V. Lesser
and L. Gasser, editors, Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS’95), 12–14 June, San Francisco, CA, pages 312–319,
Menlo Park, CA, 1995. AAAI Press / MIT Press.

28. A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics. Journal of Logic
and Computation, 8(3):293–343, 1998.

29. M. P. Singh, A. S. Rao, and M. P. Georgeff. Formal methods in DAI: Logic-
based representation and reasoning. In G. Weiß, editor, Multiagent Systems—A
Modern Approach to Distributed Artificial Intelligence, chapter 8, pages 331–376.
MIT Press, Cambridge, MA, 1999.

30. J. A. Torres, L. P. Nedel, and R. H. Bordini. Autonomous agents with multiple
foci of attention in virtual environments. In Proceedings of 17th International
Conference on Computer Animation and Social Agents (CASA 2004), Geneva,
Switzerland, 7–9 July, pages 189–196, 2004.

31. R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics
of speech-act based communication in an agent-oriented programming language.
Submitted article, to appear, 2005.

32. M. Winikoff. JACKTM intelligent agents: An industrial strength platform. In
Bordini et al. [4], chapter 7, pages 175–193.

33. M. Wooldridge. Reasoning about Rational Agents. The MIT Press, Cambridge,
MA, 2000.

34. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons, 2002.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 165 – 185, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Using the KGP Model of Agency to Design Applications

Fariba Sadri

Department of Computing,
Imperial College London,

180 Queen’s gate, London SW7 2BZ, UK
fs@doc.ic.ac.uk

Abstract. This paper is a tutorial describing the main features of the KGP
(Knowledge-Goals-Plan) model of agency and giving user guidance on how the
model can be used to develop applications. The KGP model is based on
computational logic. It consists of an abstract component, a computational
component and an implementation. This paper concentrates on the abstract
component, which consists of formal specifications of a number of different
modules, including the knowledge bases, capabilities, transitions and control.
For each of these we summarise what is provided by the model, and through the
platform implementing the model, and what is left to the users to specify
according to the requirements of the applications for which they wish to use the
KGP model to design agents.

1 Introduction

1.1 The Model

The KGP (Knowledge-Goals-Plan) model of agency has been developed within
the EU SOCS (Societies of Computational Entities) project in a collaborative
effort involving Imperial College, City University, and the universities of
Cyprus, Pisa, Bologna, and Ferrara. Information about the project can be found at
http://lia.deis.unibo.it/research/socs/.

The model is general purpose and highly modular. All of its components, including
its control component, are based on computational logic, and more concretely on
abductive logic programming [8] and logic programming with priorities [3], both with
extensions that deal with temporal constraints.

The model includes:

• an abstract model (declarative semantics): providing formal specifications, in
computational logic, for all the components,

• a computational model (operational semantics): providing a computational
counterpart for all the formal components of the abstract model, and

• a prototype implementation (PROSOCS) in Prolog, Java and JXTA [19].

The computational model exploits the modularity of the abstract model and has
been proved correct with respect to it. It consists of:

166 F. Sadri

• a proof procedure, CIFF [4,5,6], that combines abduction and constraint logic
programming, for the components of the model that are based on abductive logic
programming, and

• a proof procedure, Gorgias [7], that combines argumentation and constraints, for
the components of the model that are based on logic programming with priorities.

In this paper we concentrate on the abstract model.
The KGP model has been designed to cater for the needs of a global computing

setting. To this end it provides heterogeneity, allowing agents to be designed such that
they differ from each other in their knowledge and behaviour. It also incorporates
features that allow agents to function in dynamic open environments, adapt to changes
in the environment and interact with other agents.

The model integrates various aspects of agency, including:

• Reasoning: for example for planning and proactivity
• Reactivity: for example allowing agents to react to changes they perceive in their

environment by performing actions, including sending communications to other
agents

• Goal introduction: allowing agents to alter their goals according to their
circumnstances

• Declarative control: providing dynamic control of the operations of the agent
• (some) Belief revision: for example allowing agents to modify their beliefs in the

light of their observations
• Interaction: for example allowing agents to negotiate with one another for

resources.

The model and its prototype implementation have been used in applications in
combinatorial auctions and negotiation for resources. The formal basis of the model
facilitates formal specification and verification of properties. Such properties have
been studied and are reported in [1].

A detailed description of the KGP model and its comparison with other models can
be found in [9,10], a summary in [2, 11], and details of its implementation in [18].
Details of some components of the model can be found in [14] for the planning
component, in [12] for the control component, and in [4, 5, 6] and [7] for the proof
procedures. Extensions of the model than incorporate normative concepts can be
found in [16, 17].

1.2 Examples

The following examples can help provide a quick and informal introduction to some
of the main features of the KGP model.

KGP agents have individual states that are updated as they observe their
environment and interact with other agents. They decide dynamically what goals to
set themselves depending on their own individual preferences and what they know
about their environments.

At any particular time the agent may consider a number of potential goals, for
example:

 Using the KGP Model of Agency to Design Applications 167

At the moment my goals could be:

 Write a paper
 Book my travel
 Attend to the garden
 Make dinner
 Repair the roof

Then depending on its knowledge of the environment, its temporal constraints (e.g.
deadline for the paper) and its preferences it can decide which of the possible goals to
set itself at that particular time. For example it may decide that the two goals of
writing a paper and booking travel should be given highest priority.

 I am going to:

Write a paper and
Book my travel

It may then proceed with the task of achieving its chosen goals. Concurrently with
planning how to achieve its goals and executing actions, the agent observes its
environment and records information and communications it receives from the
environment and from other agents. For example it may observe that it is raining and
that water is pouring in through the roof.

It is raining. Water is pouring in through the
roof.

It adapts to changes that it perceives in its environment and circumstances by
adjusting or changing its goals, or reacting in some other appropriate way. For
example the observation that the roof is leaking may change the agent’s priorities
and give higher priority to the goal of repairing the roof than the other potential
goals.

168 F. Sadri

I must repair the roof.

The agent plans (partially) for its goals and executes actions towards achieving

them. For example (informally) the following could be a partial plan for the goal of
repairing the roof.

Call Roofer at
Time T2, T2>T1

Call Decorator at Time T3,
T3>T1

Repair the
roof

Make domestic
arrangements at Time
T4, T4>T2, T4>T3

Check bank
balance at Time T1

Fig. 1. A partial plan for the goal “Repair the roof”

The partial plan above consists of three actions of checking the bank balance, and
calling the roofer and the decorator, and a subgoal of making domestic arrangements
which has to be further planned for. All the actions and the subgoal have associated
times, possibly as yet undetermined, with some constraints on them, for example that
calling the roofer and the decorator should take place after checking the bank balance.
Of the three actions here two are communicative (calling the roofer and the decorator)
and one is sensing (checking bank balance).

KGP agents can interleave action execution with planning and observing their
environment. Sometimes the result of their action execution or what they observe
calls for adjustments to their plans. For example the agent with the plan above may
find out that its bank balance is rather low after it executes the action of checking its
bank balance. This new knowledge, in turn, can result in the agent setting itself an
additional goal of finding more money, and giving this goal appropriate temporal
constraints with respect to its other goals.

 Using the KGP Model of Agency to Design Applications 169

Bank balance very low I have to find more

money

KGP agents interact with each other. Each one has its own policy on how to
respond to messages it receives from others. Such interactions can be used, for
example, to ask for resources:

Can you lend me your laptop on
the 10th?

Do I need
my laptop
on the 10th?
Do I want
to be helpful?
Should I ask
for something
in return?

One particularly novel feature of the model is its dynamic context-dependent
control. Control is specified by cycle theories that are defined as logic programs with
priorities. They allow the agent to determine at run-time what to do next and they
allow us to design agents with heterogeneous behaviours.

In the remainder of this paper, we describe the abstract part of the KGP model in
more detail, and explain how a designer can proceed to use the model to develop an
application. For lack of space our description of the model will not give full details.
More details can be found in [9]. Here we summarise the model to the extent of
explaining its main features and giving guidelines to the user. Throughout this paper
by “user of the model” we mean the person who uses the KGP model to design agents
for an application.

170 F. Sadri

2 The KGP Model in a Nutshell

In the KGP model an agent is characterised by the following components:

• An internal mental state, < KB, Goals, Plan >, consisting of a KB which is a
collection of knowledge bases, and the agent’s (current) goals and plan

• A set of reasoning capabilities
• A sensing capability
• A set of formal state transition rules
• A cycle theory.

The cycle theory orchestrates the application of the transitions, which, in turn, use
the capabilities, which use the information in the knowledge bases in the agent’s
internal mental state. These knowledge bases are updated as the agent receives
information from the environment and executes actions in the environment.

 Transitions Capabilities Knowledge Bases

Fig. 2. The architecture of the KGP agent

Some components of the model are fixed, i.e. pre-defined and provided through the
implementation platform. These are typically the domain-independent parts of the
model:

• The structure of the internal mental state
• The set of capabilities and transitions
• The definition of the capabilities
• The definition of the transitions
• The syntax of the knowledge bases in KB
• Some parts of the knowledge bases

 Using the KGP Model of Agency to Design Applications 171

• The syntax of the rules in the cycle theories
• The definition of some of the selection operators (see Section 6) that are used in

cycle theories.

Other components of the model are under the control of the application designer
using the model. These should be specified by the designer to cater for the
requirements and domains of his applications. These components specify domain-
dependent knowledge and the specific behaviour requirements of the agent being
designed. These user-specified components are:

• Some of the contents of the knowledge bases in KB:
to cater for knowledge related to a domain or application, knowledge about the
priorities of the agents being designed, and the agents’ interaction policies.

• The contents of the cycle theories:
 to design the behaviour and profile of agents.
• Some of the definitions of the selection operators:
 to design heuristics affecting the agents’ decision making.

Domain specific requirements and heterogeneity are provided by varying the
contents of the components that are under the control of the user of the model. We
now describe all the components of the model in more detail.

3 The Internal Mental State

The internal mental state of an agent is a triple < KB, Goals, Plan >.

3.1 KB, the Agent’s Knowledge Base

KB consists of several modules supporting the reasoning capabilities. These modules
are:

• KB0: used to store dynamic data
• KBplan: used for planning
• KBtr: used for temporal reasoning
• KBreact: used for reactivity
• KBgd: used for goal decision

Now we describe each of these in some detail.
The first (KB0) is a set of logic facts. The last (KBgd) is a logic program with

priorities, and the remaining three (KBplan, KBtr, KBreact) are abductive logic programs.
KB0 is a dynamic knowledge base which is revised as the agent observes its

environment (via its sensing capability) and is contained within all the other
knowledge bases (and is used by all capabilities).
What the model provides:

KB0 of agent a records the following types of information (for details of syntax the
reader is referred to [9] or [11]):

• actions which have been executed by a, together with the time of the execution
(executed(action, time))

172 F. Sadri

• actions which have been executed by agents y other than a, together with the time
of observation by a (observed(y,action,t))

• properties (fluent literals) observed by a, together with the time of observation
(observed(literal, time)).

What the user has to provide:
The contents of KB0 are determined by the sensing capability and the Passive and
Active Observation transitions (see Section 5), and, of course, by the environment of
the agent. The user of the model does not need to design or provide any of the
contents of KB0.

KBplan is the knowledge base that is used (in conjunction with KB0) to generate
plans for the agents’ goals (via the Planning capability and Plan Introduction
transition - see Sections 4 and 5). It is an abductive event calculus (AEC) theory. For
a description of abductive logic programming see [8], for event calculus see [13], and
for abductive event calculus see [14].

What the model provides:
In a nutshell KBplan= < Pplan, Aplan, Iplan >. Pplan is a set of rules that define effects and
preconditions of actions. In describing the effects of actions it defines a predicate
holds_at(Literal,Time) in terms of happens(Action,Time) and observed(Literal,Time).

In particular Pplan has two sets of rules, those that are domain-independent and
those that are domain-dependent. The domain-dependent part of Pplan has to be
specified by the user (see later). The following are some of the domain-independent
rules in Pplan. In these and in the other rules in the remainder of this paper a comma
between atoms on either side of the arrow represents the connective “and”. All the
variables are assumed to be universally quantified over the rule they occur in, unless
stated otherwise.

holds_at(G,T2)←happens(A,T1), T1 < T2,
initiates(A,T1,G), not clipped(T1, G, T2)

holds_at(G,T)←holds_initially(G), 0 < T,
 not clipped(0,G,T)

holds_at(G,T2) ← observed(G,T1), T1 < T2,
 not clipped(T1,G,T2)

clipped(T1,G,T2) ← happens(A,T), terminates(A,T,G),
T1<T, T<T2

happens(A,T)← executed(A,T)

happens(A,T)← assume_happens(A,T)

These rules express that a property G holds at a time if at an earlier time an action
initiating it has been executed or assumed (via abduction), or if it held initially (at
time 0), or if at an earlier time it has been observed to hold, and, in all cases, provided
that G has not been clipped via a terminating action between the two times. The 3rd
and 5th rules are bridge rules for connecting the AEC theory to KB0. The 6th rule
allows abductions of actions in order to form a plan.

Aplan, the set of abducible atoms, consists of assume_happens(Action,Time). A plan
will contain a set of ground instances of this abducible atom providing the actions of

 Using the KGP Model of Agency to Design Applications 173

the plan. A brief example is given below. Iplan, the set of integrity constraints. Like
Pplan it consists of a domain-dependent part and a domain-independent part. The latter
consists of the following integrity constraints:

holds_at(Literal,Time), holds_at(¬Literal,Time)→ false

assume_happens(Action,Time),precondition(Action,Time,L)
→ holds_at(L, Time)

The first constraint expresses that a property and its negation cannot hold at the
same time, and the second expresses that if an action is assumed to happen at a time
then at that time its precondition must hold.

What the user has to provide:
The user has to provide the domain-dependent parts of Pplan and Iplan. The domain-
dependent part of Pplan consists of:

• what holds initially, using the predicate holds_initially(l) to denote that a fluent l
holds initially (at time 0), e.g. holds_initially(at(john, home)) expresses that John is
initially at home,

• what actions initiate and terminate what properties, using the predicates initiates(a,
t, l) and terminates(a,t,l) to denote that action a, executed at time t initiates or
terminates the fluent l, respectively, e.g. initiates(go(X, L1,L2),T,at(X,L2)) and
terminates(go(X, L1,L2),T,at(X,L1)) state that going from location L1 to L2
initiates being at L2 and terminates being at L1, and

• the preconditions of actions, using the predicate precondition(a,t,l) to denote that
fluent l is a precondition for executing action a at time t, e.g. precondition(go(X,
L1,L2),T,at(X,L1)) expresses that a precondition for going from location L1 to L2 is
being at L1.

The domain dependent part of Iplan consists of any constraints that are to be
specified with respect to the particular agent or environment or application domain.
These constraints have to conform to the following syntax:

Conditions → h[t], Tc,

where Conditions is a conjunction of any of the following:

• holds_at (l,t’), where l is a fluent literal and t’ is a time variable
• happens (a,t’), where a is an action operator and t’ is a time variable
• assume_happens(a,t’), where a and t’ are as above,
• temporal constraints,

h[t] is any of the following:
• holds_at (l,t),
• happens (a,t),
• assume_happens(a,t),

and Tc are temporal constraints on t possibly with respect to any time variables in
Conditions.

Either of h[t] or Tc may be absent from the head. If both are absent then the head
should be false.

174 F. Sadri

Examples of such integrity constraints are:

assume_happens(go(Person,L,maths_building) ,Time) →
Time>8, Time<23
stating that one can go to the maths building only between times 8 and 23.

assume_happens(work,Time), assume_happens(rest, Time) →
false

stating that the agent cannot work and rest at the same time. As a simple example
consider the goal of John being at the maths building at time 10, i.e. holds_at
(at(john,maths_building), 10). Given the domain-dependent examples above, a plan for
this goal is for John to go to the maths building between the hours of 8 and 10. This plan
is denoted as assume_happens(go(john, home, maths_building), T) and T>8 and T<10.

KBtr: In [9] we give a formulation of KBtr that is slightly different from that of
KBplan, but here we can assume that KBtr is the same as KBplan. KBtr, the knowledge
base for the temporal reasoning part of the model, is used to determine and predict
what properties (fluents) hold at given times (via the Temporal Reasoning capability).
This functionality is used, for example, when the agent wishes to determine if the
preconditions of an action in its plan hold, or to check if (according to what it
believes) some of its goals have been achieved.

KBreact is used for the reactivity part of the model (Reactivity capability and
transition).

What the model provides:
KBreact is KBplan with its Iplan extended to include reactive constraints. The syntax of
the reactive constraints is as follows:

Triggers, Conditions → h[t], Tc,

where Conditions, h[t] and Tc are as in the syntax of integrity constraints in Iplan,
described above, and Triggers is a non-empty conjunction of items of the form
observed(l,t’), observed(c,a,t’), happens(a,t’), assume_happens(a,t’), executed(a,t’).

The intended reading of each reactive constraint is that if the constraint is
“triggered” (via matches to Triggers found in the agent internal state) and its
Conditions hold with respect to the internal state, then the constraint “fires”, and its
conclusion is added to the Goals component of the state if it contains a timed fluent,
or to the Plan component if it contains a timed action operator.

What the user has to provide:
The user has to provide all the reactive constraints of KBreact. Reactive constraints can
be used to represent a number of different things. For example they can be used to
represent

• interaction policies,
• condition-action rules, and
• policies for repairing plans.

An example of a reactive constraint representing an interaction policy of agent a is:

observed(C, tell(C,a,request(R,D,T1)),T),
holds_at(have(R),T1), not holds_at(need(R),T1), T+1<T1
→assume_happens(tell(a,C,accept(request(R,D,T1))),T2),
T2>T, T2<T1

 Using the KGP Model of Agency to Design Applications 175

This says that if agent a observes that an agent C requests at time T to be given a
resource R at a later time T1, and a knows that it has that resource at time T1 and does
not need it then a accepts to give C the resource at time T1 and communicates this
acceptance to him any time after receiving (observing) the request and before T1. The
variable D is an identifier for the dialogue that includes the request and the acceptance
of the request.

An example of a reactive rule representing a condition-action rule is:

observed(alarm-sound(Room),T), holds_at(in(Room),T)
→assume_happens(leave(Room),T1), T1<T + 2

This says that if an alarm sounds in the room you are in leave the room within 2 time
points.

An example of a reactive rule representing a specific plan repair policy is:

executed(send_message(M),T), observed(network_down, T1),
T1=T+1 → assume_happens(send_message(M), T2), T2>T1+5

This says that if you have sent a message and then at the next time point observed
that the network is down you should send the message again after waiting at least 5
time units.

Kbgd contains the goal preference policies of the agent. It is used when the agent
wishes to decide what goals to set itself (via the Goal Decision capability and
transition).

What the model provides:
KBgd has 3 main parts (it also contains KB0):

• the lower-level part to generate potential goals,
• the higher-level part to specify priorities between the other rules of the theory,

effectively allowing to choose amongst the potential goals,
• the auxiliary part consisting of rules defining any auxiliary predicates used in the

lower and higher level parts.

The syntax for the parts is fixed in the model and is based on logic programming
with priorities. We describe the syntax below.

What the user has to provide:
The user has to provide the rules for the 3 parts of KBgd listed above. In doing so the
user will determine

• the set of all possible appropriate goals for the agent that is being designed,
• context dependency of potential goals, i.e. rules that determine under what

circumstances, depending on temporal constraints, environmental factors and the
agent’s private knowledge, what goals should be considered, and

• the agent’s preferences and priorities, i.e. under what circumstances the agent
should commit to which goals.

Note that the possible appropriate goals for the agent should guide the user towards
what needs to be specified in KBplan, i.e. it would make sense for KBplan to provide
specification of actions (through the initiates, terminates and precondition predicates)
that can help towards achieving some or all of these goals. In other words it would be

176 F. Sadri

appropriate to incorporate in the model the knowledge that can potentially be used to
generate plans for the potential goals of the agent.

The lower-level part of KBgd consists of rules of the form

name of the rule: G[t], Tg ← L1, …, Ln, Tc (n>0 or n=0)

where

• the Li are either time dependent conditions of the form holds_at(l,t), or time
dependent conditions formulated in terms of auxiliary predicates defined in the
auxiliary part of KBgd,

• G is a goal fluent (see Section3.2 and the examples below) chosen by the user,
• Tg is a (possibly empty) set of temporal constraints,
• t is a time variable, assumed to be existentially quantified with the scope the head

of the rule,
• Tc are temporal constraints on the time variables in the body of the rule.

All variables, except t, are implicitly universally quantified over the rule. Each rule in
the lower-level part is given a name. Examples of lower-level rules are:

gd(dinner): make_dinner(T) ← holds_at(finished_work,T)

gd(repair): repair_roof(T) ← holds_at(leaky_roof,T)

These state that making dinner is a potential goal when work is finished and repairing
the roof is a potential goal when the roof is leaking.

The higher-level part of KBgd consists of rules of the form

name of the rule: h_p(rule1, rule2) ← L1, …, Ln, Tc (n>0 or n=0)

where

• the Li are Tc are as described as in the lower-level part, and
• rule1 and rule2 are names of other rules in KBgd.

These higher-level rules represent priorities amongst rules in the lower-level part
or other priority rules in the higher-level part. Each rule in the higher-level part is
given a name. Examples of higher-level rules are:

gd_pref(X,Y):h_p(gd(X), gd(Y)) ← type(X,TX),
type(Y,TY), more_urgent_wrt_type(TX,TY)

This states that the rule called gd(X) should be given higher priority than the rule
called gd(Y) whenever X is a more urgent type of goal compared to Y.

The auxiliary part is simply a logic program defining any auxiliary predicates
occurring in the other parts. In addition, it can contain statements of incompatibility
using the predicate incompatible(g1,g2) denoting that two goals g1 and g2 are
incompatible (to hold at the same time). Examples of the auxiliary part rules are:

type(dinner, optional)

type(repair, required)

more_urgent_wrt_type(required,optional)

incompatible(make_dinner, repair_roof)

 Using the KGP Model of Agency to Design Applications 177

These collection of example rules for the 3 parts of KBgd ensure that whenever
both making dinner and repairing the roof are potential goals the latter will be chosen
as the one with higher priority.

3.2 Goals and Plan

What the model provides:
The representation of a goal in the state is a timed fluent l[t], for example
has_driving_licence(john, T1), where T1 may be constrained in the state, for example
by the temporal constraints 10<T1, T1<20. There are two types of goals:

• Mental (under the control of the agent), e.g. be_at_the_airport(T), T<18
• Sensing (not under the control of the agent and observable by sensing the external

environment), e.g. request_accepted(T), raining(T).

When a goal l[t] in the state is selected for planning it is automatically represented as
holds_at(l,t).

The representation of a Plan in the state is a set of partially ordered actions. An
action is a timed operator a[t], e.g pay_fine(john, T), where T may be constrained in
the state, for example by the temporal constraint T1<T, T<T3. There are three types
of actions:

• Physical e.g. do(clear_table, T)
• Sensing e.g. sense(connection_on, T)
• Communicative e.g. tell(x, y, request(r1, d, T),T1)

All the time variables associated with goals and actions are assumed to be
existentially quantified over the whole state. Goals and actions can be viewed as
organised in a tree structure, showing associations of goals/subgoals/actions for ease
of revision and partial planning.

Below is an (informal) example of goals/actions tree in state of an agent called a.

 ⊥

G: repair_roof(T), 5<T, T<20

G1: get_resource(r1,T1), G2: get_resource(r2,T2),

5<T1, T1<T3 5<T2, T2<T3

 A:

tell(a,b,request(assistance,d,T3), T5),

 T3<20, T5<T3-5

A1:

tell(a,c,request(r1,d1,T4), T6),

5<T4, T4<T1, T6<T4

Fig. 3. A Goals/Actions Tree

178 F. Sadri

In this tree the root is represented by the symbol ⊥. The top level goal is to repair
the roof at a time between times 5 and 20. A partial plan for this goal consists of the
two subgoals G1 and G2 of getting two resources r1 and r2 within the specified
temporal constraints, and an action A of requesting assistance from agent b. A (full)
plan for goal G1 consists of action A1 of requesting the resource from agent c, with
the specified temporal constraints.

What the user has to provide:
For the Goals and Plan components of the agent’s internal state the user does not need
to provide anything. The goals in Goals will result from the information the user
provides in KBgd, KBplan and KBreact. The actions in Plan will result from the
information the user provides in KBplan and KBreact.

4 The Capabilities

As mentioned in Section 2 the model provides a sensing capability and a number of
reasoning capabilities. The model provides all the necessary specifications for these.
Below we summarise these capabilities.

The Sensing Capability: This allows the agent to observe the environment and to
receive messages from other agents. The agent observes actions executed by other
agents and fluents holding in the environment. These observations are made either
passively via the Passive Observation Introduction transition (see Section 5) or
actively by the agent seeking specific information, via the Active Observation
Introduction transition (see Section 5). The results of the observations are recorded in
KB0, as described in Section 3.

The Reasoning Capabilities: There are 5 reasoning capabilities:

1. Planning: generates partial plans for given sets of goals in the internal state of the
agent

2. Temporal reasoning: makes predictions about properties holding in the environment
3. Reactivity: reacts to perceived changes in the environment by generating goals and

actions to be added to the internal state of the agent
4. Identification of preconditions of actions: identifies the preconditions of given sets

of actions
5. Goal decision: determines how the top level goals of the agent (and consequently

all the goals of Goals in the internal state of the agent) should be revised to take
into account the agent’s preferences and the perceived changes in the environment.

All the reasoning capabilities are formally specified in the model, the first 4 using
abductive logic programming, and the last using logic programming with priorities.
The formal specifications can be found in [9]. To give a flavour we give a simplified
specification of the Planning capability.

Specification of the Planning capability:
KB, Goals, Plan, (G1, …, Gn) plan(PP1,…, PPn) such that

• Pplan∪Goals\ Gi ∪ Plan ∪ PPi LP Gi, for each i from 1 to n
• Pplan∪Goals∪Plan ∪PP1∪ …. ∪PPn LP Iplan

 Using the KGP Model of Agency to Design Applications 179

• There is a substitution σ for all the time variables in Goals, Plan, G1, …, Gn,
PP1,…, PPn, that satisfies all temporal constraints in Goals, Plan, G1, …, Gn,
PP1,…, PPn and allows all time variables of any actions in the PPi to be instantiated
by times in the future of .

Here plan denotes the Planning capability and LP denotes any semantics for logic
programming. The specification above states that the Planning capability takes as
input

• the agent internal state
• a set G1, …, Gn of goals (to be planned for), which would be a subset of the goals

in Goals
• a time (the time the capability is called),

and produces as output a partial plan PPi for each input goal Gi, such that

• each PPi entails its associated goal Gi in the context of the state (without the Gi),
• all the partial plans together with the internal state entail all the integrity

constraints in Iplan,
• all the resulting temporal constraints, including any new ones generated (and any

new instantiations of time parameters) are satisfiable together, and
• the temporal constraints of the new planned actions allow the actions to be

performed in the future of .

In a nutshell the Planning capability generates consistent, feasible partial plans for
all the input goals. We gloss over exactly what a partial plan is. Examples have been
given in Sections 1 and 3, and details are available in [9,14].

Notice that this specification is parametric on:

• LP, i.e. some semantics for logic programs, and
• some semantics underlying constraint satisfaction.

In addition the formal specification of the Goal decision capability is parametric on
some semantics PR for logic programs with priorities. The computational model of
the KGP commits to concrete instances of the above: 3-valued completion semantics
for LP and argumentation based semantics for a concrete framework, LPwNF [3]
of PR.

For the rest of the capabilities we give summary, informal specifications:

• The Temporal reasoning capability takes as input KBtr and a timed fluent and
determines if the fluent holds at the specified time.

• The Reactivity capability takes as input the internal state of the agent and a time of
application of the capability, and returns as output all the “reactions” that are
“fired” at that time from KBreact.

• The Identification of preconditions capability takes as input KBplan and a set of
timed action operators and returns the preconditions of those actions as determined
by KBplan.

• The Goal decision capability takes as input KBgd and a time of application of the
capability, and returns all the goals that are determined by KBgd to have highest
priority at that time.

180 F. Sadri

5 The Transitions

Transitions use the capabilities and change the internal state of the agent. The model
provides all the necessary specifications for the transitions. There are 8 transitions.
They are:

1. Goal Introduction - GI: It replaces Goals in the state by the highest priority goals
that the Goal decision capability generates.

2. Plan Introduction - PI: It uses the Planning capability and extends the state with the
resulting partial plans for a selected set of goals.

3. Reactivity - RE: It extends the Goals and/or Plan components of the state with the
reactions (goals and/or actions) that the Reactivity capability generates.

4. Action Execution - AE: It executes (a selected set of) actions and records their
execution in KB0. It uses the Sensing capability for the execution of sensing
actions.

5. Passive Observation Introduction - POI: It records in KB0 any (unsolicited)
information observed in the environment or communication received from other
agents. It uses the Sensing capability.

6. Active Observation Introduction - AOI: It senses the environment for a specific set
of properties (fluents) and records the result in KB0. It uses the Sensing capability.

7. Sensing Introduction - SI: It adds new sensing actions to the Plan for sensing the
environment to determine whether or not preconditions of some existing actions in
Plan hold.

8. State Revision - SR: It revises the Goals and Plan components of the state by
removing goals that are achieved or timed-out and their children, and actions that
have been executed or timed-out. It uses the Temporal reasoning capability.

The transitions are specified in the following general form:

 S=<KB, Goals, Plan> , Input at a time τ
 T: __________________________________

S' =<KB',Goals',Plan'>

denoting that the transition T takes a state S and an input at a time τ, and changes the
state to S'. The Input may be missing from the specification of some of the transitions.

Transitions typically:

• call some capabilities and/or check for temporal constraint satisfaction, and
• have an input computed by selection operators (see Section 6).

The input is either a set of actions (to be executed in AE, for example), or a set of
goals (to be planned for in PI), or a set of fluents (to be sensed in the environment in
AOI, for example).

As an example we give the specification of the Plan Introduction (PI) transition
below. Many details are glossed over, for lack of space.

 S=<KB, Goals, Plan>, SGs τ
PI: _________________________

 S'=<KB,Goals',Plan'>

 Using the KGP Model of Agency to Design Applications 181

where S' is determined as follows:

• The planning capability plan is utilised at time τ with input the set of goals SGs.
• plan will return partial plans for each goal G in SGs, the partial plans consisting of

(sub)goals, actions and temporal constraints.
• The returned (sub)goals and actions are added to Goals and Plan, respectively,

together with their temporal constraints.

6 Cycle Theories for Declarative Control

In the KGP model the agent control of the operations, i.e. the orchestration of the
transitions, is via cycle theories. This is quite different compared with some other
agent systems where a conventional control mechanism dictates a fixed sequence of
operations. The KGP cycle theories determine the sequences of transitions
dynamically and declaratively, providing flexible control that can be designed to
capture specific agent behaviour profiles and to fit specific environments or
applications.

The cycle theories are specified using logic programs with priorities. They are
described in detail in [9], and in summary in [11]. Some behaviour profiles resulting
from varying cycle theories are described in [15] and [1]. Here we give a summary
with more emphasis on distinguishing what the model provides and what the user
needs to add.

What the model provides:
A cycle theory is a (meta-)logic program with priorities Tcycle to reason about which
transition should be chosen when. It consists of:

• a basic part Tbasic to reason about which transition could be next (in some given
state and at a given time), initially or after a transition that has just been executed,

• a behaviour part Tbehaviour to decide which transition (amongst the possibly many
potential ones) will be next, and

• an auxiliary part, providing definitions of auxiliary predicates used in the other two
parts.

Tbasic consists of rules of the form:

rT1|T2 (S',X') : T2 (S',X') ← T1 (S,X,S'), EC(S', τ, X'),

 time_now(τ)

where S, S' are states, T1, T2 are transition names (PI, GI, etc), X' is input to T2, and
EC is a (possibly empty) conjunction of enabling conditions (defined in terms of the
core selection operators described below).

The rule states that after transaction T1 has been performed with some input X and
changing the state from S to S', then transition T2 is a possible follow-up provided at
the current time the enabling conditions EC hold and produce an input X' for
transition T2. The rule is given the name rT1|T2 (S',X'). Notice the predicative
representation of transitions in cycle theory rules. A transition represented as

182 F. Sadri

 S=<KB, Goals, Plan> , Input at a time τ
 T: ___________________________________

 S'=<KB',Goals',Plan'>

as seen in Section 5, is represented as an atom in the predicate T:

T(S, Input, S',τ)

and sometimes, for brevity, with some parameters omitted.
Tbehaviour consists of rules of the form:

RT

N1|N2: rT|N1(S,X1)>rT| N2(S,X2) ← BC(S,X1,X2,τ),
 time_now(τ)

where S is a state, N1, N2, T are transition names, X1 is input to N1, X2 is input to
N2, BC is a (possibly empty) conjunction of behaviour conditions (defined in terms
of the heuristic selection operators described below).

The rule states that after transition T, transition N1 is preferred to N2 when the
behaviour conditions hold at the current time τ and produce inputs X1 and X2,
respectively for N1 and N2. The behaviour rule is given the name RT

N1|N2.
The auxiliary part of Tcycle consists of the definitions of any predicates occurring in

the enabling and behaviour conditions, and rules of the form incompatible(T(S,X),
T'(S',X')) stating that different transitions are incompatible with each other as are
different calls to the same transition with different inputs (to be executed at the same
time).

The enabling conditions of the rules in Tbasic are defined in terms of the core
selection operators. These selection operators compute the inputs to the transitions
and help cycle theories to determine the next possible transition. There are 4 core
selection operators:

• Action selection - cAS(S, τ): selects a set of actions in the current state for
execution.

• Goal selection - cGS(S, τ): selects a set of goals in the current state to be planned for.
• Fluent selection - cFS(S, τ) : selects a set of fluents to be sensed in the environment.
• Precondition selection - cPS(S, τ) : selects a set of action preconditions to be sensed.

The definitions of these operators are given within the model. For example cGS(S,
τ) is the set of all goals in the state S at time τ which have not been achieved yet, are
not timed out and are not the children of goals that have been achieved or are timed
out. Analogous to the core selection operators there are 4 heuristic selection operators
which are used to define the behaviour conditions in Tbehaviour. The definitions of these
are under the control of the user.

Given an agent’s cycle theory Tcycle, the agent’s behaviour is characterised as a
(possibly infinite) sequence of transitions

 T1(S0,X1,S1, τ1),….,Ti(Si-1,Xi,Si, τi), Ti+1(Si,Xi+1,Si+1, τi+1),….

such that

• S0 is some initial state for the agent
• τi is given by some internal clock
• Tcycle , Ti(Si-1,Xi, Si, τi), time_now(τ) pr Ti+1(Si,Xi+1, Si+1, τi+1).

 Using the KGP Model of Agency to Design Applications 183

pr denotes some semantics for logic programs with priorities. The abstract KGP
model is parametric with respect to this. The computational model chooses
argumentation based semantics for a concrete framework of pr [3].

A complete specification of a cycle theory, called the normal cycle theory, can be
found in [15]. We cannot reproduce it here for lack of space.
What the user has to provide:

The user can provide his own rules for all the 3 components of Tcycle conforming to
the general syntax. The following are some examples.

Examples of Tbasic:

r PI|AE(S',As): AE(S',As) ← PI(S,Gs,S'), As=cAS(S', τ),

 As ≠ {}, time_now(τ)

This states that a Plan Introduction transition may be followed by an Action
Execution transition, if there are actions to be executed (identified by the core
selection operator for action selection cAS).

r POI|RE(S',_): RE(S',_) ← POI(S,_,S')

This states that a Passive Observation Introduction transition may be followed by a
Reactivity transition, unconditionally. Note that the Reactivity transition requires no
input computed by any of the selection operators.

Examples of Tbehaviour:

RPI

AE|N: rPI|AE(S,As) > rPI|N(S,X) ← not unreliable_pre(As)

for all transitions N ≠ AE.

RPI

SI|AE: r PI|SI(S,Ps) > r PI|AE(S,As)) ← unreliable_pre(As)

These two rules state that after Plan Introduction, the transition Action Execution is
preferred to any other, unless there are actions amongst the actions selected for
execution whose preconditions are “unreliable” and need checking, in which case
Sensing Introduction will be given preference. The predicate unreliable_pre has to be
defined in the auxiliary part of Tcycle.

By varying the rules of the cycle theory the behaviour of the agent can be varied.
Two different profiles of behaviour, called focussed and careful, obtained in this way
are described in [15], where cycle theories are provided for each profile. With the
focussed profile an agent concentrates on one goal at a time until it achieves it or it is
convinced that it is unachievable. With the careful profile, after any transition the
agent revises its state via the SR transition to ensure that unachievable or unnecessary
goals and actions are revised away as soon as possible. A collection of other profiles,
their properties and their associated cycle theories have been proposed in [1].

7 Conclusion

In this paper we have provided a tutorial on the KGP model of agency, concentrating
on the abstract counterpart of the model. The tutorial has aimed to provide an

184 F. Sadri

overview of the model and give some user guidance. For each module of the abstract
model we have summarised the domain-independent part which is provided by the
model, and available through the implementation platform. In addition, for each
module we have discussed the features of the domain-dependent part which the user
has to provide in order to specify the particular requirements of the application.

This tutorial should help the user make a start on designing an agent in the KGP
model. On its own, however, it is not sufficient for providing guidance up to and
including the implementation stage. Further guidance on implementation is needed.
This will become available when the platform becomes publicly accessible.

Acknowledgements

I am grateful to the anonymous reviewers for their helpful comments on an earlier
draft of this paper. Work on the KGP model was funded by the IST programme of the
EC, FET under the IST-2001-32530 SOCS project, within the GC proactive initiative.

References

1. M. Alberti, F. Athienitou, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, A. Kakas, E.
Lamma, W. Lu, P. Mancarella, P. Mello, F. Sadri, K. Stathis, F. Toni, P. Torroni:
Verifiable Properties of Societies of Computees, Technical report, SOCS Consortium,
Deliverable D13, U. Endriss, F. Sadri (eds.), will be available at
http://lia.deis.unibo.it/research/socs/guests/publications/ (2005)

2. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri, K.
Stathis, G. Terreni, F. Toni: The KGP Model of Agency for Global Computing:
Computational Model and Prototype Implementation, Global Computing 2004 Workshop,
Springer Verlag LNCS 3267 (2005) p. 342

3. Y. Dimopoulos, A.C. Kakas: Logic Programming Without Negation as Failure, in Logic
Programming, Proceedings of the 1995 International Symposium, Portland, Oregon (1995)
p. 369

4. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: The CIFF Proof Procedure for
Abductive Logic Programming With Constraints, JELIA'2004, International Conference on
Logics in AI, Lisbon, Portugal, September 2004, Springer Verlag LNAI 3229 (2004) p. 31

5. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: Abductive Logic Programming
with CIFF: System Description, JELIA'2004, International Conference on Logics in AI,
Lisbon, Portugal, September 2004, Springer Verlag LNAI 3229 (2004) p. 680

6. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, F. Toni: Abductive Logic Programming
with CIFF: Implementation and Applications, CILC04, Convegno Italiano di Logica
Computazionale, 16-17 June 2004, Parma, Italy, Research Report Quaderno del
Dipartimento di Matematica, Universita' di Parma, n. 390 (2004) p. 28

7. Gorgias: Argumentation and Abduction (http://www.cs.ucy.ac.cy/~nkd/gorgias)
8. A.C.Kakas, R.A. Kowalski, F. Toni: The Role of Abduction in Logic Programming, in

Handbook of Logic in Artificial Intelligence and Logic Programming, D.M. Gabbay, C.J.
Hogger, J.A. Robinson (eds.), volume 5, Oxford University Press (1998) p.235

9. A.C. Kakas, E. Lamma, P.Mancarella, P. Mello, K.Stathis, and F.Toni: Computational
Model for Computees and Society of Computees, Technical report, SOCS Consortium,
Deliverable D8, will be available at
http://lia.deis.unibo.it/research/socs/guests/publications/ (2003)

 Using the KGP Model of Agency to Design Applications 185

10. A.C. Kakas, P.Mancarella, F. Sadri, K.Stathis, and F.Toni: A Logic-based Approach to
Model Computees, Technical report, SOCS Consortium, Deliverable D4, will be available
at http://lia.deis.unibo.it/research/socs/guests/publications/ (2003)

11. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, F. Toni: The KGP Model of Agency,
ECAI04, General European Conference on Artificial Intelligence, August 23-27, Valencia,
Spain (2004) p. 33

12. A.C. Kakas, P.Mancarella, F.Sadri, K.Stathis, and F.Toni: Declarative Agent Control, 5th
Workshop on Computational Logic in Multi-Agent Systems (CLIMA V), 29-30
September, J.Leite and P.Torroni (eds.) (2004) p. 212

13. R.A. Kowalski, M. Sergot: A Logic-based Calculus of Events, New Generation
Computing, 4(1):67-95 (1986)

14. P.Mancarella, F.Sadri, G.Terreni, and F.Toni: Planning Partially for Situated Agents, 5th
Workshop on Computational Logic in Multi-Agent Systems (CLIMA V), 29-30
September 2004, J.Leite and P.Torroni (eds.)

15. F. Sadri and F. Toni: Variety of behaviours Through Profiles in Logic-based Agents, in
this volume

16. F. Sadri, K. Stathis, F. Toni: Normative KGP Agents: A Preliminary Report, Proc.
NorMAS2005, 1st International Symposium on Normative Multi-Agent Systems, AISB
convention (2005)

17. F. Sadri, K. Stathis, F. Toni: Normative KGP Agents, Computational and Mathematical
Organization Theory (2006) (to appear)

18. Kostas Stathis, Antonis C. Kakas, Wenjin Lu, Neophytos Demetriou, Ulle Endriss, and
Andrea Bracciali: PROSOCS: a Platform for Programming Software Agents in
Computational Logic, in J. Müller and P. Petta (eds.), Proceedings of the Fourth
International Symposium “From Agent Theory to Agent Implementation” (AT2AI-4 -
EMCSR'2004 Session M), Vienna, Austria, 13-16 April (2004) p. 523

19. JXTA: http://www.jxta.org

Multi-threaded Communicating Agents in
Qu-Prolog

Keith L. Clark1, Peter J. Robinson2, and Silvana Zappacosta Amboldi1

1 Dept. of Computing, Imperial College, London
2 School of ITEE, The University of Queensland, Brisbane

Abstract. In this tutorial paper we summarise the key features of the
multi-threadedQu-Prolog language for implementingmulti-threaded com-
municating agent applications. Internal threads of an agent communicate
using the shared dynamic database used as a generalisation of Linda tuple
store. Threads in different agents, perhaps on different hosts, communicate
using either a thread-to-thread store and forward communication system,
or by a publish and subscribe mechanism in which messages are routed to
their destinations based on content test subscriptions.

We illustrate the features using an auction house application. This
is fully distributed with multiple auctioneers and bidders which partic-
ipate in simultaneous auctions. The application makes essential use of
the three forms of inter-thread communication of Qu-Prolog. The agent
bidding behaviour is specified graphically as a finite state automaton
and its implementation is essentially the execution of its state transi-
tion function. The paper assumes familiarity with Prolog and the basic
concepts of multi-agent systems.

1 Introduction

Qu-Prolog is a multi-threaded Prolog designed specifically for developing dis-
tributed rational agent applications in which each agent can be multi-threaded.
It started as a variant of Prolog for building interactive theorem provers and
is the implementation language of the Ergo theorem prover [1]. We then added
multi-threading and inter-thread communication via manipulation of the shared
dynamic database and asynchronous messages [2] allowing the implementation
of rational agent applications [3]. The final stage was to link Qu-Prolog with
the Elvin [4] content-based message router to give us broadcast communication
with message routing based on message pattern subscriptions. This also gave us a
message interface to applications written in imperative programming languages
such as C and Java since Elvin has APIs to many programming languages.

A key discriminator between object and agents is that agents have their own
thread of control [5]. We go further, and believe that they are naturally multi-
threaded. Each thread is used to encapsulate a key behavioural component of the
agent. For example, we can have a thread for each other agent with whom the
agent is interacting via messages. Each conversation thread then accesses and
updates a shared belief store. On occasion it suspends waiting for a key update

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 186–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multi-threaded Communicating Agents in Qu-Prolog 187

to be made by some other thread. Thus, an agent’s internal threads coordinate
using a Linda style belief store [6], which in Qu-Prolog is the database of dynamic
clauses. There is a Qu-Prolog primitive, thread wait on goal, which causes
a thread to suspend until some goal dependent upon the dynamic database
succeeds, usually after a clause is asserted or retracted. This generalises the
Linda rd lookup operation but its implementation is very efficient as the dynamic
database is internal to the agent.

Agent communication languages such a KQML [7] and Fipa ACL [8] assume
agent to agent asynchronous communication. In Qu-Prolog this is supported by
a thread to thread communication model. Each thread has a message buffer and
a unique name similar to an email address. Messages sent to an internal thread
are copied to the destination thread’s buffer. Communication between threads in
different Qu-Prolog processes uses McCabe’s ICM [9] store and forward commu-
nication servers to route the message between processes, which can be on different
hosts. Various message receive primitives enable a thread to periodically search
and remove from its message buffer messages of interest. If need be it can suspend,
with a timeout, until an acceptable message is received. Since we can have a thread
for each conversation, a conversation thread can suspend waiting for a reply to its
last outgoing message. It is automatically resumed when a reply is received.

Some agent applications require broadcast communication. That is, an agent
wants to send a message to any other agent interested in the message content
without knowing the agent’s identity. An example is the contract net proto-
col [10]. For this style of communication, it is better to use a communications
server that routes messages based on content rather that destination identifica-
tion. Qu-Prolog’s primitives for connecting to, subscribing, and sending notifi-
cations to an Elvin [4] server give us this facility. A thread registers content test
subscriptions with the Elvin server. Any notification message sent to the server
that satisfies one of these tests is then automatically routed to the thread and
placed in its message buffer.

In this paper we illustrate the use of these three forms of inter-thread com-
munication, and their utility in building agent applications. The application we
use is an auction house with multiple simultaneous auctions comprising bidding
agents and auctioneer agents. The application makes essential use of the three
forms of inter-thead communication in Qu-Prolog. Bidding agents participate
in multiple simultaneous auctions, each one conducted by its own auctioneer
agent. A bidding agent starts with a wish list of items it wants to purchase
with a maximum price it will pay for each item. It also has a limit to the total
amount it can spend purchasing items in all the auctions. The bidding agents
are multi-threaded with a thread for each auctioneer. Each bidder agent has its
desires (the items it wants to buy), beliefs (about its purchases and unspent and
committed funds) and intentions (its concurrently executing bidding threads).
The application thus serves as an exemplar for the implementation of simple
BDI agents concurrently executing intentions.

In the next section we sketch the structure of the auction application and the
multi-threaded architecture of each bidding agent. In the section 3 we give an

188 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

introduction to Qu-Prolog’s thread spawning and inter-thread communication
primitives illustrating their use with fragments of code from the application. In
section 4 we specify the crucial bidding behaviour as a finite state automaton in
which the state transitions are triggered by messages. In section 5 we show how
the bidding agents and the auctioneers are implemented in Qu-Prolog. As we
shall see, the bidding behaviour is essentially an execution of the finite state au-
tomaton transition function defined as a three argument relation. We summarise
and mention some related agent implementation languages in section 6.

2 Auction Application

The overall architecture of the application and the architecture of each bidding
agent is depicted in Figure 1. Each auction is conducted as an ascending English

Fig. 1. Auction Architecture

Multi-threaded Communicating Agents in Qu-Prolog 189

auction. In each round the auctioneer calls for bids at a certain price. The sender
of the first bid received at that price level becomes the potential purchaser. The
auctioneer then raises the bid price and calls for bids at the new level. If no bids
are received within a certain time limit the item is sold to the potential purchaser.
The application is fully distributed, each bidding agent and each auctioneer runs
as a separate Unix process, possibly on separate hosts.

An auctioneer agent broadcasts its bid calls, sold and withdrawn messages as
notifications to an Elvin server. These are routed to the bidding thread for that
auctioneer within each bidding agent because of subscriptions lodged by these
threads with the Elvin server. Bids are sent directly to the auctioneer as ICM
messages.

Before sending a bid each bidding thread must check that there are avail-
able funds. Funds are reduced each time a bidding thread wins the auction for
an item. Funds are provisionally committed when a bid is made, and released
if the bid does not result in a purchase at that bid level. In the later stages
this means that a bidding agent may have to wait before bidding in one auc-
tion until committed funds are released from another, and it may even have
to skip a bidding round. This is because the agent cannot overspend its initial
allocation.

Fig. 2. Application Visualisation

190 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

The amount of the unspent and committed funds are held as dynamic clauses
inside the agent. To allow the agent to make an overall judgement about which
item it should continue bidding for when funds become tight, and more than
one item of interest is currently being auctioned, the decision to commit funds
for a particular bid call is made by a separate bid arbitration thread. When the
auctioneer specific thread receives a bid call at a price below or at its maximum
price for the item, it informs the agent’s bid handling thread that it wants to
make a bid by asserting a bid request fact.

The bid arbitration thread suspends until there is at least one bid request.
Its role is to find and process pending requests for which there are sufficient
avaliable funds as quickly as possible so as not to miss a bidding round. If
there is such a request for which there is sufficient remaining budget taking
into account provisionally committed funds, it removes the request, atomically
increases the committed funds by the value of the bid, and immediately sends
the bid to the appropriate auctioneer indicating that any response should be sent
to the thread that posted the request. A response will be sent only if the bid
was the first one to be received by the auctioneer at the current call price. If the
arbitration thread cannot find a request for which there are sufficient available
funds it re-suspends until either a new bid request is asserted (because this may
be at a lower price that is within the available funds), or committed funds are
released by one of the auctioneer linked threads. This behaviour is achieved using
a thread wait on goal call as illustrated in 3.1.

The entire application has been implemented with a Tcl/Tk GUI visualisation,
which is illustrated in Figure 2.

3 Threads and Inter-thread Communication

Qu-Prolog has several predicates for creating and controlling threads. The predi-
cate thread_fork(Name, Goal) creates a new thread and executes Goal within
the thread. For the thread executing the fork the call is deemed to always suc-
ceed and the forking thread immediately continues with the next call. The forked
thread is terminated when Goal terminates (either with success or failure). If
Name (an atom) is supplied then this name can be used as part of the address
of the thread when using ICM communication. If it is not supplied, the system
generates a name for the thread and unifies it with Name.

The predicate thread_exit(Name) terminates the thread with the given name.
If Name is not supplied then the current thread is terminated.

Sometimes, one thread may need to carry out a computation (such as making
several changes to the database) before giving control to other threads. This can
be achieved by using thread_atomic_goal(Goal). When a thread enters such
a call, no other thread will be given a time slice until Goal finishes executing
(either in success or failure).

There are three mechanisms Qu-Prolog uses to communicate between threads.
If the threads are within the same process then the threads can communicate
using the dynamic database. Threads (in the same or different processes) can

Multi-threaded Communicating Agents in Qu-Prolog 191

also communicate via messages using either ICM [9] or Elvin [4]. We now look
at these in more detail.

3.1 Communication Using the Database

All threads within the same process share the dynamic database of the Qu-
Prolog process and so when one thread asserts or retracts a clause, the effect is
immediately visible to all the threads.

In some agent applications, the agent is implemented as several cooperating
threads. One or more of these threads may be designed to wait for certain changes
to the database before continuing with their execution. To achieve this behav-
iour we can use the single solution meta-call thread_wait_on_goal(Goal). If
Goal fails, thread_wait_on_goal(Goal) suspends until the dynamic database
is changed in some way. Goal is then retried and will be retried on each update
of the dynamic database until it succeeds. Of course, the call may never succeed,
in which case the thread executing the thread_wait_on_goal call suspends
forever.

We can often specify exactly what dynamic database predicates Goal depends
upon. In this case thread_wait_on_goal(Goal, PredList) can be used. This
will only be retried if some change is made to at least one of the dynamic
predicates in PredList. These are the watch predicates of the call.

The code for the arbitration thread within a bidding agent which is responsi-
ble for making bids on behalf of the bidding threads uses both thread_wait_on_
goal/2 and thread_atomic_goal/1. The threads communicate by asserting
and retracting bid_requests/3 facts and by changing the committed/1 and
budget/1 facts.

handle_bid_requests :-
repeat,
thread_wait_on_goal(choose_bid, [bid_request/3,committed/1]),
fail.

choose_bid :-
thread_atomic_goal(

bid_request(Auctioneer, Item, Price),
budget(Budget),
committed(Committed),
Price =< Budget - Committed,
retract(bid_request(Auctioneer, Item, Price)),
retract(committed(Committed)),
NewCommited is Committed + Price,
assert(committed(NewCommitted)),
send_bid(Auctioneer, Item, Price)

).

The committed/1 fact keeps track of the funds needed to cover sent bids that are
not yet known to have succeeded or failed. The budget/1 fact records funds that
have not been spent. This is decreased only when the bidder wins the auction
for some item and is changed by the bidding threads.

192 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

The two dynamic relations bid_request/3or committed/1determine whether
or not the call to choose_bid succeeds. If there are no outstanding bid_requests,
or if the value of the committed funds is such that no such request can be covered
from the remaining budget, the call to choose_bid suspends.

The call is resumed if either of these dynamic relations is updated (budget/1
is never changed without committed/1 being changed in the same atomic trans-
action). If the change was a new bid request, this may be for an amount that can
be covered. If it was because the committed funds were reduced by a bidding
thread when it learned its last bid did not result in a purchase at that price,
funds may now be sufficient to cover a previous request.

The body of the choose_bid rule is executed as an atomic goal so that each
time the call is entered or resumed no changes can be made to the dynamic
database by the other bidder agent threads until it either succeeds or suspends;
and, so that when it does succeed, the other threads will see a consistent up-
date to the database. On success, a bid will have been sent, the bid_request
that it has satisfied will have been retracted, and committed funds will have
been increased by the amount of the bid. The repeat/fail iteration in the
handle bid requests rule will now result in a new call of choose bid inside
the thread_wait_on_goal. It may immediately find another request it can sat-
isfy. If not, it suspends until there is a change to one of the two dynamic relations
it is watching for.

3.2 ICM Messages

The high-level peer-to-peer communication support of Qu-Prolog is based on
the ICM. The ICM consists of one of more icm processes that act as message
routers and an API that provides applications with ICM functionality. Using
this, a process can register its name with an icm process and then send and
receive messages via the icm processes.

ICM addresses have three main components: a thread name, a process name,
and a machine address (the home of the process). An icm process uses the process
name and home fields to determine the message destination. The process itself
is responsible for managing the thread name field.

The Qu-Prolog implementation provides library support for the ICM API and
manages an incoming message buffer for each thread within a Qu-Prolog process.
The library provides two layers of support for ICM messages: a lower-level layer
that provides the basic send and receive primitives, and a higher-level layer
that further simplifies communication. In this paper we focus on the higher-level
support.

In the higher-level layer the message send predicate is

Message ->> Address reply_to RTAddress

where Message is any Qu-Prolog term and Address is a Qu-Prolog term rep-
resenting an ICM address. The reply to part is optional and is used if the
recipient of the message should forward a reply to some other thread.

Multi-threaded Communicating Agents in Qu-Prolog 193

The most general form for a Qu-Prolog address is

ThreadName:ProcessName@HostName

where the home part (HostName) can be dropped if the message is to another
process on the same host. The process name (ProcessName) can also be dropped
if the message is to another thread within the same process. The special address
self can be used for a thread to send a message to itself. For agent applications,
where each agent is a separate Qu-Prolog process, the process name is the agent
name. Communication to local threads of a process does not use the ICM servers.
The message is immediately placed at the end of the message buffer of the
internal thread.

If a message is sent to a process that does not exist, one of the icm processes
will store the message until the process is created. Similarly, if a message is sent
to a thread that does not exist within a running process, the process will store
the message until the thread is created.

In the handle_bid_requests clause given earlier, the send bid action is de-
fined by the clause:

send_bid(Auctioneer,Item,Price):-
auctioneerAddress(Auctioneer,AuctioneerICMAdress),
bid(Item,Price) ->> AuctioneerICMAddress reply_to Auctioneer,
bid_sent(Item,Price) ->> Auctioneer.

Auctioneer is the name of the bidding thread that has made the bid request.
The bidder has a relation, auctioneerAddress that stores the ICM address of
the message interface threads of each auctioneer. It has facts such as:

auctioneerAddress(tom,thread0:tom@’zeus.doc.ic.ac.uk’)

Here the name of the bidder thread tom is the name of the Qu-Prolog process
that is the auctioneer agent.

The bid message is sent to the auctioneer agent, which will be on another host,
with the reply to set to be the bidding thread that made the request. This is
so that the response the auctioneer will send, if this is the first bid received at
that price, will go directly to that thread. In addition, a bid sent message is
put in the requesting thread’s message buffer to alert it to the fact that a bid
has been sent.

3.3 Elvin Messages

The high-level subscription/notification communication support of Qu-Prolog is
based on Elvin. An Elvin notification is a list of field name, value pairs and is
sent to an Elvin server that determines which processes are subscribed to this
notification, and sends the notification to each of these processes. A process can
subscribe to notifications they are interested in by using the Elvin subscription
language. A subscription is a logical formula describing properties of notifica-
tions of interest - for example, notifications that contain a particular field or a
particular value for a field.

194 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

Qu-Prolog threads can subscribe to Elvin notifications and any matching no-
tifications are placed in that threads incoming message buffer. In order to distin-
guish Elvin notifications from ICM messages in the threads incoming message
buffer, the sender and reply-to addresses are both set to the atom elvin.

Unlike ICM, Elvin has no memory of past notifications. A thread only receives
those notifications satisfying a subscription that are posted after it has registered
the subscription with the server.

In the auction application the bidder thread corresponding to auctioneer tom
will send subscriptions to Elvin such as:

elvin_add_subscription(auctioneer==tom && item==lot2239)

The Elvin router will then forward any notification that contains an auctio-
neer field with value tom and an item field with value lot2239 to this thread.

The auctioneer broadcasts to interested bidders by posting Elvin notifications
with calls such as:

elvin_add_notification(
[message_type=call,item=lot2239, price=204, auctioneer=tom])

The receiver of such a notification must make no assumption about the order
of field=value pairs which may be changed by the Elvin server. So, a Pro-
log recipient must extract pairs from the message list using the member/2 list
membership relation.

3.4 Processing the Message Buffer

There are several predicates that process the incoming message buffer for a
thread. The simplest of these are:

Message <<- Address reply_to RTAddress
Message <<= Address reply_to RTAddress

where the reply-to fields are again optional.
A <<- call removes the first message in the message buffer and tries to unify

the arguments with information contained in this message (including the ad-
dresses). It suspends of there is no message, to be resumed when a message
arrives. It fails if any of the unifications fail. A <<= call searches the message
buffer looking for a message that unifies with the supplied patterns and removes
the first such message. If no (unifying) message is found, the call suspends until
a new message arrives. The second message receive never fails. Both are single
solution calls.

Qu-Prolog also has a powerful message choice operator that provides case
analysis search of the message buffer with different response calls linked to differ-
ent messages patterns. The program below is called by the auctioneer to handle
bid messages in a bid round after it has broadcasted a bid call for an item Item
at price Price.

Multi-threaded Communicating Agents in Qu-Prolog 195

handle_bids(Item, Price) :-
message_choice (
bid(Item, Price) <<- _ reply_to Bidder ->

accept_bid(Item, Price, Bidder)
;
bid(I,P) <<- _ :: (I\=Item;P\=Price) ->

handle_bids(Item, Price)
;
timeout(7) ->

bid_timeout_for(Item)
).

The argument of the message_choice operator has the same structure and
similar semantics to the if-then-else construct in Prolog except that each test is
a message pattern with an optional test following the :: operator.

The first -> rule matches any message of the form bid(Item,Price) which is
a bid for Item at the current call price Price. The reply to associated with the
message, the address of the bidding thread within the bidder for this auctioneer,
is assigned to the variable Bidder. It is used by accept bid to record the bidder’s
identity and to send an acknowledgment message. The sender is ignored since
this is the bidder’s arbitration thread. The second -> rule matches any bid
message for a different item or a different price. This it so that such a message
- usually a late bid for a previous round - can be discarded. The handle bids
program is then recalled to search for, and if need be wait for, the first valid
bid for this round. The last rule specifies a timeout in seconds on how long the
auctioneer will wait for a message that can be handled by the first two rules. If
no such message has arrived within seven seconds then bid_timeout/1 will be
called.

Use of a timeout rule is optional, and if it is not supplied, message_choice
will block until some message that can be handled by one of its rules arrives.

4 Bidding Behaviour

Figure 3 is a finite state automaton which characterises the bidding behaviour of
a thread A within a bidding agent monitoring the announcements of auctioneer
AA. The thread starts by posting Elvin subscriptions as given in section 3.3.
These ensure that whenever AA broadcasts a message via Elvin about an item I
the bidder wants to buy that message will appear in the thread’s message buffer.
Auctioneer announcements about items the bidder does not want to buy are not
seen.

A then behaves in accordance with the finite state machine of Figure 3 starting
at the desire(I,MP) node. MP is the maximum price it is prepared to pay for
item I. It stays in that control state until it receives a message concerning any
such item I. The state transitions are triggered by messages that A receives
either via Elvin or directly. In the figure all messages are denoted as simple
functor terms such as call(I,P) even though the actual message may be a list
of attribute value pairs.

196 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

Fig. 3. Bidding behaviour

If the bidder agent has arrived at the auction after auctioneer AA has started,
the first message it receives could be a wd(I) (withdrawn) or a sold(I) message
for the item I. In this case the bidder enters the exit(I) state for the auction
of I and then re-enters the finite state machine at the desire node to wait for a
bid call for another item it wants to buy. It enters the exit(I) state whenever it
receives either of these messages regarding item I. We assume that the auctioneer
always starts the bidding at the reserve price for an item so that a withdrawn
message is only sent when there are no bids received in the time the auctioneer
allows for a bid response to a call.

More usually, the initial state is left when a call(I,P) message is the first
message received asking for bids for item I at bid level P. If P>MP the behaviour
moves into the exceed max(I) state and subsequent bid calls for item I are
ignored. The bidding behaviour moves into the exceed max(I) state whenever
a bid call is received for I at a price above the bidder’s maximum price MP.

The other transition from the initial state is to the wait bid(I,MP,CP) state.
This happens if call(I,P) is received and P=<MP. CP just records the cur-
rent bid price P. As part of the state transition the thread will also assert a
bid request(A,I,CP) fact. This is a request to the bid arbitration thread to
send a bid(I,CP) message to the auctioneer AA on its behalf. The arbitration
thread executes the program discussed in section 3.1.

Multi-threaded Communicating Agents in Qu-Prolog 197

In the wait bid(I,MP,CP) state thread A may receive a bid sent(I,CP) in-
ternal message from the arbitration thread. The arbitration thread places this
message in A’s message buffer immediately after sending the bid to auctioneer AA
as an ICM message. In that case, the behaviour moves to the made bid(I,MP,CP)
state. Alternatively, it may first get a new message from its auctioneer concerning
item I. This happens if the auctioneer AA has received a bid at the current bid
price CP from another bidder, or no bids were received at this bid level within the
auctioneer’s time limit, and either event occurred before the arbitration thread
decided to send a bid for item I and to inform A by inserting a bid sent(I,CP)
in its message buffer.

If the time limit was reached, auctioneer AA may broadcast a sold(I)message,
indicating a sale to another bidder - the one that got in the first bid at the
previous bid call price, or it broadcasts a wd(I) message (when no bids were
received in time in response to its first call for bids for I).

If a new call(I,P)message is the first message to be received in the wait bid
(I,MP,CP) state, another bidder has got its bid in first. Thread A retracts its
bid request(A,I,CP), if it is still there. Then, if P=<MP, CP is updated to be
the new P value, and a new bid request fact is asserted at the new CP level for
consideration by the arbitration thread. If P>MP, the behaviour moves to the
exceed max(I) state.

The previous bid request fact may no longer be in the dynamic database
because it has been retracted by the concurrently executing arbitration thread
prior to sending A a bid sent message and a (too late) bid to auctioneer AA.
In this case the arbitration thread will also have added CP to the committed
funds, so these will have to be reduced by this amount. As part of this roll
back operation, the sent bid(I,CP) message, that will have been placed in A’s
message buffer by the arbitration thread, might as well be removed from the
buffer. If not, it will be repeatedly skipped over and ignored.

If a bid sent(I,CP)message is the first message received in the state wait bid
(I,MP,CP), the behaviour moves into the made bid(I,MP,CP) state to wait for a
possible first(I,CP) message to be received from auctioneer AA letting it know
that the bid(I,CP) message that was sent by the arbitration thread was the first
bid received. If it gets this message, the behaviour moves into the skip call(I)
state as the bidder is now a potential purchaser of I and will win the auction if no
one bids in response to the next bid call for I at the raised price. Receipt of the next
call(I,) message simply moves the behaviour from the skip call(I) state to
the wait sold(I,MP,CP) state. In this state, a sold(I)message broadcast by the
auctioneer indicates that no bids were received in response to the last bid call and
hence that thread A has won the auction for item I. In the resulting transition
to the exit(I) state, the committed and unspent funds are both decreased by
amount CP, this double update being performed atomically.

The other message that might be received in the wait sold(I,MP,CP) state
is a new call(I,P) message. This will be broadcast by the auctioneer if it
has received a bid in response to the raised price call. Bidding thread A has
therefore not won the auction at price level CP. It now either moves into the

198 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

exceed max(I) or the wait bid(I,MP,CP) state, with CP updated to the new
call price P, depending upon whether or not P exceeds its maximum MP for item
I. In either case, it decreases its committed funds by amount CP, releasing the
allocation that was made for its last bid.

5 Auction Implementation in Qu-Prolog

5.1 The Bidding Agents

Each bidding agent program has facts for the predicates:

auctioneer(A,AH): AH is the ICM handle for auctioneer A
desire(A,I,MP): Bidder wants item I from A at max. price MP

giving housekeeping details about the auctioneers and the purchasing desires
of that bidder. It also has initial facts for dynamic predicates:

budget(B) : B is amount left to spend in all auctions
committed(C) : C is amount currently committed in outstanding bids

The initial budget fact records the total amount each bidder has to spend when
they arrive at the auction. The amount initially committed will be 0.

Each bidder agent starts by executing a call to the program:

bidder :-
thread_fork(arbiter, handle_bid_requests),
forall(auctioneer(Auctioner,_),

thread_fork(Auctioneer,
(post_subscriptions_for(Auctioneer),
monitor_auction)).

The first thread fork launches the bid arbitration thread executing the pro-
gram given in section 3.1. The forall then launches a bidding thread for each
auctioneer with the name of the auctioneer. This thread starts by posting sub-
scriptions to the Elvin server as exemplified in 3.3 so that it will be sent just those
Elvin messages for items it wants to buy from its auctioneer. It then executes
the program monitor auction.

monitor_auction :-
bidding_behaviour_from(desire(I,MP)),
monitor_auction.

The bidding behaviour from(desire(I,MP)) call is to a program that will
follow the behaviour described by the finite state machine of section 4, starting
at the state desire(I,MP). At this stage values of I and MP are unknown. They
will be bound when the first message has been processed.

Multi-threaded Communicating Agents in Qu-Prolog 199

The call will terminate when the behaviour reaches the state exit(I). The
monitor auction program then recurses to re-enter the bidding behaviour at
the state desire(I,MP)1.

The bidding behaviour from program is just a recursive program that walks
over the finite state automaton of Figure 3 until the exit state is reached. We
assume that the state transitions of the machine are defined by a next state/3
relation.

bidding_behaviour_from(exit(_)).
bidding_behaviour_from(State) :-

essence_of_next_message(State, M),
next_state(State, M, NxtState),!,
bidding_behaviour_from(NxtState).

An example rule for essence of next message is:

essence_of_next_message(desire(I,MP), Msg):-
ElvinMsg <<= elvin,
member(item=I, ElvinMsg),
thread_symbol(A), % get auctioneer name of this thread
desire(A, I, MP), % find bidder’s max price for I
(elvin_call_message(ElvinMsg, P), Msg=call(I,P)
;
elvin_sold_message(ElvinMsg), Msg=sold(I)
;
elvin_withdrawn_message(ElvinMsg), Msg=wd(I)
).

where:

elvin_call_message(ElvinMsg, P) :-
member(message_type=call, ElvinMsg),
member(price=P,ElvinMsg).

elvin_sold_message(ElvinMsg) :-
member(message_type=sold, ElvinMsg),

....

In the desire state only an Elvin message can be received. Its ‘essence’ is one
of the terms used in the finite state machine of Figure 3. The term constructed
for the Elvin message

[message_type=call, item=lot2239, price=204, auctioneer=tom]

is

call(lot2239,204).

1 Our running auction implementation has the auctioneer broadcast an auction over
notification when it has no more items to auction. The above monitor auction pro-
gram suspends if the auctioneer just stops sending out calls for bids. It will terminate
in failure, and hence cause the bidding thread to terminate, if an auction over no-
tification is broadcast.

200 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

Example next state rules are:

next_state(desire(I,MP), call(I,P), wait_bid(I,MP,P)):-
P=<MP,
thread_symbol(A),
assert(bid_request(A, I, P)).

next_state(desire(I,MP), call(I,P), exceed_max(I)):-
P>MP.

next_state(desire(I,MP), M, exit(I)):- M=sold(I); M=wd(I).

next_state(wait_bid(I,MP,P), bid_sent(I,P), made_bid(I,MP,P)).
next_state(wait_bid(I,MP,P), call(I,NewP), wait_bid(I, MP, NewP)):-

NewP=<MP,
thread_symbol(A),
thread_atomic_call(
(remove_bid_request(A, I, P), assert(bid_request(A,I,NewP)).

next_state(wait_bid(I,MP,P), call(I,NewP), exceed_max(I)):-
NewP > MP,
thread_symbol(A),
thread_atomic_call(remove_bid_request(A, I, P)).

remove_bid_request(A, I, P):-
(retract(bid_request(A, I, P)) -> true

; % retract failed, request already retracted by arb. thread
retract(committed(F)),
NewF is F-P,
assert(committed(NewF)),
bid_sent(I,P) <<= arbiter)).

A remove bid request(A,I,P) call removes P from the committed funds if the
bid request message has already been deleted by the arbitration thread (the
retract fails) and it also discards the bid sent message which will be in its
message buffer, as per the discussion in section 4.

As these example rules show, it is relatively easy to produce the next state
rules from the finite state machine and the discussion of section 4.

5.2 The Auctioneers

Each auctioneer program has facts for the predicate:

item(I,RP): Item I has reserve price RP

detailing all the items that the auctioneer has to auction. The reserve price is
the minimum price at which the item can be sold and is the price used to start
the bidding. Each auctioneer program also has a fact for my name/1, recording
the auctioneer’s name.

Compared to the bidding agents, the auctioneers execute a quite simple be-
havioural program. Each executes auction.

Multi-threaded Communicating Agents in Qu-Prolog 201

auction :-
(retract(item(Item,RPrice)) -> send_bid_call(Item,RPrice) ; true).

send_bid_call(Item,Price) :-
myname(Name),
elvin_add_notification([message_type=call,item=Item,

auctioneer=Name,price=Price]),
handle_bids(Item,Price).

where handle bids is the program given in section 3.4.
As discussed there, this invokes accept bid(Item,Price,Bidder) if the first

bid received at the Price was from Bidder, and this was received within seven
seconds of the call notification. This program asserts the fact:

potential_purchaser(Bidder,Item,Price)

after retracting any other such fact about Item. Bidder is now the potential pur-
chaser of Item at Price.accept bid also sends a firstmessage directly to Bidder
to inform them of this. It then increments Price by a fixed amount to give a new
call price NewPrice and then executes send bid call(Item,NewPrice).

At some stage the timeout rule of handle bids will be triggered when no
bids are received in time. This invokes bid timeout for(Item). If a potential
purchaser has been recorded for Item an Elvin notification is sent that the item
has been sold and the potential purchaser fact is replaced by a purchased
fact; else a notification is sent that the item has been withdrawn. The latter only
occurs if no bids are received in time following the first bid call. The auctioneer
program then iterates with a new call to auction. It terminates when there are
no more items to be auctioned.

6 Concluding Remarks

We trust we have demonstrated the expressiveness of Qu-Prolog for programming
distributed agent applications in which the agents are subject to real time con-
straints, such as timely reaction to a bid call, and where agents may have to con-
currently interact with several other agents taking into account limited shared
resources, such as money to spend. Such agents can be programmed using multi-
ple internal threads communicating via the shared dynamic database, or via mes-
sages, in order to co-ordinate access and use of the resources they must share.

In the case of our bidding agents a separate arbitration thread is in charge
of allocating the shared money resource, and shared dynamic predicates and
message passing are used to co-ordinate the threads. The program for the arbi-
tration thread uses a simple strategy to allocate funds. It allocates to the first
bid request it finds for which sufficient funds are available at that time. It is
quite easy to change this to take into account preferences for items, and, say, the
difference between the current call price and the maximum price the bidder is
prepared to pay. It can then choose the pending request with maximum utility
computed as a function of its preference rating and the price differential.

202 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

Qu-Prolog’s interface to the ICM message servers enables us to seamlessly
perform private agent to agent communication across the internet using symbolic
names for threads similar to email addresses. Our application uses the ICM
system to send private bid messages and acknowledgments for first bids. Using
proxy servers, the ICM system [9] allows messages to be routed through fire
walls and to be automatically downloaded to agents on mobile devices, such as
laptops, when they connect to the network.

The interface to Elvin enables us to quickly build agent applications that need
to use a message broadcast mechanism with messages routed to agents based on
receiver subscriptions. It also gives us a mechanism for quickly building hybrid
applications. One such might be an agent monitoring application in which sensor
software written in Java or C posts notifications routed to the monitoring agents.
The role and function of the monitoring agents can be changed without changing
the sensor software simply by changing subscriptions.

Lodging appropriate subscriptions or sending notifications to the Elvin server
gives an easy method for an agent to join an existing community of agents and
components. Posting subscriptions is the joining mechanism for bidding agents
at the auction. Posting notifications is the joining mechanism for the auctioneers.

To join the community an agent needs to know the message format being used.
In open agent applications KQML or Fipa ACL based messages may be being
used. The structure of Elvin notifications allows almost direct representation of
such messages, which are also based on a list of attribute/value pairs. If the
application uses KQML messages, the Elvin server takes over some of the role
of a KQML facilitator [7].

The features of Qu-Prolog that support the writing of non-resolution inference
systems are illustrated in [3] but they are more fully explained in the Qu-Prolog
User Guide. The system and its documentation are down-loadable from:

http://www.itee.uq.edu.au/~pjr/HomePages/QuPrologHome.html

Qu-Prolog is used as the programming language used for a course on multi-
agent systems at Imperial College and it was the language used by one of the
winning submission [11] for the Agent Programming Competition of CLIMA VI.
It is also being used in the ARC Center for Complex Systems at the University
of Queensland for the simulation of insect behaviour, and for the proto-typing
of free flight air traffic control in which aeroplane agents negotiate over flight
levels and flight paths to avoid near misses and collisions. Currently the language
does not have a finite domain constraints but it does have delayed calls linked to
unbound variables and primitives to retrieve the delayed calls. We plan to add
finite domain constraints using these features.

6.1 Some Related Languages

SICStus-MT [12] is a multi-threaded version of SICStus Prolog in which threads
each have a single message buffer, called a port. As in Qu-Prolog, a thread can
scan the buffer looking for a message unifying with a given message pattern, sus-
pending if no such message is found. However, port communication is restricted

Multi-threaded Communicating Agents in Qu-Prolog 203

to threads within the same Prolog process. SICStus Prolog does have a Linda
package, but the Linda store is for external communication between different
Prolog processes, or between a Prolog process and a process implemented in
another programming language, not for internal thread coordination. For com-
munication between processes in different languages we would use Elvin or the
ICM API.

BinProlog[13] is a multi-threaded Prolog with a tight coupling to Java and
communication between threads in Prolog or Java via Linda tuple stores. It
also supports mobile agents via thread migration between different BinProlog
processes.

QuP++ [14] is an object oriented extension of Qu-Prolog that allows a class
structure with multiple inheritance to be used to construct multi-threaded agent
applications. In QuP++ a class instance is an active object with at least one
thread of control. This thread handles messages from other objects, can launch
new internal threads, and can create new active objects.

Mozart-Oz[15] is a multi-paradigm distributed symbolic programming lan-
guage with support for logic programming, functional programming and
constraint handling. It is being used for distributed agent applications. Mozart-
Oz is multi-threaded with the threads sharing a common store of values and
constraints. The store is used for inter-thread communication. Constraints are
posted to the store and the store can be queried as to whether some particular
constraint is entailed by the current constraint store. A thread executing such a
query will suspend until the store entails the constraint.

The CIAO system [16] uses the dynamic Prolog database for communicat-
ing between threads in the same process. Whereas Qu-Prolog uses assert and
retract to update the database and thread_wait_on_goal/2 to wait for chan-
ges to named dynamic predicates, the CIAO system requires the dynamic predi-
cates that can lead to a thread suspension to be declared as concurrent. Changes
to clauses for concurrent predicates are used for stream communication between
threads. A normal call to a concurrent predicate will suspend if it cannot succeed,
even on backtracking. Thus, a thread will suspend when a call to a concurrent
predicate has ‘seen’ all the clauses for the predicate that have so far been as-
serted by the other threads. This allows the dynamic database to be used to
communicate a stream of data between threads, as an incrementally asserted set
of facts, with automatic suspension of consuming threads that run ahead of the
producers. In Qu-Prolog we would achieve this by using ICM or Elvin message
communication.

April [17] is a multi-threaded hybid functional/imperative programming lan-
guage that also uses ICM servers to communicate messages between threads in
different applications.

Erlang [18] is a functional multi-threaded language with a single message
buffer for each thread. The message choice operator of Qu-Prolog is modeled
on the message receive primitive of Erlang.

Go! [19] is a multi-threaded multi-paradigm functional, logic and OO pro-
gramming language in which threads can communicate using mailbox objects,

204 K.L. Clark, P.J. Robinson, and S. Zappacosta Amboldi

or dynamic relation objects that act as Linda stores. Each mailbox, which is
typically private to a thread, can have any number of linked dropbox objects
that can be shared with other threads and used by them to post messages to the
mailbox. A thread will suspend waiting for a particular message to be posted to
a mailbox.

References

1. P. J. Robinson. Ergo Reference Manual. Technical report, ITEE, University of
Queensland, http://www.itee.uq.edu.au/~pjr/HomePages/ErgoFiles/cover.html.

2. Keith L. Clark, Peter J. Robinson, and Richard Hagen. Multi-threading and mes-
sage communication in Qu-Prolog. Theory and Practice of Logic Programming,
1(3):283–301, 2001.

3. P. J. Robinson, M. Hinchley, and K. L. Clark. Qu-Prolog: An Implementation
Language with Advanced Reasoning Capabilities. In M. Hinchley et al, editor,
Formal Appraches to Agent Based systems, LNAI 2699. Springer, 2003.

4. B. Segall et al. Content based routing with elvin4. In Pro-
ceedings AUUG2K. Canberra, Australia, Downloadable from
http://elvin.dstc.com/doc/papers/auug2k/auug2k.pdf, 2000.

5. M. J. Wooldridge and P.Ciancarini. Agent Oriented Software Engineering: the
State of the Art. In P.Ciancarini and M. J. Wooldridge, editors, Agent Oriented
Software Engineering, volume 1957 of LNCS, pages 1–28. Springer-Verlag, 2001.

6. N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

7. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent communi-
cation language. In Proceedings 3rd International Conference on Information and
Knowledge Management, 1994.

8. FIPA. Fipa communicative act library specification. Technical report, Foundation
for Intelligent Physical Agents, www.fipa.org, 2002.

9. F.G. McCabe. ICM Reference Manual. Fujitsu laboratories Ltd. Downloadable
from: http://sourceforge.net/projects/networkagent/, 1999.

10. Reid G. Smith. The contract net protocol: High-level communication and control
in a distributed problem solver. In Alan H. Bond and Les Gasser, editors, Readings
in distributed aritficial intelligence, pages 357–366. Morgan Kaufmann, 1988.

11. S. Coffey and D. Gaertner. Using pheromones, broadcasting and negotiation for
agent gathering tasks. in this volume. 2006.

12. Jesper Eskilson and Mats Carlsson. SICStus MT—A Multithreaded Execution
Environment for SICStus Prolog. In C. Palamidessi, H. Glaser, and K. Meinke,
editors, Programming Languages: Implementations, Logics, and Programs, volume
1490 of Lecture Notes in Computer Science, pages 36–53. Springer-Verlag, 1998.

13. Paul Tarau. BinProlog 9.x Professional Edition: User Guide. Technical report,
BinNet Corp., 2002. Available from http://www.binnetcorp.com/BinProlog.

14. K. L. Clark and P. J. Robinson. Agents as Multi-threaded Logical Objects. In
T. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and Be-
yond. LNAI 2699, Springer, 1998.

15. Peter Van Roy and Seif Haridi. Mozart: A programming system for agent appli-
cations. In International Workshop on Distributed and Internet Programming with
Logic and Constraint Languages.
http://www.mozart-oz.org/papers/abstracts/diplcl99.html, 1999. Part of Interna-
tional Conference on Logic Programming (ICLP 99).

Multi-threaded Communicating Agents in Qu-Prolog 205

16. D. Cabenza M. Hemenegildo and M. Carro. On the uses of attributed variables in
parallel and concurrent logic programming systems. In L Sterling, editor, Proceed-
ings of ICLP95, pages 631–645. MIT Press, 1995.

17. F.G. McCabe and K.L. Clark. April - Agent PRocess Interaction Language. In
N. Jennings and M. Wooldridge, editors, Intelligent Agents, pages 324–340. Springer-
Verlag, LNAI, 890, 1995.

18. J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.
Prentice-Hall International, 1993.

19. K. L. Clark and F. G. McCabe. Go! – a Multi-paradigm programming language for
implementing Multi-threaded agents. Annals of Mathematics and Artificial Intelli-
gence, 41(2-4):171–206, 2004.

Variety of Behaviours Through Profiles
in Logic-Based Agents

Fariba Sadri and Francesca Toni

Department of Computing, Imperial College, London
{fs, ft}@doc.ic.ac.uk

Abstract. In an earlier paper [6] we presented a declarative approach for agent
control. In that work we described how control can be specified in terms of cycle
theories, which define declaratively the possible alternative behaviours of agents,
depending on their internal state and (their perception of) the external environ-
ment in which they are situated. This form of control has been adopted for logic-
based KGP agents [8, 2]. In this paper we show how using this form of control
specification we can specify different profiles of agents, how they would vary the
behaviour of agents and what advantages they have with respect to factors in the
application and in the environment, such as time-criticality.

1 Introduction

In an earlier paper [6] we described how to specify control of agents via cycle theo-
ries. The approach is based on representing and reasoning with preferences and allows
flexible control of the operations of agents. This takes the control beyond a fixed one-
size-fits-all approach and allows the operations of the agents to be chosen dynamically
given the circumstances of the environment, the state of the agent and its preferences.

Cycle theories have been adopted as the means of control in the KGP agent model
[8, 2] developed within the SOCS project1. KGP is a modular logic-based model de-
veloped to cater for the challenges of open global computing environments. It relies
upon a collection of capabilities utilised within transitions controlled by cycle theories.
All the components are defined within computational logic, some using abductive logic
programming and others using logic programming with preferences. The capabilities
are designed to provide functionalities such as planning, reactivity, temporal reasoning
and goal decision, all of which have been envisaged useful, maybe even necessary, for
coping and adapting in a dynamic open environment. The KGP model has been imple-
mented within the PROSOCS platform [12].

The behaviour of KGP agents can be seen as the sequence of transitions or operations
they perform, and this sequence is determined by the agents’ cycle theories. Thus by
varying the cycle theory one can vary the behaviour of the agent. We have explored
a number of such variations resulting in different profiles of behaviour. In an earlier
paper [6] we briefly mentioned three, the focussed, careful and impatient profiles. In
this paper we detail the first two, and an additional one, that we refer to as full planner.
We characterise them formally, show how to design cycle theories that achieve them and

1 http://lia.deis.unibo.it/Research/Projects/SOCS/

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 206–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Variety of Behaviours Through Profiles in Logic-Based Agents 207

discuss their advantages depending on the features of the environment and application
domains. Other profiles are described in [1].

The motivation for this work is threefold: 1) to explore the degree of heterogeneity
that can be achieved by varying cycle theories; 2) to explore the advantages of different
profiles of behaviour with respect to different parameters such as the dynamic nature
of the environment and the time-critical nature of applications; 3) to explore how such
analysis can provide guidelines for implementers who use the PROSOCS platform.

Environments and circumstances in which agents have to function can vary. Some
environments can be fairly static and predictable, while others can be highly dynamic
and unpredictable. Agents may or may not have strict deadlines for their activities, and
agents’ resources may be limited, thus constraining what they can do, or they may have
few resource restrictions. What interests us in this paper is to explore what profiles of
behaviour would be advantageous in what type of environment and under what circum-
stances. Moreover, we would like to explore how to define such profiles by varying the
control strategies of agents defined via cycle theories.

The paper is organised as follows. In Section 2 we present two examples to motivate
the careful, focussed and full planner profiles. In Sections 3 and 4 we describe the
necessary background to our work. In Section 5 we describe the careful, focussed and
full planner profiles in detail, show the characteristics of cycle theories that provably
achieve these profiles, and discuss the advantages of the three behaviour profiles. In
Section 6 we conclude.

2 Motivating Examples

In this section we motivate, in the context of concrete examples, the profiles we will
study and formally define later, in Section 5.

2.1 Careful Profile

Intuitively an agent endowed with this profile frequently re-examines its commitments
to ensure that he honours only those that are feasible and necessary and he is not encum-
bered by any infeasible or unnecessary commitments. The advantage of such a profile
is evident in a dynamic, unpredictable environment.

Consider an agent c who has sent its registration form to a conference conf05 and
thus believes that it has registered for the conference. But it now wishes not to be reg-
istered at the conference. It sets itself this goal, and plans for it by generating an action
to cancel his registration at conf05. Suppose the agent knows that :

If it observes that the deadline for cancellation for a conference has reached
and it expects to cancel its registration at the conference then it should contact
its bank and tell them to stop its credit card payment to the conference.

Suppose before it has a chance to execute the action of cancellation of its registration it
receives a message from the conference secretary telling it that there was a problem with
its initial attempt at registration (for example the registration form arrived corrupted)
and so it is actually not registered.

208 F. Sadri and F. Toni

An agent with the careful profile will immediately realise that there is no longer
any need to cancel its registration and consequently will not contact its bank to tell
them to stop the credit card payment. But, under the same circumstances, an agent
with a different profile might execute the (unnecessary) acts of contacting the bank and
canceling the payment.

2.2 Focused Profile

An agent may attempt to plan for multiple goals at once or may plan for one goal at
a time. If the agent has limited resources it may be better off trying one goal at a time
because typically it may not have enough resources for achieving multiple goals, and
attempting to do so would only lead to time-wasting failures. This is the motivation
behind our focussed profile. An agent endowed with the focussed profile focuses on
one goal at a time.

Suppose an agent has two goals, one to have a particular book and the other to have
a particular CD. Suppose the book costs £10 and the CD £15, and the agent has £20
available to spend. This agent cannot achieve both its goals, because due to its financial
constraints it cannot form a consistent plan that would achieve both goals. If the agent
has the focussed profile it will achieve one of them but if it has any other profile it may
not achieve either goal.

2.3 Full Planner Profile

An agent may plan partially for its goals and interleave planning and action execution.
This can have advantages in time-critical and dynamic environments. But it can also
have some disadvantages. It can be wasteful, as the agent can execute actions of a partial
plan without the certainty that it can develop the partial plan into a full one. Worse still
execution of an action can end up blocking any alternative possible full plans. The third
profile we describe allows the agent to prefer to plan fully before it starts executing
the actions in its plan. This profile avoids the pitfalls of partial planning and is suitable
for less dynamic and less time critical environments. In those environments it makes it
more likely for the agent to achieve all its goals if its Planning capability can (possibly
after multiple applications) generate a full consistent plan for all the goals.

As an example consider the following modification of the book and CD example,
above. Suppose an agent wishes to read a book and listen to a CD. Suppose the CD is
available in the library for free and in the shops for £15, and the book is available only
in the shops for £20. Suppose the agent has £22. The agent might generate a partial
plan for his goals consisting of the action of buying the CD. There is no way he can
extend this plan to a complete plan. Also if it were to execute the action and buy the
CD he has no way of satisfying his two goals as he can no longer exploit the alternative
plan of borrowing the CD and buying the book.

3 The KGP Model of Agency

Here we briefly summarise the KGP model for agents. Formal details can be found in
[8, 2]. This model relies upon

Variety of Behaviours Through Profiles in Logic-Based Agents 209

– an internal (or mental) state,
– a set of reasoning capabilities, in particular supporting planning, temporal reason-

ing, reactivity and goal decision,
– a sensing capability, allowing agents to observe their environment and actions by

other agents,
– a set of transition rules, defining how the state of the agent changes, and defined in

terms of the above capabilities,
– a set of selection functions, to provide appropriate inputs to the transitions,
– a cycle theory, for deciding which transitions should be applied when, and defined

using the selection functions.

Internal State. This is a tuple 〈KB,Goals, P lan, TCS〉, where:

– KB is the knowledge base of the agent, and describes what the agent knows (or
believes) of itself and of the environment.KB consists of various modules support-
ing the different reasoning capabilities of agents, and including KB0, for holding
the (dynamic) knowledge of the agent about the external environment in which it is
situated.

– Goals is the set of properties that the agent wants to achieve, each one with an
associate time variable, possibly constrained by temporal constraints (belonging to
TCS), defining when the goals are expected to hold.

– Plan is a set of actions scheduled in order to satisfy goals. Each has an associated
time variable, possibly constrained by temporal constraints in TCS, similarly to
Goals, but defining when the action should be executed and imposing a partial
order over actions in Plan. Each action is also equipped with the preconditions for
its successful execution.

– TCS is a set of constraint atoms (referred to as temporal constraints) in some given
underlying constraint language with respect to some structure equipped with a no-
tion of Constraint Satisfaction. We assume that the constraint predicates include
<,≤, >,≤,=,
=. These constraints bind the time of goals in Goals and actions
in Plan. For example, they may specify a time window over which the time of an
action can be instantiated, at execution time.

Goals and actions are uniquely identified by their associated time variable, which is
implicitly existentially quantified within the overall state.

To aid revision and partial planning, Goals and Plan form a tree2. The tree is
given implicitly by associating with each goal and action its parent. Top-level goals
and actions are children of the root of the tree, represented by the (arbitrary) sym-
bol ⊥.

2 In the detailed model we actually have two trees, the first containing non-reactive goals and
actions, the second containing reactive goals and actions. All the top-level non-reactive goals
are either assigned to the agent by its designer at birth, or they are determined by the Goal
Decision capability, via the GI transition (see below). All the top-level reactive goals and
actions are determined by the Reactivity capability, via the RE transition (see below). Here for
simplicity we overlook the distinction amongst the two trees.

210 F. Sadri and F. Toni

Reasoning Capabilities. These include:

– Planning, generating a plan, if one exists in the overall state, for any given set of
input goals. These plans are partial or total. A partial plan consists of (temporally
constrained) sub-goals and actions. A total plan consists solely of (temporally con-
strained) actions.

– Reactivity, reacting to perceived changes in the environment by modifying Goals,
Plan, and TCS.

– Goal Decision, revising the top-most level goals by adapting the agent’s state to
changes in its own preferences and in the environment.

– Temporal Reasoning, reasoning about the evolving environment, and making pre-
dictions about properties holding in the environment, based on the partial informa-
tion the agent acquires.

Transitions. The state of an agent evolves by applying transition rules, which employ
capabilities and the Constraint Satisfaction. The transitions are:

– Goal Introduction (GI), changing the top-level goals, and using Goal Decision.
– Plan Introduction (PI), changingGoals and Plan, and using Planning.
– Reactivity (RE), changingGoals and Plan, and using the Reactivity capability.
– Sensing Introduction (SI), changing Plan by introducing new sensing actions for

checking the preconditions of actions already in Plan, and using Sensing.
– Passive Observation Introduction (POI), changingKB0 by introducing unsolicited

information coming from the environment, and using Sensing.
– Active Observation Introduction (AOI), changingKB0 by introducing the outcome

of (actively sought) sensing actions, and using Sensing.
– Action Execution (AE), executing actions, and thus changingKB0.
– State Revision (SR), revising Goals and Plan, and using Temporal Reasoning and

Constraint Satisfaction.

The effect of transitions is dependent on the concrete time of their application. We
briefly describe SR, as it will play an important role in section 5. Informally speaking,
SR revises a state by removing (i) all timed-out goals and actions, (ii) all executed
actions, (iii) all goals that have become obsolete because they are already believed to
have been achieved, (iv) siblings (in the tree) of goals and actions deleted in (i), and
(v) all descendants (in the tree) of goals deleted in (i)-(iv). A goal or action is timed-
out if and only if the temporal constraints TCS of the state of the agent at the time of
application of SR constrain the time of the goal or action to be less than or equal to the
time of application of SR. A goal is achieved in a state if and only if it holds according
to the Temporal Reasoning capability.

Selection Functions. Input to (some of the) transitions is given via selection functions,
taking the current state S and time τ as input:

– action selection function, cAS(S, τ), returning the set of actions in S to be executed
by AE at time τ ;

– goal selection function, cGS(S, τ), returning the set of goals in S to be planned for
by PI at time τ ;

Variety of Behaviours Through Profiles in Logic-Based Agents 211

– fluent selection function, cFS(S, τ), returning the set of properties in S to be sensed
by AOI at time τ ;

– precondition selection function, cPS(S, τ), returning the set of preconditions of
actions in S for which sensing actions are to be introduced by SI at time τ .

4 Cycle Theories

The behaviour of agents results from the application of transitions in sequences, re-
peatedly changing the state of the agent. These sequences are not fixed a priori, as in
conventional agent architectures, but are determined dynamically by reasoning with
declarative cycle theories, giving a form of flexible control. Cycle theories are given in
the framework of Logic Programming with Priorities (LPP). For the purposes of this
paper, we will assume that an LPP-theory, referred to as T , consists of four parts:

(i) a low-level part P , consisting of a logic program; each rule in P is assigned a name,
which is a term; e.g., one such rule, with name n(X), could be

n(X) : p(X) ← q(X,Y), r(Y)
(ii) a high-level partH , specifying conditional, dynamic priorities amongst rules in P ;

e.g., one such priority rule, called h(X), could be
h(X) : n(X) / m(X) ← c(X),

to be read: if (some instance of) the condition c(X) holds, then the rule in P with
name (the corresponding instance of) n(X) should be given higher priority than the
rule in P with name (the corresponding instance of)m(X).

(iii) an auxiliary part A, defining predicates occurring in the conditions of rules in P
andH and not in the conclusions of any rule in P ;

(iv) a notion of incompatibility, here given as a set of rules defining the predicate
incompatible, e.g.

incompatible(p(X), p′(X)),
to be read: any instance of the literal p(X) is incompatible with the corresponding
instance of the literal p′(X). We refer to the set of all incompatibility rules as I .

Any concrete LPP framework is equipped with a notion of entailment, that we de-
note by |=pr. Intuitively, T |=prα iff α is the “conclusion” of a sub-theory of P ∪ A
which is “preferred” with respect to H ∪ A in T over any other sub-theory of P ∪ A
that derives a “conclusion” incompatible with α (with respect to I). Here, we are as-
suming that the underlying logic programming language is equipped with a notion of
“entailment” that allows to draw “conclusions”. In [10, 9, 7, 5, 3], |=pr is defined via
argumentation.

Formalisation of Cycle Theories. Here and in the rest of the paper, we will use no-
tation T (S,X, S′, τ) to represent application of transition T at time τ in state S, given
inputX , resulting in state S′, and notation ∗T (S,X) to represent that transition T can
be potentially chosen as the next transition in state S, with inputX .

Formally, a cycle theory Tcycle consists of the following parts.

– An initial part Tinitial , that determines the possible transitions that the agent could
perform when it starts to operate. Concretely, Tinitial consists of rules of the form

212 F. Sadri and F. Toni

∗T (S0, X) ← C(S0, τ,X), now(τ)

which we refer to via the name R0|T (S0, X). These rules sanction that, if condi-
tions C hold in the initial state S0 at the initial time τ , then the initial transition
could be T , applied to state S0 and inputX .

– A basic part Tbasic that determines the possible transitions following given transi-
tions, and consists of rules of the form

∗T ′(S′, X ′) ← T (S,X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)

which we refer to via the nameRT |T ′(S′, X ′). These rules sanction that, after tran-
sition T has been executed, starting at time τ in the state S and resulting in state
S′, and the conditions EC evaluated in S′ at the current time τ ′ are satisfied, then
transition T ′ could be the next transition to be applied in S′, with inputX ′.EC are
called enabling conditions as they determine when T ′ can be applied after T . They
also determine inputX ′ for T ′, via calls to selection functions.

– A behaviour part Tbehaviour that contains rules describing dynamic priorities
amongst rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S,X ′) /RT |T ′′(S,X ′′)←BC(S,X ′, X ′′, τ), now(τ)

with T ′
= T ′′, which we will refer to via the name PT
T ′�T ′′ . Recall that RT |T ′(·)

and RT |T ′′(·) are (names of) rules in Tbasic ∪ Tinitial. Note that, with an abuse of
notation, T could be 0 in the case that one such rule is used to specify a priority
over the first transition to take place, in other words, when the priority is over rules
in Tinitial. These rules in Tbehaviour sanction that, at the current time τ , after tran-
sition T , if the conditionsBC hold, then we prefer the next transition to be T ′ over
T ′′. The conditions BC are called behaviour conditions and give the behavioural
profile of the agent.

– An auxiliary part including definitions for any predicates occurring in the enabling
and behaviour conditions.

– An incompatibility part, in effect expressing that only one (instance of a) transition
can be chosen at any one time.

Hence, Tcycle is an LPP-theory where: (i)P = Tinitial∪Tbasic, and (ii)H = Tbehaviour .

Operational Trace. The cycle theory Tcycle of an agent is responsible for its behaviour,
in that it induces an operational trace of the agent, namely a (typically infinite) sequence
of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .

such that

– S0 is the given initial state;
– for each i ≥ 1, τi is given by the clock of the system (τi < τi+i);
– (Tcycle − Tbasic) ∧ now(τ1) |=pr ∗T1(S0, X1);
– for each i ≥ 1

(Tcycle − Tinitial) ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)

Variety of Behaviours Through Profiles in Logic-Based Agents 213

namely each (non-final) transition in a sequence is followed by the most preferred tran-
sition, as specified by Tcycle. If, at some stage, the most preferred transition determined
by |=pr is not unique, we choose one arbitrarily.

Normal Cycle Theory. In defining profiles in section 5 we take the normal cycle the-
ory as a starting point. This specifies a pattern of operation where the agent prefers
to follow a sequence of transitions that allows it to achieve its goals in a way that
matches an expected “normal” behaviour. Basically, the “normal” agent first introduces
goals (if it has none to start with) via GI, then reacts to them, via RE, and then re-
peats the process of planning for them, via PI, executing (part of) the chosen plans,
via AE, revising its state, via SR, until all goals are dealt with (successfully or re-
vised away). At this point the agent returns to introducing new goals via GI and re-
peating the above process. Whenever in this process the agent is interrupted via a
passive observation, via POI, it chooses to introduce new goals via GI, to take into
account any changes in the environment. Whenever it has actions which are “unre-
liable”, in the sense that their preconditions definitely need to be checked, the agent
senses them (via SI) before executing the action. Whenever it has actions which are
“unreliable”, in the sense that their effects definitely need to be checked, the agent
actively introduces actions that aim at sensing these effects, via AOI, after having exe-
cuted the original actions. The full definition of the normal cycle theory is given in the
appendix.

5 Behaviour Profiles

In this section we explore how cycle theories can be used to specify different profiles
of behaviour. We concentrate on three profiles, the careful, the focussed and the full
planner.

In the careful profile the behaviour of the agent is such that it would re-examine
its commitments in terms of its goals and plans frequently to discard those that are no
longer needed or have become infeasible. Intuitively, this profile would be suitable for a
changing environment that intervenes in the agent’s operations, and the frequent ”self-
examination” of the agent can help it avoid being occupied with unnecessary activity
or activity which is bound to fail. It also ensures that the agent’s operations are not
hindered by superfluous items in the state and that reactive rules will not be triggered
unnecessarily by goals/actions that are timed-out and not achieved/executed.

With the focussed profile the agent concentrates on one (top-level) goal at a time and
only moves to other goals when that goal is achieved or is timed out. Intuitively this
profile is useful when the agent has goals that have become mutually unachievable. By
being focussed the agent increases its chances of achieving at least some of them.

With the full planner profile the agent plans fully for its goals before it starts to
execute the actions in the plan. It thus ensures that when it executes an action it is
guaranteed that there is a full plan backing that action.

Below we proceed to define each of the three profiles by giving a formal definition
in terms of trace characteristics, followed by specification of cycle theories that will
induce such traces. We then proceed to prove the advantages of the profile depending
on particular characteristics of the application.

214 F. Sadri and F. Toni

5.1 Careful Profile

Definition 1 (Careful profile: trace-based characterisation). A careful agent is an
agent that will never generate an operational trace with two consecutive transitions
that are different from SR.

In fact, this condition is stronger than strictly necessary: As long as there are no re-
dundant or infeasible goals or actions no revision would be required. However, from
a pragmatic point of view, Definition 1 nevertheless provides us with an appropriate
characterisation of careful agents. This is so, because checking whether or not a state
includes redundant or infeasible goals or actions to be revised is just as costly as per-
forming a state revision in the first place.

Our next goal is to define a class of cycle theories that are guaranteed to induce
an operational trace where every other transition is an SR. As we shall see this is not
as straightforward a goal as it may seem. To illustrate the difficulties and to motivate
our choices (which are eventually going to overcome these difficulties), we start by
attempting to define a careful cycle theory as an extension of the normal cycle theory.

The Normal-Careful Cycle Theory. There are several ways of combining cycle theo-
ries (in this case the normal cycle theory with the core rules necessary for characterising
the careful profile). One option would be to take the union of the two cycle theories
(which are sets of basic and behaviour rules) and then, where necessary, to introduce
additional behaviour rules that determine the agent’s behaviour in case of conflict be-
tween the rules stemming from the different parts. Another way, which gives the profile
designer less freedom but which results in much simpler cycle theories, would be to
work at the level of basic rules as far as possible and to use suitable enabling conditions
to control the agent’s behaviour. This is the approach we are going to follow here.

To design a careful agent, we need to ensure that basic rules expressing that SR
should follow any other transition T get priority over any conflicting rules. Instead of
using behaviour rules to this effect, we are simply going to delete such conflicting rules
in the first place. Hence, we end up with the following approach:

– Step 1: Take the normal cycle theory as a starting point.
– Step 2: Remove any basic rules (in Tbasic) that speak about two consecutive tran-

sitions both of which are different from SR.
– Step 3:Add the following basic rule (to Tbasic) for each T different from SR:

RT |SR(S′, {}) : ∗SR(S′, {}) ← T (S,X, S′, τ)

Note that there cannot be any enabling conditions in this kind of new rule: SR needs
to be enabled under any circumstances. Note also that Step 3 might re-introduce rules
which already belong to Tbasic. This causes no theoretical or practical problem. We thus
end up with the following normal-careful cycle theory:

– Tinitial is as for the normal cycle theory.
– Tbasic consists of the above rules of the form RT |SR and of the following rules:

RSR|PI(S′, Gs) : ∗PI(S′, Gs) ← SR(S, {}, S′, τ ′),
Gs = cGS(S′, τ), Gs
= {}, now(τ)

RSR|GI(S′, {}) : ∗GI(S′, {}) ← SR(S, {}, S′, τ ′),
Gs = cGS(S′, τ), Gs = {}, now(τ)

Variety of Behaviours Through Profiles in Logic-Based Agents 215

Tbasic does not contain any other rules, because all the remaining basic rules in
the normal cycle theory speak about transitions that should follow transitions other
than SR and these are fixed for the careful profile.

– Tbehaviour is empty. Indeed, it turns out that also all of the rules in Tbehaviour in
the normal cycle theory are redundant, because they speak about what to do after a
transition other than SR.

In summary, the normal-careful cycle theory will force an agent to alternate between SR
and PI or GI (depending on whether there are currently goals to plan for or not). Such
an agent would be careful, but not very useful. Below we improve the cycle theory to
overcome this inadequacy.

The Core-Careful Cycle Theory. We improve the normal-careful cycle theory by
adding that every transition except SR, itself, should be enabled after SR. Thus, Tbasic

in the core-careful cycle theory contains, in addition to the basic rules in the normal-
careful cycle theory, the following rules:

RSR|RE(S′, {}) : ∗RE(S′, {}) ← SR(S, {}, S′, τ)
RSR|AE(S′, As) : ∗AE(S′, As) ← SR(S, {}, S′, τ ′),

As = cAS(S′, τ), As
= {}, now(τ)
RSR|SI(S′, P s) : ∗SI(S′, P s) ← SR(S, {}, S′, τ ′),

P s = cPS(S′, τ), P s
= {}, now(τ)
RSR|AOI(S′, F s) : ∗AOI(S′, F s) ← SR(S, {}, S′, τ ′),

F s = cFS(S′, τ), F s
= {}, now(τ)
RSR|POI(S′, {}) : ∗POI(S′, {}) ← SR(S, {}, S′, τ)

The following proposition states the correspondence between the core-careful cycle
theory and the (trace-based characterisation of the) careful profile given in Definition 1:

Proposition 1 (Careful profile). The core-careful cycle theory induces the careful pro-
file of behaviour: Any agent using this cycle theory will never generate an operational
trace with two consecutive transitions that are different from SR.

Proof. This follows immediately from the fact that the basic part of the cycle theory
forces an SR after every other type of transition, and there is exactly one basic rule to
determine the follow-up of any transition different from SR.

Other Careful Cycle Theories. The two careful cycle theories we have considered so
far are just two examples; there is a range of cycle theories that conform to the careful
behaviour profile. Our second example, the core-careful cycle theory is the most general
cycle theory conforming to the careful profile.

For concrete applications, we may wish to combine the features of careful behaviour
with other more specific features. We can construct a careful cycle theory of our choice
by taking the core-careful cycle theory as a starting point and then imposing additional
behaviour constraints using the following means:

– strengthening the enabling conditions in basic rules that determine the follow-up
transition for an SR;

216 F. Sadri and F. Toni

– deleting basic rules that determine the follow-up transition for an SR;
– adding any kind of behaviour rules;
– deleting rules that have become redundant due to other changes.

Note, however, that we cannot add any enabling conditions to the basic rules that state
that SR has to follow any other transition. Otherwise, the resulting cycle theory cannot
be guaranteed to conform to the careful profile of behaviour anymore. We also cannot
delete such a rule, unless it has already become redundant due to other changes in
the cycle theory. On the other hand, we do have complete freedom with respect to the
behaviour rules we might wish to add, because the basic rules never admit any conflict
as to what transition to choose after a transition different from SR in the first place.

Clearly, any such careful cycle theory will also induce the careful profile of behaviour
in the sense of Proposition 1.

A Property of the Careful Profile. Informally, under certain circumstances:

– Careful agents will never generate a reaction via the reactivity transition to timed-
out unachieved goals or timed-out unexecuted actions.

– Careful agents will never generate a reaction via the reactivity transition to actions
that may not be timed out yet but which are unexecuted and are no longer necessary.

More formally:

Theorem 1. The following will never contribute to the generation of a reaction (i.e. an
action in Plan or goal in Goals) via the RE transition:

1. a timed-out unexecuted action,
2. a timed-out unachieved goal,
3. an unexecuted action whose execution is no longer needed, i.e.

(a) with an ancestor which has already been achieved, or
(b) with a sibling that has been timed-out, or
(c) with an ancestor which has been timed-out,

provided that no action and no goal is timed out between an SR transition and its
immediate successor if that is an RE transition.

Proof. Let the assumption hold that no action and no goal is timed out between an SR
transition and its immediate successor if that is an RE transition. Suppose a careful agent
applies RE in a state S = 〈KB,Goals, P lan, TCS〉. Then by Definition 1, because
SR must have been applied in the state immediately prior to S, no action or goal of the
type specified in 1–3, above exists in state S. Therefore no such action or goal could
possibly contribute to the generation of any reaction by RE.

5.2 Focussed Profile

In the focussed profile of behaviour an agent does not plan for more than one top-level
goal at a time. More specifically, a focussed agent remains committed to a goal amongst
its top-level goals until

Variety of Behaviours Through Profiles in Logic-Based Agents 217

– that goal has been successfully achieved, or
– that goal has become infeasible, or
– that goal is not preferred by the Goal Decision capability anymore, when invoked

by the GI transition, or
– that goal has an empty plan in the state.3

The advantages of the focussed profile come into effect in highly time-critical domains
as well as domains where an agent has several goals with mutually incompatible plans.
In such situations, a focussed agent can be expected to achieve, at least, some goals,
whereby an unfocussed agent may fail completely. This applies, in particular, to agents
that have a preference for total planning. By concentrating planning on a single goal at
a time, a focussed agent is likely to be faster and it will also avoid wasting computing
resources over incompatible plans for other goals.

Formally, the focussed profile has the following characteristic: A focussed agent,
under no circumstances, will generate an operational trace that includes a state with
two distinct top-level goals with children, neither of which is either achieved or infea-
sible. Here, a goal G is called feasible iff neither itself nor any of its descendents is
timed-out.

Note that this notion of infeasibility need not persist. A goal G may, at some point,
be infeasible, because an action in its current plan is timed-out, but G may again be-
come feasible later on, after the agent has revised its state and computed a new plan.
Therefore, the only way to ensure that switching to a new top-level goal for planning
is admissible (under the focussed profile) is to first check that infeasible goals will stay
infeasible. This requires an SR. Hence, we can give the following alternative definition
of the focussed profile, which is simpler than our earlier definition.

Definition 2 (Focussed profile: trace-based characterisation). A focussed agent is
an agent that, under no circumstances, will generate an operational trace that includes
a state with two top-level goals with children.

This definition is stronger (more restrictive) than our first definition, but as argued ear-
lier, it is operationally equivalent to that definition, because an agent can only be sure
that switching goals will not violate the focussed profile after having executed an SR
(or after having performed an analogous check).

Possible Extensions. Note that, according to our definition, focussed agents do not deal
with more than one top-level goal at a time, but may switch between top-level goals in
some situations, as exemplified by the following example.

Example 1. Consider the following (portion of a) trace:

. . . , SR(S, {}, S′, τ), P I(S′, Gs, S′′, τ ′), . . .

with the top-level goals of S, S′, S′′ given by {G1, G2}. Assume thatG1 already has got
a plan in S, i.e. the set of items in Goals(S)∪Plan(S) with ancestorG1 is not empty.
Assume also thatG2 has no plan in S, i.e. the set of items inGoals(S)∪Plan(S) with

3 The need for this last item will become clear in Example 1.

218 F. Sadri and F. Toni

ancestorG2 is empty. Suppose that all items in the plan for G1 in S are timed-out at τ ,
and thus S′ is such thatGoals(S′) is the set of all top-level goals in S′ and Plan(S′) =
{}. Suppose also that neither G1 nor G2 are timed-out or achieved at τ ′, but PI is
introducing a plan for G2, so that the set of items in Goals(S′′) ∪ Plan(S′′) with
ancestorG2 is not empty. The agent with this trace is focussed according to definition 2.
However, it does switch from dealing with goalG1 to dealing with goalG2, despite goal
G1 being still unachieved and feasible.

Definition 2 of focussed agent may be modified to prevent goal switching, by com-
paring successive agent states in traces and force that once an agent has been plan-
ning/executing for one top-most level goal in one state, it must stick to that goal in suc-
cessive states, until the goal has been achieved or has become unachievable. This would
amount to getting rid of the last item in the informal description of focussed agent at
the beginning of Section 5.2 (and adding some other suitable conditions instead). This
stronger definition of focussed agent would however force extending the notion of cy-
cle theory and operational trace, either by looking at histories of transitions rather than
individual transitions when deciding on the next transition, or by introducing additional
information into cycle theories, such as variables holding the current top-level goal be-
ing dealt with. We therefore leave the stronger definition to future work.

Note also that our notion of focussed agent only refers to top-level goals, and not to
sub-goals or actions. The notion of focussed agent could be extended so as to define
agents that are focussed all the way, from top-level goals down.

Focussed Cycle Theories. To achieve the abstract specification, we need a cycle theory
that ensures that before any PI an SR has been performed. This is to ensure that we can
proceed with planning for a top-level goal even if some of its current children have
become infeasible. However, rather than implementing this behaviour directly, we are
going to ensure that PI is only enabled with respect to a set of goals that a focussed
agent may plan for given its current state according to the Definition 2. (This, in effect,
encourages an SR transition when a PI transition is not enabled.)

Definition 3 (Focussed cycle theories). A cycle theory is called focussed iff the initial
rule R0|PI(S,Gs) (in Tinitial) and the basic rule (in Tbasic) RT |PI(S,Gs) for any
transition T include the enabling condition focussed(Gs′, S,Gs), where:

– given that Gs is the set of goals to which PI will be applied and Gs′ ⊇ Gs is the
set of goals returned by the goal selection function, then

– the predicate focussed(Gs′, S,Gs) holds iff all the goals in Gs are descendants of
the same top-level goal (possibly including that top-level goal itself) and no other
top-level goal has got any children.

The focussed variant of the normal cycle theory would have in Tinitial the rule

R0|PI(S0, Gs) : ∗PI(S0, Gs) ← Gs′ = cGS(S0, τ),
focussed(Gs′, S0, Gs), Gs
= {}, now(τ)

instead of the original rule

R0|PI(S0, Gs) : ∗PI(S0, Gs) ← Gs = cGS(S0, τ), Gs
= {}, now(τ)

Variety of Behaviours Through Profiles in Logic-Based Agents 219

Similarly, the focussed variant of the normal cycle theory would have in Tbasic the rule

RAE|PI(S′, Gs) : ∗PI(S′, Gs) ← AE(S,As, S′, τ ′), Gs′ = cGS(S′, τ),
focussed(Gs′, S,Gs), Gs
= {}, now(τ)

instead of the original rule

RAE|PI(S′, Gs) : ∗PI(S′, Gs) ← AE(S,As, S′, τ ′),
Gs = cGS(S′, τ), Gs
= {}, now(τ)

The correspondence between the trace-based characterisation of the focussed profile
and the class of focussed cycle theories may be stated as follows:

Proposition 2 (Focussed profile). Any cycle theory that is focussed according to Def-
inition 3 induces the focussed profile of behaviour according to Definition 2.

Proof. The enabling condition focussed(Gs′, S,Gs) restricts the set of goals for which
the agent may plan to precisely the set of goals that are available for planning according
to the trace-based characterisation of the focussed profile. The claimed correspondence
then follows immediately from the fact that PI is the only transition that can add non-
top-level goals to a state.

A Property of the Focussed Profile. Let a focussed agent be one equipped with a
focussed cycle theory, and a normal agent be one equipped with the normal cycle theory.
Then if the two agents have a set of goals for which they have no compatible plans then
the focussed agent may be able to achieve at least some of its goals while the normal
agent may not be able to achieve any of the goals. The theorem below shows under what
conditions the focussed agent is guaranteed to achieve more of its goals compared to
the normal agent. Note that conditions 1-6 simply set the scene for the theorem whereas
conditions 7-9 restrict features of the environment and the application.

Theorem 2. Let f be a focussed agent and n be a normal agent. Let f and n be in a
state S = 〈KB,Goals, P lan, TCS〉 at time τ such that all the conditions below hold:

1. Plan is empty.
2. Goals consists of top-level goalsG1, . . . , Gn, n > 14.
3. The goal selection function, in state S, at all times τ ′, τ ′ ≥ τ , selects the same set

of k goals for some 1 < k ≤ n, until one or more such goals are achieved. Assume
these goals are {G1, . . . , Gk}, without loss of generality.

4. The agents’ PI transition produces a total plan for all its input goals.
5. At all times after τ , given input goals {G1, . . . , Gk}, the agents’ PI transition re-

turns no plan, because none exists in the overall state.
6. At all times after τ , given input goals {Gi}, i = 1, . . . k, the agents’ PI transition

returns a (total) plan.

4 Conditions 1. and 2. can arise, for example, if f and n have just executed GI starting from the
same initial state.

220 F. Sadri and F. Toni

Then, f will achieve5 at least one of the goals amongstG1, . . . ,Gn, while n will achieve
none of them, provided that:

7. The agents’ RE transition generates no goals or actions.
8. No POI, AOI transitions are performed, and no GI transition is performed after the

establishment of top-level goalsG1, . . . ,Gn.
9. Goals and actions are non-time critical, i.e. no goal or action is ever timed out.

Proof. (Sketch) Consider the case of the normal agent n: by conditions 3,5,7,8 the state
of n remains the same (although time progresses). In this state, by conditions 3 and 5,
n can never make any progress towards achieving any of its top-level goals.

Now consider the case of the focussed agent f : At some time τ1, τ1 ≥ τ , f per-
forms PI. By conditions 3 and 6 and the definition of the focussed profile a goal Gi,
i = 1, . . . k, is selected and PI succeeds in producing a complete plan for Gi, and up-
dates its state by adding all the produced actions As to its Plan and updating TCS
appropriately. These new actions will then all be executed. They will not be timed-out
by condition 9. So they may be removed from the state of the agent by SR only if their
associated goal is achieved. Any new goals and actions that may be introduced by later
applications of PI will not interfere with the execution of the actions in As. Therefore,
finally, after all the actions are executed, it will be possible to prove by the Temporal
Reasoning that goal Gi which was selected at time τ1 is achieved.

Note that conditions 7–9 are sufficient but not necessary conditions. For example con-
dition 8 can be replaced with one that requires only that any observation recorded as
a result of a POI is “independent” of the goals G1, . . . , Gn, and allows GI transitions
but imposes restrictions on their frequency. It is possible to construct examples where
some, possibly many, of conditions 7–9 do not hold, but still the focussed agent per-
forms better than the normal one in goal achievement terms.

5.3 Full Planner Profile

A full planner agent will not execute actions in its Plan if there are still goals left in its
Goals that can be planned for. Formally:

Definition 4 (Full planner profile: trace-based characterisation). A full planner
agent is an agent that, under no circumstances, will generate a trace that includes a
transition Ti(Si−1, Xi, Si, τi) where Ti = AE and where cGS(Si−1, τi−1)
= {}.

Full Planner Cycle Theories. To achieve the characterisation above we need cycle
theories that disable Action Execution (AE) when the set of goals returned by the goal
selection function is non-empty.

5 Here achievement is intended in a subjective sense: the agent determines that a goal is achieved
with respect to the information recorded in its knowledge base using its Temporal Reasoning
capability. An alternative notion of achievement could be objective, requiring checking goal
satisfaction in the environment.

Variety of Behaviours Through Profiles in Logic-Based Agents 221

Definition 5 (Full planner cycle theories). A cycle theory is called full planner if

– all rules in Tbasic enabling AE are of the form

RT |AE(S′, As) : ∗AE(S′, As)←T (S,X, S′, τ ′), cGS(S′, τ)={}, now(τ), Rest

with Rest a possibly empty conjunction of additional conditions;
– all rules in Tinitial enabling AE are of the form

R0|AE(S′, As) : ∗AE(S′, As) ← cGS(S0, τ) = {}, now(τ), Rest

with Rest a possibly empty conjunction of additional conditions;

Proposition 3 (Full planner profile). Any cycle theory that is full planner according
to definition 5 induces the full planner profile of behaviour according to Definition 4.

Proof. The initial and basic part of full planner cycle theories are defined in such a way
that AE transitions are never enabled whenever the set of goals returned by the goal
selection function is non-empty. This directly ensures that all traces generated by such
cycle theories will induce the full planner profile.

A Property of the Full Planner Profile. In non-time critical and non-dynamic envi-
ronments where the actions of the agents have the expected outcomes once the agent
starts to execute actions it is guaranteed to achieve all its goals. The theorem below
expresses this more precisely.

Theorem 3. Suppose an agent has a set of goals Gs in a state S. If

1. goals and actions are non-time critical, i.e. no goal or action is ever timed out,
2. the agent executes at least one action in a state S′, where S′ is some state after S

such that there has been no GI transition between S and S′, and
3. there exists a state S′′ which is either S′ itself or is later than S′ such that by the

time the agent has reached S′′ every action in S′ has been either executed within
an AE transition or revised away in an SR transition,

then, if this agent is endowed with the full planner profile, all the goals in S are achieved
in S′′.

Proof. (Sketch) Once an action is executed in state S′ it is guaranteed by the definition
of the full planner profile that the agent has a full plan for all the goals in state S′. Any
goals that are in S but not in S′ must already have been achieved (and removed by SR),
as no goals are timed out. Then condition 3 of the theorem ensures that all the goals in
S′ and thus in S are achieved.

An alternative stronger result that can be proven to hold is that, in an environment
that is predictable in the sense that POI and AOI transitions always confirm what the
agent expects, and a fairness property holds for the traces induced by cycle theories,

222 F. Sadri and F. Toni

then condition 3 in the earlier theorem is not necessary, and we are guaranteed the
existence of such a state S′′. We do not present this result formally for lack of space.

6 Conclusion

In this paper, building on our earlier work [6], we have further explored the use of cycle
theories for declarative control of agents. We showed how in the case of KGP agents
we can define concrete and useful agent profiles or personalities by varying the rules
in cycle theories. We showed three such profiles in detail, careful, focussed and full
planner, and exemplified and formally proved their advantages. The cycle theories for
these three profiles are no more complicated than the normal cycle theory, and possibly,
in the case of the careful profile, the cycle theory is simpler.

The careful profile is best suited to a dynamic unpredictable environment, but one
in which the agent does not have strict deadlines. The focussed profile is best suited to
resource-bounded agents. The full planner profile is best in non-time critical and non-
dynamic environments, where the actions of the agents have the expected outcomes.
The theoretical analysis of the profiles not only allows exploration of heterogeneity of
agents, but it can also provide guidelines to designers of agents and implementers, for
example those using the PROSOCS platform. There is scope for exploring a number
of other profiles, some of which have been introduced in [1]. Exploring other profiles,
parameterising their advantages and disadvantages according to factors in the environ-
ment and application domains and exploring how profiles can be usefully combined are
subjects of current and future research. Currently we see no problem in combining the
profiles proposed in this paper. Another avenue is to explore the relationships between
profiles of behaviour and emotions.

Our work on profiles shares some of the objectives of the work on commitment
strategies based on the BDI model [11]. Three commitment strategies have been de-
fined, blind, single minded, and open minded. They are defined by expressing rela-
tionships between current and future intentions. A blindly committed agent, for exam-
ple, maintains its intentions as long as it believes that it has achieved them, while a
single minded agent maintains its intentions until it believes they are achievable. Our
work on profiles and their consequences goes some way beyond these commitment
strategies.

Our approach shares the aims of 3APL [4] to make it possible to program the agent
cycle and make the selection mechanisms explicit. But it goes beyond 3APL by aban-
doning the concept of fixed cycles and replacing it with dynamic programmable cycle
theories.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET under the IST-
2001-32530 SOCS project, within the GC proactive initiative. We are also grateful to
A.C. Kakas and U. Endrich for early discussions regarding this work.

Variety of Behaviours Through Profiles in Logic-Based Agents 223

References

1. F. Athienitou, A. Bracciali, U. Endriss, A.C. Kakas, W. Lu, P. Mancarella, F. Sadri, K. Stathis,
and F. Toni. Profile related properties. Technical report, SOCS deliverable, 2005.

2. A. Bracciali, N. Demetriou, U. Endriss, A.C. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global computing: Com-
putational model and prototype implementation. In Global Computing 2004 Workshop, page
342. Springer Verlag LNCS 3267, 2005.

3. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In Proc.
ILPS, pages 369–384, 1995.

4. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999.

5. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for logic programs.
pages 504–519, 1994.

6. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative agent control. In
Proc. CLIMA V, 2004.

7. A. C. Kakas and P. Moraitis. Argumentation based decision making for autonomous agents.
pages 883–890, Melbourne, Victoria, July 14–18 2003.

8. A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of agency. In
Proc. ECAI-2004, 2004.

9. R.A. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law Journal,
Special Issue on Logical Models of Argumentation, 4:275–296, 1996.

10. H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible priorities.
In International Conference on Formal and Applied Practical Reasoning, Springer Lecture
Notes in AI 1085, pages 510–524. 1996.

11. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture. In
Readings in Agents, pages 317–328. 1997.

12. K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali. PROSOCS: A
platform for programming software agents in computational logic. In Proc. AT2AI, 2004.

Normal Cycle Theory in Full

– Tinitial:
R0|GI(S0, {}) : ∗GI(S0, {}) ← empty goals(S0)
R0|PI(S0, Gs) : ∗PI(S0, Gs) ← Gs = cGS(S0, τ), Gs �= {}, now(τ)
R0|POI(S0, {}) : ∗POI(S0, {}) ← poi pending(τ), now(τ)

– Tbasic:
rules for deciding what might follow AE:
RAE|PI(S′, Gs) : ∗PI(S′, Gs) ← AE(S, As, S′, τ ′),

Gs = cGS(S′, τ),Gs �= {}, now(τ)
RAE|AE(S′, As′) : ∗AE(S′, As′) ← AE(S, As,S′, τ ′),

As′ = cAS(S′, τ),As′ �= {}, now(τ)
RAE|AOI(S′, F s) : ∗AOI(S′, F s) ← AE(S, As, S′, τ ′),

F s = cF S(S′, τ), F s �= {}, now(τ)
RAE|SR(S′, {}) : ∗SR(S′, {}) ← AE(S, As,S′, τ ′)
RAE|GI(S′, {}) : ∗GI(S′, {}) ← AE(S,As, S′, τ ′)
rules for deciding what might follow SR:
RSR|PI(S′, Gs) : ∗PI(S′, Gs) ← SR(S, {}, S′, τ ′),

Gs = cGS(S′, τ),Gs �= {}, now(τ)

224 F. Sadri and F. Toni

RSR|GI(S′, {}) : ∗GI(S′, {}) ← SR(S, {}, S′τ ′),
Gs = cGS(S′, τ),Gs = {}, now(τ)

rules for deciding what might follow PI:
RPI|AE(S′, As) : ∗AE(S′, As) ← PI(S, Gs, S′, τ ′),

As = cAS(S′, τ), As �= {}, now(τ)
RPI|SI(S′, P s) : ∗SI(S′, P s) ← PI(S, Gs, S′, τ ′),

P s = cPS(S′, τ), P s �= {}, now(τ)
rules for deciding what might follow GI:
RGI|RE(S′, {}) : ∗RE(S′, {}) ← GI(S, {}, S′, τ)
RGI|PI(S′, Gs) : ∗PI(S′, Gs) ← GI(S, {}, S′, τ ′),

Gs = cGS(S′, τ), Gs �= {}, now(τ)
rules for deciding what might follow RE:
RRE|PI(S′, Gs) : ∗PI(S′, Gs) ← RE(S, {}, S′, τ ′),

Gs = cGS(S′, τ), Gs �= {}, now(τ)
RRE|SI(S′, P s) : ∗SI(S′, P s) ← RE(S, {}, S′, τ ′),

P s = cPS(S′, τ), P s �= {}, now(τ)
RRE|AE(S′, As) : ∗AE(S′, As) ← RE(S, {}, S′, τ ′),

As = cAS(S′, τ),As �= {}, now(τ)
RRE|SR(S′, {}) : ∗SR(S′, {}) ← RE(S, {}, S′, τ ′)
rules for deciding what might follow SI:
RSI|AE(S′, As) : ∗AE(S′, As) ← SI(S, Ps, S′, τ ′),

As = cAS(S′, τ),As �= {}, now(τ)
rules for deciding what might follow AOI:
RAOI|AE(S′, As) : ∗AE(S′, As) ← AOI(S, Fs, S′, τ ′),

As = cAS(S′, τ), As �= {}, now(τ)
RAOI|SR(S′, {}) : ∗SR(S′, {}) ← AOI(S, Fs, S′, τ ′)
RAOI|SI(S′, P s) : ∗SI(S′, P s) ← AOI(S, Fs, S′, τ ′),

P s = cPS(S′, τ), P s �= {}, now(τ)
rules for deciding when POI should take place:
RT |POI(S′, {}) : ∗POI(S′, {}) ← T (S,X, S′, τ ′), poi pending(τ), now(τ)
for all transitions T ;
rules for deciding what might follow POI:
RPOI|GI(S′, {}) : ∗GI(S′, {}) ← POI(S, {}, S′, τ)
RPOI|RE(S′, {}) : ∗RE(S′, {}) ← POI(S, {}, S′, τ)
RPOI|SR(S′, {}) : ∗SR(S′, {}) ← POI(S, {}, S′, τ)

– Tbehaviour:
GI is given higher priority if there are no goals in Goals and actions in P lan:
PT

GI�T ′ : RT |GI(S, {}) � RT |T ′ (S, X) ← empty goals(S), empty plan(S)
for all T, T ′, with T ′ �= GI and T possibly 0;
GI is also given higher priority after a POI:
PPOI

GI�T : RPOI|GI(S′) � RPOI|T (S, S′) for all T �= GI ;
after GI, RE is given higher priority:
PGI

RE�T : RGI|RE(S, {}) � RGI|T (S, X) for all T �= RE;
after RE, PI is given higher priority:
PRE

PI�T : RRE|PI(S,Gs) � RRE|T (S, X) for all T �= PI ;
after PI, AE is given higher priority, unless there are actions in the actions selected for
execution whose preconditions are “unreliable” and need checking, in which case SI
will be given higher priority:
PPI

AE�T : RPI|AE(S, As) � RPI|T (S, X) ← not unreliable pre(As)
for all T �= AE;

Variety of Behaviours Through Profiles in Logic-Based Agents 225

PPI
SI�T : RPI|SI(S, Ps) � RPI|T (S, As) ← unreliable pre(As)

for all T �= SI ;
after SI, AE is given higher priority:
PSI

AE�T : RSI|AE(S, As) � RSI|T (S, X) for all T �= AE;
after AE, AE should be given higher priority until there are no more actions to execute
in P lan, in which case either AOI or SR should be given higher priority, depending on
whether there are actions which are “unreliable”, in the sense that their effects need
checking, or not:
PAE

AE�T : RAE|AE(S, As) � RAE|T (S, X) for all T �= AE;
PAE

AOI�T : RAE|AOI(S, Fs) � RAE|T (S, X) ← empty executable plan(S),
unreliable post(S)

for all T �= AOI ;
PAE

SR�T : RAE|SR(S, {}) � RAE|T (S, X) ← empty executable plan(S),
not unreliable post(S)

for all T �= SR;
after SR, PI should have higher priority:
PSR

PI�T : RSR|PI(S, Gs) � RSR|T (S, {}) for all T �= PI ;
after any transition, POI is preferred over all other transitions:
PT

PI�T ′ : RT ||OI(S) � RT |T ′ (S, X)
for all T, T ′, with T ′ �= POI and T possibly 0;
in the initial state, PI is given higher priority:
P0

PI�T : R0|PI(S, Gs) � R0|T (S, X) for all T �= PI ;
– The auxiliary part includes definitions for

empty goals, unreliable pre, unreliable post,
empty executable plan, poi pending etc.

Note that poi pending(τ) holds when there is an input from the environment pending.

Contract-Related Agents

John Knottenbelt and Keith Clark

Dept of Computing, Imperial College London,
180 Queens Gate, London, SW7 2AZ, UK

{jak97, klc}@imperial.ac.uk

Abstract. We propose a simple event calculus representation of con-
tracts and a reactive belief-desire-intention agent architecture to enable
the monitoring and execution of contract terms and conditions. We use
the event calculus to deduce current and past obligations, obligation
fulfilment and violation. By associating meta-information with the con-
tracts, the agent is able to select which of its contracts with other agents
are relevant to solving its goals by outsourcing. The agent is able to
handle an extendable set of contract types such as standing contracts,
purchase contracts and service contracts without the need for a first-
principles planner.

1 Introduction

Multi-agent systems is a growing research area and has already started to find
application in industry in web services and the semantic web. There is also
increased interest in agent coordination and choreography. Our approach sees
contracts as a means of formally describing the relationships between agents
in terms of obligations and permissions, as well as providing a coordination
function.

By expressing the terms and conditions of a contract as a set of event-based
rules – and so long as the participating agents agree on the history of events
relevant to their contracts – an agent is able to obtain a completely unambiguous
and indisputable view of the state of the contract at any given point in time.

We claim that the AgentSpeak(L) [13] architecture, with relatively few ex-
tensions, enables an agent to behave in a reactive manner (as is the case with
service agents, where they react to obligations imposed on them) or a proactive
manner where it makes use of agreed or newly proposed client contracts in order
to impose obligations on other agents to do things for it. It may do this both
to satisfy its own goals, or to discharged obligations it has arising from other
contracts.

Starting off with a description of how contracts may be represented in the
event calculus, we give an example of a short-term contract to conduct a pur-
chase and a long-term standing contract to set-up short-term purchase contracts.
In section 3 we discuss how the agents may communicate with each other and in
section 4 we show how these communications can be used to effect the contract
state (such as established facts, obligation fulfilment and violation). Section 5

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 226–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Contract-Related Agents 227

briefly presents the AgentSpeak(L) architecture and how we have used and ex-
tended it to incorporate reasoning about contracts. We give the plan libraries
for the customer and vendor agents which are able to monitor a general class of
purchase and standing contracts, of which the contracts presented in section 2
are instances. Finally we review related work and concluding remarks.

2 Contract Representation

The core of the contract representation language is the event calculus [12], where
communications are events and the contract rules specify how the events initiate
and terminate obligation fluents. We make an implicit assumption that an agent
is permitted to perform any communication that, taking into account the history
of the use of the contract up to this point, will initiate an obligation on another
party to the contract. This assumption has been sufficient for the examples
studied so far, however, we do intend to investigate explicit representation of
permissions in future work. In this paper we are using the Prolog variable syntax
convention where variables begin with an uppercase letter.

We are using the full event-calculus [14] without the releases predicate since
the examples we have considered so far do not require the use of non-inertial flu-
ents. We also dispense with the initiallyP and initiallyN predicates by provid-
ing a contract start event, and writing initiates(start, F, T) and terminates

(start, F, T) respectively. Figure 1 summarises the axioms of the event calcu-
lus.

holdsAt(F,T) ↔ happens(E,T1) ∧ T1<T ∧
initiates(E,F,T1) ∧ not clipped(T1,F,T).

notHoldsAt(F,T) ↔ happens(F, T1) ∧ T1<T ∧
terminates(E, F, T1) ∧ not declipped(T1,F,T).

clipped(T0,F,T1) ↔ ∃T[T0≤T ∧ T<T1 ∧ terminates(E,F,T)].
declipped(T0,F,T1) ↔ ∃T[T0≤T ∧ T<T1 ∧ initiates(E,F,T)].

Fig. 1. Event Calculus Summary

The body of a contract is represented by a binary relation, contractClause,
between the label of the contract and the clauses belonging to the contract.
Variables can be shared between the contract label and the clauses – those
appearing in the label are conceptually parameters to the contract. If we were
representing the contracts directly in Prolog, there would be one contractClause

definition for each rule of the contract. For example, Figure 2 shows the first
rule of a short term contract about a purchase transaction.

The label of the contract is customerVendorContract purchase(...). The pa-
rameters to the left of the | are the principals of the contract, usually the offeror
and the offeree in a normal two party contract. The rule reads that at the
start of the contract, the vendor (V) is obliged to announce the invoice number
(invoice-no) relating to the purchase within 100 time units. start is the event

228 J. Knottenbelt and K. Clark

contractClause(
customerVendorContract_purchase(customer1:C, vendor:V |

vendorBank:VB, customerBank:CB, deliveryService:DS, item:I, price:P),
initiates(start, oblig(V, achieve(value(invoice-no, _)), T+100), T).

Fig. 2. Contract Clause as Prolog

marking the start of the contract’s lifetime. oblig is a 3-place fluent relation
between the bearer, the goal to be performed and its deadline. achieve indicates
a state of affairs is to be achieved. value is a binary fluent relating contract
variables to their values.

For ease of presentation, we adopt a more compact syntax, where the label is
written once at the beginning of the contract, and the rules are written inside the
following brace delimited block. Macro definitions for frequently used terms are
written in small caps and marked with ≡ and should be textually substituted
by the reader as they occur.

Fig. 3. Simple Purchase Contract

2.1 Short-Term Contracts

Figure 3 shows the full text for a purchase contract, parameterised by the item
being purchased, the price, the vendor, the customer, the vendor’s and customer’s
bank, and a delivery service.

1 To aid readability we employ the syntax field:Value to indicate a named field or
parameter.

Contract-Related Agents 229

The first initiates rule, as described above, obliges the vendor to determine
an invoice number and to signal this as an event notification for the contract.
The vendor does this by sending an inform message to the customer (see sections
3 and 4.1). When the invoice number has been notified, the second and third
initiates rules oblige the customer to concurrently pay within 100 time units
and the vendor to deliver within 300 time units and to signal completion as
contract related events.

The last initiates and the only terminates rule indicate that the customer
will become the new owner of the item when the payment obligation has been
fulfilled.

The authoritative clauses indicate which agents are authoritative for which
fluents. The concept is related to controllable propositions [9] — the difference
being that in our work the controlled proposition is limited in scope to a specific
contract, rather than to the entire agent society. In the example, only the vendor
has the authority to notify an invoice number. A notification by the customer
would not be considered a contract event.

This mechanism is also useful to identify trusted-third parties: the banks are
authoritative for the paid fluents (that is any payment from customer to vendor)
and the delivery agent is authoritative for the proof of delivery fluent. An agent
that is not authoritative for a fluent may attempt to communicate it, but the
communication would have no effect in this contract.

2.2 Long-Term Contracts

It is useful to agree a contract about what contracts may be agreed in the future.
In Figure 4 we give an example standing contract specifying prices for rolls of wire
mesh, fixing screws and sheets of tin roofing. The vendor agent is constrained
by the standing contract to accept any purchase proposals matching the agreed

customerVendorContract(customer:C, vendor:V |
vendorBank:VB, customerBank:CB, deliveryService:DS) {

initiates(E, oblig(V, do(X, replyTo(X, E)), T+100), T) ←
proposeEvent(E, C, V, _).

initiates(E, oblig(V, do(X, acceptEvent(X, E), T+100), T) ←
proposeEvent(E, C, V,

customerVendorContract_purchase(customer:C, vendor:V |
vendorBank:VB, customerBank:CB,
deliveryService:DS, item:I, price:P)) ∧

agreedPrice(item:I, price:P).

agreedPrice(item:wiremesh(width:10, height:10, gauge:10), price:10.00).
agreedPrice(item:fixingscrews(gauge:5, amount:1000), price 6.99).
agreedPrice(item:tinroofing(width:6, height:9), price 4.00).

}

Fig. 4. Standing Contract

230 J. Knottenbelt and K. Clark

criteria. The purchase proposal is a reference, by means of the contract label, to
the simple purchase contract presented above.

The first initiates rule specifies that the vendor must reply to proposals
(of any kind) from the customer within 100 time units. The important syntax
here is the do(...) notation which indicates that the agent must bring about an
event satisfying a particular constraint. In this case the event must satisfy the
replyTo constraint, meaning that it must be a valid reply to the accept event (i.e.
an accept or a reject). The following section defines the replyTo, proposeEvent

and acceptEvent predicates, which are common to all agents. Similarly the sec-
ond initiates rule specifies that the vendor must accept proposals meeting the
agreedPrice criterion.

3 Communication

In our system, events are the act of sending messages. The messages are inter-
preted by the agents according to a shared ontology, the domain independent
part of which is described here and in section 4. Only recorded events that are
relevant to a contract may progress the contract state. Real world events, such
as “the car leaving the drive way”, may be put in the context of a contract by
an inform event (or reported event, see below) to that effect.

We require that the events are observed by all contract principals because the
state of the contract depends on the history of events relevant to it. In a two
party contract, this requirement is trivially satisfied when one principal sends a
message to another.

Although the exact format of a message and its transport details will vary from
application to application and agent society to agent society, a well-formed mes-
sage should include a time-stamp, a unique message identifier, a field identifying
the message to which it is a reply (if any), message sender, message receiver, a
message content, context and the interaction protocol or conversation identifiers.
Messages relevant to a contract should include a context field corresponding to
the contract label. This information can be inferred if the received message is in
reply to an earlier message that was properly context-tagged. Figure 5 gives an
example representation of an accept event for the long term contract between
the customer and vendor (see Figure 4).

We list some predicates that can be used in the contract language and agent
code either as tests on received messages, or as constraints on messages about to
be sent (this commonly occurs when an agent is obliged to do a communication
subject to some specified constraints). The predicates are implemented in terms
of constraints on the message attributes above.

contractEvent(E, C) event E is in the context of contract C.
proposeEvent(PE, X, Y, P) PE is a propose event from X to Y for a proposal

P. Proposals take the form of contract labels. Propose events must specify
the propose protocol, which restricts the valid replies to accept or reject
events.

Contract-Related Agents 231

acceptEvent(A, PE) A is an acceptance event in reply to a proposal event, PE.
Accept events must specify the propose protocol. According to the protocol
rules (see replyTo below), there can only be one reply to a proposal, so if
there are any further accept or reject events they should be ignored. The
receiving agent should check the validity of the proposal event.

rejectEvent(R, PE) R is a reject event in reply to a proposal event, PE. Like
acceptEvents, rejectEvents should specify the propose protocol.

informEvent(IE, X, Y, F) IE is an inform event from X to Y that F is true.
F is normally a fluent. Only agents that are authoritative about the fluent
(see subsection 4.1) may establish it in the context of the contract.

replyTo(R, E) R is a reply to event E. If E specifies a protocol, replyTo con-
strains R to be a valid response in the protocol. R and E must share the same
context and must agree on the protocol attribute. R’s in-reply-to attribute
must equal E’s message identifier.

reportEvent(RE, E) indicates that RE is a report of an actual event E. This is
most useful when E is an inform event from another contract that something
has been achieved. Only events which actually occur may be reported – this
constraint might be enforced by the requiring event senders to digitally sign
their events.

requestEvent(E, A, F) E is a request event for agent A to bring about that F
is true. A successful response is an inform event that F is now true.

accept(
time:20050121144600, identifier:cv123, in-reply-to:cv122,
sender:sales@wiremeshRus, receiver:jak97@imperial.ac.uk,
content:propose(

time:20050121130100,
identifier:cv122,
sender:jak97@imperial.ac.uk,receiver:sales@wiremeshRus,
content:customerVendorContract(
customer:jak97@imperial.ac.uk, vendor:sales@wiremeshRus,
vendorBank:finance@bank1, customerBank:finance@bank2,
deliveryService:deliver@pforce),

protocol:propose),
protocol:propose).

Fig. 5. Possible representation of an accept event

4 Contract Evaluation

An agent may have many contracts active at the same time. It is important to
be able to consider the contracts independently of each other (for example to
determine a contract’s state), and also their combined effect (for example when
outsourcing goals). For this reason we define a meta-interpreter predicate, selon2,
which evaluates queries relative to a specified contract. Subsection 4.3 describes
how the individual contract effects are combined into the agent’s belief store.
2 From the French, selon, meaning ”according to”.

232 J. Knottenbelt and K. Clark

selon(C, happens(E, T)) ← happens(E, T) ∧ contractEvent(E, C).
selon(C, happens(start, T)) ← happens(E, T) ∧
initiates(E, activeContract(C), T).

selon(C, R) ← contractClause(C, R ← S) ∧ selon(C, S).
selon(C, P ∧ Q) ← selon(C, P) ∧ selon(C, Q).
selon(C, not P) ← not selon(C, P).
selon(C, holdsAt(F, T)) ← selon(C, happens(E, T1)) ∧ T1<T ∧
selon(C, initiates(E, F, T1)) ∧ selon(C, not clipped(T, F, T1)).

selon(C, clipped(T0, F, T1)) ← selon(C, happens(E, T)) ∧ T0≤T ∧ T<T1 ∧
selon(C, terminates(E, F, T)).

Fig. 6. Contract meta-interpreter

Figure 6 shows the core of the meta-interpreter. The first parameter is the
contract label, and the second is the formula to be evaluated. The agent can
now query what obligations are current with respect to a contract by asking
selon(C, holdsAt(oblig(A, G, DL), Now)) where Now is a time point representing
the current time and C is the label of an active contract.

The symbols not, ∧ and ← are overloaded. Where they occur in a functional
context (in the second argument to selon), they should be read as functional
terms; where they occur in a logical context (as part of the definition of selon)
they should be read as logical connectives. Further meta-interpreter rules are
presented below defining the concepts of authoritative agents, reported events
and obligation fulfilment and violation.

4.1 Authoritative Agents

In the simple purchase contract, the vendor was authoritative for the invoice
number. We capture this authority with an extension to the meta-interpreter:

selon(C, initiates(E, F, T)) ←
selon(C, authoritative(X, F)) ∧ informOrReportedEvent(E, X, F).

selon(C, terminates(E, G, T)) ← selon(C, incompatible(F, G)) ∧
selon(C, authoritative(X, F)) ∧ informOrReportedEvent(E, X, F).

informOrReportedEvent(E, X, F) ← informEvent(E, X, _, F) ∨
(reportEvent(E, I) ∧ informEvent(I, X, _, F)).

In the simple purchase contract, the delivery agent is authoritative for the
delivery fluent. The delivery agent is not a principal of the contract, however,
so in order for any delivery notification to have effect, it must be reported by
one of the principals (in this case the customer or the vendor). Direct or indirect
reporting of an inform event from the authoritative agent is deemed to be a valid
contract event by virtue of the last rule.

We have borrowed the incompatible predicate, which states which fluents
must be terminated in response to one being initiated, from the original event
calculus [12].

Contract-Related Agents 233

4.2 Obligation Fulfilment and Violation

We adopt a similar semantics to Dignum et al. [8] with respect to deadlines.
An obligation is fulfilled if the deadline has not yet expired. If the obligation
was to achieve a state of affairs represented by a fluent fulfillment has to have
been notified by an event that initiates the contract fluent. Where it was a
more direct obligation to bring about an event characterized by a constraint,
that the event has occurred is checked by showing that the constraint is now
satisfied.

An obligation is violated if the deadline has elapsed and it has not been
fulfilled. For simplicity’s sake, we omit rules allowing a violation to be repaired
(by meeting its sanction). We need three meta-interpreter rules to capture this:
two for achieve and do fulfilment and one for violation.

selon(C, initiates(E,
fulfilled(oblig(X, achieve(F), DL)), T)) ←

selon(C, holdsAt(oblig(X, achieve(F), DL), T)) ∧
T<DL ∧ selon(C, initiates(E, F, T)).

selon(C, initiates(E,
fulfilled(oblig(X, do(E, Constraint), DL)), T)) ←

selon(C, holdsAt(oblig(X, do(E, Constraint), DL), T))
∧ T<DL ∧ selon(C, Constraint).

selon(C, violated(oblig(X, G, DL), T)) ←
selon(C, holdsAt(oblig(X, G, DL), T)) ∧ DL<T ∧
not selon(C, holdsAt(fulfilled(oblig(B, G, DL)), T)).

4.3 Imported Fluents

Event calculus is used not only within the contract language definition, but also
by the agent at the top-level to manage its beliefs. We need some rules to model
that certain contracts have effects on the agent society outside of the contract
itself. An example of this is the simple purchase contract which concludes with
the transfer of ownership of the item from the vendor to the seller: reasoning
solely with respect to the purchase contract will not allow the agent to realise
that it does not own the item after selling it in the future. Since we need to
track the ownership changes over the course of several contracts, we pool the
ownership fluent into the agent’s own belief store:

initiates(E, F, T) ← importedFluent(F) ∧
holdsAt(activeContract(C), T) ∧ selon(C, initiates(E, F, T)).

terminates(E, F, T) ← importedFluent(F) ∧
holdsAt(activeContract(C), T) ∧ selon(C, terminates(E, F, T)).

importedFluent(owns(_, _)).
importedFluent(activeContract(_)).

The importedFluent predicate selects which contract fluents should be imported
into the agent’s belief store. activeContract is a fluent predicate indicating which

234 J. Knottenbelt and K. Clark

contracts are active. Marking it as an imported fluent allows contracts to spawn
sub-contracts.

5 Agent Architecture

We now describe an agent architecture in the style of AgentSpeak(L) to enable
agents to respond to events related to all their active contracts in a timely
fashion. We give a brief introduction to a simplified version of AgentSpeak(L),
and then propose a plan library for the customer agent that will allow it to make
use of the standing and purchase contracts. AgentSpeak(L) is chosen as a basis
because it has a well understood operational semantics and there are available
implementations such as [18] and [5].

5.1 AgentSpeak(L)

An AgentSpeak(L) agent architecture can be viewed as multi-threaded event-
triggered interruptible logic programming system [13].

There are two kinds of events, belief updates and new goal events. Belief
updates are represented as +b or -b depending on whether the particular belief,
b, is now true or false. Belief events model the changes in the environment as
perceived by the agent. New goal events are represented as +!g, where g is the
goal to achieve.

At the beginning of the agent cycle, the agent picks an event to handle from
the set of unhandled events. The plan library is consulted to see if there are
any plans that are triggered by the event. Each plan in the plan library has the
syntax: event:condition <- actions.

For example, +temperature(T) : T > 90 <- switch(heater, off). is a plan
from an environmental control agent. The plan is relevant to changes in temper-
ature, and applicable when the temperature rises beyond 90 degrees. The action
is to switch the heater off.

If the event in the head of the plan unifies with the selected event, the plan
is said to be relevant. The condition is a formula in terms of the current beliefs
of the agent and acts as a guard: the relevant plans whose condition formula
evaluates to true are said to be applicable. Finally, one plan is selected from the
applicable plans and an intention is created to monitor it.

The agent then picks an intention to execute, which involves executing the
plan body (actions) one step at a time. A step may be either a physical action,
an achieve goal (written !goal) or a test (written ?test).

Goal achievement is handled by suspending the intention and adding a new
goal event to the set of unhandled events. Future agent cycles will pick up the
new goal event, and look in the plan library (as before) for an applicable plan
to achieve it. The plan is then stacked on top of the intention that issued the
achieve goal action, so that once the goal has been achieved, execution of that
intention may continue.

Tests are queries to the agent belief store, and result in a set of variable
assignments which are substituted into the remaining plan steps.

Contract-Related Agents 235

5.2 Extensions to AgentSpeak(L)

We extend the AgentSpeak(L) in the following ways:

– Plans may include belief update steps, of the form +b or -b. This effects the
belief store of the agent in a similar way to Prolog’s assert and retract.

– An agent may have an initial set of desires, which can be selected and posted
as new goal events.

– In the example plan libraries below, we have also included some Prolog style
horn clauses to ease readability. Since these definitions can be folded directly
into the AgentSpeak(L) rules, they do not affect the operational semantics.

– “Fire and forget” goal execution, written !!goal. Instead of stacking the plan
for the goal on top of the existing intention, create a separate intention for
the achievement of the goal. This is useful when the agent requires simply
to start off a process to achieve a goal, but not to wait for its achievement.

– The textually first applicable plan is selected if there is a choice and the
agent commits to that plan.

– We implement the following physical actions:
notify sends a message to all the principals of a given contract (see section

3), and logs it as a communication event.
waitReply waits for a reply to a given notification message to be received,

subject to a timeout.
waitContractEvent waits for an event that is relevant to the specified con-

tract. This is either an incoming communication event, or the lapsing of
any of the current obligations’ deadlines.

fail abandons an executing plan and marks it as failed.

5.3 Meta-information About Contracts

Instead of writing a set of plans to address specific contracts, such as customer-

VendorContract, we can write plans that address a general class of standing and
purchase contracts. We do this by abstracting common behaviour into agent-
specific meta-information about the contracts. We define a binary relation isa

which is true iff a particular contract belongs to a more general class of con-
tracts. The schematic rules below we say that customerVendorContract purchase

as an instance of purchaseContract and customerVendorContract as an instance
of standingContract that can be used to create new customerVendorContract

purchase contracts, so long as the item and price information match up with the
agreed prices in the standing contract.

customerVendorContract_purchase(X) isa purchaseContract(X).
customerVendorContract(Y) isa standingContract(PC) :-

PC isa purchaseContract(Y , item:I, price:P)
selon(customerVendorContract(Y), agreedPrice(item:I, price:P)).

It is also useful to know when a contract is complete. This is dependent on
the specific type of contract. For example, the standing contract above is open
ended - it is never completed, whereas the purchase contract ends successfully
with ownership of the item. complete is a binary predicate, first argument is the
contract and the second argument is the time of evaluation.

236 J. Knottenbelt and K. Clark

complete(PC, T) :-
PC isa purchaseContract(customer:C, _, item:I, _, _, _, _),
selon(PC, holdsAt(owns(owner:C, item:I), T)).

5.4 Plan Library for Contract Execution

We now describe a plan library for executing arbitrary contracts. For each active
contract, C, the agent must ensure that there is an intention to abide by it, by
invoking a plan for the goal monitor(C).

In the case of the vendor, we assume an initial desire to abide by their standing
contract, which will result in the goal to monitor it. However, as this standing
contract does not impose any obligations on the customer agent, it is not nec-
essary for that agent to actively monitor it. As we shall see, the customer may
instead make use of the contract to achieve an ownership goal by creating an
active purchase sub-contract that it will monitor.

+!monitor(C): now(Now) & complete(C, Now) <- true.
+!monitor(C): now(Now) & selon(C, holdsAt(oblig(Self, G, DL), Now)) &

not(observed(C,oblig(Self, G, DL)))
<- +observed(C,oblig(Self, G, DL)) ; !G by DL in C ;

!monitor(C).
+!monitor(C): now(Now) & selon(C, holdsAt(fulfilled(Oblig), Now)) &

not(observed(C,fulfilled(Oblig))
<- +observed(C,fulfilled(Oblig)) ; !obligFulfilled(C, Oblig);

!monitor(C).
+!monitor(C): now(Now) & selon(C, violated(Oblig, Now)) &

not(C,observed(violated(Oblig)))
<- +observed(C,violated(Oblig)); !obligViolated(C, Oblig) ;

!monitor(C).
+!monitor(C): true <- waitContractEvent(C) ; !monitor(C).

The conditions of the above plans query the state of the contract using
the selon predicate. The now predicate gives the current time. When the con-
tract is complete, as defined by the complete predicate in the contract meta-
information, the first rule is applicable and the execution plan terminates.

The second rule states that if there is a new obligation on the agent, a goal of
the form G by DL in C is posted. This goal event will be handled by other plans
in the plan library (see customer and vendor agent’s plan libraries below). When
the plan to achieve the goal completes, the monitor(C) goal is reposted to carry
on contract execution.

The third and forth rules monitor the contract for obligation fulfilment and
violation. obligFulfilled and obligViolated goals are posted, which may be
handled elsewhere in the agent’s plan library to keep track of, for example, the
reliability and reputation of the contract participants.

The last rule states that if the contract is not yet complete, the agent waits
for a communication event or for the earliest outstanding obligation deadline
to lapse before consulting the contract again. Although the condition of the
last plan is always true, our plan selection function selects the textually first
applicable plan.

Contract-Related Agents 237

5.5 Plan Library for Customer Agent

The role of the customer agent is to respond to desires to own an item. These
desires are manifested by achievement goals, which gives rise to intentions to
satisfy them. We show how the agent may make use of standing contracts (or
other means of achieving ownership) in an example plan library.

+!owns(owner:Self, item:I) :
now(Now) & not(holdsAt(owns(owner:Self, item:I), Now)) &
holdsAt(activeContract(SC), Now) &
SC isa standingContract(PC) &
PC isa purchaseContract(customer:Self, vendor:V, item:I, price:P,

vendorBank:VB, customerBank:SelfBank, deliveryService:DS) &
reliable(V), reliable(DS) &
fairPrice(item:I, price:P)

<- ?proposeEvent(Proposal, Self, V, PC) ;
notify(SC, Proposal) ;
waitReply(Reply, Proposal, Now + 100) ;
!enact(Reply, Proposal).

+!enact(timedOut, Proposal) : true <- +noResponseTo(Proposal).
+!enact(Reply, Proposal) : rejectEvent(Reply, Proposal) &

proposeEvent(Proposal, Self, V, _) <- +rejected(Proposal).
+!enact(Reply, Proposal) : acceptEvent(Reply, Proposal) &

proposeEvent(Proposal, Self, V, PC) <- !monitor(PC).

The plan above is applicable to the goal of achieving ownership of a particular
item, if the agent does not already own it, and there is an agreed standing
contract mandating an acceptable price for the item with a (believed) reliable
vendor and delivery service. The plan body constructs a proposal event and
sends it to the vendor in the context of the standing contract, waits for a reply
and then acts on that reply. The vendor agent is obliged to respond with an
accept event within 100 time units, and should they fulfill that obligation the
resulting purchase contract will be monitored by the customer. If no response
comes in time, or the proposal is rejected, a belief to that effect is stored effecting
the customer’s future reliability estimate of the vendor.

There is only one possible obligation on the customer arising from the purchase
contract, and that is to pay for the item. We make the simplifying assumption
that the customer has enough money in his account:

+!achieve(paid(payer:Self, payee:V, price:P, reference:R)) by DL in PC :
now(Now) & holdsAt(activeContract(BC), Now) &
BC isa bankContract(customer: C, bank:B)

<- ?requestEvent(Request, SelfBank, paid(payer:C, payee:V, price:P,
reference:R)) ;

notify(BC, Request) ; waitReply(Reply, Request, Now + 100);
?reportEvent(Report, Reply);
notify(PC, Report).

238 J. Knottenbelt and K. Clark

After instructing the bank to transfer the money (in the context of the con-
tract between the customer and their bank), the customer waits for an acknowl-
edgement that this has been done and forwards it to the vendor in the context
of the purchase contract. It is this reported event that causes the paid fluent
to become established, and consequently for the customer to have fulfilled the
payment obligation to the vendor (see section 4.1).

5.6 Plan Library for Vendor Agent

The following plan library enables the vendor to accept and reject proposals for
purchase contracts. If the vendor is obliged to accept it, then by the generic
contract execution plan library, a goal will be posted to of the form do(X,

acceptEvent(X, E)) by DL in SC which is handled by the plan below.

+!do(X, acceptEvent(X, E)) by DL in SC: proposeEvent(E, C, Self, Proposal)
<- ?acceptEvent(X, E) ; notify(SC, X) ; !!monitor(Proposal).

The condition of this plan extracts the proposed contract from the content
of the message, and the plan body constructs an accept event and sends it the
customer in the context of the standing contract. A separate intention is then
created to monitor the proposed contract. The plan for rejecting a proposal is
similar, except no intention is created to monitor the proposed contract.

Now we consider that the standing contract also obliges the agent to reply to a
proposal even if it is not obliged to accept it. We define two auxiliary predicates
obligedToAccept which is true iff the vendor is obliged to accept the proposal,
and shouldAccept which is true iff the it is in the vendor’s interest to accept the
proposal. shouldAccept includes checks like there is available stock, taking into
account already committed stock, and that the proposed price of the item is at
least twice the cost price.

obligedToAccept(SC, E, T) :-
selon(SC, holdsAt(oblig(Self, do(X, acceptEvent(X, E)), DL), T)).

shouldAccept(Proposal, T) :-
Proposal isa purchaseContract(customer:C, vendor:Self | price:P,

vendorBank:SelfBank, customerBank:CB, deliveryService:DS),
costPrice(item:I, price:CostPrice),
warehouse(item:I, availability:Warehouse),
committed(item:I, level:Committed),
Warehouse - Committed > 0,
P >= CostPrice * 2.

The following two plans make use of the predicates to decide whether to accept
or reject the proposal. The plan bodies are simply goals to accept or reject which
will be handled by the plans as the start of this subsection.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &
now(Now) & shouldAccept(Proposal, Now) &

Contract-Related Agents 239

not(obligedToAccept(SC, E, Now))
<- +!do(X, acceptEvent(X, E)) by DL in SC.

+!do(X, replyTo(X, E) by DL in SC: proposeEvent(E, C, Self, Proposal) &
now(Now) & not(shouldAccept(Proposal, Now)) &
not(obligedToAccept(SC, E, Now))

<- +!do(X, rejectEvent(X, E)) by DL in SC.

There are two obligations that may result on the vendor during execution of
the purchase contract. The first is an obligation to announce an invoice number,
and the second is to arrange for delivery of the item.

+!achieve(value(invoice-no, _)) by DL in PC : true
<- -invoiceNo(Last) ;

?New is Last + 1; +invoiceNo(New) ;
?informEvent(E, Self, value(invoice-no, New)) ; notify(PC, E).

To achieve a fresh value for the invoice number, the vendor increments a belief
atom, invoiceNo, and then creates an inform event asserting its value to send to
the customer in the context of the purchase contract, PC.

+!achieve(delivered(item:I, destination:C, invoice-no:R)) by DL in PC :
PC isa purchaseContract(customer:C, vendor:Self | price:P,

vendorBank:SelfBank, customerBank:CB, deliveryService:DS) &
now(Now) & holdsAt(activeContract(DC), Now),
DC isa deliveryContract(customer:V, deliveryService:DS)

<- ?requestEvent(Request,DS,delivered(item:I,destination:C,invoice-no:R)) ;
notify(DC, Request) ; waitReply(Reply, Request, Now + 100) ;
?reportEvent(Report, Reply) ; notify(PC, Report).

The vendor agent has no built-in capability to achieve delivery, so it must
make use of a third party. The above plan checks that its has an active contract,
DC, with the delivery service DS mentioned in the purchase contract (which we
assume it will have).

The vendor must create a request event to achieve the delivery and sent it
to DS in the context of DC. If successful, the delivery service will reply with
an inform that the item has been delivered, which is then forwarded by the
vendor to the customer in the context of the purchase contract, thus fulfilling
the vendor’s obligation to deliver the item.

6 Related Work

Our architecture shares the concepts of plan library, beliefs, intentions with
AgentSpeak(L). The addition of contracts not only reifies the concept of oblig-
ations, but also extends the built-in behaviour of the agent by allowing it to
outsource goals that it cannot achieve itself.

In Agent0 [15], agents are programmed by specifying a set of capabilities
(commitment rules). Instead of building the commitment rules directly into the

240 J. Knottenbelt and K. Clark

agent, our architecture allows these rules to be specified in the contract in the
form of event calculus initiates and terminates rules.

Verharen’s cooperative information agents [16, 17] are based on the language
action perspective. The architecture specifies three main categories of activities:
tasks (plans to achieve tasks organised with dependencies between the tasks),
transactions (message sequences organised with temporal ordering constraints),
and contracts, which are represented as deontic state machines of transaction
transitions. Our system does not mandate such a conceptual break down, rather
we envisage that higher level contract languages may be translatable into our
simpler event calculus syntax.

Alberti et al propose a type of integrity constraint on the communicative acts
uttered by agents in a society [1, 2]. These social integrity constraints take the
form of implications which express when certain expectations (about future or
past events) may arise. Positive expectations express events that should happen
(or should have happened), and negative expectations express events that should
never happen. Each event is associated with a time of occurrence which can be
constrained by CLP constraints (for example to express a deadline relative to
some other event that may not have happened already). Expectations differ from
obligations in the sense that they do not necessarily require a creditor or debtor
agent (for example, one could expect that the a society event, such as an auction
opening should occur).

Like obligations, expectations can be fulfilled and violated, however, since there
is no mandatory bearer of the expectation (as there is with an obligation), it is not
always obvious how to assign blame to the violation of an expectation. Expecta-
tions are a more general concept than obligation, and should be viewed more as
an expectation of the behaviour of an agent society than as the expectation of the
behaviour of a particular agent (which is what an obligation is). It may be pos-
sible to relate certain classes of expectation, such as those where an action with
a subject is expected in the future, to obligations. In this case a plan library of
similar structure to the sort outlined in this paper ought to be applicable.

Artikis et al [3] describe a system for animating and specifying computational
societies. The system takes a global perspective, and so in order to make infer-
ences about the state of the society all the events relevant to it must be known.
This is in contrast to our work, where conclusions are reached relative to each
contract rather than the society as a whole.

Kollingbaum and Norman describe a system of supervised interaction [10]
where agents are supervised by a third party called an authority. The authority
registers contracts between the agents, witnesses the communications between
the agents and enforces the norms specified in the contracts. Our system does
not require this infrastructure, although it does admit a logging agent should
the particular situation demand it. Furthermore the agents themselves are re-
sponsible for enforcing the contractual norms.

It is important that the contract is carefully constructed so that prohibitions
do not completely prevent the fulfillment of obligations. It is feasible to statically
check contracts for these kinds of potential conflicts [4]. The NoA architecture [11]

Contract-Related Agents 241

solves conflicts by prioritising permissions over prohibitions — obligation consis-
tency is determined by considering the action effects of plans to handle the obliga-
tion. If all plans include actions that are prohibited or interfere with other
obligations, the obligation is found to be inconsistent and is not adopted.

Conflicts between obligations and desires may also emerge, and if so conflict
resolution will be important. The BOID architecture [6] describes a method of
resolving these conflicts. Beliefs, obligations, intentions and desires are repre-
sented as separate components with feedback loops between them. Each compo-
nent builds extensions (closure under logical consequence) of their propositional
theories, and conflicts between the components are resolved by prioritising the
components one over the other.

7 Conclusion

Contracts are a powerful and high level approach to programming agent be-
haviour. Furthermore, specifying the contractual relationships between agents
separately to the agents’ capabilities is not only good software engineering, be-
cause concerns are separated, but also facilitates analysis and verification since
the contracts are represented in a formal language, the event calculus. Event
calculus is especially suitable for contract language representation because the
semantics are unambiguous and, given a reliable log of events, the conclusions
derived cannot be disputed.

The architecture mentioned here is currently being implemented in the Go!
language [7], a language with logical, functional and object-oriented features.
We are also investigating alternative plan types to the standard sequential plans
of AgentSpeak(L) to offer more flexibility and facilitate plan recovery. We are
implementing a full demonstration of this technology with vendor, customer,
bank and delivery agents all mediated via contracts. We will report on the results
of this work in a forthcoming paper.

Finally, our agent architecture provides a simple, powerful, extensible means
to implement passive (by monitoring fulfilment and violation of obligations),
reactive (by reacting to new obligations), proactive (by taking advantage of con-
tracts to oblige other agents) and opportunistic (by accepting proposals that are
in the agent’s interest, but not necessarily obliged to accept) behaviours.

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, pages
72–78, New York, NY, USA, 2004. ACM Press.

2. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and ver-
ification of agent interactions using social integrity constraints. In W. van der Hoek,
A. Lomuscio, E. de Vink, and M. Wooldridge, editors, Workshop on Logic and Com-
munication in Multi-Agent Systems (LCMAS ’03), volume 85 of Electronic Notes in
Theoretical Computer Science, Eindhoven, Netherlands, June 2003. Elsevier.

242 J. Knottenbelt and K. Clark

3. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational so-
cieties. In C. Castelfranchi and L. Johnson, editors, Proceedings of Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS ’02), pages 1053–1062.
ACM Press, 2002.

4. A. K. Bandara, E. C. Lupu, and A. Russo. Using event calculus to formalise policy
specification and analysis. In Proceedings of the 4th IEEE International Work-
shop on Policies for Distributed Systems and Networks, page 26. IEEE Computer
Society, 2003.

5. R. H. Bordini and J. F. Hübner. Jason - A Java-based agentSpeak intepreter used
with saci for multi-agent distribution over the net.
http://jason.sourceforge.net, 2005.

6. J. M. Broersen, M. Dastani, J. Hulstijn, Z. Huang, and L. W. N. van der Torre. The
BOID architecture: conflicts between beliefs, obligations, intentions and desires. In
Proceedings of the Fifth International Conference on Autonomous Agents, pages 9–
16. ACM Press, 2001.

7. K. L. Clark and F. G. McCabe. Go! – a Multi-paradigm programming language
for implementing Multi-threaded agents. Annals of Mathematics and Artificial
Intelligence, 41:171–206, August 2004. Issue 2-4.

8. F. P. M. Dignum, J. M. Broersen, V. Dignum, and J.-J. C. Meyer. Meeting the
deadline: Why, when and how. In Proceedings of the 3rd Conference on Formal
Aspects of Agent-Based Systems (FAABS III), 5 2004.

9. V. Dignum, J.-J. C. Meyer, F. P. M. Dignum, and H. Weigand. Formal specification
of interaction in agent societies. In Formal Approaches to Agent-Based Systems,
number 2699 in LNAI. Springer, 2002.

10. M. J. Kollingbaum and T. J. Norman. Supervised interaction: creating a web of
trust for contracting agents in electronic environments. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 272–279. ACM Press, 2002.

11. M. J. Kollingbaum and T. J. Norman. Norm consistency in practical reasoning
agents. In Proceedings of PROMAS Workshop on Programming Multiagent Systems
(AAMAS ’03), 2003.

12. R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Computing, 4(4):319–340, 1986.

13. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language.
In W. V. Velde and J. W. Perram, editors, Agents Breaking Away (LNAI 1038),
pages 42–55. Springer-Verlag, 1996.

14. M. Shanahan. The event calculus explained. In M. J. Wooldridge and M. Veloso, ed-
itors, Artificial Intelligence Today, volume 1600 of LNAI, pages 409–430. Springer
Verlag, 1999.

15. Y. Shoham. Agent0: A simple agent language and its interpreter. In Proceedings
of AAAI-91, pages 704–709, Anaheim, CA, 1991.

16. E. M. Verharen and F. P. M. Dignum. Cooperative Information Agents and com-
munication. In P. Kandzia and M. Klusch, editors, Cooperative Information Agents,
First International Workshop, number 1202 in LNAI, pages 195–209, 1997.

17. E. M. Verharen, F. P. M. Dignum, and S. Bos. Implementation of a cooperative
agent architecture based on the language-action perspective. In M. Singh, editor,
Intelligent Agents IV, volume 1365 of LNAI, pages 31–44. 1998.

18. M. Winikoff. An agentspeak meta-interpreter and its applications. In Proceedings
of the Third international Workshop on Programming Multi-Agent Systems, 2005.

Specification and Verification of Agent
Interaction Using Abductive Reasoning

Federico Chesani1, Marco Gavanelli2, Marco Alberti2, Evelina Lamma2,
Paola Mello1, and Paolo Torroni1

1 DEIS - Dipartimento di Elettronica, Informatica e Sistemistica,
Facoltà di Ingegneria, Università di Bologna,
viale Risorgimento, 2, 40136 – Bologna, Italy

{fchesani, pmello, ptorroni}@deis·unibo·it
2 DI - Dipartimento di Ingegneria,

Facoltà di Ingegneria, Università di Ferrara,
Via Saragat, 1, 44100 – Ferrara, Italy

{marco·gavanelli, marco·alberti, lme}@unife·it

Abstract. Amongst several fundamental aspects in multi-agent systems
design, the definition of the agent interaction space is of the utmost
importance. The specification of the agent interaction has several facets:
syntax, semantics, and compliance verification.

In an open society, heterogenous agents can participate without show-
ing any credentials. Accessing their internals or their knowledge bases is
typically impossible, thus it is impossible to prove a priori that agents
will indeed behave according to the society rules.

Within the SOCS (Societies Of ComputeeS) project, a language based
on abductive semantics has been proposed as a mean to define interac-
tions in open societies. The proposed language allows the designer to
define open, extensible and not over-constrained protocols. Beside the
definition language, a software tool has been developed with the purpose
of verifying at execution time if the agents behave correctly with respect
to the defined protocols.

This paper provides a tutorial overview of the theory and of the tools
the SOCS project provided to design, define and test agent interaction
protocols.

1 Introduction

Multi-Agent Systems (MAS) are recently emerging as a new programming par-
adigm. In the process of designing and developing a MAS, various facets of the
system have to be studied and addressed: the architecture of the various agents,
the interactions amongst the agents, the social organisation, the rules, the roles
of the agents in the society.

According to Davidsson [27], there can be four types of societies:

Closed societies are predefined societies, in which no agent can enter. Only the
designer of the society can create new agents in the society itself.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 243–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 F. Chesani et al.

Semi-closed are societies in which agents cannot enter, but they can nominate
or spawn representatives in the society.

Semi-open are societies in which there exists one agent taking the role of gate-
keeper, which receives the requests for entering the society. A potential mem-
ber applies at the gate, can provide some credentials, and can possibly be
admitted in the society by the gatekeeper.

Open are societies in which any agent can enter without restriction.

The classification by Davidsson is based on rules for entering the society,
as this is the most pressing issue. Leaving the society could be done with a
leaving protocol (in semi-open or semi-closed societies), or, in some cases, it can
be considered as a way to punish misbehaving agents: when an agent does not
comply to the rules, it is ejected from the society. Note that there are no given
protocols to abandon an open society: agents may leave at any time without
restrictions.

Clearly, open societies are the most flexible, but can also be very unstable.
The set of members is not fixed, nor even computable in general, as new agents
may join anytime, and current members could leave without any notification.
Also openness à la Davidsson implies heterogeneity: any agent may join, so they
are not required to share concepts such as beliefs, intentions, knowledge bases,
or architectures. Some agents may exhibit powerful reasoning capabilities, while
others may only be able to react to stimuli with predefined patterns. Foreign
agents can join the society without restrictions and profit from interacting with
the agents in the society. On the other hand, malicious agents could enter and
disrupt the harmonious evolution of the society, threatening the usability of the
whole MAS.

Thus, mastering open societies in order to drive them to a coherent, useful
global behaviour is a challenge. The SOCS project accepted this challenge and
provided theory, methods, and tools to raise from anarchy without overrestrict-
ing the agents’ freedom. The goal is to point out unwanted behaviour without
accessing the agent’s mind. The aim is to orchestrate the agents’ actions toward
the user’s goals without obliging agents to follow predefined rails.

A basic requirement for a meaningful society is that there exists a language
of commonly understood utterances in the society. It is not necessary that all
the agents understand the whole language: agents may understand subsets of the
language, depending on the roles they want to play in the society, and on the type
of interactions they want to start. The meaningful sequences of utterances make
up the interaction protocol: agents are supposed to follow such protocols in order
to get a coherent societal evolution. The MAS designer defines such protocols in
a given language. Coherently with the concept of open society, protocols should
be defined not to be over-restrictive, but should only guide the agents towards
a desired behaviour. Note that agents cannot be forced to follow such protocols.
While in non-open societies there are proposals that inspect the agent’s mind
and possibly update it to obtain a desired behaviour [32], in an open society any
agent could join. The agent’s implementation remains unrevealed to the society,

Specification and Verification of Agent Interaction 245

so to change its mind and impose a desired behaviour is unimaginable. Agents,
as well as humans, might not follow the protocol: this is a fact of life. It might
happen due to malicious behaviour, because of erroneous design, because of
ignorance of the society rules, or because of incapability to keep pace with tight
deadlines. But, although unavoidable, protocol violation must not be accepted
supinely, or the system will soon degenerate to chaos.

Of utmost importance is then to check that agents do not violate the pro-
tocols. Such a test cannot be executed in advance in an open society: even if
we knew all the participants, we would still be unable to foresee the behaviour
of members without knowing their implementation and their current (mental)
state. Knowing the internals of the agents is against the concept of open society
and, indeed, against that of multi-agent system research itself. The applicable
check of compliance can be performed on-line: the society does not check before-
hand the implementation of the agents, nor their internal mental states, but can
only observe their external behaviour.

The SOCS project is aimed at developing Multi-Agent Systems for open soci-
eties and addresses two basic issues: it developed a model of a single agent [25],
and a model for the society [10].

In this paper, we give taste of the society model, developed in the three-
year SOCS project. In SOCS, the society model can be defined through a logic
language, evolution of the IFF [34], called SCIFF (Social Constrained IFF). The
SCIFF language can be used to define declaratively the interaction space, i.e.,
both the utterances of the agents and the protocols in the devised society, in a
uniform way.

A corresponding proof-procedure can be used to verify that the agents behave
according to the protocols, and detect possible violations. The SCIFF proof-pro-
cedure is sound and complete with respect to its declarative semantics. Finally,
practical issues have been taken into account, leading to an implementation and
the development of a full-fledged software tool. The tool, called SOCS-SI, runs
the implementation of the SCIFF proof-procedure and it has been developed
and interfaced with popular MAS systems. An intuitive Graphical User Interface
(GUI) lets the user inspect both the history of happened events and the internal
state of the proof-procedure.

This tutorial will not go deeply in the theoretical issues concerning the SCIFF
proof-procedure, but it will provide examples to clarify the concepts, together
with pointers to previous publications, reports, and downloadable software to
let the reader investigate the various facets of the SOCS society model and
experiment with the provided tools.

The rest of the paper is organised as follows. After the introduction of the
necessary background, we define the SCIFF language, with motivating examples
to smoothly learn how to define interaction space and protocols with SCIFF.
We then define the declarative semantics in Section 4, and the SCIFF proof-
procedure, with the SOCS-SI tool in Section 5. Discussion, related work and
conclusions follow.

246 F. Chesani et al.

2 Background

We assume the reader has a basic familiarity with logics and logic programming;
a good introduction is the book by Lloyd [46]. As it will be clear soon, the SCIFF
proof-procedure is based on Abductive Logic Programming and on Constraint
Logic Programming; we introduce the two concepts in an intuitive way, and
provide pointers to the formal parts.

2.1 Abduction

Abduction is a powerful mechanism for hypothetical reasoning in the presence
of incomplete knowledge, that is handled by labelling some pieces of informa-
tion as “abducibles”. Abducibles can be viewed as possible hypotheses which
can be assumed, provided that they are consistent with the current knowledge
base. The abduction process is typically applied when looking for an explanation
about some observation. Starting from some observed facts, possible causes are
hypothesised (they are abduced). Then it is possible to confirm the hypotheses
by performing some additional observation: for example, the scientist postulates
some theory, and then develops new experiments to confirm (or disconfirm) such
theory. Another common application of abduction is diagnosis : the physician,
by observing the symptoms, formulates some alternative hypothesis about the
disease. The physician tries to find more facts by prescribing a patient another
test, that will possibly support a smaller set of explanations. Some of the pre-
viously made hypotheses could be discarded because they are now incompatible
with the new facts, or because some pairs of explanations cannot be assumed at
the same time.

Formally, an abductive logic program (ALP) [40] is a triple 〈P,Ab, IC〉 where:

– P is a (normal) logic program, i.e., a set of clauses of the form
A0 ← A1, . . . , Am, not Am+1, . . . , not Am+n, where m,n ≥ 0, each Ai

(i = 1, . . . ,m + n) is an atom, and all variables are implicitly uni-
versally quantified with scope the clause. A0 is called the head and
A1, . . . , Am, not Am+1, . . . , not Am+n is called the body of any such clause;

– Ab is a set of abducible predicates, p, such that p is a predicate in the language
of P which does not occur in the head of any clause of P ;

– IC is a set of integrity constraints, that is, a set of formulae in the language
of P .

Given an abductive logic program 〈P,Ab, IC〉 and a formula G, the goal of
abduction is to find a (possibly minimal) set of ground atoms Δ (the abductive
explanation), with Δ ⊆ Ab, and which, together with P , entails G, and satisfies
IC:

P ∪Δ |= G (1)
P ∪Δ |= IC (2)

The notion of entailment |= depends on the semantics associated with the
logic program P .

Specification and Verification of Agent Interaction 247

Several abductive proof procedures can be found in the literature (like the
Kakas-Mancarella [41], limited to ground literals, SLDNFA [28], that can abduce
literals with existentially quantified variables, ACLP [42] andA-system [43], that
integrate constraints, to cite some). The SCIFF proof procedure, upon which
the SOCS-SI application relies (see Section 5) is an extension of the if-and-only-
if (IFF) abuctive proof procedure [34]. The integrity constraints, in the IFF
proof-procedure, are expressed as a set of implications of the form:

B1 ∧ . . . ∧Bn → A1 ∨ . . . ∨Am

where all variables are universally quantified, Ai and Bi are atoms (can be
abducibles or defined predicates), but they cannot be the negation of an atom.

2.2 Constraint Logic Programming

Constraint Logic Programming [37, 38] (CLP) is a class of programming lan-
guages that extend logic programming by giving an interpretation to some of
the symbols. In classical Logic Programming, the symbols are not interpreted,
so the term 2+3 does not mean 5, but simply a structure whose functor is +
and whose terms are 2 and 3. Unification performs a syntactical operation, and
does not provide any interpretation, so the term 5 will not unify with the term
3+2, and the goal 5=3+2 simply fails.

In Constraint Logic Programming, a subset of the terms and atoms are given a
standard interpretation: the symbol 5 stands for the number five and the symbol
+ represents the addition operation. Unification is extended, and treated as a
constraint. For example, the goal 5 = A + 3 succeeds in CLP, providing the
answer A = 2. This behaviour is obtained by identifying syntactically the set of
interpreted atoms, called constraints, and inserting them into a constraint store
instead of applying resolution. The constraints in the store are then evaluated
by a constraint solver, that detects possible failures and infers new constraints.

Each language of the CLP class is identified by a domain, representing the set
of values that a variable subject to constraints can assume, the set of constraints,
the set of interpreted symbols. For example, CLP(R) [39] is the instance of CLP
that works on the reals; this means that a variable in CLP(R) can have a real
value, and it can be subject to constraints on the reals. Current implementations
typically employ the simplex algorithm as constraint solver.

CLP(FD) is the specialisation of CLP on the Finite Domains [30]. Variables
are initially assigned a domain through the predicate V ariable :: Domain. For
instance X :: [red, green, blue] states that X can take only the values red, green
or blue. On numeric values, CLP(FD) languages typically interpret the symbols
<, ≤, =,
=, etc., plus the usual operations +, −, ∗, /. In CLP(FD), imposing
constraints typically deletes inconsistent values from the domains of the vari-
ables; for example, if A :: [0..10], B :: [1..5], A < B would remove the values
that cannot satisfy the imposed constraint, in this case the values greater than
4 from the domain of A. When a domain becomes empty, there cannot be an
assignment for the corresponding variable, so the system fails. Various languages

248 F. Chesani et al.

and efficient solvers have been developed [30, 53]. Such languages have been suc-
cessfully used for hard combinatorial problems, such as scheduling [24], planning
[22], bioinformatics [47], and many others. These solvers typically deal only with
problems that contain existentially quantified variables.

3 The SCIFF Language

We will now give the syntax of the SCIFF language, together with examples
to clarify the various components. We first introduce the concept of happened
event, that is the basic link between the society and the agents. Then, we intro-
duce the concept of expectation, that is used to describe the correct evolution
of the society. We define the Social Knowledge Base (Section 3.1) and the So-
cial Integrity Constraints (Section 3.2), that are used to relate happened events
and expected behaviour, and in particular can be used to define the interaction
protocols that are valid in the society.

We will use, as a running example, an auction scenario; we can envisage the
following utterances:

openauction(Item, Type) opens an auction for an Item, specifying the Type
of auction, possibly with its own specific parameters;

bid(Item, Price) propose to buy the Item for the proposed Price;
answer(win/lose, Item, Price) communicate if a bid wins or loses the Item

for the price Price;
deliver(Item) provide the Item;
pay(Item, Price) pay the Price for the Item;

The language for defining the society is based on computational logics, and is
used to:

– Describe the events generated by agents in the society. Happened events are
represented with the atom H(Description, T ime), where Description is a
term describing the type of event, its parameters, etc., and T ime is an inte-
ger identifying the instant in which the event happened in the society. The
collection HAP of all events happened in the society is called the history.

– Define the expected behaviour of agents.
– Relate the current history with the expected behaviour.

The expected behaviour is a conjunction of literals [¬]E(Description, T ime)
and [¬]EN(Description, T ime).

– E(Description, T ime) declares that an event matching with Description is
expected to happen in the given T ime. Note that T ime could be a variable,
possibly subject to CLP constraints, which may restrict the instants in which
the event is expected to happen. This can be useful to express deadlines, time
intervals, scheduling constraints, and any type of constraints existing in the
adopted CLP language (possibly, user-defined). For instance:

E(tell(luke,mark, answer(A, pen, 1), auction1), T), T < 10

Specification and Verification of Agent Interaction 249

could mean that agent Luke is supposed to tell Mark an answer regarding its
bid of 1e for a pen, within time 10, in the context of auction1. Description
can be a term, possibly with variables, which can be possibly constrained. We
often use the term tell(Sender,Receiver, Content,DialogueId) to indicate
communicative acts, however the formalism is open to any type of term. All
the variables occurring in a literal E are existentially quantified: as soon as
an action matching the expectation is performed, the expectation is fulfilled.

– EN(Description, T ime) states that all matching events are violating the
protocol: they are expected not to happen in order to fulfill the correct so-
cial evolution. Again, T ime can be a (possibly constrained) variable and
Description a term involving variables. Variables in EN are universally
quantified (unless they also occur in E literals), expressing that all the match-
ing events are forbidden in a compliant interaction. If a variable is shared
between E and EN, it will be quantified existentially, as in

(∃Auctioneer,Bidder,T1∀T2) E(tell(Auctioneer,Bidder, win,D), T1),
EN(tell(Auctioneer,Bidder, lose,D), T2), T2 > T1

meaning that any auctioneer should tell any bidder that he wins the auction,
and afterwards the same auctioneer should not tell the same bidder that he
loses in the context of the same dialogue.

The current history and the set of current expectations are related through the
rules of the society, that can be defined in the SCIFF language. Such language
consists of a Social Knowledge Base and a set of Social Integrity Constraints,
defined in the following sections.

3.1 The Social Knowledge Base

The Social Knowledge Base represents the pre-built, compile-time knowledge
of the society. It is a set of rules that provide causal consequences of agents’
behaviour. It provides properties that hold in the society when given conditions
are met. For reasons that will be clear soon, the conditions are described by
means of expectations, i.e., atoms describing the expected behaviour of the whole
MAS.

We first give some motivating examples, then give the formal meaning and
the scope rules. We can say that we have full occupation of the agents if none of
them is idle, in any time:

f ull occupation : −EN(idle(Agent), T). (3)

meaning that

f ull occupation← [∀Agent,T EN(idle(Agent), T)].

We can say that an agent is busy if it is never idle:

busy(Agent) : −EN(idle(Agent), T).

250 F. Chesani et al.

i.e.,
∀Agent busy(Agent) ← [∀T EN(idle(Agent), T)].

An agent in a society could be fairly served if it gets at least one resource
within some given time limit:

f airly(Agent) : −E(get(Agent,R), T), resource(R), T ≤ 10.
resource(printer).
resource(window).
. . .

(4)

where the first clause means:

∀Agent f airly(Agent) ← [∃R,TE(get(Agent,R), T), resource(R), T ≤ 10],

or, equivalently,

∀Agent,T,R f airly(Agent) ← E(get(Agent,R), T), resource(R), T ≤ 10.

Formally, the Social Knowledge base is a set of clauses (i.e., implications in
the form Head ← Body) that can contain, in the body, expectations, literals
or constraints. Variables are all quantified universally with the following scope
rules. Variables that occur only in EN literals and constraints are quantified
universally with the body as scope (this is coherent with the intuitive meaning
of Eq. 3: in order to have full occupation, there should be no agent which is idle
in any time). All other variables are quantified universally with the clause as
scope (as in Eq. 4, in which one resource R is enough).

Note that the given clauses can also be interpreted in an abductive fashion to
derive the expected behaviour given that we want a fair society. Stated otherwise,
there could be a goal of the society (fairness, in this example), and expectations
could be abduced describing the behaviour of the agents in a fair society. Then
expectations could be communicated to the agents in order to guide them to-
wards the desired behaviour. The generated expectations can then be matched
on-line with the history to check if the current evolution of the society indeed
provides the requested feature.

3.2 The Social Integrity Constraints

Social Integrity Constraints are a set of implications that relate the current his-
tory with the expected behaviour. They can involve the various elements in the
SCIFF language, namely happened events, expectations, CLP constraints and
predicates defined in the Social KB. Their syntax is given by the following gram-
mar (where Literal and Term have the usual meaning as in Logic Programming
[46] and Constraint is an atom in the language of constraints [37]):

Specification and Verification of Agent Interaction 251

ICS ::= [icS]�

icS ::= Body → Head
Body ::= (EventLiteral | ExpLiteral) [∧ BodyLiteral]�

BodyLiteral ::= EventLiteral | ExpLiteral | Literal | Constraint
Head ::= HeadDisjunct [∨HeadDisjunct]� | false

HeadDisjunct ::= ExpLiteral [∧ (ExpLiteral | Constraint)]�
EventLiteral ::= [¬]H(term, T)
ExpLiteral ::= [¬]E(term, T) | [¬]EN(term, T)

Social Integrity Constraints are the perfect tool to define both the semantics
of the basic utterances and the interaction protocol in a uniform way.

Semantics of Communication Acts. When designing the interaction, we
have to define:

– the set of communication acts commonly understood in the society
– the meaning of such communication acts.

Various works propose a semantics for communication acts. One of the most
popular is the FIPA [33] proposal, based on the BDI (Beliefs, Desires, Inten-
tions) model [48]. The semantics of the so-called speech acts is based on the
Beliefs, Desires and Intentions of the agents. For instance, if agent A informs
agent B about X , this means that A wants B to believe X . Intuitively, A is
also implicitly stating that it believes X . Formally, speech acts are modeled in
terms of feasibility conditions and rational effects, expressed through BDI logic
formulas [58].

In open societies, as argued earlier, one cannot access mental states of the
agents, so checking that an utterance is compliant with its semantics is impos-
sible from the society viewpoint. We prefer a semantics based on observable
events in the environment, and, in particular, which actions the agents perform.
Hence, instead of mentalistic approaches, we prefer social approaches. One of
the most successful is the semantics based on commitments [57, 29]; intuitively,
by performing a communicative act, an agent implicitly commits to the truth of
some statement, or to perform some further action. In the SCIFF language, com-
mitments are easily represented through expectations. In the auction example,
with openauction an agent commits to renounce owning an Item in exchange
for money. In the SCIFF language, this means that when the auctioneer opens
an auction, it knows that it will be expected to deliver the item, in case there is
some bid which is declared as winning:

H(tell(A, , openauction(Item,), D), Topen) ∧
H(tell(B,A, bid(Item, Price), D), Tbid) ∧
H(tell(A,B, answer(win, Item, Price), D), Twin)

→ E(tell(A,B, deliver(Item), D), Tdeliv) ∧
Tdeliv < Twin + Tdeliver deadline

(5)

We use the underscore for an unnamed variable (à la Prolog). Note that in an
open society bidders may join the auction without invitation, so it is not impor-
tant that the bidder was also addressee of the openauction message. The winning

252 F. Chesani et al.

bidder might have obtained the information about the auction by another agent,
from a blackboard, or advertisement.

Analogously, the bidder commits to pay in exchange for the item by declaring
its bid:

H(tell(B,A, bid(Item, Price), D), Tbid) ∧
H(tell(A,B, answer(win, Item, Price), D), Twin) ∧
H(tell(A,B, deliver(Item), D), Tdeliv)

→ E(tell(B,A, pay(Item, Price), D), Tpay) ∧
Tpay < Tdeliv + Tpay deadline

(6)

Note that these definitions are independent of the type of auction, which is
defined by the protocol. The concept of expectation is not limited to represent
the semantics of communicative acts, and, in particular, is not limited to express
commitments, as we will see in the following.

Definition of the Protocol. Many works in the literature represent interac-
tion protocols with Finite State Automata (FSA) [21]. The sequence of correct
interaction moves can be interpreted as a phrase in the language recognised by
the FSA. Clearly, FSA can recognise only regular languages, so there is a limit
in the expressivity of the language for defining the protocol. On the other hand,
the simple representation allows for powerful reasoning: proving properties of
a protocol described as a FSA is probably easier than using a more sophisti-
cated language. Model checking techniques, for example, have been used for this
purpose by analysing protocols described as a FSA. Especially in the field of
security protocol analysis, model checking-based techniques have been shown to
be extremely successful [23].

Also, representing protocols as a graph means that every interaction which is
not explicitly represented in the graph is considered non compliant. We believe
that in open societies agents should be as free as possible: free to discuss in
small groups with a language that is not recognised by the society, free to take
shortcuts in long interaction runs (especially in presence of tight deadlines). A
“whitelist” of allowed interaction moves is probably the best solution in the
instance of security protocols; but in general it might be too restrictive.

The SCIFF language gives the user more expressivity in the definition of the
protocol: while in FSA an action can be only required or forbidden, in SCIFF
some actions are required (E), some are forbidden (EN) and all the others are
possible. The possible state of an action provides the agent the freedom degrees
to take shortcuts and to do actions not explicitly considered by the protocol
designer. Uniformly to the semantics of communicative acts, the protocol can
again be defined by means of Social Integrity Constraints.

Various protocols have a common core, which specialise into subtypes in dif-
ferent situations, with different properties. For example, the common concept
of an auction can be implemented in a variety of ways, and in the real world
various flavours of auctions are successfully employed (English, Dutch [54], first-
price sealed bid, Vickrey, reverse, combinatorial [50, 35], just to name a few).
On the other hand, all auction protocols share some core elements. From an

Specification and Verification of Agent Interaction 253

engineering viewpoint, one could first try to define the common core, then refine
the general protocol to obtain the desired specific features.

In the auction scenario, we can write rules that hold for all types of auctions,
such as:

Before placing bids, there must have been an OpenAuction

H(tell(B,A, bid(Item, Price), D), Tbid)
→ E(tell(A, , openauction(Item,), D), Topen)
∧ Topen < Tbid

(7)

The auctioneer should reply to all bids

H(tell(A, , openauction(Item,), D), Topen) ∧
H(tell(B,A, bid(Item, Price), D), Tbid)

→ E(tell(A,B, answer(Answer, Item, Price), D), Tanswer) ∧
Answer :: [win, lose]

(8)

The auctioneer should not give contradicting answers

H(tell(A,B, answer(Answer1, Item, Price), D), T1)
→ EN(tell(A,B, answer(Answer2, Item, Price), D), T2) ∧
Answer1
= Answer2

(9)

Other rules specify the type of auction. One of the most used is the English
auction. In an English auction, bids are increasing in value: a first bidder declares
publicly its bid, then other bids can be placed, of increasing value. When no more
bids are placed, the good is assigned to the last bid (which is also the highest).
In order to decide that no other bids will occur, there exists a timeout τ : in
human auctions, after each bid the auctioneer counts typically up to three and
then declares the item sold.

The previous core of auction protocols can be easily specialised to the English
auction instance by adding more Social Integrity Constraints, which refine the
general auction protocol schema. In an English auction bids are in increasing
order, so bidders should not place a bid which is lower than the previous ones:

H(tell(A, , openauction(Item, english(τ)), D), Topen)∧
H(tell(Bidder1, A, bid(Item, Price1), D), T1)

→ EN(tell(Bidder2, A, bid(Item, Price2), D), T2) ∧
T2 > T1 ∧ Price2 ≤ Price1

(10)

After a bid has been placed, the auctioneer waits for τ time units; either a better
bid is placed within this time, or the auctioneer should declare the last bid as
winning:

H(tell(A, , openauction(Item, english(τ)), D), Topen) ∧
H(tell(B1, A, bid(Item, Price1), D), T1)

→ E(tell(B2, A, bid(Item, Price2), D), T2) ∧
Price2 > Price1 ∧ T2 < T1 + τ

∨ E(tell(A,B1, answer(win, Item, Price1), D), Twin) ∧
Twin = T1 + τ

(11)

254 F. Chesani et al.

It is well known that the English auction protocol might not terminate, so
if there is a deadline, other auction protocols are used. The Dutch auction is
used when the goods must be sold quickly. The Dutch auction follows a protocol
which is nearly opposite to the English: the proposals are from the auctioneer,
and they decrease in time. The auctioneer starts proposing a (very high) price.
If one bidder accepts it, it wins the auction. If, within τ time units, no bidder
replies, the auctioneer proposes a lower price.

In this case, we can exchange the order of the primitives answer and bid. The
two utterances retain their meaning: answer(win, Item, Price) still means that
a bid for the Item and with the given Price wins, while bid(Item, Price) means
that the bidder would pay the Price for the Item. While retaining the original
meaning, we can change the protocol: first the auctioneer declares a possible
winning price, then the bidders place their bids.

Again, we refine the generic auction given by the semantics of the communica-
tion acts (5-6) together with the auction core (7-9) adding more Social Integrity
Constraints specific for the Dutch auction.

In the Dutch auction, we must ensure that only one (valid) bid is placed; after
the first bid is placed all other bids are illegal:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Price), D), Ta)∧
H(tell(B1, A, bid(Item, Price), D), T1)

→ EN(tell(, , bid(Item,), D), T2) ∧ T2 > T1

(12)

Moreover, either a bid has been placed within τ time units, or the auctioneer
should propose a new (lower) price:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Pricei), D), Ti)

→ E(tell(B,A, bid(Item, Price), D), Tbid) ∧ Tbid < Ti + τ
∨ E(tell(A, , answer(win, Item, Pricei+1), D), Ti+1) ∧
Ti+1 = Ti + τ ∧ Pricei+1 < Pricei

(13)

Note that in this way the protocol is not overconstrained by a fixed sequence
of communicative acts. Many freedom degrees are left to the agents, that may
exploit them to converge faster to an agreement. For example, the auctioneer
may start with a high price, bidders place their bids even if they do not match
the price proposed by the auctioneer, and the auctioneer could choose one of
them. Infinitely many hybrid auctions flavours could arise in an interaction. Of
course, if this is not the intended meaning, and avoiding this double negotiation
is necessary, the designer can refine the specification by adding more Social
Integrity Constraints to avoid unwanted paths: in the time interval between two
answers, bidders can bid only the proposed price, i.e., they cannot bid other
prices:

H(tell(A, , openauction(Item, dutch(τ)), D), Topen) ∧
H(tell(A, , answer(win, Item, Pricei), D), Ti)

→ EN(tell(B,A, bid(Item, Price), D), Tbid) ∧
Price
= Pricei ∧ Ti < Tbid < Ti + τ

(14)

Specification and Verification of Agent Interaction 255

In this way, the bidders can place only bids whose prices match the prices
proposed by the auctioneer.

4 Declarative Semantics

The SOCS social model is interpreted in terms of an Abductive Logic Program
(ALP). The idea is to exploit abduction for defining expected behaviour of the
agents inhabiting the society, and an abductive proof-procedure to dynamically
generate the expectations and perform the compliance check.

Classical abduction does not contemplate changes in the knowledge bases,
while in a society the set of happened events dynamically grows. For this reason,
we give abductive semantics to a society by associating an ALP to each possible
history. We call society instance the grounding of a society on a given history:

Definition 1. An instance SHAP of a society S is represented as an ALP, i.e.,
a triple 〈P,Ab, ICS〉 where:

– P is the Social Knowledge Base (SOKB) of S together with the history of
happened events HAP;

– Ab is the set of abducible predicates, namely E, EN, ¬E, ¬EN;
– ICS are the social integrity constraints of S.

We give semantics to a society instance by defining those sets EXP (Δ in the
abductive framework) of expectations which, together with the society’s knowl-
edge base and the happened events, imply an instance of the goal - if any - and
satisfy the integrity constraints. Equations 1 and 2 can be rewritten as:

SOKB ∪HAP ∪EXP |= G (15)
SOKB ∪HAP ∪EXP |= ICS (16)

Moreover, we require the set EXP to be also

¬-consistent: for any p, EXP cannot include {E(p),¬E(p)} or {EN(p),¬EN(p)}
(which implements explicit negation), and

E-consistent: for any p, EXP cannot include {E(p),EN(p)} (an event cannot
be both expected to happen and expected not to happen);

At this point it is possible to define the concepts of fulfillment and violation
of a set EXP of social expectations. Fulfillment requires all the E expectations
to have a matching happened event, and all EN expectations not to have a
matching H event in the history:

Definition 2. Given a society instance SHAP, a set of social expectations EXP
that is ¬−consistent and E−consistent, is fulfilled if and only if for all (ground)
terms p:

HAP ∪EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)}
|= false (17)

256 F. Chesani et al.

Symmetrically, we define violation as follows:

Definition 3. Given a society instance SHAP, a set of social expectations EXP
is violated if and only if there exists a (ground) term p such that:

HAP ∪EXP ∪ {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} |= false (18)

5 The SOCS-SI Tool for Compliance Checking

The SOCS-SI (SOCS-Society Infrastructure) application check the compliance
of a given agent interaction with a given protocol definition. It uses the SCIFF
proof-procedure to perform the abductive reasoning, and it provides integration
with multi-agent platforms. The SCIFF is the logical “engine”: by performing
the abduction process, it generates the expectations (represented as abducibles)
and verifies if they are fulfilled or violated.

While the SOCS-SI software heavily relies on the SCIFF proof-procedure,
this can be used instead as a stand-alone application. In fact, SCIFF is a stand-
alone abductive proof-procedure, that has been exploited for agent interaction
compliance checking, but that can be used also to perform general abductive
reasoning.

5.1 The SCIFF Proof-Procedure

The operational semantics of the SCIFF language is an abductive proof-proce-
dure, i.e., it computes the set Δ introduced in Section 2.1. It is an extension of
the IFF proof-procedure, but it also provides the following additional features:

– abduces atoms with variables universally quantified;
– deals with CLP constraints, also imposed as quantifier restrictions on uni-

versally quantified variables;
– is more dynamic, in fact new events may arrive, and the proof-procedure

dynamically takes them into consideration in the knowledge base;
– has the new concepts, related to on-line verification, of fulfillment and vio-

lation.

As its ancestor IFF, the SCIFF is a transition system that rewrites logic
formulae into equivalent logic formulae. Each formula is a Node of the proof-
tree, and it can be rewritten by one of the transitions into one or more nodes,
logically in disjunction (so building an or-tree). The elements in a node are
arranged as follows:

N ≡ 〈R,CS, PSIC,PEXP,HAP,FULF,VIOL〉 (19)

where R is the resolvent, CS is the constraint store (as in CLP), PSIC is a set
of implications (initially the set of all integrity constraints), HAP is the current
history, PEXP, FULF, and VIOL are, respectively, the set of pending, fulfilled,

Specification and Verification of Agent Interaction 257

and violated expectations. Reporting the transitions of the SCIFF proof-proce-
dure is beyond the scope of this paper, but the interested reader can refer to
previous publications for more details [13].
SCIFF has been implemented in SICStus Prolog [53], exploiting its CHR li-

brary for defining the rewriting rules, and its CLP(FD) engine (suitably extended
to deal with universally quantified variables) as underlying constraint solver.

5.2 The SOCS-SI Tool

SOCS-SI is a software tool that uses the SCIFF proof procedure to check if
an agent interaction is compliant with a given protocol definition. It is a full-
fledged system, able to interface with multi-agent system like JADE [36] and
PROSOCS [55], as well as the standard e-mail system (to verify interactions
happening between human agents), and simple text files containing the log of
the interaction. It provides a Graphic User Interface (GUI), that allows the user
to observe the interaction in the form of the exchanged messages, to view the
list of participants to the interaction, and to inspect the set of expectations
generated by the proof-procedure: this set represents the expected behaviour at
the society level.

Through SOCS-SI, it is possible to access a tree-view of the computation of
the SCIFF proof-procedure (Figure 1); interestingly, the shown tree bears both
an operational and a logical interpretation. The operational interpretation is
an intuitive graphical form of a log-file, showing the most significant computa-
tional steps, useful for debugging purposes. The logical meaning is an or-tree
(the branches of the tree are connected by logical disjunction) of the possible
derivations timed by the incoming events. For each incoming event that enriches
the knowledge base, the frontier of the explored proof-tree (which is a logical
disjunction) is shown. The user can inspect each of the nodes, and see in the
main window the state of the computation, i.e., the tuple given in Eq. 19.

SOCS-SI takes as input three types of information:

– The source of events, i.e. the multi agent system that is going to be observed.
– A file containing the Social Knowledge Base, as specified in Section 3.1.
– One or more files containing the specification of the protocol by means of

Social Integrity Constraints (as discussed in Section 3.2).

SOCS-SI can be easily extended to support other multi-agent platforms, by
simply adding interface modules, and selecting them as event sources. More
details on SOCS-SI, on the output it generates and how to support new agent
platforms can be found in [8].

SOCS-SI can be used at both design-time and run-time. The protocol designer
can use SOCS-SI to support the development of a correct protocol: once this has
been defined using the SCIFF language, it is possible to check if the protocol does
indeed allow only the desired interactions, and it excludes the wrong ones. Agent
dialogues can be simulated by specifying on a log file the exchanged messages,
and SOCS-SI can check the compliance of these interactions w.r.t. the protocol
specification. Moreover, SOCS-SI provides a detailed view of the expectations

258 F. Chesani et al.

Fig. 1. The Logic or-Tree

generated at every step of the interaction and, in case of violations, indicates
also the set of the possible causes.

Thanks to its integration with various agent platforms, SOCS-SI can be used
at runtime to detect violations to the society protocols: in such cases proper
measures can be taken against the culprit (e.g. excluding the culprit agent from
the society).

6 Discussion

A number of papers describe in detail various aspects of the SCIFF proof-proce-
dure; the details cannot be given here because of lack of space. In previous pub-
lications, the interested reader can find the definition of the general framework
[15, 11, 10, 9], language and declarative semantics [14], the operational semantics
[12, 13], and the implementation [8, 6]. The proofs of soundness, completeness and
termination of the SCIFF proof-procedure can be downloaded from the SCIFF
web page [51]. The concept of expectation, developed in the SOCS project, has
been compared with that of obligation of deontic logic [17].

A plethora of different protocols has been tested with SCIFF and SOCS-SI,
including various flavours of auctions (English, First Price Sealed Bid, Combina-
torial Auctions [5]), resource sharing [16], e-commerce protocols (NetBill [15]),

Specification and Verification of Agent Interaction 259

high level protocols (FIPA) and low-level ones (TCP/IP). The proof-procedure
and the SOCS-SI application have been tested thoroughly; the systems have
been subject to stress testing, varying the number of interacting agents and the
exchanged messages [3].

SOCS-SI and SCIFF can be downloaded from the web [1, 51].

7 Related Work

Opposite to mentalistic approaches [58], that give semantics to communication
through the mental states of the agents, social approaches propose to focus on
observable acts [57, 29]. The works on SCIFF and SOCS-SI take the second view,
and indeed belongs to such research stream. While other works [57] are based on
temporal logics, we adopted a constraint solver, that is able to efficiently deal
with scheduling constraints and to express a variety of real-life concepts, such
as deadlines.

The idea of expected behaviour can be considered related to deontic logic
[59]; however, our claim is that we do not need the full power of the standard
deontic logic, but only constraints on events that are expected to happen or
not to happen. We do not use deontic operators, but instead we map them into
predicates (E for positive and EN for negative expectations).

Our work is very close for the objective and methodology to the notable
work on computational societies presented and developed in the context of the
ALFEBIITE project [18], and the work by Singh [60] where a social semantics
is exemplified by using a commitment-based approach. With this work we share
the same view of an open society as that of [20].

Artikis et al. [20] present a theoretical framework for providing executable
specifications of particular kinds of multi-agent systems, called open computa-
tional societies, and present a formal framework for specifying, animating and
ultimately reasoning about and verifying the properties of open computational
societies: systems where the behaviour of the members and their interactions
cannot be predicted in advance. Differently from [20], we do not explicitly rep-
resent the institutional power of the members and the concept of valid action.
Permitted are all social events that do not determine a violation, i.e., all events
that are not explicitly forbidden are allowed, and this implements a sort of “open
world assumption” at a society level. Permission, when it needs to be explicitly
expressed, is mapped into the negation of a negative expectation: ¬EN(. . .).

The semantics of our model can be directly mapped in an abductive frame-
work, where expectations can be confirmed (fulfilled) or disconfirmed (violated)
by the history of the happened social events.

Sadri et al. [49] propose a framework for agent negotiation based on dialogue.
The dialogue of agents is defined in a two-part setting as an ordered sequence of
communication primitives. The generation of dialogues results from an abductive
reasoning process taking place inside each agent during the think phase of its life
cycle (the cycle being inspired by [44]). Our work shares the view of integrity
constraints that provide new abducible atoms, but in our case the abducibles

260 F. Chesani et al.

are expectations of the society about the future behavior of the agents, while in
[49] they are used as communication primitives.

Many abductive proof procedures have been proposed in the past; the reader
can refer to the exhaustive survey by Kakas et al. [40]. The SCIFF proof-proce-
dure is mostly related to the IFF [34], which it extends in several directions, as
explained in the paper.

Other proof procedures deal with constraints; in particular ACLP [42] and the
A-system [43] deeply focus on efficiency issues. Both use integrity constraints in
the form of denials, instead of forward rules, and both only abduce existentially
quantified atoms, which makes the SCIFF in this sense more expressive.

The integration of the IFF with constraints has been explored, both theoreti-
cally [45], and in an implementation [31]. These works, however, do not deal with
confirmation of hypotheses and universally quantified variables in abducibles.

Abdual [19] is a system for performing abduction from extended logic pro-
grams plus constraints adopting the well-founded semantics, but also capturing
2-valued generalized stable models. It handles only ground negated literals, and
it relies on tabled evaluation.

8 Conclusions and Future Work

In this paper, we presented a tutorial overview of the methods and tools the
SOCS project provided for defining the interaction space in an agent society.
The reader interested in the theory can find the foundations of the SCIFF lan-
guage and proof-procedure in the given references. The practitioner interested
in applying the tools can download the implementation of the proof-procedure
and apply it to the check of compliance of interaction protocols, or to general
abductive tasks. The SOCS-SI tool can be easily adapted to interact with popu-
lar multi agent systems, or with human communication tools, such as the e-mail
exchange.

Current work follows multiple threads. A first thread is aimed at applying the
developed tools to new applications, beside the check of compliance to proto-
cols. Experiments are currently conducted in planning with the abductive event
calculus [52], a classical application of abductive proof-procedures. Other ap-
plications involve checking protocols in other environments besides agents, like
giving medical guidelines [4].

A second thread focuses on the evolution and optimisation of the proof-pro-
cedure. The aim is to reduce the branching factor of the SCIFF proof-procedure
by identifying a priori branches that will fail and whose exploration can be
skipped. This goal could be obtained through powerful constraint propagation,
or by encapsulating knowledge given by the experienced user on the application
domain.

The third thread widens the properties the SCIFF proof-procedure is able to
prove. Besides on-line protocol conformance, the SCIFF proof-procedure could
also prove properties a-priori, by considering as input only the protocol (and not
the history). The software engineering task of developing new protocols could

Specification and Verification of Agent Interaction 261

be assisted by a tool that proves properties of the protocol. Such an approach
has been widely used for detecting flawedness of security protocols [23]. Our
aim is to extend the SCIFF proof-procedure to also prove protocol properties,
given as negated goals. The proof-procedure could find counterexamples if the
proposed property is not entailed by the protocol definition, similarly to model
checking in security protocols. The first experiments are very encouraging, as
the SCIFF proof-procedure was able to find attacks of flawed security protocols
[7], although we believe that SCIFF is better suited to prove properties of other
protocols, such as e-commerce ones.

Finally, extensions of the framework could be considered, like communicating
the expectations to the agents, or advertising to possible members the rules
that should be followed in the society. Such rules would implicitly provide the
accepted common language understood in the society.

References

1. SOCS-SI. http://lia.deis.unibo.it/Research/socs_si/.
2. C. Priami and P. Quaglia, editors, Global Computing: IST/FET International

Workshop, volume 3267 of LNAI. Springer-Verlag, 2005.
3. M. Alberti and F. Chesani. The computational behaviour of the SCIFF abductive

proof procedure and the SOCS-SI system. Intelligenza Artificiale, II(3):45–51,
2005.

4. M. Alberti, F. Chesani, A. Ciampolini, P. Mello, M. Montali, S. Storari, and P. Tor-
roni. Protocol specification and verification by using computational logic. In In
Proceedings of Workshop dagli Oggetti agli Agenti (WOA’05), November 2005.

5. M. Alberti, F. Chesani, M. Gavanelli, A. Guerri, E. Lamma, P. Mello, and P. Tor-
roni. Expressing interaction in combinatorial auction through social integrity con-
straints. Intelligenza Artificiale, II(1):22–29, 2005.

6. M. Alberti, F. Chesani, M. Gavanelli, and E. Lamma. The CHR-based imple-
mentation of a system for generation and confirmation of hypotheses. In A. Wolf,
T. Frühwirth, and M. Meister, editors, 19th Workshop on (Constraint) Logic Pro-
gramming, pages 111–122, University of Ulm, Germany, 2005.

7. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Se-
curity protocols verification in abductive logic programming: a case study. In
O. Dikenelli, M.P. Gleizes, and A. Ricci, editors, Proceedings of ESAW’05, LNAI.
Springer Verlag. to appear.

8. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Com-
pliance verification of agent interaction: a logic-based tool. In Trappl [56], pages
570–575. Extended version to appear in Applied Artificial Intelligence.

9. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. A logic
based approach to interaction design in open multi-agent systems. In Proceedings
of WETICE-2004, pages 387–392. IEEE Press, June 14–16 2004.

10. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The
SOCS computational logic approach for the specification and verification of agent
societies. In Priami and Quaglia [2], pages 324–339.

11. M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
A social ACL semantics by deontic constraints. In V. Mar̆́ık, J. Müller, and
M. Pĕchouc̆ek, editors, CEEMAS 2003, volume 2691 of LNAI, pages 204–213.
Springer-Verlag, 2003.

262 F. Chesani et al.

12. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Abduction with
hypotheses confirmation. In F. Giunchiglia, editor, IJCAI-05, pages 1545–1546.

13. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The SCIFF abduc-
tive proof-procedure. In S. Bandini and S. Manzoni, editors, AI*IA 2005, volume
3673 of LNAI, pages 135–147. Springer Verlag.

14. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An Abductive
Interpretation for Open Societies. In A. Cappelli and F. Turini, editors, AI*IA
2003, volume 2829 of LNAI, pages 287–299. Springer-Verlag, 2003.

15. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science, 85(2), 2003.

16. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Modeling inter-
actions using Social Integrity Constraints: A resource sharing case study. In J.A.
Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declarative Agent Languages
and Technologies, volume 2990 of LNAI, pages 243–262. Springer-Verlag, 2004.

17. M. Alberti, E. Lamma, M. Gavanelli, P. Mello, G. Sartor, and P. Torroni. Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory. To appear.

18. ALFEBIITE: A Logical Framework for Ethical Behaviour between Infohabitants
in the Information Trading Economy of the universal information ecosystem. IST-
1999-10298, 1999. Home Page: http://www.iis.ee.ic.ac.uk/∼alfebiite/.

19. J. Alferes, L. M. Pereira, and T. Swift. Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theory and Practice of Logic
Programming, 4:383–428, July 2004.

20. A. Artikis, J. Pitt, and M. Sergot. Animated specifications of computational soci-
eties. In Castelfranchi and Lewis Johnson [26], pages 1053–1061.

21. M. Barbuceanu and M.S. Fox. Cool: A language for describing coordination in
multi-agent systems. In V. Lesser, editor, Proceedings of the First Intl. Conference
on Multi-Agent Systems, pages 17–25. AAAI Press/The MIT Press, 1995.

22. R. Barruffi, M. Milano, and R. Montanari. Planning for security management.
IEEE Intelligent Systems, 16(1):74–80, 2001.

23. D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for security
protocol analysis. In E. Snekkenes and D. Gollmann, editors, Computer Security -
ESORICS 2003, volume 2808 of LNCS, pages 253–270. Springer-Verlag, 2003.

24. F. Bosi and M. Milano. Enhancing CLP branch and bound techniques for schedul-
ing problems. Software Practice & Experience, 31(1):17–42, 2001.

25. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, F. Toni, and G. Terreni. The KGP model of agency: Computational
model and prototype implementation. In Priami and Quaglia [2], pages 340–367.

26. C. Castelfranchi and W. Lewis Johnson, editors. Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2002), Bologna, Italy, 2002. ACM Press.

27. P. Davidsson. Categories of artificial societies. In A. Omicini, P. Petta, and
R. Tolksdorf, editors, Engineering Societies in the Agents World II, volume 2203
of LNAI, pages 1–9. Springer-Verlag, 2001.

28. M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for abductive
logic programs. Journal of Logic Programming, 34(2):111–167, 1998.

29. V. Dignum, J. J. Meyer, and H. Weigand. Towards an organizational model for
agent societies using contracts. In Castelfranchi and Lewis Johnson [26], pages
694–695.

Specification and Verification of Agent Interaction 263

30. M. Dincbas, P. van Hentenryck, H. Simonis, and A. Aggoun. The constraint logic
programming language CHIP. In Proceedings of the 2nd International Conference
on 5th Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

31. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. In J.J. Alferes and
J.A. Leite, editors, JELIA 2004, volume 3229 of LNAI, pages 31–43. Springer-
Verlag.

32. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In G. Gottlob and T. Walsh, editors, IJCAI-03. Morgan Kaufmann.

33. FIPA: Foundation for Intelligent Physical Agents. http://www.fipa.org/.
34. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic

programming. Journal of Logic Programming, 33(2):151–165, November 1997.
35. A. Guerri and M. Milano. Exploring CP-IP based techniques for the bid evaluation

in combinatorial auctions. In F. Rossi, editor, Principles and Practice of Constraint
Programming - CP 2003, volume 2833 of LNCS, pages 863–867. Springer-Verlag.

36. Java Agent DEvelopment framework. http://sharon.cselt.it/projects/jade/.
37. J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of

Logic Programming, 19-20:503–582, 1994.
38. J. Jaffar, M.J. Maher, K. Marriott, and P.J. Stuckey. The semantics of constraint

logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.
39. J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) language and

system. ACM Transactions on Programming Languages and Systems, 14(3):339–
395, 1992.

40. A.C. Kakas, R.A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic
in Artificial Intelligence and Logic Programming, volume 5, pages 235–324. Oxford
University Press, 1998.

41. A.C. Kakas and P. Mancarella. On the relation between Truth Maintenance and
Abduction. In T. Fukumura, editor, Proceedings of PRICAI-90, pages 438–443.
Ohmsha Ltd., 1990.

42. A.C. Kakas, A. Michael, and C. Mourlas. ACLP: Abductive Constraint Logic
Programming. Journal of Logic Programming, 44(1-3):129–177, July 2000.

43. A.C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving through
abduction. In B. Nebel, editor, IJCAI-01, pages 591–596, Seattle, Washington,
USA, August 2001. Morgan Kaufmann.

44. R.A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3/4):391–419, 1999.

45. R.A. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs.
Fundamenta Informaticae, 34:203–224, 1998.

46. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended
edition, 1987.

47. A. Dal Palù, A. Dovier, and E. Pontelli. Heuristics, optimizations, and parallelism
for protein structure prediction in CLP(FD). In P. Barahona and A.P. Felty,
editors, Proc. of Principles and Practice of Declarative Programming, pages 230–
241. ACM, 2005.

48. A. Rao and M. Georgeff. An abstract architecture for rational agents. In C. Rich,
W. Swartout, and B. Nebel, editors, Proceedings of KR’92, pages 439–449, 1992.

49. F. Sadri, F. Toni, and P. Torroni. An abductive logic programming architecture for
negotiating agents. In S. Greco and N. Leone, editors, Proceedings of JELIA’02,
volume 2424 of LNCS, pages 419–431. Springer-Verlag, September 2002.

264 F. Chesani et al.

50. T. Sandholm. Algorithm for optimal winner determination in combinatorial auc-
tion. Artificial Intelligence, 135(1-2):1–54, 2002.

51. The SCIFF abductive proof procedure.
http://lia.deis.unibo.it/Research/sciff/.

52. M. Shanahan. The event calculus explained. In M. Wooldridge and M.M. Veloso,
editors, Artificial Intelligence Today: Recent Trends and Developments, volume
1600 of LNCS, pages 409–430. Springer, 1999.

53. SICStus prolog user manual, release 3.11.0, 2003. http://www.sics.se/sicstus/.
54. C. Sierra and P. Noriega. Agent-mediated interaction. From auctions to negotiation

and argumentation. In M. d’Inverno, M. Luck, M. Fisher, and C. Preist, editors,
Foundations and Applications of Multi-Agent Systems, volume 2403 of LNCS, pages
27–48. Springer-Verlag, 2002.

55. K. Stathis, A.C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In Trappl [56], pages 523–528. Extended version to appear in Applied Artificial
Intelligence.

56. R. Trappl, editor. Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Symposium AT2AI-4. Vienna, Austria, April 13-16 2004.

57. M. Venkatraman and M.P. Singh. Verifying compliance with commitment proto-
cols. Autonomous Agents and Multi-Agent Systems, 2(3):217–236, 1999.

58. M. Wooldridge. Introduction to Multi-Agent Systems. John Wiley & Sons, Ltd.,
2002.

59. G.H. Wright. Deontic logic. Mind, 60:1–15, 1951.
60. P. Yolum and M.P. Singh. Flexible protocol specification and execution: applying

event calculus planning using commitments. In Castelfranchi and Lewis Johnson
[26], pages 527–534.

Verification of Protocol Conformance and Agent
Interoperability�

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti

Dipartimento di Informatica, Università degli Studi di Torino,
C.so Svizzera, 185, I-10149 Torino, Italy

{baldoni, baroglio, mrt, patti}@di.unito.it

Abstract. In open multi-agent systems agent interaction is usually ruled
by public protocols defining the rules the agents should respect in message
exchanging. The respect of such rules guarantees interoperability. Given
two agents that agree on using a certain protocol for their interaction, a
crucial issue (known as “a priori conformance test”) is verifying if their
interaction policies, i.e. the programs that encode their communicative
behavior, will actually produce interactions which are conformant to the
agreed protocol. An issue that is not always made clear in the existing
proposals for conformance tests is whether the test preserves agents’ ca-
pability of interacting, besides certifying the legality of their possible con-
versations. This work proposes an approach to the verification of a pri-
ori conformance, of an agent’s conversation policy to a protocol, which is
based on the theory of formal languages. The conformance test is based
on the acceptance of both the policy and the protocol by a special finite
state automaton and it guarantees the interoperability of agents that are
individually proved conformant. Many protocols used in multi-agent sys-
tems can be expressed as finite state automata, so this approach can be
applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation can be translated into finite
state automata. In this sense the approach is general. Easy applicability
to the case when a logic-based language is used to implement the policies
is shown by means of a concrete example, in which the language DyLOG,
based on computational logic, is used.

1 Introduction

Multi-agent systems (MASs) often comprise heterogeneous components, that
differ in the way they represent knowledge about the world and about other
agents, as well as in the mechanisms used for reasoning about it. Protocols rule
the agents’ interaction. Therefore, they can be used to check if a given agent can,

� This research has partially been funded by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (cf. http://rewerse.net), and it has also been
supported by MIUR PRIN 2005 “Specification and verification of agent interaction
protocols” national project.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 265–283, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

266 M. Baldoni et al.

or cannot, take part in the system. In general, based on this abstraction, open
systems can be realized, in which new agents can dynamically join the system.
The insertion of a new agent in an execution context is determined according
to some form of reasoning about its behaviour: it will be added provided that it
satisfies the body of the rules within the system, intended as a society.

In a protocol-ruled system of this kind, it is, however, not necessary to check
the interoperability (i.e. the capability of actually producing a conversation) of
the newly entered agent with the other agents in the system if, as long as the
rules are satisfied, the property is guaranteed. The problem which amounts to
verifying if a given implementation (an agent interaction policy) respects a given
abstract protocol definition is known as conformance testing. A conformance
test can, then, be considered as a tool that, by verifying that agents respect a
protocol, should certify their interoperability. In this perspective, we expect that
two agents which conform to a protocol will produce a conversation, that is legal
(i.e. correct w.r.t. the protocol), when interacting with one another.

The design and implementation of interaction protocols are crucial steps in
the development of a MAS [24, 25]. Following [23], two tests must be executed
in the process of interaction protocol engineering. One is the already mentioned
conformance test, the other is the validation test, which verifies the consistency of
an abstract protocol definition w.r.t. the requirements, derived from the analysis
phase, that it should embody. In the literature validation has often been tackled
by means of model checking techniques [10, 9, 29], and two kinds of conformance
verifications have been studied: a priori conformance verification, and run-time
conformance verification (or compliance) [14, 15, 21]. If we call a conversation a
specific interaction between two agents, consisting only of communicative acts,
the first kind of conformance is a property of the implementation as a whole
–intuitively it checks if an agent will never produce conversations that violate
the abstract interaction protocol specification– while the latter is a property of
the on-going conversation, aimed at verifying if that conversation is legal.

In this work we focus on a priori conformance verification, defining a confor-
mance test, based on the acceptance, of both the agent’s policy and the public
protocol, by a special finite state automaton. Many protocols used in multi-
agent systems can be expressed as finite state automata, so this approach can
be applied to a wide variety of cases with the proviso that both the protocol
specification and the protocol implementation (policy) can be translated into
finite state automata. In this sense the approach is general.

The application of our approach is particularly easy in case a logic-based declar-
ative language is used to implement the policies. In logic languages indeed policies
are usually expressed by Prolog-like rules, which can be easily converted in a for-
mal language representation. In Section 4 we show this by means of a concrete
example where the language DyLOG [7], based on computational logic, is used for
implementing the agents’ policies. On the side of the protocol specification lan-
guages, currently there is a great interest in using informal, graphical languages
(e.g. UML-based) for specifying protocols and in the translation of such languages
in formal languages [13, 16]. By this translation it is, in fact, possible to prove

Verification of Protocol Conformance and Agent Interoperability 267

properties that the original representation does not allow. In this context, in [5]
we have shown an easy algorithm for translating AUML sequence diagrams to fi-
nite state automata thus enabling the verification of conformance.

In [5] we already faced the problem of a priori conformance verification as a
verification of properties of formal languages, but proposing a different approach
with some limitations due to focussing on the legality issue. In fact, interpreting
(as we did) the conformance test as the verification that all the conversations,
allowed by an agent’s policy, are also possible according to the protocol speci-
fication, does not entail interoperability. The next section is devoted to explain
the expected relations among conformance and the crucial interoperability issue.

2 Conformant and Interoperable Agents

A conversation policy is a program that defines the communicative behavior of
a specific agent, implemented in some programming language. A conversation
protocol specifies the desired communicative behavior of a set of agents and it
can be specified by means of many formal tools, such as (but not limited to)
Petri nets, AUML sequence diagrams, automata.

More specifically, a conversation protocol specifies the sequences of speech acts
that can possibly be exchanged by the involved agents, and that we consider as
legal. In agent languages that account for communication, speech acts often
have the form m(ags, agr, l), where m is the performative, ags (sender) and agr
(receiver) are two agents and l is the message content. It is not restrictive to
assume that speech acts have this form and to assume that conversations are
sequences of speech acts of this form. Notice that depending on the semantics of
the speech acts, the conversation will take place in a framework based either on
the mentalistic or on the social state approach [17, 28, 20]. However, the speech
acts semantics does not play a role in our proposal, which concerns an orthogonal
aspect of the interaction in Multi Agent Systems.

In the following analysis it is important to distinguish the incoming messages,
w.r.t. a specific agent ag of the MAS, from the messages uttered by it. We re-
spectively denote the former, where ag plays the role of the receiver, by m(←−ag),
and the latter, where ag is the sender, by m(−→ag). We will also simply write ←−m
(incoming message) and −→m (outgoing message) when the agent that receives or
utters the message is clear from the context. Notice that these are just short-
hands, that underline the role of a given agent from the individual perspective of
that agent. So, for instance, m(ags, agr, l) is written as m(←−agr) from the point
of view of agr, and m(−→ags) from the point of view of the sender but the three
notions denote the same object.

A conversation, denoted by σ, is a sequence of speech acts that represents a
dialogue of a set of agents.

Definition 1 (Conversation). A conversation is a sequence σ of messages
taken from a given set SA of speech acts.

In this work we face the problem of conformance verification and interpret a
priori conformance as a property that relates two formal languages [22], the

268 M. Baldoni et al.

language of the conversations allowed by the conversation policy of an agent, and
the language of the conversations allowed by the specification of a communication
protocol. Each of these languages represents a set of conversations. In the case
of the protocol specification, it is intuitive that it will be the set of all the
possible conversations allowed by the protocol among the partners. In the case
of the single agent’s policy, it will be the set of the possible conversations that
the agent can carry on according to the policy. Of course, at execution time,
depending on the interlocutor and on the circumstances, only one conversation
at a time is actually expressed, however, for verifying conformance a priori we
need to consider them all as a set.

Definition 2 (Policy language). Given a policy pag
lang, where p is the policy

name, lang is the language in which this is implemented, and ag is the agent
that uses it, we denote by L(pag

lang) the set of conversations that ag can carry on
according to p.

Definition 3 (Protocol language). Given a conversation protocol pspec, where
p is the protocol name, and spec is the language in which it is represented, we denote
by L(pspec) the set of conversations that a set of agents, that interact according to
p, can carry on.

The assumption that we make throughout this paper is that the two languages
L(pag

lang) and L(pspec) are regular. This choice restricts the kinds of protocols
to which our proposal can be applied, because finite state automata cannot
represent concurrent operations, however, it is still significant because a wide
family of protocols (and policies) of practical use can be expressed in a way that
can be mapped onto such automata. Moreover, the use of regular sets ensures
decidability. Another assumption is that the conversation protocol encompasses
only two agents. The extension to a greater number of agents will be tackled as
future work. Notice that when the MAS is heterogeneous, the agents might be
implemented in different languages.

We say that a conversation is legal w.r.t. a protocol specification if it respects
the specifications given by the protocol. Since L(pspec) is the set of all the legal
conversations according to p, the definition is as follows.

Definition 4 (Legal conversation). We say that a conversation σ is legal
w.r.t. a protocol specification pspec when σ ∈ L(pspec).

We are now in position to explain, with the help of a few simple examples, the
intuition behind the terms “conformance” and “interoperability”, that we will,
then, formalize.

Definition 5 (Interoperability). Interoperability is the capability of a set of
agents of actually producing a conversation when interacting with one another.

Often the introduction of a new agent in an execution context is determined ac-
cording to some form of reasoning about its behaviour: it will be added provided
that it satisfies a set of rules -the protocol- that characterize such execution

Verification of Protocol Conformance and Agent Interoperability 269

context; as long as the new agent satisfies the rules, the interoperability with
the other components of the system is guaranteed. Thus in protocol-based sys-
tems the interoperability of an agent with others can be proved by checking the
communicative behavior of the agent against the rules of the system, i.e. against
an interaction protocol. Such a proof is known as conformance test. Intuitively,
this test must guarantee the following definition of interoperability. This work
focuses on it.

Definition 6 (Interoperability w.r.t. an interaction protocol). Interop-
erability w.r.t. an interaction protocol P is the capability of a set of agents of
producing a conversation that is legal w.r.t. P .

Let us begin with considering the following case: suppose that the communicative
behavior of the agent ag is defined by a policy that accounts for two conversa-
tions {m1(−→ag)m2(←−ag),m1(−→ag)m3(←−ag)}. This means that after uttering a message
m1, the agent expects one of the two messages m2 or m3. Let us also suppose
that the protocol specification only allows the first conversation, i.e. that the
only possible incoming message is m2. Is the policy conformant? According to
Definition 4 the answer should be no, because the policy allows an illegal con-
versation. Nevertheless, when the agent will interact with another agent that
is conformant to the protocol, the message m3 will never be received because
the other agent will never utter it. So, in this case, we would like the a priori
conformance test to accept the policy as conformant to the specification.

Talking about incoming messages, let us now consider the symmetric case, in
which the protocol specification states that after the agent ag has utteredm1, the
other agent can alternatively answer m2 or m4 (agent ag’s policy, instead, is the
same as above). In this case, the expectation is that ag’s policy is not conformant
because, according to the protocol, there is a possible legal conversation (the one
with answer m4) that can be enacted by the interlocutor (which is not under the
control of ag), which, however, ag cannot handle. So it does not comply to the
specifications.

Expectation 1. As a first observation we expect the policy to be able
to handle any incoming message, foreseen by the protocol, and we ignore
those cases in which the policy foresees an incoming message that is not
supposed to be received at that point of the conversation, according to the
protocol specification.

Let us, now, suppose that agent ag’s policy can produce the following conversa-
tions {m1(←−ag)m2(−→ag), m1(←−ag)m3(−→ag)} and that the set of conversations allowed
by the protocol specification is {m1(←−ag)m2(−→ag)}. Trivially, this policy is not con-
formant to the protocol because ag can send a message (m3) that cannot be
handled by any interlocutor that is conformant to the protocol.

Expectation 2. The second observation is that we expect a policy to
never utter a message that, according to the specification, is not supposed
to be uttered at that point of the conversation.

270 M. Baldoni et al.

Instead, in the symmetric case in which the policy contains only the conversation
{m1(←−ag)m2(−→ag)} while the protocol states that ag can answer tom1 alternatively
by uttering m2 or m3, conformance holds. The reason is that at any point of its
conversations the agent will always utter legal messages. The restriction of the set
of possible alternatives (w.r.t. the protocol) depends on the agent implementor’s
own criteria. However, the agent must foresee at least one of such alternatives
otherwise the conversation will be interrupted. Trivially, the case in which the
policy contains only the conversation {m1(←−ag)} is not conformant.

Expectation 3. The third observation is that we expect that a policy
always allows an agent to utter one of the messages foreseen by the pro-
tocol at every point of the possible conversations. This means that it is
not necessary that a policy envisions all the possible alternative utter-
ances, but it is required to foresee at least one of them that allows the
agent to proceed with its conversations.

To summarize, at every point of a conversation, we expect that a conformant
policy never utters speech acts that are not expected, according to the protocol,
and we also expect it to be able to handle any message that can possibly be re-
ceived, once again according to the protocol. However, the policy is not obliged
to foresee (at every point of conversation) an outgoing message for every alter-
native included in the protocol but it must foresee at least one of them if this
is necessary to proceed with the conversation. Incoming and outgoing messages
are, therefore, not handled in the same way.

These expectations are motivated by the desire to define a minimal set of con-
ditions which guarantee the construction of a conformance test that guarantees
the interoperability of agents. Let us recall that one of the aims (often implicit)
of conformance is, indeed, interoperability, although sometimes research on this
topic restricts its focus to the legality issues. We claim –and we will show– that
two agents that respect this minimal set of conditions (w.r.t. an agreed protocol)
will actually be able to interact, respecting at the same time the protocol. The
relevant point is that this certification is a property that can be checked on the
single agents, rather than on the agent society. This is interesting in application
domains (e.g. web services) with a highly dynamic nature, in which agents are
searched for and composed at the moment in which specific needs arise.

3 Conformance Test

In order to decide if a policy is conformant to a protocol specification, it is not
sufficient to perform an inclusion test; instead, as we have intuitively shown by
means of the above examples, it is necessary to prove mutual properties of both
L(pag

lang) and L(pspec). The method that we propose for proving such properties
consists in verifying that both languages are recognized by a special finite state
automaton, whose construction we are now going to explain. Such an automaton
is based on the automaton that accepts the intersection of the two languages.
All the conversations that belong to the intersection are certainly legal. This,

Verification of Protocol Conformance and Agent Interoperability 271

however, is not sufficient, because there are further conditions to consider, for
instance there are conversations that we mean to allow but that do not belong to
the intersection. In other words, the “intersection automaton” does not capture
all the expectations reported in Section 2. We will extend this automaton in
such a way that it will accept the conversations in which the agent expects
messages that are not foreseen by the specification as well as those which include
outgoing messages that are not envisioned by the policy. On the other hand, the
automaton will not accept conversations that include incoming messages that are
not expected by the policy nor will it accept conversations that include outgoing
messages, that are not envisioned by the protocol (see Fig. 1).

3.1 The Automaton Mconf

If L(pag
lang) and L(pspec) are regular, they are accepted by two deterministic

finite automata, denoted by M(pag
lang) and M(pspec) respectively, that we can

assume as having the same alphabet (see [22]). An automaton is a five-tuple
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite input alphabet,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ is a transition
function mapping Q × Σ to Q. In a finite automaton we can always classify
states in two categories: alive states, that lie on a path from the initial state to
a final state, and dead states, the other ones. Intuitively, alive states accept the
language of the prefixes of the strings accepted by the automaton.

For reasons that will be made clear shortly, we request the two automata to
show the following property: the edges that lead to the same state must all be
labeled either by incoming messages or by outgoing messages w.r.t. ag.

Definition 7 (IO-automaton w.r.t. ag). Given an automaton M = (Q,Σ, δ,
q0, F), let Eq = {m | δ(p,m) = q} for p, q ∈ Q. We say that M is an IO-
automaton w.r.t. ag iff for every q ∈ Q, Eq alternatively consists only of incom-
ing or only of outgoing messages w.r.t. an agent ag.

Notice that an automaton that does not show this property can always be trans-
formed so as to satisfy it, in linear time w.r.t. the number of states, by splitting
those states that do not satisfy the property. We will denote a state q that is
reached only by incoming messages by the notation ←−q (we will call it an I-state),
and a state q that is reached only by outgoing messages by −→q (an O-state).

Finally, let us denote by M×(pag
lang, pspec) the deterministic finite automa-

ton that accepts the language L(pag
lang) ∩ L(pspec). It is defined as follows. Let

M(pag
lang) be the automaton (QP , Σ, δP , qP0 , F

P) and M(pspec) the automaton
(QS , Σ, δS, qS0 , F

S):

M×(pag
lang, pspec) = (QP ×QS , Σ, δ, [qP0 , q

S
0], FP × FS)

where for all qP in QP , qS in QS , andm in Σ, δ([qP , qS],m) = [δP (qP ,m), δS(qS ,
m)]. We will briefly denote this automaton by M×.

Notice that all the conversations that are accepted by M× are surely confor-
mant (Definition 4). For the so built automaton, it is easy to prove the following
property.

272 M. Baldoni et al.

−→m3

←−m4

[aP , aS]
←−m1

[qP
0 , qS

0] [fP , fS]

[
−→
aP ,

−→
dS] [

−→
dP ,

−→
aS]

[
←−
dP ,

←−
aS] [

←−
aP ,

←−
dS]

−→m2

Fig. 1. A general schema of the Mconf automaton. From bottom-right, clockwise, cases
(a), (b), (c), and (d).

Proposition 1. M×(pag
lang , pspec) is an IO-automaton w.r.t. ag if M(pag

lang) and
M(pspec) are two IO-automata w.r.t. ag.

The definition of IO-automata is used in the following for the construction of
the automaton Mconf .

Definition 8 (Automaton Mconf). The finite state automaton Mconf(pag
lang,

pspec) is built by applying the following steps to M×(pag
lang, pspec) until none is

applicable:

(a) if ←−q = [
←−
aP ,

←−
dS] in Q is an I-state, such that

←−
aP is an alive state and

←−
dS is

a dead state, we set δ(←−q ,m) = ←−q for every m in Σ, and we put ←−q in F ;
(b) if ←−q = [

←−
dP ,

←−
aS] in Q is an I-state, such that

←−
dP is dead and

←−
aS is alive, we

set δ(←−q ,m) = ←−q for every m in Σ, without modifying F ;
(c) if −→q = [

−→
aP ,

−→
dS] in Q is an O-state, such that

−→
aP is alive and

−→
dS is dead, we

set δ(−→q ,m) = −→q for every m in Σ (without modifying F);
(d) if −→q = [

−→
dP ,

−→
aS] in Q is an O-state, such that

−→
dP is dead and

−→
aS is alive, we

set δ(−→q ,m) = −→q for every m in Σ, and we put −→q in F .

These four transformation rules can, intuitively, be explained as follows.

Rule (a) handles the case in which, at a certain point of the conversation,
according to the policy it is possible to receive a message that, instead,
cannot be received according to the specification (it is the case of message
←−m1 in Fig. 1). Actually, if the agent will interact with another agent that
respects the protocol, this message can never be received, so we can ignore the
paths generated by the policy from the message at issue onwards. Since this
case does not compromise conformance, we want our automaton to accept
all these strings. For this reason we set the state as final.

Rule (b) handles the symmetric case (Fig. 1, message←−m4), in which at a certain
point of the conversation it is possible, according to the specification, to
receive a message, that is not accounted for by the implementation. In this
case the state at issue is turned into a trap state (a state that is not final and
that has no transition to a different state); by doing so, all the conversations

Verification of Protocol Conformance and Agent Interoperability 273

that are foreseen by the specification from that point onwards will not be
accepted by Mconf .

Rule (c) handles the cases in which a message can possibly be uttered by the
agent, according to the policy, but it is not possible according to the spec-
ification (Fig. 1, message −→m3). In this case, the policy is not conformant,
so we transform the current state in a trap state. By doing so, part of the
conversations possibly generated by the policy will not be accepted by the
automaton.

Rule (d) is the symmetric case of (c) (Fig. 1, message −→m2), it does not prevent
conformance, in fact, an agent is free not to utter a message foreseen by the
protocol. However, the conversations that can be generated from that point
according to the specification are to be accepted as well. For this reason the
state is turned into an accepting looping state.

Finally, to guarantee Expectation 3, we add the following requirement. The
intuitive reason is that we would like an agent, which is supposed to utter a
message at a certain point of its conversation, to actually do it, thus making the
conversation, in which it is engaged, proceed.

Definition 9 (Complete automaton). Let us denote by Messout(q) the set:

Messout(q) = {m(−→ag) | δ(q,m(−→ag)) = p ∧ p is alive }

We say that the automaton Mconf is complete iff for all states of form [qP , qS]
of Mconf , such that Messout(qS)
= ∅, the following holds:

– Messout(qP)
= ∅;
– if we substituteMessout(qP) to Messout(qS) in Mspec, the state qS remains

alive.

One may wonder if the application of rules (b) and (c) could prevent the reach-
ability of states, that have been set as accepting states by the other two rules.
Notice that their application cannot prevent the reachability of alive-alive ac-
cepting states, i.e. those that accept the strings belonging to the intersection of
the two languages, because all the four rules only work on dead states. If a state
has been set as a trap state (either by rule (b) or (c)), whatever conversation is
possibly generated after it by the policy is illegal w.r.t. the specification. So it is
correct that the automaton is modified in such a way that the policy language
is not accepted by it and that the final state cannot be reached any more.

3.2 Conformance and Interoperability

We can now discuss how to check that an agent conforms to a given protocol.
The following is our definition of conformance test. It guarantees the expectations
that we have explained by examples in Section 2.

Definition 10 (Policy conformance test). A policy pag
lang is conformant to a

protocol specification pspec iff the automaton Mconf(pag
lang, pspec) is complete and

it accepts the union of the languages L(pag
lang) and L(pspec).

274 M. Baldoni et al.

We are now in position to state that a policy that passes the above test can
carry on any conformant conversation it is involved in.

Proposition 2. Given a policy pag
lang that is conformant to a protocol specifi-

cation pspec, according to Definition 10, for every prefix σ′ that is common to
the two languages L(pspec) and L(pag

lang), there is a conversation σ = σ′σ′′ such
that σ is in the intersection of L(pag

lang) and L(pspec), when L(pag
lang)
= ∅ and

L(pspec)
= ∅.

Proof. Since pag
lang is conformant, L(pag

lang) is accepted by Mconf . Then, by con-

structionMconf does not contain any state [
−→
aP ,

−→
dS], where aP corresponds to an

alive state inM(pag
lang) and dS is a dead state inM(pspec), due to illegal messages

uttered by the agent. By construction it also does not contain any state [
←−
dP ,

←−
aS]

due to incoming messages that are not accounted for by the policy. Obviously,
no conversation σ accepted by states of the kind [

−→
dP ,

−→
aS] can belong to L(pag

lang)
because the agent cannot utter the messages required to reach such states. Fi-
nally, no conversation produced by the agent will be accepted by states of the
kind [

←−
aP ,

←−
dS] because by definition the protocol cannot utter illegal messages.

Now, σ′ is a common prefix, therefore it leads to a state of the automatonMconf

of the kind [aP , aS] (i.e., both states are alive, see Figure 1). Due to policy con-
formance, all the incoming messages (w.r.t. the agent), that are labels of kind
m(←−ag) of outgoing edges, must be foreseen by the policy and in the case of out-
going messages (that is labels of kind m(−→ag) of outgoing edges), the policy must
foresee at least one of them in such a way that aS is kept alive (completeness
of Mconf). Therefore, either the above state [aP , aS] is already a final state of
Mconf and σ′′ = ε or from [aP , aS] it is possible to perform one more common
step, leading to a state of the same kind, i.e. composed of two alive states for the
reasons exposed before. This an actual step ahead towards a final state due to
conformance. In fact, for these properties there must be an edge outgoing from
aS , that leads to another alive state different from aS , and the same edge must
exist also in M(pag

lang); this edge will be one of the outgoing edges of aP . We
can choose to follow this edge also in the automaton Mconf . We can iteratively
repeat this reasoning and, since the number of nodes is finite, we will eventually
reach an accepting state, identifying a common conversation. q.e.d.

Notice that the intersection of L(pag
lang) and L(pspec) cannot be empty because

of policy conformance, and also that Proposition 2 does not entail that the
two languages coincide (i.e. the policy is not necessarily a full implementation
of the protocol). As a consequence, given that the conversation policies of two
agents ag1 and ag2, playing the different roles of an interaction protocol pspec,
are conformant to the specification according to Definition 10, and denoting by
I the intersection

I =
i=1,2⋂
agi

L(pagi

langi
)

Verification of Protocol Conformance and Agent Interoperability 275

we can prove ag1 and ag2 interoperability, that is they will produce a legal
conversation, when interacting with one another. The proof is similar to the
previous one. Roughly, it is immediate to prove that every prefix, that is common
to the two policies, also belongs to the protocol, then, by performing reasoning
steps that are analogous to the previous proof, it is possible to prove that a
common legal conversation must exist when both policies satisfy the conformance
test given by Definition 10.

Theorem 1 (Interoperability w.r.t. an interaction protocol). Given two
policies pag1

lang1
and pag2

lang2
that are conformant to a protocol specification pspec, ac-

cording to Definition 10, for every prefix σ′ that is common to the two languages
L(pag1

lang1
) and L(pag2

lang2
), there is a conversation σ = σ′σ′′ such that σ ∈ I.

Proof. First of all, it is trivial that σ′ is also a prefix of L(pspec). By the previous
property, we are sure that both ag1 and ag2 contain some legal conversations. We
need to prove that at least of these is common. Let us consider the automaton
that accepts the intersection of M(pag1

lang) and M(pag2
lang). Since σ′ is a common

prefix, there must be a path in such automaton, that leads to a state [qag1 , qag2].
Due to policy conformance, all the incoming messages w.r.t. ag1, foreseen by the
protocol specification, must be foreseen also by the policy. On the other side,
ag2 must utter at least one of them, due to its conformance (its Mconf must
be complete). Therefore, it is possible to continue the conversation at least one
more common step. In the case of messages that are outgoing w.r.t. ag1 the
policy must foresee at least one of them in such a way that qag1 is kept alive
(completeness of Mconf), while on the other side, ag2 must be able to handle all
the possible alternatives (conformance), therefore, also in this case it is possible
to continue the conversation. In both cases all the performed steps are legal w.r.t.
the protocol specification. Therefore, either the above state [qag1 , qag2] is a final
state and σ′′ = ε or from [qag1 , qag2] it is possible to perform one more common
step for the reasons exposed before. Proceeding in a way that is analogous to
what done in the proof of Prop. 2, due to conformance and considering each
agent as playing the role of the protocol specification w.r.t. to the other, this an
actual step ahead towards a final state. Therefore, we will eventually reach an
accepting state, that identifies a common conversation. q.e.d.

The third expectation is guarantedd by the completeness of Mconf . The role
plaied by completeness is, therefore, to guarantee that two agents, playing the
two roles of the same protocol, will be able to lead to an end their conversations.
Without this property we could only say that whenever the two agents will be
able to produce a conversation, this will be legal. We lose the certainty of the
capability of producing a conversation.

Starting from regular languages, all the steps that we have described that lead
to the construction of Mconf and allow the verification of policy conformance,
are decidable. A naive procedure for performing the test can be obtained directly
from Definitions 8 and 9 and from the well-known automata theory [22]. The
following theorem holds.

276 M. Baldoni et al.

Theorem 2. Policy conformance is decidable when L(pag
lang) and L(pspec) are

regular languages.

4 The DyLOG Language: A Case Study

In this section we show how the presented approach particularly fits logic lan-
guages, using as a case study the DyLOG language [7], previously developed in our
group. The choice is due to the fact that this language explicitly supplies the tools
for representing communication protocols and that we have already presented an
algorithm for turning a DyLOG program in a regular grammar (therefore, into a
finite state automaton) [5]. This is, however, just an example. The same approach
could be applied to other logic languages. In the following we will briefly recall
how interaction policies can be described in the language DyLOG. For examples
and for a thorough description of the core of the language see [7, 4].

DyLOG [7] is a logic programming language for modeling rational agents, based
upon a modal logic of actions and mental attitudes, in which modalities represent
actions as well as beliefs that are in the agent’s mental state. It accounts both for
atomic and complex actions, or procedures, for specifying the agent behavior.
DyLOG agents can be provided with a communication kit that specifies their
communicative behavior [3, 4]. In DyLOG conversation policies are represented
as procedures that compose speech acts (described in terms of their preconditions
and effects on the beliefs in the agent’s mental state). They specify the agent
communicative behavior and are expressed as Prolog-like procedures:

p0 is p1; p2; . . . ; pm

where p0 is a procedure name, the pi’s in the body are procedure names, atomic
actions, or test actions, and ‘;’ is the sequencing operator.

Besides speech acts, protocols can also contain get message actions, used to
read incoming communications. From the perspective of an agent, expecting a
message corresponds to a query for an external input, thus it is natural to in-
terpret this kind of actions as a special case of sensing actions. As such, their
outcome, though belonging to a predefined set of alternatives, cannot be pre-
dicted before the execution. A get message action is defined as:

get message(agi, agj , l) is
speech act1(agj , agi, l) or . . .or speech actk(agj, agi, l)

On the right hand side the finite set of alternative incoming messages that the
agent agi expects from the agent agj in the context of a given conversation. The
information that is actually received is obtained by looking at the effects that
occurred on agi’s mental state.

From the specifications of the interaction protocols and of the relevant speech
acts contained in the domain description, it is possible to trigger a planning
activity by executing existential queries of form Fs after p1; p2; . . . ; pm, that
intuitively amounts to determining if there is a possible execution of the enu-
merated actions after which the condition Fs holds. If the answer is positive, a

Verification of Protocol Conformance and Agent Interoperability 277

Fig. 2. AUML sequence diagram

conditional plan is returned. Queries of this kind can be given an answer by a
goal-directed proof procedure that is described in [3].

The example that we consider involves a reactive agent. The program of its
interlocutor is not given: we will suppose that it adheres to the public protocol
specification against which we will check our agent’s conformance. The example
rephrases one taken from the literature, that has been used in other proposals
(e.g. [19]) and, thus, allows a better comprehension as well as comparison. We just
set the example in a realistic context. The agent is a web service [2] that answers
queries about the movies that are played. Its interlocutor is the requester of infor-
mation (that we do not detail supposing that it respects the agreed protocol). This
protocol is described in Fig. 2 as an AUML sequence diagram [26]. The agent that
plays the role “cinema” waits for a request from another agent (if a certain movie
is played), then, it can alternatively send the requested information (yes or no) or
refuse to supply information; the protocol is ended by an acknowledgement mes-
sage from the customer to the cinema. Hereafter, we consider the implementation
of the web service of a specific cinema, written as a DyLOG communication policy.
This program has a different aim: it allows answering to a sequence of information
requests from the same customer and it never refuses an answer.

(a) get info movie(cine, customer) is
get request(cine, customer, available(Movie));
send answer(cine, customer, available(Movie));
get info movie(cine, customer)

(b) get info movie(cine, customer) is
get ack(cine, customer)

(c) send answer(cine, customer, available(Movie)) is
Bcinemaavailable(Movie)?;
inform(cine, customer, available(Movie))

(d) send answer(cine, customer, available(Movie)) is
¬Bcinemaavailable(Movie)?;
inform(cine, customer,¬available(Movie))

(e) get request(cine, customer, available(Movie)) is
request(customer, cine, available(Movie)

(f) get ack(cine, customer, ack) is
inform(customer, cine, ack)

278 M. Baldoni et al.

qS
0

qS
3

(b)

qS
1 qS

2

inform(←−−
cine)

inform(−−→cine)

refuse(−−→cine)

qP
0

qP
2

inform(−−→cine)

qP
1

(a)

inform(←−−
cine)

request(←−−
cine)request(←−−

cine)

(c)

[qP
1 , qS

1]

[dP , qS
2]

[qP
0 , qS

2] [qP
2 , qS

3]

inform(←−−
cine)inform(−−→cine)

[qP
0 , qS

0] refuse(−−→cine)

request(←−−
cine)

inform(←−−
cine)

request(←−−
cine)

[dP , qS
2]

[qP
2 , dS]

Fig. 3. (a) Policy of agent cine; (b) protocol specification; (c) Mconf automaton. Only
the part relevant to the discussion is shown.

The question that we try to answer is whether this policy is conformant to
the given protocol, and we will discuss whether another agent that plays as a
customer and that is proved conformant to the protocol will actually be able to
interoperate with this implementation of the cinema service. For what concerns
the AUML sequence diagram, we have proved in [5] that diagrams containing
only message, alternative, loop, exit, and reference to a subprotocol operators
can be represented as a right-linear grammar, that generates a regular language.
The automaton reported in Fig. 3(b) is obtained straightforwardly from this
grammar. For what concerns the implementation, by applying the results re-
ported in [5] it is possible to turn a DyLOG program in a context-free language.
This grammar captures the structure of the possible conversations disregarding
the semantics of the speech acts. When we have only right-recursion in the pro-
gram, then, the obtained grammar is right-linear. So also in this case a regular
language is obtained, hence the automaton in Fig. 3(a). Notice that all the three
automata are represented from the perspective of agent cine, so all the short no-
tation for the messages are to be interpreted as incoming or outgoing messages
w.r.t. this agent.

The protocol allows only two conversations between cine and customer (the
content of the message is not relevant in this example, so we skip it):

– request(cus-tomer, cine) inform(cine, customer) inform(customer, cine); and
– request(customer, cine) refuse(cine, customer) inform(customer, cine).

Let us denote this protocol by get info movieAUML (AUML is the specification
language).

Verification of Protocol Conformance and Agent Interoperability 279

Let us now consider an agent (cine), that is supposed to play as cinema.
This agent’s policy is described by the above DyLOG program. The agent has a
reactive behavior, that depends on the message that it receives, and its policy
allows an infinite number of conversations of any length. Let us denote this
policy by get info moviecine

DyLOG. In general, it allows all the conversations that
begin with a (possibly empty) series of exchanges of kind request(←−−cine) followed
by inform(−−→cine), concluded by a message of kind inform(←−−cine).

To verify its conformance to the protocol, and then state its interoperability
with other agents that respect such protocol, we need to build the Mconf au-
tomaton for the policy of cine and the protocol specification. For brevity, we
skip its construction steps and directly report Mconf in Fig. 3(c).

Let us now analyzeMconf for answering our queries. Trivially, the automaton
is complete and it accepts both languages (of the policy, L(get info moviecine

DyLOG),
and of the specification, L(get info movieAUML)), therefore, get info moviecine

DyLOG

is policy conformant to get info movieAUML. Moreover, when the agent interacts
with another agent customer whose policy is conformant to get info movieAUML,
the messages request(←−−cine) and inform(←−−cine) will not be received by cine in all
the possible states it expects them. The reason is simple: for receiving them it
is necessary that the interlocutor utters them, but by definition (it is confor-
mant) it will not. The fact that refuse(−−→cine) is never uttered by cine does not
compromise conformance.

5 Conclusions and Related Work

In this work we propose an approach to the verification of the conformance of
an agent’s conversation policy to a public conversation protocol, which is based
on the theory of formal languages. Differently than works like [1], where the
compliance of the agents’ communicative behavior to the protocol is verified at
run-time, we tackled the verification of a priori conformance, a property of the
policy as a whole and not of the on-going conversation only.

This problem has been studied by other researchers, the most relevant analy-
sis probably being the one by Endriss et al. and reported in [15]. Here, the
problem was faced in a logic framework; the authors introduce three degrees
of conformance, namely weak, exhaustive, and robust conformance. An agent is
weakly conformant to a protocol iff it never utters any dialogue move which is
not a legal continuation (w.r.t. the protocol) of any state of the dialogue the
agent might be in. It is exhaustively conformant to a protocol iff it is weakly
conformant to it and, for every received legal input, it will utter one of the
expected dialogue moves. It is robustly conformant iff it is exhaustively confor-
mant and for any illegal input move received it will utter a special dialogue move
(such as not-understood) indicating this violation. Under the assumption that
in their conversations the agents strictly alternate in uttering messages (ag1 tells
something to ag2 which answers to ag1 and so on), Endriss and colleagues show

280 M. Baldoni et al.

that by their approach it is possible to prove weak conformance in the case of
logic-based agents and shallow protocols1.

Our Policy conformance (Definition 10) guarantees that an agent, at any point
of its conversations, can only utter messages which are legal w.r.t. the protocol,
because of the Mconf construction step, given by rule (c). In this respect it
entails weak conformance [15], however, our notion of conformance differs from
it because it also guarantees that whatever incoming message the agent may
receive, in any conversation context, its policy will be able to handle it.

A crucial difference concerns interoperability. In our framework, given two
policies each of which is conformant to a protocol specification, their interop-
erability can be proved. Thus, we captured the expectation that conformance,
a property of the single policy w.r.t. the public protocol, should in some way
guarantee agents (legal) interoperability, while Endriss et al. do not discuss this
issue and do not formally prove that interoperability is entailed by (all or some
of) their three definitions of conformance. Moreover, we do not limit in any
way the structure of the conversations (in particular, we do not require a strict
alternation of the uttering agents).

This work is, actually, a deep revision of the work that the authors presented at
[5], where the verification of a priori conformance was faced only in the specific
case in which DyLOG [7] is used as the policy implementation language and
AUML [26] is used as the protocol specification language. Basically, in that work
the idea was to turn the problem into a problem of formal language inclusion.
The two considered languages are the set of all the possible conversations foreseen
by the protocol specification, let us denote it by L(pAUML), and the set of all
the possible conversations according to the policy of agent ag, let us denote it by
L(pag

dylog). The conformance property could then be expressed as the following
inclusion: L(pag

dylog) ⊆ L(pAUML). The current proposal is more general than
the one in [5], being independent from the implementation and specification
languages. Moreover, as we have explained in the introduction, the interpretation
of conformance as an inclusion test is too restrictive and not sufficient to express
all the desiderata connected to this term, which are, instead, well-captured by
our definitions of policy conformance.

The proposal that we have described in this paper is, actually, just a first
step of a broader research. As a first step, we needed to identify the core of the
problem, those key concepts and requirements which were necessary to capture
and express the intuition behind a priori conformance, in the perspective of
guaranteeing interoperability. Hence, the focus on interactions that involve two
partners and do not account for concurrent operations. Under such restrictions,
the choice of finite state automata fits very well and has the advantage of bearing
along decidability.

Finite state automata, despite some notational inadequacy [20], are commonly
used for representing protocols: for instance they have been used for representing
both KQML protocols [8] and FIPA protocols [17]. In [5] we have presented an

1 A protocol is shallow when the current state is sufficient to decide the next action
to perform. This is not a restriction.

Verification of Protocol Conformance and Agent Interoperability 281

algorithm for translating AUML protocol specifications in finite state automata,
focussing -on the side of sequence diagrams- on the operators used to specify
FIPA protocols, which are: message, alternative, loop, exit, and reference to
a sub-protocol. Some concrete example of application to the specification of
complex protocols are the English Auction [27] and the Contract Net Protocol
[18]. As a future work we mean to study an extension to policies (and protocols)
that involve many partners as well as an extension to policies (and protocols)
that use concurrent operators. For the latter problem in the literature there are
well studied formalisms such as process algebras that can be used for representing
protocols involving concurrency elements. It could be interesting to study how
to import on the new basis the lessons learnt in the current research.

Concerning works that address the problem of verifying the conformance in
systems of communicating agents by using model checking techniques (e.g. [19]),
to the best of our knowledge, the issue of interoperability is not tackled or, at
least, this does not clearly emerge. For instance, Giordano, Martelli and Schwind
[19] based their approach on the use of a dynamic linear time logic. Protocols
are specified, according to a social approach, by means of temporal constraints
representing permissions and commitments. Following [21] the paper shows how
to prove that an agent is compliant with a protocol, given the program executed
by the agent, by assuming that all other agents participating in the conversa-
tion are compliant with the protocol, i.e. they respect their permissions and
commitments. However, this approach does not guarantee interoperability.

Techniques for proving if the local agent’s policy conforms to the abstract
protocol specification can have an interesting and natural application in the web
service field. In fact a need of distinguishing a global and a local view of the
interaction is recently emerging in the area of Service Oriented Architectures.
In this case there is a distinction between the choreography of a set of peers, i.e.
a global specification of the way a group of peers interact, and the concept of
behavioral interface, seen as the specification of the interaction from the point
of view of an individual peer. The recent W3C proposal of the choreography
language WS-CDL [30] is emblematic. In fact the idea behind it is to introduce
specific choreography languages as languages for a high-level specification, cap-
tured from a global perspective, distinguishing this representation from the other
two, that will be based upon ad hoc languages (like BPEL or ebXML).

Taking this perspective, choreographies and agent interaction protocols un-
doubtedly share a common purpose. In fact, they both aim at expressing global
interaction protocols, i.e. rules that define the global behavior of a system of
cooperating parties. The respect of these rules guarantees the interoperability
of the parties (i.e. the capability of actually producing an interaction), and that
the interactions will satisfy given requirements. One problem that becomes cru-
cial is the development of formal methods for verifying if the behavior of a peer
respects a choreography [11, 12]. On this line, in [6] we moved the first steps
toward the application of the conformance test proposed in the present paper
for verifying at design time (a priori) that the internal processes of a web service
enable it to participate appropriately in the interaction.

282 M. Baldoni et al.

Acknowledgement. The authors would like to thank the anonimous reviewers
for their helpful suggestions and Francesca Toni for the discussion that we had
in London.

References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
ACM SAC 2004, pages 72–78. ACM, 2004.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services. Springer, 2004.
3. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and

others: communicating agents in a modal action logic. In ICTCS’2003, volume
2841 of LNCS, pages 228–241. Springer, October 2003.

4. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about interaction
protocols for customizing web service selection and composition. Journal of Logic
and Algebraic Programming, Special issue on Web Services and Formal Methods,
2006. to appear.

5. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying proto-
col conformance for logic-based communicating agents. In Proc. of 5th Int. Work-
shop on Computational Logic in Multi-Agent Systems, CLIMA V, number 3487 in
LNCS, pages 192–212. Springer, 2005.

6. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying the
conformance of web services to global interaction protocols: a first step. In Proc. of
2nd Int. Workshop on Web Services and Formal Methods, WS-FM 2005, number
3670 in LNCS, pages 257–271, 2005.

7. M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207–257, 2004.

8. M. Barbuceanu and M. Fox. Cool: A language for describing coordination in mul-
tiagent systems. In Proceedings International Conference on Multi Agent Systems
(ICMAS’95), pages 17–24. MIT Press, Massachusetts, USA, 1995.

9. J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational
model for conversation policies for agent communication. In Pre-Proc. of CLIMA
V, number 3487 in LNCS, pages 178–195. Springer, 2004.

10. R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking AgentS-
peak. In Proc. of 2nd International Joint Conference on Autonomous Agents and
Multi-Agent Systems, AAMAS 2003, 2003.

11. M. Bravetti, L. Kloul, and G. Zavattaro, editors. Proc. of the 2nd International
Workshop on Web Services and Formal Methods (WS-FM 2005), number 3670 in
LNCS. Springer, 2005.

12. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and
Orchestration: a synergic approach for system design. In Proc. the 3rd Int. Conf.
on Service Oriented Computing, 2005.

13. L. Cabac and D. Moldt. Formal semantics for auml agent interaction protocol
diagrams. In Proc. of AOSE 2004, pages 47–61, 2004.

14. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based
agents. In G. Gottlob and T. Walsh, editors, Proc. of IJCAI-2003, pages 679–684.
Morgan Kaufmann Publishers, August 2003.

Verification of Protocol Conformance and Agent Interoperability 283

15. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication
protocols. In Advances in agent communication languages, volume 2922 of LNAI,
pages 91–107. Springer-Verlag, 2004. invited contribution.

16. R. Eshuis and R. Wieringa. Tool support for verifying UML activity diagrams.
IEEE Trans. on Software Eng., 7(30), 2004.

17. FIPA. Fipa 97, specification part 2: Agent communication language. Technical
report, FIPA (Foundation for Intelligent Physical Agents), November 1997.

18. L. Giordano, A. Martelli, and C. Schwind. Specifying and verifying interaction
protocols in a temporal action logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification). Accepted for publication.

19. L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In JELIA’04, volume 3229 of LNAI,
pages 57–69, Lisbon, Portugal, 2004. Springer.

20. F. Guerin. Specifying Agent Communication Languages. PhD thesis, Imperial
College, London, April 2002.

21. F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98–
112. Springer, 2003.

22. J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, 1979.

23. M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179–
193. Springer, 2003.

24. A. Mamdani and J. Pitt. Communication protocols in multi-agent systems: A de-
velopment method and reference architecture. In Issues in Agent Communication,
volume 1916 of LNCS, pages 160–177. Springer, 2000.

25. N. Maudet and B. Chaib-draa. Commitment-based and dialogue-based protocols:
new trends in agent communication languages. Knowledge engineering review,
17(2), 2002.

26. J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Proc. of
the Agent-Oriented Information System Workshop at AAAI’00. 2000.

27. J. Pitt, F. Guerin, and C. Stergiou. Protocols and intentional specifications of
multi-party agent conversations for brokerage and auctions. In Autonomous Agents
2000, pages 269–276, Barcelona, 2000. ACM Prtess.

28. M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.

29. C. Walton. Model checking agent dialogues. In J. Leite, A. Omicini, P. Torroni,
and P. Yolum, editors, Declarative agent languages and technologies II, DALT 2004,
number 3476 in LNCS, pages 132–147. Springer, 2005.

30. WS-CDL. http://www.w3.org/tr/2004/wd-ws-cdl-10-20041217/. 2004.

Contextual Terminologies

Davide Grossi, Frank Dignum, and John-Jules Ch. Meyer

Utrecht University,
The Netherlands

{davide, dignum, jj}@cs.uu.nl

Abstract. The paper addresses the issue of contextual representations
of ontologies, as it arises in the area of normative system specifications
for modeling multiagent systems. To this aim, the paper proposes a for-
malization of a notion of contextual terminology, that is to say, a termi-
nology holding only with respect to a specific context. The formalization
is obtained by means of a formal semantics framework which enables
the expressivity of common description logics to reason within contexts
(intra-contextual reasoning), allowing at the same time the possibility to
reason also about contexts and their interplay (inter-contextual reason-
ing). Using this framework, two complex scenarios are discussed in detail
and formalized.

1 Introduction

The present research is motivated by problems concerning the specification of
normative systems for modeling norm-governed multiagent systems. In [6, 22, 11]
it has been variously stressed how the design of norm-governed multiagent sys-
tems has to cope with the inherent abstractness of norm formulations. This
problem can be distilled in the question: how are norms specified by means of
abstract terms (“persons driving vehicles may not access public parks”) con-
nected to norms specified via more concrete ones (“persons wheeling bicycles
are allowed to access public parks”)? In fact, normative systems of high com-
plexity (for instance legal systems, or institutional ones) can be viewed not only
as regulative systems, but also as systems specifying conceptualizations, or cat-
egorizations, of the domain of entities they are supposed to regulate (see for
instance [2, 15]). In order to specify and represent such complex systems, it has
been advocated in [7, 21], the notion of context plays a central role. Along these
lines, in [13, 10], we proposed and applied a framework for representing this cate-
gorizing feature of normative systems via contextual taxonomic statements of the
form “A counts as B in context C” taken from [19], where concept descriptions
A and B displayed a very simple logical form (essentially boolean compositions
of concepts). This work intends to pursue that research line further adding the
necessary expressivity (essentially the possibility to deal with attributes or roles,
i.e., binary relations besides concepts) to model more complex scenarios: from
simple taxonomies to rich description logic terminologies.

The final aim consists in obtaining a framework in which to represent ontolo-
gies of different contexts and to reason about them both in isolation, i.e., within

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 284–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Contextual Terminologies 285

the contexts (intra-contextual reasoning), and in interaction, i.e. between con-
texts (inter-contextual reasoning). For instance, at the intra-contextual level a
typical question would be of the form: given a set of subsumption relations hold-
ing in context C, is A a subconcept of B in context C? At an inter-contextual level
instead, a typical question would be: given that context C is more concrete than
context D, is A a subconcept of B in context C? With such a machinery it would
then be possible to represent the ontological aspect of the regulating activity of
institutions in a formal way, and the ontologies of different institutions could then
be rigorously specified and reasoned about. To do this, we show that the approach
proposed in [13] can be naturally applied to richer description logic languages
thus providing the necessary expressive power we are interested in. In fact, the
framework presented here consists in a contextualized version of the semantics of
description logics. The proposal is tested in detail against two different examples.

The exposition is structured according to the following outline. In Section
2 two scenarios are introduced which exemplify in detail the issues addressed
here, and some preliminary considerations are drawn. Section 3 is dedicated to
the exposition of the framework, and Section 4 to the formalization of the two
scenarios introduced in Section 2. Some concluding remarks follow.

2 Preliminaries

2.1 Scenarios

We now depict two scenarios in order to state, in clear terms, the kind of reasoning
patterns we are aiming to capture formally. They exemplify quite typical forms of
contextual conceptualizations occurring in the normative domain. The first sce-
nario deals with a rule establishing sufficient conditions for a person to be liable
of violating the regulation concerning access to public parks in three different mu-
nicipalities. The second scenario deals with the refinement of a definition of “vehi-
cle” from the abstract context of a general regulation to more concrete contexts of
municipal regulations. From a logical point of view, they display description logic
forms of reasoning at the level of the so-called taxonomical boxes (TBoxes)1 (e.g.,
reasoning with value restriction and existential quantification, role subsumption)
which were not yet available in our previous proposal [13].

Example 1 (The public park scenario: “liability in parks”). In the regu-
lation governing access to public parks in region R it is stated that vehicles are
not allowed within public parks and that: “persons using vehicles within pub-
lic parks are liable for violating the regulation”. In this regulation no mention is
made of (possible) subconcepts of the concept vehicle, e.g., cars, bicycles, which
may help in identifying an instance of vehicle, nor is it stated what it actually
means to drive a vehicle: does the fact that I am wheeling my bicycle imply that
I am driving it? In municipal regulations subordinated to this regional one, and

1 Taxonomical boxes or terminologies are, in the description logic vocabulary, sets of
inclusion relations between concepts.

286 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

therefore inheriting its global directives, specific subconcepts are instead handled.
In municipality M1 and M2 the following rule holds: “persons driving bicycles
within parks are liable of violating the regulation”. In M3 instead, it holds that
to drive a bicycle does not constitute any violation. On the other hand, in all M1,
M2 and M3 it holds that cars are not allowed in public parks. Moreover, in M2 it
holds that “persons wheeling bicycles into public parks are not liable for violat-
ing the regulation” despite liability arises in case bicycles happen to be driven.
In M1 and M3 instead, to wheel a bicycle is considered a way of driving it.

Table 1. Liability in the public park scenario

DRIVE VEHICLE DRIVE CAR DRIVE BICYCLE WHEEL BICYCLE
R liable not classifiable not classifiable not classifiable

M1 liable liable liable liable
M2 liable liable liable not liable
M3 liable liable not liable not liable

In this scenario the concept of vehicle gets various interpretations. Instances
of car (w.r.t. the terminologies presupposed by M1, M2 and M3) are always
instances of vehicle, while instances of bicycle are only in some contexts
also instances of vehicle. What also gets various interpretations is the relation
driving: somehow driving in M2 has a different meaning than in M1 and M3.
Table 1 displays how liability comes down to be interpreted in three completely
different ways by the contexts at issue, although in all contexts it holds that
persons driving vehicles are to be considered liable. Note that context R cannot
provide any qualification for actions such as driving or wheeling a bicycle simply
because its language cannot express those notions.

Example 2 (The public park scenario: “teenagers on skateboards”).
Consider again a regulation governing access to public parks in region R where
it is stated that: “vehicles are not allowed within public parks”. Also in this
regulation no mention is made of (possible) subconcepts of the concept vehicle.
Nevertheless, a (partial) definition, specifying necessary conditions for something
to be a vehicle, is stated: “vehicles are conveyances which transport persons or
objects”. In municipal regulations subordinated to this regional one subcon-
cepts are instead introduced. This is done inheriting the definition stated at the
R level and refining it either incrementing the number of necessary conditions
for something to be considered a vehicle or stating sufficient ones. In municipal-
ity M1 the definition of vehicle is refined in the following sense: “self-propelled
conveyances which transport persons or objects are vehicles” and “vehicles are
self-propelled”. In M2, instead, the definition of vehicle is simply closed without
any refinement: “conveyances which transport persons or objects are vehicles”.
Besides, in both M1 and M2, it holds that“skateboards are conveyances which
are not self-propelled” and “teenagers are persons”. These rules determine a
different behavior of M1 and M2 with respect to concepts such as “skateboards
transporting teenagers”. With respect to this concept the following rule holds

Contextual Terminologies 287

in M1: “skateboards transporting teenagers are not vehicles”. In M2 instead, it
holds that: “skateboards transporting teenagers are vehicles”.

The second scenario displays some other aspects of contextual conceptualiza-
tions. The concept of vehicle gets again various interpretations and is first
specified in its necessary conditions by context R and then completely defined
in the two concrete contexts M1 and M2. The abstract regulation states that all
vehicles are conveyances transporting persons or objects, leaving thus open the
possibility for some of such conveyances not to be vehicles. This is the case of
skateboards in M1 since M1 refines the abstract rule establishing more necessary
conditions (being self-propelled) for conveyances to be classified as vehicles. Con-
text M2 instead, simply closes the abstract rule through establishing that being
a conveyance transporting persons or objects is sufficient for being a vehicle. Be-
cause of this, the two contexts M1 and M2 validate terminologies diverging on the
conceptualization of the complex concept “skateboards transporting teenagers”.

These two scenarios exemplify interesting nuances typical of complex context-
dependent conceptualizations2. We will constantly refer back to them in the
remainder of the work, and our central aim will be to develop a formal semantics
framework able to represent analogous scenarios and to provide thus a rigorous
understanding of the forms of reasoning therein involved.

2.2 Contextualizing Terminologies

We want to devise a language and a semantics for talking about contextual
terminologies. More in detail, this turns out to devise a formal morphology and
a formal semantics meeting the following requirements.

Firstly, it should support reasoning about the validity of TBoxes with respect
to contexts giving a semantics to expressions of the type: “the concept bicycle
is a subconcept of the concept vehicle in context M1”. Besides this, the frame-
work should be able to express the fact that concepts may be unclassifiable
within specific contexts, that is, that specific subsumptions cannot be said to be
valid or not valid: in the context R of the regional regulation, whether a person
wheeling a bicycle within a public park is to be considered liable of violating
the regulation corresponds to a non evaluable subsumption since the concept
at issue is not part of the language of the context R (see Table 1). In some
sense, it corresponds to a subsumption which is evaluated with respect to the
wrong context. Therefore, we want the framework to be able to express whether
a concept gets meaning within a context: “concept bicycle is meaningful with
respect to context M1”. Completely analogous expressions should be available
in order to handle a contextualization of role (or attribute) hierarchies such as:
“role wheel (wheeling) is a subrole of drive (driving) in context M2” and “role
wheel is meaningful in context M2”.
2 It is instructive to notice that both scenarios represent instances of a typical form

of contextual reasoning called “categorization” [4], or “perspective” [1], that is, the
form of reasoning according to which a same set of entities is conceptualized in many
different ways.

288 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

Secondly, it should provide a representation of context interplay. In particu-
lar, we will introduce: a contextual disjunction operator and a contextual focus
operator3. The first one yields a union of contexts: the contexts “viruses” and
“bacteria” can be unified on a language talking about microorganisms generat-
ing a more general context like “viral or bacterial microorganisms”. The second
one, which plays a central role in our framework, yields the context consisting of
some information extracted from the context on which it is focused: the context
categorizing “crocodiles”, for instance, can be obtained via focusing the context
which categorizes all reptiles on the language talking only about crocodiles and
disregarding other reptiles. In other words, the operator prunes the informa-
tion contained in the context “reptiles” focusing only on what is expressible in
the language which talks about crocodiles and abstracting from the rest. Also
maximum and minimum contexts will be introduced: these will represent the
most general, and respectively the most specific, contexts on a language4. It is
important to notice that all operations explicitly refer to a precise language on
which the operation should take place. As we will see in the following section
our formal language will be tuned to incorporate this feature.

Finally, it should represent specific relations between contexts. Examples 1
and 2 consider groups of contexts in which all contexts are specializations of
an abstract one (R). This suggests the consideration of a generality relation
between contexts5 expressing that a context is at most as general as another
one: the context of the abstract regulation R is somehow more general than the
concrete ones M1 and M26.

These intuitions about the semantics of context operators will be clarified and
made more rigorous in Section 3.2 where the semantics of the framework will be
presented, and in Section 4 where the examples will be formalized deploying all
these types of expressions.

3 A Formal Framework

Our proposal consists in mixing the semantics of description logic [3] with the
idea of modeling contexts as sets of models [8], delivering a framework able to
represent reasoning about sets of concept subsumptions, i.e., taxonomical boxes
(TBoxes), in a contextual setting.

3 In [13, 12] the focus operation is called abstraction. We decided to modify our termi-
nology in order to avoid confusions with other approaches to notions of abstraction
like for instance [9].

4 In this paper, we limit the number of context operations to disjunction and focus.
More operations are formalized in [13]. It is worth noticing, in passing, that similar
operations and special contexts are discussed in [20].

5 Literature on context theory often addresses this type of relation between contexts.
See for instance [17, 4].

6 As the discussion of the formalization of the examples will show (Section 4), there
are some more subtleties to be considered since R is not only more general but is
also specified on a simpler language.

Contextual Terminologies 289

3.1 Language

The language we are defining can be seen as a meta-language for TBoxes de-
fined on AL description logic languages, which handle also concept union, full
existential quantification (we want to deal with concepts such as “either car or
bicycle” and “persons who drive cars”) and role complement (we want to be able
to talk about roles such as “not driving”)7.

The alphabet of the language LCT (language for contextual terminologies)
contains therefore the alphabets of a family of languages {Li}0≤i≤n. This family
is built on the alphabet of a given “global” language L which contains all the
terms occurring in the elements of the family. Moreover, we take {Li}0≤i≤n to
be such that, for each non-empty subset of terms of the language L, there ex-
ist a Li which is built on that set and belongs to the family. Each Li contains
two non-empty finite sets Ai of atomic concepts (A), i.e., monadic predicates,
and Ri of atomic roles (R), i.e., dyadic predicates. These languages contain
also concepts and roles constructors. As to concept constructors, each Li con-
tains the zeroary operators ⊥ (bottom concept) and � (top concept), the unary
operator ¬ (complement), and the binary operators & and '. As to role con-
structors, each Li contains the unary operator R (role complement). Finally,
the value restriction operator ∀R.A (“the set of elements such that all elements
that are in a relation R with them are instances of A”) applies to role-concept
pairs.

Besides, the alphabet of LCT contains a finite set of context identifiers c, two
families of zeroary operators {⊥i}0≤i≤n (minimum contexts) and {�i}0≤i≤n

(maximum contexts), one family of unary operators {fcsi}0≤i≤n (contextual fo-
cus operator), one family of binary operators {�i}0≤i≤n (contexts disjunction
operator), one context relation symbol � (context c1 “is less general than” con-
text c2), two meaningfulness relation symbols “ . ↓c .” (concept A is meaningful
in context c) and “ . ↓r .” (role R is meaningful in context c), and finally two
contextual subsumption relation symbols “ . : . 1c .” (within context c, concept
A1 is a subconcept of concept A2) and “ . : . 1r .” (within context c, role R1
is a subrole of role R2) for, respectively, concept and role subsumption8. Lastly,
the alphabet of LCT contains also the sentential connectives ∼ (negation) and
∧ (conjunction)9.

Thus, the set Ξ of context constructs (ξ) is defined through the following
BNF:

ξ ::= c | ⊥i | �i | fcsi ξ | ξ1 �i ξ2.

7 This type of language is indeed an ALC conceptual language extended with role
complement. See [3].

8 We use superscripts here in order to distinguish between meaningfulness of concepts
or roles, and subsumptions of concepts or roles. Nevertheless, in what follows, su-
perscripts will be dropped when no confusion arises in order to lighten the notation.

9 It might be worth remarking that language LCT is, then, an expansion of each Li

language. Notice also that all operators on contexts are indexed with the language
on which the operation they denote takes place.

290 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

Concept constructs and role constructs are defined in the standard way. The set
P of roles descriptions (ρ) is defined through the following BNF:

ρ ::= R | ρ.

The set Γ of concept descriptions (γ) is defined through the following BNF:

γ ::= A | ⊥ | � | ¬γ | γ1 & γ2 | ∀ρ.γ.

Concept union and existential quantification are defined respectively as:

γ1 ' γ2 =def ¬(¬γ1 & ¬γ2) and ∃ρ.γ =def ¬(∀ρ.¬γ).

Finally, the set A of assertions (α) is defined through the following BNF:

α ::= γ ↓c ξ | ρ ↓r ξ | ξ : γ1 1c γ2 | ξ : ρ1 1r ρ2 | ξ1 � ξ2 | ∼ α | α1 ∧ α2.

The set of atomic assertions of the language is then constituted by expressions
enabling exactly the kind of expressivity required in Section 2.2: meaningfulness
of concepts and roles in contexts, contextual subsumptions of concepts and roles,
generality ordering between contexts.

3.2 Semantics

As exposed in the previous section, an LCT consists of four classes of expressions:
Ξ (context constructs), P and Γ (role and concept descriptions), A (assertions).
Semantics of P and Γ will be the standard description logic semantics of roles and
concepts, on which our framework is based. Semantics for Ξ will be given in terms
of model theoretic operations on sets of description logic models, and at that
stage the semantics of assertionsA will be defined via an appropriate satisfaction
relation. The structures obtained, which we call contextual terminology models
or ct-models, provides a formal semantics for LCT languages.

The firs step is then to provide the definition of a description logic model for
a language Li [3].

Definition 1. (Models for Li’s)
A model m for a language Li is defined as follows:

m = 〈Δm, Im〉
where:

– Δm is the (non empty) domain of the model;
– Im is a function Im : Ai∪Ri −→ P(Δm)∪P(Δm×Δm), such that to every

element of Ai and Ri an element of P(Δm) and, respectively, of P(Δm×Δm)
is associated. This interpretation of atomic concepts and roles of Li on Δm

is then inductively extended:

Contextual Terminologies 291

Im(�) = Δm

Im(⊥) = ∅
Im(¬γ) = Δm\ Im(γ)

Im(γ1 & γ2) = Im(γ1) ∩ Im(γ2)
Im(∀ρ.γ) = {a ∈ Δm | ∀b,< a, b >∈ Im(ρ) ⇒ b ∈ Im(γ)}

Im(ρ) = Δm ×Δm\ Im(ρ).

A model m for a language Li assigns a denotation to each atomic concept (for
instance the set of elements ofΔm that instantiate the concept bike) and to each
atomic role (for instance the set of pairs of Δm which are in a relation such that
the first element is said to “drive” the second element of the pair). Accordingly,
meaning is given to each complex concept (for instance the set of elements of
Δm that instantiate the concept vehicle ' bike) and to each complex role (for
instance the set of pairs listing elements related by role drive).

3.3 Models for LCT

We can now define a notion of contextual terminology model (ct-model) for lan-
guages LCT .

Definition 2. (ct-models)
A ct-model M is a structure:

M = 〈{Mi}0≤i≤n, I〉
where:

– {Mi}0≤i≤n is the family of the sets of models Mi of each language Li. That
is, ∀m ∈ Mi, m is a model for Li.

– I is a function I : c −→ P(M0) ∪ . . . ∪ P(Mn). In other words, this func-
tion associates to each atomic context identifier in c a subset of the set of
all models in some language Li: I(c) = M with M ⊆ Mi for some i s.t.
0 ≤ i ≤ n. Function I can be seen as labeling sets of models on some lan-
guage i via atomic context identifiers. Notice that I fixes, for each atomic
context identifier, the language on which the context denoted by the identifier
is specified. We could say that it is I itself which fixes a specific index for
each atomic context identifier c.

– ∀m′,m′′ ∈
⋃

0≤i≤n Mi, Δm′ = Δm′′ . That is, the domain of all models m
is unique. We assume this constraint simply because we are interested in
modeling different conceptualizations of a same set of individuals.

Contexts are therefore formalized as sets of models for the same language.
This perspective allows for straightforward model theoretical definitions of op-
erations on contexts.

292 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

3.4 Context Focus

We model focus as a specific operation on sets of models which provides the
semantic counterpart for the contextual focus operator introduced in LCT . Intu-
itively, abstracting a context ξ to a language Li yields a context consisting in
that part of ξ which can be expressed in Li.

Let us first recall a notion of domain restriction (2) of a function f w.r.t. a
subset C of the domain of f . Intuitively, a domain restriction of a function f is
nothing but the function C2f having C as domain and s.t. for each element of
C, f and C2f return the same image: C2f = {〈x, f(x)〉 |x ∈ C}.

Definition 3. (Context focus operation: 2i)
Let M ′ be a set of models, then: 2iM ′ = {m | m = 〈Δm′ ,Ai ∪Ri2Im′〉 & m′ ∈
M ′}.

The following can be proved.

Proposition 1. (Properties of context focus)
Operation 2i is: surjective, idempotent (2i(2iM) =2iM), normal (2i∅ = ∅), ad-
ditive (2i(M1 ∪M2) =2iM1∪2iM2), monotonic (M1 ⊆M2 ⇒2iM1 ⊆2iM2).

Proof. A proof is worked out in [12].

The operation of focus allows for shifting from richer to simpler languages and it
is, as we would intuitively expect: surjective (every context, even the empty one,
can be seen as the result of focusing a different richer context, in the most trivial
case, a focus of itself), idempotent (focusing on a focus yields the same first
focus), normal (focusing the empty context yields the empty context), additive
(the focus of a context obtained via joining of two contexts can be obtained
also joining the focuses of the two contexts), monotonic (if a context is less
general then another one, the focus of the first is also less general than the
focus of the second one). Notice also that operation 2i yields the empty set
of models when it is applied to a context M ′ the language of which is not an
expansion of Li. This is indeed very intuitive: the context obtained via focus of
the context “dinosaurs” on the language of, say, “gourmet cuisine” should be
empty.

A detailed comparison of our account of focus with approaches available in
the literature on context theory is discussed in [12].

3.5 Operations on Contexts

We are now in a position to give a semantics to context constructs as introduced
in Section 3.1. In Definition 2 atomic contexts are interpreted as sets of models
on some language Li for 0 ≤ i ≤ n: I(c) = M ∈ P(M0) ∪ . . . ∪ P(Mn). The
semantics of context constructs Ξ can be defined via inductive extension of that
definition.

Contextual Terminologies 293

Definition 4. (Semantics of context constructs)
Let ξ, ξ1, ξ2 be context constructs, then:

I(fcsi ξ) = 2iI(ξ)
I(⊥i) = ∅
I(�i) = Mi

I(ξ1 �i ξ2) = 2i(I(ξ1) ∪ I(ξ2)).

The focus operator fcsi is interpreted on the contextual focus operation intro-
duced in Definition 3, i.e., as the restriction of the interpretation of its argument
to language Li. The ⊥i context is interpreted as the empty context (the same on
each language); the �i context is interpreted as the greatest, or most general,
context on Li; the binary �i-composition of contexts is interpreted as the lowest
upper bound of the restriction of the interpretations of the two contexts on Li.

In [17] the statement about the need for addressing “contexts as abstract
mathematical entities” was set forth. Here, moving from an analysis of contex-
tual terminologies, we develop an account of context interplay based on model
theoretic operations. In some sense, we propose a view on contexts as “algebraic
entities”. In fact, it is easy to prove, as we did in [12], that our contexts are
structured according to a Boolean Algebra with Operators [16]. This observa-
tion distills the type of conception of context we hold here: contexts are sets of
models on different concept description languages; on each language the set of
possible contexts is structured in a Boolean Algebra; adding operations of focus
on a finite number of sublanguages yields a Boolean Algebra with Operators.

3.6 Assertions

The semantics of assertions is defined as follows.

Definition 5. (Semantics of assertions: |=)
Let ξ, ξ1, ξ2 be a context constructs, γ, γ1, γ2 concept description, then:

M |= γ ↓ ξ iff {Dc | 〈γ,Dc〉 ∈ Im & m ∈ I(ξ)}
= ∅ (1)
M |= ρ ↓ ξ iff {Dr | 〈ρ,Dr〉 ∈ Im & m ∈ I(ξ)}
= ∅ (2)
M |= ξ : γ1 1 γ2 iff M |= γ1 ↓ ξ,M |= γ2 ↓ ξ

and ∀m ∈ I(ξ) Im(γ1) ⊆ Im(γ2) (3)
M |= ξ : ρ1 1 ρ2 iff M |= ρ1 ↓ ξ,M |= ρ2 ↓ ξ

and ∀m ∈ I(ξ) Im(ρ1) ⊆ Im(ρ2) (4)
M |= ξ1 � ξ2 iff I(ξ1) ⊆ I(ξ2). (5)

Clauses (1) and (2) specify when a concept, respectively a role, is meaningful
with respect to a context. This is the case when the set of denotations Dc and
Dr which the models constituting the context attribute to that concept (Dc

being a set of elements of the domain) or that role (Dr being a set of pairs of
elements of the domain), is not empty. If concept γ is not expressible in the

294 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

language of context ξ, then concept γ gets no denotation at all in context ξ.
This happens simply because concept γ does not belong to the domain of func-
tions Im, and therefore there exists no interpretation for that concept in the
models constituting ξ. The same holds for a role ρ. Clauses (3) and (4) deal
with satisfaction of contextual subsumptions. A contextual concept subsump-
tion relation between γ1 and γ2 holds iff concepts γ1 and γ2 are defined in the
models constituting context ξ, i.e., they receive a denotation in those models,
and all the description logic models constituting that context interpret γ1 as
a subconcept of γ2. Note that this is precisely the clause for the validity of a
subsumption relation in standard description logics, but together with the fact
that the concepts involved are actually meaningful in that context. Intuitively,
we interpret contextual subsumption relations as inherently presupposing the
meaningfulness of their terms10. A perfectly analogous observation holds also
for the clause regarding contextual role subsumption relations.

With respect to clauses (3) and (4), it is important to notice their effect on the
semantics of the negation of contextual subsumption statements: ∼ ξ : γ1 1 γ2
and ξ : ρ1 1 ρ2. In fact, the statement ∼ ξ : γ1 1 γ2 is true in model M, iff either
M |=∼ (γ1 ↓ ξ ∧ γ2 ↓ ξ) or it is simply not the case that ∀m ∈ I(ξ) Im(γ1) ⊆
Im(γ2). The same holds for contextual role subsumption. Out of technicalities,
this means that to negate a contextual subsumption means to state either the
undefinability of the concepts (roles) involved or that those concepts (roles) are
not in such a relation with respect to that context. Therefore, the assertion to
the effect that γ1 and γ2 are defined in ξ but γ2 does not subsume γ1 in ξ should
be expressed as follows:

γ1 ↓ ξ ∧ γ2 ↓ ξ ∧ ∼ ξ : γ1 1 γ2.

Notice that this very distinction is what marks the difference between the slots
labeled with “not classifiable” and respectively “not liable” in Table 1. Further
considerations on what and how can be expressed in LCT about subsumption
are provided in Section 3.7.

Finally, clause (5) gives a semantics to the � relation between context con-
structs interpreting it as a standard subset relation: ξ1 � ξ2 means that context
denoted by ξ1 contains at most all the models that ξ2 contains, that is to say,
ξ1 is at most as general as ξ2. Clauses for boolean connectives are the obvious
ones and notions of validity and logical consequence are classically defined.

3.7 Natural Expansions of LCT

The formal semantics machinery just exposed gives us space for the characteri-
zation of a number of notions which are not explicitly present in the syntax of
LCT as it is introduced in Section 3.1.

In [13] we have already shown how to characterize a form of vagueness within
the framework, providing a formalization of the notions of core and penumbra of
the meaning of a concept, that is, of what remains invariant and, respectively,
of what varies in the meaning of concepts from context to context.
10 For a more detailed discussion of these clauses we refer the reader to [13].

Contextual Terminologies 295

In this section we show how the language can be naturally expanded to include
further notions concerning contextual subsumption for talking about TBoxes in
contexts11 which are used in the formal analysis of the examples exposed in
Section 4.

What can be straightforwardly added is the concept contextual equivalence
via the obvious definition:

ξ : γ1 ≡ γ2 =def ξ : γ1 1 γ2 ∧ ξ : γ2 1 γ1.

This definition yields the following semantic characterization of contextual con-
cept equivalence: for ξ : γ1 ≡ γ2 to be true, concepts γ1 and γ2 should be defined
in ξ and ∀m ∈ I(ξ) Im(γ1) = Im(γ2).

An interesting direction for the expansion of the language consists in adding
another class of expressions representing the negation of a subsumption relation:
ξ : γ1
1 γ2 (“in context ξ, concept γ1 is not subsumed by concept γ2”). Our
models can easily provide a semantics for this type of expressions:

M |= ξ : γ1
1 γ2 iff M |= γ1 ↓ ξ,M |= γ2 ↓ ξ and ∀m ∈ I(ξ) Im(γ1)
⊆ Im(γ2).

It is natural to confront this with the notion of negation already present in
LCT , namely the one formalized by expressions of the form: ∼ ξ : γ1 1 γ2.
First of all, ∼ ξ : γ1 1 γ2 statements are satisfied if the concepts γ1 and
γ2 are not well-defined in ξ, while ξ : γ1
1 γ2 statements are not. Given
that, instead, γ1 and γ2 are well-defined in ξ, the essential difference resides
in the fact that the satisfaction condition for ∼ statements corresponds to
∃m ∈ I(ξ) Im(γ1)
⊆ Im(γ2), while for
1 statements it corresponds to the con-
dition ∀m ∈ I(ξ) Im(γ1)
⊆ Im(γ2). It is therefore easy to prove that for all
ct-models M:

M |= ξ : γ1
1 γ2 ⇒ M |=∼ ξ : γ1 1 γ2.

At this point, readers acquainted with modal logic will have recognized that the
difference between a ∼ and a
1 negation corresponds to the difference between
placing a negation before or after a box operator12.

On the basis of this notion of negation, a notion for strict contextual sub-
sumption can also be added via simple definition:

ξ : γ1 γ2 =def ξ : γ1 1 γ2 ∧ ξ : γ2
1 γ1.

Semantically, it is then easy to see that M |= ξ : γ1 γ2 iff M |= γ1 ↓ ξ ∧ γ2 ↓ ξ
and ∀m ∈ I(ξ) Im(γ1) ⊆ Im(γ2) but not vice versa.

This kind of expansions of LCT bring the expressivity of the language much
further the one of the ALC from which we started. In fact, they allow to deal not
11 We confine ourselves to discuss expansions concerning concept subsumption. Per-

fectly analogous expansions can be discussed with respect to role subsumption.
12 We actually investigated some relations between the framework presented here and

the modal logic KD45i−j
n in [14]. Notice though that, as it is introduced here, the

�� negation cannot be nested.

296 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

only with contextual subsumption statements (ξ : γ1 1 γ2), but also with their
negated and strict versions (ξ : γ1
1 γ2 and ξ : γ1 γ2). This opens naturally
the door to considerations about the complexity of the reasoning that can be
carried out in the framework which constitute the focus of our present research
on LCT languages.

4 Contextual Terminologies at Work

4.1 Formalizing the First Scenario

We are now in the position to formalize Example 1.

Example 3 (Sufficient conditions for “liability”). To formalize the first sce-
nario within our setting a language L is needed, which contains the following
atomic concepts: person, liable, vehicle, car, bicycle; and the following
atomic roles: drive and wheel. Four atomic contexts are at issue here: the con-
text of the main regulation R, let us call it cR; the contexts of the munici-
pal regulations M1, M2 and M3, let us call them cM1, cM2 and cM3 respec-
tively. These contexts should be interpreted on two relevant languages (let us
call them L0 and L1) s.t. A0 = {person, liable, vehicle}, R0 = {drive} and
A1 = {person, liable, vehicle, car, bicycle}, R1 = {drive,wheel}. That is to
say, an abstract language concerning only persons, liability, vehicles and the ac-
tion of driving, and a more detailed language concerning, besides liable persons,
vehicles and driving, also cars, bicycles and the action of wheeling. The sets of
all models for L0 and L1 are then respectively M0 and M1.

To model the desired situation, our ct-model should then at least satisfy the
following LCT formulas:

cM1 �0 cM2 �0 cM3 � cR (6)
∼ (car ↓ cR) ∧ ∼ (bicycle ↓ cR) ∧ ∼ (wheel ↓ cR) (7)
cR : person& ∃drive.vehicle 1 person& liable (8)
cM1 �1 cM2 �1 cM3 : car vehicle (9)
cM1 �1 cM2 : bicycle vehicle (10)
cM3 : bicycle 1 ¬vehicle (11)
cM1 �1 cM3 : wheel drive (12)
cM2 : wheel 1 drive. (13)

Formula (6) plays a key role, stating that the three contexts cM1, cM2, cM3 are
concrete variants of context cR. It tells this by saying that the context obtained
by joining the three concrete contexts on language L0 (the language of cR) is
at most as general as context cR, that is: 20I(cM1)∪20I(cM2)∪20I(cM3) ⊆ I(cR)
(see Section 3.2). As we will see in the following, this makes cM1, cM2 and

Contextual Terminologies 297

cM3 inherit what holds in cR. Formula (7) specifies what concepts and roles
do not get interpretation in the abstract context cR and make therefore the
classification of specific complex concepts impossible (see Table 1). Formula (8)
formalizes the abstract rule to the effect that persons driving vehicles (within
public parks) are liable for a violation of the applicable regulation. Formulas
(9)-(11) describe the different taxonomies holding in the three concrete con-
texts at issue, while formulas (12) and (13) describe the different role hierar-
chies holding in those contexts. The last formula can be seen as simply stat-
ing some background knowledge to the effect that to wheel a car is an empty
concept.

To discuss in some more depth the proposed formalization, let us first list
some interesting logical consequences of formulas (6)-(13). We will focus on sub-
sumptions contextualized to monadic contexts, that is to say, we will show what
the consequences of formulas (6)-(13) are at the level of the four contexts cR,
cM1, cM2 and cM3 considered in isolation.

(7) � ∼ (person& ∃drive.car ↓ cR)
(7) � ∼ (person& ∃drive.bicycle ↓ cR)
(7) � ∼ (person& ∃wheel.bicycle ↓ cR).

(6, 8) � cM1 : person& ∃drive.vehicle 1 person& liable

(9) � cM1 : person& ∃drive.car person& ∃drive.vehicle
(10) � cM1 : person& ∃drive.bicycle person& ∃drive.vehicle
(12) � cM1 : person& ∃wheel.bicycle person& ∃drive.bicycle

(8, 9) � cM1 : person& ∃drive.car person& liable

(6, 8, 10) � cM1 : person& ∃drive.bicycle person& liable

(6, 8, 10, 12) � cM1 : person& ∃wheel.bicycle person& liable

(9, 10, 12, 13) � (car ↓ cM1) ∧ (bicycle ↓ cM1) ∧ (wheel ↓ cM1)

(6, 8) � cM2 : person& ∃drive.vehicle 1 person& liable

(9) � cM2 : person& ∃drive.car person& ∃drive.vehicle
(10) � cM2 : person& ∃drive.bicycle person& ∃drive.vehicle
(13) � cM2 : person& ∃wheel.bicycle 1 person& ∃drive.bicycle

(10, 13) � cM2 : person& ∃wheel.bicycle 1 person& ∃drive.vehicle
(8, 9) � cM1 : person& ∃drive.car person& liable

(6, 8, 10) � cM2 : person& ∃drive.bicycle person& liable

(6, 8, 9, 10, 13) � ∼ cM2 : person& ∃wheel.bicycle person& liable

(9, 10, 12, 13) � (car ↓ cM2) ∧ (bicycle ↓ cM2) ∧ (wheel ↓ cM2)

298 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

(6, 8) � cM3 : person& ∃drive.vehicle 1 person& liable

(9) � cM3 : person& ∃drive.car 1 person& ∃drive.vehicle
(11) � cM2 : person& ∃drive.bicycle person& ∃drive.¬vehicle
(12) � cM3 : person& ∃wheel.bicycle person& ∃drive.bicycle

(8, 9) � cM1 : person& ∃drive.car person& liable

(6, 8, 11) � ∼ cM3 : person& ∃drive.bicycle person& liable

(6, 8, 11, 12) � ∼ cM3 : person& ∃wheel.bicycle person& liable

(9, 10, 12, 13) � (car ↓ cM3) ∧ (bicycle ↓ cM3) ∧ (wheel ↓ cM3).

These are indeed formulas that we would intuitively expect to hold in our sce-
nario. The list displays four sets of formulas grouped on the basis of the context
to which they pertain. Let us have a closer look to them. The first group of for-
mulas pertains the abstract context cR. Since the concepts of car and bicycle,
and the role wheel cannot be expressed in the language L0 of cR (7), the complex
concepts which are central in the scenario (person driving a car, person driving a
bicycle, person wheeling a bicycle) are not well-defined with respect to cR. As to
the consequences pertaining the three concrete contexts cM1, cM2 and cM3, we
note that the first consequence of each group results from the generality relation
expressed in (6), by means of which, the content of (8) is shown to hold also in
the three concrete contexts: in simple words, contexts cM1, cM2 and cM3 inherit
the general rule stating the liability of persons driving vehicles (within public
parks). Via this inherited rule, and via (9), it is shown that, in all contexts, who
drives a car is also held liable (third formula from the bottom of each group).
As to cars and driving cars then, all contexts agree. Where differences arise is in
relation with how the concept of bicycle and the role of wheeling are handled.

In context cM1, we have that it does not matter if somebody wheels or actually
drives a bicycle, because in both cases this would count as driving a vehicle, and
therefore of violating the regulation. In fact, in this context, a bicycle is a vehicle
(10) and to wheel is a way of driving (11). Context cM2, instead, expresses a
different view. Since bicycles count as vehicles (10), to drive a bicycle is still a
ground for liability. On the other hand, to wheel is actually classified as a way
of refraining from driving (13), and therefore, there is no ground for considering
persons wheeling bicycles to count as persons driving vehicles, and therefore to
commit a violation. Context cM3 yields yet another terminology. Here bicycles
are classified as objects which are not vehicles (11). Therefore, although to wheel
is conceived as a way of driving (11), both to drive and to wheel a bicycle does
not determine liability. With respect to this, it is instructive to notice that even
though both in cM2 and cM3 to wheel a bicycle is not a sufficient reason for
being held liable, this holds for two different reasons: in cM2 because of (13),
and in cM3 because of (11). Finally, in each of the concrete contexts, the concepts
car and bicycle, and the role wheel all get a meaning (last consequence of each
group). This illustrates how our framework is able to cope with some quite subtle
nuances that characterize contextual classifications.

Contextual Terminologies 299

4.2 A Model of the Scenario

In this section we expose a simple ct-model satisfying (6)-(13). Let us stipulate
that the models m that constitute our interpretation of contexts identifiers con-
sist of a domain Δm = {a, b, c, d, e, f, g}. Being L0 and L1 the two languages at
issue, the domain of the ct-models is M0 ∪M1. A ct-model would then be, for
instance, a structure 〈M0 ∪M1, I〉 where I is such that:

– I(cM1) = {m1,m2} ⊆ M1 s.t. Im1(person) = {e, f, g}, Im1(vehicle) =
{a, b, c, d}, Im1(bicycle) = {a, b}, Im1(car) = {c, d}, Im1(drive) = {<
e, a >,< f, c >}, Im1(wheel) = {< e, a >}, Im1(liable) = {e, f} and Im2

agrees with Im1 on the interpretation of person, bicycle, car, vehicle and
Im2(drive)={< f, c >,< g, d >}, Im2(wheel)= {< g, d >}, Im2(liable) =
{f, g}.

– I(cM2) = {m3,m4} ⊆ M1 s.t. Im3 and Im4 agree with Im1 on the inter-
pretation of person, bicycle, car, vehicle and Im3(drive) = {< f, d >,<
g, a >}, Im3(wheel) = {< e, a >}, Im3(liable) = {f, g} and Im4(drive) =
{< e, c >}, Im4(wheel) = {< f, a >}, Im4(liable) = {e}.

– I(cM3) = {m5} ⊆ M1 s.t. Im5 agrees with Im1 on the interpretation of
person, bicycle, car and Im5(vehicle) = {c, d}, Im5(drive) = {< e, a >
,< f, c >,< g, d >}, Im1(wheel) = {< e, a >}, Im1(liable) = {f, g}.

– I(cR) = {m | m = 〈Δm,A0 ∪R02Ii〉 and 1 ≤ i ≤ 5}, that is, cR is inter-
preted by the model as the union of all models constituting cM1, cM2 and
cM3 restricted to the language L0.

The model makes an interesting feature of our semantics explicit. In contexts cM1
and cM2 the set of liable persons do not coincide in the two models constituting
the context; nevertheless only persons driving vehicles are indeed liable. This
clearly shows that contexts can be viewed as clusters of possible situations all
instantiating the same terminology13.

4.3 Formalizing the Second Scenario

The formalization of the scenario introduced in Example 2 follows.

Example 4 (Categorizing “teenagers on skates”). The global language L
needed contains the following atomic concepts: conv, person, obj, vehicle,
teenager, skate; and the following atomic role: transp. Three are the atomic
contexts at issue here: the context of the main regulation R, let us call it cR; the
contexts of the municipal regulations M1 and M2, let us call them cM1 and cM2
respectively. These contexts should be interpreted on two relevant languages (let
us call them L0 and L1) s.t. A0 = {conv, person, obj, vehicle}, R0 = {transp}
and A1 = A0 ∪ {self prop, teenager, skate}, R1 = R0. That is to say, an
abstract language concerning only conveyances, persons, objects, vehicles and
the attribute of transporting, and a more detailed language concerning, besides
13 We developed this intuition also in a modal logic setting modeling contexts as sets

of possible worlds. See [14].

300 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

this, also teenagers and skates. The sets of all models for L0 and L1 are then
respectively M0 and M1. To model the desired situation, a ct-model should then
at least satisfy the following LCT formulas:

cM1 �0 cM2 � cR (14)
∼ (teenager ↓ cR) ∧ ∼ (skate ↓ cR) (15)
cR : vehicle 1 conv & ∀transp.(person ' obj) (16)
cM1 : vehicle 1 self prop (17)
cM1 : conv & ∃transp.(person' obj) & self prop 1 vehicle (18)
cM2 : conv & ∃transp.(person' obj) 1 vehicle (19)
cM1 �1 cM2 : teenager person (20)
cM1 �1 cM2 : skate conv (21)
cM1 �1 cM2 : skate ¬self prop (22)

We discuss the formalization of this scenario in fewer details than the previous
one, stressing only the most important aspects. Formulas (14) and (15) are the
analogous of formulas (6) and (7). Formula (16) represents the abstract con-
straints that context cR imposes on the concept vehicle.

Formulas (17), (18) and (19) express the additional constraints on the con-
cept vehicle holding in context cM1 and cM2 respectively: both contexts specify
sufficient conditions and context cM1 adds also new necessary ones (17). Formu-
las (20) and (21) state the intuitive background knowledge common to the two
concrete contexts. The point of the scenario consists in showing how teenagers
on skateboards are conceptualized in the three contexts, that is to say: how are
concept skate&∃transp.teenager and concept vehicle related in each context?
This can be easily shown via some relevant logical consequences of (14)-(22):

(14) |=∼ (skate& ∃transp.teenager ↓ cR)

(14, 16, 17, 18) |= cM1 : conv & ∃transp.(person' obj)
&self prop ≡ vehicle

(14, 16, 17, 18, 20, 21, 22) |= cM1 : skate& ∃transp.teenager
1 vehicle

(14, 16, 17, 18, 20, 21, 22) |= cM1 : skate& ∃transp.teenager 1 ¬vehicle
(14, 16, 17, 18, 20, 21, 22) |=∼ cM1 : skate& ∃transp.teenager 1 vehicle

(20, 21) |= skate& ∃transp.teenager ↓ cM1

(14, 16, 19) |= cM2 : conv & ∃transp.(person' obj) ≡ vehicle

(14, 16, 19, 20, 21) |= cM2 : skate& ∃transp.teenager 1 vehicle

(20, 21) |= skate& ∃transp.teenager ↓ cM2.

Like in the previous example, the abstract context cR cannot categorize the con-
cept at issue. In the two concrete contexts cM1 and cM2 two different definitions

Contextual Terminologies 301

of vehicle hold, and therefore two different conceptualizations of the concept
skate&∃transp.teenager: since skateboards are not, in cM1, self-propelled, they
are not only non classifiable as vehicles, but, more strongly, they are actually
classifiable as objects which are not vehicles. In fact, the concept vehicle is
defined via both necessary and sufficient conditions.

5 Conclusions and Future Work

We motivated and devised a formal framework for representing contextual on-
tologies via a contextualized version of description logic semantics. The key idea
has been to show that the basic intuition of understanding contexts as sets of
description logic models, which we presented in [13], works smoothly also with
subsumption statements of more complex concept descriptions.

A next step will be to side contextual terminologies with appropriate contex-
tual assertion boxes (ABoxes) in which to reason about contextual instantiations
of concepts and roles. The main focus of on-going work consists though in inves-
tigating the meta-logical properties of the framework and especially complexity.
To this aim, we are at the moment studying its relation with modal languages,
exploiting the well established results about the correspondence between de-
scription and modal logics [18, 5] and some work we have already done in that
direction [14].

Acknowledgments

We would like to thank the anonymous reviewers of CLIMA VI for their valuable
comments and Prof. K. Clark for the useful comment during the presentation of
the paper.

References

1. V. Akman and M. Surav. Steps toward formalizing context. AI Magazine, 17(3):55–
72, 1996.

2. C. E. Alchourrón and E. Bulygin. Normative Systems. Springer Verlag, Wien,
1986.

3. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider.
The Description Logic Handbook. Cambridge University Press, Cambridge, 2002.

4. M. Benerecetti, P. Bouquet, and C. Ghidini. Contextual reasoning distilled. Jour-
nal of Experimental and Theoretical Artificial Intelligence (JETAI), 12(3):279–305,
2000.

5. G. De Giacomo and M. Lenzerini. TBox and ABox reasoning in expressive de-
scription logics. In L. Carlucci Aiello, J. Doyle, and S. Shapiro, editors, KR’96:
Principles of Knowledge Representation and Reasoning, pages 316–327. Morgan
Kaufmann, San Francisco, California, 1996.

6. F. Dignum. Agents, markets, institutions, and protocols. In Agent Mediated Elec-
tronic Commerce, The European AgentLink Perspective., pages 98–114. Springer-
Verlag, 2001.

302 D. Grossi, F. Dignum, and J.-J.Ch. Meyer

7. F. Dignum. Abstract norms and electronic institutions. In Proceedings of the
International Workshop on Regulated Agent-Based Social Systems: Theories and
Applications (RASTA ’02), Bologna, pages 93–104, 2002.

8. C. Ghidini and F. Giunchiglia. Local models semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221–259, 2001.

9. C. Ghidini and F. Giunchiglia. A semantics for abstraction. In R. López de
Mántaras and L. Saitta, editors, Proceedings of ECAI’2004, including PAIS 2004,
pages 343–347, 2004.

10. D. Grossi, H. Aldewereld, J. Vázquez-Salceda, and F. Dignum. Ontological as-
pects of the implementation of norms in agent-based electronic institutions. In
Proceedings of NorMAS’05, Symposium on normative multi-agent systems., pages
104–116, Hatfield, England, April 2005. AISB.

11. D. Grossi and F. Dignum. From abstract to concrete norms in agent institutions.
In M. G. et al. Hinchey, editor, Formal Approaches to Agent-Based Systems: Third
International Workshop, FAABS 2004, Lecture Notes in Computer Science, pages
12–29. Springer-Verlag, April 2004.

12. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Context in categorization. In Proceed-
ings of CRR’05, International Workshop on Context Representation and Reason-
ing, volume 136 of CEUR Workshop Proceedings, Paris, July 2005.

13. D. Grossi, F. Dignum, and J-J. Ch. Meyer. Contextual taxonomies. In J. Leite and
P. Toroni, editors, Proceedings of CLIMA V Workshop, Lisbon, September, LNAI
3487, pages 33–51. Springer, 2005.

14. D. Grossi, J-J. Ch. Meyer, and F. Dignum. Modal logic investigations in the
semantics of counts-as. In Proceedings of the Tenth International Conference on
Artificial Intelligence and Law (ICAIL’05), pages 1–9. ACM, June 2005.

15. A. J. I. Jones and M. Sergot. On the characterization of law and computer systems.
Deontic Logic in Computer Science, pages 275–307, 1993.

16. B. Jónsson and A. Tarski. Boolean algebras with operators: Part I. American
Journal of Mathematics, 73:891–939, 1951.

17. J. McCarthy. Notes on formalizing contexts. In T. Kehler and S. Rosenschein, ed-
itors, Proceedings of the Fifth National Conference on Artificial Intelligence, pages
555–560, Los Altos, California, 1986. Morgan Kaufmann.

18. K. Schild. A correspondence theory for terminological logics: preliminary report.
In Proceedings of IJCAI-91, 12th International Joint Conference on Artificial In-
telligence, pages 466–471, Sidney, AU, 1991.

19. J. Searle. The Construction of Social Reality. Free Press, New York, 1995.
20. Y. Shoham. Varieties of context. pages 393–407. Academic Press Professional,

Inc., 1991.
21. J. Vázquez-Salceda. The role of Norms and Electronic Institutions in Multi-Agent

Systems. Birkhuser Verlag AG, 2004.
22. J. Vázquez-Salceda and F. Dignum. Modelling electronic organizations. In

J. Muller V. Marik and M. Pechoucek, editors, Proceedings CEEMAS’03. LNAI
2691, pages 584–593, Berlin, 2003. Springer-Verlag.

Constitutive Norms in the Design of
Normative Multiagent Systems

Guido Boella1 and Leendert van der Torre2

1 Dipartimento di Informatica, Università di Torino, Italy
guido@di.unito.it

2 University of Luxembourg
leendert@vandertorre.com

Abstract. In this paper, we consider the design of normative multiagent systems
composed of both constitutive and regulative norms. We analyze the properties
of constitutive norms, in particular their lack of reflexivity, and the trade-off be-
tween constitutive and regulative norms in the design of normative systems. As
methodology we use the metaphor of describing social entities as agents and of
attributing them mental attitudes. In this agent metaphor, regulative norms ex-
pressing obligations and permissions are modelled as goals of social entities, and
constitutive norms expressing “counts-as” relations are their beliefs.

1 Introduction

Legal systems are often modelled using regulative norms, like obligations, prohibitions,
and permissions [1]. However, a large part of the legal code does not contain obligations,
prohibitions and permissions, but definitions for classifying the commonsense world
under legal categories, like contract, money, property, marriage. Regulative norms can
refer to this legal classification of reality.

Consider the consequences for the design of legal systems. For example, in [2] we
address the issue of designing obligations to achieve the objectives of the legal system.
However, the problem has not been studied of how to design legal systems composed
of both constitutive and regulative norms. For modelling constitutive norms, special-
ized formalisms for counts-as conditionals have been introduced [3, 4, 5], but it remains
unclear how to relate them to regulative norms. In contrast, as Artosi et al. [3] argue,
for constitutive norms to be norms it is necessary that “their conditional nature exhibits
some basic properties enjoyed by the usual normative links”. Thus constitutive and reg-
ulative norms should be more strictly related.

Obligations, prohibitions and permissions have a conditional nature. Their condi-
tions could directly refer to entities and facts of the commonsense world, but they can
rather refer to a legal and more abstract classification of the world, making them more
independent from the commonsense view. E.g., they refer to money instead of paper
sheets, to properties instead of houses and fields. This more natural and economical way
to model the relation between commonsense reality and legal reality uses “counts-as”
conditionals, and allows regulative norms to refer to the legal classification of reality.
In this way, e.g., it is not necessary that each regulative norm refers to all the conditions

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 303–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

304 G. Boella and L. van der Torre

involved in the classification of paper as money or of houses and fields as properties.
Moreover, it is not necessary that regulative norms manage the exceptions in the clas-
sification, e.g., that a fake bill is not money or that some field is not considered as a
property. Finally, by referring to the legal classification of reality only, regulative norms
are not sensitive anymore to changes in the classification: a new bill can be introduced
without changing the regulative norms concerning money, or a new form of property or
a new kind of marriage can be introduced without changing the relevant norms.

However, the trade-off and equivalences between systems made purely of regulative
norms and those including also constitutive norms cannot be easily captured by special-
ized formalisms. They either consider only regulative norms, such as deontic logic, or
only constitutive norms, such as logics of counts-as conditionals, or, finally, with for-
malisms using very different formalizations for modelling the two kinds of norms. This
is a problem for the design of normative systems.

In [6], to model social reality, we have introduced constitutive norms in our norma-
tive multiagent systems. In this paper we use normative multiagent systems to model
the design of legal systems. In particular, the research questions of this paper are: What
properties have constitutive norms? In [6] we use rules satisfying the identity property,
thus making the “counts-as” relation reflexive. This is a undesired property if constitu-
tive norms provide a classification of reality in term of legal categories. In this paper
we remedy this by modelling “counts-as” as input/output conditionals. This is an alter-
native solution with respect to the one proposed by Artosi et al. [3]. Secondly, how can
regulative and constitutive norms be traded-off against each other in the design of legal
systems? If we replace constitutive norms in a legal system with regulative ones, then
we lose the abstraction provided by legal classification.

The main advantage of our approach in comparison with other accounts, is that we
combine constitutive and regulative norms in a single conceptual model. As method-
ology we use our model of normative multiagent systems introduced in AI and agent
theory to model social reality and agent organizations [7, 8]. The basic assumptions of
our model are that beliefs, goals and desires of an agent are represented by conditional
rules, and that, when an agent takes a decision, it recursively models [9] the other agents
interfering with it in order to predict their reaction to its decision as in a game. Most
importantly, the normative system itself can be conceptualized as an agent with whom it
is possible to play games to understand what will be its reaction to the agent’s decision:
to consider its behavior as a violation and to sanction it. In the model presented in [6],
regulative norms are represented by the goals of the normative system and constitutive
norms as its beliefs. In this paper we discuss the properties of counts-as relations re-
lating them to the properties of beliefs and how trade-off problem between constitutive
and regulative norms can be handled by as the trade-off between beliefs and goals of
the normative system. The cognitive motivations of the agent metaphor underlying our
framework are discussed in [10].

The paper is organized as follows. In Section 2 we describe the agent metaphor. In
Section 3 we introduce a logic which does not satisfy identity. In Section 4 we discuss the
relation between constitutive and regulative norms. In Section 5 we introduce a formal
model where we discuss the properties of constitutive norms and in Section 6 the trade-
off with regulative ones. Comparison with related work and conclusion end the paper.

Constitutive Norms in the Design of Normative Multiagent Systems 305

2 Attributing Mental Attitudes

We start with a well known definition: “ Normative systems are sets of agents (human
or artificial) whose interactions can fruitfully be regarded as norm-governed; the norms
prescribe how the agents ideally should and should not behave [...]. Importantly, the
norms allow for the possibility that actual behaviour may at times deviate from the
ideal, i.e. that violations of obligations, or of agents rights, may occur” [1].

This definition of Carmo and Jones does not seem to require that the normative sys-
tem is autonomous, or that its behavior is driven by beliefs and desires.

In [6] we use the agent metaphor which attributes mental attitudes to normative sys-
tems in order to explain normative reasoning in autonomous agents. The normative
system is considered as an agent with whom the bearer of the norms plays a game.
Henceforth, we can call it the normative agent.

Our motivation for using the agent metaphor is inspired by the interpretation of nor-
mative multiagent systems as dynamic social orders. According to Castelfranchi [11],
a social order is a pattern of interactions among interfering agents “such that it al-
lows the satisfaction of the interests of some agent”. These interests can be a delegated
goal, a value that is good for everybody or for most of the members; for example, the
interest may be to avoid accidents. We say that agents attribute the mental attitude
‘goal’ to the normative system, because all or some of the agents have socially del-
egated goals to the normative system; these goals are the content of the obligations
regulating it.

Moreover, social order requires social control, “an incessant local (micro) activity
of its units” [11], aimed at restoring the regularities prescribed by norms. Thus, the
agents attribute to the normative system, besides goals, also the ability to autonomously
enforce the conformity of the agents to the norms, because a dynamic social order re-
quires a continuous activity for ensuring that the normative system’s goals are achieved.
To achieve the normative goal the normative system forms the subgoals to consider as
a violation the behavior not conform to it and to sanction violations. Norms, however,
do not aim only at regulating behavior.

Searle argues that there are two types of norms: “Some rules regulate antecedently
existing forms of behaviour. For example, the rules of polite table behaviour regulate
eating, but eating exists independently of these rules. Some rules, on the other hand,
do not merely regulate an antecedently existing activity called playing chess; they, as
it were, create the possibility of or define that activity. The activity of playing chess is
constituted by action in accordance with these rules. Chess has no existence apart from
these rules. The institutions of marriage, money, and promising are like the institutions
of baseball and chess in that they are systems of such constitutive rules or conventions”
([12], p. 131).

According to Searle, institutional facts like marriage, money and private property
emerge from an independent ontology of “brute” natural facts through constitutive
norms of the form “such and such an X counts as Y in context C” where X is any
object satisfying certain conditions and Y is a label that qualifies X as being something
of an entirely new sort. Examples of constitutive norms are “X counts as a presiding
official in a wedding ceremony”, “this bit of paper counts as a five euro bill” and “this
piece of land counts as somebody’s private property”.

306 G. Boella and L. van der Torre

In our model, we define constitutive norms in terms of the normative system’s belief
rules and the institutional facts as the consequences of these beliefs rules.

The propositions describing the world are distinguished in two categories: first, what
Searle calls “brute facts”: natural facts and events produced by the actions of the agents.
Second, “institutional facts”: a legal classification of brute facts; they belong only to
the beliefs of the normative system and have no direct counterpart in the world. Belief
rules connect beliefs representing the state of the world to other beliefs which are their
consequences. They have a conditional character and are represented in the same rule
based formalism as goals and desires. In the case of the normative system the belief
rules have as consequences not other beliefs about brute facts in the world (e.g., “if a
glass drops, it breaks”), but new legal, institutional facts whose existence is related only
to the normative system. These belief rules, moreover, can connect also institutional
facts to other institutional facts.

This type of belief rules expresses the counts-as relations which are at the basis of
constitutive norms. It is important that belief rules have a conditional character, since
they must reflect the conditional nature of the counts-as relation as proposed by Searle:
“such and such an X counts as Y in context C”.

A fact p counts as an institutional fact q in context C for normative system n
counts-asn(p, q | C), iff agent n believes that p ∧ C has q as a consequence.

The agent metaphor attributing mental attitudes to normative systems allows to un-
derstand how humans can conceive social reality by resorting to a better known domain.
In [10], we discuss the cognitive basis of our model. In this way we are able to ground
the ontology of social reality into a domain which can be modelled with the existing
formal instruments. Most approaches, in contrast see social entities as black boxes, of
which they describe the properties from an external point of view. In our model, instead,
we explain the properties of normative systems as stemming from its conceptualization
as an agent.

Mental attitudes of agents, however, have usually a private character: it is not possible
to know which are the real goals and beliefs of an agent apart from inferring them
from its behavior. In contrast, norms have a public character, otherwise it would not be
possible to achieve a social order. When we map norms into beliefs and goals of the
normative agent, we do not mean that they get a private character. The normative agent
is only a socially constructed agent which exists only due to the collective acceptance
by all the agents of the normative multiagent system.

Another advantage of considering normative systems as agents is that agents can
play games with the normative system to understand whether they will be sanctioned.

The attribution of mental entities to normative systems is a methodology which can
be grounded in different formal models, among which modal logic [13]. However, men-
tal attitudes, as well as norms, are traditionally considered as conditional attitudes, thus
we resort to a specialized logic which has been developed for this purpose: the In-
put/output logic.

We extend this approach advocated in [6] in two ways. First we give a logical analysis
of counts-as, and we argue that it requires an identity free logic. Second we discuss the
trade-off between the two kinds of norms.

Constitutive Norms in the Design of Normative Multiagent Systems 307

3 Input/Output Logic

A disadvantage of the approach in [6] is that given the reflexivity of counts-as we have
that “A counts as A”, which is in contrast with our intuition and with other approaches
(but see Section 7 for a discussion). In particular, since the counts-as relation classifies
brute facts in legal categories, a brute fact A cannot be also a legal category: they are
ontologically heterogeneous concepts, thus we keep them separate for the purpose of
legal classification. We therefore want to use an identity free logic, for which we take
a simplified version of the input/output logics introduced in [14, 15]. In this section we
explain how it works. A rule set is a set of ordered pairs P → q, where P is a set of
propositional variables and q a propositional variable. For each such pair, the body P
is thought of as an input, representing some condition or situation, and the head q is
thought of as an output, representing what the rule tells us to be believed, desirable,
obligatory or whatever in that situation. Makinson and van der Torre write (P, q) to
distinguish input/output rules from conditionals defined in other logics, to emphasize
the property that input/output logic does not necessarily obey the identity rule. In this
paper we do not follow this convention.

In this paper, to keep the formal exposition simple, input and output are respectively
a set of literals and a literal. In input/output logics, the input and output can be arbitrary
propositional formulas, not just sets of literals and literal as we do here and additional
rules for conjunction of outputs and for weakening outputs are added.

Definition 1 (Input/output logic). LetX be a set of propositional variables, the set of
literals built from X , written as Lit(X), is X ∪ {¬x | x ∈ X}, and the set of rules
built from X , written as Rul(X) = 2Lit(X) × Lit(X), is the set of pairs of a set of
literals built from X and a literal built from X , written as {l1, . . . , ln} → l. We also
write l1∧ . . .∧ ln → l and when n = 0 we write � → l. For x ∈ X we write ∼x for ¬x
and∼(¬x) for x. Moreover, letQ be a set of pointers to rules and MD : Q→ Rul(X)
is a total function from the pointers to the set of rules built from X .

Let S = MD(Q) be a set of rules {P1 → q1, . . . , Pn → qn}, and consider the
following proof rules strengthening of the input (SI), disjunction of the input (OR),
cumulative transitivity (CT) and Identity (Id) defined as follows:

p→ r

p ∧ q → r
SI

p ∧ q → r, p ∧ ¬q → r

p→ r
OR

p→ q, p ∧ q → r

p→ r
CT

p→ p
Id

The following output operators are defined as closure operators on the set S using
the rules above.
out1: SI (simple-minded output) out3: SI+CT (simple-minded reusable output)
out2: SI+OR (basic output) out4: SI+OR+CT (basic reusable output)

Moreover, the following four throughput operators are defined as closure opera-
tors on the set S. out+i : out i+Id (throughput) We write out(Q) for any of these out-
put operations and out+(Q) for any of these throughput operations. We also write
l ∈ out(Q,L) iff L→ l ∈ out(Q), and l ∈ out+(Q,L) iff L→ l ∈ out+(Q).

A technical reason to distinguish pointers from rules is to facilitate the description of
the priority ordering we introduce in the following definition.

308 G. Boella and L. van der Torre

Example 1. Given MD(Q) = {a → x, x → z} the output of Q contains x ∧ a → z
using the rule SI . Using also the CT rule, the output contains a → z. a → a follows
only if there is the Id rule.

The notorious contrary-to-duty paradoxes such as Chisholm’s and Forrester’s paradox
have led to the use of constraints in input/output logics [15]. The strategy is to adapt a
technique that is well known in the logic of belief change - cut back the set of norms to
just below the threshold of making the current situation inconsistent.

In input/output logics under constraints, a set of mental attitudes and an input does
not have a set of propositions as output, but a set of set of propositions. We can infer
a set of propositions by for example taking the join (credulous) or meet (sceptical), or
something more complicated. Besides, we can adopt an output constraint (the output
has to be consistent) or an input/output constraint (the output has to be consistent with
the input). In this paper we only consider the input/output constraints. The following
definition is inspired by [16] where we extend constraints with priorities:

Definition 2 (Constraints). Let ≥: 2Q × 2Q be a transitive and reflexive partial re-
lation on the powerset of the pointers to rules containing at least the subset relation.
Moreover, let out be an input/output logic. We define:

– maxfamily(Q,P) is the set of ⊆-maximal subsets Q′ of Q such that out(Q′, P)
∪ P is consistent.

– preffamily(Q,P,≥) is the set of ≥-maximal elements of maxfamily(Q,P).
– outfamily(Q,P,≥) is the output under the elements of preffamily , i.e.,
{out(Q′, P) | Q′ ∈ preffamily(Q,P,≥)}.

– P → x ∈ out∪(Q,≥) iff x ∈ ∪outfamily(Q,P,≥)
P → x ∈ out∩(Q,≥) iff x ∈ ∩outfamily(Q,P,≥)

In case of contrary to duty obligations, the input represents something which is inalter-
ably true, and an agent has to ask himself which rules (output) this input gives rise to:
even if the input should have not come true, an agent has to “make the best out of the
sad circumstances” [17].

Example 2. Let MD({a, b, c}) = {a = (� → m), b = (p → n), c = (o → ¬m)},
{b, c} > {a, b} > {a, c}, where by A > B we mean as usual A ≥ B and B
≥ A.
maxfamily(Q, {o}) = {{a, b}, {b, c}},
preffamily(Q, {o},≥) = {{b, c}},
outfamily(Q, {o},≥) = {{¬m}}

The maxfamily includes the sets of applicable compatible pointers to rules together
with all non applicable ones: e.g., the output of {a, c} in the context {o} is not consistent.
Finally {a} is not in maxfamily since it is not maximal, we can add the non applicable
rule b. Then preffamily is the preferred set {b, c} according to the ordering on set of
rules above. The set outfamily is composed by the consequences of applying the rules
{b, c} which are applicable in o (c): ¬m.

Due to space limitations we have to be brief on details with respect to input/output
logics, see [14, 15] for the semantics of input/output logics, further details on its proof
theory, its possible translation to modal logic, alternative constraints, and examples.

Constitutive Norms in the Design of Normative Multiagent Systems 309

4 Constitutive Norms vs Regulative Norms

Why are constitutive norms needed in a normative system? In [6], we argue that, first,
regulative norms are not categorical, but conditional: they specify all their applicability
conditions. In case of complex and rapidly evolving systems new situations arise which
should be considered in the conditions of the norms. Thus, new regulative norms must
be introduced or existing ones revised each time the applicability conditions must be
extended to include new cases. In order to avoid changing existing norms or adding new
ones, it would be more economic that regulative norms could factor out particular cases
and refer, instead, to more abstract concepts only. Hence, the normative system should
include some mechanism to introduce new institutional categories of abstract entities for
classifying possible states of affairs. Norms could refer to this institutional classification
of reality rather than to the commonsense classification: changes to the conditions of the
norms would be reduced to changes to the institutional classification of reality. Second,
the dynamics of the social order which the normative system aims to achieve is due to
the evolution of the normative system over time, which introduces new norms, abrogates
outdated ones, and, as just noticed, changes its institutional classification of reality. So
the normative system must specify how the normative system itself can be changed
by introducing new regulative norms and new institutional categories, and specify by
whom the changes can be done. This second aspect has been addressed in [7].

In this paper we discuss how constitutive norms, even if they can be replaced by reg-
ulative norms, allow to create a level of abstraction to which regulative norms can refer
to, making to less sensitive to the changes in the legal system. The cons of introducing
constitutive norms is that new rules are necessary, so that a trade-off must be found
between the need of abstraction and the complexity of the normative system.

As a running example, consider a society where the fact that a field has been fenced
by an agent counts as the fact that the field is property of that agent. In our model this
relation is expressed as a belief attributed to the normative system. The fence is a phys-
ical “brute” fact, while the fact that it is a property of someone is only an institutional
fact attributed to the beliefs of the normative system.

Assume now that the normative system has as goals that if a field is fenced, no one
enters it and that if a fenced field is entered, this action is considered as a violation
and the violation is sanctioned. These goals form an obligation not to trespass a fenced
field. However, the same legal system could have been designed in a different way
using the constitutive norm above: a fenced field counts as property. The constitutive
norm introduces the legal category of property which an obligation not to trespass a
property can refer to: it is obligatory not to trespass property. The two legal systems
are equivalent in the sense that in the same situation, the same violations hold; on the
other hand, they are different since the latter introduce a legal classification of reality;
thus, the obligation has as condition the institutional fact that the field is a property: the
field being a property is an institutional fact believed by the normative system, while
entering the field is a brute fact.

Analogously, in the purely regulative legal system, a permission to enter a fenced
field if it is close to a river could be added. This permission is an exception to the
obligation not to trespass fenced fields. In the second legal system, the same purpose
can be reached by adding a constitutive norm which states that a field close to the river,

310 G. Boella and L. van der Torre

albeit fenced, is not a property. Note that this is different from saying that a field on the
river is a property that can be trespassed, a fact which is expressed by a permission to
enter a property close to the river.

The possibility that institutional facts appear as conditions in the goals of the nor-
mative system or as goals themselves explains the following puzzling assertion of
Searle [18]: “constitutive rules constitute (and also regulate) an activity the existence
of which is logically dependent on the rules” (p.34). How can constitutive rules regu-
late an activity, if this is the role played by regulative rules? E.g., Hindriks [19] argues
that constitutive rules consist of also regulative ones.

In our model constitutive norms regulate a social activity since they create insti-
tutional facts that are conditions or objects of regulative norms. In our metaphorical
mapping regulative norms are goals, and goals base their applicability in a certain situ-
ation on the beliefs of the agent: if the beliefs change, the goals which the agent pursues
change too. Analogously, the institutional facts which are the consequences of consti-
tutive rules determine what is obligatory, since the institutional facts determine which
regulative rules are applicable. In the previous example, being a property indirectly reg-
ulates the behavior of agents, since entering a field is a violation only if it is a property;
if a field is not a property, the goal of considering trespassing a violation does not apply.

Searle [18] interprets the creation institutional facts also in terms of what he calls
“status functions”: “the form of the assignment of the new status function can be rep-
resented by the formula ‘X counts as Y in C’. This formula gives us a powerful tool
for understanding the form of the creation of the institutional fact, because the form of
the collective intentionality is to impose that status and its function, specified by the Y
term, on some phenomenon named by the X term”, (p.46).

Where “the ascription of function ascribes the use to which we intentionally put
these objects”, (p.20). Functions are usually defined in relation to goals. In our model,
this teleological aspect of the notion of function depends on the fact that institutional
facts make conditional goals relevant as they appear in the conditions of regulative
norms or as goals themselves. The aim of fencing a field is to prevent trespassing:
the obligation defines the function of property, since it is defined in terms of goals of
the normative system. Hence, Searle’s assertion that “the institutions [. . .] are systems
of such constitutive rules” is partial: institutions are systems where constitutive (i.e.,
beliefs) and regulative (i.e., goals) rules interacts. In our model, they interplay in the
same way as goals and beliefs do in agents.

From a knowledge representation point of view, constitutive norms behave as data
abstraction in programming languages: types are gathered in new abstract data types;
new procedures are defined on the abstract data types to manipulate them. So it is pos-
sible to change the implementation of the abstract data type without modifying the
programs using those procedures. In our case, we have that regulative norms can be
defined on abstract institutional facts: it is possible to change the constitutive norms
defining the institutional facts without modifying the regulative norms which refer to
those institutional facts. This analogy supports also our decision not to require identity
as a property of counts-as. Data abstraction allows to hide the details concerning the
implementation of the data type. Analogously, if the institutional facts are abstractions
of the reality, they should hide the details consisting in the brute facts.

Constitutive Norms in the Design of Normative Multiagent Systems 311

5 The Formal Model

The definition of the agents is inspired by the rule based BOID architecture [20], though
in our theory, and in contrast to the BOID architecture, obligations are not taken as
primitive concepts. Beliefs, desires and goals are represented by conditional rules rather
then in a modal framework. We use in our model only goals rather than intentions since
we consider only on decision step instead of having plans for the future moves.

We assume that the base language contains boolean variables and logical connec-
tives. The variables are either decision variables of an agent, which represent the agent’s
actions and whose truth value is directly determined by it, or parameters, which de-
scribe both the state of the world and institutional facts, and whose truth value can only
be determined indirectly. Our terminology is borrowed from Lang et al. [21].

Given the same set of mental attitudes, agents reason and act differently: when facing
a conflict among their motivations and beliefs, different agents prefer to fulfill different
goals and desires. We express these agent characteristics by a priority relation on the
mental attitudes which encode, as detailed in [20], how the agent resolves its conflicts.
The priority relation is defined on the powerset of the mental attitudes such that a wide
range of characteristics can be described, including social agents that take the desires
or goals of other agents into account. The priority relation contains at least the subset-
relation which expresses a kind of independence among the motivations.

Definition 3 (Agent set). An agent set is a tuple 〈A,X,B,D,G,AD ,≥〉, where:

– the agents A, propositional variables X , agent beliefs B, desires D and goals G
are five finite disjoint sets.

– B,D,G are sets of pointers to rules. We write M = D ∪ G for the motivations
defined as the union of the desires and goals.

– an agent description AD : A→ 2X∪B∪M is a total function that maps each agent
to sets of variables (its decision variables), beliefs, desires and goals, but that does
not necessarily assign each variable to at least one agent. For each agent b ∈ A,
we write Xb for X ∩ AD(b), and Bb for B ∩ AD(b), Db for D ∩ AD(b), etc. We
write parameters P = X \ ∪b∈AXb.

– a priority relation≥: A→ 2M∪B × 2M∪B is a function from agents to a transitive
and reflexive partial relation on the powerset of the motivations containing at least
the subset relation. We write ≥b for ≥ (b).
Since goals have priority over desires we have that given S, S′ ⊆M , for all a ∈ A,
S >a S

′ if S \ S′ ⊆ G and S′ \ S ⊆ D.

Example 3. A = {a}, Xa = {trespass}, P = {s, fenced}, Da = {d1, d2},
≥a= {d2} ≥ {d1}. There is a single agent, agent a, who can trespass a field. Moreover,
it can be sanctioned and the field can be fenced. It has two desires, one to trespass (d1),
another one not to be sanctioned (d2). The second desire is more important.

In a multiagent system, beliefs, desires and goals are abstract concepts which are de-
scribed by rules built from literals.

Definition 4 (Multiagent system). A multiagent system 〈A,X,B,D,G,AD ,MD ,≥〉
is a tuple, where 〈A,X,B,D,G,AD ,≥〉 is an agent set, and the mental description

312 G. Boella and L. van der Torre

MD : (B∪M) → Rul(X) is a total function from the sets of beliefs, desires and goals
to the set of rules built from X . For a set of mental attitudes S ⊆ B ∪M , we write
MD(S) = {MD(q) | q ∈ S}.

Example 4 (Continued). MD(d1) = � → trespass , MD(d2) = � → ¬s.

In the description of the normative system, we do not introduce norms explicitly, but we
represent several concepts which are illustrated in the following sections. Institutional
facts (I) represent legal abstract categories which depend on the beliefs of the norma-
tive system and have no direct counterpart in the world. F = X \ I are what Searle
calls “brute facts”: physical facts like the actions of the agents and their effects. Va(x)
represents the decision of agent n that recognizes x as a violation by agent a. The goal
distribution GD(a) ⊆ Gn represents the goals of agent n the agent a is responsible for.

Definition 5 (Normative system). A normative multiagent system, written as NMAS ,
is a tuple 〈A,X,B,D,G,AD ,MD ,≥,n, I, V,GD〉 where the tuple
〈A,X,B,D,G,AD ,MD ,≥〉 is a multiagent system, and

– the normative system n ∈ A is an agent.
– the institutional facts I ⊆ P are a subset of the parameters.
– the norm description V : Lit(X)×A→ Xn∪P is a function from the literals and

the agents to the decision variables of the normative system and the parameters.
We write Va(x) for V (x, a).

– the goal distribution GD : A→ 2Gn is a function from the agents to the powerset
of the goals of the normative system, such that if L → l ∈ MD(GD(a)), then
l ∈ Lit(Xa ∪ P).

Agent n is a normative system who has the goal that fenced fields are not trespassed.

Example 5 (Continued). There is agent n, representing the normative system.
Xn = {s, Va(trespass)}, P = {fenced},Dn = Gn = {g1}, MD(g1)={fenced →

¬trespass}, GD(a) = {g1}.
Agent n can sanction agent a, because s is no longer a parameter but a decision vari-

able. Va(trespass) represents the fact that the normative system considers a violation
the action of a trespassing the field. It has the goal that fenced fields are not trespassed,
and it has distributed this goal to agent a.

In the following, we use an input/output logic out to define whether a desire or goal
implies another one and to define the application of a set of belief rules to a set of
literals; in both cases we use the out3 operation since it has the desired logical property
of not satisfying identity.

Regulative norms are conditional obligations with an associated sanction and condi-
tional permissions. The definition of obligation contains several clauses. The first and
central clause of our definition defines obligations of agents as goals of the normative
system, following the ‘your wish is my command’ metaphor. It says that the obligation
is implied by the desires of the normative system n, implied by the goals of agent n,
and it has been distributed by agent n to the agent. The latter two steps are represented
by out(GD(a),≥n).

Constitutive Norms in the Design of Normative Multiagent Systems 313

The second and third clause can be read as “the absence of p is considered as a viola-
tion”. The association of obligations with violations is inspired by Anderson’s reduction
of deontic logic to alethic logic [22]. The third clause says that the agent desires that
there are no violations, which is stronger than that it does not desire violations, as would
be expressed by � → Va(∼x)
∈ out(Dn,≥n).

The fourth and fifth clause relate violations to sanctions. The fourth clause says that
the normative system is motivated not to count behavior as a violation and apply sanc-
tions as long as their is no violation, because otherwise the norm would have no effect.
Finally, for the same reason the last clause says that the agent does not like the sanction.
The second and fourth clauses can be considered as instrumental norms [23] contribut-
ing to the achievement of the main goal of the norm.

Definition 6 (Obligation). Let NMAS = 〈A,X,B,D,G,AD ,MD ,≥,n, I, V,GD〉
be a normative multiagent system. Agent a ∈ A is obliged to see to it that
x ∈ Lit(Xa ∪ P) with sanction s ∈ Lit(Xn ∪ P) in context Y ⊆ Lit(X) in NMAS ,
written as NMAS |= Oan(x, s|Y), if and only if:

1. Y → x ∈ out(Dn,≥n) ∩ out(GD(a),≥n): if Y then agent n desires and has as
a goal that x, and this goal has been distributed to agent a.

2. Y ∪ {∼x} → Va(∼x) ∈ out(Dn,≥n) ∩ out(Gn,≥n): if Y and ∼x, then agent n
has the goal and the desire Va(∼x): to recognize it as a violation by agent a.

3. � → ¬Va(∼x) ∈ out(Dn,≥n): agent n desires that there are no violations.
4. Y ∪ {Va(∼x)} → s ∈ out(Dn,≥n) ∩ out(Gn,≥n): if Y and agent n decides
Va(∼x), then agent n desires and has as a goal that it sanctions agent a.

5. Y →∼s ∈ out(Dn,≥n): if Y , then agent n desires not to sanction. This desire of
the normative system expresses that it only sanctions in case of violation.

6. Y →∼s ∈ out(Da,≥a): if Y , then agent a desires ∼s, which expresses that it
does not like to be sanctioned.

The rules in the definition of obligation are only motivations, and not beliefs, because
a normative system may not recognize that a violation counts as such, or that it does
not sanction it: it is up to its decision. Both the recognition of the violation and the
application of the sanction are the result of autonomous decisions of the normative
system that is modelled as an agent.

The beliefs, desires and goals of the normative agent - defining the obligations - are
not private mental states of an agent. Rather they are collectively attributed by the agents
of the normative system to the normative agent: they have a public character, and, thus,
which are the obligations of the normative system is a public information.

Since conditions of obligations are sets of decision variables and parameters, institu-
tional facts can be among them. In this way it is possible that regulative norms refer to
institutional abstractions of the reality rather than to physical facts only.

Example 6 (Continued). Let: {g1, g2, g4} = Gn,Gn∪{g3, g5} = Dn, {g1} = GD(a)

MD(g2) = {fenced , trespass} → Va(trespass) MD(g3) = � → ¬Va(trespass)
MD(g4) = {fenced , Va(trespass)} → s MD(g5) = fenced →∼s
NMAS |= Oan(¬trespass , s | fenced), since:

314 G. Boella and L. van der Torre

1. fenced → ¬trespass ∈ out(Dn,≥n) ∩ out(GD(a),≥n)
2. {fenced , trespass} → Va(trespass) ∈ out(Dn,≥n) ∩ out(Gn,≥n)
3. � → ¬Va(trespass) ∈ out(Dn,≥n)
4. {fenced , Va(trespass)} → s ∈ out(Dn,≥n) ∩ out(Gn,≥n)
5. fenced →∼s ∈ out(Dn,≥n)
6. fenced →∼s ∈ out(Da,≥a)

Permissions are defined as exceptions to obligations [16], and can be overridden by
obligations in turn. A permission to do x is an exception to an obligation not to do x
if agent n has the goal that x is not considered as a violation under some condition.
The permission overrides the prohibition if the goal that something does not count as a
violation (Y ∧ x→ ¬Va(x)) has higher priority in the ordering ≥n on goal and desire
rules with respect to the goal of a corresponding prohibition that x is considered as a
violation (Y ′ ∧ x→ Va(x)):

Definition 7 (Permission). Agent a ∈ A is permitted by agent n to see to it that x ∈
Lit(Xa ∪ P) under condition Y ⊆ Lit(X), written as NMAS |= Pan(x | Y), iff
Y ∪ {x} → ¬Va(x) ∈ out(Gn,≥n): if Y and x then agent n wants that x is not
considered a violation by agent a.

Example 7 (Continued). Let P = {fenced , river}, {g6} > {g2},
MD(g6) = {fenced , river , trespass} →∼Va(trespass)
Then {fenced , river , trespass} →∼Va(trespass) ∈ out(Dn,≥n) ∩ out(Gn,≥n)
Hence, NMAS |= Pan(trespass | fenced ∧ river)

Constitutive norms introduce new abstract categories of existing facts and entities,
called institutional facts. We formalize the counts-as conditional as a belief rule of the
normative system n. Since the condition x of the belief rule is a variable it can be an
action of an agent, a brute fact or an institutional fact. So, the counts-as relation can be
iteratively applied.

Definition 8 (Counts-as relation). Let 〈A,X,B,D,G,AD ,MD ,≥,n, I, V,GD〉 be
a normative multiagent system NMAS . A literal x ∈ Lit(X) counts-as y ∈ Lit(I) in
context C ⊆ Lit(X), NMAS |= counts-asn(x, y|C), iff C ∪ {x} → y ∈ out(Bn,
≥n): if agent n believes C and x then it believes y.

Example 8. P \ I = {fenced}, I = {property}, Xa = {trespass}, B′
n = {b′1},

MD(b′1) = fenced → property
Consequently, NMAS |= counts-asn(fenced , property |�). This formalizes that for

the normative system a fenced field counts as the fact that the field is a property of that
agent. The presence of the fence is a physical “brute” fact, while being a property is an
institutional fact. In situation S = {fenced}, given B′

n we have that the consequences
of the constitutive norms are out(B′

n, S,≥n) = {property}
As shown in the example, the logic of constitutive norms does not satisfy identity:
fenced is not a consequence, since it represents a brute fact and not an institutional
fact. Constitutive norms, in contrast, provide a legal classification of reality in terms of
institutional facts only.

The institutional facts can appear in the conditions of regulative norms as the follow-
ing example shows.

Constitutive Norms in the Design of Normative Multiagent Systems 315

Example 9 (Continued). A regulative norm which forbids trespassing can refer to the
abstract concept of property rather than to fenced fields: Oan(¬trespass, s | property).
Let: {g′1, g′2, g′4} = G′

n, G′
n ∪ {g′3, g′5} = D′

n, {g′1} = GD(a)
MD(g′1)=property → ¬trespass MD(g′2)={property , trespass} → Va(trespass)
MD(g′3) = � → ¬Va(trespass) MD(g′4) = {property , Va(trespass)} → s
MD(g′5) = property →∼s
Then:

1. property → ¬trespass ∈ out(Dn,≥n) ∩ out(GD(a),≥n)
2. {property , trespass} → Va(trespass) ∈ out(Dn,≥n) ∩ out(Gn,≥n)
3. � → ¬Va(trespass) ∈ out(Dn,≥n)
4. {property , Va(trespass)} → s ∈ out(Dn,≥n) ∩ out(Gn,≥n)
5. property →∼s ∈ out(Dn,≥n)
6. property →∼s ∈ out(Da,≥a)

As the system evolves, new cases can be added to the notion of property by means of
new constitutive norms, without changing the regulative norms about property. E.g., if
a field is inherited, then it is property of the heir: inherit → property ∈ MD(Bn).

Since counts-as rules are beliefs and the logic is non-monotonic due to the priority
ordering on the beliefs, counts-as can be used to express exceptions to the classification
thus mirroring the relation between obligations and permissions as exceptions [2].

6 The Trade-Off Between Constitutive and Regulative Norms

In this section, we extend our scenario described in Example 8-9 to design a legal sys-
tem equivalent to the one of Example 6-7.

Example 10 (Continued).B′
n = {b′2}, {b′2} > {b′1},

MD(b′2) = fenced ∧ river → ¬property .
out(B′

n = {b′1, b′2},≥n) = {{fenced ∧ river → ¬property}} since
maxfamily(B′

n, S = {fenced , river}) = {{b′1}, {b′2}},
preffamily(B′

n, S = {fenced , river},≥n) = {{b′2}},
outfamily(B′

n, S = {fenced , river},≥n) = {{¬property}}
Thus, NMAS |= counts-asn(fenced ,¬property | river) and this belief overrides

the former one behind counts-asn(fenced , property | �). This formalizes that the
normative system does not consider as a property a fenced field if it is close to a river.

We show how a system containing constitutive and regulative norms like in Exam-
ple 8-10 can be interchanged with an equivalent system of regulative norms only like
the one of Example 6-7. By equivalence we mean that in the same state of the world the
same violations hold. Since it is possible to replace constitutive norms with regulative
norms only, a trade-off can be found between adding constitutive norms and achieving
a sufficient level of abstraction.

Even if input/output logic is an inference system on rules we cannot directly prove
the equivalence on the rules defining regulative and constitutive norms since they refer
to different sets of rules: goal rules and belief rules. We provide the equivalence in an
indirect way by considering the combined output of the rules.

316 G. Boella and L. van der Torre

Given the operation out , we define a combined output relation:
output(Q,Z, S,≥n) = out(Z, out(Q,S,≥n) ∪ S,≥n) where Q ⊆ Bn, Z ⊆ Mn

and S ⊂ Lit(X \ I). The institutional facts are the result of the reasoning of the nor-
mative system, so they cannot be present in the initial state composed of brute facts.

Note that we reintroduce the brute facts S as the input of the output operation on
the motivations Z since the output operation on beliefs does not satisfy identity. We
need S since the conditions of regulative norms can refer to brute facts as well as to the
institutional facts which are the consequences of the constitutive norms. In this way we
distinguish between the legal classification of reality and the information concerning
commonsense, among which the brute facts which are the input to constitutive norms.
Even if we attribute belief rules to the normative system these must be distinguished
from the belief rules of agents: these belief rules concern the relation between brute
facts and constitute their commonsense view of the work. The normative system as
agent, in contrast, does not contain any knowledge of this kind. The relevant common-
sense inferences are performed by the real agents playing roles in the normative system.

In our examples we have: output(Bn, Gn, S,≥n) = output(B′
n, G

′
n, S,≥n) for

any S ∈ Lit(X \ I).
Sketch of proof. We consider only the cases where the conditions of the goals and
beliefs are satisfied. First, the normative system made of regulative norms only:

output(Bn, Gn, S = {fenced , trespass},≥n) = out(Gn, out(Bn, S,≥n)∪S,≥n) =
{¬trespass, Va(trespass), s}
from g1, g2, g4, where out(Bn, S,≥n) = ∅ since Bn = ∅.

In contrast:

output(Bn, Gn, S={fenced , river , trespass},≥n) =
out(Gn, out(Bn, S,≥n) ∪ S,≥n) = {¬trespass,¬Va(trespass),∼s}
(from g1, g5, g6) where again out(Bn, S,≥n) = ∅.

In case of the legal system of Example 8 made of both constitutive and regulative norms:

output(B′
n, G

′
n, S={fenced , trespass},≥n)=out(G′

n, out(B′
n, S,≥n) ∪ S,≥n) =

{¬trespass, Va(trespass), s}
(from g′1, g

′
2, g

′
4) where out(B′

n, S,≥n) = {property} (from b′1).

In contrast:

output(B′
n, G

′
n, S={fenced , river , trespass},≥n) =

out(G′
n, out(B′

n, S,≥n) ∪ S,≥n)={¬trespass,¬Va(trespass),∼s}
(from g′1, g

′
3, g

′
5) where out(B′

n, S,≥n) = {¬property} (from b′2).

In summary, the trade-off between constitutive and regulative rules has to take into
considerations, first, how many regulative rules share the same conditions. The design
of the system of norms can be simplified by introducing abstractions representing the
overlapping conditions. Second how frequently the normative system is updated. In case
of dynamic situations, the preferred design of the system introduces constitutive rules
introducing institutional facts which are abstractions which hide the details concerning
the brute facts. In this way, new cases can be dealt with without changing the regulative
part of the system, but only revising what counts as an institutional fact.

Constitutive Norms in the Design of Normative Multiagent Systems 317

7 Related Work

While the formalization of regulative norms, like obligations, prohibitions and permis-
sions, is often based in deontic logic on modal operators representing what is obligatory,
forbidden or permitted, the formalization of constitutive norms is rather different. An
attempt to make the notion of constitutive norm more precise is Jones and Sergot [5]’s
formalization of the counts-as relation. For Jones and Sergot, the counts-as relation ex-
presses the fact that a state of affairs or an action of an agent “is a sufficient condition
to guarantee that the institution creates some (usually normative) state of affairs”. As
Jones and Sergot suggest, this relation can be considered as “constraints of (operative
in) [an] institution”, and they express these constraints as conditionals embedded in a
modal operator. Jones and Sergot formalize this introducing a conditional connective
⇒s to express the “counts-as” connection holding in the context of an institution s.
They characterise the logic for ⇒s as a classical conditional logic plus the axioms:

((A⇒s B) ∧ (A⇒s C)) ⊃ (A⇒s (B ∧ C))
((A⇒s B) ∧ (C ⇒s B)) ⊃ ((A ∨ C) ⇒s B)
((A⇒s B) ∧ (B ⇒s C)) ⊃ (A⇒s C)

In addition, Jones and Sergot’s analysis is integrated by introducing the normal KD
modalityDs such that DsA means that A is “recognised by the institution s”. Accord-
ingly, it is adopted the schema: (A⇒s B) ⊃ Ds(A ⊃ B).

The limitation of this approach, according to Gelati et al. [24], is that the conse-
quences of counts-as connections follow non-defeasibly (via the closure of the logic
for modality Ds under logical implication), whereas defeasibility seems a key feature
of such connections. The classical example is that in an auction if a person raises one
hand, this may count as making a bid. However, this does not hold if he raises his hand
and scratches his own head.

Finally, the adoption of the transitivity for their logic is criticized by Artosi et al. [3].
Artosi et al. [3]’s characterisation of the counts-as adopts a different perspective. Rather
than introducing a logic for the counts-as connection, and then linking it with a Ds

logic, they use one conditional operator ⇒ to express any defeasible normative con-
nections in any institutions. They use the same Ds operator as in [5] but they apply it
to the components of normative links, to relativise them to a particular institution. Any
institution can only state what normative situation holds for itself, given certain condi-
tions, but according to a general type of conditionality. On the basis of ⇒ they define a
relativised ⇒s operator: (A⇒s B) =def (A⇒ DsB) ∧ (DsA⇒ DsB)

The connective ⇒ is characterised by reflexivity and cumulative transitivity, whose
combination does not prevent defeasibility. The system is completed by introducing a
restricted version of the detachment of the consequent. To avoid losing non-monotoni-
city, Artosi et al. [3] do not accept the strengthening of antecedent property (SI in our
input/output logic), thus making their logic weaker.

In contrast, in our model we accept the strengthening of antecedent (SI) rule and
the cumulative transitivity (CT). We do not accept instead identity (Id). First of all,
the adoption also of Id would make the system accepting also full transitivity. Non-
monotonicity is achieved via the constraint mechanism which uses also a priority or-
dering on the mental attitudes. Secondly, we do not accept Id because we want to keep

318 G. Boella and L. van der Torre

separate brute facts and institutional facts “whose nature - as also Artosi et al. [3] ac-
cept - is conceptually distinct from that of the empirical facts”.

Our position is congruent also with Castelfranchi and Tummolini [25] who argue that
counts-as rules regulate a cognitive activity, viz. the proper application of a concept:

A constitutive rule describes, albeit very abstractly, a recognition process.
[...] The application of a concept in fact can be represented in form of a rule
that associates a specific set of stimuli (“something such and such”) X with a
linguistic label Y.

Since the stimuli and the linguistic label Y are ontologically heterogeneous, the
“counts-as” relation cannot be reflexive.

Grossi and colleagues [26, 27] develop a notion of counts-as as a contextual clas-
sification in a modal logic setting, where for the classification aspect they use either
description logic [26] or plain propositional logic [27]. They end up with a very strong
logic for counts-as, satisfying rules not satisfied by Jones and Sergot’s logic or the logic
proposed in this paper, such as the identity rule (x counts-as x). They argue that the new
rules are explained by their particular concept of counts-as as a contextual classification.

8 Conclusions

In this paper we discuss the design of legal systems composed of constitutive and regu-
lative norms. We model legal systems as normative multiagent systems where the nor-
mative system is modelled as an agent using the agent metaphor: constitutive norms are
defined by the beliefs of the normative system and the regulative norms by its goals. The
characteristic of the counts-as relation is that it is not reflexive. The trade-off problem
between constitutive and regulative norms can be handled by as the trade-off between
beliefs and goals of the normative system. We show that constitutive norms, even if
they can be replaced by regulative norms, allow to create a level of abstraction to which
regulative norms can refer to, making it less sensitive to the changes in the legal system.

In [6] we extend this framework to model the problem of how the normative system
itself specifies who can change the normative system. This specification is made by
means of constitutive norms describe what facts count as the creation of new regulative
and constitutive norms in the normative system. This work is at the basis of the defini-
tion of contracts we make in [7]. Future work is, for example, elaborating the notion of
context to study which properties hold for it, and introducing hierarchies of normative
systems composed of both constitutive norms and regulative norms, as we do for oblig-
ations and permissions in [16]. Moreover in [8] we discuss global policies about local
policies in secure knowledge management. However, it has still to be studied global
policies about constitutive rules.

References

1. Jones, A., Carmo, J.: Deontic logic and contrary-to-duties. In Gabbay, D., Guenthner, F.,
eds.: Handbook of Philosophical Logic. Kluwer (2001) 203–279

2. Boella, G., van der Torre, L.: Permissions and obligations in hierarchical normative systems.
In: Procs. of ICAIL’03, New York (NJ), ACM Press (2003) 109–118

Constitutive Norms in the Design of Normative Multiagent Systems 319

3. Artosi, A., Rotolo, A., Vida, S.: On the logical nature of count-as conditionals. In: Procs. of
LEA 2004 Workshop. (2004)

4. Grossi, D., Dignum, F., Meyer, J.J.: Contextual taxonomies. In: LNCS n. 3487: Procs. of
CLIMA’04 Workshop, Berlin, Springer Verlag (2004) 33–51

5. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of IGPL
3 (1996) 427–443

6. Boella, G., van der Torre, L.: Regulative and constitutive norms in normative multiagent
systems. In: Procs. of 10th International Conference on the Principles of Knowledge Repre-
sentation and Reasoning KR’04, Menlo Park (CA), AAAI Press (2004) 255–265

7. Boella, G., van der Torre, L.: A game theoretic approach to contracts in multiagent systems.
IEEE Transactions on Systems, Man and Cybernetics - Part C 36(1) (2006)

8. Boella, G., van der Torre, L.: Security policies for sharing knowledge in virtual communities.
IEEE Transactions on Systems, Man and Cybernetics - Part A (2006)

9. Gmytrasiewicz, P.J., Durfee, E.H.: Formalization of recursive modeling. In: Procs. of IC-
MAS’95, Cambridge (MA), AAAI/MIT Press (1995) 125–132

10. Boella, G., van der Torre, L.: From the theory of mind to the construction of social reality.
In: Procs. of CogSci’05, Mahwah (NJ), Lawrence Erlbaum (2005) 298–303

11. Castelfranchi, C.: Engineering social order. In: LNCS n.1972: Procs. of ESAW’00, Berlin,
Springer Verlag (2000) 1–18

12. Searle, J.: Speech Acts: an Essay in the Philosophy of Language. Cambridge University
Press, Cambridge (UK) (1969)

13. Boella, G., van der Torre, L.: Obligations as social constructs. In: LNAI n. 2829: AI*IA
2003 - Advances in Artificial Intelligence, Berlin, Springer Verlag (2003) 27–38

14. Makinson, D., van der Torre, L.: Input-output logics. Journal of Philosophical Logic 29
(2000) 383–408

15. Makinson, D., van der Torre, L.: Constraints for input-output logics. Journal of Philosophical
Logic 30(2) (2001) 155–185

16. Boella, G., van der Torre, L.: Rational norm creation: Attributing mental attitudes to norma-
tive systems, part 2. In: Procs. of ICAIL’03, New York (NJ), ACM Press (2003) 81–82

17. Hansson, B.: An analysis of some deontic logics. Nôus 3 (1969) 373–398
18. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
19. Hindriks, F.: The constitutive rule revisited. In: Procs. of 3rd Conference on Collective

Intentionality, Rotterdam (2002)
20. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the BOID archi-

tecture. Cognitive Science Quarterly 2(3-4) (2002) 428–447
21. Lang, J., van der Torre, L., Weydert, E.: Utilitarian desires. Autonomous Agents and Multi-

agent Systems 5(3) (2002) 329–363
22. Anderson, A.: The logic of norms. Logic et analyse 2 (1958)
23. Hart, H.: The Concept of Law. Clarendon Press, Oxford (1961)
24. Gelati, J., Governatori, G., Rotolo, N., Sartor, G.: Declarative power, representation, and

mandate. A formal analysis. In: Procs. of JURIX 02, Amsterdam, IOS press (2002) 41–52
25. Castelfranchi, C., Tummolini, L.: The cognitive and behavioral mediation of institutions:

Towards an account of institutional actions. In: Procs. of 4th Conference on Collective In-
tentionality. (2004)

26. Grossi, D., Dignum, F., Meyer, J.: Contextual terminologies. In this volume.
27. Grossi, D., Meyer, J., Dignum, F.: Modal logic investigations in the modal logic investiga-

tions in the semantics of counts semantics of counts-as as. In: Procs. of ICAIL’05, New York
(NJ), ACM Press (2005) 1–9

Combining Answer Sets of
Nonmonotonic Logic Programs

Chiaki Sakama1 and Katsumi Inoue2

1 Department of Computer and Communication Sciences,
Wakayama University, Sakaedani, Wakayama 640-8510, Japan

sakama@sys.wakayama-u.ac.jp
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
ki@nii.ac.jp

Abstract. This paper studies compositional semantics of nonmonotonic
logic programs. We suppose the answer set semantics of extended disjunc-
tive programs and consider the following problem. Given two programs
P1 and P2, which have the sets of answer sets AS(P1) and AS(P2), re-
spectively; find a program Q which has answer sets as minimal sets S∪T
for S from AS(P1) and T from AS(P2). The program Q combines an-
swer sets of P1 and P2, and provides a compositional semantics of two
programs. Such program composition has application to coordinating
knowledge bases in multi-agent environments. We provide methods for
computing program composition and discuss their properties.

1 Introduction

Combining knowledge of different information sources is a central topic in multi-
agent systems. In those environments, different agents generally have different
knowledge and belief, then coordination among agents is necessary to form ac-
ceptable agreements. In computational logic, knowledge and belief of an agent
are represented by a set of formulas. Combining multiple knowledge bases is
then formulated as the problem of composing different theories. In multi-agent
environments, individual agents are supposed to have incomplete information.
Since theories including incomplete information are nonmonotonic, it is im-
portant and meaningful to develop a framework of composing nonmonotonic
theories.

Suppose a multi-agent system in which each agent has a knowledge base writ-
ten in a common logic programming language. When two programs do not con-
tradict each other, they are combined into one by taking the union of programs.
The resulting program is the collection of knowledge of two agents, and extends
the original program of each agent with additional information from the other
one. In nonmonotonic logic programs, however, simple merging does not always
reflect the meaning of individual programs. To see the problem, consider the
following scenario: there is a trouble in a system which consists of three com-
ponents c1, c2, and c3. After some diagnoses, an expert E1 concludes that the

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 320–339, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Combining Answer Sets of Nonmonotonic Logic Programs 321

trouble would be caused by either c1 or c2. On the other hand, another expert
E2 concludes that the trouble would be caused by either c2 or c3. E1 (resp. E2)
has no knowledge on the component c3 (resp. c1). Two experts’ diagnoses are
then encoded as the following logic programs:

E1 : c1 ; c2 ←,
E2 : c2 ; c3 ←,

where ; represents disjunction. By merging two programs, the program E1 ∪E2
has two answer sets {c2} and {c1, c3}. The first one is the common minimal
model between two experts, while the second one is produced as a result of
merging programs. Two solutions thus have different grounds and would be
acceptable to each expert. The story goes on: E1 considers that the possible
cause is either c1 or c2, but he knows that c1 is older and more likely to disorder.
Similarly, E2 resolves the possible cause into either c2 or c3, but she empirically
knows that c2 is fragile and more likely to cause the trouble. Two experts then
modify their diagnoses as

E′
1 : c1 ← not c2,

c2 ← ¬ c1,
E′

2 : c2 ← not c3,

c3 ← ¬ c2,

where not represents negation as failure. After the modification, E′
1 is read as: c1

is considered a cause if there is no evidence of c2, and c2 will not become a cause
unless c1 is explicitly proved to be false. E′

2 is read in a similar way. Merging two
programs, however, E′

1 ∪ E′
2 has the single answer set {c2}, which reflects the

result of diagnosis by E′
2 but does not reflect E′

1. When two experts are equally
reliable, the result might be unsatisfactory. In fact, E′

2 puts weight on c2 relative
to c3 and E′

1 puts weight on c1 relative to c2. After integrating these diagnoses,
there is no reason to conclude c2 as the consensus of two experts. The problem
is explained as follows: c1 in E′

1 and c2 in E′
2 are both default consequences

derived from incomplete information in each program. However, simple merging
has the effect of preferring c2 to c1 as the former is included in a relatively lower
stratum than the latter. In logic programming consequences derived from a lower
stratum are preferred in a single program, but the principle is not necessarily
applied to the case of combining different programs. As observed in the above
example, the local preference in E′

1 or E′
2 does not necessarily imply the global

preference in E′
1 ∪E′

2.
Thus, composition of nonmonotonic theories is not achieved by simply merg-

ing them. The problem is then how to build a compositional semantics of non-
monotonic theories. In this paper, we consider composition of extended disjunc-
tive programs under the answer set semantics [16]. An answer set is a set of
literals which corresponds to a belief set being built by a rational reasoner on
the basis of a program [3]. A program may have multiple answer sets, and differ-
ent agents have different collections of answer sets in general. We then capture

322 C. Sakama and K. Inoue

composition of two programs as the problem of building a new program which
combines answer sets of the original programs. Formally, the problems considered
in this paper are described as follows:

Given: two programs P1 and P2;
Find: a program Q satisfying AS(Q) = min(AS(P1) ! AS(P2)) where AS(P)

represents the set of answer sets of a program P and AS(P1) ! AS(P2) =
{S ∪ T | S ∈ AS(P1) and T ∈ AS(P2)},

where min(X) = { Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }. The program Q sat-
isfying the above condition is called a composition of P1 and P2. The result of
composition combines answer sets of two programs, which has the effect of amal-
gamating the original belief of each agent. We develop methods for constructing
a program having the compositional semantics. Finally, we apply the theory to
a logical formulation of multi-agent coordination.

The rest of this paper is organized as follows. Section 2 introduces basic no-
tions used in this paper. Section 3 presents compositional semantics and its
technical properties. Section 4 provides methods for building programs which
reflect compositional semantics. Section 5 addresses permissible composition for
multi-agent coordination. Section 6 discusses related issues and Section 7 sum-
marizes the paper.

2 Preliminaries

In this paper, we suppose an agent that has a knowledge base written in logic
programming.

A program considered in this paper is an extended disjunctive program (EDP)
which is a set of rules of the form:

L1 ; · · · ; Ll ← Ll+1 , . . . , Lm, not Lm+1 , . . . , not Ln (n ≥ m ≥ l ≥ 0)

where each Li is a positive/negative literal, i.e., A or ¬A for an atom A, and
not is negation as failure (NAF). notL is called an NAF-literal. The sym-
bol “;” represents disjunction. The left-hand side of the rule is the head , and
the right-hand side is the body. For each rule r of the above form, head(r),
body+(r) and body−(r) denote the sets of literals {L1, . . . , Ll}, {Ll+1, . . . , Lm},
and {Lm+1, . . . , Ln}, respectively. Also, not body−(r) denotes the set of NAF-
literals {notLm+1, . . . , not Ln}. A disjunction of literals and a conjunction of
(NAF-)literals in a rule are identified with its corresponding sets of literals. A rule
r is often written as head(r) ← body+(r), not body−(r) or head(r) ← body(r)
where body(r) = body+(r)∪not body−(r). A rule r is disjunctive if head(r) con-
tains more than one literal. A rule r is an integrity constraint if head(r) = ∅; and
r is a fact if body(r) = ∅. A program is an extended logic program (ELP) if it con-
tains no disjunctive rule. A program is NAF-free if no rule contains NAF-literals.
A program with variables is semantically identified with its ground instantiation,
and we handle propositional and ground programs only.

Combining Answer Sets of Nonmonotonic Logic Programs 323

The semantics of EDPs is given by the answer set semantics [16]. Let Lit be
the set of all ground literals in the language of a program. A set S(⊆ Lit) satisfies
a ground rule r if body+(r) ⊆ S and body−(r)∩S = ∅ imply head(r)∩S
= ∅. In
particular, S satisfies a ground integrity constraint r with head(r) = ∅ if either
body+(r)
⊆ S or body−(r) ∩ S
= ∅. S satisfies a ground program P if S satisfies
every rule in P . Let P be a ground NAF-free EDP. Then, a set S(⊆ Lit) is an
answer set of P if S is a minimal set such that (i) S satisfies every rule from
P ; and (ii) if S contains a pair of complementary literals L and ¬L, S = Lit.
Next, let P be any ground EDP and S ⊆ Lit. For every rule r in P , the rule
head(r) ∩ S ← body+(r) is included in the reduct SP if body+(r) ⊆ S and
body−(r) ∩ S = ∅. Then, S is an answer set of P if S is an answer set of SP .
Remark. The definition of a reduct presented above is different from the original
one in [16]. In [16], the rule head(r) ← body+(r) is included in the reduct PS

(called Gelfond-Lifschitz reduction) if body−(r) ∩ S = ∅. A similar but different
definition of reduct is in [15], where the rule head(r) ← body+(r) is included
in the reduct if body+(r) ⊆ S and body−(r) ∩ S = ∅. Thus, disjunctive heads
remain unchanged in the definition of [15].

Our reduction imposes additional conditions, but it produces the same answer
sets as Gelfond-Lifschitz reduction does.

Proposition 2.1. For any EDP P , S is an answer set of SP iff S is an answer
set of PS.

Proof. If S is an answer set of PS , it is a minimal set satisfying every rule in
PS . For any rule r in SP \PS , it holds body(r) = body+(r) ⊆ S and (head(r)′ ←
body(r)) ∈ PS with head(r) = head(r)′ ∩ S. As S satisfies PS , body(r) ⊆ S
implies head(r)′ ∩ S
= ∅. So, S satisfies SP . Assume that there is a minimal
set T ⊂ S satisfying every rule in SP . Any rule r in PS \ SP satisfies either (a)
body(r)
⊆ S or (b) body(r) ⊆ S, (head(r) ← body(r)) ∈ PS and (head(r) ∩ S ←
body(r)) ∈ SP . In case of (a), body(r)
⊆ S implies body(r)
⊆ T . Then, T satisfies
r. In case of (b), as T satisfies SP , body(r) ⊆ T implies T ∩ (head(r) ∩ S)
= ∅,
thereby T ∩ head(r)
= ∅. Thus, in each case T satisfies every rule in PS . This
contradicts the fact that S is a minimal set satisfying PS . Then, S is also a
minimal set satisfying every rule in SP . Hence, S is an answer set of SP .

Conversely, if S is an answer set of SP , S is a minimal set satisfying every
rule in SP . For any rule r in PS \ SP , it holds either (a) body(r)
⊆ S or (b)
body(r) ⊆ S, (head(r) ← body(r)) ∈ PS and (head(r) ∩ S ← body(r)) ∈ SP . As
S satisfies SP , body(r) ⊆ S implies head(r)∩S
= ∅. Thus, in each case S satisfies
every rule r in PS . Assume that there is a minimal set T ⊂ S satisfying every
rule in PS . For any rule r in SP \ PS , it holds body(r) ⊆ S and (head(r)′ ←
body(r)) ∈ PS with head(r) = head(r)′ ∩ S. If body(r)
⊆ T , T satisfies r. Else
if body(r) ⊆ T , head(r)′ ∩ T
= ∅. As head(r)′ ∩ T = head(r)′ ∩ S ∩ T , it holds
that head(r)′ ∩ S ∩ T = head(r) ∩ T
= ∅. Hence, T satisfies head(r) ← body(r)
in SP . This contradicts the fact that S is a minimal set satisfying SP . Then, S
is an answer set of SP . &'

324 C. Sakama and K. Inoue

Example 2.1. Let P be the program:

p ; q ←,
q ← p,

r ← not p.

For S = {q, r}, PS becomes

p ; q ←,
q ← p,

r ←,

while SP becomes

q ←,
r ← .

Each reduct produces the same answer set S. Note that {p, q} does not become
an answer set of P .

The new reduct SP has the effect of (i) reducing any rule in P that is irrelevant to
constructing S, and (ii) eliminating any disjunct in the head of a rule that is not
a consequence in S. For technical reasons, we use the reduct SP for computing
answer sets of P .1

A program has none, one, or multiple answer sets in general. The set of all an-
swer sets of P is written as AS(P). Every element in AS(P) is minimal, that is,
S ⊆ T implies T ⊆ S for any S and T in AS(P). A program having a single an-
swer set is called categorical [3]. Categorical programs include important classes
of programs such as definite programs, stratified programs, and call-consistent
programs. Every NAF-free ELP has at most one answer set. An answer set is
consistent if it is not Lit. A program P is consistent if it has a consistent answer
set; otherwise, P is inconsistent. An inconsistent program has either no answer
set or the single answer set Lit.

Proposition 2.2. If a program P is consistent, SP contains no integrity con-
straint for any S ∈ AS(P).

Proof. By the definition, for any integrity constraint r ∈ P , ← body+(r) is
included in SP if body+(r) ⊆ S and body−(r) ∩ S = ∅. In this case, however, S
does not satisfy r, so that it is not an answer set of P . Contradiction. &'

A literal L is a consequence of credulous reasoning in a program P (written as
L ∈ crd(P)) if L is included in some answer set of P . A literal L is a consequence
of skeptical reasoning in P (written as L ∈ skp(P)) if L is included in every
answer set of P . Clearly, skp(P) ⊆ crd(P) for any consistent program P .

1 We will address the effect of this new reduct in Section 4.

Combining Answer Sets of Nonmonotonic Logic Programs 325

Example 2.2. Let P be the program:

p ; q ←,
r ← p,

r ← q,

where AS(P) = {{p, r}, {q, r}}. Then, crd(P) = { p, q, r } and skp(P) = {r}.

3 Combining Answer Sets

In this section, we introduce a compositional semantics of programs. Throughout
the paper, different programs are assumed to have the same underlying language
with a fixed interpretation.

Definition 3.1. Let S and T be two sets of literals. Then, define

S ! T =
{
S ∪ T , if S ∪ T is consistent;
Lit , otherwise.

For two collections S and T of sets, define

S ! T = {S ! T | S ∈ S and T ∈ T }.

In particular, S ! T = ∅ if S = ∅ or T = ∅.

Definition 3.2. Let P1 and P2 be two programs. A program Q is called a
composition of P1 and P2 if it satisfies the condition

AS(Q) = min(AS(P1) !AS(P2))

where min(X) = { Y ∈ X | ¬∃Z ∈ X s.t. Z ⊂ Y }.

The set AS(Q) is called the compositional semantics of P1 and P2. By the
definition, the compositional semantics is defined as the collection of minimal
sets which are obtained by combining answer sets of the original programs. Note
that the operation min(·) has the effect of making every element in AS(Q)
incomparable under set inclusion.

Example 3.1. Let AS(P1) = {{p}, {q}} and AS(P2) = {{p}, {r}}. Then, the
compositional semantics becomes AS(Q) = { {p}, {q, r} }.

In what follows, when we refer a program Q to a composition of P1 and P2, it
means a program Q satisfying the condition of Definition 3.2.

When categorical programs are composed, the resulting program is also cat-
egorical.

Proposition 3.1. If P1 and P2 are two categorical programs, a composition Q
of P1 and P2 is categorical.

326 C. Sakama and K. Inoue

Proof. Let AS(P1) = {S} and AS(P2) = {T }. Then, the compositional seman-
tics becomes AS(Q) = {S ∪ T } if S ∪ T is consistent; otherwise, AS(Q) =
{Lit }. In each case, Q has the single answer set, thereby categorical. &'

The following properties directly hold by the definition.

Proposition 3.2. Let P1 and P2 be programs, and Q a composition of P1 and
P2. Then,

1. AS(P1) = {Lit} and AS(P2)
= ∅ imply AS(Q) = {Lit}.
2. AS(P1) = ∅ or AS(P2) = ∅ implies AS(Q) = ∅.

As shown in Proposition 3.2, if one of two programs is inconsistent, the result
of composition is rather trivial. We thus consider compositions of consistent
programs hereafter.

Proposition 3.3. Let P1 and P2 be two consistent programs, and Q a compo-
sition of P1 and P2. Then, for any S ∈ AS(Q), there is T ∈ AS(Pi) for i = 1, 2
such that T ⊆ S.

Proof. If Q is consistent, for any S ∈ AS(Q) there exists T ∈ AS(P1) and
T ′ ∈ AS(P2) such that S = T ∪ T ′ and T ∪ T ′ is consistent. Then, T ⊆ S and
T ′ ⊆ S hold. Else if Q is inconsistent, AS(Q) = {Lit}. Then, T ⊂ Lit and
T ′ ⊂ Lit for any T ∈ AS(P1) and any T ′ ∈ AS(P2). &'

Proposition 3.3 asserts that every answer set in the compositional semantics
extends some answer sets of the original programs. On the other hand, the
original programs may have an answer set which does not have its extension in
their compositional semantics.

Example 3.2. Let AS(P1) = {{p, q}} and AS(P2) = {{p}, {q, r}}. The compo-
sitional semantics of P1 and P2 becomes AS(Q) = {{p, q}} which extends {p, q}
of P1 and {p} of P2, but does not extend {q, r} of P2.

In the above example, {p, q} absorbs {p} and remains as a result of composition.
Consequently, the set {p, q, r}, which combines {p, q} of P1 and {q, r} of P2,
becomes non-minimal and is excluded from the result of composition.

Such cases are formally stated as follows.

Definition 3.3. Let P1 and P2 be two consistent programs, and Q a composi-
tion of P1 and P2. When AS(Q) = AS(P1), P1 absorbs P2.

In Example 3.2, P1 absorbs P2. If one program absorbs another program, the
compositional semantics coincides with one of the original programs. The next
proposition characterizes situations in which absorption happens.

Proposition 3.4. Let P1 and P2 be two consistent programs, and Q a com-
position of P1 and P2. Then, P1 absorbs P2 iff for any S ∈ AS(P1), there is
T ∈ AS(P2) such that T ⊆ S.

Combining Answer Sets of Nonmonotonic Logic Programs 327

Proof. For any S ∈ AS(P1), suppose that there is T ∈ AS(P2) such that T ⊆ S.
As S∪T = S, AS(P1) ⊆ AS(Q). Suppose any T ′ ∈ AS(P2) such that T ′
⊆ S for
any S ∈ AS(P1). Then, S ⊂ S ∪ T ′. Since S ∈ AS(Q), S ∪ T ′
∈ AS(Q). Thus,
AS(Q)\AS(P1) = ∅. Hence, AS(Q) = AS(P1). Conversely, ifAS(Q) = AS(P1),
for any S ∈ AS(P1) there is T ∈ AS(P2) such that S = S∪T . Then, T ⊆ S. &'

Skeptical/credulous inference in compositional semantics has the following prop-
erties.

Proposition 3.5. Let P1 and P2 be two consistent programs, and Q a compo-
sition of P1 and P2. When Q is consistent, the following relations hold.

1. crd(Q) ⊆ crd(P1) ∪ crd(P2).
2. skp(Q) = skp(P1) ∪ skp(P2).

Proof. (1) Any literal included in a consistent answer set S ∈ AS(Q) is either
included in an answer set T ∈ AS(P1) or included in an answer set T ′ ∈ AS(P2).
(2) If any literal L is included in every answer set S in AS(P1) or included in
every answer set T in AS(P2), it is included in every S∪T in AS(Q). Conversely,
if any literal L is included in every consistent answer set U in AS(Q), L is
included in every minimal set S ∪ T for some S ∈ AS(P1) and T ∈ AS(P2).
Suppose L ∈ S and there is S′ ∈ AS(P1) such that L
∈ S′. If there is T ′ ∈
AS(P2) such that L
∈ T ′, then L
∈ S′ ∪ T ′ so there is V ∈ AS(Q) such that
L
∈ V ⊆ S′ ∪ T ′. Contradiction. Hence, L ∈ T for every T ∈ AS(P2). &'

Thus, if the compositional semantics is consistent, it combines skeptical conse-
quences of P1 and P2, and any information included in an answer set of Q has
its origin in an answer set of P1 or P2. The above relations do not hold when
Q is inconsistent.

Example 3.3. Let AS(P1) = {{p, a}, {p, b}} and AS(P2) = {{¬p, a}, {¬p, b}}
where crd(P1) = { p, a, b }, skp(P1) = { p }, crd(P2) = {¬p, a, b }, and skp(P2) =
{¬p }. The compositional semantics of P1 and P2 becomes AS(Q) = {Lit }
where crd(Q) = skp(Q) = Lit.

As observed in the above example, the result of composition may become in-
consistent even if the original programs are consistent. When AS(Q) has no
consistent answer set, we consider that program composition fails. A necessary
and sufficient condition to have a successful program composition is as follows.

Proposition 3.6. Let P1 and P2 be consistent programs, and Q a composition
of P1 and P2. Then, Q is consistent iff there are S ∈ AS(P1) and T ∈ AS(P2)
such that S ∪ T is consistent.

Proof. Q is consistent iff there is a consistent set S ∪ T in AS(P1)!AS(P2) for
S ∈ AS(P1) and T ∈ AS(P2). Hence, the result follows. &'

In program composition, the problem of interest is the case where one program
does not absorb the other and the result of composition is consistent. In the next
section, we present methods for computing program composition.

328 C. Sakama and K. Inoue

4 Composing Programs

In this section, every program is supposed to have a finite number of answer
sets. We first introduce an additional notation used in this section.

Definition 4.1. Let P1, . . . , Pk be programs. Then, define

P1 ; · · · ; Pk =
{ head(r1); · · · ;head(rk) ← body(r1), . . . , body(rk) | ri ∈ Pi (1 ≤ i ≤ k) }.

Thus, P1 ; · · · ; Pk is an EDP which is obtained by disjunctively combining any
rule from Pi (1 ≤ i ≤ k) in every possible way. When all programs are NAF-free,
the following properties hold.

Proposition 4.1. Let P1, . . . , Pk be NAF-free programs. Then, AS(P1 ; · · · ; Pk)
= min(AS(P1) ∪ · · · ∪ AS(Pk)).

Proof. Let S ∈ min(AS(P1) ∪ · · · ∪ AS(Pk)). Then, S ∈ AS(Pi) for some 1 ≤
i ≤ k. So, for any ri ∈ Pi, either head(ri) ∩ S
= ∅ or body(ri)
⊆ S holds.
Correspondingly, for any R = head(r1); · · · ;head(rk) ← body(r1), . . . , body(rk)
in P1 ; · · · ; Pk, either head(R)∩ S
= ∅ or body(R)
⊆ S holds. Hence, S satisfies
every rule in P1 ; · · · ; Pk. Next, suppose that there is a minimal set T ⊂ S which
satisfies every rule in P1 ; · · · ; Pk. Then, for any rule R of the above form, either
head(R)∩T
= ∅ or body(R)
⊆ T holds. On the other hand, by T
∈ min(AS(P1)∪
· · · ∪ AS(Pk)), T satisfies no Pi. Then, for any Pi, there is a rule ri ∈ Pi such
that head(ri) ∩ T = ∅ and body(ri) ⊆ T . However, every such rule is combined
into a rule R = head(r1); · · · ;head(rk) ← body(r1), . . . , body(rk) in P1 ; · · · ; Pk,
and it holds that head(R)∩ T = ∅ and body(R) ⊆ T . Contradiction. Hence, S is
a minimal set satisfying every rule in P1 ; · · · ; Pk, and S ∈ AS(P1 ; · · · ; Pk).

Conversely, let S ∈ AS(P1 ; · · · ; Pk). If S satisfies no Pi (1 ≤ i ≤ k), every
Pi contains a rule ri such that head(ri) ∩ S = ∅ and body(ri) ⊆ S. Every such
rule is combined into R = head(r1); · · · ;head(rk) ← body(r1), . . . , body(rk) in
P1 ; · · · ; Pk, and it holds that head(R) ∩ S = ∅ and body(R) ⊆ S. So S does
not satisfy P1 ; · · · ; Pk. Contradiction. Hence, S satisfies some Pi (1 ≤ i ≤ k).
Next, suppose that there is a minimal set T ⊂ S satisfying Pi. Then, for any
ri ∈ Pi, it holds that either head(ri) ∩ T
= ∅ or body(ri)
⊆ T . In this case, T
satisfies every head(r1); · · · ;head(rk) ← body(r1), . . . , body(rk) in P1 ; · · · ; Pk.
This contradicts the fact that S is a minimal set satisfying P1 ; · · · ; Pk. Hence,
S ∈ AS(Pi). Suppose that S
∈ min(AS(P1) ∪ · · · ∪ AS(Pk)). Then, there is
S′ ∈ AS(Pj) (1 ≤ j ≤ k) such that S′ ⊂ S and S′ ∈ min(AS(P1)∪· · ·∪AS(Pk)).
In this case, S′ ∈ AS(P1 ; · · · ; Pk) by the above proof. But this cannot happen,
since S ∈ AS(P1 ; · · · ; Pk). Hence, S ∈ min(AS(P1) ∪ · · · ∪ AS(Pk)). &'

Corollary 4.2. Let P1, . . . , Pk be NAF-free programs. Then, P1 ; · · · ; Pk is con-
sistent iff some Pi (1 ≤ i ≤ k) is consistent.

Proof. The result follows from Proposition 4.1. &'

Combining Answer Sets of Nonmonotonic Logic Programs 329

Definition 4.2. Let P1 and P2 be two programs such that AS(P1) = {S1, . . . ,
Sm } and AS(P2) = {T1, . . . , Tn }. Then, define

P1 + P2 = R(S1, T1) ; · · · ; R(Sm, Tn)

where R(S, T) = SP1 ∪ TP2 and R(S1, T1), . . . , R(Sm, Tn) is any enumeration of
the R(Si, Tj)’s for Si ∈ AS(P1) (i = 1, . . . ,m) and Tj ∈ AS(P2) (j = 1, . . . , n).
In particular, R(S, T) = ∅ when AS(Pi) = ∅ for i = 1 or i = 2.

R(S, T) merges every NAF-free rule which contributes to the construction of an
answer set S of P1 and T of P2. Those rules are then disjunctively combined
for any Si ∈ AS(P1) and for any Tj ∈ AS(P2) in every possible way. By the
definition, P1+P2 is computed in time O(|P1|×|P2|×|AS(P1)|×|AS(P2)|), where
|P | represents the number of rules in P and |AS(P)| represents the number of
answer sets of P . In particular, if P1 and P2 respectively have the single answer
set AS(P1) = {S} and AS(P2) = {T }, it becomes P1 + P2 = SP1 ∪ TP2.

The operator + has the following properties.

Proposition 4.3. The operation + is commutative and associative.

Proof. The commutative law P1 + P2 = P2 + P1 is straightforward. To see the
associative law, both (P1 + P2) + P3 and P1 + (P2 + P3) consist of rules of the
form: head(r1) ; · · · ; head(rk) ← body(r1), . . . , body(rk) for ri ∈ R(S, T, U) (1 ≤
i ≤ k) where R(S, T, U) = SP1 ∪ TP2 ∪ UP3 for any S ∈ AS(P1), T ∈ AS(P2),
and U ∈ AS(P3). Hence, (P1 + P2)+ P3 = P1 + (P2 + P3). &'

Proposition 4.4. Let P1 and P2 be programs. Then,

1. AS(P1) = {Lit} and AS(P2)
= ∅ imply AS(P1 + P2) = {Lit}.
2. AS(P1) = ∅ or AS(P2) = ∅ implies AS(P1 + P2) = ∅.

Proof. (1) When AS(P1) = {Lit}, it becomes P1 +P2 = R(Lit, T1) ; · · · ; R(Lit,
Tn) for AS(P2) = {T1, . . . , Tn }. Here, every R(Lit, Ti) (1 ≤ i ≤ k) has the
answer set Lit, so that the result follows by Proposition 4.1. (2) When AS(P1) =
∅, R(S, T) = ∅ for any T ∈ AS(P2) by Definition 4.2. Then, AS(P1 + P2) = ∅
by Proposition 4.1. &'

The program P1+P2 generally contains useless or redundant literals/rules, and
the following program transformations are useful to simplify the program: (i)
Delete a rule r from a program if head(r) ∩ body+(r)
= ∅ (elimination of tau-
tologies: TAUT); (ii) Delete a rule r from a program if there is another rule r′ in
the program such that head(r′) ⊆ head(r) and body(r′) ⊆ body(r) (elimination
of non-minimal rules: NONMIN); (iii) A disjunction (L;L) appearing in head(r)
is merged into L, and a conjunction (L,L) appearing in body(r) is merged into L
(merging duplicated literals: DUPL). These program transformations all preserve
the answer sets of an EDP [5].

330 C. Sakama and K. Inoue

Example 4.1. Consider two programs:

P1 : p← not q,

q ← not p,

s← p,

P2 : p← not r,

r← not p,

where AS(P1)={{p, s}, {q}} and AS(P2) = {{p}, {r}}. There are four R(S, T)’s
such that

R({p, s}, {p}) : p←, s← p,

R({p, s}, {r}) : p←, s← p, r←,
R({q}, {p}) : q ←, p←,
R({q}, {r}) : q ←, r ← .

Then, P1 + P2 contains the following seven rules (after applying DUPL):

p ; q ←, (1)
p ; r←, (2)
p ; q ; r ←, (3)
q ; s← p, (4)
q ; r ; s← p, (5)
p ; q ; s← p, (6)
p ; r ; s← p. (7)

Further, rules (3), (5), (6), and (7) are eliminated by NONMIN. Consequently,
the simplified program becomes

p ; q ←,
p ; r←,
q ; s← p.

In the resulting program, the first rule p ; q ← corresponds to the rules p ←
not q and q ← not p in P1. The second rule p ; r ← corresponds to the rules
p← not r and r ← not p in P2. On the other hand, one might wonder the effect
of q in the head of the third rule q ; s ← p. Without q, however, the set {p, q},
which is obtained by combining {q} ∈ AS(P1) and {p} ∈ AS(P2), does not
become an answer set of the resulting program.

Now we show that the operator + computes a composition of P1 and P2.

Lemma 4.5. Let P1 and P2 be two consistent programs, and S ∈ AS(P1) and
T ∈ AS(P2). Then, S ! T is an answer set of SP1 ∪ TP2.

Combining Answer Sets of Nonmonotonic Logic Programs 331

Proof. As P1 and P2 is consistent, neither SP1 nor TP2 contains integrity con-
straints (Proposition 2.2). When the NAF-free program SP1∪TP2 is inconsistent,
it has the answer set Lit. Suppose that S∪T is consistent. Since S satisfies every
rule in SP1 and T satisfies every rule in TP2, S ∪ T satisfies SP1 ∪ TP2. Contra-
diction. So S ∪ T is inconsistent. Then, S ! T = S ∪ T = Lit, and the result
holds. Next, consider the case that SP1 ∪ TP2 is consistent. Then, S is a minimal
set satisfying SP1 and T is a minimal set satisfying TP2. As (i) body(r) ⊆ S and
head(r) ⊆ S for any r ∈ SP1, and (ii) body(r′) ⊆ T and head(r′) ⊆ T for any
r′ ∈ TP2, it holds that S ∪ T satisfies SP1 ∪ TP2. Suppose that there is T ′ ⊂ T
such that S∪T ′ satisfies SP1∪TP2. For any L ∈ T \T ′, if L
∈ S, T ′ satisfies TP2.
But this cannot happen, since T is a minimal set satisfying TP2. Then, L ∈ S,
thereby S ∪ T = S ∪ T ′. Thus, S ∪ T is a minimal set satisfying SP1 ∪ TP2. As
SP1 ∪ TP2 is NAF-free and consistent, S ! T = S ∪ T becomes an answer set
of it. &'

It is worth noting that the above lemma does not hold if we use Gelfond-Lifschitz
reduction PS instead of SP . This is because PS

1 ∪ PT
2 may derive literals which

are not in S ∪ T . This is the reason why we use a new reduct in this paper.

Theorem 4.6. Let P1 and P2 be two consistent programs. Then, AS(P1+P2) =
min(AS(P1) ! AS(P2)).

Proof. Let U ∈ min(AS(P1)!AS(P2)). (i) If U = Lit, S∪T is inconsistent for
any S ∈ AS(P1) and for any T ∈ AS(P2) (Proposition 3.6). Then, R(S, T) has
the answer set Lit for any S ∈ AS(P1) and for any T ∈ AS(P2) (Lemma 4.5), so
AS(P1+P2) = {Lit} by Proposition 4.1. (ii) Else if U
= Lit, there is S ∈ AS(P1)
and T ∈ AS(P2) such that U = S ∪ T is consistent (Proposition 3.6). By
Lemma 4.5, U is an answer set of R(S, T). Then, U satisfies P1 + P2. Suppose
that there is a minimal set V ⊂ U which satisfies P1 + P2. In this case, V is a
minimal set satisfying some R(S′, T ′) in P1+P2 (Proposition 4.1). It then holds
that V = S′∪T ′ for some S′ ∈ AS(P1) and T ′ ∈ AS(P2) (by Lemma 4.5). Since
V ∈ AS(P1)!AS(P2) and V ⊂ U , U
∈ min(AS(P1)!AS(P2)). Contradiction.
Thus, U is a minimal set satisfying P1 + P2, so U ∈ AS(P1 + P2).

Conversely, let U ∈ AS(P1 + P2). (i) If U = Lit, R(S, T) is inconsistent for
any S ∈ AS(P1) and for any T ∈ AS(P2) (by Corollary 4.2). Then, S ∪ T is
inconsistent for any S ∈ AS(P1) and for any T ∈ AS(P2) (Lemma 4.5), thereby
min(AS(P1) ! AS(P2)) = {Lit}. (ii) Else if U
= Lit, U is a consistent minimal
set satisfying some R(S, T) in P1+P2 (Proposition 4.1). It then holds U = S∪T
for some S ∈ AS(P1) and T ∈ AS(P2) (by Lemma 4.5). Thus, U ∈ AS(P1) !
AS(P2). Suppose that there is a minimal set V ⊂ U such that V = S′ ∪ T ′ for
some S′ ∈ AS(P1) and T ′ ∈ AS(P2). In this case, V ∈ min(AS(P1) !AS(P2)),
and V becomes an answer set of P1 + P2 by the proof presented above. This
contradicts the assumption of U ∈ AS(P1 + P2). Hence, U ∈ min(AS(P1) !
AS(P2)). &'

Corollary 4.7. Let P1 and P2 be two categorical programs such that AS(P1) =
{S} and AS(P2) = {T }. Then, AS(P1 + P2) = {S ∪ T }.

332 C. Sakama and K. Inoue

Proof. When P1 and P2 are consistent, the result follows by Theorem 4.6. Sup-
pose that either P1 or P2 is inconsistent. Let AS(P1) = {Lit}. Then, LitP1 is
inconsistent. By P1 + P2 = LitP1 ∪ TP2, P1 + P2 is also inconsistent. Moreover,
LitP1 ∪ TP2 contains no integrity constraint (Proposition 2.2), so that it has the
inconsistent answer set Lit. Hence, the result holds. &'

Example 4.2. In Example 4.1, AS(P1 + P2) = {{p, q}, {p, s}, {q, r}}, which co-
incides with the result of composition.

Two programs P1 and P2 are merged by taking their union P1 ∪ P2. Program
composition and merging bring syntactically and semantically different results
in general, but there are some relations for special cases.

Proposition 4.8. For two NAF-free programs P1 and P2, if P1 ∪ P2 is consis-
tent, P1 + P2 is consistent.

Proof. If P1 ∪ P2 is consistent, there is SP1 for S ∈ AS(P1) and TP2 for
T ∈ AS(P2) such that SP1 ∪ TP2 is consistent. Then, P1 + P2 is consistent
by Corollary 4.2. &'

The converse of Proposition 4.8 does not hold in general.

Example 4.3. Let P1 = { p←} and P2 = {¬p← p }. Then, P1 + P2 = { p←},
but P1 ∪ P2 has the answer set Lit.

In the general case, there is no relation for the “easiness” of inconsistency arising
between composition and merging.

Example 4.4. Let P1 = { p ← not¬p } and P2 = {¬p ← not p }. Then, P1 ∪ P2
is consistent, but P1+P2 = { p← , ¬p←} is inconsistent. On the other hand,
let P3 = { p ← not q, q ← not r } and P4 = { r ← not p }. Then, P3 ∪ P4 is
inconsistent, but P3 + P4 = { q ; r←} is consistent.

For extended logic programs, the following syntactical and semantical relations
hold.

Proposition 4.9. For two NAF-free ELPs P1 and P2, P1 + P2 ⊆ P1 ∪ P2.

Proof. Any NAF-free ELP has at most one answer set. If AS(P1)
= ∅ and
AS(P2)
= ∅, let AS(P1) = {S} and AS(P2) = {T }. Then, P1 \ SP1 = { r |
r ∈ P1 and body(r)
⊆ S }, and SP1 \ P1 = ∅. This is also the case for P2. Since
P1 + P2 = SP1 ∪ TP2, the result follows. Else if AS(P1) = ∅ or AS(P2) = ∅,
P1 + P2 ⊆ SP1 ∪ TP2. Then, the result also holds. &'

Proposition 4.10. Let P1 and P2 be two consistent NAF-free ELPs. If AS(P1∪
P2)
= ∅, then U ⊆ V holds for the answer set U of P1 + P2 and the answer set
V of P1 ∪ P2.

Proof. Let AS(P1) = {S} and AS(P2) = {T }. Then, AS(P1 + P2) = {S ∪ T }.
If P1 ∪P2 is inconsistent, AS(P1 ∪ P2) = {Lit}. So, S ∪ T ⊆ Lit. Else if P1 ∪P2
has the consistent answer set V , S ∪ T is consistent by Proposition 4.8. Then,
S ∪ T ⊂ V by Proposition 4.9. &'

Combining Answer Sets of Nonmonotonic Logic Programs 333

Example 4.5. Let P1 = { p ← q } and P2 = { q ←}. Then, P1 + P2 = { q ←}
and P1 ∪ P2 = { p← q, q ←}. So P1 + P2 ⊆ P1 ∪ P2 and {q} ∈ AS(P1 + P2) is
a subset of {p, q} ∈ AS(P1 ∪ P2).

5 Permissible Composition

In Section 3, we introduced the compositional semantics of two programs and
Section 4 provided a method of composing programs. In this section, we argue
permissible conditions for the compositional semantics in multi-agent coordina-
tion. First, we introduce a criterion for selecting answer sets in the compositional
semantics.

Definition 5.1. Let P1 and P2 be two consistent programs, and Q a composi-
tion of P1 and P2. Then, any answer set S ∈ AS(Q) is consenting if it satisfies
every rule in P1 ∪ P2.

Example 5.1. Recall two programs P1 and P2 in Example 4.1:

P1 : p← not q,

q ← not p,

s← p,

P2 : p← not r,

r← not p,

where AS(P1) = {{p, s}, {q}} and AS(P2) = {{p}, {r}}. The compositional
semantics of P1 and P2 is AS(Q) = {{p, q}, {p, s}, {q, r}}. Among them, {p, s}
and {q, r} satisfy every rule in P1 ∪ P2, so they are consenting. Note that {p, q}
is not consenting because it does not satisfy the third rule of P1.

Consenting answer sets are good candidates for coordinative solutions, because
they satisfy the original program of each agent. A consenting answer set is possi-
bly inconsistent. Unfortunately, consenting answer sets do not always exist in the
compositional semantics. For instance, in Example 5.1 if P2 contains integrity
constraints ← s and ← q, no consenting answer set exists. Existence of no con-
senting answer set in general is not a serious flaw in the compositional semantics,
however. In fact, different agents have different beliefs in a multi-agent environ-
ment, and it may happen that one agent must give up some original belief to
reach an acceptable compromise. On the other hand, an agent may possess some
persistent beliefs that cannot be abandoned. Those persistent beliefs are retained
by each agent in coordination. Formally, persistent beliefs in a program P are
distinguished as PB ⊆ P where PB is the set of rules that should be satisfied
by the compositional semantics. In this setting, a variant of the compositional
semantics is defined as follows.

Definition 5.2. Let P1 and P2 be two programs, and PB1 and PB2 their per-
sistent beliefs, respectively. A program Ω is called a permissible composition of
P1 and P2 (sustaining PB1 and PB2) if it satisfies the condition

AS(Ω) = {S | S ∈ min(AS(P1) ! AS(P2)) and S satisfies PB1 ∪ PB2}.

334 C. Sakama and K. Inoue

The set AS(Ω) is called the permissible compositional semantics of P1 and P2.
Any answer set in AS(Ω) is called a permissible answer set. By the definition,
permissible composition adds an extra condition to the compositional semantics
of Definition 3.2. The permissible compositional semantics reduces to the com-
positional semantics when PB1∪PB2 = ∅. In particular, consenting answer sets
are permissible answer sets with PB1∪PB2 = P1∪P2. Every permissible answer
set satisfies persistent beliefs of each agent, and extends some answer sets of an
agent by additional information of another agent.

Program composition that reflects the permissible compositional semantics
is achieved by introducing every rule in PB1 ∪ PB2 as a constraint to P1 +
P2. Given a program P , let IC(P) = {← body(r), not head(r) | r ∈ P }
where not head(r) is the conjunction of NAF-literals {notL1, . . . , not Ll } for
head(r) = {L1, . . . , Ll }.

Theorem 5.1. Let P1 and P2 be consistent programs, and Ω a permissible com-
position of P1 and P2. Then, AS(Ω) = AS((P1 + P2) ∪ IC(PB1) ∪ IC(PB2)).

Proof. By the definition of AS(Ω) and the result of Theorem 4.6, S ∈ AS(Ω)
iff S is an answer set of P1 + P2 and satisfies PB1 ∪ PB2
iff S is an answer set of P1 + P2 and satisfies IC(PB1) ∪ IC(PB2)
iff S ∈ AS((P1 + P2) ∪ IC(PB1) ∪ IC(PB2)). &'

Example 5.2. Consider two programs P1 and P2 in Example 5.1 where PB1 =
{ s← p } and PB2 = ∅. Then, (P1 + P2) ∪ IC(PB1) ∪ IC(PB2) becomes

p ; q ←,
p ; r ←,
q ; s← p,

← p, not s,

which has two permissible answer sets {p, s} and {q, r}.

6 Discussion

A lot of studies exist for compositional semantics of logic programs (see [7, 12] for
excellent surveys). A semantics is compositional if the meaning of a program can
be obtained from the meaning of its components. The union of programs is the
simplest composition between programs. However, semantics of logic programs
is not compositional with respect to the union of programs even for definite
logic programs. For instance, two definite logic programs P1 = { p ← q } and
P2 = { q ←} have the least Herbrand models ∅ and {q}, respectively. But the
least Herbrand model of the program union P1 ∪P2 is not obtained by the com-
position of ∅ and {q}. To solve the problem, a number of different compositional
semantics have been proposed in the literature [7]. In composing nonmonotonic
logic programs, difficulty of the problem is understood as: “non-monotonic rea-
soning and compositionality are intuitively orthogonal issues that do not seem

Combining Answer Sets of Nonmonotonic Logic Programs 335

easy to be reconciled. Indeed the semantics for extended logic programs are typ-
ically non-compositional w.r.t. program union” [7]. With this reason, studies
for compositional semantics of nonmonotonic logic programs mainly concern
with the issue of devising a compositional semantics that can accommodate (re-
stricted) nonmonotonicity, or imposing syntactic conditions on programs to be
compositional [6, 8, 9, 14, 23].

Compared with those previous studies, our approach is different in the fol-
lowing aspects. First, our primary interest is not simply merging two programs
but building a new program that combines answer sets of the original programs.
Second, our program composition is intended to coordinate meanings of dif-
ferent programs, rather than to synthesize a program by its component. One
may wonder the practical value of such combination of answer sets aside from
original programs. For instance, given two programs P1 = {¬p ← not p } and
P2 = { p ←}, one would consider the meaning of a composed program as the
answer set {p} of P1 ∪P2. By contrast, our compositional semantics P1+P2 be-
comes inconsistent, that is, combination of {¬p} and {p} produces Lit. To justify
our position, suppose the following situation: the agent P1 does not believe the
existence of an alien unless its existence is proved, while the agent P2 believes the
existence of aliens with no doubt. The situation is encoded by the above two pro-
grams. Then, what conclusion should be drawn after combining these conflicting
beliefs of agents? If one simply merges beliefs by program union, the existence
of alien is concluded by the answer set {p}. In our compositional semantics, two
beliefs do not coexist thereby contradict. In multi-agent environments, different
agents have different levels of beliefs. A cautious agent might have knowledge
in a default form, while an optimistic agent might have knowledge in a definite
form. In this circumstance, it appears careless to simply merge knowledge from
different information sources. For another example, consider P3 = { p← q } and
P4 = { p ← not q, q ←}. Two agents have incompatible beliefs; P3 believes
that p holds if q holds, while P4 believes that p holds if q does not hold. Now P4
knows q, so that p is not believed. Merging two programs, however, p is derived
from P3∪P4. This is rather an unexpected consequence for P4. As argued in the
introduction, simple merging of different programs does not always reflect the
meaning of individual programs. We then took an approach of retaining belief
of each agent and combine answer sets of different programs. As a result, the
compositional semantics maintains information included in (at least one) answer
set of the original programs. It precisely combines the results of skeptical con-
sequences of original programs and does not introduce additional (unexpected)
consequences (Proposition 3.5). Note that program composition should be dis-
tinguished from revision or update, in which one of two information sources is
known more reliable. In the above example, it is reasonable to accept P1 ∪ P2
as a result of revision/update of P1 with P2. Because in this case P2 is consid-
ered new information which precedes P1. In program composition P1 and P2 are
supposed to have the same status, so there is no reason to rely P2 over P1. Sev-
eral studies argue combining different theories having priorities [2, 11, 13, 19, 21].
Priorities are useful to resolve conflicts among agents, however, it generally

336 C. Sakama and K. Inoue

introduces additional computational cost. Our compositional semantics does not
handle programs with different priorities, but prioritized coordination is partly
realized by permissible composition. If P1 is more reliable than P2, P1 is put as
persistent beliefs. Under the setting, every permissible answer set satisfies P1.

Baral et al. [1] introduce algorithms for combining logic programs by enforcing
satisfaction of integrity constraints. They request that every answer set of a
resulting program to be a subset of an answer set of P1 ∪ P2, which is different
from our requirement. Moreover, their algorithm is not applicable to unstratified
logic programs. The compositional semantics introduced in this paper does not
enforce satisfaction of integrity constraints of original programs. One reason for
this is that in nonmonotonic logic programs inconsistency may arise aside from
integrity constraints. For instance, the integrity constraint ← p has the same
effect as the rule q ← p, not q under the answer set semantics. Then, there
seems no reason to handle integrity constraints exceptionally in a program. If
desired, however, it is easy to have a variant of program composition satisfying
constraints as (P1 + P2) ∪ IC1 ∪ IC2, where ICi (i = 1, 2) is the set of integrity
constraints included in Pi. By the introduction of integrity constraints, every
answer set which does not satisfy IC1 ∪ IC2 is filtered out. This is also realized
by a permissible version of the compositional semantics by putting PB1 = IC1
and PB2 = IC2. Combination of propositional theories has also been studied
under the names of merging [18] or arbitration [20], but they do not handle
nonmonotonic theories.

Buccafurri and Gottlob [10] introduce a framework of compromise logic pro-
grams which aims at reaching common conclusions and compromises among logic
programming agents. Given a collection of programs T = {Q1, . . . , Qn}, the joint
fixpoints JFP (T) is defined as JFP (T) = FP (Q1)∩· · ·∩FP (Qn) where FP (Qi)
is the set of all fixpoints of Qi. Then, the joint fixpoint semantics of T is de-
fined as the set of minimal elements in JFP (T). The joint fixpoint semantics
is different from our compositional semantics. For instance, when two programs
P1 = { p ←} and P2 = ∅ are given, by FP (P1) = {{p}} and FP (P2) = {∅}
their joint fixpoint semantics becomes ∅. Interestingly, however, if a tautology
p← p is added to P2, FP (P2) turns to {∅, {p}} and the joint fixpoint semantics
becomes {{p}}. Thus, in their framework a rule p ← p has a special meaning
that “if p is required by another agent, let it be”. With this reading, however,
P1 = { p ←} and P3 = { p ← p, q ←} have the joint fixpoint semantics {∅},
that is, P3 does not tolerate p when another irrelevant fact q exists in the pro-
gram. By contrast, our compositional semantics becomes AS(P1 + P2) = {{p}}
and AS(P1 + P3) = {{p, q}}.

Sakama and Inoue [22] introduce a framework of coordination between logic
programs. They study two problems as follows: given two programs P1 and P2,
(i) find a program Q which has the set of answer sets such that AS(Q) =
AS(P1) ∪ AS(P2); and (ii) find a program R which has the set of answer sets
such that AS(R) = AS(P1) ∩ AS(P2). A program Q is called generous coor-
dination and R is called rigorous coordination of two programs. They provide
methods of building such programs. Compared with the program composition

Combining Answer Sets of Nonmonotonic Logic Programs 337

of this paper, generous/rigorous coordination does not change answer sets of
the original programs. That is, generous one collects every answer set of each
program, while rigorous one picks up answer sets that are common between
two programs. By contrast, we combine answer sets of each program in every
possible way. The resulting program and its compositional semantics are both
different from generous/rigorous coordination. Aside from such differences, the
present work is also applied to coordinate agents, so that it would be interesting
to investigate relations among those different types of coordination.

The program composition introduced in Section 4 produces NAF-free EDPs.
One may think this uneasy, because this is the case even for composing ELPs
containing no disjunction. Disjunctive programs are generally harder to compute,
so that it is desirable to have a non-disjunctive program as a result of composing
non-disjunctive programs. Technically, the program P1 + P2 is transformed to
a non-disjunctive program if P1 + P2 is head-cycle-free, that is, it contains no
positive cycle through disjuncts appearing in the head of a disjunctive rule [4].
If P1 + P2 is head-cycle-free, the program is converted to an ELP by shifting
disjuncts in the head of a rule to the body as NAF-literals in every possible way
but leaving one in the head. For instance, the program P1 + P2 in Example 4.1
is converted to the ELP: { p ← not q, q ← not p, p ← not r, r ← not p, q ←
p, not s, s← p, not q }. The resulting program has the same answer sets as the
original disjunctive program.

7 Conclusion

This paper has studied a compositional semantics of nonmonotonic logic pro-
grams. Given two programs, we first introduced combination of answer sets as
the compositional semantics of those programs. Then, we developed a method
of building a program which reflects the compositional semantics of the original
programs. A permissible composition was also introduced for multi-agent coor-
dination. The proposed framework provides a new compositional semantics of
nonmonotonic logic programs, and serves as a declarative basis for coordination
in multi-agent systems. From the viewpoint of answer set programming, program
composition is considered as a program development under a specification that
requests a program reflecting the meanings of two or more programs.

The approach taken in this paper requires computing every answer set of
programs before composition. This may often be infeasible when a program
possesses an exponential number of answer sets. The same problem arises in
computing answer sets by existing answer set solvers, however. This paper con-
sidered compositional semantics as minimal sets that reflect the meaning of
original programs. By contrast, a program may have non-minimal answer sets
in the context of general extended disjunctive programs which possibly con-
tain NAF in the heads of rules [17]. In this context, the compositional seman-
tics would be defined as a collection of non-minimal answer sets. These ex-
tensions and variants of compositional semantics will be investigated in future
study.

338 C. Sakama and K. Inoue

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions of Knowledge and Data Engineering, 3(2):208–220, 1991.

2. C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge
base consisting of first-order theories. Computational Intelligence, 8:45–71, 1992.

3. C. Baral and M. Gelfond. Logic programming and knowledge representation. Jour-
nal of Logic Programming, 19/20:73–148, 1994.

4. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 12(1):53–87, 1994.

5. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial
evaluation. Journal of Logic Programming, 32(3):207–228, 1997.

6. A. Brogi, S. Contiero, and F. Turini. Programming by combining general logic
programs. Journal of Logic and Computation, 9(1):7–24, 1999.

7. A. Brogi. On the semantics of logic program composition. Program Development
in Computational Logic, Lecture Notes in Computer Science, 3049, pp. 115–151,
Springer, 2004.

8. A. Brogi, E. Lamma, P. Mancarella, and P. Mello. A unifying view for logic pro-
gramming with nonmonotonic reasoning. Theoretical Computer Science, 184(1):1–
59, 1997.

9. F. Bry. A compositional semantics for logic programs and deductive databases.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 453–467, MIT Press, 1996.

10. F. Buccafurri and G. Gottlob. Multiagent compromises, joint fixpoints, and stable
models. Computational Logic: Logic Programming and Beyond, Lecture Notes in
Artificial Intelligence 2407, pp. 561–585, Springer, 2002.

11. F. Buccafurri, W. Faber, and N. Leone. Disjunctive programs with inheritance.
Proceedings of the 1999 International Conference on Logic Programming, pp. 79–
93, MIT Press, 1999.

12. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journal
of Logic Programming, 19/20:443–502, 1994.

13. M. De. Vos and D. Vermeir. Extending answer sets for logic programming agents.
Annals of Mathematics and Artificial Intelligence, 42: 103–139, 2004.

14. S. Etalle and F. Teusink. A compositional semantics for normal open programs.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
gramming, pp. 468–482, MIT Press, 1988.

15. W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic
programs: semantics and complexity. Proceedings of the 9th European Conference
on Logics in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 3229,
pp. 200–212, Springer, 2004.

16. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–385, 1991.

17. K. Inoue and C. Sakama. Negation as failure in the head. Journal of Logic Pro-
gramming, 35(1):39–78, 1998.

18. S. Konieczny and R. Pino-Pérez. On the logic of merging. Proceedings of the 6th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 488–498, Morgan Kaufmann, 1998.

19. J. A. Leite. Evolving Knowledge Bases, Specification and Semantics. IOS Press,
2003.

Combining Answer Sets of Nonmonotonic Logic Programs 339

20. P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering, 10(1):76–90, 1998.

21. S. Pradhan and J. Minker. Using priorities to combine knowledge bases. Journal
of Cooperative Information Systems, 5(2&3):333–364. 1996.

22. C. Sakama and K. Inoue. Coordination between logical agents. Proceedings of
the 5th International Workshop on Computational Logic in Multi-Agent Systems,
Lecture Notes in Artificial Intelligence 3487, pp. 161–177, Springer, 2005.

23. S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal open
logic programs. Proceedings of the 1997 International Symposium on Logic Pro-
gramming, pp. 371–385, MIT Press, 1997.

Speculative Constraint Processing with
Iterative Revision for Disjunctive Answers

Martine Ceberio1, Hiroshi Hosobe2, and Ken Satoh2

1 University of Texas at El Paso,
500 West University Avenue, El Paso, Texas 79968-0518, USA

mceberio@cs.utep.edu
2 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
{ksatoh, hosobe}@nii.ac.jp

Abstract. In multi-agents systems, incompleteness, due to either com-
munication failure or response delay, is a major problem to handle. To
face incompleteness, frameworks for speculative computation were pro-
posed (see references [5, 6, 7]). The idea developed in such frameworks is
to allow the asking agent, while waiting for the slave agents to reply, to
reason using default beliefs until replies are sent.

In particular, K. Satoh and K. Yamamoto [7] proposed a framework
that allows an agent not only to perform speculative computation, but
also to accept iterative answer revision for yes/no questions. In this pa-
per, we present an extension of the framework for more general types of
questions using constraint logic programming (CLP).

1 Introduction

Multi-agent systems are very fashionable and convenient, because they make it
possible, for instance, to take advantage of multi-processor machines, and also
make it possible to design human-like efficient organizations of agents. The main
limitation to such an approach is that, as also arises in human organizations,
communication may be an issue: delayed or broken, it leads to incompleteness
of the information in the reasoning structure.

This is a concrete concern when we consider distributed systems such as the
Internet, in which communication is indeed not guaranteed, and even if we could
guarantee it, communication may either take time, or agents themselves may
delay their sending information.

For such non-ideal, but as we believe, practical situations, when problem-
solving is at stake, frameworks for speculative computations were proposed: first
for yes/no questions only [6], and then for general questions [5] using constraints.

K. Satoh et al. [6] and K. Satoh, P. Codognet, and H. Hosobe [5] only provided
the possibility for the master agent to perform speculations and a returned
answer from the slave agent is final and with no possibility of a change in answers.
However, if we let every agent perform speculative computation, the asked agent
may revise his answer since the previous answer sometimes depends on the asked

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 340–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Speculative Constraint Processing with Iterative Revision 341

agent’s belief, which might turn out to be false. Therefore, a chain reaction of
belief revision among agents might occur, which was firstly observed by K. Satoh
and K. Yamamoto [7], and they provide a revisable speculative computation
method for yes/no questions. The essential part of their work is a dynamic
iterative belief revision mechanism that can handle a revision of an answer for
query even during the execution.

Belief revision is indeed very important for both the sake of flexibility (infor-
mation is processed before it is complete), and speed of computation (time is
saved in case prior information is later entailed).

We combine the methods proposed by K. Satoh et al. [5, 7], and extend them,
so that we can handle iterative answer revision for a query with constraints. We
also complete these methods with the ability to incorporate disjunctive answers.
So, the main contribution from this paper is the definition of the framework
that enables to perform speculative computations on constraints, while handling
belief revision, and that handles disjunctive answers as well. In particular, the
main challenges with this framework are the following:

– First, processing speculative constraints, as shown by K. Satoh et al. [5], is
manageable when belief revision is not considered. In our research, belief re-
vision is made possible because it enables more speculative computation in
multi-agent systems. This makes the problem much harder: the process man-
agement needs to be modified to enable changes in the computation at any
time, while maintaining a reasonable balance between not being too space-
consuming, and not loosing too much time (i.e., we don’t want to start from
scratch all the time). The process management is presented in detail in this
paper, as well as the results on the space complexity of our operational model.

– The second challenging point described in this paper is the way disjunction
is now handled in the framework we propose. Indeed, considering the situ-
ation where each agent’s behavior is specified as a CLP program, we need
to handle alternative answers, since these answers may come from differ-
ent derivations in CLP. By manipulating such alternative answers, we face
another complication, in that we need to distinguish a revised answer of
a previous answer, from an answer derived from an alternative derivation
path. To solve this problem, we devise an answer entry that keeps track of
the usage status of the answer in processes. This new feature impacts the
way processes are managed, as described in Section 3, and therefore makes
the problem more complicated.

For an iterative belief revision, many proposals have been described. As far
as we know, existing frameworks separate reasoning and belief revision, except
those by K. Satoh et al. [5, 6, 7] and that by F. Sadri and F. Toni [4]. Our frame-
work in this paper is along the line of the works of K. Satoh et al. in a more
general setting. F. Sadri and F. Toni proposed an abductive logic programming
proof procedure, called LIFF, that enables the interleaving of belief revision and
reasoning. The advantage of LIFF is that it allows the addition and deletion
of rules, while our framework processes only the addition and deletion of con-
straints. However, our framework allows predicate cases, while LIFF handles

342 M. Ceberio, H. Hosobe, and K. Satoh

only propositional cases. In addition, our framework does not require recompu-
tation for constraint narrowing, whereas LIFF needs to recompute goals related
to updated rules. Also, our framework performs computation along plausible
paths by using default rules, while LIFF does not adopt such explicit control.

There are works on the formalization of an agent in terms of logic program-
ming, such as that conducted by R. A. Kowalski and F. Sadri [3]. Although
these works are important in their own right, our paper pursues another branch
of investigation in the context of speculative computation.

The most closely related research would be constraint programming languages,
such as Andorra Kernel Language (AKL) [2] and Oz [8], which perform a kind
of speculative computation. AKL allows local speculative variable bindings in
a guard of each clause until one of the guards succeeds, and Oz can control
multiple computation spaces, each of which represents an alternative path of
constraint processing. As far as we understand, however, speculative computa-
tion used in these languages is mainly meant for or-parallel computing, where all
alternative paths of computation are executed in parallel, until one of the paths
eventually succeeds. On the other hand, we regard a speculative computation
as a default computation where the most plausible paths of computation are
executed. Moreover, they do not consider any revision of the answers.

The structure of the paper is as follows. We firstly define the framework for spec-
ulative constraint processing and semantics of the framework. Then, we describe
an operational model, show an example of an execution, and state correctness of
our model. Finally, we discuss space complexity issues, before concluding.

2 Speculative Constraint Processing

In this section, we provide a framework of speculative constraint computation
based on the CLP framework [1]. This framework is designed so that an agent not
only performs speculative constraint processing but also accepts revised and alter-
native answers.We then define the semantics of this framework, in Sub-section 2.2.

2.1 Framework Definition

Definition 1. Let Σ be a finite set of constants. We call an element in Σ a slave
agent identifier. An atom is of the form either p(t1, ..., tn) or p(t1, ..., tn)@S, where
p is a predicate, ti(1 ≤ i ≤ n) is a term, and S is in Σ.

We call an atom with an agent identifier an “askable atom”, and an atom without
an identifier a “non-askable atom”.

Definition 2. A framework for speculative constraint computation, in a master-
slave system, is a triple 〈Σ,Δ,P〉, where:

– Σ is a finite set of constants;
– Δ is a set of rules of the following form, called default rule w.r.t. Q@S:

Q@S ← C‖,

Speculative Constraint Processing with Iterative Revision 343

where Q@S is an askable atom, each of whose arguments is a variable, and C
is a set of constraints, called default constraint for Q@S;

– P is a constraint logic program, that is, a set of rules R of the form:

H ← C‖B1, B2, ..., Bn,

where:
• H is a non-askable atom; we refer to H as the head of R, denoted as
head(R);

• C is a set of constraints, called the constraint of R, and denoted as
const(R);

• each Bi of B1, ..., Bn is either an askable atom or a non-askable atom, and
we refer to B1, ..., Bn as the body of R denoted as body(R).

Note that a default is not necessarily specified for every askable atom. Moreover,
we allow multiple defaults for the same askable atom.

Example 1. We consider the following example of a hotel room reservation. There
is a master agent m: m asks travelers a and b. If both travel, m reserves a twin
room. If only one of them travels,m reserves a single room. Agent m has default
information about the status of a and b for days 1, 2 and 3, but the real status will
be obtained directly from a and b, and the status is therefore likely to be changed.

This example can be represented as the following multi-agent system 〈Σ,
Δ,P〉1:

– Σ is the set of slave agents. Here, there is one master agent,m, and two slave
agents, a and b. Therefore, Σ = {a, b}.

– Δ is the set of default information (default rules), assumed by the master
agent. In particular, let us suppose that m assumes that a is free on days 1
and 2, but busy on day 3, and that b is free on day 2, and busy on day 1. Then
the corresponding set Δ is as follows:

Δ = { d1 : fr(D)@a←D=1‖,
d2 : fr(D)@a←D=2‖, d3 : bs(D)@a←D=3‖,
d4 : fr(D)@b←D=2‖, d5 : bs(D)@b←D=1‖.}

Let us remark that it is not necessary for default information to exist for all
cases. In particular, m has no default information concerning the status of b
on day 3.

– P is a constraint logic program, to be solved by agent m. In our case of the
hotel room reservation with the two travelers, it is made of the following set
of rules:

1 A string beginning with an upper-case letter represents a variable and a string be-
ginning with a lower-case letter represents a constant. We abbreviate “free” as fr,
“busy” as bs, “travel” as trvl, “reserve” as rsv, “twin room” as tr, and “single room”
as sr.

344 M. Ceberio, H. Hosobe, and K. Satoh

rsv(R,L,D) ← R= tr, L=[a, b]‖fr(D)@a, fr(D)@b.
rsv(R,L,D) ← R=sr, L=[a]‖fr(D)@a, bs(D)@b.
rsv(R,L,D) ← R=sr, L=[b]‖bs(D)@a, fr(D)@b.

In order to solve this constraint satisfaction problem, agentm will have to ask
agents a and b about fr(D)@a, bs(D)@a, fr(D)@b, bs(D)@b.

2.2 Semantics of Speculative Constraint Processing

For the semantics of the above framework, we index the semantics of a constraint
logic program by a reply set, which specifies a reply for an askable atom.

Definition 3. A reply set is a set of rules in the form:

Q@S ← C‖,

where Q@S is an askable atom, each of whose arguments is a variable, and C is a
constraint over these variables.

Let 〈Σ,Δ,P〉 be a framework for speculative constraint computation, and R be
a reply set. A belief state w.r.t. R and Δ is a reply set defined as:

R∪ {“Q@S ← C‖” ∈ Δ | ¬∃ C′ s.t. “Q@S ← C′‖” ∈ R}

and denoted as BEL(R, Δ).

We introduce the above belief state since, if the answer is not returned, we use a
default rule for an unreplied askable atom.

Definition 4. A goal is of the form← C‖B1, ..., Bn, whereC is a set of constraints
and theBi’s are atoms. We callC the constraint of the goal andB1, ..., Bn the body
of the goal.

Definition 5. A reduction of a goal ← C‖B1, ..., Bn w.r.t. a constraint logic pro-
gram P, a reply set R, and an atom Bi, is a goal ← C′‖B′ such that:

– there is a rule R in P ∪R s.t. C ∧ (Bi = head(R)) ∧ const(R) is consistent2;
– C′ = C ∧ (Bi = head(R)) ∧ const(R);
– B′ = {B1, ...Bi−1, Bi+1, ..., Bn} ∪ body(R).

Definition 6. A derivation of a goal G =← C‖Bs w.r.t. a framework for spec-
ulative constraint computation F = 〈Σ,Δ,P〉 and a reply set R is a sequence of
reductions “← C‖Bs”,...,“← C′‖∅”3 w.r.t. P and BEL(R, Δ), where in each re-
duction step, an atom in the body of the goal in each step is selected. C′ is called
an answer constraint w.r.t. G, F , and R. We call a set of all answer constraints
w.r.t. G, F , and R the semantics of G w.r.t. F and R.

2 A notation Bi = head(R) represents a conjunction of constraints equating the argu-
ments of atoms Bi and head(R).

3 ∅ denotes an empty goal.

Speculative Constraint Processing with Iterative Revision 345

In the above definition, we only consider the most recent reply set, whereas a reply
set might be varied during execution according to the slave agent’s answer revi-
sion. We use the most recent reply set because it reflects the current situation of
the slave agents. Let us remark that the order of reply messages is assumed to be
preserved; that is, reply messages are always received by the master agent in the
order that they are sent by the slave agent.

3 Operational Model for Speculative Computation with
Iterative Answer Revision

3.1 Overview of the Operational Model

The execution of the speculative framework is based on two phases: a process re-
duction phase and a fact arrival phase. The process reduction phase is a normal
execution of a program in a master agent, and the fact arrival phase is an inter-
ruption phase when an answer arrives from a slave agent.

For the operational model, we use the following two kinds of objects: a process
and an answer entry.

Each process represents an alternative way of computation. Processes are cre-
ated when a choice point of computation is encountered, such as case splitting,
default handling, and answer arrival. A process becomes a finished process when
the body of the associated goal with the process becomes empty. A process fails
when some used default constraints are found to contradict the newly returned
answer.

An answer entry is used to distinguish alternative answers and to detect which
old answer corresponds to the newly revised answer. This detection is done by
attaching an ID to each answer. If a new answer with an ID different from any
existing answer comes, it is an alternative answer. Otherwise, the new answer is
considered as a revised answer to the old answer with the same ID.

Figures 1–4 intuitively explain how processes are updated according to ask-
able atoms. In the tree, each node represents a process, but we only show con-
straints associated with the process. The top node represents a constraint for
the original process, and the other nodes represent added constraints for the re-
duced processes. Let us note that we specify true for non-top nodes without added
constraints, since the addition of the true constraint does not influence the so-
lutions of existing constraints. The leaves of the process tree represent the cur-
rent processes. Therefore, the processes that are not in the leaves are deleted
processes.

Figure 1 shows a situation of the processes represented as a tree when an askable
atom, whose reply has not yet arrived, is executed in the process reduction phase.
In this case, the current process, represented by the processed constraints C, is
split into two different kinds of processes: the first one is a process using default
information, Cd, and is called default process4; and the other one is the current
process C itself, called original process, suspended at this point.

4 In this figure, we assume that there is only one default for brevity.

346 M. Ceberio, H. Hosobe, and K. Satoh

C

Cd
true

suspended

Fig. 1. When Q@S is processed during the process reduction phase

C

Cd true

. . .

Cf true
suspended

Cf true
suspended

Cf ∧ ¬ Cd true
suspended

Fig. 2. When first answer Cf for Q@S arrives

Note that, if there are multiple definitions of defaults, we will have more than
one default process, but still only one suspended process. In addition, let us note
that the reason for suspending the processes (which is, keeping them in memory),
is that in case of a contradictory revision of the default, or the arrival of later
alternative answers, it is essential to remember the original processes to be able
to restore them.

When, after some reduction of the default processes (represented in Fig. 2 by
dashed lines), the first answer comes from a slave agent, expressing constraint Cf

for this askable literal, we update the default processes as well as the original sus-
pended process as follows:

– Default processes are reduced to two different kinds of processes: the first kind
is a process adding Cf to the problem to solve, and the other is the current
process itself which is suspended at this point5.

– The original process is reduced to two different kinds of processes as well: the
first kind is a process adding ¬Cd ∧ Cf , and the other is the original process,
suspended at this point.

Let us remark that although the tree of processes grows, only the leaves are kept
in memory.

To intuitively explain the correctness of the above process update, we define the
frontier, which represents the computation status of all alternative derivations. A
frontier w.r.t. a goal ← C‖Bs, a framework for speculative constraint computa-
tion 〈Σ, Δ, P〉, and a reply set R, is a set of goals defined as follows:

5 Let us remark that this splitting process is similar to the splitting process above-
described for the case of a first default used.

Speculative Constraint Processing with Iterative Revision 347

1. The set consisting of the initial goal, {← C‖Bs} is a frontier.
2. Let F be a frontier w.r.t. the above initial goal, the framework, and the reply

set. If a goal G is in F , B is an atom in G, and RGs = {G′| G′ is a reduction
of G w.r.t. P , BEL(R, Δ), and B}, then F\{G} ∪ RGs is a frontier.

Then we have the following properties.

Lemma 1. Let ← C‖Bs be a goal, F be a frontier of this goal, and C′ be a con-
straint. If we add C′ to the constraints of every goal in F , then the disjunctions of all
answer constraints of these modified goals is logically equivalent to the disjunction
of all answer constraints of the goal ← C ∧ C′‖Bs.

Lemma 2. Let ← C‖Bs be a goal, R be a reply set, and C′ be a constraint. Then,
the disjunction of answer constraints of ← C ∧ C′‖Bs and ← C ∧ ¬C′‖Bs is
logically equivalent to the disjunction of all answer constraints of ← C‖Bs.

Let ← C‖Bs be a goal containing Q@S. Suppose that it is reduced into ←
C ∧ Cd‖Bs\{Q@S} by a default rule “Q@S ← Cd‖”. Let F be a frontier of
← C ∧ Cd‖Bs\{Q@S} when the first reply “Q@S ← Cf‖” is returned. Since
our semantics considers the most recent replies, at this point, we should consider:

← C ∧ Cf‖Bs\{Q@S},

instead of:
← C ∧ Cd‖Bs\{Q@S}.

One possibility to implement this change is that we just discard F and invoke a
new goal ← C ∧ Cf‖Bs\{Q@S}. However, in this case, we throw every compu-
tation away before F is obtained. To retain the previous computation as much as
possible, we propose the following execution.

1. We add Cf to the constraint of every goal in F . Let us remark that the dis-
junction of all answer constraints from this new frontier is logically equivalent
to the disjunction of all answer constraints of ← C ∧ Cd ∧ Cf‖Bs\{Q@S}, as
Lemma 1 states. This computation keeps the previous computation, which is
consistent with the new reply (Cf).

2. In addition to the above computation, we also start computing a new goal:

← C ∧ ¬Cd ∧ Cf‖Bs\{Q@S}

to guarantee completeness. This is because the disjunction of all answer con-
straints derived from ← C ∧ Cd ∧ Cf‖Bs\{Q@S} and ← C ∧ ¬Cd ∧
Cf‖Bs\{Q@S} is logically equivalent to the disjunction of all answer con-
straints derived from ← C ∧ Cf‖Bs\{Q@S}, as Lemma 2 states.

When an alternative answer, with the constraint Ca, comes from a slave agent
(Fig. 3), we need to follow the same procedure as when the first answer comes
(Fig. 2), except that now the processes handling only default information are sus-
pended. So, this is done by splitting the suspended default process(es), in order

348 M. Ceberio, H. Hosobe, and K. Satoh

C

Cd true

. . .

Cf

. . .

true

Ca true
suspended

Cf

. . .

true

Ca true
suspended

Cf ∧ ¬ Cd

. . .

true

Ca ∧ ¬Cd true
suspended

Fig. 3. When alternative answer Ca for Q@S arrives

to obtain the answer constraints that are logically equivalent to the answer con-
straints of:

← C ∧ Cd ∧ Ca‖Bs\{Q@S},

as well as by splitting the suspended original process, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of ← C ∧¬Cd ∧
Ca‖Bs\{Q@S} (Fig. 3). By gathering these answer constraints, we can compute
all answer constraints for the alternative reply.

On the other hand, when a revised answer with the constraint Cr arrives, all
processes using the first (or current) answer are split, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of:

← C ∧ Cf ∧ Cr‖Bs\{Q@S},

and the suspended original process is split as well, in order to obtain the answer
constraints that are logically equivalent to the answer constraints of ← C ∧¬Cf ∧
Cr‖Bs\{Q@S} (Fig. 4). By gathering these answer constraints, we can override
the previous reply by the revised reply.

3.2 Preliminary Definitions

A process is either an ordinary process or a finished process. An ordinary process
P is an expression of the form 〈PID, C, GS, WA, AA〉, where:

– PID: the ID for a process denoted as pid(P);
– C: the current constraint in the goal denoted as pconst(P);
– GS: the body in the goal denoted as gs(P);
– WA: a set of pairs 〈Q@S, WAID〉, where Q@S is an askable atom and WAID

is the ID of an answer entry whose answer is awaited by the process. We denote
WA as wa(P);

– AA: a set of pairs 〈Q@S, AAID〉, where Q@S is an askable atom and AAID
is the ID of an answer entry whose answer is used in the process. We denote
AA as aa(P).

Speculative Constraint Processing with Iterative Revision 349

C

Cd true

. . .

Cf

. . .

Cr Cr

true
suspended

Cf

. . .

Cr Cr

true
suspended

Cf ∧ ¬ Cd

. . .

Cr Cr

true

Cr ∧ ¬Cf true
suspended

Fig. 4. When revised answer Cr for Q@S arrives

A finished process FP is an expression of the form 〈Query, FPID, C〉, where:

– Query: an initial query for this process. It is used to send an answer to the
asking agent;

– FPID: the ID for a process. This is also used when this answer is returned to
the asking agent;

– C: the current constraint in the process.

For simplicity, an ordinary process is sometimes just called a process.
An answer entry A is an expression of the form 〈Q@S, AID, C, UPIDs〉, where:

– Q@S: the query given to the other agent denoted as aq(A);
– AID: the ID for an answer entry denoted as aid(A). We have the special IDs,

“o” for the answer entry created when this query is firstly asked, and “d1”,...
for default answers. We call an answer entry with the ID “o” an original answer
entry for Q@S, an answer entry with an ID of “d1”,... a default answer entry,
and other answer entries ordinary answer entries;

– C: the most recent answer constraint for Q@S for answer entry A denoted as
aconst(A). The constraint of the original answer entry is defined as true;

– UPIDs: the set of IDs of processes using an answer in A denoted as ups(A).

3.3 Process Reduction Phase

In the process reduction phase, we process the constraints in a regular CLP way.
The only difference is that we may have to consider default information, or an-
swers. In this subsection, we describe how we manage processes, following the
above-given definitions.

We do the following until no more processes can be processed.

– When a query Qinit@Sself is asked from another agent S′, where Sself is the
ID for this agent, we record Qinit as the initial query and S′ as the asking
agent. We then create a new process 〈PID, true, Qinit, ∅, ∅〉, where PID is a
new process ID.

350 M. Ceberio, H. Hosobe, and K. Satoh

– If there is an ordinary process P such that gs(P) = wa(P) = ∅,
1. We send an answer to the asking agent S′ that is of the form:

〈Qinit@Sself , pid(P), pconst(P)〉.
2. We change this process into a finished process of the form:

〈Qinit@Sself , pid(P), pconst(P)〉.
– Else if there is a process P such that gs(P) �= ∅ and wa(P) = ∅, then we select

an atom L in gs(P) and reduce L as follows:
• If L is a non-askable atom,

1. For every rule R such that pconst(P) ∧ (L = head(R)) ∧ const(R) is
consistent, we do the following:
(a) We create a new process 〈newPID, newC, GS, ∅, AA〉, where

∗ newPID is a new process ID;
∗ newC := pconst(P) ∧ (L = head(R)) ∧ const(R);
∗ GS := body(R) ∪ gs(P)\{L};
∗ AA := aa(P).

(b) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P),
ups(A) := ups(A) ∪ {newPID}.

2. For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P),
ups(A) := ups(A)\{pid(P)}.

3. We delete P .
• If L is an askable atom Q@S,

1. We do either of the following according to non-arrival/arrival of the
answer.

∗ If there is no ordinary answer entry of the form
〈Q@S, AID, C, UPIDs〉, then for each default “Q@S ← Cd‖”
such that pconst(P) ∧ Cd is consistent, we do the following:

(a) We create a new process 〈newPID, newC, GS, ∅, AA〉, where
· newPID is a new process ID;
· newC := pconst(P) ∧ Cd;
· GS := gs(P)\{Q@S};
· AA := aa(P)∪{〈Q@S, d〉}, where d is an ID for this default.

(b) We associate the newly created process with a default d of Q@S
as follows:
· If there is a default answer entry

Ad = 〈Q@S, d, Cd, UPIDsd〉, then
ups(Ad) := UPIDsd ∪ {newPID}.

· Else if there is no default answer of the form
〈Q@S, d, Cd, UPIDsd〉, we create an answer entry
〈Q@S, d, Cd, {newPID}〉.

(c) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P),
ups(A) := ups(A) ∪ {newPID}.

∗ Else if there is an ordinary answer entry of the form
〈Q@S, AID, C, UPIDs〉, then for each ordinary answer entry
〈Q@S, AID, Ca, UPIDs〉 s.t. pconst(P)∧Ca is consistent, we do
the following:

Speculative Constraint Processing with Iterative Revision 351

(a) We create a new process 〈newPID, newC, GS, ∅, AA〉, where
· newPID is a new process ID;
· newC := pconst(P) ∧ Ca;
· GS := GS\{Q@S};
· AA := aa(P) ∪ {〈Q@S, AID〉}.

(b) For every answer entry A s.t. 〈aq(A), aid(A)〉 in aa(P),
ups(A) := ups(A) ∪ {pid(P)}.

2. We associate P with Q@S as follows:
∗ If there is an original answer entry

Ao = 〈Q@S, o, true, UPIDso〉, then
ups(Ao) := UPIDso ∪ {pid(P)}.

∗ Else if there is no original answer entry of the form
〈Q@S, o, true, UPIDs〉, we create an answer entry
〈Q@S, o, true, {pid(P)}〉, and send a question Q to S.

3. wa(P) := {〈Q@S, o〉}.

3.4 Fact Arrival Phase

Suppose that an answer is returned from an agentS for a questionQ@S of the form
〈Q@S, AID, C〉. Then, we do the following after one step of process reduction is
finished.

– If there is no answer entry of the form 〈Q@S, AID, Cf , UPIDs′〉6,
1. We create an answer entry 〈Q@S, AID, C, UPIDs〉, where UPIDs is ini-

tially set to ∅, but will be incremented as shown below.
2. For every default answer entry for a default d of the form

〈Q@S, d, Cd, UPIDsd〉 and for every process Pd such that pid(Pd) ∈
UPIDsd, we do the following:

• If Pd is a finished process of the form 〈Qinit@Sself , P ID,
CFinal〉 s.t. C ∧ CFinal �= CFinal, we send an answer of the form
〈Qinit@Sself , P ID, C ∧ CFinal〉 to the asking agent S′.

• If Pd is an ordinary process, we do the following:
(a) wa(Pd) := wa(Pd) ∪ {〈Q@S, d〉}.
(b) aa(Pd) := aa(Pd)\{〈Q@S, d〉}.
(c) If C ∧ pconst(Pd) is consistent, we do the following:

i. We create anewprocess 〈newPID, newC, GS, WA, AA〉, where
∗ newPID is a new process ID;
∗ newC := C ∧ pconst(Pd);
∗ GS := gs(Pd);
∗ WA := wa(Pd)\{〈Q@S, d〉};
∗ AA := aa(Pd) ∪ {〈Q@S, AID〉}\{〈Q@S, d〉}.

ii. UPIDs := UPIDs ∪ {newPID}.
3. Pick up the original answer entry of the form 〈Q@S, o, true, UPIDso〉.
4. For every process Po such that pid(Po) ∈ UPIDso and C ∧pconst(Po)∧∧

(Q@S←Cd‖)∈Δ ¬Cd is consistent, do the following:

6 This means that the arriving answer is a first or alternative answer to the query Q@S.

352 M. Ceberio, H. Hosobe, and K. Satoh

(a) We create a new process 〈newPID, newC, GS, WA, AA〉, where
• newPID is a new process ID;
• newC := C ∧ pconst(Po) ∧

∧
(Q@S←Cd‖)∈Δ ¬Cd;

• GS := gs(Po);
• WA := wa(Po)\{〈Q@S, o〉};
• AA := aa(Po) ∪ {〈Q@S, AID〉}.

(b) UPIDs := UPIDs ∪ {newPID}.
– Else if there is an answer entry of the form 〈Q@S, AID, Cf , UPIDs′〉7,

1. We change 〈Q@S, AID, Cf , UPIDs′〉 into 〈Q@S, AID, C, UPIDs〉,
where UPIDs := UPIDs′ initially but will be incremented/decremented
as shown below.

2. For every process P such that pid(P) ∈ UPIDs′ do the following:
• If P is a finished process of the form 〈Qinit@Sself , P ID, CFinal〉 s.t.

C ∧ CFinal �= CFinal, we send an answer of the form
〈Qinit@Sself , P ID, C ∧ CFinal〉 to the asking agent S′.

• If P is an ordinary process, we do the following:
∗ If C ∧ pconst(P) is consistent,

pconst(P) := C ∧ pconst(P).
∗ Otherwise, delete P and

UPIDs := UPIDs\{pid(P)}.
3. Pick up the original answer entry of the form 〈Q@S, o, true, UPIDso〉.
4. For every process Po such that pid(Po) ∈ UPIDso and C ∧ pconst(Po) ∧

¬Cf is consistent, we do the following:
(a) We create a new process 〈newPID, newC, GS, WA, AA〉, where

• newPID is a new process ID;
• newC := C ∧ pconst(Po) ∧ ¬Cf ;
• GS := gs(Po);
• WA := wa(Po)\{〈Q@S, o〉};
• AA := aa(Po) ∪ {〈Q@S, AID〉}.

(b) UPIDs := UPIDs ∪ {newPID}.

3.5 Execution Trace Example

We show a part of an execution trace for a question rsv(R, L, D) in Example 1.
In this trace, we consider a scenario that highlights process updates upon arrivals
of an alternative answer and a revised answer. We firstly give the initial process
〈p0, true, {rsv(R, L, D)}, ∅, ∅〉.

1. Select process p0 and reduce it to p1, p2, p3.
Processes:
〈p1,{R= tr, L=[a, b]}, {fr(D)@a, fr(D)@b},∅,∅〉,
〈p2,{R=sr, L=[a]}, {fr(D)@a, bs(D)@b},∅,∅〉,
〈p3,{R=sr, L=[b]}, {bs(D)@a, fr(D)@b},∅,∅〉.

7 This means that the arriving answer is a revised answer of one of the previous answers
to the query Q@S.

Speculative Constraint Processing with Iterative Revision 353

2. Select p1, and ask a question fr(D)@a, and create answer entries for fr(D)@a
and new processes p4, p5 for default answers.
Answer entries:
〈fr(D)@a, o, true, {p1}〉,
〈fr(D)@a, d1, {D = 1}, {p4}〉,
〈fr(D)@a, d2, {D = 2}, {p5}〉.
Processes: p2, p3,
〈p4, θtr ∪ {D = 1}, {fr(D)@b}, ∅, {〈fr(D)@a, d1〉}〉8,
〈p5, θtr ∪ {D = 2}, {fr(D)@b}, ∅, {〈fr(D)@a, d2〉}〉,
〈p1, θtr, {fr(D)@b}, {〈fr(D)@a, o〉}, ∅〉.

3. Suppose that 〈fr(d)@a, a1, {D=2}〉 is returned from agent a. We suspend p4
and p5 since they use a default answer and then create new processes p6 from
p5 since the default answer used in p5 is consistent with the returned answer.
Note that we create no new process from p1 since the returned answer contra-
dicts one of the negations of default answers.
Answer entries: frao, frad1 , frad2

9,
〈fr(D)@a, a1, {D = 2}, {p6}〉.
Processes: p1, p2, p3,
〈p6, θtr2, {fr(D)@b}, ∅, {〈fr(D)@a, a1〉}〉,
〈p4, θtr1, {fr(D)@b}, {〈fr(D)@a, d1〉}, ∅〉,
〈p5, θtr2, {fr(D)@b}, {〈fr(D)@a, d2〉}, ∅〉10.

4. Suppose that 〈fr(D)@a, a2, {D = 3}〉 is returned from the agent a. Since this
has a different answer ID from the previous answer in the last step, this an-
swer is an alternative answer. Then, we create a new process from p1 that is
the original process for query fr(D)@a. Note that we create no new process
from the processes created by default answers for fr(D)@a since this answer
contradicts the defaults.
Answer entries: frao, frad1 , frad2 , fraa1

11,
〈fr(D)@a, a2, {D = 3}, {p7}〉.
Processes: p1, p2, p3, p4, p5, p6,
〈p7, θtr ∪ {D = 3, D �= 1, D �= 2}, {fr(D)@b}, ∅, {〈fr(D)@a, a2〉}〉.

5. Suppose that 〈fr(D)@a, a1, {D = 1}〉 is returned from the agent a. The ID
a1 for the returned answer indicates that this answer is a revised answer for
“D = 2”. Therefore, we revise every process using a1, which is recorded in the
answer entry fraa1 . This is p6, but its associated constraint is contradictory
to the returned answer, and therefore we kill this process. Then, we create a
new process p8 from p1.

8 θtr = {R = tr,L = [a, b]}.
9 frao = 〈fr(D)@a, o, true, {p1}〉,

frad1 = 〈fr(D)@a, d1, {D = 1}, {p4}〉,
frad2 = 〈fr(D)@a, d2, {D = 2}, {p5}〉.

10 θtr2 = θtr ∪ {D = 2} and θtr1 = θtr ∪ {D = 1}.
11 fraa1 = 〈fr(D)@a, a1, {D = 2}, {p6}〉.

354 M. Ceberio, H. Hosobe, and K. Satoh

Answer entries: frao, frad1 , frad2 , fraa2
12,

〈fr(D)@a, a1, {D = 1}, {p8}〉.
Processes: p1, p2, p3, p4, p5, p7,
〈p8, θtr ∪ {D = 1, D �= 2}, {fr(D)@b}, ∅, {〈fr(D)@a, a1〉}〉.

4 Correctness of the Operational Model

We guarantee that the above operational model gives a correct answer w.r.t. the
most recent replies. Let us note that the order of reply messages is assumed to be
preserved.

Theorem 1. Let 〈Σ, Δ, P〉 be a framework for speculative constraint computa-
tion. Suppose that there is an ordinary process P such that gs(P) = wa(P) = ∅
for the initial query Qinit. Let

R = {“Q@S ← C‖” | there exists an answer entry 〈Q@S, AID, C, UPIDs〉
s.t. 〈Q@S, AID〉 ∈ aa(P)}.

Then, there exists an answer constraint C′ w.r.t. Qinit, the framework, and R s.t.
πV (pconst(P)) entails πV (C′), where V is the set of the variables that occur in
Qinit, and πV is the projection of constraints onto V .

Proof Sketch. See Appendix. �

5 Space Complexity of Our Approach

Our approach, compared to traditional approaches (no belief revision), generates
an additional cost in terms of space. In this section, we briefly show that the ad-
ditional cost in space is linear. This cost is observed based on the size of the set
PS of processes related to the revised or alternative answer to handle.

When a revised answer comes, say Cr , as shown in Fig. 4:

– If Cr entails the previous answer, say Cf , PS either remains the same size, or
reduces (because some processes in PS may now have inconsistent constraints
and therefore be killed);

– If Cr is inconsistent with Cf , then all the processes using Cf in PS are killed,
the original suspended processes are duplicated and resumed with Cr, and
therefore PS grows by at most, the number of original suspended processes;

– If Cr is consistent with Cf but does not entail it, PS grows by at most, the
number of original suspended processes.

These three cases exhibit only linear (or less) behavior.
When an alternative answer comes, say Ca, as shown in Fig. 3, all the processes

suspended by the first answer, as well as the original suspended processes, are
duplicated and resumed with Ca. Therefore, PS grows by at most, the number of
these suspended processes.
12 fraa2 = 〈fr(D)@a, a2, {D = 3}, {p7}〉.

Speculative Constraint Processing with Iterative Revision 355

As briefly covered here, the growth of the set of processes on the arrival of re-
vised and alternative answers follows a linear behavior.

6 Conclusion

In this paper, we presented an operational model for speculative constraint
processing with iterative revision for alternative answers. This paper is a general-
ization of two previous works; the work of revisable speculative computation for
yes/no questions [7] and the work of non-revisable speculative computation for
queries with constraints [5].

As for future work, we will prove the correctness and completeness for more
general forms of multi-agent systems, where every agent can perform speculative
computation. Our current framework is focused on master-slave multi-agent sys-
tems, and defines the operational model of the master agents. To handle a more
general multi-agent system, we need to guarantee the appropriate computation
of the overall system by additionally considering communication paths among
agents. For another direction, we will also consider applications for this frame-
work.

References

1. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint
logic programs. Journal of Logic Programming, 37(1-3):1–46, 1998.

2. S. Janson and S. Haridi. Programming paradigms of the andorra kernel language. In
Proc. of ISLP’91, pages 167–186, 1991.

3. R. A. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25:391–419, 1999.

4. F. Sadri and F. Toni. Interleaving belief revision and reasoning: Preliminary report.
In Proc. of Convegno Italiano di Logica Computazionale (CILC), 2005.

5. K. Satoh, P. Codognet, and H. Hosobe. Speculative constraint processing in multi-
agent systems. In Proc. of PRIMA2003, volume 2891 of LNCS, pages 133–144, 2003.

6. K. Satoh, K. Inoue, K. Iwanuma, and C. Sakama. Speculative computation by ab-
duction under incomplete communication environments. In Proc. of ICMAS2000,
pages 263–270, 2000.

7. K. Satoh and K. Yamamoto. Speculative computation with multi-agent belief revi-
sion. In Proc. of AAMAS2002, pages 897–904, 2002.

8. C. Schulte. Programming Constraint Services: High-Level Programming of Standard
and New Constraint Services, volume 2302 of LNCS. 2002.

Appendix

Proof Sketch of Theorem 1. To prove the property described in Theorem 1,
we show that a more general property holds for any existing ordinary process at
any “step” in the process reduction or fact arrival phase. By a “step”, we mean the
execution of operations in the process reduction or fact arrival phase from its be-
ginning to its end, without returning to the beginning, and without transferring to

356 M. Ceberio, H. Hosobe, and K. Satoh

the other phase. Then the property that we show is the following: at any n-th step,
for any ordinary process P ′, there exists a sequence of reductions “← ‖Qinit”, . . . ,

“ ← C′′‖{Q@S | 〈Q@S, o〉 ∈ wa(P ′)} ∪ gs(P ′)”

w.r.t. P and BEL(R(n)
P ′ , Δ), such that

πV (pconst(P ′)) entails πV (C′′),

where R(n)
P ′ is the most recent reply set for P ′ at the n-th step, which is defined in

the same way as R in Theorem 1.
Below we prove this property by induction on the progress of process reduction

and fact arrival steps.

Induction base. When a query Qinit@Sself is asked in the initial step, a process
P ′ = 〈PID, true, Qinit, ∅, ∅〉 is created. This process corresponds to the initial
goal “← ‖Qinit”. The above property holds since pconst(P ′) = true and C′′ =
true.

Induction step. Assume that, at the n-th step, the property holds.
Now consider the (n+1)-th step. It is straightforward to show that the property

holds for the process reduction phase.
Here we consider the processing of a first or alternative answer in the fact arrival

phase. Let the returned answer be 〈Q@S, AID, C〉. In this case, there is no answer
entry in the form 〈Q@S, AID, Cf , UPIDs′〉.

Let 〈Q@S, d, Cd, UPIDsd〉 be any default answer entry and Pd be any ordinary
process such that pid(Pd) ∈ UPIDsd. By the induction hypothesis, Pd satisfies
the above property for some C′′ and R(n)

Pd
; that is, there is a sequence of reductions

“← ‖Qinit”, . . . , “← C1‖{Q@S} ∪ GS”, “← C1 ∧ Cd‖GS”, . . . , “← C1 ∧ Cd ∧
C2‖{Q′@S′ | 〈Q′@S′, o〉 ∈ wa(Pd)} ∪ gs(Pd)” w.r.t. P and BEL(R(n)

Pd
, Δ), such

that πV (pconst(Pd)) entails πV (C1∧Cd∧C2), where C1 and C2 are the constraints
obtained before and after processing Q@S, respectively.

Assume that C ∧pconst(Pd) is consistent. Then a process P ′ = 〈newPID, C ∧
pconst(Pd), gs(Pd), wa(Pd)\{〈Q@S, d〉}, aa(Pd)∪{〈Q@S, AID〉}\{〈Q@S, d〉}〉 is
created, and we have R(n+1)

P ′ = R(n)
Pd

∪ {Q@S ← C‖} \ {Q@S ← Cd‖}. Then we
can consider the sequence of reductions “← ‖Qinit”, . . . , “← C1‖{Q@S} ∪ GS”,
“← C1 ∧ C‖GS”, . . . , “← C1 ∧ C ∧ C2‖{Q′@S′ | 〈Q′@S′, o〉 ∈ wa(P ′)} ∪ gs(P ′)”
w.r.t. P and BEL(R(n+1)

P ′ , Δ). Then, πV (pconst(P ′)) entails πV (C1 ∧ C ∧ C2)
since pconst(P ′) = C ∧pconst(Pd) and πV (pconst(Pd)) entails πV (C1 ∧Cd ∧C2).
Thus, the above property holds for P ′.

For the processing of a first answer, this step changes Pd by setting wa(Pd) :=
wa(Pd) ∪ {〈Q@S, d〉} and aa(Pd) := aa(Pd) \ {〈Q@S, d〉}, and hence we have
R(n+1)

Pd
= R(n)

Pd
\ {Q@S ← Cd‖}. In the other case (that is, for processing an

alternative answer), Pd is unchanged since 〈Q@S, d〉 ∈ wa(Pd) and 〈Q@S, d〉 /∈
aa(Pd) hold for the original Pd, and therefore, we have R(n+1)

Pd
= R(n)

Pd
. In both

cases, BEL(R(n+1)
Pd

, Δ) = BEL(R(n)
Pd

, Δ) since “Q@S ← Cd‖” ∈ Δ. Therefore,
the above property is kept satisfied for Pd.

Speculative Constraint Processing with Iterative Revision 357

Next, let 〈Q@S, o, true, UPIDso〉 be the original answer entry and Po be any
ordinary process such that pid(Po) ∈ UPIDso. By the induction hypothesis, Po

satisfies the above property for some C′′ and R(n)
Po

; that is, there is a sequence of re-

ductions “← ‖Qinit”, . . . , “← C′′‖{Q@S}∪gs(Po)” w.r.t. P and BEL(R(n)
Po

, Δ),
such that πV (pconst(Po)) entails πV (C′′). Since this step does not change Po, the
above property is kept satisfied for Po.

Assume that C ∧ pconst(Po) ∧
∧

(Q@S←Cd‖)∈Δ ¬Cd is consistent. Then a
process P ′ = 〈newPID, C ∧ pconst(Po) ∧

∧
(Q@S←Cd‖)∈Δ ¬Cd, gs(Po), wa(Po) \

{〈Q@S, o〉}, aa(Po) ∪ {〈Q@S, AID〉}}〉 is created, and we have R(n+1)
P ′ = R(n)

Po
∪

{Q@S ← C‖}. Then we can consider the sequence of reductions “← ‖Qinit”, . . . ,

“← C′′‖{Q@S} ∪ gs(P ′)”, “← C′′ ∧ C‖gs(P ′)” w.r.t. P and BEL(R(n+1)
P ′ , Δ).

Then πV (pconst(P ′)) entails πV (C′′ ∧ C) since pconst(P ′) = C ∧ pconst(Po) ∧∧
(Q@S←Cd‖)∈Δ ¬Cd and πV (pconst(Po)) entails πV (C′′). Therefore, the above

property holds for P ′.
The above property is kept satisfied for the other processes that are not handled

in this case, since those processes and their most recent reply sets are unchanged.
Therefore, the above property holds for any processes after processing a first or

alternative answer in the fact arrival phase.
Similarly, we can show that the above property holds for the processing of a

revised answer in the fact arrival phase. Thus, the above property holds in all the
cases.

Since the property described in Theorem 1 corresponds to the special case of the
above property, where gs(P ′) = wa(P ′) = ∅, Theorem 1 holds. �

Intention Recognition in the Situation Calculus
and Probability Theory Frameworks

Robert Demolombe and Ana Mara Otermin Fernandez�

ONERA Toulouse,
France

Robert.Demolombe@cert.fr,
txantxita@hotmail.com

Abstract. A method to recognize agent’s intentions is presented in a
framework that combines the logic of Situation Calculus and Probability
Theory. The method is restricted to contexts where the agent only per-
forms procedures in a given library of procedures, and where the system
that intends to recognize the agent’s intentions has a complete knowledge
of the actions performed by the agent.

An original aspect is that the procedures are defined for human agents
and not for artificial agents. The consequence is that the procedures may
offer the possibility to do any kind of actions between two given actions,
and they also may forbid to perform some specific actions. Then, the
problem is different and more complex than the standard problem of
plan recognition.

To select the procedures that partially match the observations we
consider the procedures that have the greatest estimated probability.
This estimation is based on the application of Bayes’ theorem and on
specific heuristics. These heuristics depend on the history and not just
on the last observation.

A PROLOG prototype of the presented method has been implemented.

1 Introduction

When two agents have to interact it is important for each agent to know the
other agent’s intentions because this knowledge allows to anticipate his future
behavior. This information can be used either to help the other agent to do
what he intends to do or to control whether what he does is compatible with his
intention. Even if an agent can never be sure that he knows the other agent’s
intentions an uncertain information is much better than a complete ignorance
when a decision has to be taken.

In this paper a method is proposed to recognize what are the agent’s intentions
in the particular context of a pilot that interacts with an aircraft. The first
specificity of this context is that the pilot performs procedures that are very
well defined in a handbook. The second specificity is that the procedures are
defined in terms of commands that have to be performed (like to turn a switch
� Also student at: Universidad Politenica de Madrid.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 358–372, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Intention Recognition in the Situation Calculus 359

on) and it is reasonable to assume that the performance of these commands can
be perceived thanks to sensors in the aircraft. Then, it is possible to design a
system (for instance a part of the automatic pilot of the aircraft) that has the
capacity to observe all the commands performed by the pilot.

Under this assumption the system can compare the sequence of observations
with the procedure definitions in the handbook and it can determine the proce-
dures that match with these observations. The procedures that have the “best”
match are assigned to the agent’s intentions.

To define a method to recognize the pilot’s intentions we have to find solutions
to three independent problems:

1. to select a language to represent the procedures in formal terms,
2. to define a formal characterization of the procedures that match with the

observations,
3. to define a method to select the procedures that have the “best” match and

are assigned to the agent’s intention.

In a previous work Demolombe and Hamon [6, 10] have proposed solutions
to problems 1 and 2 in the logical framework of the Situation Calculus. The
Situation Calculus is a variant of classical first order logic, that is the reason
why it is more convenient for computational logic than modal logics.

The contribution of this paper is to propose a solution to problem 3 in a
framework that combines Situation Calculus and Probability Theory and which
is based on Bayes’ theorem. Probabilities have already been used in combination
with Situation Calculus in [12] to deal with no deterministic actions, but that is
a quite different problem.

There are many other works that have similar objectives in the field of plan
recognition [13] and many of them make use of probabilities [4, 8, 1, 5] or use
an utility function [15]. Baier in [3] also uses the framework of the Situation
Calculus but without probabilities. Many of them have been designed in the
particular context of natural language analysis [7, 2, 5] or game theory [1].

The original feature in our case is that the pilot’s procedures may allow any
other command in between a sequence of two prescribed commands and it may
be specified that some commands are forbidden. Also it may happen that the
pilot has the intention to perform several procedures in parallel. The consequence
is that problems 2 and 3 are much more complex than the standard problem of
plan recognition.

The paper is organized as follows. In sections 2 and 3 the solutions to problems
1 and 2 are recalled. In section 4 the method to solve problem 3 is presented.
In that section we start with the analysis of a typical example, we define a
general method to compute probabilities, we define heuristics to estimate the
probabilities and finally we apply the method to the example to show that the
results fit the intuitive requirements. Possible refinements or extensions of the
method are presented in the conclusion.

Since the method can be applied to many other contexts we shall use the
general term “agent” instead of “pilot”, and “action” instead of “command”.

360 R. Demolombe and A.M. Otermin Fernandez

2 A Brief Introduction to the Situation Calculus and to a
GOLOG Extension

The logical framework of Situation Calculus [17] is used to represent the states
of the world and the actions that are performed by the agent.

The Situation Calculus is a typed first order logic with equality (except some
limited fragments that are of second order). In the language there are two kinds
of predicates. The predicates whose truth value may change after performance
of an action are called “fluents”. They have exactly 1 argument of the type
situation which is the last argument. The other predicates have no argument of
the type situation.

For example, we may have the predicates:
nationality(x): the nationality of the aircraft is x.
gear.extended(s): in the situation s the landing gear is extended.
altitude(x, s): in the situation s the aircraft altitude is x.

Here altitude(x, s) and gear.extended(s) are fluents, and nationality(x) is
not a fluent.

The terms of type situation may be constant or variable symbols of the type
situation, or terms of the form do(a, s) where do is a designated function symbol,
a is a term of type action and s is a term of type situation.

For instance, if S0 is a constant of type situation and extend.gear and retract.
gear are constants of type action, the following terms are of type situation: S0,
do(extend.gear, S0), do(extend.gear, s) and do(retract.gear, do(extend.
gear, S0)).

The term do(retract.gear, do(extend.gear, S0)) denotes the situation where
we are after performance of the actions extend.gear and retract.gear.

As a matter of simplification we use the notation do([a1, . . . , an], s) to denote
do(an, . . . , do(a1, s) . . .).

The grammar of the formulas of the Situation Calculus is defined as usual for
classical first order logics.

A successor relation1 is defined on the set of situations. Intuitively s ≤ s′

means that the situation s′ is reached from the situation s after some sequence
of action. In semiformal terms, s ≤ s′ is the smallest relation that satisfies the
following properties:

s ≤ s′ def= (s < s′) ∨ (s = s′)
∀s∀s′∀a(s′ = do(a, s) → s < s′)
∀s∀s′∀s′′((s < s′) ∧ (s′ < s′′) → (s < s′′))

To define the truth value of the fluents in any situation a successor state axiom
has to be given for each fluent. For example, for gear.extended(s) we have:

∀s∀a(gear.extended(do(a, s)) ↔ a = extend.gear ∨ gear.extended(s) ∧ ¬(a =
retract.gear))

1 In this paper the definition of the successor relation is the only part of the Situation
Calculus that requires second order logic.

Intention Recognition in the Situation Calculus 361

The intuitive meaning of this axiom is that the only action that can cause
gear.extended(do(a, s)) to be true (resp. false) is the action extend.gear (resp.
retract.gear).

The GOLOG language [14] is a programming language for robots but it can
be used for other kinds of agents. Its expressive power is the same as ALGOL
and its semantics is defined in the logic of the Situation Calculus. Programs are
terms that represent complex actions defined with several operators.

Here, for simplicity, we have only considered the operator of sequence (denoted
by “;”), test (denoted by “φ?”) and non deterministic choice (denoted by “|”).
To represent what is called in the following “procedures” we have added the
“negation” operator (denoted by “−”) and the “any sequence of actions” term
(denoted by “σ”). The motivation of this extension can be explained with the
following example.

Let us, consider the procedure called “fire on board”, which is described for a
small private aircraft. The procedure says that in case of engine fire the pilot 1)
turns off fuel feed, 2) sets full throttle, and 3) sets mixture off. These three prim-
itive actions, or commands, are respectively denoted by fuel.off , full.throttle
and mixture.off , and the procedure is denoted by fire.on.board.

However, it is implicit in the procedure definition that between actions 1) and
2) or between 2) and 3) the pilot can do any other action. For example, he can
call air traffic control. It is also implicit that after turning off fuel feed he must
not turn on fuel feed. That is just common sense for a human being but it has
to be made explicit to define a formal method that can be used by the system
which observes the pilot.

Then, in the modified GOLOG language the “fire on board” procedure is
represented by:

fire.on.board
def= fuel.off ; (σ/fuel.on); full.throttle; (σ/fuel.on); mixture.off

where α1/α2 is an abbreviation for α1 − (σ; α2; σ) which intuitively means that
the sequence of actions which is a performance of α1 must not contain a sequence
of actions which is a performance of α2.

In the case of programs for an artificial agent there is no need for the term
σ nor for the operator “/” because an artificial agent only does what is
specified in the program. That makes the basic difference between a program
and what is called here a “procedure”.

The formal definition of the modified GOLOG language is:

– atomic actions, test actions and σ are procedures,
– if α1 and α2 are procedures, then (α1; α2), (α1|α2) and (α1 − α2) are proce-

dures.

The formal definition of the procedures is defined by formulas of the Situation
Calculus language. These formulas are denoted by the property Dop(α, s, s′)
whose intuitive meaning is:

Dop(α, s, s′) : s′ is a situation that can be reached from the situation s after
performance of the procedure α.

362 R. Demolombe and A.M. Otermin Fernandez

The formal semantics of Dop(α, s, s′) is:

Dop(a, s, s′) def= s′ = do(a, s) if a is an atomic action.

Dop(σ, s, s′) def= s ≤ s′

Dop(φ?, s, s′) def= φ[s] ∧ s′ = s

Dop(α1; α2, s, s
′) def= ∃s1(Dop(α1, s, s1) ∧ Dop(α2, s1, s

′))

Dop(α1|α2, s, s
′) def= Dop(α1, s, s

′) ∨ Dop(α2, s, s
′)

Dop(α1 − α2, s, s
′) def= Dop(α1, s, s

′) ∧ ¬Dop(α2, s, s
′)

This modified GOLOG language gives a solution to the problem 1 that we
have mentioned in the introduction.

3 Doing a Procedure

To characterize the fact that a sequence of performed actions “matches” a partial
performance of a procedure, in the sense that this sequence can be interpreted
as a partial performance of the procedure, we use the property Doing(α, s, s′).
However, this property does not guarantee that the agent is performing this
procedure.

In informal terms the property Doing(α, s, s′) holds if the three following
conditions are satisfied:

1. The agent has begun executing a part α′ of α between s and s′.
2. The agent has not completely executed α between s and s′.
3. The actions performed between s and s′ do not prevent the continuation of

the execution of α.

In a first step we define the property Dom(α, s, s′) whose intuitive meaning is
that we have Dop(α, s, s′) and there is no shorter sequence of actions between s
and s′ such that we have Dop for this sequence. We have:

Dom(α, s, s′) def= Dop(α, s, s′) ∧ ¬∃s1(Dop(α, s, s1) ∧ s1 ≤ s′)

Then, we define the property Dos(α, s, s′) whose intuitive meaning is that the
sequence of actions between s and s′ satisfies the above conditions 1, 2 and 3.
We have:

Dos(α, s, s′) def= ∃α′(start(α′, α) ∧
∃s1(s1 ≤ s′ ∧ Dom(α′, s, s1)) ∧
¬∃s2(s2 ≤ s′ ∧ Dom(α, s, s2)) ∧
∃s3(s′ < s3 ∧ Dom(α, s, s3)))

where start(α′, α) means that α can be reformulated into a procedure of the
form: (α′; α′′)|β which has the same semantics as α, i.e. ∀s∀s′(Dop(α, s, s′) ↔
Dop((α′; α′′)|β, s, s′)).

The condition 1 is expressed by ∃α′(start(α′, α)∧∃s1(s1 ≤ s′∧Dom(α′, s, s1)),
the strict interpretation of condition 2 is expressed by ¬∃s2(s2 ≤ s′ ∧ Dom(α, s,
s2)), and the condition 3 is expressed by ∃s3(s′ < s3 ∧ Dom(α, s, s3)).

Intention Recognition in the Situation Calculus 363

Finally, the definition of Doing(α, s, s′) is:

Doing(α, s, s′) def= ∃s1(s ≤ s1 ∧ Dos(α, s1, s
′)) ∧ ¬∃s2(s ≤ s2 ∧ s2 < s1 ∧

Dos(α, s2, s1)))

The condition ∃s1(s ≤ s1 ∧Dos(α, s1, s
′)) expresses that there is an execution of

α that has begun in s1 and has not ended, and the condition ¬∃s2(s ≤ s2 ∧s2 <
s1 ∧ Dos(α, s2, s1)) expresses that there is no previous α execution which has
started and not ended before s1.

4 Intention Recognition

This section presents a method for choosing between several procedures, that
satisfy the Doing property, the one that can be assigned by the system to the
agent’s intention.

This assignment is never guaranteed to correspond to the true agent’s inten-
tion, and due to this uncertainty it is sensible to make use of probabilities to
make the choice.

Before going into the formal presentation of the method let us give a simple
example to intuitively show what are the basic guidelines2 and assumptions of
the method.

4.1 A Simple Example

Let us consider the three following procedures3.

α = a; σ; b; σ; c
β = d; σ; e
γ = a; σ; f

Let us assume that we are in the situation s5 where the following sequence of
actions has been performed: [f, a, d, b, c], that is in formal terms:

s5 = do([f, a, d, b, c], s0).

In the situation s1 = do(f, s0) there is no procedure which is compatible
with the performed action f . We have ¬Doing(α, s0, s1), ¬Doing(β, s0, s1) and
¬Doing(γ, s0, s1).

We have adopted the following assumption.

Assumption H1. If an agent has the intention to do a procedure α then he
does the actions that are defined by the procedure α.

According to H1 in s1 the system knows that the agent did not have the
intention to do α in s0, because if he had the intention to do α in s0 he would

2 These guidelines are expected properties and they should not be confused with the
assumptions.

3 In previous sections α, β and γ are procedure variables. Here specific constants are
assigned to these variables.

364 R. Demolombe and A.M. Otermin Fernandez

have started to do α and he would have done the action a in s1 instead of f .
The same for β and γ.

Nevertheless in s0 the system can accept that the probability that the agent
has the intention to do α is not equal to 0. Then, we have accepted the additional
assumption:

Assumption H2. If the agent in the situation si is not doing α, in the sense
that ¬Doing(α, s0, si), then in si the probability that he has the intention to do
α is independent of si, and this probability is denoted by π(α).

Let us define the following notations.
P (φ): probability that φ holds.
Int(α, si): in the situation si the agent has the intention to do α4.
In formal terms H2 can be expressed by:

∀s∀s′∀α(s ≤ s′ ∧ ¬Doing(α, s, s′) → P (Int(α, s′)) = π(α))

Since for any procedure α we have ¬Doing(α, s0, s0), from H2 we have:
P (Int(α, s0)) = P (Int(α, s1)) = π(α), P (Int(β, s0)) = P (Int(β, s1)) = π(β)
and P (Int(γ, s0)) = P (Int(γ, s1)) = π(γ).

In the situation s2 = do([f, a], s0) we have ¬Doing(β, s0, s2) and P (Int(β, s2))
= π(β), and now we have Doing(α, s0, s2) and Doing(γ, s0, s2).

The fact that the action a has been performed is a good argument for the
system to believe that the agent has the intention to do α and to believe that he
has the intention to do γ. Then we should have P (Int(α, s2)) > P (Int(α, s1))
and P (Int(γ, s2)) > P (Int(γ, s1)).

It is sensible to assume that P (Int(α, si)) and P (Int(γ, si)) increase in the
same way from s1 to s2.

So, if π(α) = π(β) = π(γ), Int(α, s2) and Int(γ, s2) have the same and the
greatest probability and the system believes that the agent has the intention to
do α and that he has the intention to do γ.

Let us use the following notation.
BInt(α, si): in the situation si the system believes that the agent has the

intention to do α.
Using this notation we have: BInt(α, s2), ¬BInt(β, s2) and BInt(γ, s2).
We have adopted the following general assumption.

Assumption H3. In a situation si such that Doing(α, s0, si), if there is no
procedure β such that Doing(β, s0, si) and P (Int(β, si)) > P (Int(α, si)), then
the system believes in si that the agent has the intention to do α (i.e. we have
BInt(α, si)).

H3 can be reformulated as:
BInt(α, s) iff Doing(α, s0, s) and there is no procedure β such that P (Int(β, s))

> P (Int(α, s))
In the situation s3 = do([f, a, d], s0) we have Doing(α, s0, s3), Doing(β, s0, s3)

and Doing(γ, s0, s3).

4 To be more precise we should say that the agent has the intention to reach a situation
where α has been done.

Intention Recognition in the Situation Calculus 365

In s3 we can assume that P (Int(β, si)) has increased from s2 to s3 in the
same way as P (Int(α, si)) and P (Int(γ, si)) have increased from s1 to s2.

For the procedures α and γ, in s2 the agent has the choice between doing
the next recommended action (that are respectively b and f) or doing any other
action. We have assumed that if he does not do the recommended action, then
the probability to do the corresponding procedure decreases, because the last
observed action does not confirm that he has the intention to do this procedure.

Then, if π(α) = π(β) = π(γ) we have: P (Int(α, s3)) < P (Int(β, s3)) and
P (Int(γ, s3)) < P (Int(β, s3)), and therefore we have BInt(β, s3), ¬BInt(α, s3)
and ¬BInt(γ, s3)).

In the situation s4 = do([f, a, d, b], s0) we have Doing(α, s0, s4), Doing(β, s0,
s4) and Doing(γ, s0, s4).

In that situation the action b is a recommended action for α but it is not a
recommended action for γ. Then, if π(α) = π(γ) we should have P (Int(α, s4)) >
P (Int(γ, s4)).

If we compare the procedures α and β in s4, there are two performed ac-
tions (a and b) that are recommended in α, and there is only one (a) which
is recommended in β. The number of performed actions that are not recom-
mended is the same for α and β (action d for α and action b for β). Therefore,
if π(α) = π(β) we should have P (Int(α, s4)) > P (Int(β, s4)). Then, we have
BInt(α, s4), ¬BInt(β, s4) and ¬BInt(γ, s4).

In the situation s5 = do([f, a, d, b, c], s0) we have ¬Doing(α, s0, s5) (because
α has been executed), Doing(β, s0, s5) and Doing(γ, s0, s5).

The number of recommended actions is 1 for β and γ in s5, but the number of
not recommended actions is 3 for γ and 2 for β. Then, if π(α) = π(β) = π(γ) we
should have P (Int(β, s5)) > P (Int(γ, s5)) and P (Int(β, s5)) > P (Int(α, s5)).
Therefore we have BInt(β, s5), ¬BInt(α, s5) and ¬BInt(γ, s5).

From this example we can derive some general guidelines that are expressed
with the following terminology.

In a procedure definition we call an action a prescribed action if that action
explicitly appears in the procedure and it is just preceded by an explicit action.

For example, if α has the form: . . . ; a; b; . . . then this occurrence of b is a
prescribed action in α. Notice that in a given procedure some occurrences of b
may be prescribed actions and others not, like in α = c; σ; b; a; b.

In a procedure definition we call an action a recommended action if that
action explicitly appears in the procedure and it is just preceded by a term of
the form σ or σ/β.

For example, if α has the form: . . . ; σ; a; . . . or . . . ; σ/(b|c); a; . . . then this
occurrence of a is a recommended action in α.

Let us call A the set of actions that can be done by the agent and can be
observed by the system.

In a procedure definition we call an action a tolerated action if the procedure
has the form: . . . ; σ; a; . . . and this action is in A − {a}.

For example, if A = {a, b, c, d, e} and α has the form: . . . ; σ; a; . . ., then the
set of tolerated actions for this occurrence of σ is {b, c, d, e}.

366 R. Demolombe and A.M. Otermin Fernandez

In a procedure definition we call an action a restricted tolerated action
if the procedure has the form: . . . ; σ/(ai1 | . . . |ail

); a; . . . and this action is in
A − {ai1 , . . . , ail

, a}.
For example, if α has the form: . . . ; σ/(b|d); a; . . . the set of restricted tolerated

actions for this occurrence of σ is {c, e}.
With these definitions we can formulate our basic guidelines in that way.

Guideline A. If in the situation si the last performed action is a prescribed
action of α, then P (Int(α, si)) should be much greater than P (Int(α, si−1)).
Guideline B. If in the situation si the last performed action is a recommended
action of α, then P (Int(α, si)) should be greater than P (Int(α,
si−1)), but it should be less greater than in the case of a prescribed action.
Guideline C. If in the situation si the last performed action is a tolerated ac-
tion of α, then P (Int(α, si)) should be lower than P (Int(α, si−1)).
Guideline D. If in the situation si the last performed action is a restricted tol-
erated action of α, then the fact that P (Int(α, si)) is greater or lower than
P (Int(α, si−1)) depends on the cardinality of the set of restricted tolerated
actions.

We also have adopted the following assumption about the evolution of the
fact that the agent has the intention to do a procedure α.

Assumption H4. In a situation si such that we have Doing(α, s0, si) it is as-
sumed that the agent has in si the intention to do α iff he has the intention to
do α in si−1.

The assumption H4 is expressed in formal terms as follows.
(H4) ∀s∀s′∀s′′∀a∀α((Doing(α, s, s′′) ∧ s′′ = do(a, s′)) → (Int(α, s′′) ↔

Int(α, s′)))
H4 is logically equivalent to the conjunction of H’4 and H”4.
(H ′4) ∀s∀s′∀s′′∀a∀α(Doing(α, s, s′′)∧s′′ = do(a, s′)∧Int(α, s′) → Int(α, s′′))
(H ′′4) ∀s∀s′∀s′′∀a∀α(Doing(α, s, s′′)∧s′′ = do(a, s′)∧Int(α, s′′)→Int(α, s′))
The assumption H’4 means that the agent’s intention is persistent as long as

the procedure α is not completely performed. That corresponds to the notion of
intention persistence proposed by Cohen and Levesque in [9] (see also [16]).

The assumption H”4 corresponds to a different idea. This idea is that if the
action a performed by the agent is consistent with the fact that he is doing α and
in the situation s′′ the agent has the intention to do α, then he has performed
the action a because in s′ he had the intention to do α.

4.2 General Method to Compute the Probabilities

To present the general method we shall use the following notations.
A = {a1, a2, . . . , aN}: set of actions that can be performed by the agent and

that can be observed by the system.
We adopt the following assumption.

Assumption H5. It is assumed that in the language definition the set of atomic
action constant symbols is A.

Intention Recognition in the Situation Calculus 367

The assumption H5 intuitively means that the actions performed by the agent
that cannot be observed by the system are ignored by the system. This assump-
tion is consistent with the fact that what the system believes about the agents’
intentions is only founded on his observations.

oi: ith observation action performed by the system.
aji = obs(oi): aji is the action performed by the agent that has been observed

by the system by means of the observation action oi.
Oi: short hand to denote the proposition aji = obs(oi).

O1,i
def= O1 ∧ O2 ∧ . . . ∧ Oi

O1,0
def= true

s0: initial situation.
si = do(aji , si−1)
P (Int(α, si)|O1,i): probability that in the situation si the agent has the in-

tention to do α if the sequence of observations is O1,i.
From Bayes’ theorem we have:

(1) P (Int(α, si)|O1,i) = P (O1,i|Int(α,si))×P (Int(α,si))
P (O1,i)

From (1) we have:
(2) P (Int(α, si)|O1,i) = P (Oi∧O1,i−1|Int(α,si))×P (Int(α,si))

P (Oi∧O1,i−1)
Then, we have:

(3) P (Int(α, si)|O1,i) = P (Oi|O1,i−1∧Int(α,si))
P (Oi|O1,i−1) × P (O1,i−1|Int(α,si))×P (Int(α,si))

P (O1,i−1)
If ¬Doing(α, s0, si):
From H2 we have: P (Int(α, si)|O1,i) = P (Int(α, si)). Then we have:

(4) P (Int(α, si)|O1,i) = π(α)
If Doing(α, s0, si):
From H4 we have: Int(α, si) ↔ Int(α, si−1).
Then, from (3) we have:

(5) P (Int(α, si)|O1,i)=
P (Oi|O1,i−1∧Int(α,si−1))

P (Oi|O1,i−1) ×P (O1,i−1|Int(α,si−1))×P (Int(α,si−1))
P (O1,i−1)

Therefore we have:
(6) P (Int(α, si)|O1,i) = P (Oi|O1,i−1∧Int(α,si−1))

P (Oi|O1,i−1) × P (Int(α, si−1)|O1,i−1)
If we adopt the notations:
numi(α) def= P (Oi|O1,i−1 ∧ Int(α, si−1))

deni(α) def= P (Oi|O1,i−1)

Fi(α) def= numi(α)
deni(α)

We have:
(7) P (Int(α, si)|O1,i) = Fi(α) × P (Int(α, si−1)|O1,i−1)

The formula (7) allows to regress the computation of P (Int(α, si)|O1,i) until
a situation sj where we have ¬Doing(α, s0, sj)5.

4.3 Heuristics to Estimate the Probabilities

To define heuristics to estimate the value of Fi(α) we have restricted the set of
procedures to procedures of the form:
5 Notice that for any procedure α we have ¬Doing(α, s0, s0).

368 R. Demolombe and A.M. Otermin Fernandez

α = A1; Σ1; . . . ; Ak; Σk; Ak+1; . . . ; As

where each Ak denotes an atomic action in A and Σk either is absent or denotes
a term of the form σ/(ai1 | . . . |ail

) where each aij is in A and l may be equal to
0. This form will be called in the following: “linear normal form”.

Notice that this form is not a too strong restricted form because a procedure
can be transformed by repeatedly applying the transformation rule that trans-
forms α1; (α2|α3); α4 into (α1; α2; α4)|(α1; α3; α4). At the end we get a procedure
in the form α = α1|α2| . . . |αp. Then, the only difference between each αi and
a procedure in linear normal form is that the Aks may denote either an atomic
action or a test action, and the Σks, when they are not absent, have in general
the form σ/β where β may be any kind of procedure.

Now we are going to define the estimation of the term Fi(α) in the case where
we have Doing(α, s0, si).

The estimation of Fi(α) depends on the part α′
i−1 of α which has already

been performed in the situation si−1. This part is defined by the property
Done(α′

i−1, α, s0, si) where the property Done is defined as follows.

Done(α′, α, s, s′) def= Doing(α, s, s′)∧start(α′, α)∧∃s1(s ≤ s1 < s′ ∧Dos(α, s1,
s′) ∧ Dop(α′, s1, s

′)).

In this definition the condition Dos(α, s1, s
′) guarantees that the part of α

that is being performed in s has started his performance in s1, and the condition
Dop(α′, s1, s

′) guarantees that there is no part of α that is longer than α′ that
has been performed between s1 and s′. Done(α′, α, s, s′) intuitively means that
α′ is the maximal part of α that has started between s and s′ and that has ended
in s′.

For instance, in the previous example in s2 we have Doing(α, s0, s2) and for
α′

2 = a we have Dos(α′
2, s1, s2) and Dop(α′

2, s1, s2). In s3 we have α′
3 = a; σ and

in s4 we have α′
4 = a; σ; b.

To estimate Fi(α) we have accepted the following assumption.

Assumption H6. It is assumed that the ith observation 0i is independent of
the previous observations and each action in A has the same probability to be
observed.

In formal terms H6 is expressed by: deni(α) = P (Oi|O1,i−1) = P (Oi) = 1
N .

We shall use the notation Oi = Ak to express that the action aij observed by
the observation action oi is the atomic action denoted by Ak, and we use the
notation Oi ∈ Σk to express that aij is in the set A − {ai1 , . . . , ail

, ak+1}, where
ak+1 is the action denoted by Ak+1.

The terms numi(α) and Fi(α) have to be estimated only in the case where
we have Doing(α, s0, si). We have to consider different cases.

Case 1. We have ¬Doing(α, s0, si−1).
In that case α′

i−1 = A1 and, from the assumption H1, Int(α, si−1) and
Doing(α, s0, si) ∧ ¬Doing(α, s0, si−1) imply that in si the agent has performed
the action A1, and the observed action in Oi is A1. Then, we necessarily have
Oi = A1.

Intention Recognition in the Situation Calculus 369

Therefore we have numi(α) = 1 and Fi(α) = N .

Case 2. We have Doing(α, s0, si−1).

– Case 2.1. α′
i−1 has the form α′

i−1 = . . . ; Ak.
• Case 2.1.1. α has the form

α = . . . ; Ak; Ak+1;
In that case Σk is absent in α. From the assumption H1, Int(α, si−1)
implies that the action performed in si is Ak+1. Then, we necessarily
have Oi = Ak+1.
Therefore we have numi(α) = 1 and Fi(α) = N .

• Case 2.1.2. α has the form
α = . . . ; Ak; Σk; Ak+1;
Case 2.1.2.1. Oi = Ak+1.
The general form of Σk is σ/(ai1 | . . . |ail

).
According to guideline B it is much more likely that the action performed
by the agent in si is the recommended action Ak+1 than any restricted
tolerated action defined by Σk.
Then we have numi(α) = 1−ε where the value of ε is defined in function
of the application domain and is supposed to be “small” with respect to
1.
We have Fi(α) = N × (1 − ε).
Case 2.1.2.2. Oi �= Ak+1.
Here we have adopted the following assumption.

Assumption H7. It is assumed that when the agent has the intention
to do α all the restricted tolerated actions have the same probability to
be performed by the agent.
According to H7 any action in A − {ai1 , . . . , ail

, ak+1} has the same
probability to be done. Then, we have6: numi(α) = ε

N−(l+1) .
We have Fi(α) = N

N−(l+1) × ε.
– Case 2.2. α′

i−1 has the form α′
i−1 = . . . ; Σk.

Case 2.2.1. Oi = Ak+1.
We are in the same type of situation as in the case 2.1.2.1. Then we have
numi(α) = 1 − ε and Fi(α) = N × (1 − ε).
Case 2.2.2. Oi �= Ak+1.
We are in the same type of situation as in the case 2.1.2.2. Then we have
numi(α) = ε

N−(l+1) and Fi(α) = N
N−(l+1) × ε.

In the case where the action that has been performed by the agent in si is a
prescribed action (cases 1. and 2.1.1.) we have Fi(α) = N . This conforms the
guideline A.

In the case where the performed action is a recommended action (cases 2.1.2.1.
and 2.2.1.) we have Fi(α) = N × (1 − ε). To fulfill the guideline B, that is:
Fi(α) > 1, we have to assign to ε a value such that ε < N−1

N .

6 Notice that the case N − (l + 1) = 0 can be rejected because if l = N − 1 there is
only one restricted tolerated action and the agent has no choice offered by Σk.

370 R. Demolombe and A.M. Otermin Fernandez

In the case where the performed action is a tolerated action (cases 2.1.2.2.
and 2.2.2. and l = 0) we have Fi(α) = N

N−1 × ε. From the assumption ε < N−1
N

we have Fi(α) < 1 and this fulfills the guideline C.
In the case where the performed action is a restricted tolerated action (cases

2.1.2.2. and 2.2.2. and l > 0) we have Fi(α) = N
N−(l+1) × ε.

Therefore we have Fi(α) < 1 iff ε < N−(l+1)
N (therefore we also have ε < N−1

N),
and we have Fi(α) > 1 iff ε > N−(l+1)

N (and this is consistent with ε < N−1
N).

Therefore, according to guideline D we may have either Fi(α) < 1 or Fi(α) > 1
depending on the values of ε , l and N .

4.4 Coming Back to the Example

The method we have presented can be used to compute iteratively the values
of P (Int(α, si)|O1,i), P (Int(β, si)|O1,i) and P (Int(γ, si)|O1,i).

If we use the notations Πi(α) = P (Int(α, si)|O1,i), Πi(β)=P (Int(β, si)|O1,i),
Πi(γ)=P (Int(γ, si)|O1,i), and R = N × (1 − ε), for recommended actions, and
T = N

N−1 × ε for tolerated actions we get the following table

si Πi(α) Πi(β) Πi(γ)
s0 π(α) π(β) π(γ)
s1 π(α) π(β) π(γ)
s2 N × π(α) π(β) N × π(γ)
s3 N × T × π(α) N × π(β) N × T × π(γ)
s4 N × R × T × π(α) N × T × π(β) N × T 2 × π(γ)
s5 π(α) N × T 2 × π(β) N × T 3 × π(γ)

We have N > R > 1 and T < 1.
If we have π(α) = π(β) = π(γ) we can determine what the system believes

about the agents’ intentions in these situations. As expected in 4.1 we get:

In s0 we have BInt(α, s0), BInt(β, s0) and BInt(γ, s0).
In s1 we have BInt(α, s1), BInt(β, s1) and BInt(γ, s1).
In s2 we have BInt(α, s2) and BInt(γ, s2).
In s3 we have BInt(β, s3).
In s4 we have BInt(α, s4).
In s5 we have BInt(β, s5).

5 Conclusion

We have presented a method to assign intentions to an agent which is based
on the computation of the estimation of the probability that an agent has the
intention to perform a procedure.

There are two parts in the computation method. The first part (section 4.2)
is general and is based on the assumptions H1-H4. The second part (section 4.3)
is based on heuristics and on the additional assumptions H5-H7 and requires to

Intention Recognition in the Situation Calculus 371

know the value of π(α) for each α. The values of N and l are determined by the
application domain and the value of ε can be tuned by a designer.

A difference with other methods for plan recognition is that in the procedures
we may have terms of the form σ/β. The property Doing allows the selection of
the procedure that matches the observations O1,i. To estimate the probability
of the occurrence of the next observation Oi we consider the part α′

i−1 of the
procedure α that has already been performed. Therefore the estimated probabil-
ities depend on the history and not just on the previous observation Oi−1. This
is an important original aspect of the method.

The computation cost of the estimated probabilities and of the evaluation of
the properties Doing and Done is linear with respect to the number of observa-
tions for a given procedure. That makes the computation very fast.

Finally, it is worth noting that a preliminary version of the method has been
implemented in Prolog [11]. This implementation was of great help to check our
intuition on simple examples.

Future works will be:

1) to remove the too strong assumption H6 about the independence of the ob-
servations Oi in order to have a better estimation of P (Oi|O1,i−1∧Int(α,si−1))

P (Oi|O1,i−1) ,
2) to guarantee that after a long sequence of observations of tolerated actions
P (Int(α, si)|O1,i) is never lower than π(α) and
3) to allow test actions φ? and temporal conditions in the procedure definitions.

Acknowledgment. We are very grateful to G. Eizenberg for his help in Prob-
ability Theory. If there are some errors they are the own responsibility of the
authors.

References

1. D. W. Albrecht, I. Zukerman, and A. E. Nicholson. Bayesian models for key-
hole plan recognition in an adventure game. In User modeling and user-adapted
interaction, volume 8, pages 5–47. 1998.

2. D. E. Appelt and M. E. Pollack. Weighted abduction for plan ascription. In User
modeling and user-adapted interaction, volume 2, pages 1–25. 1991.

3. J. A. Baier. On procedure recognition in the Situation Calculus. In 22nd In-
ternational Conference of the Chilean Computer Science Society. IEEE Computer
Society, 2002.

4. M. Bauer. Integrating probabilistic reasoning into plan recognition. In Proceedings
of the 11th European Conference of Artificial Intelligence. John Wiley and Sons,
1994.

5. N. Blaylock and J. Allen. Corpus-based, statistical goal recognition. In G. Gottlob
and T. Walsh, editors, Proceedings of the 18th Inernational Joint Conference on
Artificial Intelligence, pages 1303–1308, 2003.

6. C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic high-level
agent programming in the situation calculus. In Proceedings of AAAI. 2000.

7. S. Carberry. Incorporating default inferences into plan recognition. In Proceedings
of the 8th National Conference on Artificial Intelligence, pages 471–478. 1990.

372 R. Demolombe and A.M. Otermin Fernandez

8. E. Charniak and R. P. Goldman. A Bayesian model of plan recognition. Artificial
Intelligence, 64(1), 1993.

9. P. R. Cohen and H. J. Levesque. Persistence, Intention, and Commitment. In
A. L. Lansky M. P. Georgeff, editor, Reasoning about actions and plans, pages
297–340, Timberline, USA, 1986.

10. R. Demolombe and E. Hamon. What does it mean that an agent is perform-
ing a typical procedure? A formal definition in the Situation Calculus. In C.
Castelfranci and W. Lewis Johnson, editor, First International Joint Conference
on Autonomous Agents and Multiagent Systems. ACM Press, 2002.

11. A. M. Otermin Fernndez. Reconocimiento de intenciones de un operador que
interacta con un sistema. Technical Report, ONERA Toulouse, 2004.

12. A. Finzi and T. Lukasiewicz. Game theoretic GOLOG under partial observabil-
ity. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, and M. Wooldridge, editors,
Proceedings of the 4th International Conference on Autonomous Agents and Multi
Agent Systems. ACM Press, 2005.

13. H. A. Kautz. A formal theory of plan recognition and its implementation. In J. F.
Allen, H. A. Kautz, R. N. Pelavin, and J. D. Tennemberg, editors, Reasoning about
plans, pages 69–126. Morgan Kaufman Publishers, 1991.

14. H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A Logic
Programming Language for Dynamic Domains. Journal of Logic Programming,
31:59–84, 1997.

15. W. Mao and J. Gratch. A utility-based approach to intention recognition. In
Proceedings of the AAMAS 2004 Workshop on Agent Tracking: modeling other
agents from observations, 2004.

16. P. Pozos Parra, A. Nayak, and R. Demolombe. Theories of intentions in the frame-
work of Situation Calculus. In Proceedings of the AAMAS workshop on Declarative
Agent Languages and technologies, 2004.

17. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

The First Contest on Multi-agent Systems Based
on Computational Logic

Mehdi Dastani1, Jürgen Dix2, and Peter Novak2

1 Utrecht University, P.O.Box 80.089,
3508 TB Utrecht, The Netherlands

mehdi@cs.uu.nl
2 Clausthal University of Technology,

Julius-Albert-Str. 4,
38678 Clausthal-Zellerfeld, Germany

dix@tu-clausthal.de,
peter.novak@in.tu-clausthal.de

Abstract. This is a short report about the first contest of Multi-Agent
Systems (MASs) that are based on computational logic. The CLIMA
workshop series (which started in 1999) is a forum to discuss techniques,
based on computational logic, for representing, programming, and rea-
soning about Multi-Agent Systems in a formal way. Now in its seventh
year, it was felt that organising a competition for evaluating MASs based
on computational logic was appropriate. The authors took on this task,
which turned out to be quite difficult under the given time frame. We be-
lieve that this competition is a first (modest) step towards (1) collecting
important benchmarks, (2) identifying advantages/shortcomings and, fi-
nally, (3) advertising the use of Computational Logic to the broader
MAS audience, and foster integration of Computational Logic into ex-
isting agent-oriented software engineering frameworks.

1 Introduction

Multi-Agent Systems are beginning to play an important role in today’s software
development: The International Journal of Agent-Oriented Software Engineering
(IDOSE) [1], the International Workshop on Agent-Oriented Software Engineer-
ing (AOSE) [2] and the International Joint Conference on Autonomous Agents
and Multi-Agent Systems [3] are just examples for that trend.

The development of MASs requires efficient and effective solutions for different
problems which can be classified into two classes: the problems related to (1) the
development of individual agents and (2) the development of their interactions.
Typical problems related to individual agents are how to specify, design and im-
plement issues such as autonomy, pro-active/reactive behaviour, perception and
update of information, reasoning and deliberation, and planning. Typical prob-
lems related to the interaction of individual agents are how to specify, design
and implement issues such as communication, coordination, cooperation and ne-
gotiation.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 373–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

374 M. Dastani, J. Dix, and P. Novak

This competition is a first attempt to stimulate research in the area of MASs
by

1. identifying key problems, and
2. collecting suitable benchmarks

that can serve as milestones for testing new approaches and techniques from
computational logic. While there already exist several competitions in various
areas of artificial intelligence (theorem proving, planning, Robo-Cup, etc.) and,
lately, also in specialised areas in agent systems (Trading Agent Competition
(TAC) [4] and AgentCities competitions [5]), the emphasis of this contest is
on the use of computational logic in MASs. We believe that approaches and
techniques of computational logic are essential for the development of MASs for
at least two reasons: (1) logical approaches have proven to be very useful for
specifying and modelling MASs in a precise manner, and (2) the specification
and models can be executed.

We expect to promote the development of MASs by first identifying difficult
problems and then finding solutions by comparing different approaches from
computational logic for solving them. While this idea seems very appealing, it is
not an easy task to come up with a particular scenario that serves as a basis for
a contest. Such a scenario should be generic enough to be applicable for a wide
range of techniques of computational logic, but it should also be precise enough
so that different approaches can be tested and compared against each other.

2 Scenario Description

This competition consisted of developing MASs to solve a cooperative task in a
dynamically changing environment. The environment of the MAS is a grid-like
world where agents can move from one slot to a neighbouring slot if there is
no agent already in that slot. In this environment, food can appear in all but
one of these slots. The special slot, in which no food can appear, is considered
as a depot where the agents can bring and collect their food. An agent can
observe if there is food in the slot it is currently visiting. Initially, food can be
placed in some randomly selected slots. During the execution, additional food
can appear dynamically in randomly selected slots except the depot slot. The
agents may have/play different roles (such as explorer or collector), communicate
and cooperate in order to find and collect food in an efficient and effective way.

We have encouraged submissions that specify and design a MAS in terms of
high-level concepts such as goals, beliefs, plans, roles, communication, coordi-
nation, negotiation, and dialogue in order to generate an efficient and effective
solution for the above mentioned application. Moreover, the MAS implementa-
tions should be based on computational logic techniques (e.g., logic program-
ming, formal calculi, etc.) and they should reflect their design in a direct and
intuitive way.

We are completely aware of the fact that this scenario can also be attacked by
completely different methods and approaches (e.g., based on machine learning,

The First Contest on Multi-agent Systems Based on Computational Logic 375

neural nets, etc.). In fact, we believe almost all scenarios can be modelled in
various languages and programming paradigms. One important aim of this con-
test is to find out where exactly computational logic helps in solving particular
problems and where other approaches may be superior.

The challenge of this competition is thus to use computational logic tech-
niques to provide implemented models for the abstract concepts that are used
in the specification and design of MASs. These implemented models should be
integrated to implement the above-mentioned application intuitively, directly,
and effectively.

3 Submission Format

A submission consisted of two parts. The first part is a description of analy-
sis, design and implementation of a MAS for the above application. Existing
MASs methodologies such as Gaia [19], Prometheus [18] and Tropos [13] can
be used (not demanded) to describe the analysis and design of the system. For
the description of the implementation, it should be explained how the design is
implemented. This can be done by explaining, for example, which computational
logic techniques are used to implement certain aspects of the MAS (including
issues related to individual agents).

The second part is an (executable) implementation of the application. We
did not demand any particular way (data format, algorithm, mechanism) to
implement the system as long as it is implemented as a MAS and as long as
the environment is a 20x20 grid. Moreover, it should be possible to configure
the initial state of the environment to place food in arbitrary slots. During the
execution food should appear automatically every 20 seconds in a randomly
selected slot. The MAS was run with 4 agents that were positioned initially
at the corners of the grid. The implementation should be executable on a PC
running either Microsoft Windows or Linux OS.

3.1 Received Submissions

We have received four submissions for this first edition of the CLIMA contest.
From the received submissions, only one submission did use an existing multi-
agent methodology to develop a running system. Moreover, some submissions
did explain explicitly which techniques from computational logic were used to
develop certain aspect of the MAS efficiently and effectively, while the use of
computational logic techniques in other submissions seemed to be limited to the
use of the language Prolog for the system implementation.

The submission from Carlos Cares [12] analyses the scenario and designs a
MAS in a systematic manner using Tropos. The scenario is analysed in terms
of multi-agent concepts and features such as actors, roles, beliefs, goals, plans,
capabilities, commitments and resources. Based on these concepts, a system is
designed in terms of instantiations of these concepts resulting in a set of agents.
In this submission, the Tropos methodology was used to semi-automatically
generate code which was then extended with a Prolog implementation phase.

376 M. Dastani, J. Dix, and P. Novak

This allowed the implementation of the Tropos-based architecture in terms of
Prolog data structures such as lists, predicates, and rules.

The submission from Simon Coffey and Dorian Gaertner [14] does not use
any existing MAS methodology to develop their system. They provide directly a
system architecture consisting of BDI agents that sense the grid environment to
update their beliefs, evaluate their intentions, communicate with other agents,
and select and execute actions. The agents are able to negotiate over their inten-
tions to improve the efficiency of food collection. They also introduce different
roles that agents can play such as the scouting role: a role for finding food. Based
on different agents roles, they discuss a second system that consists of two types
of agents: the agents that can only play the scouting role and the agents that
can find and collect foods. Although in the proposed system the agents are static
and can play only one role, they discuss the possibility of agents that can play
different roles and can change their roles dynamically. In this submission, the
designed system is implemented using Qu-Prolog [6] that allows multi-threaded
execution of agents.

The solution of Robert Logie, Jon G. Hall and Kevin G. Waugh [16] consisted
of a purely reactive system of agents with no internal representation of the
current state. Their system resembled Brook’s subsumption architecture [11]
and had the notion of a role (or policy) at its core. Agents use certain roles and
can switch between them when the environment changes. They use the idea of
pheromone trails in order to find interesting and successful paths (their agents do
not have a memory). Although their system does not seem to use computational
logic in an extensive way, it has been motivated from research on normative
reasoning in deontic logic. An interesting idea is that for more complex systems,
this might lead to agents that develop and create new roles (in addition to those
originally specified).

The final submission, by Eder Mateus Nunes Goncalves and Guilherme Bit-
tencourt [17], concentrated on the notion of coordination between agents in a
MAS. Each agent maintains a knowledge base and updates it accordingly. The
underlying notion is a high-level petri net. Agents start cooperating with the
agent closest to the food (once it has been found). The cooperation ends when
the food is delivered at the depot. Messages are FIPA compliant. One of the main
results is the influence of the appearance of new food (and the time it takes to
store food in the depot) to the impact of cooperation between the agents. If the
time interval for new food to appear is small with respect to the time it takes
to store it, than cooperation pays off.

4 Winning Criteria

The criteria used to evaluate submissions and to select the winners was as follows:

1. Original, innovative, and effective application of computational logic tech-
niques in solving specific multi-agent issues identified in this application.

2. The performance of the executable implementation. The performance was
measured based on the amount of food collected by the MAS in a certain

The First Contest on Multi-agent Systems Based on Computational Logic 377

Fig. 1. Screenshot from Concalves et al.

period of time. All programs ran on the same machine (Windows/Linux
double boot machine).

3. The quality of the description of analysis, design and implementation of
the MAS, the elegance of its design and implementation, and the ease of
installation and execution of the program.

5 How to Determine the Winning System?

To determine a winner turned out to be a very difficult task. Three of the four
systems were very close and we finally decided to select two of the three as
winners. It should be noted that our decision was based on the packages we got,
the problems we had to install them and our impression from the description of
these packages and their underlying theory. We decided not to go into lengthy
discussions with the authors as to the why and how of their systems.

While we did our best to achieve a fair evaluation, there are certainly no
perfectly objective criteria we could have used: even the performance of the
systems was not comparable. We believe that by using a server architecture for
the second contest, we can at least measure the performance of the different
approaches in a fair manner.

As an example, one of the criteria was the use of computational logic. Thus
a system that seemed to be based on a simple reflex-architecture (as Logie et
al. [16]) was not as highly ranked as others. But Logie-agents did use only a
local view and no memory, so they might be much more efficient in unknown or
changing environments.

378 M. Dastani, J. Dix, and P. Novak

Fig. 2. Screenshot from Logie et al.

5.1 Technical Issues

In the call for submissions we did not impose any technical requirements on the
implementation and installation procedure of the submitted softwares. Unfortu-
nately, this turned out to be a serious bottleneck of the evaluation process. In
fact, there were many technical problems varying from missing files for visual-
izing the simulation results (Cares et al.), using obsolete C++ compiler version
(Concalves et al.), to using a number of not very well integrated external pack-
ages and libraries (Coffey et al.). The only submission without such technical
problems was from Logie et. al. Fortunately, all the problems were finally solved
in cooperation with the corresponding authors.

The authors used various supporting technologies for their implementations.
While submissions of Logie et al. and Cares et al. were standalone MS Windows
executables, submissions of Concalves et al. and Coffey et al. were source code
packages for Linux OS. Although not required, most submitted softwares, ex-
cept Concalves et al., did include a visualization component. Figures 2, 3 and 4
illustrate the screenshots of the visualization component of the submissions from
Logie et al., Cares et al. and Coffey et al., respectively. While Logie et al. and
Coffey et al. were visualizing the running system on-the-fly, the program from
Cares et al. was generating a HTML file with embedded JavaScript code, which
could be later viewed using standard HTML browser. The output generated by
the submission from Concalves et. al. is illustrated in Figure 1.

5.2 Evaluation of Submitted Programs

Since participants of the contest used different approaches to implement the
scenario, performance could not be considered as the most important criterion

The First Contest on Multi-agent Systems Based on Computational Logic 379

Fig. 3. Screenshot from Cares et al.

to compare them. Clearly, the systems in which each agent has a global view
of the grid and is aware of its relative position with respect to the other agents
(e.g. Cares et al.), has an advantage over the systems in which agents have only
a local view and no memory (e.g. Logie et al.). Therefore, we rather evaluated
the systems based on the originality of the idea and the strategy to collect food.
The amount of collected food is then considered as a second-class criterion.

Table 1. Parameters of simulation used in the final evaluation

Overall duration of a simulation run 3 min.
Interval of random food generation 5 sec.
Amount of food seeded in one food generation 1 piece
Amount of food at starting configuration 0 pieces
Depot position 〈10, 10〉
Number of agents 4
Starting positions of agents grid corners

We executed simulations with the parameters presented in Table 1 on the
same double-boot Windows XP/Linux computer with Intel Pentium 4 CPU with
tact-frequency 2.80 GHz and 1GB of RAM. In some cases, it was not possible
to comply with the simulation parameters set by the authors. For example, in
the case of Logie et al., the depot position was not configurable. It was placed
randomly at the beginning of the simulation. Also the simulation by Concalves
et al. did not allow us to configure the details of the simulation and finished
automatically after approximately 20 seconds with the exit status OK.

380 M. Dastani, J. Dix, and P. Novak

Fig. 4. Screenshot from Coffey et al.

5.3 Results and Winners

In the following, we describe the submitted multi-agent systems from a black
box perspective. This means that we describe the behavior of the multi-agent
simulations without considering their system descriptions. Note that the system
descriptions are briefly summarized in subsection 3.1. Table 2 presents the results
of evaluated simulation runs.

Table 2. Results of evaluated simulation runs

submission collected food food picked up performed steps
Cares et al. 25 25 1066
Coffey et al. 15 47 not reported
Concalves et al. 165 165 1826
Logie et al. 4 6 3600

The best performance in terms of collected food was achieved by Concalves et
al. However, this system exited unexpectedly before the allowed three minutes run
time without any error message. Since it wasn’t possible to configure the starting
amount of the food in the grid and the interval of its generation, according to the
simulation log, agents were able to collect 165 food items, although this is not in a
correlation with the required interval of food generation (e.g. food item every 20
seconds as specified in the call for submissions). It was also not easy to verify the
details of the simulation run because the program generated only a text stream to
the standard output. Figure 1 shows the few lines of the simulation log. Because
of these reasons and the fact that the use of computational logic techniques were
quite limited, we decided not to consider this submission for the first rank.

The First Contest on Multi-agent Systems Based on Computational Logic 381

The worst performer was the simulation submitted by Logie et al. In our opin-
ion, the poor performance was due to the fact that the agents neither had an
internal representation of the grid environment nor could communicate directly.
Agents were randomly walking around in the grid and once they found a depot
cell, they started to leave pheromone trail. This could help other agents to find
the depot. At the beginning of the simulation, the paths of individual agents to
the depot was not very direct, but after a while, a pheromone gradient could
be observed in the grid. This was visualized as an orange gradient around the
depot, where the saturation of yellow color in a particular cell was proportional
to a strength of a pheromone marking in the cell. In this state of the simula-
tion, agents were able to find their ways to the depot, after picking up a food
item, more directly than at the beginning of the simulation. Unfortunately, this
strategy was not performing very well in the short simulation runs, which was
also a reason why this program did not qualify for higher ranking in the contest.
Figure 2 shows a screenshot of the visualization component of the simulation by
Logie et al. The four darkest cells are agents and the brightest cells (green) are
available food. Since the depot position was not a configurable parameter of this
simulation it was randomly placed to the position 〈2, 5〉 at the beginning of the
simulation. Around the depot cell, the area marked by pheromone is visible.

The programs submitted by Cares et al. and Coffey et al. achieved approxi-
mately the same performance results using quite similar strategies. In the simu-
lation by Cares et al., there were two types of agents: scout agent and ordinary
agent. In this simulation, there was only one scout agent who did only explore
the grid by columns to look for food. All the other agents in the simulation were
ordinary agents. They were searching for food exploring rows one by one. When
they found food, they delivered it directly to the depot cell. All agents knew the
position of the depot cell. The agents in this simulation were informed about
the position of the depot cell at the beginning of the simulation. The most in-
teresting behaviour could be observed when a scout agent found food and later
met an ordinary agent. The ordinary agent started immediately to walk directly
toward the food, picked it up, and delivered it to the depot. Obviously the scout
agent communicated the position of the found food to the ordinary agent. Fig-
ure 3 displays a screenshot of the visualization component of the simulation by
Cares et al. Agents are depicted as red squares and the scout agent is marked as
ca (position 〈1, 8〉). Dark blue cell is a depot displaying the number of already
collected food items. Available food is depicted as yellow squares.

The approach by Coffey et al. did also use the idea of a scout agent. Here the
scout agent as well as the agents that were not able to load any food (i.e. they
were already carrying an item to the depot), marked the food they found and
broadcasted its position to all other agents. The agents that did not load any
food yet, started a negotiation and the winner of the bidding walked to pick up
the food and deliver it to the depot. The interesting aspect of this submission
is that when another food item was found, the negotiation was started all over
again and agents possibly rearranged their claims on particular food items they
were approaching. By this the agent team was able to optimize the overall cost

382 M. Dastani, J. Dix, and P. Novak

of food delivery (i.e. overall number of steps to perform in order to deliver given
set of food items to the depot) and thus improve its overall performance.

Contrary to the submission by Cares et al., agents from simulation by Coffey et
al. were not informed about the position of the depot right from the beginning
of the simulation. They spent a considerable amount of time until the depot
was found by one of them. After that, agents were able to clear the grid of
food quite quickly starting from the closest neighborhood of the depot to the
borders of the grid. Figure 4 shows a screenshot of the visualization component
of the simulation by Coffey et al. Lines show the connection between an agent
and food it currently claims. Yellow boxes depict undiscovered food, dark purple
boxes mean that the food item on a given position was discovered but not picked
up yet. Finally agents carrying a food item are depicted as a double-box (e.g.
the one in the first row of the grid). The scout agent (position 〈19, 6〉) recently
found food in the cell above it. The blue agent (nearest one to the scout) won
the bidding and gave up his intention to pick up the food item in the first row of
the grid. This allowed the green agent to claim the abandoned food in the first
row. The agent is now heading towards it.

Because of the elegance of the implemented approach, the use of MAS tech-
nology, the non-trivial amount of computational logic and, finally, their overall
performance, both submissions by Cares et al. and Coffey et al. were chosen for
the CLIMA Contest 2005 prize.

6 What Did We Learn for the Second Contest

As we already mentioned in Subsection 5.1, in the course of evaluation of submit-
ted programs, we faced a number of difficulties. On the one hand we had to deal
with various technical issues and, on the other hand, we recognized that since
we had no common basis for evaluation, it was very hard (almost impossible) to
compare the submitted programs exclusively on the basis of their performances.
Difficulties with comparison are probably more serious, because a fair evaluation
of submitted programs is only possible if conditions are equal for all participating
simulations.

After carefully considering all the possibilities to solve the problems mentioned
above, we decided to implement a supporting infrastructure for the next edition
of the CLIMA Contest. This supporting infrastructure is a server system that
runs the multi-agent system environment. Teams of agents can connect to this
environment after which they can perform actions (including sense action). We
allow multi-agent systems, which participate in the contest, to run on their
own local platforms. The involved agents can then communicate with the server
system, which runs the environment, via Internet using TCP/IP protocol.

Using this approach, participating multi-agent systems will be able to use
their own specialized communication technology and infrastructure. Also imple-
menting the simulation environment centrally will take off the burden of imple-
menting the simulation from shoulders of contest participants and allow them
to focus more on the strategy for the contest scenario. Moreover, the supporting

The First Contest on Multi-agent Systems Based on Computational Logic 383

infrastructure will allow us to evaluate participating MASs on a fair basis. It will
also clearly divide a simulation scenario from the team of participating agents.
We believe that such a supporting infrastructure also solve the technical issues
related to installation and correct execution of submitted multi-agent systems.

In order to introduce an objective evaluation criterion, we decided to allow
teams of agents to compete with each other in the simulation scenario. This
allow participants to explore possibilities of more complex coordination strate-
gies. We hope that all the mentioned factors will give rise to more flexibility on
participants side and also to improve the fun-factor of the competition scenario.

7 Conclusion

Given the very tight schedule (from the announcement to the submission dead-
line) we were quite satisfied with the four submissions. We believe this contest
will promote the use of techniques and approaches from computational logic to
the development and implementation of MASs. Although the contributions for
this contest may propose computational logic techniques and approaches that
are specific for this particular scenario (application), they may be generalised
and adopted to other MAS methodologies and programming languages. In par-
ticular, we believe that this contest will stimulate the use of computational logic
techniques and approaches for research and design of programming languages
that support the implementation of MASs in an effective and efficient manner.

There are several existing activities that aim at stimulating research and de-
sign of programming languages for MASs. Example of such activities are the
International Workshop on Programming Multi-Agent System [7], the AgentLink
Technical Forum Groups on Programming Multi-Agent Systems [8], and the var-
ious seminars and books dedicated to Multi-Agent Programming [9, 15, 10]. Our
experience is that many of the existing programming languages for implementing
MASs, such as IMPACT, 3APL, CLAIM, JACK, Jason, and Jadex [9], are based
on techniques and approaches from computational logic. In these programming
languages, computational logic techniques are used to model various mental at-
titudes of agents such as beliefs and goals, planning components, and reasoning
components. The next CLIMA contest is a great opportunity to evaluate these
approaches.

References

1. http://www.inderscience.com/browse/index.php.
2. http://www.agentgroup.unimore.it/aose05.
3. http://www.aamas-conference.org/.
4. http://www.sics.se/tac.
5. http://www.agentcities.org/EUNET/Competition.
6. http://www.itee.uq.edu.au/∼pjr/HomePages/QuPrologHome.html.
7. http://www.cs.uu.nl/ProMAS.
8. http://www.cs.uu.nl/∼mehdi/al3promas.html.

384 M. Dastani, J. Dix, and P. Novak

9. R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Multi-Agent Progra-
mming: Languages, Platforms, and Applications. Number 15 in MASA. Springer,
Berlin, 2005.

10. R. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Programming Multi-
Agent Systems, volume 3346. LNAI, Springer Verlag, 2005.

11. R. Brooks. How to build complete creatures rather than isolated cognitive simula-
tors. In Architectures for Intelligence, pages 225–239. Lawrence Erlbaum Assosi-
ates, Hillsdale, NJ, 1991.

12. C. Cares, X. Franch, and E. Mayol. Extending tropos for a prolog implementation:
A case study using the food collecting agent problem. In this volume.

13. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven information
systems engineering: the TROPOS project. Information Systems, 27:365–389, 2002.

14. S. Coffey and D. Gaertner. Implementing pheromone-based, negotiating forager
agents. In this volume.

15. M. Dastani, J. Dix, and A. E. Fallah-Seghrouchni. Programming Multi-Agent Sys-
tems, volume 3067. LNAI, Springer Verlag, 2004.

16. R. Logie, J. G. Hall, and K. G. Waugh. Reactive food gathering. In this volume.
17. E. M. Nunes Gonçalves and G. Bittencourt. Strategies for multi-agent coordination

in a grid world. In this volume.
18. L. Padgham and M. Winikoff. Prometheus: A methodology for developing in-

telligent agents. In Agent-Oriented Software Engineering III: Third International
Workshop (AOSE’02). Springer, LNAI 2585, 2003.

19. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), 12(3):317–370, 2003.

Implementing Pheromone-Based, Negotiating
Forager Agents

Simon Coffey and Dorian Gaertner

Imperial College London, SW7 2AZ, United Kingdom

Abstract. Wedescribe an implementation of distributed,multi-threaded
BDI-style [RG95] agents cooperating efficiently in a foraging scenario.
Using ant-style pheromone trails as the basis for a pseudo-random walk
procedure, they explore the world uniformly and negotiate to allocate col-
lection and delivery tasks. Global information is disseminated via a
publish/subscribe mechanism. The system is implemented using the con-
current logic programming language Qu-Prolog.

1 Problem Description

The first CLIMA contest aimed to promote the development of multi-agent sys-
tems that employ approaches from computational logic to solve key problems in
this field. These systems were to be specified in terms of high-level concepts such
as goals, beliefs, plans, roles, communication, coordination, negotiation and dia-
logue. In order to specify the design of our system, we first have to define several
assumptions we made about the scenario.

The contest requirements define the multi-agent environment to be a grid of
20 by 20 cells. Four agents start situated in the four corners of the grid and
are able to walk into neighbouring cells unless these are occupied by another
agent. They can also observe whether or not there is food in the cell they are
currently visiting. Food can appear in all but one of these cells (the depot) and
can be placed either in an initialisation phase or dynamically during execution at
regular intervals. The agents can play various roles (such as explorer or collector)
and their mission is to cooperate in order to find and collect the food and deliver
it to the depot in an efficient and effective way.

We have made two additional assumptions. Firstly, we restrict the movement
of agents to only the cells to the North, East, South and West of the cell they
currently occupy (i.e. we exclude diagonal moves). Equipping them with extra
sensory capabilities (such as looking two steps ahead or sensing the diagonally
adjacent cells) would put more emphasis on the sensors rather than the reasoning
ability of the agent. Secondly, we decided that each agent can only carry one item
of food at a time.

The challenge of this competition is thus to use computational logic techniques
to provide implemented models for abstract concepts that are often used in the
specification and design of multi-agent systems.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 385–395, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

386 S. Coffey and D. Gaertner

2 Design

A multi-agent system is typically characterised by the distributed execution of
autonomous, communicative agents that are situated in an environment.

We decided to use multi-threaded, logic-based, autonomous pseudo-BDI agents
that are situated in an environment without central control. This framework al-
lows for a wide variety of agent techniques to be applied, as is seen later in
the paper. The environment process seeds food into the world, maintains the
pheromone trails (described in Sect. 2.8), sends percepts to the agents when
requested and interfaces with the GUI.

2.1 Architecture

We designed our agents using an architecture loosely based on Rao and Georgeff’s
Beliefs-Desires-Intentions (BDI) model [RG95]. Each agent has beliefs about the
state of the world including the location of food and the depot as well as beliefs
about claims other agents have made. When an agent claims a certain piece of
food, it informs the other agents about his intention to pick it up. Delivery of
food and searching are two other examples of intentions. Desires in our imple-
mentation take the form of the two primary agent roles; scouts and gatherers
(described in Sect. 2.7).

K
no

w
le

dg
e

S
to

reSync

Inter-Agent
Communications

Fig. 1. Architecture design

Each agent consists of two primary threads and a dynamic database (Fig. 1).
The knowledge thread receives percepts from the environment (sensing), up-
dates the belief store depending on how it perceived the world, re-evaluates the
intentions of the agent and communicates with other agents announcing certain
events. The action selection thread then uses the current beliefs and intentions
to decide which action to execute next. It informs the environment about its
choice of action, which updates the world state and sends new percepts to the
agent’s knowledge thread.

Implementing Pheromone-Based, Negotiating Forager Agents 387

2.2 Agent Language

We define actions, percepts, beliefs and intentions as sets of Prolog terms:

Action ::= [pickup, putout, move(Direction)]

where Direction is a variable representing north, south, east or west,

Percept ::= [depot_same_cell, food_same_cell, has_food, has_moved,
north(N), south(S), east(E), west(W)]

where N, S, E, and W are variables that represent a cart, wall or pheromone
level, and finally

Belief ::= [at(X,Y), depot_at(DX, DY), food_at(FX,FY), have_food,
intends(Agent, Intention)]

Intention ::= [collect_food(X,Y), deliver_food]

where X and Y etc. represent coordinates. Note that there is no term to represent
an exploring intention; rather, exploration is used as a default behaviour if no
other intentions exist, and as such is never explicitly represented in the agent’s
intention state.

Intentions and beliefs are stored as Prolog terms in the agent’s dynamic data-
base, while percepts arrive as a list of terms belonging to the set of possible
percepts. Percepts are immediately processed into beliefs, thus only believes
and intends terms can appear in the body of clauses within the agent. To
illustrate how these terms are used, see the scenario in Fig. 2.

Fig. 2. Agent percept and state example

In the scenario above there are two agents, A and B, and it is agent A’s turn
to act next. Assuming it moved east last turn, it therefore receives the percept
set:

[has_moved(east), north(pheromone(5)), south(cart),
east(pheromone(4)), west(pheromone(2))]

where the entries for the unoccupied cells indicate the amount of pheromone in
each cell. Assuming the agent has prior knowledge of agent B’s intention, and
knows the location of the food shown, its beliefs are then updated to:

388 S. Coffey and D. Gaertner

believes(’A’, at(2,3)).
believes(’A’, food_at(5,5)).
believes(’A’, food_at(7,3)).
believes(’A’, intends(’B’, collect_food(7,3))).

Finally, the agent’s intentions remain as follows:

intends(’A’, collect_food(5,5)).

This simple example elides details of communication; the agent’s state may
change in response to inter-agent messages as well as percepts, as discussed
later.

2.3 Action Selection

Agents choose their actions using teleo-reactive (TR) programs [Nil94], consisting
of a priority-ordered sequence of condition/action rules. A simplified version of
the TR program used is shown in Fig. 3. This approach is particularly useful in
scenarios like ours, in which durative behaviours (e.g. explore) are desired. It is
important to note that at each percept/reaction cycle, the action chosen is only
ever a single atomic one, belonging to the agent’s set of allowed actions (defined
in Sect. 2.2). For example, while walk to(X,Y) appears to be a multi-step plan,
it is in fact simply a set of rules which choose the agent’s next atomic action;
it must be repeatedly invoked in order to arrive at (X,Y). Thus, the right-hand
side of the rules in Fig. 3 are all either atomic actions, or programs which return
an atomic action.

Note that the action selection program does not manipulate beliefs, alter the
intentions of the agent or handle negotiation in any sense; it operates solely on
the current intentions and beliefs of the agent, returning only an action. All
agent state manipulation is performed by the intentions thread (described in
Section 2.4), which runs in parallel to the action thread, ensuring a consistent
set of beliefs and intentions for the action selection program to use.

condition → action

intends(deliver food) ∧ believes(agent at(depot)) → putout

intends(deliver food) ∧ believes(depot at(X,Y)) → walk to(X,Y)

intends(deliver food) → explore

believes(at food) → pickup

intends(collect food(X,Y)) → walk to(X,Y)

� → explore

Fig. 3. Simplified action-selection TR program

2.4 Intention Selection and Knowledge Maintenance

The intention selection thread takes the form of a message-processing cycle, ac-
cepting inter-agent communication messages from the other agent threads, and

Implementing Pheromone-Based, Negotiating Forager Agents 389

percept messages from the environment. This is the only place in which mod-
ification of the agent’s believes(...) and intends(...) dynamic predicates
is permitted. While awaiting the next set of percepts, it listens for broadcast
messages and negotiation requests from other agents, updating its beliefs and
intentions accordingly. For example, if agent red receives a broadcast message
informing him that agent blue is claiming food at location (5,9), it will add the
term believes(intends(blue, collect food(5,9))) to its dynamic knowl-
edge base.

When a set of percepts is received, the agent first updates its beliefs about
the world state using the new percepts. Since the set of percepts it can receive
is relatively limited, this is achieved with an explicit set of handling routines for
each type of percept. It then decides whether to send any negotiation requests,
and finally re-evaluates its intentions accordingly. It does so using a series of
declarative conditions, made possible by the backtracking operation of Prolog-
style languages. For example, the delivery cost function for a particular item of
food is simply written with two rules:

cost_of(food(X,Y),Cost) :- % Depot location known
believes(agent_at(AgX,AgY)),
believes(depot_at(DepX,DepY)),
manhattan(AgX,AgY,X,Y,C1),
manhattan(X,Y,DepX,DepY,C2),
Cost is C1 + C2.

cost_of(food(X,Y),Cost) :- % Depot location not known
believes(agent_at(AgX,AgY)),
manhattan(AgX,AgY,X,Y,Cost).

where manhattan(X1,Y1,X2,Y2,D) gives the manhattan distance between two
points. This cost function is then called to find the optimum choice of food at
the start of each turn (assuming there is any known food). If this food is believed
to be claimed by another agent, negotiations are initiated with that agent. If the
negotiation is unsuccessful, the agent will claim the cheapest unclaimed food (or
retain whichever food it had previously claimed). Every new claim is broadcast
to the other agents, enabling them to contact the “claimant” of any food they
wish to claim for themselves.

2.5 Communication

Communication between agents utilises two of the main communication para-
digms: publish/subscribe, and point-to-point messaging. The former is used for
global knowledge sharing, while the latter is used for efficient negotiation be-
tween specific agents, as well as agent/environment communication. Each agent
places a subscription for messages about food/depot locations and agent com-
mitments at a remote server. When one agent finds an item, or claims some
known food, it will publish a notification about this event to the server which in
turn will inform all other agents that have subscribed to this event. This allows
for dynamic addition of new agents to the scenario without having to change the

390 S. Coffey and D. Gaertner

Fig. 4. Negotiation example

running system. Negotiation is achieved using asynchronous message-passing.
This is more efficient than using the broadcast system, since negotiation is al-
ways bilateral in our implementation; there is no need for all agents to be party
to the negotiation messages.

2.6 Negotiation

In order to most efficiently allocate the collection of known food to each agent,
we allow our agents to negotiate over the targets of their intentions. The agents
have a defined policy only with respect to individual negotiations, namely to
minimise the combined cost of delivery for the two negotiating agents. This is
achieved by examining each agent’s next-best option, and optimising accordingly.
The implicit global effect of this policy is to minimise the total delivery cost of
all known deliveries. This is the result of a series of bilateral negotiations; no
single agent takes responsibility for optimising the entire set of deliveries.

Figure 4 illustrates an example where negotiation can improve the efficiency of
food collection. It shows a snapshot of the environment state, in which agent A2
has just delivered some food, agent A1 has claimed and intends to pick up food
F1 and some other agent that was already carrying food accidentally discovered
and broadcasted the existence of food F2. Without negotiation, A2 would claim
F2 and collect and deliver it in 30 steps while A1 drops off F1 in 18 steps.

Note that A1 would not volunteer to pick up F2 since this would increase his
personal delivery cost to 22 steps. We therefore allow A2 to send a bid to A1, re-
questing permission to collect F1 instead. It sends its cost of collecting F1, plus
the delivery cost of its next-best option (in this case F2). A1 will then consider
the request, ceding responsibility for F1 if the total delivery cost after the swap is
reduced. The re-allocation allows agent A2 to pick up and deliver F1 in 10 steps at
the expense of a small increase in the other agent’s delivery cost. The total num-
ber of steps to collect and deliver both items has been decreased from 48 to 32 and
the longest individual delivery route has been reduced from 30 to 22.

In terms of welfare economics, the utilitarian social welfare of a system is
defined as the sum of the utilities of all the individual agents, while the egalitarian
social welfare is defined as the minimum utility of any of the agents in the system.

Implementing Pheromone-Based, Negotiating Forager Agents 391

We take utility to be the negated cost of delivery, so that a shorter delivery yields
a higher utility. The cost of delivery is the number of steps from the agent’s
location via the location of the food to the depot location.

The negotiation in our system leads to improvements to both utilitarian and
egalitarian social welfare as the average number of steps per delivery, as well as
the longest delivery route is reduced.

2.7 Agent Roles

After initial experimentation with all agents performing as described above (i.e.
searching until they first find food, then immediately delivering it), it became
obvious that except in the most food-rich environments, knowledge about food
locations was almost non-existent. The agents thus simply randomly walk un-
til they first find food, which they immediately pick up and deliver, giving no
opportunity for task optimisation. We therefore implemented a second type of
agent, a scout. Upon finding food, a scout will not pick it up, but will merely
broadcast its location to the gatherer agents, and continue searching. This can
be viewed as a second implicit desire, with the scout agent’s desire being to
gather information rather than food.

As implemented, the scout is statically determined; it may not switch to de-
livery mode. However, it is easy to envisage a scheme in which agents switch
to scouting dynamically, thus completing the full BDI repertoire of mental at-
titudes. In a scenario in which all the agents are randomly searching, the first
agent to happen upon food might switch to scout duty, combing the rest of the
area while the other agents collect the food it has discovered. In this manner,
unexplored areas (and hence concentrations of food) would be explored, rather
than the first food simply being delivered and forgotten about.

2.8 Exploration

Initially the agents do not know where the depot is located or which cells of
the grid contain food. They must therefore explore the world around them. If
this world has a rectangular shape, then dividing the world into quadrants and
assigning each agent to a quadrant would be the most efficient way to explore the
world completely, but this ignores over-exploration of repeatedly visited areas
(i.e. the area around the depot) and would not work in worlds with irregular
shapes or dynamically changing shape. For this reason, a pseudo-random walk
technique is used for exploration, utilising trail markers to ensure that agents
prefer to explore cells that have not been as frequently visited.

A completely random walk based on Brownian motion would not be efficient
enough since it tends to over-explore some areas at the expense of others. We
chose to implement a more directed approach based on pheromones. Each agent
drops a fixed amount of pheromone each time it enters a cell, similar to the
methods used in ant colony optimisation ([DMC96], [GC05]). An agent can smell
the concentration of pheromone in its neighbouring cells (those immediately to
the east, west, north or south) and probabilistically decides to move in a direction
which is under-explored. If there are one or more unexplored adjacent cells, it will

392 S. Coffey and D. Gaertner

always choose a move to one of these cells. This pseudo-random walking leads to
the uniform exploration of the world. It also compensates for over-exploration
of the area around the depot; the repeated trips of agents to this location mean
it would be heavily over-explored if a quadrant-based strategy were used.

However, there is a disadvantage to simply counting all the visits to a cell
since the start of the simulation. In an environment in which food is continuously
appearing, the goal of a search algorithm must be to ensure each cell is visited
as regularly as possible. In a system with permanent pheromones, a cell that
has been visited only once, but very recently, appears more attractive to explore
than a cell that was visited 10 times, 100 turns ago. In fact, the opposite is
true, and the cell with “stale” pheromones should be explored preferentially. For
this reason, a pheromone decay mechanism has been implemented and proved
useful, whereby pheromone values decrease over time according to a variety of
formulae. This ensures that cells which were over-explored in the past do not
get unreasonably ignored in the future.

A further advantage of random walking is its use in avoidance of deadlocks.
When two agents block each other’s paths they will randomly move out of the
way. While they may not successfully avoid each other instantly, due to the
random choice of direction, the avoidance routine inevitably resolves the dead-
lock, since it is statistically impossible for both agents to choose the same move
for ever. Each step that two blocking agents do in synchrony also adds extra
pheromone to the cells they occupy and therefore increases the probability of
opting to move in a different direction with their next move. In addition, this
method is much simpler to implement than exhaustive characterisation of every
possible deadlock, along with explicit strategies for resolving them.

Most importantly, using this flexible movement behaviour our implementation
adapts very easily to unknown environments and even to worlds with dynam-
ically changing shape. These scenarios are more relevant when thinking about
real-world robotic exploration (e.g. on the battle-field or in disaster relief efforts),
hence our focus on flexibility and adaptability.

3 Implementation

Our design required an implementation language that allows for the multi-
threaded execution of agents. We chose Qu-Prolog [RW03, CRZ] because it
allows for easy, declarative descriptions of the higher-level reasoning involved
in intention selection and negotiation. Its flexible system of dynamic predicate
manipulation also provides an unconstrained environment in which to construct
and modify the simple agent language we have used, while simultaneously being
descriptive enough to allow the lower level algorithms to be concisely expressed.

The publish/subscribe mechanism we described in Section 2.5 is realised using
broadcasting via an Elvin [SAB+00] server. Direct negotiation between agents
makes use of the Interagent Communication Model (ICM). Its communication
server provides agent naming facilities and the means to encode, transport and
queue symbolic messages.

Implementing Pheromone-Based, Negotiating Forager Agents 393

Effectively, we are using three forms of communication—point-to-point com-
munication for negotiations, broadcasting for events and knowledge sharing, and
indirect communication via the environment using pheromones for exploration.

4 Analysis/Conclusion

The broadcast and negotiation techniques used here rely on a good supply of
information about the environment. In scenarios where there is more known food
than the agents can collect at once, these techniques have a potential to improve
the utilisation of the agents, since the time spent conducting relatively unguided
searches is limited. However, this knowledge of food locations needs first to be
obtained, hence the introduction of a scout agent. The impact of the various
techniques implemented is briefly assessed here.

For our quantitative analysis, we fixed the depot at location (10,10) and ran
the simulation until 100 items of food had been collected and delivered. The
agents were still required to discover the depot on each run. Ten runs of the
simulation were conducted for each scenario. The average number of steps for
one food delivery (μsteps), the standard deviation of the number of steps (σsteps)
and the average number of successful negotiations per delivered food item (μneg)
have been measured.

This shows that adding guidance to the randomly walking ants with the help of
pheromones significantly improves their behaviour. However, adding negotiation
does not seem to improve the results. We believe this is due to the low rate at
which food is seeded into the environment. The negotiation usually improves
a combined delivery of two ants by about 10%. However, the ants spent the
majority of their time searching for food or the depot. Only about 10% of their
time is spent collecting and delivering and so the improvement achieved by
adding negotiation is only 10% of 10%, equivalent to 1% overall.

Table 2 shows the variation in scout performance at different seeding rates.
In the high seeding-rate environment (with food seeded every 20 agent steps),

Table 1. Quantitative results when food is seeded every 60 simulated agent steps

Scenario μsteps σsteps μneg

4 gatherers (no pheromone, no negotiation) 73.7 3.32 n/a
4 gatherers (pheromones, but no negotiation) 55.7 1.27 n/a
4 gatherers (pheromones and negotiation) 56.4 2.07 0.20
3 gatherers and 1 scout (pher. and neg.) 55.6 1.1 0.29

Table 2. Effect of permanent scout with varying seeding rates

Scenario Seeding μsteps σsteps μneg

4 gatherers high 28.9 0.74 0.22
3 gatherers and 1 scout high 31.6 1.28 0.18
4 gatherers low 56.4 2.07 0.20
3 gatherers and 1 scout low 55.6 1.1 0.29

394 S. Coffey and D. Gaertner

having a dedicated scout agent proves significantly detrimental to the team per-
formance. This is unsurprising, as with high rates of seeding, food is sufficiently
abundant that the agents have no trouble finding food on their random walk.
The team with a scout still performed better than would be expected of a team
consisting solely of three gatherers, however, experiencing only a 9% performance
drop despite effectively losing a quarter of the delivery capability.

In the low seeding-rate environment (with food seeded every 60 agent steps)
however, the benefit of the scout agent completely compensated for the loss of
delivery capacity, roughly equalling the delivery rate of four gatherers. In effect,
the scout provides sufficient global knowledge to allow the agents to employ their
high-level reasoning much more frequently, resulting in more efficient collection
of the known food. As the delivery agents leave trails every time they visit
the depot, the scout agent tends to explore the areas further from the depot,
discovering concentrations of food that the delivery agents are unlikely to find.

As predicted, the usefulness of the scout agent depends on the rate of seeding.
In an environment with a high rate of seeding, the food density is such that it
becomes more efficient to simply have all agents collecting, since they are likely
to find food soon after leaving the depot on their random search. Additionally,
a scout agent in this situation tends to over-explore the edges, drawing the
gatherer agents further from the depot than necessary. In a food-sparse (and
thus information-poor) environment, however, the scout becomes more useful
despite the loss of one agent’s delivery capacity.

While these results do not show a scenario in which a scout agent provides a
decisive advantage, they do indicate that there are situations in which a definite
benefit exists. Accordingly, an initial attempt at an adaptive scouting strategy
was implemented, wherein agents were allowed to change roles depending on
the amount of knowledge they believed the team to have. In our first dynamic
strategy, each agent is given a scouting threshold that controls whether it acts as
a scout or a gatherer. This threshold depends on the amount of food the agents
are collectively aware of. If the amount of known food drops below a particular
agent’s threshold, that agent will switch to scouting behaviour. By giving each
agent a different threshold, a primitive dynamic scouting strategy is achieved.
Results in several different scenarios are shown in Table 3.

It can be seen that allowing the agents to use an adaptive strategy all but
eliminates the penalty for using scouts. In each scenario, the average cost of
delivery is statistically identical, including the high seeding rate scenario which

Table 3. Effect of dynamic scouts with varying seeding rates

Scenario Seeding μsteps σsteps μneg

4 gatherers high 28.7 0.72 0.07
Dynamic scouts high 28.7 0.75 0.12
4 gatherers medium 39.1 2.36 0.12
Dynamic scouts medium 39.7 1.02 0.08
4 gatherers low 54.4 0.94 0.03
Dynamic scouts low 54.5 0.96 0.06

Implementing Pheromone-Based, Negotiating Forager Agents 395

previously suffered from the use of scouts. While no definite improvement in per-
formance has yet been shown when employing scouts, we believe this is primarily
due to the simplicity of the contest’s problem resulting in a lack of opportuni-
ties for negotiation. Since the benefit of negotiation in this world is small, the
potential for scouts to improve the team’s performance is consequently limited.
In a world with a more complex set of tasks (e.g. one with different types of
food, different delivery depots etc.), negotiation and hence scouting techniques
are likely to prove much more valuable.

Acknowledgements

We would like to express our deepest gratitude to Silvana Zappacosta for allowing
us to use and helping us to modify her visualisation written in Tcl/Tk, and
to Peter Robinson for suggesting several improvements to our implementation.
Furthermore, we are indebted to Keith Clark for encouraging us to participate
in this contest and for many fruitful discussions.

References

[CRZ] Keith L. Clark, Peter J. Robinson, and Silvana Zappacosta Amboldi. Multi-
threaded communicating agents in Qu-Prolog. In this volume.

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[GC05] Dorian Gaertner and Keith Clark. On Optimal Parameters for Ant Colony
Optimization Algorithms. In H. Arabnia and R. Joshua, editors, Proceed-
ings of the International Conference on Artificial Intelligence 2005, vol-
ume 1, pages 83–89. CSREA, 2005.

[Nil94] Nils J. Nilsson. Teleo-reactive programs for agent control. Journal of
Artificial Intelligence Research, 1:139–158, 1994.

[RG95] A. Rao and M. Georgeff. BDI agents: From theory to practice. Proceedings
of the 1st International Conference on Multi-Agents Systems, pages 312–
319, 1995.

[RW03] Peter J. Robinson and Michael J. Walters. Qu-Prolog 6.3 Reference Manual.
The University of Queensland, 2003.

[SAB+00] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content based
routing with Elvin4. In Proceedings of AUUG2K, June 2000.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 396 – 405, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Extending Tropos for a Prolog Implementation: A Case
Study Using the Food Collecting Agent Problem

Carlos Cares1,2, Xavier Franch1, and Enric Mayol 1

1 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya,
Jordi Girona, 1-3 08034, Barcelona, Spain

Ph.: 43-93 413 7839
{ccares, franch, mayol}@lsi.upc.edu

2 Dept. Ingeniería de Sistemas, Universidad de La Frontera,
Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile

Ph.: 56-45 325000

Abstract. There is a recognized lack of Agent-Oriented Methodologies to trans-
late a design into a computational logic implementation. In this paper we
address this problem by extending Tropos, which is one of the most used meth-
odologies to design agent systems. We show our proposal with the Food Col-
lecting Agent Problem in which a team has to collect food in a grid-like world.
Our solution includes autonomous behaviour, beliefs, multiple roles playing,
communication and cooperation. The main contribution is the proposal to gen-
erate a Prolog implementation from a Tropos design by first extending the Tro-
pos de-tailed design and second illustrating how to get a set of Prolog clauses
for this design. In addition we show a performance evaluation of our Prolog
implementation which confirms that our solution for the case study is effective
and allows a simple configuration of the resulting program.

1 Introduction

Nowadays there is a recognized lack of Agent-Oriented Methodologies (AOM) at the
implementation stage [1, 2]. Tropos [3, 4] is one of the most used AOM, however, it
has an implementation stage oriented to an object-oriented implementation of the
agent system, and therefore guidelines to derive declarative implementations from a
Tropos design are not provided [5]. In this paper we address this situation and we
propose a method to get a Prolog implementation starting from a Tropos design. To
illustrate our method we use the Food Collecting Agent Problem (FCAP) as a case
study, which is about a grid-like environment where agents can move just among
neighbour slots and each slot can host at most one agent. In this world, food appears
in a randomly way in any empty slot. There is a special slot, named the depot, where
the agents may collect the food. In the next section we briefly show the stages of
Tropos and our design for the FCAP, in section 3, an additional design step oriented
to get a Prolog implementation is proposed and then we show how to convert this
output into a computer program which is evaluated as a final point.

 Extending Tropos for a Prolog Implementation: A Case Study Using the FCAP 397

2 Using Tropos for the FCAP

Tropos [3, 4] is an agent-oriented methodology for building software systems. It al-
lows describing both the social (organizational) environment and the system itself.
According to [5], Tropos covers from early requirements to implementation with a
different focus on each stage: (1) Early Requirements focus on social context; (2) Late
Requirements focus on system-to-be; (3) Architectural Design, focus on systems
components; (4) Detailed Design and (5) Implementation, both focus on software
agents.

Tropos uses the concepts of: actor, which can be organizational, human or soft-
ware; positions, roles and agents, as specializations of actors; goals and social depend-
encies for representing the commitments or agreements of actors (dependees) to other
actors (dependers). The type of the dependency is determined by on the intermediary
element (dependum) between actors. It can be goal (hard or soft), plan or resource.
Thus the basic structure of social representation is the dependee-dependum-depender
relationship. In figures 1 and 2 we have illustrated the graphical representation of Tro-
pos constructors according to their use. For further details about Tropos see [5].

In Tropos, at the Early Requirements stage, the analysis of the environment must
be done. Since in the generic case the FCAP case study does not have a social con-
text, we omit this stage here.

At the Late Requirements stage, the system-to-be is analyzed and the functional
and non-functional requirements are specified. For FCAP we recognize two main
actors, the Food Provider and the Collector Team. There are food dependencies rep-
resenting a goal (Food provided) and two information resources (Food depot and
Food environment). Moreover, the Food Provider delegates into the Collector Team
the constraints about the agent’s behaviour in the food environment. We build the
models using our RiSD methodology [6]. Although there is an evolution of diagrams
inside of this stage, we show the final output in figure 1.

Fig. 1. Tropos: The output of the Late Requirements stage for the FCAP

398 C. Cares, X. Franch, and E. Mayol

Generally the FCAP problem does not consider the Food Provider as a system
agent; however we do so because in the context of an Agent-Oriented Software Meth-
odology, all actions should be executed by some system agent, although in specific
cases, this agent does not become a software agent.

In the Architectural Design stage, the global architecture of the system is analyzed,
new actors are incorporated and their main capabilities are identified. In our case we
have added a Team Member position that represents all member of the team. More-
over we have decided to tackle the problem with the roles Collector (for gathering
food and disposing it in the depot) and Explorer (for looking for food in the grid).
Finally we have delegated in the Rule Guard role the goal to keep an adequate behav-
iour. When we specify that the position Team Member covers the Rule Guard role, it
means that all the members of the team must play this role. In figure 2 we show the
output of the Architectural Design. For simplicity of the drawing we have omitted the
positive contributions from the Team Member, Collector, Explorer and Rule Guard’s
goals to the main softgoal of the Collection Team.

Fig. 2. Tropos: The output of the Late Requirements stage for the FCAP

At the Detailed Design stage, each actor is individually analyzed and each goal of the
Architectural Design is decomposed to specify the actor capabilities. Thus, for the Rule
Guard role, we have designed capabilities to access the own position, to pick up food, to
know empty neighbour slots and to move just into these slots. For the Team Member
role we have identified a belief about the food environment, this belief can be updated
with agents’ interaction, thus the cooperation among the team is based on sharing their
beliefs. Moreover we have provided direct access to the position of the depot and we
have designed the capability to advance towards a target point in the grid. For the Col-
lector role we have the capabilities of disposing food in the depot, moving to the depot,

 Extending Tropos for a Prolog Implementation: A Case Study Using the FCAP 399

moving for a guessed food position (based on its belief) and, in the case of not having
food information, looking for it in unvisited slots. We have designed a main strategy,
which specifies that collectors have different search spaces according to how many of
them are in the grid and which is the size of the food environment.

Finally for the Explorer we have designed the simple capability of searching food
through the grid (with the restriction again of moving just into adjacent slots), and the
necessary data resources to support this capability have been identified. In figure 3 we
show a partial view of the Detailed Design output, we illustrate this stage with the
Rule Guard and Team Member roles, for simplicity of the drawing we have omitted
the relationships and softgoal contributions among the actors and due to the simplicity
of the Explorer behaviour we have omitted it too. In the next section we show our ex-
tension for the detailed design of the Collector role.

Fig. 3. Tropos: Detailed design for Rule Guard and Team Member roles

3 Extending Detailed Design

In this section we explain how to extend the Detailed Design stage to get a declarative
implementation. First we propose to replace the Agent UML activity diagrams [7]
used in Tropos by scenario sequences, which are based on Use Case Maps [8]; in [9]
it is illustrated in an intuitive way how to put scenario sequences in these diagrams.
We think that it is a simple way to specify sequences when they are needed. In a de-
clarative implementation these sequences must have the convenient order to prove the
logical goals, in addition this order could affect the system efficiency, and hence we
consider an advantage to have a representation of these sequences at design time. In
figure 4 we show a scenario sequence for the Collector role, represented by the black
line crossing the Collector agent starting at the black circle and ending at the perpen-
dicular line. Here the design indicates that the first goal to be proved is Put food in the
depot, but this means to check that the agent is over the depot and has food in the
buffer, otherwise the second goal, Go to the depot, should be proved, etc.

400 C. Cares, X. Franch, and E. Mayol

For goal and plan root elements we propose to specify when they must be exe-
cuted, thus we propose four implementation attributes, namely at begin, at end, at call
and always. At call means that the goal or plan is activated from another goal or plan.
At begin and at end indicate that the selected goal or plan should be activated just one
time, at start of run time or at the end. Always means that the goal or plan should be
permanently executed.

Finally we propose to make the decisions about data representation. The design
elements which require having a data representation are resource and belief. In Prolog
we have two main choices: a data structure (generally a list) or the knowledge data
base (KDB) included in Prolog. In our case, we have decided to represent the food
environment with predicates and the rest of resource and belief elements with lists.

In figure 4 we show a partial view of the proposed extension, here we have some
typical implementation decisions that we bring to design time, namely: (a) sequences
of proofs using scenario sequences, (b) data representation decisions, the boxes at the
bottom of the figure 4, and (c) execution time specifications, the boxes at the right top
of the figure 4. From this point of view our extended detailed design enriches the
design stage and their diagrams enhance the system documentation. The notation of
the external attribute elements correspond to the GRL [10] proposal.

Fig. 4. Partial Extended Detailed Design for FCAP

4 The Prolog Implementation

To obtain an implementation from the extended detailed design we propose the fol-
lowing suggestions:

 Extending Tropos for a Prolog Implementation: A Case Study Using the FCAP 401

1. Generate the agents and their relationships with the predicates agent, play, posi-
tion, isa, cover, etc., i.e. the actor types and actor relationships from Tropos. We
have implemented some predicates to inherit resources and beliefs when isa is used
and to replicate the data structures when the roles are assigned to agents. This
predicates are generic and could be used in other agent applications. For FCAP we
have generated a specific instantiation with five agents, a food provider agent (fp),
an explorer agent (ca), and three collectors (en, xa and ge), we show this from
lines 28 to 41 in figure 5.

2. Use the define predicate to implement resource and belief elements, identifying the
name of the role as first argument, and a data structure which define the resources
(e.g. lines 182 to 184 in figure 5).

3. Group root elements (goal and plan) under the identified activation times, each
activation time is a predicate that needs the actor type (atom) and the agent name
(variable); this is illustrated from lines 185 to 192 in figure 5.

4. Program the goals and plans using a set of predicates that act over the defined data
structures and clauses. This step motivates the reuse of already programmed predi-
cates but is not an automatic step because the specific clauses depend on the se-
mantic of the each goal and plan. For example we show, in figure 5, the amI and
getResource predicates that implement the shareGrid plan (lines 452 to 455).

5. Write the main program and call the predicates runBegin, runEnd, and runAlways
(without parameters). These are simple predicates that execute the set of begin, end
and always predicates of each agent. The implementation is generic and other agent
applications could use the same predicates.

Fig. 5. Implementation of the detailed design

We have implemented the system using WSI Prolog [11]. We have a set of pa-
rameters which are loaded from a text file; the parameters correspond to the Food
Provider resources in fig. 1. Moreover we run the system in a batch mode, generating
an HTML output where we can see what happened with the food collection in any
web browser. Moreover, since some Prolog implementations allow a multithread
execution we recommend to put each agent in a different thread getting data and exe-
cution time autonomy. In the following code segment we show the basic thread divi-
sion imple-mented in SWI-Prolog (the symbol “...” means that we require a similar
code line for each agent)

402 C. Cares, X. Franch, and E. Mayol

runThreads:-
thread_create(ignore(run),IdAg_1,[alias(ag_1),detach(true)])
, …
parameter(minutesRunning,TotalTime),
T is TotalTime*60,
sleep(T),
thread_send_message(IdAg_1,stop),
…
thread_join(IdAg_1,_),
…

To see the system output we add to the food provider agent a task that generates an
HTML file with the different states of the grid. This output is showed in figure 6 with
an 8x8 food environment and fifteen seconds of total time. The food depot is the dark
slot with the number 0 at start and 8 at the end. The food is in the light slots and the
agents are the slots with the strings ca, xa, en and ge.

Fig. 6. Visualization of the html output

We have considered giving some performance results of our Prolog implementa-
tion. However a complete evaluation means to control many variables, for example
the grid size, rate of food generation, amount of initial food in the grid, total time, and
even some variations of the problem constraint, for example an unknown depot posi-
tion, direct communications among agents (i.e., the agents do not need to be in
neighbours slots to communicate their believes), etc. Also a general evaluation could
consider other sophisticated variables and their implementation strategies but this
work is out of the goal of this paper.

We just provide a simple evaluation scenario. We set the total time to one minute;
the grid size to 15x15 without initial food in the grid; the rate of the random food
generation to two seconds; and making the agents aware of the depot position. In this
scenario we have made several executions interchanging the roles with different num-
ber of agents.

Thus we have different configurations to evaluate the system. Because we have a
random system of food generation the performance is not always the same so it has
been necessary to take a sample for each configuration over our random variable

 Extending Tropos for a Prolog Implementation: A Case Study Using the FCAP 403

“amount of collected food”. We have used a sample size 30. In figure 7 we show
frequency graphics of the amount of collected food. We use the label NeMc for the
configuration with N explorers and M collectors.

Fig. 7. Frequency graphics of collected food under 4 configurations

We have aimed to demonstrate that there is a statistical difference among configura-
tions, i.e. we have a null hypothesis of means equality. In figure 7 it is possible to as-
sume that our random variable has a normal probability distribution in spite of the fact
that the standard deviation does not seem to be the same. In [12] it is reported that the
Welch’s test provides reasonable protection against type I errors (rejecting a true hy-
pothesis) when the variances are heterogeneous. Thus we tried our set of null hypothe-
ses using this statistical test. In figure 8 we illustrate the means of each configuration
and also we show with a strong double arrow when the null hypothesis has been re-
jected with an error probability less than 1% (=0.01) and with a segmented line when
there was not possible to reject the equality assumption with the same probability.

Based on these results, we can see that there is a better performance when we in-
crease the total amount of agents, but also it seems that a limit exists. Another obser-
vation is that there is not a real difference when the roles are changed. We think that

Fig. 8. Significance of the roles and number of agents over the amount of collected food

404 C. Cares, X. Franch, and E. Mayol

this similar performance means that the roles are not significantly different, since
maybe the collectors look for food when they do not have food information and, in a
small grid it is relatively fast to go to the depot. On the other hand, the vertical differ-
ences seem very interesting because, although the explorer spends CPU time and it
does not collect food, there are 4 cases in which the system improves its performance
when an explorer is added, which indicates that information interchange is an impor-
tant factor, even when this information is not updated.

Finally, in spite of these outcomes, we think that our evaluation is modest and it is
not possible to get general laws, mainly because we think that the global strategy and
individual behaviours are more relevant variables to improve the system performance,
but at the same time, this initial evaluation is enough to show our implementation
performance and flexibility to move the quantity of agents, general food provider
parameters and role interchange.

5 Conclusions

In this paper we have proposed a specific way to get a Prolog implementation from
a Tropos design on two steps, first extending Tropos, specifically at the detailed de-
sign with new elements: sequences, execution times and data representation; and
second, proposing translation suggestions to get the Prolog implementation from
this Tropos-extended detailed design. Although we have used the FCAP, the
approach is a generic developing proposal based on the atomicity and clarity of
the elements in the extended detailed design. However a set of different projects
should be carried out to get stronger evidence about its utility and wide range of
applications.

On the other hand the program architecture is always the same, and there are a
common set of predicates already programmed and other ones that we can get from
the detailed design, thus a relevant part of the code could be generated automatically
and the rest could be sufficiently documented for programming aid. This means that
detailed de-sign and implementation are very close and, hence, the detailed design
conforms a good documentation of the implementation stage.

We think that our proposal is very simple, repeatable in many problems and, hence,
easy and convenient to establish in software developing teams which are developing
agent-oriented systems.

About FCAP we have designed a solution using multiple roles playing (Team
member, Rule guard plus Collector or Explorer). The agents cooperate in the solu-
tions sharing information about their belief of the world. Besides, the similar behav-
iour is grouped in the Team member role, being an efficient solution to implement
common features. Moreover we have tested the system with different roles configura-
tions showing the performance and flexibility of the implementation as the result of a
case study of our methodological proposal. On the other hand we think that a com-
plete agent strategy description and evaluation is necessary to find an optimal agent
solution to FCAP.

 Extending Tropos for a Prolog Implementation: A Case Study Using the FCAP 405

Acknowledgement

This work has been done in the framework of the research project UPIC, ref.
TIN2004-07461-C02-01, supported by the Spanish Ministerio de Ciencia y Tec-
nología. Carlos Cares wants to acknowledgment to MECE-SUP FRO0105 Project of
the chilean government and the University of La Frontera, who supports his stand at
Universitat Politècnica de Catalunya.

References

1. Dastani M., Hulstijn J., Dignum F., Meyer J.: Issues in Multiagent Systems Development.
Third International Conference AAMAS04, Columbia, USA, July (2004), 920-927

2. Hoa, K., Winikoff, M.: Comparing Agent-Oriented Methodologies. In the proceedings of
the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems,
AAMAS’03. Melbourne, Australia, July (2003)

3. Castro, J.,Kolp M., Mylopoulos, J.: A Requirements-Driven Development Methodology.
In Advanced Information Systems Engineering: 13th International Conference, CAiSE’01.
In-terlaken, Switzerland. (2001), 108-123

4. Perini A.,Bresciani P.,Giunchiglia P., Giorgini P., Mylopoulos J.: A knowledge Level
Soft-ware Engineering Methodology for Agent Oriented Programming. In Proceedings of
the Fifth International Conference on Autonomous Agents, Montreal, Canada, May
(2001).

5. Sannicoló, F., Perini, A., Giunchiglia, F.: The Tropos modelling language - A User Guide.
Technical report DIT-02-0061, University of Trento, February (2002)

6. Gemma Grau, Xavier Franch, Enric Mayol, Claudia Ayala, Carlos Cares, Mariela Haya,
Fredy Navarrete, Pere Botella, Carme Quer. "RiSD: A Methodology for Building i* Stra-
tegic Dependency Models". In Proceedings of The 17th Int. Conf. on Software Engineer-
ing and Knowledge Engineering (SEKE'05). 14-16 July. Taipei, Taiwan, (2005) 259-266.

7. Odell, J., Parunak H.v.D., Bauer, B.: Extending UML for Agents. In Proceedings of the
Agent-Oriented Information System Workshop at the 17th National Conference on Artifi-
cial Intelligence. Austin, USA. (2002) 3-17

8. Amyot, D., Mussbacher, G.: URN: Towards a New Standard for the Visual Description of
Requirements. Proc. of the 3rd Int. Workshop on Telecommunications and beyond: The
Broader Applicability of SDL and MSC., Aberystwyth, UK, June 24-26, (2002) 21-37

9. Liu L., Yu E.: Designing Web-Based Systems in Social Context: A Goal and Scenario
Based Approach. Lecture Notes in Computer Science 2348, Jan (2002) 37-51

10. GRL web site. http://www.cs.toronto.edu/km/GRL/.
11. Wielemaker, J.:SWI-Prolog 5-1: Reference Manual. SWI, University of Amsterdam, Ro-

etersstraat 15, 1018 WB Amsterdam, The Netherlands, (1997)-(2003)
12. Kirk, R.E.: Experimental Design. Brooks/Cole Publishing Company, 2nd Edition (1982)

Reactive Food Gathering

Robert Logie1, Jon G. Hall2, and Kevin G. Waugh2

1 Osaka Gakuin University, Faculty of Computer Science,
2-36-1 Minami Kishibe, Suita Shi Osaka 564-8511, Japan

rob@utc.osaka-gu.ac.jp
2 The Open University, Department of Computing,

Faculty of Mathematics and Computing, Walton Hall,
Milton Keynes MK7 6BJ, England

Abstract. This short paper describes a simple agent system aimed at
addressing the food gathering problem set for the 2005 CLIMA con-
test. Our system is implemented as a collection of reactive agents which
dynamically switch between a number of behaviours depending on in-
teraction with their environment. Our agents maintain no internal rep-
resentation of their environment and operate purely in response to their
immediate surroundings. The agents collectively map the environment
co-operating indirectly via environmental markers and they use these
markers to assist them in locating the depot when they discover food.
The required behaviour emerges from the interaction between agents and
the marked environment. Despite the simplicity of the agents and their
behaviours formal description is difficult. We concentrate more on identi-
fying interesting problems in characterising system exhibiting emergent
behaviour and outline possible logic approaches to dealing with them.

The application (and one or two other systems addressing the same
problem in a different manner) can be downloaded from:
http://219.1.164.219/∼robert/pwBlog/wp-content/CLIMAbuild.zip

1 Introduction

As multi-agent systems become more complex designers are increasingly hav-
ing to deal with difficulties introduced by heterogeneous systems. Agents may
not behave as they are ‘supposed’ to for many reasons[1], they may have been
programmed by different organisations, they may have competing interests or
be operating with a different set of agent level experiences. Given these differ-
ences the task of designing and maintaining multi-agent systems may be made
less difficult if there was a method of specifying agent behaviour in respect of
desired system behaviour. Recent research in normative systems and, partic-
ularly, normative reactive systems may provide this means of describing and
constraining agent behaviour in a manner which allows us to address this dif-
ficulty. Our system has been built as a tool for investigating such approaches,
we have constrained the world in a number of ways in an attempt at simplify-
ing our initial investigations. Our agents are purely reactive, they maintain no
internal model of their environment and operate entirely on the basis of local

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 406–413, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reactive Food Gathering 407

information. This makes learning about the environment difficult and our agents
achieve this by making learning a partially external group activity, agents mark
the environment with a simple indication of their internal state. This removes
the difficulties associated with different sets of agent level experiences problem
mentioned above.

For many problems in a tightly bounded environment – problems such as in-
dustrial process control or safety systems – reactive agents may be ideal and a
fuller understanding of their potential behaviour will be beneficial in allowing
their use in increasingly complex scenarios. The CLIMA contest scenario pro-
vides such an environment and is, we feel, ideal for the application of reactive
agents. Jennings et al. [2] note that a major selling point of purely reactive agent
systems is that overall behaviour emerges from interactions between component
behaviours and the agent’s environment. This inherent simplicity makes reactive
agents attractive but it also masks a number of difficulties. The most notable are
those of designing agents in such a way that they can take account of non-local
information and in such a way as to be able to improve their agent level perfor-
mance over time. Jennings et al. further note that agents using a large number
of behaviours can quickly become too complex to understand.

Reactive agents generally operate by having predetermined behaviours or se-
quences of actions intended to deal with the various circumstances that the agent
may encounter. As circumstances change an agent may switch behaviours. Our
agent design involves identifying problems within the environment and designing
behaviours to address them. Switching between behaviours brings a number of
constraints. If an agent’s behaviour involves maintaining a record of data and
the agent switches to another behaviour, that does not maintain this data, then
this data may become outdated. In a dynamic environment such internal world
data may be dangerously out of date when the agent returns to using it and
maintaining the data my be expensive for a resource bounded agent concentrat-
ing on other tasks. We avoid such problems by letting agents use only very local
data and data about their internal state or history.

2 The Problem — A General Approach

We approached the problem by identifying sub-problems which we could asso-
ciate with agent roles. The roles assigned were those of locating food and, when
food has been found, transporting it to the depot. Both of these roles involve
searching the environment, the former for food which may be at random loca-
tions and the latter for the depot which remains at a fixed location. Clearly it is
in the system’s benefit to have all agents aware of the depot so when one agent
finds it some means of indicating its presence to others will be a valuable asset.
Our intention is to make the agents purely reactive and one of the consequences
of this is that communications options are rather restricted. In addition we limit
each agent to being able to carry only one food unit.

We have assumed that the depot location is unknown initially but that it
remains at a fixed position throughout a run, when an agent discovers the depot

408 R. Logie, J.G. Hall, and K.G. Waugh

it discovers its permanent location. This leads to a minor difficulty, our agents
operate using only very local data and do not know their absolute position in
the world1 which means that they cannot remember an exact depot location.
We address this by letting agents leave local markers in the environment. Agents
use a random walk to search for the depot. When an agent finds the depot it
initialises a ‘dropper’ which allows it to leave a trail of pheromone like weightings
on the cells that it visits between leaving the depot cell and finding a piece
of food. Despite the extreme simplicity of this system it allows agents acting
only with local data to co-operate in mapping their environment in a way that
facilitates the task of carrying food to the depot.

The depot location problem within the food transport role is addressed by
three agent behaviours; depot-searching, depot-marking and depot-seeking. These
behaviours, respectively, involve a random walk looking for the depot cell, a
random marker laying walk searching for food and a directed pheromone gradient
following walk whilst carrying food back to the depot.

The second search problem – that of finding food – cannot be approached
in the same way since food is deposited randomly by the system. This random
placement precludes structured search behaviour by the agents. Food may well
appear in a location already searched. The specification indicates that food can
only be seen on a cell that an agent is visiting so this rules out giving food a
smell that agents can detect. We address this problem with a simple random
walk and there is one food-searcher behaviour assigned to the food locating role.
This behaviour may be concurrent with the depot-searcher and depot-marker
behaviours.

Searcher behaviours involve random walks and seeker behaviours involve trail
following. We assume that cells will not have multiple food units, when an agent
picks up food then thet cell has been cleared. There is, thus, no need to lay trails
to food and consequently there is no food-seeker behaviour, food searching is
always a random process and its performance will not improve over time. Seeker
behaviours involve using environmental markers left by agents to track previously
located objects with persistent locations. It is expected that the performance
of seeker type behaviours will improve over time as the environment is more
accurately mapped during the random walks of food-searchers.

The food searcher and depot searcher behaviours can operate concurrently.
Considering the agent’s behaviour in this manner provides a convenient method
for analysing behaviour transitions, these are shown in figure 1.

Bonabeau et al. [3, page 26] describe a broadly similar process where ants in-
fluence or recruit other ants so as to guide them towards persistent food sources,
such recruitment based solely on pheromones is known as mass recruitment.
The depot-marking behaviour is an instance of this mass recruitment as depot-
searchers (agents that have yet to find the depot) make use of the pheromone
trails from agents that have already located the depot. We have also briefly

1 Co-ordinate values are only used as a means of keeping agents in bounds and dis-
playing user friendly data. Beyond ensuring that the agent doesn’t try to move out
of bounds they are not used in any of the agent’s operating decisions.

Reactive Food Gathering 409

Fig. 1. Agent behaviour transitions

experimented with other environmental marking methods but felt that these
were uncomfortably close to requiring global knowledge or data, something which
we are trying to avoid.

3 The Agents

Our agents have two modules, a simple reactive core and a move manager. The
reactive core senses details of the agent’s immediate environment and takes ac-
tions depending on these percepts. The agent’s roles and component behaviours
have been briefly described in section 2. The agent’s ‘cycle’ involves sensing its
environment, selecting a behaviour, executing that behaviour then making ei-
ther a directed or random move. Behaviour selection is very dynamic and an
agent may switch behaviours on each cycle through its core module. In this en-
vironment all behaviours either execute concurrently (such as food-searcher and
depot-searcher), or one is suppressed by historic actions (such as having located
and picked up food the food-searcher behaviour is suppressed in favour of the
depot-searcher behaviour).

Our agent’s pheromone tracking behaviour is very simple, finding the depot
triggers the agent’s depot-marking behaviour causing the agent to prime its trail
marker and reinforce any environmental markers in locations it passes through.
It will reinforce other agent’s markers but does not reinforce its own so as to
prevent creating strong local maxima if the agent repeatedly moves between
a small number of cells. Finding food will trigger the depot-seeker behaviour
causing the agent to stop marking and try to return to the depot by following
marker gradients. The other environment marking methods, mentioned in section
2 that we briefly experimented with were of comparable complexity.

410 R. Logie, J.G. Hall, and K.G. Waugh

The move manager is coupled to the agent core and simply makes sure that the
agent does not move out of the world’s boundaries, This coupling is loose in the
sense that the agent doesn’t monitor what the move manager does and merely
requests a pheromone gradient directed move or a random move. The move
manager may introduce a small element of non-determinism by not executing a
directed however this in inconsequential as agents operate in cycles, each cycle
is a sense, select, act sequence.

4 The Problem — Logical Aspects

The agents have a small set of behaviours defined a-priori and the logical aspects
of our work are early steps in an attempt at characterising systems of emergent
behaviour in a sequence of logics beginning with a deontic description of the
system. We have an idea of what agents ought to; they ought to take food to the
depot and they ought to do this in as efficient a manner as possible. We also have
an idea of what they ought not to do - wander aimlessly and unproductively.

Adopting an ought to do / ought not to do partitioning may allows us consider
deontic logic as an initial means of characterising the system. This approach,
however, brings difficulties, Horty[4, page 36] notes that standard deontic logic
partitions the system’s possible future worlds into sets that are either ideal or
non ideal. Agents either take food to the depot or they do not, there is no means
of characterising notions of good and bad ways of doing this and, consequently,
no notion of improving performance.

Although deontic logic provides a useful framework for partitioning agent
behaviours it does not really help us to group these behaviours and, more im-
portantly, behaviour transitions into appropriate sets. If we consider the deontic
approach as being an absolutely prescriptive starting point we need some means
of describing the system such that prescriptive constraints can be flexibly eval-
uated. Logical norms may provide this bridge: van der Torre and Tan[5] note
that norms are prescriptive whilst normative propositions are descriptive. This is
useful as propositions are a step closer to something that can be used to specify
agent behaviour. They further note that prescriptive obligations can be inter-
preted dynamically whereas descriptive obligations are interpreted statically.
This may be a key to describing systems of emergent behaviour, an agent’s set
of actions may be static and these can be used to describe possible interactions
with its environment. The set of actions which an agent may use in different
sets of circumstances will be dynamic and change as an agent learns or its en-
vironment changes. An additional attraction is that norms are typically a social
phenomena [6] which makes them intrinsically a multi agent concept.

Does a normative view provide a means of partitioning behaviours less bru-
tally than standard deontic logic? Boella and van der Torre [7] indicate that
an important feature of norms is that they allow for behaviour that deviates
from ideal. A normative system that specifies deontically ideal behaviour will
tolerate less than ideal behaviour and will, thus, provide guidelines for agents to
use as they improve their performance. Our agents are extremely simple, they

Reactive Food Gathering 411

have fixed transitions between behaviours (see figure 1) and their ‘pure’ reac-
tivity means that there are no internal systems to allow considered choice. This
operation appears to be constrained rather than norm governed. The agents are
constrained to drop food on the depot but their route from a food pickup to the
depot is free. Agents are always capable of taking food back to the depot – in this
bounded environment a random walk would eventually locate the depot – but
they are not constrained to taking the best route. As agents mark their routes
after visiting the depot they are setting up external triggers for their behaviour
transitions and we think that this can be considered as generating norms that
govern their behaviour.

When every cell has been marked the agents are confined to a subset of their
available behaviours, the depot-searcher is no longer required and transitions
are only between depot-seeker and depot-marker/food-searcher behaviours. We
feel that this can be described as an emergent norm which influences agents by
guiding them away from the depot-searcher behaviour. If this characterisation
holds then the system may be thought of as a meta-agent – a collective normative
authority. Our simple agents delegate the task of improving their performance
to an emergent norm and they contribute to its emergence. This system may
be a very simple and may be a degenerate example of what Boella and van der
Torre describe in [8].

Lomuscio and Sergot[9] note that most of the highly respected theories for
modelling aspects of agent systems are based on earlier work in philosophical
logic. This is understandable given the complexity of the capabilities required
by agents in a complex environment. Halpern[10], however, notes that prag-
matic concerns – such as those frequently encountered in system building – are
not really addressed by the philosophical literature. Deontic and normative ap-
proaches, for example, are useful for specifying and reasoning about systems but
they do not really provide a methodology for building systems. Additionally, our
agents have no real concept of their environment but this does not prevent them
from carrying out their task or – more interestingly – improving their perfor-
mance over time. A different semantic view may help us step towards a way of
characterising emergent behaviours. The commonly used Kripke semantics are
based on possible alternatives for future worlds. A world based view may be use-
ful when considering a system in its entirety but may not be helpful at the agent
level, especially in this case where the agents, as we have noted, have no concept
of their environment. One possible approach is to view this as an interpreted
system (see [11] which allows us to consider the system by specifying the states
in terms of states the agents and their environment. The level of specification is
open which allows us to characterise things as precisely or as loosely as required.

Indeed a fairly loose specification is sufficient for us to see, intuitively, where
problems may arise. If, for example, the world state contains one or more looped
paths that do not lead to the depot and the full set of agents is in the trail
following state then there is a danger that the system will livelock. Clearly this
aggregate world state is not desirable.

412 R. Logie, J.G. Hall, and K.G. Waugh

5 Observations

Our system performance evaluation had two criteria, the directness of the route
taken by agents carrying food back to the depot and whether or not food accu-
mulated in the environment. Test runs were carried out by seeding the environ-
ment with a few food units then starting the agents. Initial agent performance
is rather poor, agents rely on random searches for both the depot and food.
Agents that have found food wander at random and do not appear to be do-
ing anything useful whilst food continues to appear. When one agent finds the
depot and begins marking the environment other agents gradually move from
random depot-searching to pheromone gradient following depot-seeking. At first
this means following, in reverse, another agent’s random walk so as to reach
the depot. Over a period of time the gradient mapping becomes smoother and
spreads more widely, this allows agents to begin taking more direct routes to the
depot with a concomitant performance improvement.

Agents will occasionally become trapped by a ‘livelock’. This livelocking mani-
fests itself when an agent appears to walk repeatedly over the same looped path.
This only occurs when a food carrying agent is following a pheromone gradi-
ent and encounters local maxima. Because the agent follows gradients without
backtracking these local maxima may trap the agent. Livelock may be broken by
another agent passing through a cell adjacent to the loop and altering pheromone
levels sufficiently to weaken the local maxima thereby allowing the trapped agent
to escape. The system has only four agents and if there is a high food density then
there is a risk that all four will become livelocked especially where local maxima
form within a few grid squares of the depot, a location to which depot-seeker
agents are already drawn.

Intuitively if there is a non food carrying agents then there is a chance of
a livelock being broken. Designing a system where agents can detect that they
are livelocked whilst maintaining a local data only approach is an interesting
problem.

6 Future Work

Our system was developed solely for the CLIMA contest but it contains elements
of an ongoing research project into emergent behaviour. This combination has
pointed to a number of interesting areas for further investigation. Even with a
very small number of component behaviours the observation by Jennings et. al.
[2] in section 1 holds and interactions within the system cause fairly complex
overall behaviour to emerge. Identifying potential emergent behaviour is diffi-
cult and a normative approach may provide a means of better understanding the
potential interactions in reactive systems. A fully normative approach may, how-
ever, be inadequate for reasons that have been outlined above. An interpreted
approach allows us to look more closely at agent level details leaning more to-
wards design and implementation. Lomuscio and Sergot’s work[9] has shown
that it is possible to consider an interpreted system deontically. This system is

Reactive Food Gathering 413

now being investigated by ‘looking up’ from the agent level and an interpreted
description and ‘looking down’ from a deontic systems level description so as to
identify and attempt to close the gap where these approaches meet.

Despite their simplicity our agents do, what we consider, a good job at car-
rying food to the depot and improving their performance over time. We have
concentrated on the depot and not paid much attention to food location sim-
ply leaving this to an unstructured, random search. Dealing with the occasional
appearance of livelock whilst maintaining a local data only approach presents
an interesting problem. Adopting a normative approach we could prohibit live-
lock. This ought implies that agents can avoid livelock which is not easy when
relying on purely local data. One possible approach is to have ‘defender agents’
[12] which look for possible livelocks and release trapped agents. The difficulty
of doing this using only local data is obvious. Our agents are very simple but
considering them as a normative system gives a rich view of their interactions
and raises a number of questions about how best to improve their performance.
If an agent finds food and is unable to pick it up then marking that food location
– in a similar manner to the depot – may intuitively seem to be a good step but
this may lead to a greater possibility of all agents becoming livelocked.

References

1. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75 (2003)
63–92

2. Jennings, N., Sycara, K., Wooldridge, M.: A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent Systems 1 (1998) 7–38

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence - from nature to
artificial systems. Santa Fe institute studies in the sciences of complexity. OUP
(1999)

4. Horty, J.: Agency and deontic logic. OUP (2001)
5. van der Torre, L.W.N., Tan, Y.: An update semantics for deontic reasoning. In

Prakken, H., McNamara, P., eds.: Norms, Logics and Information Systems. New
Studies in Deontic Logic and Computer Science. IOS Press, Amsterdam (1998)

6. Conte, R., Castelfranchi, C.: Cognitive and social action. UCL press (1995)
7. Boella, G., van der Torre, L.W.N.: Fulfilling or violating obligations in normative

multiagent systems. In: IAT, IEEE Computer Society (2004) 483–486
8. Boella, G., van der Torre, L.W.N.: Attributing mental attitudes to normative

systems. In: AAMAS, ACM (2003) 942–943
9. Lomuscio, A., Sergot, M.: Investigations in grounded semantics for multiagent

systems specfications via deontic logic. Technical report, Imperial College, London
(2000)

10. Halpern, J.Y.: Reasoning about knowledge: a survey. In: Handbook of Logic in
Artificial Intelligence and Logic Programming. Oxford University Press (1995) 1–34

11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

12. Boella, G., van der Torre, L.W.N.: Norm governed multiagent systems: The dele-
gation of control to autonomous agents. In: IAT, IEEE Computer Society (2003)
329–335

Strategies for Multi-agent Coordination in a
Grid World Using Petri Nets

Eder Mateus Nunes Gonçalves and Guilherme Bittencourt

UFSC - Federal University of Santa Catarina,
DAS - Automation and Systems Department,

88040-900 Florianópolis, SC, Brazil
{eder, gb}@das.ufsc.br

Abstract. In this work, we describe strategies for multi-agent coordina-
tion, where adequate coordination means a system performance increase.
In the main strategy, when an agent cannot perform an action, for what-
ever reason, it chooses the agent more capable in the environment to
execute this action. All the specification of the multi-agent system, from
the social strategy to the actions in the environment, is made using a par-
ticular Petri Net model. The results show the strategy efficacy especially
when the environment increases the necessity for a reaction.

1 Introduction

The advantages obtained with a multi-agent approach can be easily lost if an
adequate coordination process between agents can not be established. To explore
the real possibilities of a multi-agent strategy, the agents in the society must be
able to cooperate in a coordinated way. In the Artificial Intelligence literature,
several research problems were proposed in which these coordination strategies
can be implemented and tested, e.g., robot soccer, rescue and surveillance ac-
tivities, etc. One common artificial environment consists of a world in a grid
format, that agents should explore to find resources, normally associated with
“food units”. The idea of all these problems is to measure how the performance
of the agents, in this case the quantity of food items that is collected, increases
with coordination, i.e., what is the impact of team work.

In this context, we have developed a software1 that simulates a grid world,
with twenty lines and twenty columns, where food units can appear at a ran-
domly chosen cell of the world at regular time intervals. Four agents should
coordinate their actions in order to collect the maximimal quantity of food units
in a given period of time. Any agent, that finds a food unit, should depose it
into a given storage cell. To evaluate the coordination strategies we can modify
the environment conditions to determine the better moment to use the strategy.

The software was implemented in C++, using object orientation. The agents
are implemented by a knowledge-based system, whose rules are explicitly codified
1 The software can be downloaded from:

http://www.das.ufsc.br/˜eder/clima.src.tar.gz.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 414–419, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Strategies for Multi-agent Coordination in a Grid World Using Petri Nets 415

into the software main program using a restricted predicate logic as knowledge
representation formalism. The knowledge bases of these agents are specified us-
ing a particular model of Petri Nets. This methodology permits to develop all
the system with a unique tool, from the social strategy to the actions in the
environment. As a base case, the performance without any cooperation strat-
egy is considered. In this case, the agents search for food alone, without taking
into account the other agents. As a first cooperation strategy we propose some
actions to be taken when an agent already loaded finds food in its way to the
depot.

The paper is organized in the following way. In the next section, it is described
the Grid World and its constraints. In section 3 the strategies used to solve the
problem of the Grid World, in a multi-agent approach specified by Petri Nets,
are presented. In section 4 the results of the simulations in the Grid World are
presented. Finally, section 5 presents the conclusions and future perspectives.

2 The Environment: A Grid World

The environment consists of a grid, a matrix with twenty lines and twenty
columns. The intersection between a line and a column is called a case. At each
moment, each agent is located in exactly one case. One case is chosen to be the
depot case, where all collected food units should be stored. The simulation oc-
curs in cycles, i.e., the temporal unit is a cycle. In a cycle, an agent can perform
one, and only one, action, that can be either a movement to an adjacent case,
or the emission of a message. Initially, the agents are located in the grid corners
and the case depot is located in the center of the grid, in position (10,10).

According to the environment rules, one food unit appears automatically every
n cycles, where n is a simulation parameter. The experiments showed that the
strategy efficacy varies with this parameter value.

Others constraints were considered to create a problem more adequate to the
multi-agent approach. All simulations were performed using a time interval of
twenty seconds. The agents can carry only one food unit at a time. Once an
agent collected a food unit, it can only leave it in the depot. There is no direct
communication, all communication traffic is carried out by a communication
manager. When an agent needs to send a message, this message is transmitted
to a mailbox, and the communication manager delivers it to the message re-
ceiver. An agent can receive several messages, but it can participate in only one
cooperation process at each time, i.e., during one cooperation process, the agent
can not engage into a new cooperation process.

The software was implemented in the C++ programming language [1], using
an object-oriented approach. A total of seven classes were implemented. The
classes are:

– Position: indicates a position in the grid;
– Food: contains the list of positions in the grid where the food is located;
– Message: contains constructors for messages with different performatives;
– Mailbox: used by the environment to manage the agent’s messages;

416 E.M. Nunes Gonçalves and G. Bittencourt

– Clock: implements the environment clock;
– Interface: verifies and validates the agent’s actions in the environment,

besides providing the input information for the agents;
– Agent: provides the agent internal variables and the actions in the environ-

ment, including movements and message exchanges.

The main program implements the four agents and their interactions with the
environment, besides providing the interface with the exterior. This interface
is in command-line form. In every cycle, the system updates the environment
state, i.e, the simulation time, the cases with food units, the agent’s positions,
the number of foods collected, the number of food units already stored in the
depot and the number of food units collected individually by each agent and the
positions where they were collected.

For simplicity, the program was implemented in a totally sequential way. A
more realistic approach would consider five different processes, one for each agent
and one for the environment, however the sequential approach response was
satisfactory with respect to the constraints described in this section.

3 The Cooperation Strategy

Each agent encapsulates a knowledge-based system. Nevertheless, the multi-
agent system is a homogeneous one, in which all the agents have the same
knowledge about the domain. In each cycle, the agent is allowed to perform
only one action, that can be either a movement to a new case, or a message
emission to another agent, through the environment mailbox.

As a first strategy we consider that there is no cooperation between the agents.
Each agent searches for food independently. Once the agents have the same
knowledge about the environment, they have the same specification.

This specification is carried out using a methodology described in [2], where
a High-Level Petri Net is used to specify the agent’s knowledge in a multi-agent
system. The Petri Net that specifies the agent knowledge can be seen in the
figure 1.

The token represents the knowledge base (k). When this token enables a
transition, an Ask is made to the k, that must return an answer. This answer
is represented by a directive Tell, where the inference engine returns the results
to k. Besides that, an action in the environment is also inferred.

The knowledge base is built in the following way. Each transition in the net
represents a rule. The Ask field in the transition corresponds to the rule premise,
and the Tell field corresponds to the rule conclusion. Besides that, if there is
an Action directive, it represents an action executed in the environment. After
the Petri Net is simulated to detect structural problems, it is automatically
translated in to a knowledge base.

According to the specification presented in the figure 1, if an agent finds a
food unit while it goes to the depot, it must follow its way, and the second food
found is not collected.

Strategies for Multi-agent Coordination in a Grid World Using Petri Nets 417

k

Tell(k, null)

Ask(k, not have_food ^ food(p)) Ask(k, not have_food ^ not food(p))

Tell(k, have_food)
Action(Go_To_Position(depot)) Action(Search_Food())

Ask(k, have_food ^ position(depot))

Tell(k, not have_food ^ Add(food_in_depot))
Action(Search_Food())

Ask(k, have_food ^ not position(depot))

Tell(k, null)
Action(Go_To_Position(depot))

Fig. 1. The knowledge base of each agent represented by a Petri net in the blind
strategy

In the second strategy, when this situation happens, a cooperation process is
started, represented by the inclusion of the transition t5 in figure 2.

Considering the methodology [2], the multi-agent specification starts with the
definition of a social strategy. This strategy is also represented by a Petri Net,
just like the individual specification. However, in a multi-agent specification, the
social strategy corresponds to the social knowledge that must be instantiated to
each agent, in order to compose the individual knowledge bases. The difference
between the individual knowledge of each agent is determined by the role of the
agent in the environment.

In this sense, the specification presented in figure 2 corresponds to the social
strategy adopted in the Grid World. Now, when an agent finds a food unit on its
way to the depot, it sends a message to the other agents with the food position.
The agents answer this message telling the distance between them and the food
position. The closest agent is considered the winner and starts a cooperation.
When the food is stored in the depot, the cooperation is finished.

Following the FIPA-ACL [3], a message is constituted by a performative field,
a sender field, a receiver field and a content field. The content field contains
the agent position or the distance between the agent and the food. The sender
and receiver fields contain, respectively, the identification of the agent that has
sent the message and the identification of the agent that receives it. When the
receiver field contains “all”, all the agents receive the message.

The performative field describes the type of communication act intended with
the message. A request is used when a cooperation is requested. A request should
be answered with a propose or with a refuse. In the first case, the sender agent
makes a proposal telling its distance from the food unit. In the second case,
the agent is not ready to cooperate, because it is either carrying a food unit
or involved in another cooperation process. The requesting agent receives the

418 E.M. Nunes Gonçalves and G. Bittencourt

k

Tell(k, null)

Ask(k, not have_food ^ food(p)) Ask(k, not have_food ^ not food(p))

Tell(k, have_food)
Action(Go_To_Position(depot)) Action(Search_Food())

Tell(k, not have_food ^ Add(food_in_depot))
Action(Search_Food())

Ask(k, have_food ^ not position(depot))

Tell(k, null)
Action(Go_To_Position(depot))

P1

P2

t1t2

t3

Ask(k, have_food ^ food(p))

Ask(k, have_food ^ position(depot))

Action(Send_Message(position(food)))

t4

t5

Fig. 2. The knowledge base of each agent represented by a Petri net in a multi-agent
strategy

proposals and chooses the best one. In a last step, it sends a message with an
accept performative to the winner and one with a reject performative to all the
others. It is important to consider that only one message is delivered per cycle.

Once the agents have the same roles in the environment and also a simple
reactive behavior, the social specification corresponds exactly to the individual
specification. Hence, all the agents possesses the same knowledge base.

4 Results

The simulations were ran on a computer with Intel Celeron 2 Ghz processor,
256MB of RAM memory, running Mandrake Linux 10.0, using the gcc-2.96. The
results are summarized in table 1.

The performance of the system is measured by the number of cycles that the
system needs to store a food unit. Considering a period of n =80 cycles for
the appearance of a new food items, the four agents, without any cooperation
strategy need 80.7 cycles to collect and store a food unit in the depot. If we

Table 1. Results of the simulations for different n

n Blind Strategy Multi-agent Strategy
80 80.7 80.6
40 41.1 41.1
10 15.2 14.8
5 10.9 10.1

Strategies for Multi-agent Coordination in a Grid World Using Petri Nets 419

consider the cooperation strategy the mean is the same: 80.6. The same results
are obtained if we diminish the period down to 10 cycles. With a period of 40
cycles, the multi-agent system needs 41.1 cycles to collect and store one food
unit, with or without the cooperation strategy.

With a period of 10 cycles between each new food unit, the strategy starts to
make some difference. Without cooperation, the agents need 15.2 cycles to find
and store a food unit. Using cooperation, this is reduced to 14.8 cycles, still a
small difference. When the period is set to 5 cycles, a greater difference appears:
10.9 cycles without cooperation and 10.1 cycles with cooperation. In fact, the
smaller the cycle period, the greater is the number of times a conflict occurs. We
have a conflict when an agent carrying a food to the depot finds another food
unit in its way.

5 Conclusion

There are many ways of cooperating to solve the given grid problem. However
this work focuses on one approach and analyzes its impact. This strategy consists
in starting a cooperation strategy when an agent finds a food in its way to the
depot. In this case, the agent is still carrying a resource and is not able to take
another one. In this case it sends a message to the other agents to discover which
is the closest agent. Once this agent is determined, it should go to food case and
collect it.

In fact, this is a special case inside the environment dynamics. It almost never
happens. However, if the period between the introduction of two successive food
items is diminished, the probability that this situation happens is increased, and
the cooperation turns into an alternative to improve the system performance.
This is the main conclusion of the results presented. The smaller the period
between food appearances, the greater is the effect of the cooperation strategy.

It is important to note that this is not the only way to cooperate in this
setting. Others ways include designating a fix collector that must collect the
foods found by the others agents. In other cases, when an agent finds a food
item, it can ask the others what they are doing. If there is an agent that is
storing the food, it is informed with the position of the new food, and then goes
to it. In others words, the collector role, in this case, is dynamic.

The approach presented here can model situations in real problems, like col-
lecting robots and intelligent routing in networks.

References

1. Stroustrup, B.: The C++ Programming Language. Addison Wesley Longman (1999)
ISBN 0-201-88954-4.

2. Gonalves, E.M.N., Bittencourt, G.: A planning-based knowledge acquisition method-
ology. In: Congress of Logic Applied to Technology (LAPTEC), IOS Press (2005)

3. Foundation for Intelligent Physical Agents http://www.fipa.org: FIPA ACL Message
Structure Specification. (2002)

Multi-agent Systems in Computational Logic:
Challenges and Outcomes of the SOCS Project

Francesca Toni

Department of Computing, Imperial College London,
180 Queen’s Gate, SW7 2BZ London, UK

ft@doc.ic.ac.uk

Abstract. The SOCS project (A computational logic model for the
description, analysis and verification of global and open SOcieties of het-
erogeneous ComputeeS), funded by the European Commission under the
Fifth Framework, Future and Emerging Technologies programme, has
been one of the main sponsors of CLIMA VI. This short article outlines
the project’s main challenges and its main outcomes.

1 Introduction

The SOCS project [35] was concerned with the development of a computational
logic model for the description, analysis and verification of global and open
SOcieties of heterogeneous ComputeeS, where computees are agents realised in
computational logic. SOCS was funded by the European Commission under the
Fifth Framework, Future and Emerging Technologies programme, within the
Global Computing (GC) proactive initiative. GC research provides the founda-
tions for the development of large-scale general purpose computer systems that
have dependably predictable behaviour, for the needs of a distributed world [27].
SOCS addressed the challenges of the GC initiative with a consortium composed
of six European partners, based in Italy, the UK, and Cyprus.1 Its original aims
were:

– To provide a computational logic model for the description, analysis and ver-
ification of global and open societies of heterogeneous computees, intended
as abstractions of the entities that populate open and global computing en-
vironments;

– To provide prototype implementations of computees and their societies;
– To run experiments based on various scenaria to ground and test the model.

SOCS interpreted the GC challenges under an agent-oriented perspective, with
a Logic Programming (LP)-based approach. In particular, the project adopted
variants of Abductive Logic Programming, Constraint Logic Programming and
1 These were, respectively, the universities of Pisa, Bologna and Ferrara (Italy), Impe-

rial College London and City University London (UK), and Cyprus University. The
project was coordinated by Imperial College London. The project started in January
2002 and finished in June 2005.

F. Toni and P. Torroni (Eds.): CLIMA VI, LNAI 3900, pp. 420–426, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multi-agent Systems in Computational Logic 421

Logic Programming with Priorities, appropriately integrated to deal with agents
and GC scenaria.

In this short article, we give an overview of the project, its main challenges
and outcomes.

2 The KGP Model of Agency

The KGP model of agency [28, 29] gives concrete guidelines for the formal speci-
fication of the knowledge of computees (via a modular computational logic-based
knowledge base, partitioned in modules devoted to the different reasoning tasks
of planning, reactivity, goal decision, temporal reasoning and identification of
preconditions of actions) and of the behaviour of computees (via a computa-
tional logic-based cycle theory providing the flexible, declarative control for the
operation of computees [30]). The model can be seen at two different levels: on
one hand, it is rather concrete, as it exactly specifies what the internal configura-
tion of the computee is; on the other hand, its control component can be varied
to obtain heterogeneous behaviour, and is abstract, in that it can be used also
for other agent models, independently of their structure/configuration/design.

We have tested the KGP model satisfactorily on a number of applications
(including e-commerce and ambient intelligence scenaria [37]). More insights
about how to specify and execute computees can be found in this book in the
tutorial paper [33].

3 The SOCS Model of Agent Societies

The SOCS society model [32, 9] gives concrete guidelines for the formal spec-
ification of the interaction among computees that form a society, and for the
definition of a computational logic-based architecture for computee interactions.
A layered architecture is proposed where the society defines the allowed inter-
action protocols, which in turn are defined by means of Social Integrity Con-
straints (ICs). The society’s knowledge is defined as an abductive logic program
[15], where ICs are used in order to express constraints on the communication
patterns of computees, and expected communicative acts (“expectations”) are
expressed as abducible predicates.

Expectations, whose intuition recalls the usual deontic operators of permis-
sion, obligation, and prohibition [14], are used to provide a semantics to both
agent communication languages and to interaction protocols [12]. The resulting
model is based on a declarative (logic) representation and therefore it is easy
to understand, and close to an operational model and suitably usable in order
to achieve an implementation of societies of computees based on their formal
specifications [8]. Finally, thanks to the link between formal specification and
implementation, the model provides a good ground for the automatic verifica-
tion and formal proof of properties [16].

We have tested the society model satisfactorily on a number of applica-
tions (including resource exchange [17], e-commerce protocols [13], combinatorial

422 F. Toni

auctions [6]). A repository of protocols specified using ICs is being maintained
and is publicly available through the project’s home page.2 More insights about
how to specify and execute societies of computees can be found in this book in
the tutorial paper [20].

4 Computational Models

Both the KGP model and the society model are equipped with correct computa-
tional counterparts ([19] and [18], respectively). These computational models are
heavily based upon proof procedures for (various extensions of) logic program-
ming. In particular, the operational model for KGP agents relies upon CIFF [22],
a proof procedure for abductive logic programming with constraints, and Gor-
gias [21], for logic programming with priorities, and the operational model for
societies of agents relies upon SCIFF [1], a proof procedure for abductive logic
programming with events and expectations. These procedures have been ob-
tained by adapting and suitably extending two existing proof procedures for logic
programming, namely Fung and Kowalski’s IFF procedure for abductive logic
programming [25], for CIFF and SCIFF, and Kakas and Toni’s argumentation-
based procedure for negation as failure in logic programming [31], for Gorgias.
The overall operational models are sound and (in some cases) complete with re-
spect to the abstract KGP model and model for societies of agents, respectively,
and form a solid bridge between the models and their implementations within
the PROSOCS and SOCS-SI platforms (see section 6 below).

5 Properties

A great deal of the project activities has been devoted to formalising and study-
ing properties of agents and agent systems. The SOCS approach to properties
is formal, and it aims at exploiting the potential of the declarative LP para-
digm for giving a precise specification of properties and for allowing their formal
verification. Moreover, the double declarative and operational reading of LP sup-
ports both an abstract description of systems and their (expected) properties,
and mechanisms to implement them. Descriptions and mechanisms are closely
related to each other so that properties enjoyed by the models are easily reflected
in the implementations.

We have compiled a catalogue of concrete properties, demonstrating:

1. The effectiveness of our logic programming approach to modeling computees
and their societies. This facilitates the formalisation of formal properties and
prediction of behaviour without resorting to empirical methods.

2. The consequences of some of the design choices. For example, we have iden-
tified coherence properties for computees showing some of the benefits that
result directly as a consequence of the choice of goal and action selection

2 http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/index.jsp

Multi-agent Systems in Computational Logic 423

functions in the computee model. Another example concerns the design of
the social infrastructure that provably allows verification of protocol prop-
erties automatically [11].

3. The versatility of the computee and society models. For example, we have
investigated how we can specify different profiles of behaviour in computees
and how such profiles could alter the behaviour of computees [34].

We have identified three broad areas for investigating properties of (societies of)
computees [26, 3]:

– Properties of individual computees (agents), including agent profiles [34];
– Properties of the society infrastructure;
– Properties related to protocol conformance [23].

These properties help showing the effectiveness of the computational logic ap-
proach in modeling computees and societies, in the sense of facilitating formal-
isation of properties and prediction of behaviour without the need to resort
to empirical methods. They also help exploring the consequences of our design
choices.

6 Implementation and Experimentation

We have developed a prototype implementation [5] and platform for computees
and societies (PROSOCS [36] and SOCS-SI [10, 2]), which implement the models
and have been used for extensive experimentation in the later phases of the
project. The experimentation [4] has also been conducted to confirm or disprove
properties of the models. The SOCS prototype has also been used to provide a
practical basis for the design of combinatorial auctions, which require aggregate
behaviour of computational entities and tools.

The PROSOCS platform provides the reasoning and communication capa-
bilities a computee needs in order to operate in a GC environment. The agent
developer, as a result, is only required to specify the set of logic theories that
describe the background knowledge necessary for the agent to operate within a
specific application domain. PROSOCS uses SICStus Prolog for inference-based
components (CIFF and Gorgias).

Analogously, SOCS-SI supports the declarative formalisation and the auto-
mated verification of the social aspects of a SOCS application. SOCS-SI is general
in its scope, and has been interfaced to other implemented agent platforms, such
as Jade and tuProlog, and to other non-agent related communication platforms.
SOCS-SI uses SICStus Prolog, and in particular its CHR library [24], for the
reasoning and verification part [7].

Both PROSOCS and SOCS-SI use JXTA for inter-agent communication and
agent discovery, and Java to implement the supporting applications, integrate
Prolog and build the GUIs. SOCS-SI and PROSOCS communicate through
JXTA.

424 F. Toni

7 SOCS Dissemination Meeting at CLIMA VI

The SOCS dissemination event presented several key aspects of the project’s ap-
proach, and discussed some open issues. The speakers Antonis Kakas,3 Andrea
Bracciali,4 and Marco Alberti5 presented the operational models for agents and
multi-agent systems and the formal properties of agents and agent systems de-
veloped within SOCS. Paolo Torroni6 discussed possible guidelines for evaluating
intelligent systems of reasoning agents, building on the SOCS experience.

Acknowledgments

This work was funded by the IST programme of the EC, FET under the IST-
2001-32530 SOCS project, within the GC proactive initiative. The author is
grateful to all participants of the SOCS consortium for inputs to this article and
for their hard work throughout the project. The author is also grateful to Paolo
Torroni for some helpful suggestion for an earlier version of this article.

References

1. The SCIFF abductive proof procedure home page.
http://lia.deis.unibo.it/research/sciff/, 2005.

2. The SOCS-SI (socs social infrastructure) home page.
http://lia.deis.unibo.it/research/socs_si/, 2006.

3. M. Alberti, F. Athienitou, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli,
A. Kakas, E. Lamma, W. Lu, P. Mancarella, P. Mello, F. Sadri, K. Stathis, F. Toni,
and P. Torroni. Verifiable properties of societies of computees. Technical report,
SOCS Consortium, 2005. Deliverable D13. Available from the SOCS project web
site: http://lia.deis.unibo.it/research/socs/guests/publications/.

4. M. Alberti, A. Bracciali, F. Chesani, A. Ciampolini, U. Endriss, M. Gavanelli,
A. Guerri, A. Kakas, E. Lamma, W. Lu, P. Mancarella, P. Mello, M. Milano,
F. Riguzzi, F. Sadri, K. Stathis, G. Terreni, F. Toni, P. Torroni, and A. Yip.
Experiments with animated societies of computees. Technical report, SOCS Con-
sortium, 2005. Deliverable D14. Available from the SOCS project web site:
http://lia.deis.unibo.it/research/socs/guests/publications/.

5. M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis,
and P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003.
Deliverable D9. Available from the SOCS project web site:
http://lia.deis.unibo.it/research/socs/guests/publications/.

6. M. Alberti, F. Chesani, M. Gavanelli, A. Guerri, E. Lamma, P. Mello, and P. Tor-
roni. Expressing interaction in combinatorial auction through social integrity con-
straints. Intelligenza Artificiale, II(1):22–29, 2005.

3 University of Cyprus, http://www2.cs.ucy.ac.cy/~antonis/
4 University of Pisa, Italy, http://www.di.unipi.it/~braccia/
5 University of Ferrara, Italy http://www.ing.unife.it/docenti/malberti.html
6 University of Bologna, Italy, http://lia.deis.unibo.it/~pt/

Multi-agent Systems in Computational Logic 425

7. M. Alberti, F. Chesani, M. Gavanelli, and E. Lamma. The CHR-based Implemen-
tation of a System for Generation and Confirmation of Hypotheses. In A. Wolf,
T. Frühwirth, and M. Meister, editors, 19th Workshop on (Constraint) Logic Pro-
gramming W(C)LP 2005, number 2005-01 in Ulmer Informatik-Berichte, pages
111–122, 2005.

8. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. A logic
based approach to interaction design in open multi-agent systems. In Proceedings
of the 13th IEEE international Workshops on Enabling Technologies: Infrastruc-
tures for Collaborative Enterprises (WETICE-2004), pages 387–392, Modena, Italy,
June 14–16 2004. IEEE Press.

9. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The
SOCS computational logic approach for the specification and verification of agent
societies. 3267:324–339, 2005.

10. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Com-
pliance verification of agent interaction: a logic-based tool. Applied Artificial In-
telligence, 20(4-5), 2006.

11. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
Security protocols verification in Abductive Logic Programming: a case study.
In O. Dikenelli, M.-P. Gleizes, and A. Ricci, editors, Proceedings of ESAW’05,
Kuşadası, Aydın, Turkey, October 26-28, 2005, Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2006.

12. M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. A so-
cial ACL semantics by deontic constraints. Lecture Notes in Artificial Intelligence,
2691:204–213, 2003.

13. M. Alberti, D. Daolio, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Spec-
ification and verification of agent interaction protocols in a logic-based system.
In H. M. Haddad, A. Omicini, and R. L. Wainwright, editors, Proceedings of the
19th Annual ACM Symposium on Applied Computing (SAC 2004), pages 72–78,
Nicosia, Cyprus, Mar. 14–17 2004. ACM Press.

14. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, G. Sartor, and P. Torroni. Mapping
deontic operators to abductive expectations. Computational and Mathematical
Organization Theory, 2006.

15. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. An Abductive
Interpretation for Open Societies. Lecture Notes in Artificial Intelligence, 2829:287–
299, 2003.

16. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Specification and
verification of agent interactions using Social Integrity Constraints. Electronic
Notes in Theoretical Computer Science, 85(2), 2003.

17. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Modeling inter-
actions using Social Integrity Constraints: A resource sharing case study. Lecture
Notes in Artificial Intelligence, 2990:243–262, 2004.

18. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The SCIFF ab-
ductive proof-procedure. Lecture Notes in Artificial Intelligence, 3673:135–147,
2005.

19. A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, F. Toni, and G. Terreni. The KGP model of agency: Computational
model and prototype implementation. Lecture Notes in Artificial Intelligence,
3267:340–367, 2005.

20. F. Chesani, M. Gavanelli, M. Alberti, E. Lamma, P. Mello, and P. Torroni. Spec-
ification and verification of agent interaction using abductive reasoning. In this
volume.

426 F. Toni

21. N. Demetriou and A. C. Kakas. Argumentation with abduction. In Proceedings of
the fourth Panhellenic Symposium on Logic, 2003.

22. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. Lecture Notes in
Artificial Intelligence, 3229:680–684, 2004.

23. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-
based agents. In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico (IJCAI-
03). Morgan Kaufmann Publishers, Aug. 2003.

24. T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37(1-3):95–138, Oct. 1998.

25. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, Nov. 1997.

26. M. Gavanelli, E. Lamma, P. Torroni, P. Mello, K. Stathis, P. Moräıtis, A. C. Kakas,
N. Demetriou, G. Terreni, P. Mancarella, A. Bracciali, F. Toni, F. Sadri, and U. En-
driss. Computational model for computees and societies of computees. Technical
report, SOCS Consortium, 2003. Deliverable D8. Available from the SOCS project
web site: http://lia.deis.unibo.it/research/socs/guests/publications/.

27. Global Computing, Future and Emerging Technologies. Co-operation of au-
tonomous and mobile entities in dynamic environments. Home Page:
http://www.cordis.lu/ist/fetgc.htm, 2000.

28. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach
to model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.
Available from the SOCS project web site:
http://lia.deis.unibo.it/research/socs/guests/publications/.

29. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In R. Lopez de Mantaras and L. Saitta, editors, Proceedings of the Sixteenth
European Conference on Artificial Intelligence, Valencia, Spain (ECAI 2004). IOS
Press, Aug. 2004.

30. A. C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. Declarative agent
control. Lecture Notes in Artificial Intelligence, 3487:96–110, 2005.

31. A. C. Kakas and F. Toni. Computing negation as failure via argumentation. Journal
of Logic and Computation, 9:515–562, 1999.

32. P. Mello, P. Torroni, M. Gavanelli, M. Alberti, A. Ciampolini, M. Milano, A. Roli,
E. Lamma, F. Riguzzi, and N. Maudet. A logic-based approach to model interaction
amongst computees. Technical report, SOCS Consortium, 2003. Deliverable D5.
Available from the SOCS project web site:
http://lia.deis.unibo.it/research/socs/guests/publications/.

33. F. Sadri. Using the KGP model of agency to design applications. In this volume.
34. F. Sadri and F. Toni. Variety of behaviours through profiles in logic-based agents.

In this volume.
35. SOcieties of ComputeeS (SOCS). A computational logic model for the description,

analysis and verification of global and open SOcieties of heterogeneous ComputeeS.
IST-2001-32530. http://lia.deis.unibo.it/research/socs/, 2002-2005.

36. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: A platform for programming software agents in computational logic.
Applied Artificial Intelligence, 20(4-5), 2006.

37. K. Stathis and F. Toni. Ambient Intelligence using KGP Agents. Lecture Notes in
Artificial Intelligence, 3295:351–362, 2004.

Author Index

Ågotnes, Thomas 57
Alberti, Marco 243

Baldoni, Matteo 265
Baroglio, Cristina 265
Bittencourt, Guilherme 414
Boella, Guido 303
Bordini, Rafael H. 143

Cares, Carlos 396
Ceberio, Martine 340
Chesani, Federico 243
Cholvy, Laurence 23
Clark, Keith L. 186, 226
Coffey, Simon 385

Dastani, Mehdi 373
Demolombe, Robert 358
Dignum, Frank 284
Dix, Jürgen 373

Fisher, Michael 129
Franch, Xavier 396

Gaertner, Dorian 385
Garion, Christophe 23
Gavanelli, Marco 243
Grossi, Davide 284

Hall, Jon G. 406
Hosobe, Hiroshi 340
Hübner, Jomi F. 143

Inoue, Katsumi 320

Klüwer, Johan W. 96
Knottenbelt, John 226
Kowalski, Robert 1

Lamma, Evelina 243
Logie, Robert 406

Martelli, Alberto 265
Mayol, Enric 396
Mello, Paola 243
Meyer, John-Jules Ch. 284

Nguyen, Linh Anh 37
Novak, Peter 373
Nunes Gonçalves, Eder Mateus 414

Otermin Fernandez, Ana Mara 358

Patti, Viviana 265
Pliuškevičienė, Aida 112
Pliuškevičius, Regimantas 112

Robinson, Peter J. 186

Sadri, Fariba 165, 206
Sakama, Chiaki 320
Satoh, Ken 340
Saurel, Claire 23
Solhaug, Bjørnar 77

Toni, Francesca 206, 420
Torroni, Paolo 243

van der Torre, Leendert 303

Waaler, Arild 77, 96
Walicki, Michal 57
Waugh, Kevin G. 406

Zappacosta Amboldi, Silvana 186

	Frontmatter
	The Logical Way to Be Artificially Intelligent
	Foundational Aspects of Agency
	Ability in a Multi-agent Context: A Model in the Situation Calculus
	Reasoning About Epistemic States of Agents by Modal Logic Programming
	Strongly Complete Axiomatizations of ``Knowing at Most'' in Syntactic Structures
	Logical Spaces in Multi-agent Only Knowing Systems
	Trustworthiness by Default
	Decision Procedure for a Fragment of Mutual Belief Logic with Quantified Agent Variables

	Agent Programming
	Implementing Temporal Logics: Tools for Execution and Proof
	BDI Agent Programming in AgentSpeak Using {\itshape Jason}
	Using the KGP Model of Agency to Design Applications
	Multi-threaded Communicating Agents in Qu-Prolog
	Variety of Behaviours Through Profiles in Logic-Based Agents
	Contract-Related Agents

	Agent Interaction and Normative Systems
	Specification and Verification of Agent Interaction Using Abductive Reasoning
	Verification of Protocol Conformance and Agent Interoperability
	Contextual Terminologies
	Constitutive Norms in the Design of Normative Multiagent Systems
	Combining Answer Sets of Nonmonotonic Logic Programs
	Speculative Constraint Processing with Iterative Revision for Disjunctive Answers
	Intention Recognition in the Situation Calculus and Probability Theory Frameworks

	The First CLIMA Contest
	The First Contest on Multi-agent Systems Based on Computational Logic
	Implementing Pheromone-Based, Negotiating Forager Agents
	Extending Tropos for a Prolog Implementation: A Case Study Using the Food Collecting Agent Problem
	Reactive Food Gathering
	Strategies for Multi-agent Coordination in a Grid World Using Petri Nets

	Project Report
	Multi-agent Systems in Computational Logic: Challenges and Outcomes of the SOCS Project

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

