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Abstract. We show that minimal pairs exist in the quotient structure
of R modulo the ideal of noncuppable degrees.

In the study of mathematical structures it is very common to form quotient
structures by identifying elements in some equivalence classes. By varying the
equivalence relations, the corresponding quotient structures often reveal certain
hidden features of the original structure. In this paper, we focus on the upper
semi-lattice of computably enumerable degrees and the equivalence relations are
induced by definable ideals.

We begin with introducing some notations and terminologies. Let R be the
class of computably enumerable degrees or simply c.e. degrees.

Definition 1. We say that a nonempty subset I of R is an ideal of R if I is
downward closed and closed under join. In other words, the following conditions
are satisfied.

(a) If a is in I and b ≤ a then b is in I;
(b) If a and b are in I, then their least upper bound, denoted by a ∨ b, is in I.

We say that an ideal I is definable if there is a first-order formula ϕ(x) over
the partial order language L = {≤} such that a c.e. degree a ∈ I if and only if
R |= ϕ(a).

Each ideal I of R naturally induced an equivalence relation ≡I as follows. For
any two c.e. degrees a and b, define

a ≤I b if and only if ∃x ∈ I(a ≤T b ∨ x),
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and
a ≡I b if and only if a ≤I b and b ≤I a.

It is easy to see that ≡I is an equivalence relation. We use [a] to denote the
equivalence class containing the c.e. degree a. The quotient structure R/I then
consists of all equivalence classes [a]. Clearly, the least element [0] is the ideal
I and the greatest element is {0′}. Furthermore, with respect to the induced
join relation, R/I is also an upper-semi lattice. We now look at some quotient
structures of R modulo some definable ideals.

The topic of definable ideals in R is beyond the scope of this paper. Some
recent developments can be found in Nies [4], Yu and Yang [7] and Jockusch,
Li and Yang [2]. All newly discovered ideals are defined by formulas involving
coding techniques, hence very complicated. Until now, there are only two proper
ideals which can be defined by relatively simple formulas: One consists of the
cappable degrees, the other of noncuppable ones. Recall:

Definition 2. 1. A c.e. degree a is called cappable if it is a half of a minimal
pair, that is, there exists a nonzero b ∈ R such that the infimum of a and b
exists and equal to 0.

2. A c.e. degree a is called noncuppable if for all incomplete degrees b ∈ R,
the join of a and b remains incomplete.

It is easy to verify from definition that the noncuppable degrees form an ideal;
and the existence of nonzero noncuppable c.e. degrees was first proved by Cooper
and Yates and later generalized by Harrington (see Miller [3]). However, it is
highly nontrivial that the cappable degrees are closed under join, in fact, it
follows from a deep result by Ambos-Spies, Jockusch, Shore and Soare [1]. We
use M to denote the ideal of cappable degrees.

In the 1980’s, partially motivated by Shoenfield conjecture (see Schwarz [5]),
people started to investigate the quotient structure R/M , for example, Ambos-
Spies and Schwarz showed that R/M satisfies the splitting property (see
Yi [6]).

Theorem 1. For any nonzero [a] in R/M , there are [a1], [a2] < [a] such that
[a1] ∨ [a2] = [a].

Later, Yi proved that R/M does not satisfy Shoenfield conjecture by showing
the following theorem:

Theorem 2 (Yi [6]). The following property holds in R/M : there are c.e. de-
grees a,b and c such that c ≤ a ≤ b, [c] < [a] and for all c.e. degrees w ≥ c,
either b ≤ w or b �≤ a ∨ w.

Until now, little is known about the quotient structure R modulo the noncup-
pable ideal. For notational simplicity let us use I to denote the ideal of non-
cuppable c.e. degrees. The main result of this paper is to show that there is a
minimal pair in the quotient structure R/I. Thus we are able to separate R/I
from R/M by an elementary property, since there is no minimal pair in the
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quotient structure R/M . Clearly R is not elementarily equivalent to R/I, as
the former has nonzero noncuppable degrees and the latter not.

We will not present the full proof in this paper, instead, we will outline the
plan of the proof. We hope that we provide enough intuition so that the interested
readers are able to complete the proof themselves.

In the structure R/I, two elements [a] and [b] form a minimal pair if and only
if [a] �= 0, [b] �= 0 and if [e] ≤I [a], [b] then [e] = 0. Thus, to build a minimal
pair in R/I, it suffices to build c.e. degrees a and b such that

a �∈ I and b �∈ I and ∀e(e ≤I a and e ≤I b ⇒ e ∈ I).

In terms of sets, it suffices to build c.e. sets A and B, whose corresponding
degrees satisfy the above conditions. Fix a complete c.e. set K. The first two
conjuncts say that A and B are cuppable, which are equivalent to

∃C[C �≡T K and A ⊕ C ≡T K]
and

∃D[D �≡T K and B ⊕ D ≡T K].

Proposition 1. The statement

∀w[(w ∨ a = 0′ and w ∨ b = 0′) ⇒ w = 0′]

implies the last conjunct in the minimal pair definition.

Proof. Suppose e ≤I a and e ≤I b. Then there is an x ∈ I such that e ≤ a ∨ x
and e ≤ b ∨ x. We show that e ∈ I. If w ∨ e = 0′, then a ∨ w ∨ x ≥ e ∨ w = 0′.
As x is noncuppable, a ∨ w = 0′. Similarly b ∨ w = 0′. By assumption, w = 0′,
which shows that e ∈ I.

Theorem 3. There exist c.e. degrees a and b such that [a] and [b] form a
minimal pair in R/I.

We construct c.e. sets A and B together with their companion c.e. sets C and
D respectively such that they form two splitting pairs of K, i.e., C and D are
incomplete and

A ⊕ C ≡T K and B ⊕ D ≡T K,

and A and B share no incomplete cupping witnesses.
More precisely, we need to satisfy the following requirements:

– P : (Splitting requirement) We build Turing functionals Γ and Δ such that
Γ AC = K and ΔBD = K.

Fix recursive enumerations of Turing functionals {Θe}e∈ω, {Φe}e∈ω and
{Ψe}e∈ω.

– N2e: ΘC
e �= E; and

– N2e+1: ΘD
e �= E, where E is an auxiliary set built by us.

– Re: If Φ
AWe0
e1 = Ψ

BWe0
e2 = F then there is a Turing functional Ωe such

that Ω
We0
e = K, where e = 〈e0, e1, e2〉 under standard coding and F is an

auxiliary c.e. set built by us.
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Note that the requirements Ne and Re together imply that A and B are
incomplete: If A ≡T K then there exists some Φ such that ΦAD = K; on the other
hand, ΔBD = K; by R-requirements, D ≡T K, contradicting to N -requirements.

First Approximation of Strategies. We give the splitting requirement P the
highest priority. The construction will be divided into even and odd stages. The
even stages are devoted to the definition and correction of Γ and Δ, which will
be done outside the priority tree; whereas the odd stages are devoted to the
satisfactions of N and R, which will be done on the priority tree.

At even stages, we satisfy the P -requirements as follows: Choose the least k
such that either Γ AC(k) = 0 �= K(k) or ΔBD(k) = 0 �= K(k) or Γ AC(k) is
undefined or ΔBD(k) is undefined. If it is the first case, that is, Γ AC(k) = 0 �=
K(k), then enumerate the use γ(k) into C, redefine Γ AC(k) = 1 with use −1. If it
is the third case, that is, Γ AC(k) is undefined, then define Γ AC(k) = K(k) with
fresh use γ(k). We do it symmetrically for functional Δ. These off-tree activities
have conflicts with the N -requirements, which we will solve in a moment.

We now look at the activities on the tree, which happen during odd stages.
The strategy to satisfy an N -requirement, say N2e, is as follows: Pick a fresh

witness x targeting E, wait until ΘC
e (x) ↓= 0, put x into E and preserve C

up to the use θ(x). The requirement has two outcomes: 1 for waiting and 0
for success. Naturally we order 0 to the left of 1 on the priority tree. The net
effect is a finitary restraint on C. Again, we delay the discussion of the conflict
with P . The strategy for N2e+1 is done by replacing C by D and Γ by Δ. To
avoid confusion, each strategy will choose its witness x from its own infinite
computable set. This will be done by letting α choose its witnesses from ω[α].

The strategy to satisfy the R-requirement Re is as follows: We will have a main
R-strategy Re and infinitely many substrategies Se,i. The job for the mother
node α is to measure the length of agreement function l(α, s) defined by

l(α, s) = μy[ΦAWe0
e1 (y)↑ or Ψ

BWe0
e2 (y)↑ or Φ

AWe0
e1 (y)↓�= Ψ

BWe0
e2 (y)↓

or (ΦAWe0
e1 (y)↓= Ψ

BWe0
e2 (y)↓= z but z �= F (y))].

We say that the stage s is α-expansionary, if s = 0 or l(α, t) < l(α, s) for all
t < s. The outcome of R at node α is either ∞, indicating s is an α-expansionary
stage, or 0 when s is not.

Extending the outcome αˆ0, there will be no substrategies working for Se,i.
Let β be a node extending αˆ∞ and working for the subrequirement Se,i. β is
responsible for defining ΩW (i) and keeping the use ω(i) > max{ϕ(zi), ψ(zi)} for
some number zi. β acts (naively) as follows:

– β first chooses a fresh number zi, in particular, zi �∈ F at this moment.
– Wait until l(α, s) > zi.
– Select ω(i) > max{ϕ(zi), ψ(zi)}, define ΩW (i) = K(i) with use ω(i) and set

a restraint on A and B of amount ω(i).
– If either the uses ϕ(zi)[s] �= ϕ(zi)[s−] or ψ(zi)[s] �= ψ(zi)[s−], where s− is

the previous stage at which β was accessible, let ∞ be the outcome.
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– When i enters K at some later stage t, we enumerate zi into F , this zi will
be discarded forever (of course, some other fresh zi might be chosen later).
At the next α-expansionary stage, W must have changed below ω(i), since
we have kept A- or B-side (in fact, we did more than enough, we have kept
both), thus we are able to redefine ΩW (i).

β will have two outcomes: ∞ for divergence of ϕ(zi) or ψ(zi) and 0 for the
successful definition and correctness of ΩW (i) = K(i).

However, this naive version of β has problems about the consistency of Ω:
Once ΩW (i) is defined on the tree by a node β, any other node must respect
β’s restraint. This would bring conflicts to the nodes to the left of β. To address
this issue, we modify the strategy as follows: Before a node σ (not necessarily
β) is visited, we must make sure that all ΩW

e (i), which were defined by some
nodes to its right, are undefined (we will refer to it as “Clearing Ω-use”) . More
precisely, suppose that we are at a node σ− on the priority tree, all Ω-uses to
its right have been cleared and we want to visit σ. Before visiting σ, we check
whether there is ΩW (i) which is defined by some node β extending σ− and to
the right of σ. If no, we can visit σ. If yes, we must put all zβ(i) into F and put
a restraint on either A or B side. When σ− is visited again for the next time,
W must have changed below Ω(i), hence all Ω-uses are cleared. We then can
visit σ.

By making this modification, we may select a complete c.e. set K0 which is a
subset of even numbers; and use F which is a subset of odd number solely for
clearing Ω-uses. The revised Re requirement looks like:

– Re: If Φ
AWe0
e1 = Ψ

BWe0
e2 = K0 ∪ F then there is a Turing functional Ωe such

that Ω
We0
e = K0, where e = 〈e0, e1, e2〉 under standard coding and F is an

auxiliary c.e. set built by us.

The difference now is that we do not act to correct ΩW , which becomes auto-
matic. Instead, we must clear ΩW -uses.

Revised Strategies. We now discuss the conflicts among the strategies.
The actions done off the tree have no direct conflicts with the R- and S-

strategies, as the numbers are put into the “buffer” sets C and D. However these
actions would make C and D complete, a direct threat to the N -strategies. For
this reason N -strategies must divert some of the γ-uses into A. (We state the
strategies only for N2e, as it is symmetric for N2e+1.) We modify the N -strategies
as follows.

– Besides doing the Friedberg-Muchnik diagonalization, N -strategy picks a
threshold j. (This j will be larger than all γ-uses mentions by any S-strategy
β ≤ N , where ≤ is the tree order.)

– Once the threshold is chosen, N will lift all γ(v) for v ≥ j over the use θ(x).
More precisely:

• For all v ≥ j, if γ(v) is defined and γ(v) < θ(x), then put γ(j) (need to
add conventions for uses in the introduction part) into A, and declare
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all Γ AC(v) for v ≥ j undefined. Stop the construction and initialize all
nodes extending and to the right of N . We stop the construction because
we want to put elements into either A or B but not both. It is worth
mentioning that being able to put elements into one side makes our
strategy different from the usual noncuppable strategy.

• If w enters K for some w < j, then we initialize the N -strategy.

A crude analysis of the impact of the revised N -strategy goes as follows: If it
is on the true path, then its threshold j will be fixed and it is so big that γ(j)
will not injure any S-node ≤ N . Furthermore, after the stage at which K � j is
fixed, say t, N will never be initialized by the off-tree activities. After stage t,
N will act at most once. Thus the initialization of S-node due to the action of
N happens only finitely often. Eventually, S-strategy will be successful.
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