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Abstract. The present paper is a short reflection concerning the role
which inductive inference played and can play in language learning. We
shortly recall some major insights obtained and outline some new direc-
tions based on own work and results recently presented in the literature.

1 Introduction

Humans are excellent learners. In particular, every normal child acquires its
mother tongue, a grammatical system which is very complex as research in lin-
guistics shows.

On the other hand, if we look fifty years back, science fiction had anticipated
that computers will be able to communicate with humans like humans, i.e., by
using any native language. So far, this goal has not been achieved. Thus, it is
only natural to take a closer look at fundamental research in learning theory and
to analyze the state of the art with respect to the ambitious goal of language
learning. Within this extended abstract, we shall confine ourselves to inductive
inference as the underlying framework for language learning.

Formal language learning may be characterized as the study of systems that
map evidence on a language into hypotheses about it. Of special interest is the
investigation of scenarios in which the sequence of hypotheses stabilizes to an
accurate and finite description (a grammar) of the target language. Clearly, then
some form of learning must have taken place. In his pioneering paper, Gold [7]
gave precise definitions of the concepts “evidence,” “stabilization,” and “accu-
racy” resulting in the model of learning in the limit. During the last decades,
Gold-style formal language learning has attracted a lot of attention by computer
scientists (cf., e.g., Osherson, Stob and Weinstein [14], Jain et al. [10] as well as
Zeugmann and Lange [22], and the references therein). Most of the work done in
the field has been aimed at the following goals: showing what general collections
of language classes are learnable, characterizing those collections of language
classes that can be learned, studying the impact of several postulates on the
behavior of learners to their learning power, and dealing with the influence of
various parameters to the efficiency of learning.

Next, we specify the information from which the target languages have to be
learned. A text of a language L is an infinite sequence of strings that eventu-
ally contains all strings of L. Texts may be considered as a first model of the
information available to children when learning their native language.
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An algorithmic learner, henceforth called inductive inference machine (abbr.
IIM), takes as input initial segments of a text. Using this information, it computes
and outputs hypotheses about the target language. The set H of all admissible
hypotheses is called hypothesis space. Furthermore, the sequence of hypotheses
has to converge to a hypothesis correctly describing the language to be learned,
i.e., after some point, the IIM stabilizes to an accurate hypothesis. If there is an
IIM that learns a language L from all texts for it, then L is said to be learnable in
the limit from text with respect to the hypothesis space H.

Finally, we call a class L of languages learnable in the limit from text if there
are an IIM M and a hypothesis space H such that M learns every language
L ∈ L in limit from text with respect to H.

Since all natural languages have grammars, we may think of hypothesis spaces
as of sets of formal grammars (cf. Hopcroft and Ullman [9]).

Having reached this point of precision, one may ask which language classes
are learnable from text. The first result we would like to mention here, is due to
Gold [7], who proved the following.

Theorem 1. Let L be any class of languages containing all finite languages and
at least one infinite language. Then L is not learnable in the limit from text.

Consequently, neither the class of regular languages nor any superset thereof can
be learned in the limit from text. Taking this into account, many researchers
thought that there is no interesting class of languages at all that can be learned
in the limit from text. As a result, the study of learning from text faced almost
one decade of decline after Gold’s [7] pioneering paper. The situation consid-
erably changed when Angluin [2] proved the pattern languages to be learnable
in the limit from text. Moreover, Angluin [3] provides a very nice character-
ization of language learning from text. A further major step has been done
by Shinohara [17] who showed rich classes to be learnable in the limit from
text.

Additionally, it should be noted that many linguists strongly believe that
children are only prepared to learn any human native language, i.e., a rather
small but distinguished class of languages (cf. [10] for a more detailed discussion).

Taking these insights into account, it seems already plausible that one has to
look for particular language classes when trying to gain a better understanding
of the power and limitations of language learning from text.

Within this paper, we would like to point to some directions that seem promis-
ing in this regard. These directions are concerned with the language classes stud-
ied, the information presentation, the efficiency, and the size of the underlying
terminal alphabet (or vocabulary).

We postpone the discussion of the first three items and discuss shortly the
latter point here. Every natural language has a rather rich vocabulary as a short
look into any dictionary confirms. So, it seems only natural to ask whether
or not this fact may simplify or may complicate the underlying learning task.
Research performed in the area of text classification may suggest that learning
becomes more complicated (cf., e.g., Joachims [11]). On the other hand, there are
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some results obtained within the inductive inference paradigm pointing into the
opposite direction (cf., e.g., Shinohara and Arikawa [18]). In particular, results
surveyed in [18] suggest that learning is sometimes only possible if the underlying
terminal alphabet is rather large.

Additionally, one may also ask to what extend the efficiency of learning al-
gorithms does depend on the underlying terminal alphabet. When studying the
learnability of pattern languages, we could prove that the number of exam-
ples necessary for successful learning decreases if the alphabet size increases (cf.
[15, 16, 21]). However, so far we are not aware of any paper investigating the
influence of the alphabet size systematically.

The paper is structured as follows. Section 2 presents preliminaries. Then we
shortly recall some fundamental results concerning the learnability of languages
from text. In Section 4 we outline some future directions.

2 Preliminaries

Unspecified notation follows Rogers [8]. By N = {0, 1, 2, . . .} we denote the set of
all natural numbers. We set N

+ = N \ {0}. The cardinality of a set S is denoted
by |S|. Let ∅, ∈, ⊂, ⊆, ⊃, and ⊇ denote the empty set, element of, proper
subset, subset, proper superset, and superset, respectively.

Let ϕ0, ϕ1, ϕ2, . . . denote any fixed acceptable programming system for all
(and only) the partial recursive functions over N (cf. Rogers [8]). Then ϕk is the
partial recursive function computed by program k.

Gold’s [7] model of learning in the limit allows one to formalize a rather
general class of learning problems, i.e., learning from examples. For defining
this model we assume any recursively enumerable set X and refer to it as the
learning domain. By ℘(X ) we denote the power set of X . Let L ⊆ ℘(X ), and
let L ∈ L be non-empty; then we refer to L and L as a language class and a
language, respectively. Let L be a language, and let t = (xj)j∈N be any infinite
sequence of elements xj ∈ L such that range(t) := {xj j ∈ N} = L. Then t is
said to be a positive presentation or, synonymously, a text for L. By text(L) we
denote the set of all positive presentations for L. Moreover, let t be a positive
presentation, and let y ∈ N. Then, we set ty = x0, . . . , xy , i.e., ty is the initial
segment of t of length y+1, and t+y := {xj j ≤ y}. We refer to t+y as the content
of ty.

Furthermore, let σ = x0, . . . , xn−1 be any finite sequence. Then we use |σ| to
denote the length n of σ, and let σ+ denote the content of σ.

An inductive inference machine (abbr. IIM) is an algorithm that takes as in-
put larger and larger initial segments of a text and outputs, after each input, a
hypothesis from a prespecified hypothesis space H = (hj)j∈N. The indices j are
regarded as suitable finite encodings of the languages described by the hypothe-
ses. A hypothesis h is said to describe a language L iff L = h.

A sequence (jn)n∈N of natural numbers is said to converge to number j if
jn = j for all but finitely many n ∈ N.
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Definition 1. Let L be any language class, and let H = (hj)j∈N be a hypothesis
space for it. L is called learnable in the limit from text with respect to H iff there
is an IIM M such that for every L ∈ L and every text t ∈ text(L),

(1) for all n ∈ N
+, M (tn) is defined,

(2) there is a j such that L = hj and the sequence (M (tn))n∈N converges to j.

The set of all language classes that are learnable in the limit with respect to H is
denoted by LimTxtH. By LimTxt we denote the collection of all language classes
L for which there is a hypothesis space H such that L is learnable in the limit
from text with respect to H.

Note that instead of LimTxt sometimes TxtEx is used. In our notation, Lim
stands for “limit.” Since, by the definition of convergence, only finitely many
data of L were seen by the IIM upto the (unknown) point of convergence, when-
ever an IIM identifies the language L, some form of learning must have taken
place. For this reason, hereinafter the terms infer, learn, and identify are used
interchangeably.

Note that Definition 1 does not contain any requirement concerning efficiency.
We shall come back to this point later.

Many settings can be described by the scenario given in Definition 1. In partic-
ular, we can consider the special case that X = N and let L be any subset of the
collection of all recursively enumerable sets over N. Let Wk = domain(ϕk), where
ϕk is the partial recursive function computed by program k in the fixed accept-
able programming system. Clearly, then Wk may be considered as a language.
As a matter of fact, all Wk are recursively enumerable. In this case, (Wk)k∈N is
the most general hypothesis space. We use E to denote the set of all recursively
enumerable languages.

Note that this setting has been used to study the general capabilities of differ-
ent learning models which can be obtained by suitable modifications of Defini-
tion 1. There are numerous papers performing studies along this line of research
(cf., e.g., [10, 14] and the references therein).

3 Learning Languages from Positive Data

Within this section, we shortly recall some fundamental insight concerning the
learnability of language classes from text.

Based on Angluin [3] in Jain et al. [10] the following theorem is proved. Note
that we neglect the computability of IIMs for a moment.

Theorem 2. L ⊆ E is identifiable if and only if for all L ∈ L there is a finite
TL such that for all L′ ∈ L, if TL ⊆ L′ then L′ 	⊆ L.

We are not going to repeat the proof of Theorem 2 here. But we like to point
out the basic idea for showing the sufficiency. Let L ∈ L be the target language,
let t ∈ text(L), and let n ∈ N.
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Then the learner has to look for an index i such that

(a) i is an index for L; and
(b) TL ⊆ t+n ⊆ L.

The important part here is the topological structure of the language class
to be learned which is expressed by the properties of the sets TL. Clearly, this
theorem directly implies Theorem 1.

In order to arrive at an IIM, one has to ensure that (a) and (b) can be handled
algorithmically. So, if one would use the most general hypothesis space (Wk)k∈N

then Assertion (a) implies that one has to find an i such that Wi = L. Moreover,
Assertion (b) requires a clever method for ensuring TL ⊆ t+n ⊆ L.

In her pioneering paper, Angluin [3] has proved this characterization theorem
for indexable language classes. A language class is said to be an indexable class
if it possesses an effective enumeration with uniformly decidable membership.
Within the setting of indexable language classes she then showed the sets TL to
be recursively enumerable.

Moreover, when learning from text, a major problem one has to deal with
is avoiding or detecting overgeneralization. An overgeneralization occurs if the
learner guesses a proper superset of the target language. Using positive data
alone, an overgeneralization cannot be detected. Nevertheless, as Angluin [3]
has shown, overgeneralization is unavoidable if one wishes to exhaust the whole
power of LimTxt , even within the setting of indexable language classes.

How can this happen? Assume an enumeration (Li)i∈N of the indexable lan-
guage class, let L be the target and let i∗ be the least index j such that L = Lj .
That is, we have Li∗ = L and L 	= Lj for all j < i∗.

Looking at the characterization, one sees that overgeneralization may occur if
some of the sets TLj with j < i∗ and L ⊂ Lj are not yet completely enumerated.

IIMs that completely avoid overgeneralization are called conservative. Another
way to look at conservative learning is to require that the IIM maintains its actual
hypothesis at least as long at it has not seen data contradicting it.

Within the setting of indexable language classes, conservative learning can be
characterized by posing a stronger requirement to the sets TL, i.e., there must
be uniform procedure g recursively generating all sets TL for L ∈ L (cf. [23]).
Here, by recursively generating we mean an algorithm that takes as input any
index i (of the chosen enumeration) and outputs the complete set TLi and stops.

As we shall see below, if one aims at more realistic and efficient learning
algorithms, it may be quite advantageous to have a conservative learner. The
intuitive reason is that a conservative learner converges to its first correct guess
in the sequence of all its guesses.

On the one hand, the results mentioned above are both beautiful and strong.
They already provide a deep insight into the problem what can be learned from
positive data.

On the other hand, they do not really contribute to the problem of how one
can design practical learning algorithms. Even worse, they may suggest that
one has to design learners along the line of testing something like Assertion (b)
above. We therefore continue with some alternative approaches.
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4 Towards More Realistic Learning Scenarios

The first approach we like to mention is learning from good examples. The idea
of learning from good examples is to use finite sets of well selected examples
instead of texts. The model of learning from good examples has been introduced
by Freivalds, Kinber and Wiehagen [6] within the setting of learning recursive
functions. Subsequently, Lange, Nessel and Wiehagen [12] have adopted this
model to learning from positive examples of indexable concept classes.

Following [12], finite sets of good examples

1. are intended to be “important” ones,
2. are required to be computable from the languages to be learned,
3. are intended to be sufficient for learning rich classes of languages.

Then, instead of receiving growing initial sequences of a text, the learner re-
ceives any superset of the set of good examples for the target language. Further-
more, instead of converging in the limit to a correct hypothesis, now the learner
is required to compute a single guess from the finite set it has received and to
output a hypothesis which is correct for the possible infinite target language.

The resulting learning model is referred to as to finite learning from good
examples. The requirement to learn from any superset of the set of good examples
is introduced to avoid coding tricks. For example, if one has a given enumeration
(Li)i∈N of the indexable target class, one could be tempted to provide just i
examples to learn language Li. So, such tricks are excluded.

Then, Lange, Nessel and Wiehagen [12] showed in particular that finite learn-
ing from good examples is exactly as powerful as conservative learning in the
limit from text.

A prominent example known to be conservatively learnable in the limit from
text is the class of all pattern languages.

Following Angluin [2] we define patterns and pattern languages as follows.
Let A = {0, 1, . . .} be any finite alphabet containing at least two elements.
Let X = {xi i ∈ N} be an infinite set of variables such that A ∩ X = ∅.
Patterns are non-empty strings over A ∪ X , e.g., 01, 0x0111, 1x0x00x1x2x0 are
patterns. The length of a string s ∈ A∗ and of a pattern π is denoted by |s|
and |π|, respectively. A pattern π is in canonical form provided that if k is the
number of different variables in π then the variables occurring in π are precisely
x0, . . . , xk−1. Moreover, for every j with 0 ≤ j < k−1, the leftmost occurrence of
xj in π is left to the leftmost occurrence of xj+1. The examples given above are
patterns in canonical form. In the sequel we assume, without loss of generality,
that all patterns are in canonical form. By Pat we denote the set of all patterns
in canonical form.

If k is the number of different variables in π then we refer to π as to a k-variable
pattern. By Patk we denote the set of all k-variable patterns. Furthermore, let
π ∈ Patk, and let u0, . . . , uk−1 ∈ A+; then we denote by π[x0/u0, . . . , xk−1/uk−1]
the string w ∈ A+ obtained by substituting uj for each occurrence of xj ,
j = 0, . . . , k − 1, in the pattern π. For example, let π = 0x01x1x0. Then
π[x0/10, x1/01] = 01010110. The tuple (u0, . . . , uk−1) is called a substitution.
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Furthermore, if |u0| = · · · = |uk−1| = 1, then we refer to (u0, . . . , uk−1) as to a
shortest substitution. Let π ∈ Patk; we define the language generated by pattern
π by

L(π) = {π[x0/u0, . . . , xk−1/uk−1] u0, . . . , uk−1 ∈ A+} .

By PATk we denote the set of all k-variable pattern languages. Finally, PAT =⋃
k∈N

PAT k denotes the set of all pattern languages over A.
Note that deciding membership for the pattern languages is NP–complete.

Therefore, any learning algorithm testing membership will be infeasible in prac-
tice under the usual assumption that P 	= NP .

Fortunately, Lange and Wiehagen [13] have designed a pattern language
learner for finitely learning from good examples which completely avoids mem-
bership tests. Also, Lange and Wiehagen [13] have shown that for every pattern
π there is a set of good examples of cardinality linear in |π|.

In [21], we have dealt with the best-case, worst-case and average-case analysis
of Lange and Wiehagen’s [13] pattern language learning algorithm. The results
obtained considerably improve Lange and Wiehagen’s assertion concerning the
minimal size of sets of good examples.

In particular, we proved the matching upper and lower bound of

�log|A|(|A| + k − 1)
 + 1

for the minimal size of sets of good examples for every k-variable pattern.
Note that this number decreases if the alphabet size increases. Thus, we

have found a nice non-trivial example showing that a larger size of terminal
(or constant symbols) does facilitate learning. Given that every natural lan-
guage has a huge vocabulary, it may be worth to investigate the influence of
the size of terminal symbols in a grammar to the complexity of learning. At
a first step, this could be done within the setting of finite learning from good
examples.

Using completely different ideas, we have also studied the learnability of one-
variable pattern languages (cf. [15]). Though this has been done within the
setting of learning in the limit from randomly generated texts, the results are
in some sense similar. Our algorithm could be easily updated to finite learning
from good examples. Then again, one easily sees that a larger alphabet size
considerably reduces the minimal size of sets of good examples.

There is another point to be mentioned within this context. As a matter of
fact, the algorithms sketched above are not consistent. Here consistency means
that the intermediate hypotheses output by the learner do correctly reflect the
data seen so far. Though consistency seems to be a very natural requirement
at first glance, it is not as many results show. We refer the interested reader to
Wiehagen and Zeugmann [19] for a detailed discussion.

In this context, we would also like to point the reader to the discussion con-
cerning human languages and comparative grammar. As outlined in Jain et
al. [10], theories of linguistic development are closely related to theories of com-
parative grammar. As far as natural languages are concerned, it is certain that
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children can master it in a few years on the basis of rather casual and unsys-
tematic exposure to it. So, there must be some properties of natural languages
making them particularly suited for humans to be learnable.

Though I am not a linguist, I have observed on my children the following.
During the first two years, they somehow learned to distinguish words in any
text spoken. Around the age of three, they had acquired a possibly simplified
grammar allowing them to express themselves in simple sentences of three or
four words. Then, from maybe three to six, they enlarged their vocabulary at
an amazing speed on a daily basis. Interestingly, with their growing vocabulary
they also went on to master more and more complex syntactical constructs. So, it
would be very interesting to investigate to what extend the growing vocabulary
is necessary to ensure the whole learning process.

The other point I have observed is that humans are not consistent learners.
Furthermore, humans are for sure not good in learning their mother tongue

from every text for it. Instead, we may assume that humans learn from ran-
domly generated text. Adopting this idea, we studied the learnability of the
pattern languages from randomly generated text for a large class of probabil-
ity distributions. In a first step, we analyzed the expected number of examples
needed until successful learning. Our learner is both conservative and rearrange-
ment independent. A learner is said to be rearrangement independent iff its
output depends only on the content and length of its input. For such learn-
ers we could show that the probability to deviate from the expected number
of examples until convergence is exponentially shrinking. Finally, a bit of ad-
ditional domain knowledge concerning the underlying probability distributions
allows one to arrive at a stochastic finite learner. A stochastic finite learner is
fed randomly generated strings from the target pattern language. Additionally,
it takes a confidence parameter δ as input. But in contrast to learning in the
limit, the stochastic finite learner decides itself how many examples it wishes
to read. Then it computes a hypothesis, outputs it and stops. The hypothe-
sis output is correct for the target with probability at least 1 − δ. We refer
the interested reader to [16] for the details. As a matter of fact, stochastic fi-
nite learning incorporates the requirements concerning efficiency that have been
missing in Gold’s [7] model of learning in the limit. And it inherits the property
stated above that the number of examples needed decreases if the alphabet size
increases.

Last but not least, we would like to point the reader to a direction of research
that deserves attention, i.e., the design and analysis of algorithms learning sub-
classes of context-free grammars in the limit from text. As already stated in
Theorem 1, the whole class of context-free grammars is not learnable in the
limit from text. So, one has to look for suitable subsets. While subsets of reg-
ular languages have attracted considerable attention within the grammatical
inference community, so far not too much work has been done for subclasses of
context-free grammars (cf., e.g., Adriaans et al. [1], Yokomori [20]).

Recently, Clark and Eyraud [4] presented a learning algorithm for a subclass of
context-free languages which they called substitutable languages. Roughly speak-
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ing, substitutable languages are those context-free languages L which satisfy the
condition that lur ∈ L if and only lvr ∈ L for pairs of strings u, v. Intuitively, if
u and v appear in the same context, there should be a non-terminal generating
both of them.

The learning problem is then considered in the setting of identification in the
limit from text with polynomial time and data introduced by de la Higuera [5].
For the sake of better readability we recall the definition here in the form used
by Clark and Eyraud [4]. Within this definition, L(R) denotes the languages
described by representation R.

Definition 2. A representation class R is identifiable in the limit from positive
data with polynomial time and data iff there exist two polynomials p(), q() and
an algorithm A such that

(1) Given a positive sample S of size m A returns a representation R ∈ R in
time p(m).

(2) For each representation R of size n there exists a characteristic set CS of
size less than q(n) such that if CS ⊆ S, A returns a representation R′ such
that L(R) = L(R′).

As far as the characteristic sets are concerned, it is intuitively sufficient to think
of them as sets of “good examples.” Once the learner has seen a super set of the
characteristic set, it converges.

The point I found most interesting in the approach made by Clark and
Eyraud [4] is that they looked for a property of context-free languages that
facilitates learning, i.e., substitutability.
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