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Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics (especially logic) and the
physical sciences. It is this, together with its predominantly computational and
computability theoretic focus, which gives the series its special character.

TAMC 2006 was the third conference in the series. The previous two meetings
were held May 17–19, 2004 in Beijing, and May 17–20, 2005 in Kunming, P.R.
China. There are already plans for future meetings in Shanghai, Beijing, and
Singapore.

At TAMC 2006 we were very pleased to have ten plenary speakers chosen by
the Program Committee, each giving a one-hour talk. These were:

• Giorgio Ausiello (Rome), On-line Algorithms, Real Time, the Virtue of Lazi-
ness, and the Power of Clairvoyance;
• Rodney Downey (Wellington), Some New Naturally Definable Degree Classes ;
• Martin Dyer (Leeds), Counting Graph Homomorphisms;
• Yuri Ershov (Novosibirsk), On Rogers Semi-lattices of Finite Partially Or-

dered Sets ;
• Michael Rathjen (Leeds), Models of Constructive Type and Set Theories;
• Alan Selman (Buffalo, NY), Mitosis in Computational Complexity;
• Chris Umans (Cal Tech), Optimization Problems in the Polynomial-Time

Hierarchy;
• Alasdair Urquhart (Toronto), Width and Size in Resolution Refutations ;
• Paul Vitanyi (Amsterdam), Similarity of Objects and the Meaning of Words;
• Andrew C. Yao (Beijing), Recent Progress in Quantum Computational Com-

plexity.

There were also five special sessions at TAMC 2006, the speakers for each
invited by the organizers appointed for that special area. They were:

• Learning Theory. Organized by Frank Stephan (Singapore) and Nicolo Cesa-
Bianchi (Rome), with speakers: Shai Ben-David ( Waterloo), Marcus Hutter
(Galleria, Switzerland), Sanjay Jain (Singapore, jointly with Frank Stephan),
Jochen Nessel (jointly with Sanjay Jain, and Frank Stephan), Rocco A.
Servedio (New York), Vladimir Vovk (London), and Thomas Zeugmann
(Sapporo, Japan).
• Algorithms and Bioinformatics. Organized by Tao Jiang (Riverside, CA),

with speakers: Francis Chin (Hong Kong), Lusheng Wang (Hong Kong),
Louxin Zhang (Singapore), and Kaizhong Zhang (Ontario).
• Computational Complexity. Organized by Jin-Yi Cai (Madison, WI), and

Alan Selman (Buffalo, NY), with speakers Jin-Yi Cai (Wisconsin, jointly
with Vinay Choudhary), Alan Selman (Buffalo, NY), Chris Umans (Cal
Tech), Alasdair Urquhart (Toronto), and Xiaoming Sun (Beijing).
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• Randomness and Real Computation. Organized by Rod Downey (Wellington,
NZ), with speakers Felipe Cucker (Hong Kong), Denis Hirschfeldt (Chicago),
FrankStephan (Singapore, jointlywithLiangYu),AndrewE.M.Lewis (Siena),
and Alexander Shen (Moscow/Paris, jointly with Andrej Muchnik, Mikhail
Ustinov, Nikolay Vereshchagin and Michael Vyugin).
• Computability. Organized by Chi Tat Chong (Singapore), Andrea Sorbi

(Siena), with speakers Peter Cholak (Notre Dame), Liang Yu (Singapore,
jointly with Yue Yang), Jan Reimann (Heidelberg), and Serikzhan Badaev
(Almaty).

The TAMC conference series arose naturally in response to important scien-
tific developments affecting how we compute in the twenty-first century. At the
same time, TAMC is already playing an important regional and international
role, and promises to become a key contributor to the scientific resurgence seen
throughout China and other parts of Asia.

The enthusiasm with which TAMC 2006 has been received by the scien-
tific community is evident in the large number, and high quality, of the articles
submitted to the conference. There were 319 submissions, originating from 27
countries. This presented the Program Committee with a major assessment task,
which led to the selection of 54 excellent papers for inclusion in this LNCS vol-
ume, along with those of our invited speakers, with the acceptance rate of less
than 20% comparing favorably with other leading international conferences in
the area.

We are very grateful to the Program Committee, and the many external
referees they called on, for the hard work and expertise which they brought
to the difficult selection process. We also wish to thank all those authors who
submitted their work for our consideration. The Program Committee could have
accepted many more submissions without compromising standards, and were
only restrained by the practicalities of timetabling so many talks and by the
inevitable limitations on the size of this proceedings volume.

Finally we would like to thank the members of the editorial board of Lecture
Notes in Computer Science and the editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.

Of course TAMC 2006 would not have been possible without the support of
our sponsors, and we therefore gratefully acknowledge their help in the realiza-
tion of this conference.

Beijing
March 2006

Jin-Yi Cai
Barry Cooper
Angsheng Li
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On-Line Algorithms, Real Time,
the Virtue of Laziness,

and the Power of Clairvoyance

Giorgio Ausiello1, Luca Allulli1, Vincenzo Bonifaci1,2, and Luigi Laura1
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v.bonifaci@tue.nl

1 Introduction

In several practical circumstances we have to solve a problem whose instance
is not a priori completely known. Situations of this kind occur in computer
systems and networks management, in financial decision making, in robotics etc.
Problems that have to be solved without a complete knowledge of the instance
are called on-line problems. The analysis of properties of on-line problems and
the design of algorithmic techniques for their solution (on-line algorithms) have
been the subject of intense study since the 70-ies, when classical algorithms for
scheduling tasks in an on-line fashion [22] and for handling paging in virtual
storage systems [11] have been first devised. In the 80-ies formal concepts for
analyzing and measuring the quality of on-line algorithms have been introduced
[40] and the notion of competitive analysis has been defined as the ratio between
the value of the solution that is obtained by an on-line algorithm and the value of
the best solution that can be achieved by an optimum off-line algoritm that has
full knowledge of the problem instance. Since then a very broad variety of on-
line problems have been addressed in the literature [14, 19]: memory allocation
and paging, bin packing, load balancing in multiprocessor systems, updating and
searching a data structure (e.g. a list), scheduling, financial investment, etc.

In most cases the model taken into consideration is as follows: one or more
agents are required to serve requests in an on-line fashion. Each request consists
in performing an operation on a data structure and the service cost corresponds
to the cost of the transition between the initial configuration of the system (po-
sition of the agents and/or state of the data structure) an the configuration
resulting from the agents’ action. A request has to be served before a new re-
quest is revealed. A classical example of this kind of on-line setting is given by
the so-called metrical task systems where the states of the system correspond
to points in a metrical space, a family of tasks is given and to any task Ti
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a cost vector Ci is associated, cost Ci(j) being to the cost of servicing task i
when the system is in state j; the aim of the on-line algorithm is to serve a se-
quence of requests revealed over time by incurring in the minimum possible cost
(see [19]).

In the class of on-line problems that we have described before, the notion of
time is simply used to refer to a totally ordered sequence of discrete instants
(t0, t1, . . . , tn). Both requests and agent’s service actions occur instantanaously
in one of these moments. The time intercurring between two instants is not
specified and inessential under any respect.

In a variety of other on-line problems, a different situation occurs. In such
problems the time dimension is continuous and plays a specific role. Consider
for example a scheduling problem. In this case to serve a request requires time,
corresponding to the execution time of a job (which is possibly different on
different machines), and time durations determine the cost of a schedule. Besides,
during the execution of jobs on multiple machines other jobs may arrive and a
scheduler may decide to ignore them until a machine is idle or to preempt a
running job to put the new job in execution. We call this kind of problems
real time on-line problems. In this paper we address real time on-line problems
and we analyze their properties by taking into consideration a specific class of
problems: on-line vehicle routing problems. By examining the properties of this
paradigmatic type of real time on-line problems, we put in evidence the role of
time in the design of competitive algorithms and in exploiting clairvoyance and
the use of multiple servers.

The paper is organized as follows. In Section 2 the on-line version of the
classical traveling salesman problem is introduced and competitiveness results
for variants of this problem are reviewed. Besides, adversarial models that are
motivated by the real time context are also discussed. In Section 3 we show how
real time can be exploited to improve the performance of an on-line algorithm:
in particular we show that waiting can help an on-line agent to achieve better
competitiveness bounds. A second technique that can improve the performance
of an on-line algorithm is clairvoyance. In Section 4 we introduce suitable notions
of clairvoyance for the real time context and we show positive and negative
results for clairvoyant algorithms. Finally in Section 5 we briefly discuss multi-
server problems and we present results that seem to imply that while in general
increasing the number of servers also increases the competitiveness ratio, in real
time problems more servers can achieve a better performance. Section 6 contains
some conclusive remarks.

2 On Line Traveling Salesman Problem

As we mentioned in the introduction, throughout this paper we will discuss the
properties of the on line versions of vehicle routing problems and, in particular,
of the travelling salesman problem (OL-Tsp), with the aim of understanding
the role of real time in on line problems.

OL-Tsp has been introduced by Ausiello et al. in [8]. In OL-Tsp we are given
a metric space M = (X, d), where X is a set of points and d is a distance function
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on X , with a distinguished point O ∈ X , called the origin; and a set of requests
σ = {σ1, . . . , σn}. Each request consists of a pair σi = (xi, ti) ∈ X ×R+

0 , where
xi is the position of σi, and ti is its release time. A server is located in the origin
at time 0, and thereafter moves in the metric space, at most at unit speed,
in order to serve all the requests, i.e. to visit each point xi where a request
is placed, not earlier than the release time ti of the request. The additional
constraint can be required that the server returns to the origin after having
served all the requests. The goal of the server is to find a feasible schedule that
minimizes an objective function, which in some way measures the quality of the
schedule.

As usual the metric space M satisfies the following properties: i) it is sym-
metric, i.e., for every pair of points x, y in M , d(x, y) = d(y.x), where d(x, y)
denotes the distance from x to y; ii) d(x, x) = 0 for every point x in M ; iii) it
satisfies the triangle inequality, i.e., for any triple of points x, y and z in M it
holds that d(x, y) ≤ d(x, z) + d(z, y). Furthermore the metric space M can be
continuous, i.e., have the property that the shortest path from x ∈M to y ∈M
is continuous, formed by points in M and has length d(x, y). Examples of con-
tinuous metric spaces include the plane, the real line, half of the real line and
the interval. A discrete metric space is represented by a metric graph in which
all the edges have positive weights and request can be made in nodes.

Many objective functions have been proposed in literature for the traveling sales-
man problem. Here we will mainly refer to the completion time, i.e. the time when
the server completes its service, and the latency, i.e. the sum of the times each re-
quest has to wait to be served since time 0, namely

∑n
i=1 τi (see also [21] and [39]).

Note that while the completion time is, so to say, a ‘selfish’ measure, aimed at re-
ducing the time spent by the server, the latency can be considered an ‘altruistic’
measure, aimed at reducing the overall waiting time ofthe customers. If we con-
sider the completion time, there are two distinct versions of the problem, depend-
ing on whether the server has to return to the origin at the end. These problems
are known as the Homing on-line Traveling Salesman Problem (H-OL-Tsp) and
the Nomadic1 on-line Traveling Salesman Problem (N-OL-Tsp), respectevely; we
call on-line Traveling Repairman Problem (L-OL-Trp) the problem in which we
want to minimize the latency [1].

We say that an on-line algorithm A is ρ-competitive (ρ ∈ R+) if, for any input
instance σ, A(σ) ≤ ρ ·OPT(σ); we denote by A(σ) and OPT(σ) the cost, on input
σ, of the solution found by A and of the optimal solution, respectively.

Table 1 contains an overview of the main competitiveness results concerning
the problems defined above.

In order to show some of the basic techniques used to deal with this kind of
problems we now recall, from [8], the proofs of a lower bound and of an upper
bound for the N-OL-Tsp in general metric spaces. Note that, as it can be seen
from Table 1, these results have been improved in [34]; however we report them
here because they are simple enough to provide a good introduction, while the
ones in [34] are too technical.

1 Also known as the Wandering Traveling Salesman Problem [27].
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Table 1. Overview of results

H-OL-Tsp

Metric space Lower bound Upper bound
general 2 [8] 2 [8]
real line 9+

√
17

8 ≈ 1.64 [8] 9+
√

17
8 ≈ 1.64 [34]

halfline 1.5 [12] 1.5 [12]

N-OL-Tsp

Metric space Lower bound Upper bound
general ≈ 2.03 [34] 1 +

√
2 [34]

real line ≈ 2.03 [34] 2.06 [34]
halfline ≈ 1.63 [34] 2.06 [34]

L-OL-Trp

Metric space Lower bound Upper bound
general 1 +

√
2 ≈ 2.41 [18] (1 +

√
2)2 [31]

real line 1 +
√

2 [18] (1 +
√

2)2 ≈ 5.83 [31]
halfline 2 [34] 3.5 [18]

Theorem 1. Any ρ-competitive algorithm for N-OL-Tsp has ρ ≥ 2. The lower
bound is achieved on the real line.

Proof. The proof is derived from the following simple argoment. Consider the
problem on the real line with the abscissa 0 as the origin. The adversary gives a
request at time 1 in either 1 or −1, depending on whether at time 1 the on-line
server is in a negative or a positive position, respectively. Thus, the adversary
has completed at time 1, whereas the on-line server needs at least 2, with 2
sufficing when the server is in the origin at time 1. ��

We now present a 5/2-competitive algorithm; note that the algorithm is de-
scribed completely by stating the action taken at any moment t, when a new
request arrives. The algorithm is called “Greedily Traveling between Requests”
(GTR), because the greedy server is restricted to move only on the shortest route
between pairs of points to be served.

Algorithm 2 (GTR). Assume that at time t, when a new request is presented,
the on-line server’s position, pGTR(t), is on the direct connection between x and
y in S. Then the algorithm computes and follows the shortest route that first
visits either x or y and then the yet unserved requests.

GTR achieves a competitive ratio of 5/2, as it is shown in the following theorem.

Theorem 3. GTR is a 5/2-competitive algorithm for N-OL-Tsp.

Proof. Let σ be an input instance, S be the set of all requests presented until
t, including the new one and the origin o. Let T be the optimal Hamiltonian
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path on the set S, constrained to have o as one of the 2 extreme points. Notice
that T does not take the release times of the requests into account. Without
loss of generality we concentrate on an arbitrary instant of time t at which a
new request is presented. Let us first state two lower bounds on the optimal
completion time required. First, OPT(σ) ≥ t since also in the optimal solution
a request cannot be served before the time at which it is presented. Secondly,
OPT(σ) ≥ |T | since any algorithm must visit all points in S. Thus, proving
GTR(σ) ≤ t + 3/2|T | proves also the theorem.

Let a be the endpoint of T , the starting point is o. Observe that pGTR(t), the
position of GTR at time t, is somewhere on the direct connection between two
points of S, say x and y. Assume that following T from o to a, x is visited before
y. Then, min{d(pGTR(t), x) + d(x, o), d(pGTR(t), y) + d(y, a)} ≤ 1/2|T |. Without
loss of generality assume that the first term is smaller than the second one.
Consider the route that goes from pGTR(t) to x, then to o and finally follows T
until a. Its length, that is upper bounded by 3/2|T |, is also an upper bound of
the length of the route followed by GTR starting at time t, and hence the on-line
completion time is upper bounded by t + 3/2|T | proving the theorem. ��

Note that the algorithm GTR takes indeed exponential time since it requires the
computation of an optimal Hamiltonian path. In fact the competitive analysis
framework does not take into account the computational costs of the various
algorithms, unless it is explicitely requested that an algorithm runs in polynomial
time.

Related problems. The traveling salesman problem can be seen as a special
case of a broader family of vehicle routing problems known as dial-a-ride: here
a server, in a metric space, is presented a sequence of rides ; each ride is a triple
σi = (ti, si, di), where ti is the time at which the ride σi is released, and si and
di are, respectively, the source and the destination of the ride. Every ride has
to be executed (served) by the server, that is, the server has to visit the source,
start the ride, and end it at the destination. The capacity of the the server is an
upper bound on the number of rides the server can execute simultaneously. In
the literature unit capacity, constant capacity c ≥ 2, and infinite capacity for the
server are usually considered. This family of problems can be used to model, for
example, a taxi service (unitary capacity), an elevator scheduling and delivery
service (constant capacity) or a postal service (infinite capacity). Feuerstein and
Stougie started the study of on-line dial-a-ride problems in [18], and up to date
results can be found in [17, 34].

Another generalization of the OL-Tsp is the well known Quota Tsp problem
(a generalization of the k-Tsp [20]): here the goal of the travelling salesman is
to reach a given quota of sales, minimizing the amount of time. In [7] the on-line
Quota Tsp problem is addressed, and bounds and algorithms for several metric
spaces are presented.

A variation of the OL-Tsp is the on-line Asymmetric Tsp, in which the
constraint that the underlying space is symmetric is dropped. In [6] this problem
is studied both in the homing and nomadic version: for the first lower and upper
bounds are provided; for the second the authors show that in the general case
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there is no on-line competitive algorithm; indeed, if the amount of asymmetry
of the space is limited, i.e. if d(x, y) ≤ α · d(y, x) for every distinct points x, y,
then competitive ratios are function of the amount of asymmetry of the space.

A problem strictly related to the L-OL-Trp is the NL-OL-Trp, in which
the objective function to minimize is the net latency, i.e. the sum of the times
each request has to wait to be served since its release time, namely

∑n
i=1(τi−ti),

where τi is the time instant when request σi is served. Note that, if we define
T =

∑n
i=1 ti to be the sum of all the release times, that is a constant term, it

is easy to see that the objective function can be rewritten as
∑n

i=1(τi − ti) =
(
∑n

i=1 τi) − T that is the latency minus T , i.e. the latency minus a constant
term; therefore minimizing latency or net latency should be exactly the same,
but constant terms can alter the competitive ratio and therefore, as we can
show in the following thorem, there is no on-line competitive algorithm for this
problem.

Theorem 4. For the L-OL-Trp, if we want to minimize the net latency, there
is no competitive algorithm.

Proof. Consider the real line as the metric space. Assume wlog that at time 1 the
on-line server is in the positive half of the line: a request is released in position
−1, and the adversary serves it immediately. There are no other requests, and
the net latency of the adversary is 0, while the on-line server pays a positive
cost. ��
Before closing this overview it is worth making some comments on Table 1. Con-
sidering the three problems it clearly appears that the Homing version of Tsp
is in a sense the easiest one, because in all cases competitiveness upper bounds
matching the corresponding lower bounds have been established, while the No-
madic version still presents gaps between upper and lower bounds. Intuitively we
can argue that this is due to the value of the information (implicitely exploited
by the on-line server in H-OL-Tsp) that the adversary has to come back to
the origin at the end of its tour, information that is lacking in N-OL-Tsp. More
interesting appear the large gaps still existing in the case of the latency problem,
both for general metric spaces and for particular metric spaces, such as the line
or the half line; these gaps resist as the major open problems in this domain.

Alternative adversarial models. It is well known that competitive analysis
has been criticized for being too pessimistic, since it is often possible to build
up pathological input instances that only an off-line server can serve effectively,
thanks to its clairvoyance. Competitive analysis can be seen as a game between
the on-line algorithm and an off-line adversary: the latter builds up an input
instance that is difficult for the on-line algorithm, and serves it effectively. Using
such a metaphore, the off-line adversary is often too powerful with respect to
the on-line algorithm. In order to limit, in some way, the power of the off-line
adversary, restricted types of adversary have been proposed that are not allowed
to behave in an excessively unfair way with respect to the on-line algorithm.
Here we mention only the ones that are specific in the context of on-line real
time problems.
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In [12] Blom et al. introduce the fair adversary, that is restricted to keep its
server within the convex hull of the requests released so far. In this way sequences
like the one we presented in the proof of Theorem 1 are no more allowed: it is
not possible for the adversary to move its server “without an evident reason”
from the perspective of the on-line player; the authors show that against the fair
adversary the on-line server achieves better competitive ratios.

In [32] Krumke et al. propose the non-abusive adversary for the on-line Tsp,
where the objective is to minimize the maximum flow time, i.e. maxi(τi − ti);
note that for this problem there are no competitive algorithms against general
adversaries. A non-abusive adversary may only move in a direction if there are
yet unserved requests on this side. Krumke et al. prove a constant competitive
ratio against the non-abusive adversary.

An alternative technique for overcoming the excessive power of the adversary,
frequently used for ordinary on-line problems, is the so called resource augmen-
tation: instead of limiting the power of the adversary the idea is to increase
the resources of the on-line algorithm, such as speed and number of servers.
Note that, differently from the adversarial models defined above, no applica-
tion of resource augmentation specific for vehicle routing problems is known,
although resource augmentation has been used for other real time problems,
such as scheduling, since the early work of Graham [22].

A completely different approach to avoid pathological worst case input se-
quences is based on the notion of reasonable load, proposed by Hauptmeier et al.
[24]: informally, they define a set of requests, that came up in a sufficiently large
period, to be reasonable if they can be served by an optimal algorithm in a time
period of the same length; most notably this kind of analysis can be applied to
several on-line real time problems.

3 Waiting Helps Real Time On-Line Agents

As we mentioned in the introduction, the peculiarity of real time on-line problems
is that a server is allowed to decide whether to serve or not a request, and it can
even wait idle. At a first glance, it may sound unusual that an algorithm should
decide to wait instead of serving pending requests; but consider the following
case: the server is in the origin, and the only request released so far it is “far
away” from its current position; therefore it seems not a bad idea to “wait a
little”, or alternatively to move “slowly” towards it, to see if other requests show
up in order to serve all of them together. Here the real time of the problem
combines with the fact that moving a server could damage the quality of the
overall service; this might not happen if we consider other real time problems
like scheduling, if we allow jobs to be interrupted (even if we might start them
again from scratch later). Now, if we concentrate on vehicle routing problems,
the benefits of waiting could depend on the objective function; intuitively, if we
want to minimize latency it could be more “dangerous” to move the server for
an isolated request far away, while, if completion time is the objective function,
serving a distant request might be less insecure.
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Table 2. Zealous versus Non-Zealous algorithms

H-OL-Tsp
Non-Zealous Zealous

Metric space Lower bound Upper bound Lower bound Upper bound
general 2 [8] 2 [8] 2 [8] 2 [8]
real line 9+

√
17

8 ≈ 1.64 [8] 9+
√

17
8 ≈ 1.64 [34] 1.75 [12] 1.75 [8]

N-OL-Tsp
Non-Zealous Zealous

Metric space Lower bound Upper bound Lower bound Upper bound
general ≈ 2.03 [34] 1 +

√
2 [34] 2

√
21−3
3 ≈ 2.05 [34] 2.5 [8]

real line ≈ 2.03 [34] 2.06 [34] 2
√

21−3
3 ≈ 2.05 [34] 7

3 ≈ 2.33 [8]

L-OL-Trp
Non-Zealous Zealous

Metric space Lower bound Upper bound Lower bound Upper bound
general 1 +

√
2 [18] (1 +

√
2)2 [31] 3 [33] Open

real line 1 +
√

2 [18] (1 +
√

2)2 [31] 3 [33] Open

How can we measure, in a real time problem, the importance of waiting,
or, more precisely, the importance of the opportunity of waiting? To do so, we
recall from the work of Blom et al. [12] the notion of zealous algorithm for on-line
routing problems; informally, a zealous algorithm is not allowed to wait2.

Definition 1 (Zealous algorithm). The server used by a zealous algorithm, a
zealous server, should never sit and wait if there are unserved requests. If there
are still unserved requests the direction of a zealous server changes only if a new
request becomes known, or if the server is either in the origin or it has just served
a request. A zealous server is allowed to move only at maximum (i.e. unitary)
speed.

Note that zealous algorithms are a natural and well-defined class of algorithms;
furthermore they are easy to be analyzed because their behavior is restricted;
more notably, we can measure the importance of waiting by studying how much
are penalized, for a given problems, the algorithms that are not allowed to wait.
In Table 2, we compare the known competitive results for both zealous and
non-zealous algorithms; note that non-zealous algorithms perform always better,
and these results formally confirm the intuition that, for this kind of problems,
waiting helps (see also [34]).

To provide an example of advantages of waiting, we recall some results from
[6] where lower and upper bounds, for both zealous and non-zealous algorithms,
for the homing version of the on-line Asymmetric-Tsp (OL-A-Tsp) are shown.
We present a lower bound of about 2.618 and a matching upper bound of a
non-zealous algorithm; then we show a lower bound of 3 for zealous algorithms,
2 Originally, in [12], the authors used the term diligent instead of zealous.
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again with a matching upper bound. Note that in the case of symmetric on-line
Tsp, all the corresponding bounds are equal to 2.

Let φ denote the golden ratio, that is, the unique positive solution to x =
1 + 1/x. In closed form, φ = 1+

√
5

2 � 1.618.

Theorem 5. The competitive ratio of any on-line algorithm A for the homing
OL-A-Tsp is at least 1 + φ.

Proof. We denote by σ the input instance constructed by the off-line adver-
sary. The space used in the proof is the one induced by the graph depicted in
Figure 1, where the length of every arc is ε, except for those leaving the origin
which have length 1. Observe that the space is symmetric with respect to an
imaginary vertical axis passing through O. Thus, we can assume without loss of
generality that, at time 1, the on-line server is in the left half of the space. Then
at time 1 a request is given in point A, in the other half. Now let t be the first
time, after time 1, at which the on-line server leaves the origin.

If t ≥ φ, no further request is given. In this case A(σ) ≥ t + 1 + 2ε while
OPT(σ) ≤ 1 + 2ε so that, when ε approaches zero, A(σ)/OPT(σ) approaches
1 + t ≥ 1 + φ.

Otherwise, if t ∈ [1, φ], at time t, when the on-line server has just left the
origin, we can assume that it is going towards C (again, by symmetry). At this
time, the adversary gives a request in Bi, where i =

⌈
t−1

ε

⌉
. Now the on-line

server has to traverse the entire arc before it can turn back and go serve Bi,
thus

A(σ) ≥ t + 1 + 1 + ε

⌈
t− 1

ε

⌉
+ 2ε ≥ 2t + 1 + 2ε.

Instead, the adversary server will have moved from O to Bi in time at most t+ε
and then served Bi and A, achieving the optimal cost OPT(σ) ≤ t + 3ε. Thus,
when ε approaches zero, A(σ)/OPT(σ) approaches 2 + 1

t ≥ 1 + φ. ��

We now show that the algorithm SmartStart(α), that is a variation of an algo-
rithm originally proposed by Krumke [30], matches the above lower bound.

Algorithm 6 (SmartStart(α)). The algorithm keeps track, at every time t, of
the cost of an optimal tour T ∗(t) over the unserved requests. At the first instant
t such that t ≥ α|T ∗(t)|, the server starts following at full speed the currently
optimal tour, ignoring temporarily every new request. When the server is back in
the origin, it stops and returns monitoring the value |T ∗(t)|, starting as before
when necessary.

As we will soon see, the best value of α is α∗ = φ.

Theorem 7. SmartStart(φ) is (1 + φ)-competitive for homing OL-A-Tsp.

Proof. Let σ be any input instance. We distinguish two cases depending if the
last request arrives while the server is waiting in the origin or not.

In the first case, let t be the release time of the last request. If the server starts
immediately at time t, it will follow a tour of length |T ∗(t)| ≤ t/α, ending at
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Fig. 1. The space used in the OL-A-Tsp lower bound proof

time at most (1 + 1/α)t, while the adversary pays at least t, so the competitive
ratio is at most 1 + 1/α. Otherwise, the server will start at a time t′ > t such
that t′ = α|T ∗(t)| (since T ∗ does not change after time t) and pay (1+α)|T ∗(t)|,
so the competitive ratio is at most 1 + α.

In the second case, let T ∗(t) be the tour that the server is following while the
last request arrives; that is, we take t to be the starting time of that tour. Let
T ′(t) be an optimal tour over the requests released after time t. If the server
has time to wait in the origin when it finishes following T ∗(t), the analysis is
the same as in the first case. Otherwise, the completion time of SmartStart is
t + |T ∗(t)| + |T ′(t)|. Since SmartStart has started following T ∗(t) at time t, we
have t ≥ α|T ∗(t)|. Then

t + |T ∗(t)| ≤ (1 + 1/α)t.

Also, if rf = (tf , xf ) is the first request served by the adversary having release
time at least t, we have that |T ′(t)| ≤ d(O, xf ) + OPT(σ) − t since a possibility
for T ′ is to go to xf and then do the same as the adversary (subtracting t from
the cost since we are computing a length, not a completion time, and on the
other hand the adversary will not serve rf at a time earlier than t).

By putting everything together, we have that SmartStart pays at most

(1 + 1/α)t + d(O, xf ) + OPT(σ)− t

and since two obvious lower bounds on OPT(σ) are t and d(O, xf ), this is easily
seen to be at most (2 + 1/α)OPT(σ).

Now max{1 + α, 2 + 1
α} is minimum when α = α∗ = φ. For this value of the

parameter the competitive ratio is 1 + φ. ��
We now show that, for zealous algorithms, the competitive ratio has to be at

least 3 and we provide a matching upper bound.

Theorem 8. The competitive ratio of any zealous on-line algorithm for homing
OL-A-Tsp is at least 3.
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Proof. We use the same space used in the lower bound for general algorithms,
shown in Figure 1. At time 1, the server has to be in the origin and the adversary
gives a request in A. Thus, for any small ε > 0, at time 1 + ε the server will
have moved away from the origin and the adversary gives a request in B0. The
completion time of the on-line algorithm is at least 3+2ε, while OPT(σ) ≤ 1+2ε.
The result follows by taking a sufficiently small ε. ��

The following algorithm, which is derived from [8], is the best possible among
zealous algorithms for the homing OL-A-Tsp.

Algorithm 9 (PlanAtHome). When the server is in the origin and there are un-
served requests, the algorithm computes an optimal tour over the set of unserved
requests and the server starts following it, ignoring temporarily every new request,
until it finishes its tour in the origin. Then it waits in the origin as before.

Theorem 10. PlanAtHome is zealous and 3-competitive for homing OL-A-Tsp.

Proof. Let σ be any input instance, and t be the release time of the last request.
If p(t) is the position of PlanAtHome at time t and T is the tour it was following
at that time, we have that PlanAtHome finishes following T at time t′ ≤ t + |T |.
At that time, it will eventually start again following a tour over the requests
which remain unserved at time t′. Let us call T ′ this other tour. The total cost
payed by PlanAtHome will be then at most t + |T | + |T ′|. But t ≤ OPT(σ),
since the even the off-line adversary cannot serve the last request before it is
released, and on the other hand both T and T ′ have length at most OPT(σ),
since the off-line adversary has to serve all of the requests served in T and T ′.
Thus, t + |T |+ |T ′| ≤ 3OPT(σ). ��

4 The Advantage of Being Clairvoyant

4.1 Choosing the Time When Information is Disclosed

In on-line problems, information is disclosed as time passes. An on-line algorithm
generally receives all the information related to a request when the request itself
is released. Before that moment nothing is known about the request, not even the
fact that it is going to appear. While this model fits many real-world scenarios,
nothing prevents us from decomposing the information associated to a request
into atomic parts, and from revealing these parts at different times, according
to some rules.

As an example, consider dial-a-ride problems. We can identify at least four
atomic pieces of information associated with a request σi = (ti, si, di): the fact
that σi exists, the fact that it can be served starting from time ti, its source
point si, and its destination point di. Each piece of information can be disclosed
in a different time instant. It is intuitive that collecting information earlier helps
to organize a better service, but it is costly. It becomes crucial to quantify, in
terms of competitiveness, the advantage of disposing of information earlier.
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Lookahead. In on-line problems where there is no notion of real time, requests
are served, in general, as soon as they are released: on-line algorithms can decide
only how to serve them. In such cases, all the information related to a request
is disclosed at once. It is possible to reveal this information in advance only by
anticipating the time when requests are disclosed. Lookahead is the capability of
an on-line algorithm of seeing requests in advance. Many on-line problems have
been studied in presence of lookahead, for example paging [2], list update [3],
bin packing [23], and other problems [28, 25]. Different models of lookahead have
been proposed, which share the property that on-line algorithms are allowed to
see a certain number of requests, say k, in advance (lookahead k).

As we switch to on-line real time problems, the situation becomes much more
varied, essentially because requests are not served immediately. Different models
of lookahead (and, more generally, different models of information disclosure) can
be defined, and it is important to understand their theoretical and applicative
relevance.

For vehicle routing problems, at least two models of lookahead have been
proposed. Allulli et al. introduced request lookahead k and time lookahead Δ
[5, 4]; independently, Jaillet and Wagner proposed the disclosures dates model
[26], which is very close to time lookahead.

If an on-line algorithm has request lookahead k, it is allowed to foresee the
next k requests that will be released in the future. This kind of lookahead is
only apparently similar to the one defined for non real time problems. The main
difference is that foreseen requests could be located anywhere on the time axis:
they could be evenly spread as well as concentrated in the near future. It is
unrealistic to assume that a real-world application would dispose of request
lookahead; furthermore, it is unlikely that the quite bizarre additional informa-
tion provided by request lookahead yield meaningful performance improvement
to on-line algorithms. Indeed, in [4] some vehicle routing problems are analyzed,
concluding that the only advantage originated by request lookahead is the pos-
sibility of knowing, at any time, if the input instance is finished, i.e. if no more
requests will be released in the future.

Time lookahead is more useful and more natural. An on-line algorithm endowed
with time lookahead Δ foresees, at any time t, all the requests that will be released
up to time t+Δ, no matter how many they are. This kind of lookahead has natu-
ral applications: it is easy to conceive scenarios where, using a more sophisticated
data collecting process, the on-line algorithm would learn requests with some fixed
advance. In order to be meaningful, Δ must be related to some characteristic quan-
tities of the model: in [5] vehicle routing problems are considered only in limited
metric spaces, and Δ is compared to the time necessary for a server to traverse the
entire metric space, i.e. the diameter D of the metric space (the server moves at
unit speed). Competitive ratio is given as a function of δ = Δ/D. Jaillet and Wag-
ner [26] take a different approach: they compare the amount of time lookahead Δ
with some characteristic quantities of the input instance (essentially, with its op-
timal cost). In the following subsection we will see, in more detail, some upper and
lower bounds of algorithms endowed with time lookahead.
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Restricted information model. Instead of augmenting the information pro-
vided to on-line algorithms, Lipmann et al. analyze what happens if we decrease
it: in [35] they introduce the restricted information model for on-line dial-a-ride
problems, according to which an on-line algorithm becomes aware of the des-
tination of a ride only when the ride begins (i.e. when the server picks up the
customer from the source point, as it actually happens, for example, with many
radio-taxi services). They show that lower and upper bounds become consid-
erably worse in this model, concluding that, in many real-world scenarios, it
is worthwhile to invest on the information system in order to gather all the
information as soon as a requested is presented.

Clairvoyance. For on-line scheduling problems the situation is similar: various
models of information disclosure can be defined. An important example is clair-
voyance. An on-line algorithm can be either clairvoyant, i.e. know the properties
of jobs (in particular, their execution time) as soon as they are released, or non-
clairvoyant, and discover the execution time of each job only when it terminates.
The latter situation typically arises in interactive systems, while clairvoyance can
be used to model batched systems. See, for example, [9, 10, 36, 41], and [37] for
a survey on scheduling.

4.2 Vehicle Routing with Lookahead

We now present in details some results on time lookahead.
We consider the model of Allulli et al.: in [5] they prove a lower bound of 2 for

both the Homing and the Nomadic OL-Tsp, in the general metric space. This
bound shows that time lookahead is useless in the homing case, because a lower
bound of 2 holds for the H-OL-Tsp even without lookahead, and an optimal
on-line algorithm without lookahead exists [8]. The following proof extends an
alternative proof of the 2-competitiveness of the H-OL-Tsp (without lookahead)
given by Lipmann [34].

Theorem 11. No deterministic algorithm for the H-OL-Tsp or the N-OL-
Tsp can achieve a competitive ratio better than 2, even when time lookahead is
provided.

Proof. (Sketch) We consider a star graph G = (V, E) with N +1 nodes: a central
node v0 and N peripheral nodes v1, . . . , vN (see Figure 2). Each peripheral node
vi is connected to the central node by an edge ei = {v0, vi} having length 1/2.
In this proof sketch we assume N � Δ and N � 1; in other words, in our
expressions we keep only those terms that have an asymptotic influence when
N tends to infinity.

Let A be any algorithm for the H-OL-Tsp or the N-OL-Tsp on G with time
lookahead Δ. At the beginning, the adversary presents N requests, one in each
peripheral node. Every time A serves a request in a vertex vi, the adversary
releases a new request in the same vertex, after Δ time units. Thus A cannot get
rid of requests, since as soon as a request is served a new one appears in the same
point. (Notice that A cannot foresee a new request before the corresponding old
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. . .

d(v0, vi) = 2
1

v0

v1

v2

. . .

vN

Fig. 2. The star graph G

one is served; this means that, correctly, the behavior of A is not influenced by
a new request, before the service of the old one.)

The adversary continues to release new requests, in the described fashion, up
to a time tstop ≈ N (the exact value of tstop is given in the complete proof).
At this time there are still N requests that A has to serve: A cannot finish its
service before time ≈ 2N .

On the other hand, it is not hard to see that the adversary can complete its
service before time tstop + Δ ≈ N , simply by serving requests in the following
order: first all the initial requests that are not served by A before time tstop;
after that, all the other requests, in the same order in which A visits, for the last
time, the points where they are located (essentially, the adversary is chasing A
with a delay of Δ, catching all the new requests along with the old ones).

Thus, the competitive ratio of A cannot be better than 2N/N = 2. ��
In the nomadic case, the previous bound is smaller than the current best lower
bound without lookahead, which is about 2.03 [34]. In [5] it is described an algo-
rithm, ReturnHomeα, whose competitive ratio improves with δ = Δ/D, matching
the lower bound of 2 when δ ≥ 1 (i.e. when Δ ≥ D). ReturnHomeα extends the
homonymous algorithm without lookahead by Lipmann [34], and inherits its
competitive ratio of (1+

√
2) (the current best upper bound) when δ = 0. When

δ ∈ [0, 1], the competitive ratio of ReturnHomeα is monotonically decreasing.
Thus, time lookahead proves to be useful for the Nomadic OL-Tsp. Here we
present a simplified version of the algorithm, that achieves the same optimal
competitive ratio of 2 when δ ≥ 1.

Algorithm 12 (ReturnHome with time lookahead Δ). At every time t ∈ R+,
algorithm ReturnHome (RH) either is idle or is following a tour T . Initially, RH
is idle. Independently of its current state, as soon as RH foresees a new request
according to its lookahead, it immediately returns to the origin, and waits for the
new request to be actually released. Then, it begins to follow the minimum-length
tour T over all the released but not yet served requests, proceeding at full speed.

Theorem 13. ReturnHome with lookahead D is a 2-competitive algorithm for
the N-OL-Tsp in any metric space with diameter D.



On-Line Algorithms 15

O

P

Fig. 3. A serving requests in G−

OP

B follows A after Δ
 

Fig. 4. B’s service

Proof. Let σ be any input instance, and let σn = (tn, xn) be the last request
of σ to be released. ReturnHome foresees σn at time tn − D, comes back to
the origin, which is reached not later than time tn, and follows the optimal
tour T starting from time tn. In this way ReturnHome completes its service at
time RH(σ) = tn + |T |. But note that tn ≤ OPT(σ) and |T | ≤ OPT(σ); thus
RH(σ) ≤ 2OPT(σ). ��

In the metric space of the (limited) line the situation is different: in [5] it is
shown an algorithm for the H-OL-Tsp, the N-OL-Tsp and the L-OL-Trp
whose competitive ratio tends to 1 when δ tends to infinity. In this case a large
amount of lookahead makes the on-line model approach the off-line one.

Let us now consider the objective function of net latency (i.e. the average
serving time, important in applications), for which no competitive algorithm
without lookahead exists. Generally speaking, lookahead can be used to limit, in
a way that is natural and easy to interpret, the power of the off-line adversary; the
“penalty” imposed on it can be regulated by adjusting the lookahead parameter.
Unfortunately, for the NL-OL-Trp time lookahead does not help, in the general
metric space, as we show in the following theorem [5].

Theorem 14. Let Ω be a open set of Rk, k ≥ 2; let A be an on-line algorithm
for the NL-OL-Trp on Ω with time lookahead Δ. Then, for all Δ ∈ R+, A is
not competitive for the NL-OL-Trp in Ω.

Proof. (Sketch) We will refer to the on-line algorithm as A, to the adversary as
B. Without loss of generality we suppose that Ω ⊆ R2.

We construct a grid G of 2N points such that, in order to visit any subset
of G with N points, a minimum time of Δ is needed. The adversary releases
some starting requests, consisting of at least one request in each point of G.
Furthermore, the adversary selects a subset G− ⊂ G containig N points, and
forces A to serve requests in G− first, in such a way that otherwise A cannot be
competitive (see Figure 3). This is achieved by suitably tuning the number of
requests released in each point of G. While A serves the starting requests in G−,
B serves all the other starting requests; afterwards, B begins to follow A with a
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delay of Δ (see Figure 4). In the meanwhile, new requests are generated: if A
serves some requests at time t, then B releases a new request in the same point
at time t + Δ. B is able to serve each new request on the fly, at no cost. On
the other hand, at any time t there are always requests in 2N points that either
have been released but not served by A, or will be released soon, not later than
time t + Δ. During the next Δ time units A will be able to serve requests in at
most N of these 2N points. Consequently it will be late on at least N requests,
paying some cost for serving them. By iterating this procedure, B can force A
to pay an arbitrarily large cost. Since B pays only a fixed cost in order to serve
the starting requests, A cannot be competitive. ��

Even in the metric space of the limited line no competitive on-line algorithm
with lookahead for the NL-OL-Trp exists when δ < 2 [5]. It is unknown what
happens for larger values of δ.

Dealing with the H-OL-Tsp, Jaillet and Wagner [26] compare Δ with the
length of the optimal tour LTSP : they prove that, if Δ = αLTSP , then there
exists a

(
2− α

1+α

)
-competitive algorithm in the general metric space, that im-

proves the 2-competitive algorithm of [8]. Notice that, as a consequence of The-
orem 11, this result crucially depends on the fact that lookahead is not fixed
a-priori, but depends on the input instance. They also provide an algorithm for
the halfline.

For the latency objective function, Jaillet and Wagner compare Δ with both
LTSP and tn, where tn is the time when the last request is released: extending
the best known algorithm of [31] they use lookahead to improve its competitive
ratio. The idea of comparing Δ with characteristic quantities of the instance
(essentially, with its optimal cost) makes it possible to apply lookahead even
in unlimited metric spaces, and has a theoretical interest beacause, regulating
lookahead parameters, one can vary the amount of “on-lineness” of the model.
On the other hand it is very hard to enforce a competitive ratio, because it
would require to force input instances to conform to some rules (for example,
to disclose requests with a lookahead that is proportional to the length of the
optimal tour).

To draw some conclusions, we can observe that in the case of on-line real time
problems lookahead in terms of requests (the most common form of lookahead
considered for non real time problems) does not help; while in several varia-
tions of vehicle routing problems it can be proved that suitable notions of time
lookahead allow to improve the competitiveness of on-line servers.

5 The Competitive Ratio as a Function of the Number of
Servers

When we consider multiple servers extensions of vehicle routing problems, it is
natural to ask about the behavior of the competitive ratio as a function of the
number servers. Does the competitive ratio increase as the number of servers
grows? To mention a classic example in on-line optimization, this is for example
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the case for the famous k-server problem [29], for which it is known that the
competitive ratio grows linearly with the number of servers.

For on-line vehicle routing problems, the question is still being investigated.
However, a preliminary answer is that in most formulations of the problem the
competitive ratio does not increase with respect to the single server problem. The
intuitive explanation is that most single server algorithms still work in a multiple
server context provided that routes are planned groupwise and not individually.

That, however, is not the end of the story. The following, more surprising,
phenomenon occurs in some special cases: the competitive ratio “breaks down”
and approaches 1 as the number of servers grows. That is, with many servers
there are on-line algorithms that perform almost as well as the off-line optimum.
Namely, this is the case for the nomadic traveling salesman and the traveling re-
pairman problem when the metric space is the real line, as stated in the following
result.

Theorem 15 ([13]). There exist 1+O(log k/k)-competitive algorithms for both
the nomadic traveling salesmen and the traveling repairmen problem with k
servers on the real line.

It would be interesting to establish if a similar phenomen occurs also in more
general spaces, or if it is only due to the special characteristics of the real line.
For general metric spaces, however, it is known that the competitive ratio cannot
decrease below 2 for any of these two problems.

It can be useful to compare these results with those in on-line scheduling, since
quite a lot of effort has gone into the analysis of multiple machine scheduling
problems [38]. In the one-by-one model competitive ratios increase with increas-
ing number of machines. In real time on-line scheduling nobody has been able
to show smaller competitive ratios for multiple machine problems than for the
single machine versions, but here lower bounds do not exclude that such re-
sults exist [15, 16, 42]. Actually, the multiple machine problems get quite hard
to analyze so that often the lower bounds are lower, and the upper bounds
higher, than the single server case. For example, when the objective function is
the sum of completion times, there is a 2-competitive best possible algorithm
for a single machine, while for multiple machines the best algorithm known is
2.62-competitive and the best lower bound known is 1.309 [16, 42].

6 Conclusion

In this paper we showed some peculiar characteristics of on-line real time prob-
lems, using the large class of vehicle routing problems to introduce them. We
presented an overview of some results related to the OL-Tsp; in particular we
considered the homing and nomadic version where the objective function is the
completion time, together with the L-OL-Trp, where the goal is to minimize the
latency. We also mentioned the more general OL-A-Tsp, where the underlying
space does not satisfy the symmetry property.

Quite surprisingly, in all the above problems being a zealous server is not a
winning strategy: waiting for more requests to show up can provide a better pic-
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ture of “what is going on”. Is this a common trait of on-line real time problems?
Intuitively, this might be the case only for the problems in which serving one
request can affect the quality of service of the following ones; in vehicle routing
problems, for example, moving the server far away from the origin could prevent
a fast answer to new requests.

We mentioned several types of lookahead; amongst them, the more natural
and more effective, for these problems, is undoubtedly time lookahead; indeed,
time lookahead can lead to a deeper understanding of the role of real time in the
problem. Furthermore, in several practical applications it is natural to assume
the availability of some amount of time lookaehad. We also addressed other
alternative models of information disclosure over time like clairvoyance and the
restricted information model.

We believe it is still missing a formal framework to analyze and study on-line
real time problems, whose relevance is justified by the huge variety of real world
practical applications that they can model; we made a first step towards this
direction by emphasizing some of their common and distinctive aspects.
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Abstract. We survey the emerging area of compression-based, parameter-free,
similarity distance measures useful in data-mining, pattern recognition, learning
and automatic semantics extraction. Given a family of distances on a set of ob-
jects, a distance is universal up to a certain precision for that family if it minorizes
every distance in the family between every two objects in the set, up to the stated
precision (we do not require the universal distance to be an element of the fam-
ily). We consider similarity distances for two types of objects: literal objects that
as such contain all of their meaning, like genomes or books, and names for ob-
jects. The latter may have literal embodyments like the first type, but may also
be abstract like “red” or “christianity.” For the first type we consider a family of
computable distance measures corresponding to parameters expressing similarity
according to particular features between pairs of literal objects. For the second
type we consider similarity distances generated by web users corresponding to
particular semantic relations between the (names for) the designated objects. For
both families we give universal similarity distance measures, incorporating all
particular distance measures in the family. In the first case the universal distance
is based on compression and in the second case it is based on Google page counts
related to search terms. In both cases experiments on a massive scale give evi-
dence of the viability of the approaches.

1 Introduction

Objects can be given literally, like the literal four-letter genome of a mouse, or the
literal text of War and Peace by Tolstoy. For simplicity we take it that all meaning of
the object is represented by the literal object itself. Objects can also be given by name,
like “the four-letter genome of a mouse,” or “the text of War and Peace by Tolstoy.”
There are also objects that cannot be given literally, but only by name and acquire their
meaning from their contexts in background common knowledge in humankind, like
“home” or “red.” In the literal setting, objective similarity of objects can be established
by feature analysis, one type of similarity per feature. In the abstract “name” setting,
all similarity must depend on background knowledge and common semantics relations,
which is inherently subjective and “in the mind of the beholder.”
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1.1 Compression Based Similarity

All data are created equal but some data are more alike than others. We and others
have recently proposed very general methods expressing this alikeness, using a new
similarity metric based on compression. It is parameter-free in that it doesn’t use any
features or background knowledge about the data, and can without changes be applied
to different areas and across area boundaries. Put differently: just like ‘parameter-free’
statistical methods, the new method uses essentially unboundedly many parameters,
the ones that are appropriate. It is universal in that it approximates the parameter ex-
pressing similarity of the dominant feature in all pairwise comparisons. It is robust
in the sense that its success appears independent from the type of compressor used.
The clustering we use is hierarchical clustering in dendrograms based on a new fast
heuristic for the quartet method. The method is available as an open-source software
tool, [7].

Feature-Based Similarities. We are presented with unknown data and the question is
to determine the similarities among them and group like with like together. Commonly,
the data are of a certain type: music files, transaction records of ATM machines, credit
card applications, genomic data. In these data there are hidden relations that we would
like to get out in the open. For example, from genomic data one can extract letter- or
block frequencies (the blocks are over the four-letter alphabet); from music files one
can extract various specific numerical features, related to pitch, rhythm, harmony etc.
One can extract such features using for instance Fourier transforms [39] or wavelet
transforms [18], to quantify parameters expressing similarity. The resulting vectors cor-
responding to the various files are then classified or clustered using existing classifica-
tion software, based on various standard statistical pattern recognition classifiers [39],
Bayesian classifiers [15], hidden Markov models [9], ensembles of nearest-neighbor
classifiers [18] or neural networks [15, 34]. For example, in music one feature would be
to look for rhythm in the sense of beats per minute. One can make a histogram where
each histogram bin corresponds to a particular tempo in beats-per-minute and the as-
sociated peak shows how frequent and strong that particular periodicity was over the
entire piece. In [39] we see a gradual change from a few high peaks to many low and
spread-out ones going from hip-hip, rock, jazz, to classical. One can use this similarity
type to try to cluster pieces in these categories. However, such a method requires spe-
cific and detailed knowledge of the problem area, since one needs to know what features
to look for.

Non-Feature Similarities. Our aim is to capture, in a single similarity metric, every
effective distance: effective versions of Hamming distance, Euclidean distance, edit dis-
tances, alignment distance, Lempel-Ziv distance, and so on. This metric should be so
general that it works in every domain: music, text, literature, programs, genomes, exe-
cutables, natural language determination, equally and simultaneously. It would be able
to simultaneously detect all similarities between pieces that other effective distances
can detect seperately.

The normalized version of the “information metric” of [32, 3] fills the requirements
for such a “universal” metric. Roughly speaking, two objects are deemed close if we can
significantly “compress” one given the information in the other, the idea being that if
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two pieces are more similar, then we can more succinctly describe one given the other.
The mathematics used is based on Kolmogorov complexity theory [32].

1.2 A Brief History

In view of the success of the method, in numerous applications, it is perhaps useful to
trace its descent in some detail. Let K(x) denote the unconditional Kolmogorov com-
plexity of x, and let K(x|y) denote the conditional Kolmogorov complexity of x given
y. Intuitively, the Kolmorov complexity of an object is the number of bits in the ul-
timate compressed version of the object, or, more precisely, from which the object
can be recovered by a fixed algorithm. The “sum” version of information distance,
K(x|y)+ K(y|x), arose from thermodynamical considerations about reversible compu-
tations [25, 26] in 1992. It is a metric and minorizes all computable distances satisfying
a given density condition up to a multiplicative factor of 2. Subsequently, in 1993, the
“max” version of information distance, max{K(x|y),K(y|x)}, was introduced in [3].
Up to a logarithmic additive term, it is the length of the shortest binary program that
transforms x into y, and y into x. It is a metric as well, and this metric minorizes all
computable distances satisfying a given density condition up to an additive ignorable
term. This is optimal. But the Kolmogorov complexity is uncomputable, which seems to
preclude application altogether. However, in 1999 the normalized version of the “sum”
information distance (K(x|y)+ K(y|x))/K(xy) was introduced as a similarity distance
and applied to construct a phylogeny of bacteria in [28], and subsequently mammal
phylogeny in 2001 [29], followed by plagiarism detection in student programming as-
signments [6], and phylogeny of chain letters in [4]. In [29] it was shown that the nor-
malized sum distance is a metric, and minorizes certain computable distances up to
a multiplicative factor of 2 with high probability. In a bold move, in these papers the
uncomputable Kolmogorov complexity was replaced by an approximation using a real-
world compressor, for example the special-purpose genome compressor GenCompress.
Note that, because of the uncomputability of the Kolmogorov complexity, in principle
one cannot determine the degree of accuracy of the approximation to the target value.
Yet it turned out that this practical approximation, imprecise though it is, but guided by
an ideal provable theory, in general gives good results on natural data sets. The early use
of the “sum” distance was replaced by the “max” distance in [30] in 2001 and applied to
mammal phylogeny in 2001 in the early version of [31] and in later versions also to the
language tree. In [31] it was shown that an appropriately normalized “max” distance is
metric, and minorizes all normalized computable distances satisfying a certain density
property up to an additive vanishing term. That is, it discovers all effective similarities
of this family in the sense that if two objects are close according to some effective sim-
ilarity, then they are also close according to the normalized information distance. Put
differently, the normalized information distance represents similarity according to the
dominating shared feature between the two objects being compared. In comparisons
of more than two objects, different pairs may have different dominating features. For
every two objects, this universal metric distance zooms in on the dominant similarity
between those two objects out of a wide class of admissible similarity features. Hence
it may be called “the” similarity metric. In 2003 [12] it was realized that the method
could be used for hierarchical clustering of natural data sets from arbitrary (also het-
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erogenous) domains, and the theory related to the application of real-world compressors
was developed, and numerous applications in different domains were given, Section 3.
In [19] the authors use a simplified version of the similarity metric, which also per-
forms well. In [2], and follow-up work, a closely related notion of compression-based
distances is proposed. There the purpose was initially to infer a language tree from
different-language text corpora, as well as do authorship attribution on basis of text
corpora. The distances determined between objects are justified by ad-hoc plausibility
arguments and represent a partially independent development (although they refer to
the information distance approach of [27, 3]). Altogether, it appears that the notion of
compression-based similarity metric is so powerful that its performance is robust under
considerable variations.

2 Similarity Distance

We briefly outline an improved version of the main theoretical contents of [12] and
its relation to [31]. For details and proofs see these references. First, we give a precise
formal meaning to the loose distance notion of “degree of similarity” used in the pattern
recognition literature.

2.1 Distance and Metric

Let Ω be a nonempty set and R + be the set of nonnegative real numbers. A distance
function on Ω is a function D : Ω×Ω→ R +. It is a metric if it satisfies the metric
(in)equalities:

– D(x,y) = 0 iff x = y,
– D(x,y) = D(y,x) (symmetry), and
– D(x,y)≤ D(x,z)+ D(z,y) (triangle inequality).

The value D(x,y) is called the distance between x,y ∈ Ω. A familiar example of a dis-
tance that is also metric is the Euclidean metric, the everyday distance e(a,b) between
two geographical objects a,b expressed in, say, meters. Clearly, this distance satisfies
the properties e(a,a) = 0, e(a,b) = e(b,a), and e(a,b)≤ e(a,c)+ e(c,b) (for instance,
a = Amsterdam, b = Brussels, and c = Chicago.) We are interested in a particular
type of distance, the “similarity distance”, which we formally define in Definition 4.
For example, if the objects are classical music pieces then the function D defined by
D(a,b) = 0 if a and b are by the same composer and D(a,b) = 1 otherwise, is a sim-
ilarity distance that is also a metric. This metric captures only one similarity aspect
(feature) of music pieces, presumably an important one that subsumes a conglomerate
of more elementary features.

2.2 Admissible Distance

In defining a class of admissible distances (not necessarily metric distances) we want to
exclude unrealistic ones like f (x,y) = 1

2 for every pair x �= y. We do this by restricting
the number of objects within a given distance of an object. As in [3] we do this by only
considering effective distances, as follows.
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Definition 1. Let Ω = Σ∗, with Σ a finite nonempty alphabet and Σ∗ the set of finite
strings over that alphabet. Since every finite alphabet can be recoded in binary, we
choose Σ = {0,1}. In particular, “files” in computer memory are finite binary strings. A
function D : Ω×Ω→ R + is an admissible distance if for every pair of objects x,y ∈Ω
the distance D(x,y) satisfies the density condition

∑
y

2−D(x,y) ≤ 1, (1)

is computable, and is symmetric, D(x,y) = D(y,x).

If D is an admissible distance, then for every x the set {D(x,y) : y ∈ {0,1}∗} is the
length set of a prefix code, since it satisfies (1), the Kraft inequality. Conversely, if a
distance is the length set of a prefix code, then it satisfies (1), see for example [27].

2.3 Normalized Admissible Distance

Large objects (in the sense of long strings) that differ by a tiny part are intuitively closer
than tiny objects that differ by the same amount. For example, two whole mitochondrial
genomes of 18,000 bases that differ by 9,000 are very different, while two whole nuclear
genomes of 3×109 bases that differ by only 9,000 bases are very similar. Thus, absolute
difference between two objects doesn’t govern similarity, but relative difference appears
to do so.

Definition 2. A compressor is a lossless encoder mapping Ω into {0,1}∗ such that
the resulting code is a prefix code. “Lossless” means that there is a decompressor that
reconstructs the source message from the code message. For convenience of notation
we identify “compressor” with a “code word length function” C : Ω→N , where N is
the set of nonnegative integers. That is, the compressed version of a file x has length
C(x). We only consider compressors such that C(x) ≤ |x|+ O(log |x|). (The additive
logarithmic term is due to our requirement that the compressed file be a prefix code
word.) We fix a compressor C, and call the fixed compressor the reference compressor.

Definition 3. Let D be an admissible distance. Then D+(x) is defined by D+(x) =
max{D(x,z) :C(z)≤C(x)}, and D+(x,y) is defined by D+(x,y) = max{D+(x),D+(y)}.
Note that since D(x,y) = D(y,x), also D+(x,y) = D+(y,x).

Definition 4. Let D be an admissible distance. The normalized admissible distance,
also called a similarity distance, d(x,y), based on D relative to a reference compressor
C, is defined by

d(x,y) =
D(x,y)

D+(x,y)
.

It follows from the definitions that a normalized admissible distance is a function d :
Ω×Ω→ [0,1] that is symmetric: d(x,y) = d(y,x).

Lemma 1. For every x ∈ Ω, and constant e ∈ [0,1], a normalized admissible distance
satisfies the density constraint

|{y : d(x,y)≤ e, C(y)≤C(x)}|< 2eD+(x)+1. (2)
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We call a normalized distance a “similarity” distance, because it gives a relative simi-
larity according to the distance (with distance 0 when objects are maximally similar and
distance 1 when they are maximally dissimilar) and, conversely, for every well-defined
computable notion of similarity we can express it as a metric distance according to our
definition. In the literature a distance that expresses lack of similarity (like ours) is often
called a “dissimilarity” distance or a “disparity” distance.

2.4 Normal Compressor

We give axioms determining a large family of compressors that both include most (if
not all) real-world compressors and ensure the desired properties of the NCD to be
defined later.

Definition 5. A compressor C is normal if it satisfies, up to an additive O(logn) term,
with n the maximal binary length of an element of Ω involved in the (in)equality con-
cerned, the following:

1. Idempotency: C(xx) = C(x), and C(λ) = 0, where λ is the empty string.
2. Monotonicity: C(xy)≥C(x).
3. Symmetry: C(xy) = C(yx).
4. Distributivity: C(xy)+C(z)≤C(xz)+C(yz).

Remark 1. These axioms are of course an idealization. The reader can insert, say
O(
√

n), for the O(logn) fudge term, and modify the subsequent discussion accord-
ingly. Many compressors, like gzip or bzip2, have a bounded window size. Since com-
pression of objects exceeding the window size is not meaningful, we assume 2n is
less than the window size. In such cases the O(logn) term, or its equivalent, relates
to the fictitious version of the compressor where the window size can grow indefi-
nitely. Alternatively, we bound the value of n to half te window size, and replace the
fudge term O(logn) by some small fraction of n. Other compressors, like PPMZ, have
unlimited window size, and hence are more suitable for direct interpretation of the
axioms.

Idempotency. A reasonable compressor will see exact repetitions and obey idempo-
tency up to the required precision. It will also compress the empty string to the empty
string.

Monotonicity. A real compressor must have the monotonicity property, at least up to
the required precision. The property is evident for stream-based compressors, and only
slightly less evident for block-coding compressors.

Symmetry. Stream-based compressors of the Lempel-Ziv family, like gzip and pkzip,
and the predictive PPM family, like PPMZ, are possibly not precisely symmetric. This
is related to the stream-based property: the initial file x may have regularities to which
the compressor adapts; after crossing the border to y it must unlearn those regularities
and adapt to the ones of x. This process may cause some imprecision in symmetry that
vanishes asymptotically with the length of x,y. A compressor must be poor indeed (and
will certainly not be used to any extent) if it doesn’t satisfy symmetry up to the required
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precision. Apart from stream-based, the other major family of compressors is block-
coding based, like bzip2. They essentially analyze the full input block by considering
all rotations in obtaining the compressed version. It is to a great extent symmetrical,
and real experiments show no departure from symmetry.

Distributivity. The distributivity property is not immediately intuitive. In Kolmogorov
complexity theory the stronger distributivity property

C(xyz)+C(z)≤C(xz)+C(yz) (3)

holds (with K = C). However, to prove the desired properties of NCD below, only the
weaker distributivity property

C(xy)+C(z)≤C(xz)+C(yz) (4)

above is required, also for the boundary case were C = K. In practice, real-world com-
pressors appear to satisfy this weaker distributivity property up to the required precision.

Definition 6. Define
C(y|x) = C(xy)−C(x). (5)

This number C(y|x) of bits of information in y, relative to x, can be viewed as the excess
number of bits in the compressed version of xy compared to the compressed version of
x, and is called the amount of conditional compressed information.

In the definition of compressor the decompression algorithm is not included (unlike the
case of Kolmorogov complexity, where the decompressing algorithm is given by defi-
nition), but it is easy to construct one: Given the compressed version of x in C(x) bits,
we can run the compressor on all candidate strings z—for example, in length-increasing
lexicographical order, until we find the compressed string z0 = x. Since this string de-
compresses to x we have found x = z0. Given the compressed version of xy in C(xy)
bits, we repeat this process using strings xz until we find the string xz1 of which the
compressed version equals the compressed version of xy. Since the former compressed
version decompresses to xy, we have found y = z1. By the unique decompression prop-
erty we find that C(y|x) is the extra number of bits we require to describe y apart from
describing x. It is intuitively acceptable that the conditional compressed information
C(x|y) satisfies the triangle inequality

C(x|y)≤C(x|z)+C(z|y). (6)

Lemma 2. Both (3) and (6) imply (4).

Lemma 3. A normal compressor satisfies additionally subadditivity: C(xy) ≤ C(x)+
C(y).

Subadditivity. The subadditivity property is clearly also required for every viable com-
pressor, since a compressor may use information acquired from x to compress y. Minor
imprecision may arise from the unlearning effect of crossing the border between x and
y, mentioned in relation to symmetry, but again this must vanish asymptotically with
increasing length of x,y.
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2.5 Normalized Information Distance

Technically, the Kolmogorov complexity of x given y is the length of the shortest binary
program, for the reference universal prefix Turing machine, that on input y outputs x; it
is denoted as K(x|y). For precise definitions, theory and applications, see [27]. The Kol-
mogorov complexity of x is the length of the shortest binary program with no input that
outputs x; it is denoted as K(x) = K(x|λ) where λ denotes the empty input. Essentially,
the Kolmogorov complexity of a file is the length of the ultimate compressed version of
the file. In [3] the information distance E(x,y) was introduced, defined as the length of
the shortest binary program for the reference universal prefix Turing machine that, with
input x computes y, and with input y computes x. It was shown there that, up to an addi-
tive logarithmic term, E(x,y) = max{K(x|y),K(y|x)}. It was shown also that E(x,y) is a
metric, up to negligible violations of the metric inequalties. Moreover, it is universal in
the sense that for every admissible distance D(x,y) as in Definition 1, E(x,y)≤ D(x,y)
up to an additive constant depending on D but not on x and y. In [31], the normalized
version of E(x,y), called the normalized information distance, is defined as

NID(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} . (7)

It too is a metric, and it is universal in the sense that this single metric minorizes up to
an negligible additive error term all normalized admissible distances in the class con-
sidered in [31]. Thus, if two files (of whatever type) are similar (that is, close) according
to the particular feature described by a particular normalized admissible distance (not
necessarily metric), then they are also similar (that is, close) in the sense of the normal-
ized information metric. This justifies calling the latter the similarity metric. We stress
once more that different pairs of objects may have different dominating features. Yet
every such dominant similarity is detected by the NID . However, this metric is based
on the notion of Kolmogorov complexity. Unfortunately, the Kolmogorov complexity
is non-computable in the Turing sense. Approximation of the denominator of (7) by a
given compressor C is straightforward: it is max{C(x),C(y)}. The numerator is more
tricky. It can be rewritten as

max{K(x,y)−K(x),K(x,y)−K(y)}, (8)

within logarithmic additive precision, by the additive property of Kolmogorov complex-
ity [27]. The term K(x,y) represents the length of the shortest program for the pair (x,y).
In compression practice it is easier to deal with the concatenation xy or yx. Again, within
logarithmic precision K(x,y) = K(xy) = K(yx). Following a suggestion by Steven de
Rooij, one can approximate (8) best by min{C(xy),C(yx)}−min{C(x),C(y)}. Here,
and in the later experiments using the CompLearn Toolkit [7], we simply use C(xy)
rather than min{C(xy),C(yx)}. This is justified by the observation that block-coding
based compressors are symmetric almost by definition, and experiments with various
stream-based compressors (gzip, PPMZ) show only small deviations from symmetry.

The result of approximating the NID using a real compressor C is called the normal-
ized compression distance ( NCD ), formally defined in (10). The theory as developed
for the Kolmogorov-complexity based NID in [31], may not hold for the (possibly
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poorly) approximating NCD . It is nonetheless the case that experiments show that the
NCD apparently has (some) properties that make the NID so appealing. To fill this
gap between theory and practice, we develop the theory of NCD from first principles,
based on the axiomatics of Section 2.4. We show that the NCD is a quasi-universal
similarity metric relative to a normal reference compressor C. The theory developed in
[31] is the boundary case C = K, where the “quasi-universality” below has become full
“universality”.

2.6 Compression Distance

We define a compression distance based on a normal compressor and show it is an ad-
missible distance. In applying the approach, we have to make do with an approximation
based on a far less powerful real-world reference compressor C. A compressor C ap-
proximates the information distance E(x,y), based on Kolmogorov complexity, by the
compression distance EC(x,y) defined as

EC(x,y) = C(xy)−min{C(x),C(y)}. (9)

Here, C(xy) denotes the compressed size of the concatenation of x and y, C(x) denotes
the compressed size of x, and C(y) denotes the compressed size of y.

Lemma 4. If C is a normal compressor, then EC(x,y)+O(1) is an admissible distance.

Lemma 5. If C is a normal compressor, then EC(x,y) satisfies the metric (in)equalities
up to logarithmic additive precision.

Lemma 6. If C is a normal compressor, then E+
C (x,y) = max{C(x),C(y)}.

2.7 Normalized Compression Distance

The normalized version of the admissible distance EC(x,y), the compressor C based ap-
proximation of the normalized information distance (7), is called the normalized com-
pression distance or NCD:

NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} . (10)

This NCD is the main concept of this work. It is the real-world version of the ideal
notion of normalized information distance NID in (7). Actually, the NCD is a family
of compression functions parameterized by the given data compressor C.

Remark 2. In practice, the NCD is a non-negative number 0 ≤ r ≤ 1 + ε representing
how different the two files are. Smaller numbers represent more similar files. The ε in the
upper bound is due to imperfections in our compression techniques, but for most standard
compression algorithms one is unlikely to see an ε above 0.1 (in our experiments gzip
and bzip2 achieved NCD ’s above 1, but PPMZ always had NCD at most 1).

There is a natural interpretation to NCD(x,y): If, say, C(y)≥C(x) then we can rewrite

NCD(x,y) =
C(xy)−C(x)

C(y)
.
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That is, the distance NCD(x,y) between x and y is the improvement due to compress-
ing y using x as previously compressed “data base,” and compressing y from scratch,
expressed as the ratio between the bit-wise length of the two compressed versions.
Relative to the reference compressor we can define the information in x about y as
C(y)−C(y|x). Then, using (5),

NCD(x,y) = 1−C(y)−C(y|x)
C(y)

.

That is, the NCD between x and y is 1 minus the ratio of the information x about y and
the information in y.

Theorem 1. If the compressor is normal, then the NCD is a normalized admissible
distance satsifying the metric (in)equalities, that is, a similarity metric.

Quasi-Universality. We now digress to the theory developed in [31], which formed the
motivation for developing the NCD . If, instead of the result of some real compressor,
we substitute the Kolmogorov complexity for the lengths of the compressed files in the
NCD formula, the result is the NID as in (7). It is universal in the following sense:
Every admissible distance expressing similarity according to some feature, that can be
computed from the objects concerned, is comprised (in the sense of minorized) by the
NID . Note that every feature of the data gives rise to a similarity, and, conversely, every
similarity can be thought of as expressing some feature: being similar in that sense. Our
actual practice in using the NCD falls short of this ideal theory in at least three respects:

(i) The claimed universality of the NID holds only for indefinitely long sequences x,y.
Once we consider strings x,y of definite length n, it is only universal with respect to
“simple” computable normalized admissible distances, where “simple” means that they
are computable by programs of length, say, logarithmic in n. This reflects the fact that,
technically speaking, the universality is achieved by summing the weighted contribution
of all similarity distances in the class considered with respect to the objects considered.
Only similarity distances of which the complexity is small (which means that the weight
is large), with respect to the size of the data concerned, kick in.
(ii) The Kolmogorov complexity is not computable, and it is in principle impossible
to compute how far off the NCD is from the NID . So we cannot in general know
how well we are doing using the NCD of a given compressor. Rather than all “simple”
distances (features, properties), like the NID , the NCD captures a subset of these
based on the features (or combination of features) analyzed by the compressor. For
natural data sets, however, these may well cover the features and regularities present
in the data anyway. Complex features, expressions of simple or intricate computations,
like the initial segment of π = 3.1415 . . ., seem unlikely to be hidden in natural data.
This fact may account for the practical success of the NCD , especially when using
good compressors.
(iii) To approximate the NCD we use standard compression programs like gzip, PPMZ,
and bzip2. While better compression of a string will always approximate the Kol-
mogorov complexity better, this may not be true for the NCD . Due to its arithmetic
form, subtraction and division, it is theoretically possible that while all items in the
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formula get better compressed, the improvement is not the same for all items, and the
NCD value moves away from the NID value. In our experiments we have not observed
this behavior in a noticable fashion. Formally, we can state the following:

Theorem 2. Let d be a computable normalized admissible distance and C be a nor-
mal compressor. Then, NCD(x,y) ≤ αd(x,y) + ε, where for C(x) ≥ C(y), we have
α = D+(x)/C(x) and ε = (C(x|y)−K(x|y))/C(x), with C(x|y) according to (5).

Remark 3. Clustering according to NCD will group sequences together that are simi-
lar according to features that are not explicitly known to us. Analysis of what the com-
pressor actually does, still may not tell us which features that make sense to us can
be expressed by conglomerates of features analyzed by the compressor. This can be
exploited to track down unknown features implicitly in classification: forming automat-
ically clusters of data and see in which cluster (if any) a new candidate is placed.

Another aspect that can be exploited is exploratory: Given that the NCD is small
for a pair x,y of specific sequences, what does this really say about the sense in which
these two sequences are similar? The above analysis suggests that close similarity will
be due to a dominating feature (that perhaps expresses a conglomerate of subfeatures).
Looking into these deeper causes may give feedback about the appropriateness of the
realized NCD distances and may help extract more intrinsic information about the
objects, than the oblivious division into clusters, by looking for the common features in
the data clusters.

2.8 Hierarchical Clustering

Given a set of objects, the pairwise NCD ’s form the entries of a distance matrix.
This distance matrix contains the pairwise relations in raw form. But in this format
that information is not easily usable. Just as the distance matrix is a reduced form of
information representing the original data set, we now need to reduce the information
even further in order to achieve a cognitively acceptable format like data clusters. The
distance matrix contains all the information in a form that is not easily usable, since for
n > 3 our cognitive capabilities rapidly fail. In our situation we do not know the num-
ber of clusters a-priori, and we let the data decide the clusters. The most natural way to
do so is hierarchical clustering [16]. Such methods have been extensively investigated
in Computational Biology in the context of producing phylogenies of species. One the
most sensitive ways is the so-called ‘quartet method. This method is sensitive, but time
consuming, running in quartic time. Other hierarchical clustering methods, like parsi-
mony, may be much faster, quadratic time, but they are less sensitive. In view of the fact
that current compressors are good but limited, we want to exploit the smallest differ-
ences in distances, and therefore use the most sensitive method to get greatest accuracy.
Here, we use a new quartet-method (actually a new version [12] of the quartet puzzling
variant [35]), which is a heuristic based on randomized parallel hill-climbing genetic
programming. In this paper we do not describe this method in any detail, the reader
is referred to [12], or the full description in [14]. It is implemented in the CompLearn
package [7].

We describe the idea of the algorithm, and the interpretation of the accuracy of the
resulting tree representation of the data clustering. To cluster n data items, the algorithm
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generates a random ternary tree with n− 2 internal nodes and n leaves. The algorithm
tries to improve the solution at each step by interchanging sub-trees rooted at internal
nodes (possibly leaves). It switches if the total tree cost is improved. To find the opti-
mal tree is NP-hard, that is, it is infeasible in general. To avoid getting stuck in a local
optimum, the method executes sequences of elementary mutations in a single step. The
length of the sequence is drawn from a fat tail distribution, to ensure that the prob-
ability of drawing a longer sequence is still significant. In contrast to other methods,
this guarantees that, at least theoretically, in the long run a global optimum is achieved.
Because the problem is NP-hard, we can not expect the global optimum to be reached
in a feasible time in general. Yet for natural data, like in this work, experience shows
that the method usually reaches an apparently global optimum. One way to make this
more likely is to run several optimization computations in parallel, and terminate only
when they all agree on the solutions (the probability that this would arises by chance
is very low as for a similar technique in Markov chains). The method is so much im-
proved against previous quartet-tree methods, that it can cluster larger groups of objects
(around 70) than was previously possible (around 15). If the latter methods need to clus-
ter groups larger than 15, they first cluster sub-groups into small trees and then combine
these trees by a super-tree reconstruction method. This has the drawback that optimizing
the local subtrees determines relations that cannot be undone in the supertree construc-
tion, and it is almost guaranteed that such methods cannot reach a global optimum. Our
clustering heuristic generates a tree with a certain fidelity with respect to the underlying
distance matrix (or alternative data from which the quartet tree is constructed) called
standardized benefit score or S(T ) value in the sequel. This value measures the quality
of the tree representation of the overall order relations between the distances in the ma-
trix. It measures in how far the tree can represent the quantitative distance relations in a
topological qualitative manner without violating relative order. The S(T ) value ranges
from 0 (worst) to 1 (best). A random tree is likely to have S(T )≈ 1/3, while S(T ) = 1
means that the relations in the distance matrix are perfectly represented by the tree.
Since we deal with n natural data objects, living in a space of unknown metric, we
know a priori only that the pairwise distances between them can be truthfully repre-
sented in (n−1)-dimensional Euclidean space. Multidimensional scaling, representing
the data by points in 2-dimensional space, most likely necessarily distorts the pairwise
distances. This is akin to the distortion arising when we map spherical earth geography
on a flat map. A similar thing happens if we represent the n-dimensional distance ma-
trix by a ternary tree. It can be shown that some 5-dimensional distance matrices can
only be mapped in a ternary tree with S(T ) < 0.8. Practice shows, however, that up to
12-dimensional distance matrices, arising from natural data, can be mapped into a such
tree with very little distortion (S(T ) > 0.95). In general the S(T ) value deteriorates for
large sets. The reason is that, with increasing size of natural data set, the projection of
the information in the distance matrix into a ternary tree gets necessarily increasingly
distorted. If for a large data set like 30 objects, the S(T ) value is large, say S(T )≥ 0.95,
then this gives evidence that the tree faithfully represents the distance matrix, but also
that the natural relations between this large set of data were such that they could be
represented by such a tree.
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3 Applications of NCD

The compression-based NCD method to establish a universal similarity metric (10)
among objects given as finite binary strings, and, apart from what was mentioned
in the Introduction, has been applied to objects like music pieces in MIDI format,
[11], computer programs, genomics, virology, language tree of non-indo-european lan-
guages, literature in Russian Cyrillic and English translation, optical character recog-
nition of handwrittern digits in simple bitmap formats, or astronimical time sequences,
and combinations of objects from heterogenous domains, using statistical, dictionary,
and block sorting compressors, [12]. In [19], the authors compared the performance of
the method on all major time sequence data bases used in all major data-mining confer-
ences in the last decade, against all major methods. It turned out that the NCD method
was far superior to any other method in heterogenous data clustering and anomaly
detection and performed comparable to the other methods in the simpler tasks. We
developed the CompLearn Toolkit, [7], and performed experiments in vastly differ-
ent application fields to test the quality and universality of the method. In [40], the
method is used to analyze network traffic and cluster computer worms and virusses.
Currently, a plethora of new applications of the method arise around the world, in
many areas, as the reader can verify by searching for the papers ‘the similarity met-
ric’ or ‘clustering by compression,’ and look at the papers that refer to these, in Google
Scholar.

3.1 Heterogenous Natural Data

The success of the method as reported depends strongly on the judicious use of en-
coding of the objects compared. Here one should use common sense on what a real
world compressor can do. There are situations where our approach fails if applied
in a straightforward way. For example: comparing text files by the same authors in
different encodings (say, Unicode and 8-bit version) is bound to fail. For the ideal
similarity metric based on Kolmogorov complexity as defined in [31] this does not
matter at all, but for practical compressors used in the experiments it will be fatal.
Similarly, in the music experiments we use symbolic MIDI music file format rather
than wave-forms. We test gross classification of files based on heterogenous data of
markedly different file types: (i) Four mitochondrial gene sequences, from a black
bear, polar bear, fox, and rat obtained from the GenBank Database on the world-wide
web; (ii) Four excerpts from the novel The Zeppelin’s Passenger by E. Phillips Op-
penheim, obtained from the Project Gutenberg Edition on the World-Wide web;
(iii) Four MIDI files without further processing; two from Jimi Hendrix and two move-
ments from Debussy’s Suite Bergamasque, downloaded from various repositories on
the world-wide web; (iv) Two Linux x86 ELF executables (the cp and rm commands),
copied directly from the RedHat 9.0 Linux distribution; and (v) Two compiled Java
class files, generated by ourselves. The compressor used to compute the NCD matrix
was bzip2. As expected, the program correctly classifies each of the different types of
files together with like near like. The result is reported in Figure 1 with S(T ) equal
to the very high confidence value 0.984. This experiment shows the power and uni-
versality of the method: no features of any specific domain of application are used.
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Fig. 1. Classification of different file types. Tree agrees exceptionally well with NCD distance
matrix: S(T ) = 0.984.

We believe that there is no other method known that can cluster data that is so het-
erogenous this reliably. This is borne out by the massive experiments with the method
in [19].

3.2 Literature

The texts used in this experiment were down-loaded from the world-wide web in orig-
inal Cyrillic-lettered Russian and in Latin-lettered English by L. Avanasiev. The com-
pressor used to compute the NCD matrix was bzip2. We clustered Russian literature in
the original (Cyrillic) by Gogol, Dostojevski, Tolstoy, Bulgakov,Tsjechov, with three or
four different texts per author. Our purpose was to see whether the clustering is sensitive
enough, and the authors distinctive enough, to result in clustering by author. In Figure 2
we see an almost perfect clustering according to author. Considering the English trans-
lations of the same texts, we saw errors in the clustering (not shown). Inspection showed
that the clustering was now partially based on the translator. It appears that the translator
superimposes his characteristics on the texts, partially suppressing the characteristics of
the original authors. In other experiments, not reported here, we separated authors by
gender and by period.

3.3 Music

The amount of digitized music available on the internet has grown dramatically in recent
years, both in the public domain and on commercial sites. Napster and its clones are
prime examples. Websites offering musical content in some form or other (MP3, MIDI,
. . . ) need a way to organize their wealth of material; they need to somehow classify
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Fig. 2. Clustering of Russian writers. Legend: I.S. Turgenev, 1818–1883 [Father and Sons, Rudin,
On the Eve, A House of Gentlefolk]; F. Dostoyevsky 1821–1881 [Crime and Punishment, The
Gambler, The Idiot; Poor Folk]; L.N. Tolstoy 1828–1910 [Anna Karenina, The Cossacks, Youth,
War and Piece]; N.V. Gogol 1809–1852 [Dead Souls, Taras Bulba, The Mysterious Portrait, How
the Two Ivans Quarrelled]; M. Bulgakov 1891–1940 [The Master and Margarita, The Fatefull
Eggs, The Heart of a Dog]. S(T ) = 0.949.
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Fig. 3. Output for the 12-piece set. Legend: J.S. Bach [Wohltemperierte Klavier II: Pre-
ludes and Fugues 1,2— BachWTK2{F,P}{1,2}]; Chopin [Préludes op. 28: 1, 15, 22, 24 —
ChopPrel{1,15,22,24}]; Debussy [Suite Bergamasque, 4 movements—DebusBerg{1,2,3,4}].
S(T ) = 0.968.

their files according to musical genres and subgenres, putting similar pieces together.
The purpose of such organization is to enable users to navigate to pieces of music they
already know and like, but also to give them advice and recommendations (“If you like
this, you might also like. . . ”). Currently, such organization is mostly done manually by
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humans, but some recent research has been looking into the possibilities of automating
music classification. For details about the music experiments see [11, 12].

3.4 Bird-Flu Virii—H5N1

In Figure 4 we display classification of bird-flu virii of the type H5N1 that have been
found in different geographic locations in chicken. Data downloaded from the National
Center for Biotechnology Information (NCBI), National Library of Medicine, National
Institutes of Health (NIH).

  H5N1 in chicken 
sequence data from NCBI 

  CompLearn 0.9.2 
     S(T) = 0.967 
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Fig. 4. Set of 24 Chicken Examples of H5N1 Virii. S(T ) = 0.967.

4 Google-Based Similarity

To make computers more intelligent one would like to represent meaning in computer-
digestable form. Long-term and labor-intensive efforts like the Cyc project [23] and
the WordNet project [36] try to establish semantic relations between common objects,
or, more precisely, names for those objects. The idea is to create a semantic web of
such vast proportions that rudimentary intelligence and knowledge about the real world
spontaneously emerges. This comes at the great cost of designing structures capable of
manipulating knowledge, and entering high quality contents in these structures by knowl-
edgeable human experts. While the efforts are long-running and large scale, the overall
information entered is minute compared to what is available on the world-wide-web.

The rise of the world-wide-web has enticed millions of users to type in trillions
of characters to create billions of web pages of on average low quality contents. The
sheer mass of the information available about almost every conceivable topic makes
it likely that extremes will cancel and the majority or average is meaningful in a low-
quality approximate sense. We devise a general method to tap the amorphous low-grade
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knowledge available for free on the world-wide-web, typed in by local users aiming at
personal gratification of diverse objectives, and yet globally achieving what is effec-
tively the largest semantic electronic database in the world. Moreover, this database is
available for all by using any search engine that can return aggregate page-count esti-
mates like Google for a large range of search-queries.

The crucial point about the NCD method above is that the method analyzes the
objects themselves. This precludes comparison of abstract notions or other objects that
don’t lend themselves to direct analysis, like emotions, colors, Socrates, Plato, Mike
Bonanno and Albert Einstein. While the previous NCD method that compares the
objects themselves using (10) is particularly suited to obtain knowledge about the sim-
ilarity of objects themselves, irrespective of common beliefs about such similarities,
we now develop a method that uses only the name of an object and obtains knowledge
about the similarity of objects by tapping available information generated by multitudes
of web users. The new method is useful to extract knowledge from a given corpus of
knowledge, in this case the Google database, but not to obtain true facts that are not
common knowledge in that database. For example, common viewpoints on the creation
myths in different religions may be extracted by the Googling method, but contentious
questions of fact concerning the phylogeny of species can be better approached by using
the genomes of these species, rather than by opinion.

Googling for Knowledge. Let us start with simple intuitive justification (not to be mis-
taken for a substitute of the underlying mathematics) of the approach we propose in
[13]. While the theory we propose is rather intricate, the resulting method is simple
enough. We give an example: At the time of doing the experiment, a Google search
for “horse”, returned 46,700,000 hits. The number of hits for the search term “rider”
was 12,200,000. Searching for the pages where both “horse” and “rider” occur gave
2,630,000 hits, and Google indexed 8,058,044,651 web pages. Using these numbers in
the main formula (13) we derive below, with N = 8,058,044,651, this yields a Normal-
ized Google Distance between the terms “horse” and “rider” as follows:

NGD(horse,rider)≈ 0.443.

In the sequel of the paper we argue that the NGD is a normed semantic distance be-
tween the terms in question, usually in between 0 (identical) and 1 (unrelated), in the
cognitive space invoked by the usage of the terms on the world-wide-web as filtered by
Google. Because of the vastness and diversity of the web this may be taken as related to
the current objective meaning of the terms in society. We did the same calculation when
Google indexed only one-half of the current number of pages: 4,285,199,774. It is in-
structive that the probabilities of the used search terms didn’t change significantly over
this doubling of pages, with number of hits for “horse” equal 23,700,000, for “rider”
equal 6,270,000, and for “horse, rider” equal to 1,180,000. The NGD(horse,rider) we
computed in that situation was≈ 0.460. This is in line with our contention that the rela-
tive frequencies of web pages containing search terms gives objective information about
the semantic relations between the search terms. If this is the case, then the Google
probabilities of search terms and the computed NGD ’s should stabilize (become scale
invariant) with a growing Google database.
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Related Work. There is a great deal of work in both cognitive psychology [22], linguis-
tics, and computer science, about using word (phrases) frequencies in text corpora to de-
velop measures for word similarity or word association, partially surveyed in [37, 38],
going back to at least [24]. One of the most successful is Latent Semantic Analysis
(LSA) [22] that has been applied in various forms in a great number of applications. As
with LSA, many other previous approaches of extracting meaning from text documents
are based on text corpora that are many order of magnitudes smaller, using complex
mathematical techniques like singular value decomposition and dimensionality reduc-
tion, and that are in local storage, and on assumptions that are more restricted, than what
we propose. In contrast, [41, 8, 1] and the many references cited there, use the web and
Google counts to identify lexico-syntactic patterns or other data. Again, the theory, aim,
feature analysis, and execution are different from ours, and cannot meaningfully be com-
pared. Essentially, our method below automatically extracts meaning relations between
arbitrary objects from the web in a manner that is feature-free, up to the search-engine
used, and computationally feasible. This seems to be a new direction altogether.

4.1 The Google Distribution

Let the set of singleton Google search terms be denoted by S . In the sequel we use
both singleton search terms and doubleton search terms {{x,y} : x,y ∈ S}. Let the set
of web pages indexed (possible of being returned) by Google be Ω. The cardinality of
Ω is denoted by M = |Ω|, and at the time of this writing 8 · 109 ≤ M ≤ 9 · 109 (and
presumably greater by the time of reading this). Assume that a priori all web pages
are equi-probable, with the probability of being returned by Google being 1/M. A sub-
set of Ω is called an event. Every search term x usable by Google defines a singleton
Google event x ⊆ Ω of web pages that contain an occurrence of x and are returned
by Google if we do a search for x. Let L : Ω→ [0,1] be the uniform mass probability
function. The probability of such an event x is L(x) = |x|/M. Similarly, the doubleton
Google event x

⋂
y ⊆ Ω is the set of web pages returned by Google if we do a search

for pages containing both search term x and search term y. The probability of this event
is L(x

⋂
y) = |x⋂y|/M. We can also define the other Boolean combinations:¬x = Ω\x

and x
⋃

y = ¬(¬x
⋂¬y), each such event having a probability equal to its cardinality

divided by M. If e is an event obtained from the basic events x,y, . . ., corresponding
to basic search terms x,y, . . ., by finitely many applications of the Boolean operations,
then the probability L(e) = |e|/M. Google events capture in a particular sense all back-
ground knowledge about the search terms concerned available (to Google) on the web.
The Google event x, consisting of the set of all web pages containing one or more oc-
currences of the search term x, thus embodies, in every possible sense, all direct context
in which x occurs on the web.

Remark 4. It is of course possible that parts of this direct contextual material link to
other web pages in which x does not occur and thereby supply additional context. In
our approach this indirect context is ignored. Nonetheless, indirect context may be im-
portant and future refinements of the method may take it into account.

The event x consists of all possible direct knowledge on the web regarding x. There-
fore, it is natural to consider code words for those events as coding this background
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knowledge. However, we cannot use the probability of the events directly to determine
a prefix code, or, rather the underlying information content implied by the probabil-
ity. The reason is that the events overlap and hence the summed probability exceeds
1. By the Kraft inequality, see for example [27], this prevents a corresponding set of
code-word lengths. The solution is to normalize: We use the probability of the Google
events to define a probability mass function over the set {{x,y} : x,y ∈ S} of Google
search terms, both singleton and doubleton terms. There are |S | singleton terms, and(|S |

2

)
doubletons consisting of a pair of non-identical terms. Define

N = ∑
{x,y}⊆S

|x
⋂

y|,

counting each singleton set and each doubleton set (by definition unordered) once in
the summation. Note that this means that for every pair {x,y} ⊆ S , with x �= y, the web
pages z∈ x

⋂
y are counted three times: once in x = x

⋂
x, once in y = y

⋂
y, and once in

x
⋂

y. Since every web page that is indexed by Google contains at least one occurrence
of a search term, we have N ≥M. On the other hand, web pages contain on average not
more than a certain constant α search terms. Therefore, N ≤ αM. Define

g(x) = g(x,x), g(x,y) = L(x
⋂

y)M/N = |x
⋂

y|/N. (11)

Then, ∑{x,y}⊆S g(x,y) = 1. This g-distribution changes over time, and between differ-
ent samplings from the distribution. But let us imagine that g holds in the sense of an
instantaneous snapshot. The real situation will be an approximation of this. Given the
Google machinery, these are absolute probabilities which allow us to define the asso-
ciated prefix code-word lengths (information contents) for both the singletons and the
doubletons. The Google code G is defined by

G(x) = G(x,x), G(x,y) = log1/g(x,y). (12)

In contrast to strings x where the complexity C(x) represents the length of the com-
pressed version of x using compressor C, for a search term x (just the name for an ob-
ject rather than the object itself), the Google code of length G(x) represents the shortest
expected prefix-code word length of the associated Google event x. The expectation is
taken over the Google distribution p. In this sense we can use the Google distribution as
a compressor for Google “meaning” associated with the search terms. The associated
NCD , now called the normalized Google distance ( NGD ) is then defined by (13),
and can be rewritten as the right-hand expression:

NGD(x,y) =
G(x,y)−min(G(x),G(y))

max(G(x),G(y))
=

max{log f (x), log f (y)}− log f (x,y)
logN−min{log f (x), log f (y)} , (13)

where f (x) denotes the number of pages containing x, and f (x,y) denotes the number
of pages containing both x and y, as reported by Google. This NGD is an approxima-
tion to the NID of (7) using the prefix code-word lengths (Google code) generated by
the Google distribution as defining a compressor approximating the length of the Kol-
mogorov code, using the background knowledge on the web as viewed by Google as
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conditional information. In practice, use the page counts returned by Google for the fre-
quencies, and we have to choose N. From the right-hand side term in (13) it is apparent
that by increasing N we decrease the NGD , everything gets closer together, and by
decreasing N we increase the NGD , everything gets further apart. Our experiments
suggest that every reasonable (M or a value greater than any f (x)) value can be used as
normalizing factor N, and our results seem in general insensitive to this choice. In our
software, this parameter N can be adjusted as appropriate, and we often use M for N.

Universality of NGD. In the full paper [13] we analyze the mathematical properties of
NGD , and prove the universality of the Google distribution among web author based
distributions, as well as the universality of the NGD with respect to the family of the
individual web author’s NGD ’s, that is, their individual semantics relations, (with high
probability)—not included here for space reasons.

5 Applications

5.1 Colors and Numbers

The objects to be clustered are search terms consisting of the names of colors, numbers,
and some tricky words. The program automatically organized the colors towards one
side of the tree and the numbers towards the other, Figure 5. It arranges the terms which
have as only meaning a color or a number, and nothing else, on the farthest reach of
the color side and the number side, respectively. It puts the more general terms black
and white, and zero, one, and two, towards the center, thus indicating their more am-
biguous interpretation. Also, things which were not exactly colors or numbers are also

black

n8

white

n4

blue

n14

n13

n10

chartreuse

n6n7

purple

eight

n9

seven

n11

fiven15

four

n0

fortytwo

n2

green

n5

one

n16

n12

n3

orange

red

six

small
n18

n1

three

transparent

zero

two

n17

yellow

Fig. 5. Colors and numbers arranged into a tree using NGD
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put towards the center, like the word “small”. We may consider this an example of auto-
matic ontology creation. As far as the authors know there do not exist other experiments
that create this type of semantic meaning from nothing (that is, automatically from the
web using Google). Thus, there is no baseline to compare against; rather the current
experiment can be a baseline to evaluate the behavior of future systems.

5.2 Names of Literature

Another example is English novelists. The authors and texts used are:

William Shakespeare. A Midsummer Night’s Dream; Julius Caesar; Love’s Labours
Lost; Romeo and Juliet .
Jonathan Swift. The Battle of the Books; Gulliver’s Travels; Tale of a Tub; A Modest
Proposal;
Oscar Wilde. Lady Windermere’s Fan; A Woman of No Importance; Salome; The Pic-
ture of Dorian Gray.

As search terms we used only the names of texts, without the authors. The clustering
is given in Figure 6; it automatically has put the books by the same authors together. The
S(T ) value in Figure 6 gives the fidelity of the tree as a representation of the pairwise
distances in the NGD matrix (1 is perfect and 0 is as bad as possible. For details see
[7, 12]). The question arises why we should expect this. Are names of artistic objects
so distinct? (Yes. The point also being that the distances from every single object to all
other objects are involved. The tree takes this global aspect into account and therefore
disambiguates other meanings of the objects to retain the meaning that is relevant for
this collection.) Is the distinguishing feature subject matter or title style? (In these ex-
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Fig. 6. Hierarchical clustering of authors. S(T ) = 0.940.
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periments with objects belonging to the cultural heritage it is clearly a subject matter.
To stress the point we used “Julius Caesar” of Shakespeare. This term occurs on the
web overwhelmingly in other contexts and styles. Yet the collection of the other ob-
jects used, and the semantic distance towards those objects, determined the meaning
of “Julius Caesar” in this experiment.) Does the system gets confused if we add more
artists? (Representing the NGD matrix in bifurcating trees without distortion becomes
more difficult for, say, more than 25 objects. See [12].) What about other subjects, like
music, sculpture? (Presumably, the system will be more trustworthy if the subjects are
more common on the web.) These experiments are representative for those we have
performed with the current software. For a plethora of other examples, or to test your
own, see the Demo page of [7].

5.3 Systematic Comparison with WordNet Semantics

WordNet [36] is a semantic concordance of English. It focusses on the meaning of
words by dividing them into categories. We use this as follows. A category we want to
learn, the concept, is termed, say, “electrical”, and represents anything that may pertain
to electronics. The negative examples are constituted by simply everything else. This
category represents a typical expansion of a node in the WordNet hierarchy. In an ex-
periment we ran, the accuracy on the test set is 100%: It turns out that “electrical terms”
are unambiguous and easy to learn and classify by our method. The information in the
WordNet database is entered over the decades by human experts and is precise. The
database is an academic venture and is publicly accessible. Hence it is a good base-
line against which to judge the accuracy of our method in an indirect manner. While
we cannot directly compare the semantic distance, the NGD , between objects, we
can indirectly judge how accurate it is by using it as basis for a learning algorithm. In
particular, we investigated how well semantic categories as learned using the NGD –
SVM approach agree with the corresponding WordNet categories. For details about the
structure of WordNet we refer to the official WordNet documentation available online.
We considered 100 randomly selected semantic categories from the WordNet database.
For each category we executed the following sequence. First, the SVM is trained on 50
labeled training samples. The positive examples are randomly drawn from the WordNet
database in the category in question. The negative examples are randomly drwan from
a dictionary. While the latter examples may be false negatives, we consider the proba-
bility negligible. Per experiment we used a total of six anchors, three of which are ran-
domly drawn from the WordNet database category in question, and three of which are
drawn from the dictionary. Subsequently, every example is converted to 6-dimensional
vectors using NGD . The ith entry of the vector is the NGD between the ith anchor
and the example concerned (1 ≤ i ≤ 6). The SVM is trained on the resulting labeled
vectors. The kernel-width and error-cost parameters are automatically determined us-
ing five-fold cross validation. Finally, testing of how well the SVM has learned the
classifier is performed using 20 new examples in a balanced ensemble of positive and
negative examples obtained in the same way, and converted to 6-dimensional vectors in
the same manner, as the training examples. This results in an accuracy score of correctly
classified test examples. We ran 100 experiments. The actual data are available at [10].
A histogram of agreement accuracies is shown in Figure 7. On average, our method
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Fig. 7. Histogram of accuracies over 100 trials of WordNet experiment

turns out to agree well with the WordNet semantic concordance made by human ex-
perts. The mean of the accuracies of agreements is 0.8725. The variance is ≈ 0.01367,
which gives a standard deviation of≈ 0.1169. Thus, it is rare to find agreement less than
75%. The total number of Google searches involved in this randomized automatic trial
is upper bounded by 100×70×6×3 = 126,000. A considerable savings resulted from
the fact that we can re-use certain google counts. For every new term, in computing its
6-dimensional vector, the NGD computed with respect to the six anchors requires the
counts for the anchors which needs to be computed only once for each experiment, the
count of the new term which can be computed once, and the count of the joint occur-
rence of the new term and each of the six anchors, which has to be computed in each
case. Altogether, this gives a total of 6 + 70 + 70× 6 = 496 for every experiment, so
49,600 google searches for the entire trial.
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1 Introduction

1.1 Degree Classes

In this paper we will discuss recent work of the authors (Downey, Greenberg and
Weber [8] and Downey and Greenberg [6, 7]) devoted to understanding some new
naturally definable degree classes which capture the dynamics of various natural
constructions arising from disparate areas of classical computability theory.

It is quite rare in computability theory to find a single class of degrees which
capture precisely the underlying dynamics of a wide class of apparently similar
constructions, demonstrating that they all give the same class of degrees. A good
example of this phenomenon is work pioneered by Martin [22] who identified the
high c.e. degrees as the ones arising from dense simple, maximal, hh-simple and
other similar kinds of c.e. sets constructions. Another example would be the
example of the promptly simple degrees by Ambos-Spies, Jockusch, Shore and
Soare [2]. Another more recent example of current great interest is the class of
K-trivial reals of Downey, Hirscheldt, Nies and Stephan [5], and Nies [23, 24].

We remark that in each case the clarification of the relevant degree class has
lead to significant advances in our basic understanding of the c.e. degrees. We
believe the results we mention in the present paper fall into this category. Our
results were inspired by another such example, the array computable degrees
introduced by Downey, Jockusch and Stob [10, 11]. This class was introduced by
those authors to explain a number of natural “multiple permitting” arguments
in computability theory. The reader should recall that a degree a is called array
noncomputable iff for all functions f ≤wtt ∅′ there is a a function g computable
from a such that

∃∞x (g(x) > f(x)).1

1.2 Totally ω-c.e. Degrees

Our two new main classes are what we call the totally ω-c.e. degrees and the
totally < ωω-c.e. degrees.
� Research supported by the Marsden Fund of New Zealand.
1 Of course, this was not the original definition of array noncomputability, but this

version from [11] captures the domination property of the notion in a way that shows
the way that it weakens the notion of non-low2-ness, in that a would be non-low2

using the same definition, but replacing ≤wtt by ≤T .
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These classes turn out to be completely natural and relate to natural defin-
ability in the c.e. degrees as we will discuss below. We begin with the ω case.

Definition 1 (Downey, Greenberg, Weber [8]). We say that a c.e. degree
a is totally ω-c.e. if for all functions g ≤T a, g is ω-c.e.. That is, there is
a computable approximation g(x) = lims g(x, s), and a computable function h,
such that for all x,

|{s : g(x, s) �= g(x, s + 1)}| < h(x).

The reader should keep in mind that array computability is a uniform version
of this notion where h can be chosen independent of g. This class captures a
number of natural constructions in computability theory.

As an illustration, recall that a c.e. prefix-free set of strings A ∈ 2<ω presents
a left c.e. real α if α =

∑
σ∈A 2−|σ|, that is, α is the measure of A. Now it is

easy to use padding to show that every c.e. real has a presentation A which is
computable (Downey [4]). On the other hand, bizarre things can happen. In [12],
Downey and LaForte showed that there exists a noncomputable left c.e. real α,
all of whose c.e. presentations are computable. We have the following:

Theorem 1 (Downey and Greenberg [6]). The following are equivalent.

(i) a is not totally ω-c.e.
(ii) a bounds a left c.e. real α and a c.e. set B <T α such that if A presents α,

then A ≤T B.

1.3 Natural Definability

One of the really fascinating things is that this is all connected to natural de-
finability issues within the computably enumerable Turing degrees. In terms of
abstract results on definability, there has been significant success in recent years,
culminating in Nies, Shore, Slaman [25], where the following is proven.

Theorem 2 (Nies, Shore, Slaman [25]). Any relation on the c.e. degrees
invariant under the double jump is definable in the c.e. degrees iff it is definable
in first order arithmetic.

The proof of Theorem 2 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and a definable map
from degrees to indices (in the model) which preserves the double jump. The
beauty of this result is that it gives at one time a definition of a large class of
relations on the c.e. degrees.

On the other hand, the result is somewhat unsatisfying in terms of seeking
natural definitions of objects in computability theory as outlined in the paper
Shore [27]. Here we are thinking of results such as the following. (We refer the
reader to Soare [28] for unexplained definitions below since they are mainly to
provide background for the results of the current paper.)
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Theorem 3 (Ambos-Spies, Jockusch, Shore, and Soare [2]). A c.e. degree
a is promptly simple iff it is not cappable.

Theorem 4 (Downey and Lempp [13]). A c.e. degree a is contiguous iff it
is locally distributive, meaning that

∀a1,a2,b(a1 ∪ a2 = a ∧ b ≤ a→
∃b1,b2(b1 ∪ b2 = b ∧ b1 ≤ a1 ∧ b2 ≤ a2))

holds in the c.e. degrees.

Theorem 5 (Ambos-Spies and Fejer [1]). A c.e. degree a is contiguous iff
it is not the top of the non-modular 5 element lattice in the c.e. degrees.

Theorem 6 (Downey and Shore [14]). A c.e. truth table degree is low2 iff
it has no minimal cover in the c.e. truth table degrees.

At the present time, as articulated in Shore [27], there are very few such natural
definability results.

In [6, 7, 8], we gave some new natural definability results for the c.e. degrees.
Moreover, these definability results are related to the central topic of lattice
embeddings into the c.e. degrees as analyzed by, for instance, Lempp and Lerman
[19], Lempp, Lerman and Solomon [20], and Lerman [21].

A central notion for lattice embeddings into the c.e. degrees is the notion of
a weak critical triple. The reader should recall from Downey [3] and Weinstein
[30] that three incomparable elements a0,a1 and b in an upper semilattice form
a weak critical triple if a0 ∪ b = a1 ∪ b and there is no c ≤ a0, a1 with a0 ≤
b ∪ c. This notion captures the need for “continuous tracing” which is used in
an embedding of the lattice M5 into the c.e. degrees (first embedded by
Lachlan [17]).2

The necessity of the “continuous tracing” process was demonstrated by
Downey [3] and Weinstein [30] who showed that there are initial segments
of the c.e. degrees where no lattice with a (weak) critical triple can be
embedded. It was also noted in Downey [3] that the embedding of (weak)
critical triples seemed to be tied up with multiple permitting in a way that
was similar to non-low2-ness. Indeed this intuition was verified by Downey
and Shore [15] where it is shown that if a is non-low2 then a bounds a copy
of M5.

The notion of non-low2-ness seemed too strong to capture the class of de-
grees which bound M5’s but it was felt that something like that should suffice.
On the other hand, Walk [29] constructed a array noncomputable c.e. degree
bounding no weak critical triple, and hence it was already known that array
non-computability was not enough for such embeddings. We proved the follow-
ing definitive result:

2 We recall that a lattice is not join semidistributive (also called principally indecom-
posable) iff it contains a copy of M5 iff it contains a weak critical triple.
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Fig. 1. The lattice M5

Theorem 7 (Downey, Greenberg and Weber [8]). A degree a is totally
ω-c.e. iff it does not bound a weak critical triple in the c.e. degrees. Hence, the
notion of being totally ω-c.e. is naturally definable in the c.e. degrees.

Theorem 7 also allowed for the solution of certain technical problems from the
literature.

Corollary 1 (Downey, Greenberg and Weber [8]). The low degrees and
the superlow degrees are not elementarily equivalent.

Proof. As Schaeffer [26] and Walk [29] observe, all superlow degrees are array
computable, and hence totally ω-c.e. Thus we cannot put a copy of M5 below
one. One the other hand there are indeed low copies of M5.

Corollary 2 (Downey, Greenberg and Weber [8]). There are c.e. degrees
that are totally ω-c.e. and not array computable.

Proof. Walk [29] constructed an array noncomputable degree a below which
there was no weak critical triple. Such a degree must be totally ω-c.e.

The class of totally ω-c.e. degrees also captures other constructions.

Theorem 8 (Downey, Greenberg and Weber [8]). A c.e. degree a is totally
ω-c.e. iff there are c.e. sets A, B and C of degree ≤T a, such that

(i) A ≡T B

(ii) A �≤T C

(iii) For all D ≤wtt A, B, D ≤wtt C.
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1.4 Totally < ωω-c.e. Degrees

The class of totally < ωω-c.e. degrees also arises quite naturally. Recall that if
b is an ordinal notation in Kleene’s O, then a Δ0

2 function g is b-c.e. if there is
a computable approximation g(x, s) for g such that the number of changes in
the guessed value is bounded by some decreasing sequence of notations below
b; that is, there is a function o(x, s) such that for every x and s, o(x, s) <O b,
o(x, s+1) ≤O o(x, s) and if g(x, s+1) �= g(x, s) then o(x, s+1) <O o(x, s). The
definition of the class of totally < ωω-c.e. degrees involves strong notations, being
notations for ordinals in Kleene’s sense, except that we ask that below the given
notation, Cantor normal form can be effectively computed. Exact formalization
of this notion is straightforward for the ordinals below ε0; such notations are
computably unique, and so the corresponding class of functions is invariant under
the chosen strong notation for a given ordinal; we thus call a function α-c.e. if it
is b-c.e. for some (all) strong notations b for α. To make this definition explicit,
we note how the lower levels correspond to functions that are given as increasing
limits. Observe the following:

– A function g is ω-c.e. iff there is a computable approximation g(x, s) for g
such that the number of changes in the guess for g(x) is given in advance,
in a computable fashion.

– A function g is ω ·2-c.e. iff there is a computable approximation g(x, s) for g
such that the number of changes n(x) in the guess for g(x) has a computable
approximation that changes at most once.

– Similarly, a function is ω ·n-c.e. iff we may change our mind at most n−1 times
about the number of possible changes.

– A function is ω2-c.e. iff is has some computable approximation such that the
number of changes n(x) is ω-c.e., that is, the number of times we change our
mind about n(x) is computably bounded.

– Similarly, a function is ωn+1-c.e. iff it has a computable approximation for
which the number n(x) of changes in the guess for g(x) is ωn-c.e. (So for exam-
ple, g is ω3-c.e. iff it has an approximation where there is a computable bound
on the number of times we may change our mind about the number of times
we may change our mind about the number of changes of our guess for g(x).).

A degree a is totally < ωω-c.e. if every g ≤T a is ωn-c.e. for some n. In [6],
Downey and Greenberg introduced this notion and showed that the collection
of totally < ωω-c.e. degrees is naturally definable:

Theorem 9 (Downey and Greenberg [6]). A c.e. degree is totally < ωω-c.e.
iff it does not bound a copy of M5.

Again, Downey and Greenberg showed that a number of other constructions
gave rise to the same class.

In the present paper, we will try to lead the reader to understanding how this
class arises by showing how the class relates to the class of m-topped degrees
of Downey and Jocksuch [9]. Whilst we cannot get the exact classification, the
analysis is revealing, as we see in section 2.
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2 M -topped Degrees

Recall that a c.e. degrees a is called m-topped if it contains a c.e. set A such
that for all c.e. W ≤T A, W ≤m A. Of course 0′ is m-topped as it contains the
halting set, but there exist incomplete m-topped degrees (Downey and Jockusch
[9]); by index-set considerations, all of these are low2.

We look at the Downey-Jockusch construction to try to understand what is
needed to make it work. We must meet the requirements

Re : ΦA
e = We → We ≤m A.

Additionally there will be a Friedberg strategy in the background making A
noncomputable and some other one making sure that A is not complete.

To meet Re we will have nodes τ = τ(e) on a priority tree devoted to mea-
suring

�(τ, s) = max { x : ΦA
e � x = We � x [s] }.

The idea is crude and simple. For a given z, at the first suitable τ -expansionary
stages sz where �(τ, sz) > z, if z is not yet in We,sz , we will take a fresh number
y > sz and define f(τ, z) = y. The promise is that if z enters We after stage sz,
then we will put f(τ, z) into A. Notice that A is controlling We and hence such
a situation won’t occur unless we change Asz � ϕe(z, sz).

Now suppose that we are trying to carry out this construction below a a given
degree b represented by a c.e. set B. We look at this in the single requirement
scenario. The action would occur as follows.

At some stage s0 we would initiate something by enumerating some number
p into As0 . By that stage, τ will have already defined f(τ, z) for all z ≤ n
for some n. By the next τ -stage we see, s1, perhaps some z1 ≤ n entered
We,s1 , causing us to now enumerate f(τ, z1) into As1 . In turn, this number
might be below the use ϕe(zi, s1) of other zi’s at stage s1, and hence this pro-
cess could snowball so that it re-occurs many times before all pending coding
actions are finished. It will finish since we won’t define new f(τ, z′) until we
have a τ -expansionary stage s where there are no pending coding actions to
be done.

The point is that each enumeration of some f(τ, zi) really needs some B-
permission. Thus the sequence we have began at stage s0 could actually need a
sequence of more or less s0 many B-permissions to be achieved.

Indeed, things are even worse when many requirements are considered. For
example, if we consider two τ ’s, say τ1, τ2, each building their own f(τi, z)’s,
then assuming that τ2 has weaker priority than τ1, τ1 could recover many times
before we see any τ2-expansionary stages. At each τ1 expansionary stage, we
would fulfill its obligation to enumerate f(τ1, z) into A. Now, τ1 cannot know
if τ2 will ever recover, so that before we did any enumeration of numbers like
f(τ2, z

′) we might have defined many new f(τ1, ẑ) where ẑ > s0. Now the pending
action at τ2 of enumerating some f(τ2, z

′) into A will likely cause new changes
in We1 and hence yet further enumeration into A for the sake of τ1. This process
could repeat again more or less s0 many times.
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In summary, one Re would seem to require f(j) many permissions for some
computable function f , for attack number j, and two requirements would seem
to need

∑
i≤f(j) g(i, j) many permissions for some computable g(i, j). Thus in

some relatively natural way this construction would seem to need at least “ωω

many permissions” to be carried out.
Now the construction of an m-topped degree also seems to need more in that

once we have begun some action we must finish it. There is no way to allow us to
“lose” on some f(τ, z). In the embeddin of M5, we can think of the Re’s above as
belonging to some gate of a pinball construction measuring some minimal pair
requirement

ΦAk = ΦAl = h→ h ≤ Q.

Here we will assume that the reader if familiar with the construction of a 1-3-1
using a pinball machine as in Downey and Shore [15].

The analogous action is that we have some sequence of numbers x, T (x, s),
T 2(x, s) . . . that have been realized and are traveling down the machine towards
the pockets. This can’t pass the gate if they are a k, l sequence. For example,
k = 1, l = 2 and x is targeted for A2, T (x, s) for A1, T 2(x, s) for A2 etc. They
must pass one at a time. We put the last one p = T n(x, s) (targeted, say, for A1)
out at the gate, and give it a trace T n+1(x, s) targeted for A3 and so forth as a
1-3 sequence at the gate. When the gate opens at the next expansionary stage,
we would drop the balls to the first unoccupied 1-3 gate and repeat.

To achieve this, we would need to repeat this n many times one per ball at
gate Ge alone. For two gates, the situation is like the above, each ball from the
first gate itself generates a long 1-3 entourage, and hence needs g(i, j) many
permissions for each descendent.

The critical difference between the situation for the M5 lattice and the m-
topped degree, is that if some set of balls is stuck forever at some gate then that
causes no real grief. However, in the m-topped case, the failure of us fulfilling
some f(τ, z) commitment is fatal. The issue seems to concern lowness; this is
why we can’t get a true reversal for the class of m-topped degrees:

Theorem 10. There is a degree that is not totally < ωω-c.e., but does not bound
any noncomputable m-topped degree.

Proof. Downey and Jockusch [9] proved that no noncomputable m-topped c.e.
degree is low. On the other hand, even Lachlan’s original construction can be
shown to produce a low degree that is the top of an embedding of M5. By [7]
mentioned above, such a degree cannot be totally < ωω-c.e. Of course, the low
degrees form an initial segment of the c.e. degrees.

But in the present paper we will prove that the analysis above works in one
direction:

Theorem 11. No totally < ωω-c.e. degree bounds a noncomputable, m-topped
degree.
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On the other hand, it is possible to carry out the construction of an m-topped
degree at a relatively low level. The reason for the interest in the next result
is that the m-topped construction was a natural candidate for a construction
that needed the “full power” of non-low2 permitting. The reason for this is that
Downey and Shore [14] proved that a c.e. degree a is low2 iff it is bounded by
an incomplete m-topped degree. The following theorem shows that Theorem 11
is optimal in the hierarchy of totally < α-c.e. degrees; the next level above < ωω

is the class of totally ωω-c.e. degrees, the degrees that only compute ωω-c.e.
functions.

Theorem 12. There exists a m-topped c.e. degree that is totally ωω-c.e.

3 Proof of Theorem 11

We sketch the proof of Theorem 11. As the class of totally < ωω-c.e. degrees
is closed downwards, it is sufficient to show that no totally < ωω-c.e. degree is
m-topped.

For a simplified start, suppose first that the given degree a is totally ω-c.e.;
let A ∈ a be a candidate for having a maximal c.e. m-degree inside a. Out goal
is to build a c.e. set V ≤T A via ΨA = V such that we meet the requirement

Me : V �≤m A via ϕe.

That is, for some x, we would have x ∈ V iff ϕe(x) �∈ A (or ϕe is not total.)
As with all these constructions, we will build an auxiliary function ΔA = g.

Now suppose that we knew in advance the witness to the the fact that g is ω-c.e.
That is we had in advance a computable function f so that g is ω-c.e. via some
approximation h(x, s), where the number of changes is bounded by f(x).

We could then proceed as follows.
We choose some “permitting number” n, and a finite set X of size greater

than f(n), consisting of fresh potential diagonalisation witnesses. We wait until
every x ∈ X is realised, that is, ϕe(x) ↓; we then let u = max{ϕe(x) : x ∈ X},
and define ψA(x) = u for all x ∈ X and δA(n) = u as well. [Strictly speaking, we
need to define both δ(n) and ψ(x) before the realisation, because the totality of
ΔA and ΨA cannot depend on ϕe being total; for this we use simple permitting.]

We are then ready to attack with some x ∈ X (it doesn’t matter which): we
enumerate x into V . If we are unlucky, then at a later stage t0 the attack fails:
ϕe(x) enters A. The way we defined δ(n) allows us to extract a price from A in
exchange for this failure: since δ(n) ≥ ϕe(x), we know that the failure of the at-
tack allows us to redefine ΔA(n) with new value that hasn’t been guessed before
as some h(n, s). At a later stage s0 we get a new guess h(n, s0) = ΔA(n)[t0], and
then we can attack with another x′ ∈ X . Now note that we do not want to attack
again before we get a change in h(n, s), because the limit we have on the number
of changes is used to show that some attack is eventually successful. Note that
the reduction ΨA = V is not damaged here: we defined ψ(x′) ≥ ϕe(x), and so
at stage t0, ψ(x′) ↑; at that stage we can define Ψ(x′) = 1 with anticipation of
stage s0.
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This plan succeeds because:

(i) h is indeed a correct approximation for g, and so every failure is followed
by another attack; every stage t0 as above is followed by some s0. It follows
also that the definition Ψ(x′) = 1 made at stage t0 is correct, and so indeed
V ≤T A.

(ii) Some attack must succeed, because h(n, s) cannot change more than f(n)
many times. Hence Me is met.

In the real construction, we don’t know h and f in advance, so we list out all
possibilities. We would use one V for each possible pair f , h. The point here is
that if f is the real f , and h is the real witness for g, then the Vh,f built for h
and f will have Vh,f ≤T A. But the key point is that g is total nevertheless - we
never leave δ(n) undefined.

u
A

V
x0 x2x1

n

δ

g

ψ

ϕe

ϕe

Fig. 2. The ω-c.e. construction

Now consider the case that A is totally ω2-c.e. To continue the analogy above
with the gates of a pinball machine construction, we see that the ω-c.e. case
corresponds exactly to the failure of a single node τ to meet Re. A set that has
totally ω2-c.e. degree may be able to win on all single gates alone, but fails to
meet the combined requirements Re0 and Re1 . The analogy suggests that we
need to build two sets Ve0 and Ve1 and succeed on one of them. We now describe
how the necessities of the construction lead us to require these two sets.

Again we construct an auxiliary function g = ΔA and guess at an approxi-
mation h(x, s) for g, which is accompanied by a bounding function o(x, s) which
gives, for every x, a non-increasing sequence of ordinals below ω2; every change
in the guess for g(x) is matched by a change in o(x, s). Consider the following
näıve plan. At first, we get o(x, 0) = ω ·k0+k1; we set up a collection of potential
witnesses X of size greater than k1 and repeatedly attack with these witnesses
as before. Since each attack is related to a decrease of o(x, s), before we run out,
we have a new value ω · l0 + l1 where l0 < k0, so we’d like to have at least l1
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more new witnesses to throw into X . Of course this cannot work as it would
translate to an argument that no totally b-c.e. degree (for any notation b) can
be m-topped, contradicting Theorem 12. [For the näıve plan to “work” we need
to work with some b, otherwise we may repeat the process infinitely many times
and ΔA(n) would be undefined.] The problem is one of timing: before X runs
out, we can appoint l1 new witnesses; but at some point we need to wait for
them to get realised. This has to happen before some stage as s0 above where
we can redefine δ(n) to be at least ϕe(x) for all new witnesses x. This means
that before, say, we make the last attack with an old witness, we first need to
wait for realisation of the new witnesses. But if ϕe is not total then this may
never happen, and this spoils the reduction ΨA = V . Here the nonuniformity,
familiar from these constructions, creeps in: the solution is to build a backup
set Ve that is only needed if we fail to meet Me for the main set V . All work
regarding Ve (including the definition of a reduction ΨA

e = Ve) is based on the
assumption that ϕe is total. Thus, when we run out of old witnesses, we appoint
new witnesses, wait for realisation, and then attack with a Ve-witness; when this
attack fails, δ(n) frees up and we can redefine it as larger as is required to start
working with the new witnesses.

Here’s the construction for the ω2-case, assuming that we guessed h and o
correctly. We show how to meet the requirement

Me,j: Either Me holds, or Ve is not 1-1 reducible to A via ϕj .

The algorithm is as follows:

1. Appoint a permitting number n. Let o(n, 0) = ω · k0 + k1.
Appoint a set of witnesses Y , targeted for Ve, of size greater than k0. Wait
for realisation, i.e. for ϕj(y) ↓ for all y ∈ Y .

2. Let uY = max{ϕj(y) : y ∈ Y }; let ψe(y) = uY for all y ∈ Y and let
δ(n) = uY as well. Appoint a set of witnesses X , targeted for V , of size
greater than k1. Wait for realisation, i.e. for ϕe(x) ↓ for all x ∈ X . [In the
meanwhile we can define ψ(x) = uY for all x ∈ X .]

3. Attack with some y ∈ Y : enumerate it into Ve. Wait for the failure of the
attack, i.e. for ϕj(y) to enter A.

4. Let uX = max{ϕe(x) : x ∈ X} and u = max{uX , uY }. Redefine δ(n) = u
and ψ(x) = u for x ∈ X and ψe(y) = u for y ∈ Y . However, reserve one
x ∈ X for attack, and wait for a new guess h(n, s) = ΔA(n).

5. Attack with x: enumerate it into V . Wait for the failure of this attack, i.e.
for ϕe(x) to enter A; repeat as in the ω-case, until X runs out.

6. Upon the failure of the attack of the last x ∈ X , we have a new number l1
as above; we appoint a new X with more than l1 many fresh witnesses; we
let δ(n) = uY = ψ(x) for x ∈ X . We wait for realisation of all x ∈ X .

7. We then attack with another y ∈ Y ; repeat as in step (3) and onwards.

For ωn, we need n sets V, Ve0 , Ve0,e1 , . . . , nested by layers of nonuniformity;
the idea is the same. In the more complex case of ΔB = g being only < ωω-c.e.,
we must guess for which n it is ωn-c.e., and the witnesses for this. Again this is
typical.
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Fig. 3. The ω2-c.e. construction

4 Proof of Theorem 12

In this last section we sketch the proof of Theorem 12. In fact this comes from
analyzing the complexity of the natural construction of Downey and Jockusch
[9], carefully controlling where numbers are assigned as followers.

We enumerate a set A. We meet the following requirements:

Pe: ϕe is not the characteristic function of A.
Re: If Φe(A) = We then We ≤1 A.
Qe: If Ψe(A) is total then it is ωω-c.e.

Here 〈Ψe〉 is a listing of all Turing functionals, and 〈ϕe〉 is a listing of all
partial computable functions. 〈(Φe, We)〉 is a listing of all pairs of Turing func-
tionals and c.e. sets. Note that the fact that A is totally ωω-c.e. guarantees its
incompleteness; in fact, it guarantees that it is low2. Recall that the key is that
(in the setting of Re) Φe(A) controls We in the sense that if at some stage t we
have Φe(A, x) = 0 = We(x) [t] and s > t, then if A did not change below the use
φe(A, x)[t] between t and s then x /∈We [s].

The construction is done on a tree of strategies, with every level working for
a single requirement. The tree of strategies is 2<ω (and as usual, the priority
ordering is the lexicographic one); we identify 0 with the infinite outcome for a
node working for Re or Qe, and with the positive satisfaction for Pe. Recall that
a node σ that works for Re builds a recursive function fσ that attempts to be a
one-one reduction of Φe(A) to A.

At stage s, we construct (by induction) the path of accessible nodes; for an
accessible node σ, we describe σ’s action and which successor (if any) is next
accessible.
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σ works for Pe: If σ has no follower, appoint a fresh follower x; let σ�1 be
accessible. If σ has a follower x then there are three cases:

1. If we already have x ∈ A (so Pe is satisfied) we let σ�0 be accessible.
2. If it is not the case that ϕe(x) ↓= 0, then let σ�1 be accessible.
3. If ϕe(x) ↓= 0, but x has not yet been enumerated into

A, then we enumerate x into A and let σ�0 be accessible.

σ works for Re: First, we need to correct potential inconsistencies between
We = Φe(A) and f−1

σ A. For every x such that fσ(x) is defined, x ∈ We [s] and
fσ(x) /∈ A [s], enumerate fσ(x) into A.

If some numbers were enumerated into A, then we end the stage; we initialise
all nodes that lie to the right of σ�0, but not nodes that extend σ�0.

Assuming that we did not end the stage, we define �(σ)[s] be the length of
agreement between Φe(A) and We. Let t < s be the last stage at which σ�0 was
accessible (t = 0 if no such stage exists); if �(σ)[s] > t then let σ�0 be accessible,
otherwise let σ�1 be accessible. In the first case, for every x < �(σ)[s] for which
fσ(x) is not yet defined, define it (with fresh value).

σ works for Qe: Let t < s be the last stage at which σ�0 was accessible. If
dom Ψe(A)[s] > t then let σ�0 be accessible; otherwise let σ�1 be accessible.

If the stage was not halted by the time we got to a node of length s, we end
the stage and initialise all nodes that are weaker than the last accessible node.
[This means that all followers are cancelled, and all functions are restarted from
scratch.]

Verification. The existence of a true path is standard. On the true path, each
node is eventually never initialised. The point here is that if σ works for Re and
σ�1 is on the true path then only finitely many values fσ(x) are defined, so after
some stage, σ does not halt the stage (and initialise σ�1) because it enumerates
some fσ(x) into A. It follows that every Pe requirement is met. It is also easy to
see that each Re requirement is met: if σ on the true path works for Re (and the
hypothesis Φe(A) = We holds), then for every x, fσ(x) is eventually defined, and
enumerated into A iff x enters We; this is because σ�0 is accessible infinitely
many times.

It thus remains to show that each Qe is met; fix e < ω, assume that Z = Ψe(A)
is total, and let σ be the node on the true path that works for Qe; we know that
the next node on the true path must be σ�0. Let r∗ be a stage after which σ is
never initialised.

Let d < ω; we describe how to approximate Z(d) in an ωω-c.e. fashion. The
approximation itself is simple: at a stage s > r∗ at which σ�0 is accessible and
d < domΨe(A) [s], we guess that Z(d) = Ψe(A, d) [s]. The point is of course to
find the ordinal bound on the number of possible injuries to these computations.
Of course such a computation can only be injured by nodes that are compatible
with σ�0.

Recall that the key to this construction (as is in Fejer’s branching degree
construction, Slaman’s density and other constructions) is the establishment of
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natural barriers and the preservation of the sets below these barriers by a concert
of all agents involved. Let s0 be a stage at which σ�0 is accessible and such that
d < domΨe(A) [s0]. Suppose, for example, that at stage s0, there is only one
node τ compatible with σ�0 which works for some Re′ and has any value fσ(x)
defined (say σ�0 ⊆ τ) and that there is only one node ρ ⊇ τ�0 that works for
some Pe′′ and has a follower y defined at s0. Until the computation Ψe(A, d)[s0]
is injured (possibly at stage s0, but possibly later), all new values fτ (x) and
followers y appointed for any node are greater than the use ψe(d)[s0], and so
the injury has to result from action by either τ or ρ. To begin with, some such
injuries can happen by τ enumerating values fτ (x) into A; the number of such
injuries is bounded by s0. After each such injury, nodes to the right of τ�0
are initialised, and nodes extending τ are not accessible, so the next injury still
must come from τ or ρ. Eventually, new values fτ (x) are defined at a stage s1
at which τ�0 is ccessible. The barrier mechanism now comes into place: these
values are defined only for x < �(τ)[s1], and the only node that has a number
smaller than the Φe′ -use is ρ. By Φe′ (A)’s controlling of We′ , no x < �(τ)[s1]
will enter We′ (and no fτ (x) will enter A) unless ρ acts at some s2 ≥ s1. At
that stage some new cascading by τ may begin, yielding at most s2-many new
injuries for Ψe(A, d). Thus the approximation for Z(d) is ω · 2-c.e. If there are
further P -nodes ρ then we get ω · n-c.e.

However, if we have two R-nodes τ0 and τ1 (say τ0 ⊂ τ1), then the effect is mul-
tiplicative (in a reverse fashion). After each time τ1 enumerates a number into A,
the total τ0, τ1-equilibrium is damaged and a barrage of new numbers can be enu-
merated into A by τ0. The result (together with several P -nodes weaker than τ1)
is an ω2 ·n-c.e. approximation. As d increases, more and more nodes τ have values
fτ (x) defined when Ψe(A, d) is first encountered, which means that we get ωk-c.e.
approximations where k→∞. Overall, we get an ωω-approximation for Z.
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Abstract. This expository paper describes some of the results of two
recent research papers [GOP+05, GPSZ05]. The first of these papers
proves that every NP-complete set is many-one autoreducible. The sec-
ond paper proves that every many-one autoreducible set is many-one
mitotic. It follows immediately that every NP-complete set is many-one
mitotic. Hence, we have the compelling result that every NP-complete
set A splits into two NP-complete sets A1 and A2.

1 Autoreducibility

We begin with the notion of autoreducibility. Trakhtenbrot [Tra70] defined a set
A to be autoreducible if it can be reduced to itself by a Turing machine that
does not ask its own input to the oracle. This means there is an oracle Turing
machine M such that A = L(MA) and M on input x never queries x. Ladner
[Lad73] showed that there exist Turing-complete recursively enumerable sets
that are not autoreducible. We are interested in the polynomial-time variant of
autoreducibility, introduced by Ambos-Spies [AS84], where we require the oracle
Turing machine to run in polynomial time. Henceforth, by “autoreducible” we
mean “polynomial-time autoreducible.”

The question of whether complete sets for various complexity classes are
autoreducible has been studied extensively [Yao90, BF92, BFvMT00]. Beigel
and Feigenbaum [BF92] showed that Turing-complete sets for the classes that
form the polynomial-time hierarchy are autoreducible. In particular, all Turing-
complete sets for NP are autoreducible. Buhrman et al. [BFvMT00] showed that
Turing-complete sets for EXP and ΔEXP

i are autoreducible, whereas there ex-
ists a Turing-complete set for EESPACE that is not Turing autoreducible. They
showed that answering questions about autoreducibility of intermediate classes
results in interesting separation results.

Researchers have studied autoreducibility with various polynomial-time re-
ducibilities. Regarding NP, Buhrman et al. [BFvMT00] showed that all truth-
table-complete sets for NP are probabilistic truth-table autoreducible. Thus, all
NP-complete sets are probabilistic truth-table autoreducible.
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A set A is polynomial-time m-autoreducible (m-autoreducible, for short) if
A ≤p

m A via a polynomial-time computable reduction function f such that for
all x, f(x) �= x. Note that m-autoreducibility is a strong form of autoreducibil-
ity. If a set is m-autoreducible, then it is T-autoreducible also. Buhrman and
Torenvliet [BT94] asked whether all NP-complete sets are m-autoreducible and
whether all PSPACE-complete sets are m-autoreducible. Glasser et al. [GOP+05]
resolve these questions positively. A set L is nontrivial if ‖L‖ > 1 and ‖L‖ > 1.
The proof that all nontrivial NP-complete sets are m-autoreducible is interesting,
for it uses the left set technique of Ogihara and Watanabe [OW91].

Let L belong to the class NP and let M be a polynomial-time-bounded non-
deterministic Turing machine that accepts L. For a suitable polynomial p, we
can assume that all computation paths v on input x have length p(|x|). Let

Left(L) = {〈x, u〉
∣∣ |u| = p(|x|) and ∃v, |v| = |u|, such that
u ≤ v and M(x) accepts along path v}.

Notice that Left(L) belongs to the class NP. So if L is NP-complete, then
there is a polynomial-time-computable reduction f from Left(L) to L.

Theorem 1. All nontrivial NP-complete sets are m-autoreducible.

Proof. Let L be NP-complete. As we just described, let M be an NP-machine
that accepts L, let p be a polynomial so that all computation paths of M on an
input x have length p(|x|), and let f be a polynomial-time-computable reduction
from Left(L) to L. Since L is nontrivial, let y1, y2 ∈ L and y1, y2 ∈ L.

The following algorithm defines a function g to be an m-autoreduction for L:
Let x be an input, and define n = |x| and m = p(|x|).

1 if f(〈x, 0m〉) �= x then output f(〈x, 0m〉)
2 if f(〈x, 1m〉) = x then
3 if M(x) accepts along 1m then
4 output a string from {y1, y2} − {x}
5 else
6 output a string from {y1, y2} − {x}
7 endif
8 endif
9 // here f(〈x, 0m〉) = x �= f(〈x, 1m〉)
10 determine z of length m such that f(〈x, z〉) = x �= f(〈x, z+ 1〉)
11 if M(x) accepts along z then output a string from {y1, y2}−{x}
12 else output f(〈x, z + 1〉)

Step 10 is accomplished by an easy binary search algorithm: Start with z1 :=
0m and z2 := 1m. Let z′ be the middle element between z1 and z2. If f(z′) = x
then z1 := z′ else z2 := z′. Again, choose the middle element between z1 and
z2, and so on. This shows that g is computable in polynomial time. Clearly,
g(x) �= x, so it remains to show that L≤p

mL via g.
If the algorithm stops in step 1, then

x ∈ L ⇐⇒ 〈x, 0m〉 ∈ Left(L) ⇔ g(x) = f(〈x, 0m〉) ∈ L.
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If the algorithm stops in step 4 or step 6, then f(〈x, 0m〉) = f(〈x, 1m〉). Hence

x ∈ L ⇐⇒ 〈x, 1m〉 ∈ Left(L) ⇐⇒ M(x) accepts along 1m ⇐⇒ g(x) ∈ L.

Assuming we reach step 9, it holds that f(〈x, 0m〉) = x �= f(〈x, 1m〉). If the
algorithm stops in step 11, then x ∈ L and g(x) ∈ L. Now consider the possibility
that the algorithm stops in step 12. We treat two cases:

Assume x �∈ L. So there is no accepting computation. So 〈x, z + 1〉 �∈ Left(L).
So g(x) = f(〈x, z + 1〉) �∈ L also.

Assume x ∈ L. Then f(〈x, 0m〉) = f(〈x, z〉) = x ∈ L. The rightmost accepting
computation of M on x is to the right of z. So f(〈x, z + 1〉) ∈ L, because either
z + 1 is accepting or something to its right is accepting. �

The paper of Glasser et al. extends the basic technique to show that the nontrivial
complete sets of several additional complexity classes are m-autoreducible: ⊕P,
the levels of the polynomial-time hierarchy, the Boolean hierarchy over NP, and
MODPH.

2 Mitotic Sets

A recursively enumerable set is mitotic if it can be divided into two disjoint r.e.
sets A0 and A1 such that A, A0, and A1 are all Turing equivalent. The set A
consists of two parts that each contain the same amount of information as the
original set. Ladner [Lad73] showed that autoreducibility and mitoticity coincide
for the r.e. sets.

Ambos-Spies [AS84] defined two notions of mitoticity in the polynomial-time
setting:

Definition 1 (Ambos-Spies). A decidable set A is polynomial-time m(T)-
mitotic (m(T)-mitotic, for short) if there exists a set B ∈ P such that

A ≡p
m(T ) A ∩B ≡p

m(T ) A ∩B.

A decidable set A is polynomial-time weakly m(T)-mitotic (weakly m(T)-
mitotic, for short) if there exist disjoint sets A0 and A1 such that A0 ∪A1 = A,
and

A ≡p
m(T ) A0 ≡p

m(T ) A1.

Ambos-Spies proved that m-mitotic implies m-autoreducible and asked
whether the converse holds. Also, he proved that T-autoreducible does not imply
T-mitotic. Buhrman, Hoene, and Torenvliet [BHT98] proved that all m-complete
sets for EXP are weakly m-mitotic, while Glasser et al. [GOP+05] strengthened
this result to show that all m-complete sets for EXP are m-mitotic.

The main result of the second paper by Glasser et al. [GPSZ05] settles the
open question of Ambos-Spies with the following result:

Theorem 2 (GPSZ, 2005). Let L be any set such that ‖L‖ ≥ 2. L is m-
autoreducible if and only if L is m-mitotic.
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The following corollaries follow immediately:

Corollary 1. Every nontrivial set that is m-complete for one of the following
complexity classes is m-mitotic.

– NP, ⊕P, PSPACE, EXP, NEXP
– any level of the polynomial-time hierarchy, MODPH, or the Boolean hierar-

chy over NP

The corollary settles several long-standing open questions raised by Ambos-Spies
[AS84], Buhrman, Hoene, and Torenvliet [BHT98], and Buhrman and Toren-
vliet [BT94]. With specific regard to the class NP, we have the following:

Corollary 2. For every nontrivial NP-complete set L, there is a set S ∈ P such
that L ∩ S and L ∩ S are NP-complete.

Corollary 2 holds for all known natural NP-complete sets.1 Our contribution is
that it holds unconditionally for all NP-complete sets.

Corollary 3. A nontrivial set L is NP-complete if and only if L is the union
of two disjoint P-separable NP-complete sets.

The proof of Theorem 2 in one direction is straightforward. However the proof
that m-autoreducible implies m-mitotic is too complex to present here. Never-
theless, we can illustrate some of the issues that arise in the proof and suggest
how these issues are addressed.

Assume that L is m-autoreducible via reduction function f . Given x, the
repeated application of f yields a sequence of words x, f(x), f(f(x)), . . ., which
we call the trajectory of x. These trajectories either are infinite or end in a cycle
of length at least 2. Note that as f is an autoreduction, x �= f(x).

At first glance it seems that m-mitoticity can be easily established by the
following idea: In every trajectory, label the words at even positions with +
and all other words with −. Define S to be the set of strings whose label
is +. With this ‘definition’ of S it seems that f reduces L ∩ S to L ∩ S and
L ∩ S to L ∩ S.

However, this labeling strategy has at least two problems. First, it is not
clear that S ∈ P; because given a string y, we have to compute the parity of
the position of y in a trajectory. As trajectories can be of exponential length,
this might take exponential time. The second and more fundamental problem
is the following: The labeling generated above is inconsistent and not well de-
fined. For example, let f(x) = y. To label y which trajectory should we use?
The trajectory of x or the trajectory of y? If we use trajectory of x, y gets
a label of +, whereas if we use the trajectory of y, then it gets a label of −.
Thus S is not well defined and so this idea does not work. It fails because the
labeling strategy is a global strategy. To label a string we have to consider all

1 All known natural NP-complete sets are p-isomorphic to SAT. It is easy to see that
the corollary holds for SAT, from which it follows that it holds for all sets that are
p-isomorphic to SAT.
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the trajectories in which x occurs. Every single x gives rise to a labeling of
possibly infinitely many words, and these labelings may overlap in an incons-
istent way.

We resolve this by using a local labeling strategy. More precisely, we compute a
label for a given x just by looking at the neighboring values x, f(x), and f(f(x)).
It is immediately clear that such a strategy is well-defined and therefore defines
a consistent labeling. We also should guarantee that this local strategy strictly
alternates labels, i.e., x gets + if and only if f(x) gets −. Such an alternation of
labels would help us to establish the m-mitoticity of L.

Thus our goal will be to find a local labeling strategy that has a nice al-
ternation behavior. However, we settle for something less. Instead of requiring
that the labels strictly alternate, we only require that given x, at least one of
f(x), f(f(x)), · · · , fm(x) gets a label that is different from the label of x, where
m is polynomially bounded in the length of x. This suffices to show m-mitoticity.

The most difficult part in our proof is to show that there exists a local labeling
strategy that has this weaker alternation property.

We now formulate the core underlying problem. To keep this proof sketch
simpler, we make several assumptions and ignore several technical but important
details. If we assume (for simplicity) that on strings x /∈ 1∗ the autoreduction
is length preserving such that f(x) > x, then we arrive at the following graph
labeling problem.

Core Problem. Let Gn be a directed graph with 2n vertices such that every
string of length n is a vertex of Gn. Assume that 1n is a sink, that nodes u �= 1n

have outdegree 1, and that u < v for edges (u, v). For u �= 1n let s(u) denote u’s
unique successor, i.e., s(u) = v if (u, v) is an edge. Find a strategy that labels
each node with either + or − such that:

(i) Given a node u, its label can be computed in polynomial time in n.
(ii) There exists a polynomial p such that for every node u, at least one of the

nodes s(u), s(s(u)), . . . , sp(n)(u) gets a label that is different from the label
of u.

We exhibit a labeling strategy with these properties. To define this labeling,
we use the following distance function: d(x, y) df=$log |y − x|%. The core problem
is solved by the following local strategy.

0 // Strategy for labeling node x
1 let y = s(x) and z = s(y).
2 if d(x, y) > d(y, z) then output −
3 if d(x, y) < d(y, z) then output +
4 r := d(x, y)
5 output + iff $x/2r+1% is even

Clearly, this labeling strategy satisfies condition (i). We give a sketch of the
proof that it also satisfies condition (ii). Define m = 5n and let u1, u2, . . . , um

be a path in the graph. It suffices to show that not all the nodes u1, u2, . . . , um
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obtain the same label. Assume that this does not hold, say all these nodes get
label +. So no output is made in line 2 and therefore, the distances d(ui, ui+1)
do not decrease. Note that the distance function maps to natural numbers. If we
have more than n increases, then the distance between um−1 and um is bigger
than n. Therefore, um − um−1 > 2n+1, which is impossible for words of length
n. So along the path u1, u2, . . . , um there exist at least m − n = 4n positions
where the distance stays the same. By a pigeon hole argument there exist four
consecutive such positions, i.e., nodes v = ui, w = ui+1, x = ui+2, y = ui+3,
z = ui+4 such that d(v, w) = d(w, x) = d(x, y) = d(y, z). So for the inputs v,
w, and x, we reach line 4 where the algorithm will assign r = d(v, w). Observe
that for all words w1 and w2, the value d(w1, w2) allows an approximation of
w2−w1 up to a factor of 2. More precisely, w−v, x−w, and y−x belong to the
interval [2r, 2r+1). It is an easy observation that this implies that not all of the
following values can have the same parity: $v/2r+1%, $w/2r+1%, and $x/2r+1%.
According to line 5, not all words v, w, and x obtain the same label. This is a
contradiction that shows that not all the nodes u1, u2, . . . , um obtain the same
label. This proves (ii) and solves the core labeling problem.

We mention again that Turing autoreducible does not imply Turing mitotic
[AS84]. Glasser et al. [GPSZ05] proved that autoreducibility does not imply mi-
toticity for all polynomial-time-bounded reducibilities beween 3-tt-reducibility
and Turing-reducibility. (There exists L in EXP such that L is 3-tt-autoreducible,
but L is not weakly T-mitotic.) It is not known what happens when we con-
sider 2-tt-reductions. Is every 2-tt-autoreducible set 2-tt-mitotic? This is an
open question. Much is not known about truth-table reductions and autore-
ducibility. For example, it is not known whether all ≤p

tt -complete sets for NP
are ≤p

tt -autoreducible. It is not known whether all ≤p
btt-complete sets for NP are

≤p
btt-autoreducible.
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Abstract. This paper presents two types of realizability models for in-
tuitionistic set theories. The point of departure for every notion of real-
izability will be a domain of computation, called a partial combinatory
algebra, PCA. To put it roughly, the role of a PCA in the first type of
realizability is to furnish a concrete instantiation of the Brouwer-Heyting-
Kolmogorov interpretation of the logical connectives. In a sense, partial
combinatory algebras can lay claim to be of equal importance to models
of intuitionistic set theory as partial orderings are to forcing models of
classical set theory.

Among other things, these models can be used to extract computa-
tional information from proofs. Their main employment here, however,
will be to provide consistency, equiconsistency, and independence results.
Relinquishing classical logic can bring forth considerable profits. It al-
lows for axiomatic freedom in that one can adopt new axioms that are
true in realizability models but utterly false classically.

1 Introduction

Set theory is identified with rigour and has a reputation for being non-computa-
tional and nonconstructive. This is certainly true for classical set theory but
there is nothing intrinsically nonconstructive about sets. The central difference
between working with intuitionistic logic rather than classical logic is the mean-
ing of existence. It came explicitly to the fore when Zermelo could not exhibit
the well-ordering of the reals he claimed to have proved existed. Brouwer, the
originator of intuitionism, rejected proofs by contradiction of the existence of
objects because they do not supply the object they purportedly established. He
held that no sensible meaning could be attached to the phrase “there exists”
other than “we can find”.

In this paper we will chiefly study realizability models of two intuitionistic set
theories called intuitionistic Zermelo-Fraenkel set theory, IZF, and constructive
Zermelo-Fraenkel set theory, CZF. For the most part IZF owes its existence to
the idea of changing the underlying classical logic of ZF to intuitionistic logic
while CZF is squarely related to Martin-Löf type theory. Intuitionistic set theory
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constitutes a major site of interaction between constructivism, set theory, proof
theory, type theory, topos theory, and computer science.

The point of departure for every notion of realizability will be a domain of
computations, called a partial combinatory algebra, PCA. We will study two
kinds of realizability over a given PCA P. The first kind derives a “model”
of set theory from an “internal” transfinite type structure over P. This notion
allows for variations as the type structures can be conceived as intensional or
extensional. As they are, in a way, minimal models for intuitionistic set theory
over P, this approach could be compared with the constructible hierarchy L in
classical set theory. In the second kind of realizability the role of P is comparable
to that of a partial order in the forcing constructions of classical set theory since
it enables one to pass from an existing model of set theory to a larger one. The
realizability structures obtained in this way are particularly suited to validate
principles that are false classically.

1.1 The Theories IZF and CZF

IZF and CZF have the same language as ZF. Both theories are based on in-
tuitionistic logic. The axioms of IZF comprise Extensionality, Pairing, Union,
Infinity, Separation, and Powerset. Instead of Replacement IZF has Collection

∀x ∈ a ∃y ϕ(x, y)→ ∃z ∀x ∈ a ∃y ∈ z ϕ(x, y)

and rather than Foundation it has the Set Induction scheme

∀x [∀y ∈ xψ(y)→ ψ(x)]→ ∀xψ(x).

The set theoretic axioms of CZF are Extensionality, Pairing, Union, Infinity,
the Set Induction scheme, and the following:

Restricted Separation scheme. ∀a ∃x∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y)), for every
restricted formula ϕ(y), where a formula ϕ(x) is restricted, or Δ0, if all the
quantifiers occurring in it are restricted, i.e. of the form ∀x∈ b or ∃x∈ b;

Subset Collection scheme

∀a ∀b ∃c ∀u [∀x∈a ∃y ∈ b ψ(x, y, u) →
∃d∈ c (∀x∈ a ∃y∈ d ψ(x, y, u) ∧ ∀y ∈ d∃x∈ a ψ(x, y, u))]

Strong Collection scheme

∀x∈ a ∃y ϕ(x, y) → ∃b [∀x∈ a ∃y ∈ b ϕ(x, y) ∧ ∀y∈ b ∃x∈ a ϕ(x, y)]

for all formulae ψ(x, y, u) and ϕ(x, y).
The reader might wonder what ideas guided the selection of the specific axioms

of CZF. A partial answer is that they arose by interpreting set theory in Martin-
Löf type theory. The most obvious disadvantage of IZF is that this theory has
few recognizable models in which to interpret its axioms. As will become clear
later, there are many recognizable models of intuitionistic set theory in which
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to interpret the axioms of CZF. CZF can lay claim to be the theory of these
structures. In the intuitionistic context it plays a role similar to that of Kripke-
Platek set theory in the classical context (cf. [4]). For more details on CZF
see [1, 2].

1.2 The Brouwer-Heyting-Kolmogorov Interpretation

The intuitionists (or constructivists) restatement of the meaning of the logical
connectives is known as the Brouwer-Heyting-Kolmogorov interpretation. It is
couched in terms of a semantical notion of proof.

Definition 1.1

1. p proves ⊥ is impossible, so there is no proof of ⊥.
2. p proves ϕ ∧ψ iff p is pair 〈a, b〉, where a is proof for ϕ and b is proof for ψ.
3. p proves ϕ ∨ ψ iff p is pair 〈n, q〉, where n = 0 and q proves ϕ, or n = 1 and

q is proves ψ.
4. p proves ϕ→ ψ iff p is a function (or rule) which transforms any proof s of

ϕ into a proof p(s) of ψ.
5. p proves ¬ϕ iff p proves ϕ→ ⊥.
6. p proves (∃x ∈ A)ϕ(x) iff p is a pair 〈a, q〉 where a is a member of of the set

A and q is a proof of ϕ(a).
7. p proves (∀x ∈ A)ϕ(x) iff p is a function (rule) such that for each member a

of the set A, p(a) is a proof of ϕ(a).

Many objections can be raised against the above definition. The explanations
offered for implication and universal quantification are notoriously imprecise
because the notion of function (or rule) is left unexplained. Another problem is
that the notions of set and set membership are in need of clarification. In what
follows we shall show that each partial combinatory algebra provides a concrete
example of the Brouwer-Heyting-Kolmogorov interpretation.

2 Partial Combinatory Algebras

The notion of function is crucial to any concrete BHK-interpretation in that
it will determine the set theoretic and mathematical principles validated by it.
The most important semantics for intuitionistic theories, known as realizability
interpretations, also require that we have a set of (partial) functions on hand
that serve as realizers for the formulae of the theory. An abstract and therefore
“cleaner” approach to this semantics considers realizability over general domains
of computations allowing for recursion and self-application. These structures
have been variably called partial combinatory algebras, applicative structures, or
Schönfinkel algebras. They are related to models of the λ-calculus.

Let (M, ·) be a structure equipped with a partial operation, that is, · is a
binary function with domain a subset of M ×M and co-domain M . We often
omit the sign “·” and adopt the convention of “association to the left”. Thus
exy means (e ·x) ·y. We also sometimes write e ·x in functional notation as e(x).
Extending this notion to several variables, we write e(x, y) for exy etc.
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Definition 2.1. A PCA is a structure (M, ·), where · is a partial binary opera-
tion on M , such that M has at least two elements and there are elements k and
s in M such that kxy and sxy are always defined, and

kxy = x and sxyz � xz(yz),

where � means that the left hand side is defined iff the right hand side is defined,
and if one side is defined then both sides yield the same result.

(M, ·) is a total PCA if a · b is defined for all a, b ∈M .

Definition 2.2. Partial combinatory algebras are best described as the models
of a formal theory PCA. The language of PCA has two distinguished constants
k and s. To accommodate the partial operation it is best to work in a logic
with partial terms t and a unary existence predicate symbol E, with Et being
intended to convey that t is defined or t denotes (see [13] 2.2 and [5] VI for
details; [5] uses t ↓ rather than Et.)

Two crucial results about PCA are that terms can be constructed by λ ab-
straction and that the recursion theorem holds, i.e., there is an application term
r such that PCA proves rx ↓ ∧ rxy � x(rx)y.

It often convenient to equip a PCA with additional structure such as pairing,
natural numbers, and some form of definition by cases. In fact, these gadgets
can be constructed in any PCA, as Curry showed. Nonetheless, it is desirable to
consider richer structures as the natural models for PCAs we are going to study
come already furnished with a “natural” copy of the natural numbers, natural
pairing functions, etc., which are different from the constructions of combinatory
logic.

Definition 2.3. The language of PCA+ is that of PCA, with a unary rela-
tion symbol N (for a copy of the natural numbers) and additional constants
0, sN ,pN ,d,p,p0,p1 for, respectively, zero, successor on N , predecessor on N ,
definition by cases on N , pairing, and the corresponding two projections.

The axioms of PCA+ are those of PCA, augmented by the following:

1. (pa0a1) ↓ ∧ (p0a) ↓ ∧ (p1a) ↓ ∧ pi(pa0a1) � ai for i = 0, 1.
2. N(c1) ∧ N(c2) ∧ c1 = c2 → dabc1c2 ↓ ∧ dabc1c2 � a.
3. N(c1) ∧ N(c2) ∧ c1 �= c2 → dabc1c2 ↓ ∧ dabc1c2 � b.
4. ∀x

(
N(x)→

[
sNx ↓ ∧ sNx �= 0 ∧ N(sNx)

])
.

5. N(0) ∧ ∀x
(
N(x) ∧ x �= 0→

[
pNx ↓ ∧ sN (pNx) = x

])
.

6. ∀x
[
N(x)→ pN (sNx) = x

]
.

The extension of PCA+ by the schema of induction for all formulae,

ϕ(0) ∧ ∀x
[
N(x) ∧ ϕ(x)→ ϕ(sNx)

]
→ ∀x

[
N(x)→ ϕ(x)

]
is known by the acronym EON (elementary theory of operations and numbers)
or APP (applicative theory). For full details about PCA, PCA+, and EON
see [5, 13].
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Let 1 := sN 0. The applicative axioms entail that 1 is an application term
that evaluates to an object falling under N but distinct from 0, i.e., 1 ↓, N(1)
and 0 �= 1. More generally, we define the standard integers of a PCA to be the
interpretations of the numerals, i.e. the terms n̄ defined by 0̄ = 0 and n + 1 =
sN n̄ for n ∈ N. Note that PCA+ ) n̄ ↓.

A PCA+ (M, ·, . . .) whose integers are standard, meaning that {x ∈M |M |=
N(x)} is the set consisting of the interpretations of the numerals in M , will be
called an ω-PCA+. Note that an ω-PCA+ is also a model of APP.

Lemma 2.4. PCA+ is conservative over PCA. (See [5], chapter VI.)

2.1 Recursion-Theoretic Examples of Combinatory Algebras

The primordial PCA is furnished by Turing machine application on the integers.
There are many other interesting PCAs that provide us with a laboratory for
the study of computability theory. As the various definitions are lifted to more
general domains and notions of application other than Turing machine applica-
tions some of the familiar results break down. By studying the notions in the
general setting one sees with a clearer eye the truths behind the results on the
integers.

Kleene’s first model. The “standard” applicative structure is Kleene’s first
model, called K1, in which the universe |K1| is N and ApK1(x, y, z) is Turing
machine application: ApK1(x, y, z) iff {x}(y) � z. The primitive constants of
PCA+ are interpreted over N in the obvious way, and N is interpreted as N.

Kleene’s second model. The universe of “Kleene’s second model” of APP,
K2, is Baire space, i.e. the set NN of all functions from N to N. The most
interesting feature of K2 is that in the type structure over K2, every type-2
functional is continuous.

Definition 2.5. We shall use α, β, γ, . . . as variables ranging over functions from
N to N. In order to describe this PCA, it will be necessary to review some
terminology. We assume that every integer codes a finite sequence of integers.
For finite sequences σ and τ , σ ⊂ τ means that σ is an initial segment of τ ; σ ∗ τ
is concatenation of sequences; 〈〉 is the empty sequence; 〈n0, . . . , nk〉 displays the
elements of a sequence; if this sequence is τ then lh(τ) = k + 1 (read “length
of τ”); ᾱ(m) = 〈α(0), . . . , α(m − 1)〉 if m > 0; ᾱ(0) = 〈〉. A function α and an
integer n produce a new function 〈n〉 ∗ α which is the function β with β(0) = n
and β(k + 1) = α(k). Application requires the following operations on NN:

α(β) = m iff ∃n [α(β̄n) = m + 1 ∧ ∀i < n α(β̄i) = 0]
(α|β)(n) = α(〈n〉 ∗ β)

We would like to define application on NN by α|β, but this is in general only a
partial function, therefore we set:

α · β = γ iff ∀n (α|β)(n) = γ(n). (1)
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Theorem 2.6. K2 is a model of APP. (See [5], chapter VI.)

Substructures of Kleene’s second model. Inspection of the definition of
application in K2 shows that subcollections of NN closed under “recursive in”
give rise to substructures of K2 that are models of APP as well. Specifically,
the set of unary recursive functions forms a substructure of K2 as does the set of
arithmetical functions from N to N, i.e., the functions definable in the standard
model of Peano Arithmetic, furnish a model of APP when equipped with the
application of (1).

Total Continuous PCAs. We have so far constructed recursion-theoretic mod-
els of APP. There are models which do not involve Turing machines or other
concepts of computability. They are couched in more familiar mathematical
terms of sets, domains, and continuous functions between domains. The most
prominent among them are Scott’s D∞ model D∞ of the λ-calculus over any
complete partial order and the graph model P(ω) independently developed by
Plotkin and Scott. D∞ is an example of a total (∀x, y xy ↓) and extensional
(∀f, g [∀x(fx = gx→ f = g)]) PCA.

3 Type Structures over Combinatory Algebras

Over any ω-PCA+ P we shall define an “internal” transfinite type structure
consisting of intensional types with dependent products and dependent sums.
These type structures provide models of intensional Martin-Löf type theory
(cf. [6]).

Definition 3.1. Let P = (P, ·, . . .) be an ω-PCA+. The intensional types of P
and their elements are defined inductively. The set of elements of a type A is
called its extension and denoted by Â.

1. N
P

is a type with extension the set of integers of P, i.e., {x ∈ P |P |= N(x)}.
2. For each integer n, N

P

n is a type with extension {k̄P | k = 0, . . . n− 1} if n > 0
and N

P

0 = ∅.
3. U

P

is a type with extension P .
4. If A and B are types, then A +

P
B is a type with extension

{(0, x) |x ∈ Â} ∪ {(1, x) |x ∈ B̂}.
5. If A is a type and for each x ∈ Â, F (x) is a type, where F ∈ P and F (x)

means F · x, then
∏P

x:A F (x) is a type with extension
{f ∈ P | ∀x ∈ Â f · x ∈ F̂ (x)}.

6. If A is a type and for each x ∈ Â, F (x) is a type, where F ∈ P , then∑P

x:A F (x) is a type with extension {(x, u) |x ∈ Â ∧ u ∈ F̂ (x)}.

The obvious question to ask is: Why should we distinguish between a type A
and its extension Â. Well, the reason is that we want to apply the application
operation of P to types. To make this possible, types have to be elements of P .
Thus types aren’t sets. Alternatively, however, we could identify types with sets
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and require that they be representable in P in some way. This can be arranged
by associating Gödel numbers in P with types and operations on types. This is
easily achieved by employing the coding facilities of the PCA+ P. For instance,
if the types A and B have Gödel numbers �A� and �B�, respectively, then
A + B has Gödel number (1, �A�, �B�), and if C is a type with Gödel number
�C�, F ∈ P , and for all x ∈ Ĉ, F (x) is the Gödel number of a type Bx, then
(2, �C�, F ) is the Gödel number of the dependent type

∏P

x:C Bx, etc. In what
follows we will just identify types with their extensions (or their codes) as such
ontological distinctions are always retrievable from the context.

Definition 3.2 (The set-theoretic universe V
P

i ). Starting from the inten-
sional type structure over an ω-PCA+ P, we are going to construct a universe
of sets for intuitionistic set theory. The rough idea is that a set X is given by
a type A together with a set-valued function f defined on A (or rather the
extension of A) such that X = {f(x) |x ∈ A}. Again, the objects of this uni-
verse will be coded as elements of P . The above set will be coded as sup(A, f),
where sup(A, f) = (8, (A, f)) or whatever. We sometimes write {f(x) |x ∈ A}
for sup(A, f).

The universe of sets over the intensional type structure of P, V
P

i , is defined
inductively by a single rule:

if A is a type over P, f ∈ P , and ∀x ∈ Â f · x ∈ V
P

i , then sup(A, f) ∈ V
P

i .

We shall use variables α, β, γ, . . . to range over elements of V
P

i . Each α ∈ V
P

i

is of the form sup(A, f). Define ᾱ := A and α̃ := f .
An essential characteristic of set theory is that sets having the same elements

are to be identified. So if {f(x) |x ∈ A} and {g(y) | y ∈ B} are in V
P

i and for every
x ∈ A there exists y ∈ B such that f(x) and g(y) represent the same set and
conversely for every y ∈ B there exists x ∈ A such that f(x) and g(y) represent
the same set, then {f(x) |x ∈ A} and {g(y) | y ∈ B} should be identified as sets.
This idea gives rise to an equivalence relation on V

P

i .

Definition 3.3 (Kleene realizability over V
P

i ). We will introduce a seman-
tics for sentences of set theory with parameters from V

P

i . Bounded set quantifiers
will be treated as quantifiers in their own right, i.e., bounded and unbounded quan-
tifiers are treated as syntactically different kinds of quantifiers. Let α, β ∈ V

P

i and
e, f ∈ P . We write (e)i for pie and ei,j for ((e)i)j .

e �
P

α ∈ β iff (e)0 ∈ β̄ ∧ (e)1 �
P

α = β̃(e)0
e �

P
α = β iff ∀i ∈ ᾱ [e0,0i ∈ β̄ ∧ e0,1i �

P
α̃i = β̃(e0,0i)] ∧

∀i ∈ β̄ [e1,0i ∈ ᾱ ∧ e1,1i �
P

β̃i = α̃(e1,0i)]
e �

P
φ ∧ ψ iff (e)0 �

P
φ ∧ (e)1 �

P
ψ

e �
P

φ ∨ ψ iff
[
(e)0 = 0 ∧ (e)1 �

P
φ
]
∨
[
(e)0 = 1 ∧ (e)1 �

P
ψ
]

e �
P
¬φ iff ∀f ∈ P ¬f �

P
φ
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e �
P

φ→ ψ iff ∀f ∈ P
[
f �

P
φ → ef �

P
ψ
]

e �
P
∀x ∈ α φ(x) iff ∀i ∈ ᾱ ei �

P
φ(α̃i)

e �
P
∃x ∈ α φ(x) iff (e)0 ∈ ᾱ ∧ (e)1 �

P
φ(α̃(e)0)

e �
P
∀xφ(x) iff ∀α ∈ V

P

i eα �
P

φ(α)

e �
P
∃xφ(x) iff (e)0 ∈ V

P

i ∧ (e)1 �
P

φ((e)0).

The definitions of e �
P

α ∈ β and e �
P

α = β fall under the scope of definitions
by transfinite recursion, i.e. by recursion on the inductive definition of V

P

i .

Theorem 3.4. Let P be an ω-PCA+. Let ϕ(v1, . . . , vr) be a formula of set the-
ory with at most the free variables exhibited. If

CZF ) ϕ(v1, . . . , vr)

then there exists a closed application term t
ϕ

of PCA+ such that for all
α1, . . . , αr ∈ V

P

i ,

P |= t
ϕ
α1 . . . αr ↓ and t

ϕ
α1 . . . αr �

P
ϕ(α1, . . . , αr).

The term tϕ can be effectively constructed from the CZF-deduction of
ϕ(v1, . . . , vr).

Corollary 3.5. If P is the first Kleene algebra, then V
P

i is a realizability model of
CZF plus Russian constructivism, i.e. CZF augmented by the extended Church’s
thesis, ECT, and Markov’s principle, MP.

If P is chosen to be Kleene’s second algebra with universe the set of arithmeti-
cal functions, then V

P

i furnishes a realizability model of CZF augmented by the
Brouwerian principles of Continuous Choice, CC, and the Fan Theorem, FT.

If P is chosen to be Kleene’s second algebra with universe being the set of all
functions in NN ∩ Lρ, where ρ is a limit of infinitely many admissible ordinal,
then V

P

i also furnishes a realizability of monotone Bar Induction.

Proof: For details and unexplained notions see [5, 13]. For proofs see [12]. ��
It is an interesting research programme to determine which additional principles
hold in V

P

i as P ranges over the different PCA’s introduced in section 6.
There is also an extensional version of V

P

i which builds on the extensional type
structure, where every type A comes equipped with its own equality relation
=A and functions between types have to respect those equality relations. This
gives rise to extensional Kleene realizability. The main difference is that the
extensional type structure realizes several choice principles. In particular, one
can validate that choice holds over all sets in the finite type structure over N.
An analogue of the previous Theorem for extensional realizability holds for CZF
augmented by the presentation axiom and the so-called ΠΣ-axiom of choice (see
[12, 10]).
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4 Generic Realizability

We now embark on a very different notion of realizability over a PCA, A, where
a realizer e ∈ |A| for a universal statement ∀xϕ(x) “generically” realizes ϕ(b)
for all elements b of the realizability structure V (A), i.e., e � ∀xϕ(x) iff ∀b ∈
V (A) e � ϕ(b). This type of realizability goes back to Kreisel and Troelstra and
was extended to set theory by McCarty [7].

4.1 The Realizability Structure

The following discussion assumes that we can formalize the notion of an ap-
plicative structure in CZF. Moreover, for the remainder of this paper, A will be
assumed to be a fixed but arbitrary applicative structure, which in particular is
a set. The definition of the following realizability structure stems from [7].

Definition 4.1. Ordinals are transitive sets whose elements are transitive also.
We use lower case Greek letters to range over ordinals. For A |= APP,

V(A)α =
⋃
β∈α

P
(
|A| ×V(A)β

)
V(A) =

⋃
α

V(A)α. (2)

The class V(A) can be formalized in CZF. We now proceed to define a notion
of realizability over V(A), i.e., e � φ for e ∈ |A| and sentences φ with parameters
in V(A). For e ∈ |A| we shall write (e)0 and (e)1 rather than p0e and p1e,
respectively.

Definition 4.2. Bounded quantifiers will be treated as quantifiers in their own
right, i.e., bounded and unbounded quantifiers are treated as syntactically dif-
ferent kinds of quantifiers. Let a, b ∈ V(A) and e ∈ |A|.

e � a ∈ b iff ∃c
[
〈(e)0, c〉 ∈ b ∧ (e)1 � a = c

]
e � a = b iff ∀f, d

[(
〈f, d〉 ∈ a → (e)0f � d ∈ b

)
∧
(
〈f, d〉 ∈ b → (e)1f � d ∈ a

)]
e � φ ∧ ψ iff (e)0 � φ ∧ (e)1 � ψ

e � φ ∨ ψ iff
[
(e)0 = 0 ∧ (e)1 � φ

]
∨
[
(e)0 = 1 ∧ (e)1 � ψ

]
e � ¬φ iff ∀f ∈ |A| ¬f � φ

e � φ→ ψ iff ∀f ∈ |A|
[
f � φ → ef � ψ

]
e � ∀x ∈ a φ iff ∀〈f, c〉 ∈ a ef � φ[x/c]
e � ∃x ∈ a φ iff ∃c

(
〈(e)0, c〉 ∈ a ∧ (e)1 � φ[x/c]

)
e � ∀xφ iff ∀c ∈ V(A) e � φ[x/c]
e � ∃xφ iff ∃c ∈ V(A) e � φ[x/c]

The definitions of e � u ∈ v and e � u = v fall under the scope of definition by
transfinite recursion.
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4.2 The Soundness Theorem for CZF

The soundness of extensional realizability for IZF was shown in [7]. The proofs
for the realizability of Extensionality, Pair, Infinity, and Set Induction carry over
to the context of CZF. Union needs a little adjustment to avoid an unnecessary
appeal to unbounded Separation. To establish realizability of Bounded Separa-
tion we use Separation for extended bounded formulae. Strong Collection and
in particular Subset Collection are not axioms of IZF and therefore require new
proofs.

Theorem 4.3. For every axiom θ of CZF, there exists a closed application
term t such that

CZF ) (t � θ).

Proof: For details see [9]. If A is chosen to be the first Kleene algebra, V(A)
realizes all the principles of Russian constructivism and several ‘exotic’ principles
like the Uniformity Property and Unzerlegbarkeit (see [7, 9]). On the other hand,
if A = D∞, then V(A) realizes the statement that there exists an infinite set B
such that B is in one-to-one correspondence with the set B → B (of all functions
from B to B), which is clearly not possible in the classical world.

The notion of realizability in V(A) can also be refined and combined with
truth in the universe to yield a tool with which to show metamathematical
properties of IZF and CZF (see [11]). ��
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1 Introduction

The complexity of resolution refutations of contradictory sets of clauses in propo-
sitional logic has been investigated deeply over the last forty years, beginning
with the groundbreaking paper of Tseitin [16], based on a talk given in a
Leningrad seminar of 1966.

A general theme that emerged gradually in the course of the intensive inves-
tigations of the last few decades has been that of basing size lower bounds on
lower bounds on the width of refutations. Roughly speaking, it turns out that
in many cases, the minimum size of a refutation is exponential in the minimum
width.

This strategy for proving lower bounds was formalized in a remarkable pa-
per by Ben-Sasson and Wigderson [2]. They prove a general width-size tradeoff
result that can be applied directly to prove many of the known lower bounds
on resolution complexity in a uniform manner. However, their result does not
apply directly to the most deeply investigated tautologies, those based on the
pigeonhole principle [8, 5, 1, 4]. In this case, Ben-Sasson and Wigderson are able
to prove lower bounds, but only by first replacing the pigeonhole clauses by a
stronger version.

In the present paper, the result of Ben-Sasson and Wigderson is generalized
in such a way as to apply directly to the pigeonhole clauses (more precisely, to a
monotone transformation of the pigeonhole clauses), obviating the need for this
replacement.

2 Graphical Resolution

In this section, we define a generalized version of the resolution rule, where the
structure of complementation is given by an arbitrary graph. Let L be a finite
set; we call the elements of L literals. A clash structure over the set of literals L
is a simple graph N = 〈L,⊥〉, where ⊥ is the adjacency relation, that is to say,
an irreflexive, symmetric relation on L. If x, y ∈ L are literals, and x ⊥ y, then
we say that x and y are complementary or clashing literals; if E, F are sets of
� The author gratefully acknowledges the support of the Natural Sciences and Engi-

neering Research Council of Canada.
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literals we write E ⊥ F if x ⊥ y for all x ∈ E and y ∈ F . An N -assignment is
defined to be a subset ϕ of L satisfying the consistency condition: if x ∈ ϕ, and
x ⊥ y, then y �∈ ϕ. These definitions generalize the ordinary situation, where L
consists of all literals q and ¬q over a finite set V of variables, and q ⊥ ¬q for
all q ∈ V .

An L-clause – or simply clause if L is understood – is a subset of L; the
empty clause is denoted by 0. An L-formula is a conjunction of L-clauses, with
the convention that

∧
∅ = 1. The width of a clause C, written w(C), is the

number of literals in it; if Σ is a set of clauses, then w(Σ) is the maximum width
of a clause in Σ. If C and D are L-clauses, and x ∈ L, then we write C ∨D for
C ∪D, and C ∨ x for C ∪ {x}. In addition, we write x⊥ for {y ∈ L : y ⊥ x}.

If C is a clause, and ϕ an N -assignment, then we write ϕ(C) = 1 if ϕ∩C �= ∅,
and ϕ(C) = 0 if ϕ(x⊥) = 1 for all x ∈ C. If ϕ(C) = 1 for all clauses C in
the set Σ, then we write ϕ(Σ) = 1. If F =

∧
X is an L-formula, and ϕ an N -

assignment, then ϕ(F ) = 1 if ϕ(C) = 1 for all C ∈ X , and ϕ(F ) = 0 if ϕ(C) = 0
for some C ∈ X .

If Γ is a set of L-formulas, and C a clause, then C is an N -consequence of Γ ,
Γ |=N C, if for every N -assignment ϕ, if ϕ(Γ ) = 1, then ϕ(C) = 1. A set Σ of
L-formulas is N -consistent if there is an N -assignment ϕ such that ϕ(Σ) = 1,
otherwise N -contradictory.

For the remainder of this section, assume that N = 〈L,⊥〉 is a clash structure,
and p = max(|x⊥|), for x ∈ L. If C is an L-clause, and x ∈ L, then we define
the result of restricting C by setting the value of x as follows. If x ∈ C, then
C[x := 1] = 1, and C[x := 0] = C \ x. If x �∈ C, then C[x := 1] = C \ x⊥ and
C[x := 0] = C. For Σ a set of L-clauses, Σ[x := a] is {C[x := a] : C ∈ Σ} \ {1}.

Given a clash structure N = 〈L,⊥〉, we define the N -resolution inference
rule: it allows us to derive the L-clause C ∨ D from the L-clauses C ∨ E and
D ∨ F , where E ⊥ F . The N -resolution rule is N -sound in the sense that
{C ∨ E, D ∨ F} |=N C ∨D, if E ⊥ F . A sequence of clauses C1, . . . , Ck is an
N -resolution derivation of C from the set of clauses Σ if each clause in the
sequence is either a superset of a clause in Σ, or is derived from earlier clauses
in the sequence by the N -resolution rule, and Ck ⊆ C; it is an N -resolution
refutation of Σ if Ck = 0. If Σ∪{C} is a set of L-clauses, then we write Σ )N C
if there is an N -resolution derivation of C from Σ.

Theorem 1. If Σ is an N -contradictory set of clauses, then Σ )N 0.

Proof. By induction on the number of literals in L. If L = ∅, then Σ = {∅}, so
the result is immediate. Now let Σ be an N -contradictory set of clauses, with
|L| > 0. The set Σ[x := 1] is N ′-inconsistent, where N ′ = 〈L \ (x ∨ x⊥),⊥〉,
and so has an N ′-resolution refutation C1, . . . , Ck = 0, by inductive hypothesis;
consequently, C1 ∨ x⊥, . . . , Ck ∨ x⊥ = x⊥ is an N -resolution derivation of x⊥

from Σ. By resolving x⊥ against all the clauses in Σ that contain x, we can
derive Σ[x := 0]. By inductive hypothesis, Σ[x := 0] )N 0, hence Σ )N 0. ��
The size of a resolution refutation is the number of clauses in it; for a contra-
dictory set of clauses Σ, we write S(Σ) for the minimum size of a refutation
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of Σ. The width of a derivation is the maximum width of a clause occurring
in it. If Σ ∪ {C} is a set of L-clauses, then we write Σ )Nw C if there is an
N -resolution derivation of C from Σ of width at most w. We write w(Σ )N C)
for the minimum width of an N -resolution derivation of C from Σ.

Lemma 1. For x ∈ L and Σ a set of L-clauses, if Σ[x := 1] )Nw C, then
Σ )Nw+p C ∨ x⊥.

Proof. Let C1, . . . , Ck = C be an N -resolution derivation of C from Σ[x := 1],
of width at most w. Then C1 ∨ x⊥, . . . , Ck ∨ x⊥ is an N -resolution derivation of
C∨x⊥ from Σ of width at most w+p. If Ci is an initial clause in Σ[x := 1], then
Ci ∨ x⊥ contains a clause in Σ, while if Ck is derived by N -resolution from Ci

and Cj , then Ck∨x⊥ is derivable by N -resolution from Ci∨x⊥ and Cj ∨x⊥. ��

Lemma 2. For x ∈ L and Σ a set of L-clauses, if Σ[x := 1] )Nw 0, and Σ[x :=
0] )Nw+p 0, then w(Σ )N 0) ≤ max(w + p, w(Σ)).

Proof. If Σ[x := 1] )Nw 0, then by Lemma 1, Σ )Nw+p x⊥. Let Σx be the set
of clauses in Σ containing x. Resolve all of these clauses against x⊥ to obtain
Σ[x := 0]; this part of the derivation has width max(p, w(Σx)). By assumption,
Σ[x := 0] )Nw+p 0, so the entire derivation has width bounded by max(w +
p, w(Σ)). ��

Theorem 2. Let Σ be a contradictory set of L-clauses. If log S(Σ) < |L|/p,
then w(Σ )N 0) ≤ w(Σ) + O(

√
p|L| logS(Σ) + p).

Proof. Fix a non-negative parameter d ∈ R, with d < |L|, and define a clause
C to be fat if w(C) > d; if D is a derivation, then Fat(D) is the set of fat clauses
in D. Given a set of literals L, set β = (1− t)−1, where t = d/|L|. We prove that
for any such set L of literals, the following claim holds for all L′ ⊆ L: For b ∈ N,
if Σ is a set of L′-clauses and there is a refutation D of Σ with |Fat(D)| < βb,
then w(Σ )N 0) ≤ w(Σ) + d + bp.

The induction is on the number of literals in L′, where L′ ⊆ L. If L′ = ∅,
then Σ = {0}, and w(Σ )N 0) = 0 ≤ w(Σ) + d + bp, for all b. So, let us assume
that |L′| > 0, and that the claim holds for all L′′ � L′. We prove the claim for
L′ by induction on b. If b = 0, then every clause in the derivation D has width
≤ d, so w(Σ )N 0) ≤ d. Assume that the claim holds for b− 1. By an averaging
argument, there must be a literal x that appears in at least t|Fat(D)| clauses
in D. Setting x := 1, and restricting the clauses in D, we obtain a refutation
D′ = D[x := 1] of Σ[x := 1] so that |Fat(D′)| < βb−1. By inductive hypothesis,

Σ[x := 1] )d+w(Σ)+(b−1)p 0, Σ[x := 0] )d+w(Σ)+bp 0,

so by Lemma 2, w(Σ )N 0) ≤ w(Σ) + d + bp, completing the induction.
Fix a contradictory set of clauses Σ over L, and set d =

√
p|L| log S(Σ), b =

*d/p+. By assumption, d < |L|, so t = d/|L| < 1. Then log S(Σ) = d2/(p|L|) ≤
bt ≤ b log β, showing that S(Σ) ≤ βb. Applying the previous result, we conclude
that w(Σ )N 0) ≤ w(Σ) + d + bp = w(Σ) + O(d + p), so that w(Σ )N 0) ≤
w(Σ) + O(

√
p|L| logS(Σ) + p). ��
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Corollary 1. S(Σ) = exp
(
Ω
(
min
[
|L|
p , (w(Σ
N 0)−w(Σ)−p)2

p|L|

]))
.

Corollary 1 includes the original width-size tradeoff theorem of Ben-Sasson and
Wigderson [2].

Theorem 3. Let Σ be a contradictory set of clauses with an underlying set
of variables V , w(Σ) the maximum number of literals in a clause in Σ, and
w(Σ ) 0) the maximum width of a resolution refutation of Σ. Then

S(Σ) = exp
(

Ω

(
(w(Σ ) 0)− w(Σ))2

|V |

))
.

Proof. Let N = 〈L,⊥〉 be the standard clash structure for V ; that is to say, L
is the set of all literals q and ¬q, where q ∈ V , and q ⊥ ¬q. Applying Corollary
1, we deduce:

S(Σ) = exp
(

Ω

(
min
[
2|V |, (w(Σ )N 0)− w(Σ)− 1)2

2|V |

]))
= exp

(
Ω

(
(w(Σ ) 0)− w(Σ))2

|V |

))
. ��

Theorem 3 is remarkably powerful, and when accompanied by the appropriate
width lower bounds (discussed below), is sufficient to prove exponential lower
bounds for the graph-based examples of Tseitin [16], [17], and also for random
sets of k-clauses, where k is fixed [6].

Theorem 3 is not applicable directly to the pigeonhole clauses. For these
clauses, the language Lm

n is that of a set of mn propositional variables P i
j , where

i ranges over the domain D = {1, . . . , m}, and j over the domain R = {1, . . . , n}.

Definition 1. For m > n, the pigeonhole clauses PHCm
n are the set of all

disjunctions of the form:

Domain Clauses. P i
1 ∨ P i

2 ∨ . . . P i
n, for i ∈ D;

Range Clauses. ¬P i
k ∨ ¬P

j
k , for i �= j ∈ D, k ∈ R.

The functional pigeonhole clauses FPHCm
n include in addition the clauses:

Functionality clauses. ¬P i
j ∨ ¬P i

k, for i ∈ D, j �= k ∈ R.

There are two problems in applying Theorem 3 to the pigeonhole clauses. The first
is that the clause sets contain large disjunctions of size n. The second is that the
number of variables is large (mn > n2). The first difficulty can be overcome by the
use of extension variables, but the second problem is less tractable. The solution of
BenSasson andWigderson is to consider stronger forms of the pigeonhole principle,
where the size of each domain clause is bounded by log m.

Corollary 1, however, can be applied directly, provided we first perform a
monotone transformation on the space of clauses and proofs; The idea of this
transformation is due to Buss [1, 4]. If C is a clause, then its monotone transform
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is the clause CM obtained from C by replacing every negative literal ¬P i
j by

the disjunction of the set of variables {P i
k|k �= j}. If Σ is a set of Lm

n -clauses,
then we write ΣM for the set {CM |C ∈ Σ}. Now consider the clash structure
Nm

n = 〈Lm
n ,⊥〉 where L is the set of all mn variables, and the clash structure is

defined by: P i
j ⊥ P i

k, for j �= k, j, k ∈ R.

Lemma 3. If C ∨ P i
j and D ∨ ¬P i

j are clauses in Lm
n , then (C ∨ D)M is an

Nm
n -consequence of (C ∨ P i

j )
M and (D ∨ ¬P i

j )M .

Proof. The monotone transforms of C ∨ P i
j and D ∨ ¬P i

j are CM ∨ P i
j and

DM ∨
∨
{P i

k|k �= j, k ∈ R}. Consequently, (C ∨ D)M = CM ∨DM is derivable
by the Nm

n -resolution rule from (C ∨ P i
j )M and (D ∨ ¬P i

j )M , and so is an Nm
n -

consequence of these clauses, by the soundness of the Nm
n -resolution rule. ��

It follows that if C1, . . . , Ck is a resolution refutation of a set Σ of Lm
n -clauses,

that (C1)M , . . . , (Ck)M is an Nm
n -resolution refutation of ΣM . Hence, it is suffi-

cient to prove lower bounds for the Nm
n -resolution refutation system. In the next

section, we prove an exp(Ω(n2/m)) lower bound on S(FPHCm
n ) by showing the

appropriate lower bound on width.

3 Width Lower Bounds

To apply the width-size tradeoff theorems of the preceding section, we need to
prove lower bounds on the width of refutations. The width lower bounds in the
literature all follow a common pattern that we describe here.

Assume given a clash structure N = 〈L,⊥〉, and an N -contradictory set Σ of
L-clauses. We prove lower bounds on the width of N -resolution refutations of Σ
by the following procedure. We associate a set of clauses with each clause in a
refutation in accordance with the following definition:

Definition 2. If P is an N -resolution refutation of Σ, a decoration Δ of P is
defined by associating a set of clauses ΔC with every clause C in P in such a
way that the following conditions are satisfied:

1. ΔC |=N C, if C ∈ Σ;
2. Δ0 �|=N 0.

Assume that we are given a width measure W (C) on clauses – we do not assume
that it is identical with the width measure defined earlier. Then a decoration Δ
of a refutation P is k-sound, where k ∈ N+, if it satisfies the condition: If E is
inferred by C and D by N -resolution, ΔC |=N C, ΔD |=N D, and W (E) < k,
then ΔE |=N E. The following result then follows by definition.

Lemma 4. If P is an an N -resolution refutation of Σ, and Δ is a k-sound
decoration of P, then P must contain a clause C with W (C) ≥ k.

To apply this general framework, we need to find appropriate decorations for
resolution refutations. For the remainder of this section, let us assume that the
width measure for clauses is simply that of the previous section, that is to say,
W (C) = w(C).
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Ben-Sasson and Wigderson [2] have developed a general method that is an ab-
stract version of earlier width lower bounds. The overall idea can be traced back
to the earliest paper on the complexity of resolution [16], and appears in variant
forms in most of the later papers on the subject (for example, [8, 17, 6, 1, 4]. The
idea is to define a measure of progress on the clauses in a refutation; we estimate
how far we have progressed towards a contradiction by counting the minimal
number of assumptions required to derive a given clause. We then try to show
that clauses in the “middle” of the refutation must be large.

Given a refutation P of anN -contradictory set Σ of L-clauses, Ben-Sasson and
Wigderson decorate P using the following scheme. Choose a set Γ of L-formulas
that is N -contradictory, and compatible with Σ in the sense that for any C ∈ Σ,
there is a set of L-formulas Δ ⊆ Γ so that Δ |=N C, where |Δ| ≤ |Γ |/3. Next,
associate with each clause C in P a subset of Γ as follows. If there is a subset
Δ ⊆ Γ so that Δ |=N C, and |Δ| ≤ |Γ |/3, then let ΔC be such a set; if no such
Δ exists, then ΔC = ∅. In this case, we say that the decoration Δ is constructed
from the compatible set of formulas Γ .

The width lower bound is proved by using the notion of the boundary of a set
of clauses; the definition that follows is similar to that of Ben-Sasson and Wigder-
son, but there are significant differences. If x ∈ L, and ϕ is an N -assignment,
we say that an N -assignment ψ is an x-neighbour of ϕ if ψ = (ϕ \ {y})∪{x} for
some y ∈ x⊥.

Definition 3. Let Γ be a set of L-formulas, and Π ⊆ Γ . Furthermore, for
F ∈ Π, let ϕF be an N -assignment so that ϕ(Π \{F}) = 1, ϕ(F ) �= 1. Then the
boundary of Π with respect to ϕF , δ(Π, ϕF ), is the set of all literals x ∈ L so
that for some x-neighbour ψ of ϕF , ψ(Π) = 1. The boundary of Π with respect
to the set of assignments S = {ϕF |F ∈ Π} is

⋃
F∈Π δ(Π, ϕF ).

If Γ is a set of L-formulas, then we define the expansion of Γ , e(Γ ), to be the
minimum size of the boundary

⋃
F∈Π δ(Π, ϕF ), where we minimize over subsets

Π of Γ such that |Γ |/3 ≤ |Π | ≤ 2|Γ |/3, together with the associated set of
assignments S = {ϕF |F ∈ Π}. Using this notion, we can state a fairly general
lower bound for resolution refutations.

Theorem 4. Let Σ be an N -contradictory set of L-clauses, and Γ a set of L-
formulas that is N -contradictory and compatible with Σ. Then w(Σ )N 0) ≥
e(Γ ) and

S(Σ) = exp
(

Ω

(
min
[
|L|
p

,
(e(Γ )− w(Σ) − p)2

p|L|

]))
.

Proof. Let P be an N -refutation of Σ, and Δ the decoration of P constructed
from Γ . By Lemma 4, and Corollary 1, it is sufficient to show that Δ is e(Γ )-
sound.

Assume that there are clauses C, D, E in the refutation so that E is inferred
from C and D by N -resolution, ΔC |=N C, ΔD |=N D, but ΔE �|=N E. We
aim to show that w(E) ≥ e(Γ ). By definition, |ΔC |, |ΔD| ≤ |Γ |/3. Since the
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N -resolution rule is N -sound, it follows that ΔC ∪ ΔD |=N E. Thus, there is
a minimal subset Π of ΔC ∪ΔD so that Π |=N E, and |Γ |/3 < |Π | ≤ 2|Γ |/3.
Let F be any formula in Π ; by assumption, Π \ {F} �|=N E, so that there is an
N -assignment ϕF such that ϕ(Π \{F}) = 1, ϕ(F ) �= 1, ϕ(E) �= 1. We claim that
δ(Π, ϕF ) ⊆ E. If x ∈ δ(Π, ϕF ), but x �∈ E, let ψ be an x-neighbour of ϕF such
that ψ(Π) = 1. Since x �∈ E, ψ(E) �= 1, contradicting the fact that Π |=N E.
Hence, w(E) ≥ e(Γ ), showing that Δ is e(Γ )-sound. ��
We now show how to apply Theorem 4 to prove lower bounds on various sets of
clauses. The first examples are the graph-based clause-sets of Tseitin [16, 7, 17]. If
G = (V, E) is a simple connected graph, then we can associate an unsatisfiable
set of clauses with G in the following way. Assign each edge in G a distinct
variable, and also assign a Boolean value c(x) ∈ {0, 1} to the vertices x in G so
that the sum modulo 2 of all of these values is odd. Associate with each vertex
v of G the set of clauses Σx that constitute the conjunctive normal form of
the equation e1 ⊕ . . . ⊕ ek = c(x), where e1, . . . , ek are the edges attached to
the vertex x. Then the set of clauses Σ(G) =

⋃
x∈V Σx is a contradictory set of

clauses, since each edge is attached to exactly two vertices. The appropriate clash
structure is the ordinary one; in this case we write w(Σ ) 0) for w(Σ )N 0).

If G = (V, E) is a graph, and W ⊆ V , then the boundary of W is the set of
all edges in G that are attached to exactly one vertex in W . Let us define the
expansion e(G) of a graph G = (V, E) as the minimum size of the boundary of
a subset W of the vertices of G, where |V |/3 ≤ |W | ≤ 2|V |/3.

Lemma 5. If Σ(G) is a set of clauses based on a connected graph G with an
odd labeling, then e(Σ(G)) ≥ e(G).

Proof. Associate with each vertex x ∈ V the conjunction Fx of Σx, together
with all clauses of the form e ∨ ¬e, where e is a variable in Σ(G). Let Γ be the
collection of all such formulas Fx, for x ∈ V . Then Γ is a contradictory set of
formulas compatible with Σ(G), and it is sufficient to prove that e(Γ ) ≥ e(G).

Suppose that W satisfies the condition |V |/3 ≤ |W | ≤ 2|V |/3, and that
F (W ) is the set of formulas {Fx|x ∈ W}. Furthermore, suppose that ϕx is an
assignment such that ϕx(Fy) = 1 for y ∈ W \ {x}, but that ϕx(Fx) �= 1. Since
ϕx must be a total assignment (it makes all clauses e ∨ ¬e true), it follows that
ϕ(Fx) = 0. If e is an edge attached to x that belongs to the boundary of W ,
then we can set Fx to true by setting either e or ¬e to true, without altering the
other truth-values assigned to Fy, y �= x. Hence, this literal associated with the
edge e must belong to the boundary of F (W ) with respect to ϕx. It follows that
e(Γ ) ≥ e(G). ��

We can now deduce the main result of [17] from the width lower bound of
Lemma 5.

Theorem 5. There is an infinite sequence of connected graphs G1, . . . , Gn, . . .
of bounded degree so that |Σ(Gn)| = O(n), and S(Σ(Gn)) = exp(Ω(n)).

Proof. It is a well known fact of graph theory (see, for example, [3, pp. 330-
333]) that there is an infinite sequence of connected graphs G1, . . . , Gn, . . . of
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bounded degree so that |Σ(Gn)| = O(n), and e(Gn) = Ω(n). The theorem
follows immediately from this fact by Lemma 5 and Theorem 4. ��
As a second application, we can prove lower bounds on the functional pigeon-
hole clauses FPHCm

n . The preceding lower bound on the size of refutations of
the graph-based clauses of Tseitin was derived by Ben-Sasson and Wigderson
as a special case of their general lower bound (Theorem 3). However, as was
mentioned above, the arguments used to prove lower bounds for the pigeonhole
clauses do not fit easily in their general framework, and they have to use special
tricks to adapt their results to this case.

Theorem 6. For n2 > m > n, w((FPHCm
n )M ) = Ω(n2) and S(FPHCm

n ) =
exp(Ω(n2/m)).

Proof. For i ∈ D, let Fi be the conjunction of the domain clause P i
1∨P i

2∨. . . P i
n,

together with all of the range clauses (¬P i
k ∨ ¬P

j
k )M , for i �= j ∈ D, k ∈ R, and

let Γ m
n be the set of all such formulas, for i ∈ D. Then Γ m

n is Nm
n -contradictory

and compatible with (FPHCm
n )M , so it is sufficient to prove lower bounds on

the expansion of Γ m
n .

For W ⊆ D, let F (W ) = {Fi|i ∈ W}; thus F (D) = Γ m
n . Let W be a subset

of D, where n/3 ≤ |W | ≤ 2n/3. Furthermore, for i ∈ W , let ϕi be an Nm
n -

assignment such that ϕi(F (W \ {i})) = 1, but ϕi(Fi) �= 1. The assignment ϕi

is a partial function from the domain D into R; let ψi be the restriction of ϕi

to W \ {i}, and Ri the range of ψi. Consider any literal P i
j , where j ∈ R \ Ri.

Then any P i
j -neighbour of ϕ makes all of F (W ) true, showing that P i

j is in the
boundary of F (W ) with respect to ϕi, so that there are at least n− |W | literals
of the form P i

j in δ(F (W ), ϕi). Hence, e(Γ m
n ) ≥ 2n2/9 so by Theorem 4:

S((FPHCm
n )M ) = exp

(
Ω

(
min
[

mn

n− 1
,
(2n2/9− 2n + 1)2

(n− 1)mn

]))
= exp(Ω(min[m, n4/n2m]))
= exp(Ω(n2/m)). ��

4 Glimpses Beyond

Theorem 4 is quite general, and includes not only the graph-based clauses of
Tseitin and the pigeonhole clauses, but also the random k-clauses of Chvátal
and Szemerédi [6, 2]. In fact, the theorem more or less encompasses the state of
the art of resolution complexity around 1996.

However, recent lower bounds for the weak pigeonhole principle do not ex-
actly fit the general framework developed here. Theorem 6 fails to yield super-
polynomial lower bounds unless m = o(n2/ logn). Intensive research on these
weak pigeonhole clauses extending over more than a decade finally resulted in
a more or less complete solution. The papers [4, 14, 9, 10] represent the result-
ing steady progress culminating in the final solution of Ran Raz in 2002. Raz’s
proof of an exponential lower bound was substantially simplified by Razborov
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[11], who extended his work in two later papers [12, 13]. Here, we discuss briefly
Razborov’s proof in [11].

The first major difference is the use of a different set of restrictions. The
key idea in the width-size tradeoff theorems is contained in Theorem 2, namely
that we can remove wide clauses from a derivation by random restrictions. The
restrictions used implicitly in Theorem 2 are obtained by setting a set of liter-
als to true. Another way of looking at this is that we simplify the refutation
by adding a set of one-literal clauses as new axioms. The new restrictions in
Razborov’s simplification of Raz’s proof are obtained by adding a set of gen-
eralized pigeonhole clauses as axioms. Specifically, consider a numerical vector
d1, . . . , dm, where 1 ≤ di ≤ n, and let PHPn(d1, . . . , dm) be the version of the
pigeonhole clauses where the domain axioms are replaced by the set of all axioms
of the form

∨
{P i

j |j ∈ J}, where i ∈ D, and |J | ≥ di. If we add such a set of
new axioms to a refutation, then it can be simplified, since any step containing
an axiom can be replaced by this axiom.

The second major difference lies in the use of a new concept of width of a
clause, that Razborov calls the pseudo-width. If C is a monotone clause, define
the degree of freedom of i in C to be |{j|P i

j ∈ C}|. Suppose that we have chosen
a vector d1, . . . , dm as above. Choose in addition a parameter δ = n/ logm, and
define the degree of freedom of i in C to be large if it is larger than di − δ.
Then the pseudo-width of a clause C is defined to be the number of i ∈ D
whose degree of freedom in C is large. The main size-width tradeoff of [11]
says that for any m > n, if PHCm

n has a monotone refutation of size L, then
there is a vector d1, . . . , dm so that di > δ, for all i, and PHCn(d1, . . . , dm)
has a monotone refutation of length at most L, and pseudo-width O(log L) (the
monotone transformation in this case is ¬P i

k ,−→ {P
j
k |j �= i}).

An exp(Ω(n1/4)) lower bound on size then results from a width lower bound,
just as in the earlier proofs. Razborov shows that any monotone refutation of a
subset F of PHCn(d1, . . . , dm), where δ < di for all i, must contain a clause of
size Ω(δ2/n log |F |). This part of the proof proceeds in a very similar fashion to
the argument of Theorem 6, though the more complicated restrictions lead to
somewhat more involved calculations.

It is clear that this proof follows along remarkably similar lines to the earlier
general lower bound. However, it can not be subsumed under it, so the search
for a yet more general point of view remains a topic for further research.
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Abstract. In the traditional scheduling problems, it is always assumed
that any job has to be processed and the processing time is pre-given
and fixed. In this paper, we address the scheduling problems with re-
jection or with discretely compressible processing times in which we can
choose a subset of jobs to process or discretely compress the original
processing times. Of course, choosing not to process any job or to pro-
cess it with a compressed processing time incurs a corresponding penalty
or cost. We consider the following problems for the first time: schedul-
ing with discretely compressible processing times to minimize makespan
with the constraint of total compression cost, scheduling with rejection
to minimize the total weighted completion time with the constraint of
total penalties and scheduling with discretely compressible processing
times to minimize the sum of total weighted completion time plus total
compression cost. We show that they are all NP-hard and design pseudo-
polynomial time algorithms through dynamic programming and FPTASs
for the first two problems. For the third problem, we present a greedy
heuristic. Theoretical analysis shows that it has a bounded worst case
performance ratio for a special case and large numbers of simulations tell
us that it works very well for the general problem.

1 Introduction

Model Formulations. Scheduling problems have been widely studied in the
last two decades. For the traditional research, it is always assumed that for any
job, 1. we have to process it; 2. the processing time is pre-given. In the real world,
however, things may be more flexible and we can make a higher-level decision,
i.e., we can break the two constrains by rejecting a job or by compressing its
processing time. It’s not hard for the readers to find examples in the industrial
and commercial fields to justify this breaking. To reject a job or to compress its
processing time, of course, we should pay a corresponding penalty or compression
cost. Our work is to design a strategy to make some tradeoff between the original
objective function(makespan, total completion time, etc.) and the total penalties
or total compression cost.
� Corresponding author.
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In the rest of this paper, we will denote by {J1, J2, · · · , Jn} a list of given jobs.
We write SR and SCP as abbreviations of the scheduling problem with rejection
and the scheduling problem with compressible processing times, respectively. In
the SR model, each job Jj(1 ≤ j ≤ n) is characterized by a double (pj , ej),
where pj is its processing time if we choose to process it(or accept it) and ej the
penalty we pay if we reject it. We also denote by TP the total penalties of the
rejected jobs in SR and by TPC the total processing cost in SCP.

There are two variants for SCP, the continuous one and the discrete one,
which are denoted by SCCP and SDCP, respectively. In SCCP, any job Jj can
be processed with a processing time pj ∈ [lj , uj] and incurs a corresponding
compression cost cj(uj − pj), where cj is the cost coefficient. And in SDCP, pj

can choose a value pji from among {pj1, pj2, · · · , pjk}, and the corresponding
compression cost is eji, where 1 ≤ i ≤ k and k is call the number of choices. We
assume that pj1 ≤ pj2 ≤ · · · ≤ pjk and ej1 ≥ ej2 ≥ · · · ≥ ejk. This assumption
is sound as the more processing time we compress the more cost we should
pay. It’s not hard to see that SDCP is in fact a generalization of SCCP since
in SCCP both the input and output are restricted to be integers as is usually
restricted in any combinatorial optimization problem. Take care, however, not to
rashly come to the conclusion that for any given scheduling problem (with pre-
fixed processing times) if the SCCP model is NP-hard then the SDCP model is
also NP-hard, as the input size of the SDCP may be much larger than that of
the SCCP.

We note that in many cases, including the ones we concern in this paper,
SDCP is also a generalization of SR. In fact, we can see SR as an SDCP problem
in which k = 2 and pj1 = 0, ej2 = 0, 1 ≤ j ≤ n. Rejecting a job corresponds to
compressing its processing time to 0(or nearly 0 in practice) and the rejection
penalty corresponds to the compression cost. We will come across some trouble,
however, when we concern scheduling problems with non-identical release times
and the original objective function is of the max form such as makespan. Take
the (off-line!)problem with non-identical release times to minimize makespan
for instance, suppose we reject all the jobs that arrive last (say at time rmax)
and the largest completion time of jobs that arrive earlier is strictly less than
rmax, we generally believe that the makespan should not be rmax but less. This
is not the case in SDCP however. Nevertheless, for the objective functions of
the sum form such as the total (weighted) completion time, noticing that in
SDCP we can always process a job whose processing time is 0 as soon as it
arrives and its contribution to the original objective function is fixed, we roughly
say that SR is a special case of SDCP. It holds in our paper that the NP-
hardness of an SR problem implies the NP-hardness of the corresponding SDCP
problem.

SR and SCP are both in essence bi-criteria, thus there are the following four
models for us to study:

(P1) To minimize F1 + F2;
(P2) To minimize F1 subject to F2 ≤ a;
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(P3) To minimize F2 subject to F1 ≤ b;
(P4) To identify the set of Pareto-optimal points for (F1, F2).

Where F1 is the original objective function, and F2 is TP or TPC. In the
objective function field of the notation of Graham et al.([7]), we write the above
four model as F1 + F2, F1/F2, F2/F1 and (F1, F2), respectively. We use rej in
the job environment field to characterize SR. Following Chen et al.([2]), we also
use cm and dm to characterize SCCP and SDCP, respectively. It’s valuable to
remark for any given bi-criteria problem that:

1. A solution to P4 also solves P1-P3 as a by-product;
2. The decision versions for P2 and P3 are equivalent;
3. If P2(or P3) is pseudo-polynomially solvable, so is P1, or equivalently,
4. If P1 is strongly NP-hard, then P2 and P3 are both strongly NP-hard.

Previous Related Work. Compared with the traditional problems, relatively
few researchers have concentrated on SR. As to the makespan criterion, Bartal
et al.([1]) studied the off-line version as well as the on-line version on identical
parallel machines; Seiden([12]) concentrated on the preemptive version and for
the uniform machines variant, He et al.([8]) presented the best possible on-line
algorithms for the two machine case and a special three machine case; For the
preemptive off-line variant on unrelated parallel machines, Hoogeven et al.([9])
proved that this problem is APX-hard and designed a 1.58-approximation al-
gorithm. As to the total weighted completion time criterion, Engels et al.([5])
addressed the off-line version and Epstein et al.([6]) the on-line version for a
unit-weight-unit-processing-time special case. Sengupta([13]) also considered the
maximum lateness/tardiness criterion.

While there have been many results for SCCP (for a survey till 1998, see [3]),
only three papers discussed SDCP up to now, to the best of our knowledge.
Vickson([14]) showed that the P1 model for 1|dm|Tmax is NP-hard. Deniels and
Mazzola([4]) studied an NP-hard flow shop scheduling problem in which the pro-
cessing time of each job can be varied according to the allocation of a limited
amount of resource. Chen, Lu and Tang([2]) solved the P1 models for 1|dm|

∑
Cj

and 1|dm, dj = D|α
∑

Ej + β
∑

Tj by formulating them as assignment prob-
lems, where D is a large enough number. They also showed that the P1 mod-
els for 1|dm, rj |Cmax, 1|dm, dj ≡ d|Tmax and 1|dm, dj ≡ d|w

∑
Uj are all NP-

hard and designed pseudo-polynomial time algorithms for 1|dm, rj |Cmax+TPC,
1|dm|Tmax + TPC and 1|dm|

∑
wjUj + TPC. Chen, Potts and Woeginger([3])

summarized these results.

Our Contributions. We note that all the researches cited above aims at the P1
model. In this paper, we address for the first time the P2 models for 1|dm|Cmax

and 1|rej|
∑

wjCj . We show that they are both NP-hard(Section 2) and design
FPTASs(Fully Polynomial Time Approximation Schemes) for them(Section 3).
Our approach is dynamic programming and the so called trimming the state
space technique. In Section 4, we also discuss 1|dm|

∑
wjCj + TPC, the special

case of which with identical weights is polynomially solved by Chen et al.([2]).
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We present a greedy heuristic, which is proved to have a bounded performance
guarantee ratio for a constrained special case and performs well for the general
case over varieties of simulations.

2 Complexities

We will show in this section that 1|dm|Cmax/TPC and 1|rej|
∑

wjCj/TP
are both NP-hard by reduction from 1|dj = d|

∑
wjUj , which is proved by

Karp([11])to be weakly NP-hard.

Theorem 1. 1|dm|Cmax/TPC is NP-hard.

Proof. We will prove that 1|rej|Cmax/TPC is equivalent to 1|dj = d|
∑

wjUj .
Actually, the common due date in 1|dj = d|

∑
wjUj can be seen as the threshold

for TPC in 1|rej|Cmax/TPC and each weight wj as processing time pj, and con-
sequently the weighted number of tardy jobs in the former problem corresponds
to makespan of the accepted jobs in the latter one. The detailed proof is left to
the readers. ��

Theorem 2. 1|rej|
∑

wjCj/TPC is NP-hard. ��

In the paper of Chen et al.([2]), the problem 1|dm|
∑

wjCj + TPC is conjec-
tured to be NP-hard even when k = 2. Since Engels et al.([5]) have shown
that 1|rej|

∑
wjCj + TPC is NP-hard, we declare that the conjecture of Chen

et al. is indeed true. We can get the same result from another point of view:
Vickson([15]) proved that in 1|cm|

∑
wjCj + TPC, we can always choose for

any job not to compress it at all or to compress it to the lower bound, thus
1|dm, k = 2|

∑
wjCj + TPC is equivalent to 1|cm|

∑
wjCj + TPC, which is

proved to be NP-hard by Wan et al.([16]) and Hoogeveen and Woeginger([10])
independently. For the sake of completeness, we present the following theorem:

Theorem 3. 1|dm|
∑

wjCj + TPC is NP-hard. ��

3 Dynamic Programmings and FPTASs

The P2 model for SDCP to minimize makespan. Given a set of jobs
{Jj = (pj1, Pj2, · · · , pjk, ej1, ej2, · · · , ejk) : 1 ≤ j ≤ n} and a threshold E, we will
find a schedule with the minimum makespan whose TPC is at most E.

For any partial schedule for jobs J1, · · · , Jj , if its makespan is P , we say that
its state is (j, P ). If (j, P ) can be obtained by some partial schedule, we say it’s
feasible. Let Sj denote the jth state space, i.e. the set of all the feasible states
obtained by partial schedules for jobs J1, · · · , Jj . For any (j, P ) ∈ Sj , M(j, P )
represents the minimum TPC of partial schedules whose states are (j, P ).

In stage j, we first let Sj = ∅ and then for each (j − 1, P ) ∈ Sj−1, we add
(j, P + pj1), (j, P + pj2), · · ·, (j, P + pjk) to Sj . After Sj is constructed, for any
(j, P ) ∈ Sj , let M(j, P ) = min{M(j, P − pji) + eji : 1 ≤ i ≤ k}.
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As to initialization, we simply let S1 = {(1, p11), (1, p12), · · · , (1, p1k)} and
M(j, p1i) = e1i, 1 ≤ i ≤ k. And to get the optimal schedule, we only have to find
the minimum P such that M(n, P ) ≤ E and derive a corresponding schedule
whose state is (n, P ) by backtracking.

It’s straightforward that the time complexity is O(n2Pmax), where Pmax =
max{pji : 1 ≤ j ≤ n, 1 ≤ i ≤ k}, which is pseudo-polynomial.

To further get an FPTAS, we have to trim the state space Sj into a new one
whose cardinality is polynomial in the input size, and the cost of this trimming,
i.e. the accuracy loss, can be small enough. We denote the new state space
trimmed down by Tj .

Given any accuracy parameter ε > 0, let ε0 = ε/(2n). We partition the time
horizon [0, nPmax] into intervals I0 = [0, 1], I1 = ((1 + ε0)0, (1 + ε0)1], I2 =
((1 + ε0)1, (1 + ε0)2] · · · , It = ((1 + ε0)t−1, (1 + ε0)t], where t = *lognPmax

1+ε0
+.

We initialize T0 = {(1, p11), (1, p12), · · · , (1, p1k)}. In the jth stage, 1 ≤ j ≤ n,
we first compute Sj from Tj−1 as we do in the original dynamic programming. For
any (j, P ) ∈ Sj , if P falls into the ith time interval Ii, i ≥ 1, we let P

′
= (1+ε0)i;

and if P = 0 or P = 1, we simply let P
′
= P . Then we add the new state (j, P

′
)

to Tj and let M
′
(j, P

′
) = M(j, P ). Notice that P

′
is at most (1+ ε0) times of P

and the cardinality of Tj for any 1 ≤ j ≤ n is at most *lognPmax
1+ε0

++ 2, which is a
polynomial in the input size. We find the minimum P

′
such that M

′
(j, P

′
) ≤ E

and suppose that π is a corresponding schedule. We will verify that π meets our
demand. Notice first that π is a feasible schedule.

Theorem 4. The makespan of π is at most (1 + ε) times that of the opt-
imal one. ��
It’s not hard to calculate that the running time is O((1/ε)n2 log(nPmax)). We
remark also that if we use equal partitioning instead of geometry partitioning to
trim down the state space, we can still get a (1 + ε)−optimal schedule and the
running time is O((1/ε)n4), which is not related with the any input datum but
only with the number of input data.

Theorem 5. 1|dm|Cmax/TPC admits an FPTAS. ��

The P2 model for SR to minimize the total weighted completion time.
We are given a list of jobs {Jj = (pj , wj , ej) : 1 ≤ j ≤ n} and suppose that all the
jobs have been indexed in non-decreasing order of pj/wj. The given threshold
for TPC is E. Let f(j, P, A) be the minimum TPC of partial schedules for jobs
J1, J2, · · · , Jj , whose total processing times are P and objective function values
are A, thus we have:

f(1, P, A) =
{

0 if P = p1 and A = w1p1
+∞ otherwise

f(j, P, A) = min{f(j − 1, P − pj , A− wjP ), f(j − 1, P, A) + ej}
The optimal schedule can be obtained by finding the minimum A such that

f(n, P, A) ≤ E for some 0 ≤ P ≤
∑n

j=1 pj and derive the corresponding schedule
by backtracking. The running time is O(n3P 2

maxWmax).
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In order to get a (1+ε)−approximation in polynomial time, similarly, we need
to use the trimming the state space technique as we have done for 1|dm|Cmax/
TPC. The only difference is that for any state vector (j, P, A), we may use
the stretching technique twice: if P is not an integer power of 1 + ε0, where
ε0 = ε/(4n), we should first stretch pj a little such that P is of this form and
then stretch wj such that A is also of this form. For the case P is already an
integer power of 1+ε0, which may be because that Jj is rejected in this state, we
merely have to stretch wj . After the two steps of operations, A may eventually be
enlarged to at most (1 + ε0)2 times the original value. It’s still easy to calculate
that the corresponding running time is O((1+ε)2n logPmax log(n2PmaxWmax)).
The details are left to the interested readers.

Theorem 6. 1|rej|
∑

Cj/TP admits an FPTAS. ��

4 A Greedy Heuristic

In this section, we will consider the problem 1|dm|
∑

wjCj+TPC. For simplicity,
we will concentrate on the special case k = 2. The readers will see that our
algorithm can easily be carried over to the general case. For any job Jj , 1 ≤ j ≤ n,
we assume that pj1 < pj2 and hence ej1 > ej2. We will present a greedy heuristic
which runs in time O(n log n) and prove that it is (1 + α)/2 guaranteed, where
α = max{pj2/pj1, ej1/ej2 : 1 ≤ j ≤ n}.

At a glance, the problem under our consideration is much like 1|rej|
∑

wjCj +
TPC, which is pseudo-polynomially solvable through dynamic programming and
admits an FPTAS([5]). Further thoughts tell us that, however, there are essen-
tial differences between them which deny us a similar dynamic programming.
More detailed, due to the Smith’ rule, we can initially re-number all the n jobs
in the non-decreasing order of ratios pj/ej in 1|rej|

∑
wjCj +TPC, and accept-

ing/rejecting any number of jobs is feasible; Whereas in 1|dm|
∑

wjCj +TPC, it
is hard to initialize an order of all the n jobs according to which we can consider
one by one, as each job has two processing times and consequently two processing
time to weight ratios, and the only feasible approach to overcome this barrier,
so at least it seems to the authors, is to see each job Jj = (pj1, ej1, pj2, ej2) as
two imaginary ones Jj1 = (pj1, ej1) and Jj2 = (pj2, ej2)(this idea will also be
applied later), and then re-order the 2n new jobs according to their processing
time to weight ratios. This incurs another difficulty, however, that between any
pair of new jobs, we have to accept one and only one of them, which forces
us to record an extra information in each stage of the dynamic programming
which (new)jobs have been accepted and requires O(2n) space and thus run-
ning time.

In the heuristic, we first renumber all the jobs such that:

pn1/wn ≤ pn−1,1/wn−1 ≤ · · · ≤ p11/w1 (1)

and rewrite the 2n ratios as:

p2n/w2n ≤ p2n−1/w2n−1 ≤ · · · ≤ p1/w1 (2)
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Notice that p2j = pj1, w
2j = wj , 1 ≤ j ≤ n. We also denote by s(j) the new

index of pj2/wj , i.e. Jj = Js(j), pj2 = ps(j), wj = ws(j), 1 ≤ j ≤ n.
The greedy heuristic which will be stated below is quite straightforward: we

consider all the n jobs one by one, and for any currently considered job Jj , we
decide which of the two associated jobs Jj1 or Jj2 to accept roughly by comparing
their potential contributions to the objective function value with respect to the
previously determined partial schedule and taking the small one. We denote
by Cj1 and Cj2 the contributions of Jj1 and Jj2, respectively. It’s not hard to
see that:

Cj1 = (
j∑

i=1

wi)pj1 + ej1 (3)

and

Cj2 = (
s(j)−1∑

i=1

wiA(i))pj2 + wj(
2j−1∑

i=s(j)+1

piA(i) + pj2) + ej2 (4)

where A(i) = 1 if J i has been accepted up to the time when we consider Jj and
A(i) = 0 otherwise, 1 ≤ i ≤ 2j. The detailed algorithm is described as follows:

Algorithm Greedy

Renumber all the jobs and ratios as we do in (1) and (2), record s(j) for
1 ≤ j ≤ n. Let A(i) := 0 for any 1 ≤ i ≤ 2n.

For j=1:n
If Cj1 ≤ Cj2, then accept Jj1 and let A(2j) := 1;

else, accept Jj2 and let A(s(j)) := 1.
Endif

Endfor

Theorem 7. The worst case performance ratio of Algorithm Greedy is at most
(α + 1)/2. ��

Although we can’t prove that this bound is tight, in fact we conjecture that
it is not, indeed we can show that Algorithm Greedy may perform arbitrarily
bad when α tends to infinity, notwithstanding extensive numerical experiments,
which are omitted due to a limitation of space, demonstrate that it has an
excellent average performance.

Given any large number R, consider the following SR problem with n + 1
jobs(note that in this case α = +∞): for the first n jobs, pj = 1, wj = 1/j, ej =
1 + ε, 1 ≤ j ≤ n, and pn+1 = R2, wn+1 = R, en+1 = +∞. It’s not hard to
calculate that all the jobs are accepted by Greedy and

Grd(n + 1)
Opt(n + 1)

=
n + (n + R2)R
(1 + ε)n + R3 → R + 1(n→ +∞)
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Remarks

(1). If we can renumber all the jobs such that pn1/w1 ≤ pn2/w2 ≤ pn−1,1/wn1 ≤
pn−1,2/wn−1 ≤ · · · ≤ p11/w1 ≤ p12/w1, then the problem under our considera-
tion can be optimally solved in O(n log n) time;
(2). If we can renumber all the jobs such that pn1/wn ≤ pn−1,1/wn−1 ≤ · · · ≤
p11/w1 ≤ pn2/wn ≤ pn−1,2/wn−1 ≤ · · · ≤ p12/w1 or such that pn1/wn ≤
pn−1,1/wn−1 ≤ · · · ≤ p11/w1 ≤ p12/w1 ≤ p22/w2 ≤ · · · ≤ pn2/wn, we can
design an FPTAS similar to that in [5];
(3). The greedy heuristic and the performance guarantee proof can be easily
carried over to the general case with arbitrary k and we also have the similar
results as the former two remarks for the general problem.

5 Conclusions and Further Directions

In this paper we have discussed three scheduling problems with rejection or
discretely compressible processing times. The two models are of interest both
in the real world and in the sense of theory and they attracted relatively little
attention compared with traditional scheduling problems. We address for the
first time the P2 model for scheduling with discretely compressible processing
times to minimize makespan and the P2 model for scheduling with rejection to
minimize the total weighted completion time. We show that they are both NP-
hard and present FPTASs for them. We also present a simple greedy heuristic for
scheduling with discretely compressible processing times to minimize the total
weighted completion time plus the total processing cost. Simulations (which are
omitted due to the limitation of space)indicate that the heuristic in general
performs very well.

For further researches, an obvious problem is the complexity of 1|dm|∑
wjCj + TPC. We have known that it is weakly NP-hard, can we further show

that it is strongly NP-hard or not? Another problem, is the performance guarantee
ratio we give for the heuristic tight or not? We conjecture that it is not and expect
further analysis to give a tight ratio as well as more delicate approximate algo-
rithms. No one has considered the P4 model, which is more complicated and more
meaningful, for any scheduling problem with rejection or with discretely compress-
ible processing times up to now. Scheduling with discretely compressible release
times and various on-line models are also of great interest.
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Abstract. The generalization performance of LS-SVM depends on a
good setting of its parameters. Chaotic particle swarm optimization
(CPSO) with simulated annealing algorithm (SACPSO) is proposed to
choose the parameters of LS-SVM automatically. CPSO adopts chaotic
mapping with certainty, ergodicity and the stochastic property, possess-
ing high search efficiency. SA algorithm employs certain probability to im-
prove the ability of PSO to escape from a local optimum. The results show
that the proposed approach has a better generalization performance and
is more effective than LS-SVM based on particle swarm optimization.

1 Introduction

In recent years, support vector machines (SVM), which were introduced from sta-
tistical learning theory by Vapnik (1995) [1], have received considerable attention
and have been extensively used in many fields. In the study, least squares sup-
port vector machine (LS-SVM) proposed by Suykens and Vandewalle (1999)[2] is
used. LS-SVM must be trained to obtain predicting ability by solving a set of lin-
ear equations. However, during training and predicting, some inherent problems
are frequently encountered.

The generalization performance of LS-SVM depends on a good setting of
its parameters, however, traditional parameters selection was carried out by
iterative experiments and the method needs the experience of users and the
precision is influenced by users. Moreover, the method takes a long time.

The particle swarm optimization (PSO) is a parallel population-based com-
putation technique proposed by Kennedy and Eberhart in 1995 [3][4]. Some
researchers have used PSO to train neural networks and have obtained good
results [5][6].

In the paper, chaotic particle swarm optimization (CPSO) with simulated
annealing algorithm (SACPSO) is proposed to choose the parameters of LS-SVM
automatically. CPSO adopts chaotic mapping, possessing high search efficiency;
SA algorithm is used to improve the ability of PSO to escape from a local
optimum.

2 Approach Description

In this section, we describe SVM and LS-SVM for regression problems.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 99–107, 2006.
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2.1 Support Vector Machines for Regression Approximation

The main objective of regression estimation is to approximate a function f(x)
from a given noisy set of samples {(xi, yi)}ni=1. SVM approximates the function
as follows:

f(x) =
D∑

i=1

wiψi(x) + b = wT ψ(x) + b (1)

where {ψi(x)}Di=1 denotes a set of non-linear transformations from the low di-
mensional space to the high dimensional feature space.

SVM regression is formulated as minimization of the following function:

Minimize RSV M(w, ξi, ξ
∗
i ) =

1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ) (2)

Subject to: yi − wψ(xi)− b ≤ ε + ξi, wψ(xi) + b− yi ≤ ε + ξ∗i , ξi, ξ
∗
i ≥ 0

where ε is called tube size, ξi and ξ∗i are the slack variables, C is the regulariza-
tion parameter. By introducing Lagrange multipliers, decision function (1) takes
the following form:

f(x) =
n∑

i=1

(ai − a∗
i )K(x, xi) + b (3)

where K (x , xi) is kernel function. ai and a∗
i are Lagrange multipliers which are

obtained by maximizing the dual form of the function (2). The dual form is as
follows:

R(ai, a
∗
i ) =

n∑
i=1

yi(ai − a∗
i )−ε

n∑
i=1

(ai + a∗
i )−

1
2

n∑
i=1

n∑
j=1

(ai−a∗
i )(aj −a∗

j)K(xi, xj)

(4)

Constraint:
n∑

i=1
(ai − a∗

i ) = 0, 0 ≤ ai, a
∗
i ≤ C, i = 1, 2, · · · , n.

2.2 Least Squares Support Vector Machines (LS-SVM)

In contrast to the SVM, LS-SVM is trained by the following equation:

min J =
1
2
wT w +

1
2
r

n∑
i=1

e2
i (5)

Subject to the equality constraints: yi = wT ψ(xi) + b + ei, i = 1, 2, · · · , n.

It is clear that the passage from (2) to (5) involves replacing the inequality
constraints by equality constraints and a square error term similar to ridge re-
gression. The corresponding Lagrangian function for (5) is as follows:

L = J −
n∑

i=1

ai[wT ψ(xi) + b + ei − yi], i = 1, 2, · · · , n (6)
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where ai is Lagrange multiplier. Then the optimization problem is transformed
into the following linear equation:[

0 1T

1 Ω + r−1I

][
b

a

]
=
[
0
y

]
(7)

where y = [y1, · · · , yn]T , 1 = [1, · · · , 1]T , a = [a1, · · · , an]T , Ωij = ψ(xi)T ·ψ(xj) =
K(xi, xj).

The decision function (1) takes the following form:

y(x) =
n∑

i=1

aiK(x, xi) + b (8)

LS-SVM has only two parameters which are less than SVM. Moreover, it only
needs to solve linear equation. Therefore, the algorithm reduces computation
complexity.

In the paper, K(xi, xj) = exp
(
− 1

2λ2 ‖xi − xj‖2
)

is used as the kernel function
of LS-SVM because it tends to give good performance under general smooth-
ness assumptions. The values of λ and r are obtained by CPSO with simulated
annealing.

2.3 Chaotic Particle Swarm Optimization with Simulated Annealing

Chaotic Particle Swarm Optimization (CPSO). The particle swarm op-
timization (PSO) is a computation intelligence technique, which was motivated
by the organisms’ behavior such as schooling of fish and flocking of birds. PSO
can solve a variety of difficult optimization problems. The major advantage is
that PSO uses the physical movements of the individuals in the swarm and has
a flexible and well-balanced mechanism to enhance and adapt to the global and
local exploration abilities. Another advantage of PSO is its simplicity in coding
and consistency in performance. The global optimizing model proposed by Shi
and Eberhart (1999)[7] is described as follows:

Vid(t+1) = W ·Vid(t)+C1 ·R1 · (Pbest(t)−Xid(t))+C2 ·R2 · (Gbest(t)−Xid(t))
(9)

Xid(t + 1) = Xid(t) + Vid(t) (10)

where Vid is the velocity of particle i, represents the distance to be travelled
by this particle from its current position; t is the number of iterations; Xid

represents the particle position; W is the inertial weight; C1 and C2 are the
positive constant parameters; R1 and R2 are the random functions in the range
[0,1]; Pbest (local best solution) is the best position of the ith particle and Gbest

(global best solution) is the best position among all particles in the swarm.
The computational flow of PSO technique can be described in the following

steps:

Step1: Initialize a swarm of particles with random positions and velocities.
Step2: Calculate the fitness of each particle in the swarm.
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Step3: Compare particle’s fitness with the fitness of Pbest, if current value is
better than the fitness of Pbest, then Pbest is set to the current position.
Step4: Compare particle’s fitness with the fitness of Gbest. If current value is
better than the fitness of Gbest, then reset Gbest to the position of the current
particle.
Step5: Calculate the velocity Vi and position Xi according to equation (9) and
(10) respectively.
Step6: If one of the stopping criteria (Generally, a sufficiently good fitness or a
specified number of iteration) is satisfied, then stop; else go to step2.

In general, the parameters W , C1, C2, R1 and R2 are the important factors
which influence the convergence of the PSO. However, parameters R1 and R2 can-
not guarantee the optimization’s ergodicity entirely in phase space because they
are absolutely random in the traditional PSO [8]. Therefore, chaotic mapping with
certainty, ergodicity and the stochastic property is introduced into particle swarm
optimization to improve the global convergence. R1 and R2 are chosen as follows:

Ri(t + 1) = 4.0 ·Ri(t) · (1 −Ri(t)) (11)

where Ri(t) ∈ (0, 1), i = 1, 2.
The acceleration constants C1 and C2 adjust the amount of ’tension’ in the

CPSO system. High values result in abrupt movement toward, or past, target
regions, while low values allow particles to roam far from target regions [9].

The inertia weight W is very important for the convergence behavior of CPSO.
A suitable value usually provides a balance between global and local exploration
abilities and consequently results in a better optimum solution. We use the
following equation to adjust to enable quick convergence:

W = Wmax −
Wmax −Wmin

kmax
· k (12)

where Wmax is the initial weight, Wmin is the final weight, k is the current
generation and kmax is the maximum number of generation.

Fitness is used to evaluate the performance of particles in the swarm. Gen-
erally, choosing a proper objective function as fitness function to represent the
corresponding superiority of each particle is one of the key factors for success-
ful resolution of the relevant problem using CPSO algorithm. In the training and
predicting process of LS-SVM, the objective is to improve the generalization per-
formance of LS-SVM, namely, minimize the errors between target values and pre-
dicted values of the testing sample set. The fitness function is defined as follows:

Fitness =

√√√√ 1
n

n∑
i=1

(yi − f(xi))2 (13)

where yi is the target output, f(xi) is the output of LS-SVM and n is the number
of samples.

The objective is to minimize the errors, i.e. Fitness, so the particle with
the minimal fitness will outperform others and should be reserved during the
optimization process.
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Simulated Annealing (SA). Simulated annealing (SA) algorithm is a com-
putational stochastic technique for obtaining near global optimum solutions to
combinatorial and function optimization problems [10]. The algorithm imitates
the cooling process of material to attain the lowest free energy and has produced
good results for many scheduling problems.

In SA algorithm, the improvements are obtained by choosing another so-
lution (s

′
) that belongs to the neighborhood (N(s0)) of the current solution

(s0). When the current solution changes from s0 to s
′
, the objective function

(cost =

√
1
n

n∑
i=1

(yi − f(xi))2) will also change, namely, Δ = cost(s
′
) − cost(s0).

For the minimization problem, if Δ < 0, the new solution s
′
will be accepted. If

Δ ≥ 0, the new solution will be accepted with the probability exp(−Δ/temp),
where temp is called the temperature. Generally, the algorithm starts from a
high temperature t0, and then the temperature is gradually decreased. It is well
known that the method that specifies temperature with the equation tn = α·tn−1
is often a good choice and can provide a tradeoff between computational time
and good solutions. As the temperature decreases, the probability of accept-
ing worse solutions gradually approaches zero. This feature means that the
SA algorithm makes it possible to jump out of a local optimum to search for
the global optimum. When termination condition tf is satisfied, the algorithm
will stop.

In CPSO operation process, SA algorithm is used to deal with every particle
as: Δ = Fitness(Pbest)−Fitness(Gbest) if Δ < 0, accept Gbest = Pbest with the
probability 1; if Δ ≥ 0, accept Gbest = Pbest with the probability prob defined
as follows:

prob = exp(−Δ/temp) (14)

where Pbest is the best position of the ith particle and Gbest is the best position
among all particles in the swarm. temp is the current temperature.

2.4 LS-SVM Based on SACPSO

Chaotic particle swarm optimization (CPSO) with simulated annealing algo-
rithm (SACPSO) is proposed to choose the parameters of LS-SVM automati-
cally. CPSO adopts chaotic mapping with certainty, ergodicity and the stochastic
property, possessing high search efficiency. SA algorithm employs certain prob-
ability to improve the ability of PSO to escape from a local optimum. The
algorithm avoids jamming and improves the precision of prediction. The flow of
the model is described as follows:

Begin

Step1: Set parameters
Initialize swarm size,maximum of generation, Wmax, Wmin, C1,C2, t0, tf,

α, Generation=0;
Step2: Learning and computation

Initialize particles with random positions and velocities;
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Input the training set and testing set respectively;
LS-SVM model learns with the training sample set;
Compute the fitness of each particle;
Initialize Gbest position with the particle with the lowest fitness in the

swarm;
Initialize Pbest position with a copy of particle itself;
While (the maximum of iteration or precision is not met
Do { Generation = Generation+1;
Generate the next swarm by equation (9) and (10);
LS-SVM model learns with the training sample set;
Compute the fitness of each particle in the swarm;
Carry out SA operation;
Update the Gbest of the swarm and Pbest of each particle;
}

Step3: Prediction
LS-SVM model predicts the testing set with the parameters obtained from

step2.
Step4: Output the results

End

3 Application of LS-SVM Based on SACPSO

In steel industry, the continuous compression tests are performed to get infor-
mation which establishes the relation between flow stress and strain, strain rate,
temperature. However, during the hot deformation process, there are many fac-
tors that influence the flow stress. The influence on flow stress is very complex
and most of the factors are non-linear, so it is difficult to establish an advis-
able regression model and the accuracy of the predicted flow stress using the
regression model is low. In the paper, LS-SVM based on SACPSO and LS-SVM
based on conventional PSO were adopted as examples to model the relationship
between the flow stress and strain, strain rate, temperature.

The continuous compression tests for flow stress of 45 steel are performed on
a Gleeble 1500 Thermal Simulator. The specimen size is φ8mm× 15mm.

In the hot compression tests, flow stress is tested and the data are collected
in the sample database. Finally, 150 data patterns are selected and they are
randomly divided into two subsets: ’training’ and ’testing’ sets. 70 groups are
used as training samples to train the model, 80 groups are used as testing samples
to check the generalization performance of the model.

Normalizing the data before applying the models is very important. In the
paper, each attribute is scaled by the following method:

x
′
i =

(xi − μ)
ρ

(15)

where xi is a certain attribute value, and μ is the mean value of the attribute,
and ρ is the standard deviation.
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The inputs of the models are chosen as follows: the contents of C, Si, Mn, P,
S, Cr and Ni; strain, strain rate and temperature. C, Si, Mn, P, S, Cr and Ni
are the chemical components. The output is the flow stress.

In this research, by many experiments, the parameters of the models were
chosen as follows: swarm size: 50, maximal iteration: 200, Wmax = 1.2, Wmin =
0.4, C1 = 2.0, C2 = 2.0, the initial temperature t0 = 3, termination temperature
tf = 0.01, α = 0.9. Every initial particle was a set of parameters of LS-SVM
generated randomly.

Through 10 simulation experiments, the parameters of LS-SVM are obtained.
For LS-SVM based on SACPSO, when λ = 0.7899, r = 99.42, the generalization
performance of the model is the best.

The fitness curves of LS-SVM based on SACPSO and LS-SVM based on PSO
during training are shown in Fig.1.
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Fig. 1. Fitness curves of LS-SVM based on SACPSO and LS-SVM based on PSO

To evaluate the performance of the models, the root mean square errors
(RMSE) between target values and predicted values are chosen as the eval-
uation function:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − f(xi))2 (16)

The best and average results of testing sample set in 10 simulation experiments
are shown in Table 1.
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Table 1. Comparison results between two methods

Model LS-SVM based on SACPSO LS-SVM based on PSO
RMSE Average results 3.473 3.834

best results 2.852 3.395
β ≤ 0.01 44.24 % 38.16 %

Relative error 0.01< β ≤ 0.05 48.88 % 49.98%
rate 0.05 < β ≤ 0.10 6.88 % 10.31 %

β >0.1 0 1.55 %

where β = |y−f(x)|
y is relative error rate, y is target value and f(x) is predicted

value.
From Fig. 1, it can be observed that some parts of the fitness curve of LS-SVM

based on SACPSO obviously vibrate but the fitness curve of LS-SVM based
on PSO does not, which shows that the LS-SVM based on SACPSO accepts
worse solutions sometimes and indicates its better ability to escape from a local
optimum. Moreover, LS-SVM based on SACPSO got the better results than LS-
SVM based on PSO in the end, owing to the increased diversity in the particles
by SA algorithm and chaotic mapping.

Generalization performance is the most important factor to evaluate the per-
formance of a model, and the accuracy and precision of the testing set exactly
reflect generalization performance of the model. From Table 1, it can be observed
that the RMSE obtained from LS-SVM based on SACPSO is far smaller than
that from LS-SVM based on PSO, which indicates that precision of prediction
and generalization performance of LS-SVM based on SACPSO outperform LS-
SVM based on PSO. For testing data, i.e. the non-sampled data, the relative
errors between the target values and the values acquired from LS-SVM based on
SACPSO are all within 0.1. It can be seen that LS-SVM based on SACPSO is
able to predict the flow stress of 45 steel very accurately. The model established
by LS-SVM based on SACPSO is more successful and more effective than that
from LS-SVM based on PSO.

4 Conclusions

We have discussed a new hybrid model LS-SVM based on SACPSO. The perfor-
mance of the model is evaluated in comparison with the results obtained from
LS-SVM based on PSO. The results show that the proposed model has a better
ability to escape from the local optimum and a better predicting ability than LS-
SVM based on PSO. Additionally, there are a large number of research directions
that can be considered as useful extensions of this research.
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Abstract. In this paper we formulate a bounded item bin packing prob-
lem over discrete distribution (BIBPPOD) in computer and communi-
cation networks, and consider the average performance ratio for next fit
algorithm. An efficient average-case analysis procedure for finding the av-
erage performance ratio and problem solution is demonstrated. We give
the closed-form expression for some special range to which the bounded
item belongs. Our result is useful for designing the length in fixed-size
format or evaluating the performance impacted by the protocol header
in computer and communication network.

1 Introduction

In classic bin packing problem (BPP), we are given a list of items a1, a2, · · · , an

and their sizes (s1, s2, · · · , sn )(0 < si < 1) and are required to pack the items
into a minimum number of unit-capacity bins. Over the course of the past 30
years, due to its applicability to a large number of occasions, the BPP was
investigated quite intensively[1].

In this paper, we study a variation of the classical BPP. We introduce the
bounded item bin packing problem over discrete distribution (BIBPPOD), a
bin packing problem in which item size is chosen from the finite integer set
{r, r + 1, r + 2, · · · , B} (r is the bounded size, and B is the bin capacity).

BIBPPOD may be of interest when, for example, multi-users request the cen-
tral unit (such as base station, access point and anchor node) for bandwidth
resource to transmit data in the centralized network, which is also called band-
width packing problem[2][3][4][5][6][7]. Due to the fact that the computer and
communication network system is a layered architecture[8][9], the data for the
network transmission has to be encapsulated beginning at the top of the layer
and moving down. In other words, each layer wraps the data passed to it by
the previous layer with information, which is called a header. Hence each data
transmitted along the communication link has been encapsulated with multi-
layer protocol information. If we take these wrapped data as items and the
bandwidth resource during each allocation window as a bin, the bandwidth re-
source allocation in the central unit is a BIBPPOD. Furthermore in computer

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 108–117, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and communication network, fixed-size packet format is more adaptive to trans-
mit real time service than variable-size format[10], hence packing variable size
user information into fixed-size packet is also a BIBPPOD.

For a list of items with bounded size Ln (n is the number of items) and
algorithm A, A(Ln) denotes the number of bins used by the algorithm A for
packing list Ln, and OPT (Ln) denotes the minimum number of bins required
to pack list Ln. The average performance ratio is defined as

R
∞

A = lim
n→∞

E[
A(Ln)

OPT (Ln)
], (1)

where E(x) denotes the expected value of a random variable x.
Of all algorithms for bin packing problem, next fit (NF) is the simplest, which

corresponds to First-Come-First-Serve algorithm in computer network and works
as follows. All arriving items are packed into the current bin sequentially, if the
current bin has no room for the next item, a new bin is opened to become the
current bin. The pioneer work of average-case analysis on NF can be traced to [11]
[1980], where Coffman et.al obtained RNF [0, 1] = 4/3. Since then, many other
solutions of average-case analysis have also been obtained. Karmarkar [12] gave
a closed-form expression for RNF [0, b] for b ≥ 1/2. Using the similar method,
Tsuga[13] obtained a closed-form expression for RNF [a, b] for a ≥ 1/3. When
item size distribution is discrete, for NF algorithm Coffman et.al obtained the
average channel capacity [14].

In this paper, for the sake of simplicity we study the average performance of
next fit algorithm for BIBPPOD. In section 2, the average performance ratio
is discussed based on our theoretical analysis. In section 3 our result is com-
pared to that of continuous distribution, and a brief conclusion summarizes the
arguments.

2 The Average-Case Analysis

In order to analyze the average performance ratio of NF algorithm for BIBP-
POD, we use the similar approach as Nir and Raphael’s[15]. Also for the sake of
simplicity we assume the item size over uniform distribution. Firstly, for com-
pleteness we introduce some definitions.

Definition 1. During packing, if the free space b in the current bin is smaller
than the new item aj, then b is designated item aj’s overhead, and sj + b is
called aj’s combined size.

Definition 2. For items sequence Ln, under NF algorithm the expected asymp-

totic average combined size of all items would be Iav(NF ) ≡ lim
n→∞

E[ 1
n

n∑
j=1

(sj + ohj)], where sj is item aj’s size, and ohj is item aj’s overhead.

Definition 3. For items sequence Ln, the expected asymptotic average optimal
size of all items is Iav(OPT ) ≡ lim

n→∞
E[B

n OPT (Ln)], where OPT (Ln) is number
of bins used for the optimal packing, and B is the bin capacity.
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Hence according to the above definitions, we get the following theorems.

Theorem 1. The average performance ratio under NF algorithm could be
RA

∞
= Iav(NF )/Iav(OPT ).

Proof. For any item size distribution the tails of the distribution of OPT (Ln) de-
cline rapidly enough with n [17], as n→∞, E[A(Ln)/OPT (Ln)] and E[A(Ln)]/
E[OPT (Ln)] converge to the same limit [18][19]. Therefore the average perfor-
mance ratio could be written as

R
∞

A = lim
n→∞

E[
A(Ln)

OPT (Ln)
] = E[

B
n limn→∞ A(Ln)

B
n limn→∞ OPT (Ln)

]

=
E[B

n limn→∞ A(Ln)]
E[B

n limn→∞ OPT (Ln)
] = Iav(A)/Iav(OPT ). ��

According to the above theorem, to find the average performance ratio of NF
algorithm for BIBPPOD is to find the expected asymptotic average optimal size
and the expected asymptotic average combined size of all items.

Theorem 2. In BIBPPOD, when item size over uniform distribution [r, B],
the expected asymptotic average optimal size of all items converges to B(B+1)

2(B−r+1) .

Proof. Since item size is discrete uniform distribution, according to the perfect
packing theorem in [16], these items with sizes belonging to [r, B-r] can be packed
perfectly into full bins, and those items larger than B-r would take one bin each.
Thus for n items, according to the assumption of uniform distribution, the bins
for the perfectly packing should be

OPT (Ln) = n · [ B − 2r + 1
2(B − r + 1)

+
r

B − r + 1
] = n · B + 1

2(B − r + 1)
. (2)

Then the average size of item for the optimal algorithm converges to

Iav(OPT ) = E[
B

n
lim

n→∞
OPT (Ln)] =

B(B + 1)
2(B − r + 1)

. ��

To find the expected asymptotic average combined size, NF is modelled as a
Markov process with discrete state space. Arrival of each item to be packed
corresponds to a new state. The content of the current bin (i.e. the sum of item
sizes in the current bin) constitutes the states of the process; then the state space
is {r, r + 1, r + 2, · · · , B}. Consider the stationary states of this Markov chain,
it has the equilibrium equation Π = ΠP, where Π = (Πr, Πr+1, Πr+2, · · · , ΠB)
(for clarity we use Πr, Πr+1, Πr+2, · · · , ΠB in steady of Π1, Π2, Π3, · · · , ΠB−r+1
to denote the steady state probabilities.), P = (pij), r ≤ i ≤ B, r ≤ j ≤ B. Hence
the expected asymptotic average combined size of all items could be expressed
by the steady state probability as follows.
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Theorem 3. In BIBPPOD, when item size distribution is uniform, the expected
asymptotic average combined size of all items for NF algorithm is Iav(NF ) =
B+r

2 + 1
B−r+1(Γ+Θ), where Γ =

B∑
i=r

Πii(B − i) and Θ =
B∑

i=B−r+2
Πi(B − i)(B − r + 1− i).

Proof. Assume during packing a sequence of n items, the number of visits in
state i is denoted by ni, and the number of items of size j packed in state i is
denoted by ni,j . Using the Law of large numbers, we obtain limn→∞

ni

n = Πi

and limn→∞
ni,j

n = limn→∞
ni

n · hj = Πi · hj , a.s. (almost surely), where hj is
the probability for the next item in the list to be size of j. Define ohj(i) to be
the overhead added to an item of size j which is packed when the algorithm is in
state i, i.e. ohj(i) = (B − i) . Hence the expected asymptotic average combined
size of the items can be calculated.

Iav(NF ) = lim
n→∞

E[
1
n

B∑
i=r

B∑
j=r

ni,j(j + ohj(i))]

= E[
B∑

i=r

B∑
j=r

lim
n→∞

ni,j

n
(j + ohj(i))]

=
B∑

i=r

B∑
j=r

Πi · hj(j + ohj(i))

=
B∑

i=r

B∑
j=r

Πi · hj · j +
B∑

i=r

B∑
j=max{r,B−i+1}

Πi · hjohj(i)

=
B + r

2
+

1
B − r + 1

B∑
i=r

Πi

B∑
j=max{r,B−i+1}

(B − i)

=
B + r

2
+

1
B − r + 1

B∑
i=r

Πii(B − i)

+
1

B − r + 1

B∑
i=B−r+2

Πi(B − i)(B − r + 1− i)

=
B + r

2
+

1
B − r + 1

(Γ + Θ). ��

From the above discussion, in order to find the average performance ratio for
NF in BIBPPOD, we have to obtain the steady state probabilities of Markov
chain. Due to the possible values of r and B, the analysis procedure is divided
into three cases.

Case 1: B < 2r

It is evident that in the case of B < 2r, each bin can hold one item. Then the
average performance ratio is 1.
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Case 2: 2r ≤ B < 3r − 1

When the value of B falls into the range of [2r, 3r − 1), let B − r + 1 = t, the
transition probability matrix for NF algorithm becomes

(1)r ≤ i ≤ B − r

Pij =
1
t

⎧⎨⎩
0
1
2

r ≤ j ≤ B − i
B − i + 1 ≤ j ≤ i + r − 1
i + r ≤ j ≤ B

(2)B − r < i ≤ B, Pij = 1/t, r ≤ j ≤ B

Based on the equilibrium equation and the transition probability matrix, we
obtain the following relations about steady state probabilities⎧⎪⎪⎨⎪⎪⎩

Πr = (ΠB + ΠB−1 + ..... + ΠB−r+1)/t
Πi + ΠB+r−i = 2/t
B∑

i=r

Πj = 1
(3)

Moreover, if B− r + 1 < 2r− 1, observe the transition probability matrix, there
also exist these relations.⎧⎨⎩

Πj = ΠB+1−j/t + Πj−1, r + 1 ≤ j ≤ B + 1− r
Πj = Πj−1, B − r + 2 ≤ j ≤ 2r − 1
Πj = 1

t Πj−r + Πj−1, 2r ≤ j ≤ B
(4)

While B − r + 1 = 2r − 1 (i.e. B = 3r − 2 ), the second equation in (4) does
not exist.

Note the above relations, the expected asymptotic average combined size of
items can be expressed by the first steady probability and the variables r and B
as follows.

Theorem 4. In BIBPPOD, if item size over uniform distribution and there
exists 2r ≤ B < 3r − 1, the expected asymptotic average combined size for NF
algorithm can be expressed by the first state steady probability as follows

Iav(NF ) = B + r +
r2 − r

(B − r + 1)
−B(B − r + 1)Πr.

Proof. See Appendix A for details. ��

Hence we focus on the computation of the first state steady probability. As the
solving process is not simple, we show the result in theorem 5 and details in the
appendix B.

Theorem 5. In BIBPPOD, if there exists 2r ≤ B < 3r − 1, the first state
steady probability could be expressed as Πr = sin(B−2r+1)α−sin(B−2r)α

(B−r+1) sin α+sin(B−2r+1)α , where

α = arcsin(
√

4(B−r+1)2−1
2(B−r+1)2 ) and 0 < α < π/2.
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Proof. See Appendix B for details. ��

Hence in this case, the average performance ratio could be described by a closed-
form expression as follows

R
∞

A = 2− 2r2(B + 1)−1 sin(B − 2r + 1)α− sin(B − 2r)α
(B − r + 1) sinα + sin(B − 2r + 1)α

.

Case 3: B ≥ 3r − 1

Now the transition probability matrix follows

(1) r ≤ i ≤ $(B − r + 1)/2%

Pij =
1
t

⎧⎨⎩
0
1
2

r ≤ j ≤ i + r − 1
i + r − 1 < j ≤ B − i
B − i < j

(2)$(B − r + 1)/2%+ 1 ≤ i ≤ B − r

Pij =
1
t

⎧⎨⎩
0
1
2

r ≤ j ≤ B − i
B − i + 1 ≤ j ≤ i + r − 1
i + r ≤ j ≤ B

(3) B − r < i ≤ B, Pi· = t−1.

According to the equilibrium equation and the above transition probability
matrix, in addition to (3), the relations about the steady state probabilities
become ⎧⎨⎩

Πj = ΠB+1−j/t + Πj−1, r + 1 ≤ j < 2r
Πj = ΠB+1−j/t + Πj−r + Πj−1, 2r ≤ j ≤ B − r + 1
Πj = Πj−r/t + Πj−1, B − r + 2 ≤ j ≤ B

(5)

It is evident that they are more complex than (4), and now it is not easy to
achieve the general solution for the steady state probabilities. However, given the
values of r and B, using some mathematic tools such as Matlab, the equilibrium
equation could be solved, and the numeric solution would be obtained for the
steady state probabilities. Hence we achieve the average performance ratio. In
table 1, we list our results.

3 Discussion and Conclusion

In bounded item bin packing problem over continuous distribution U[a,b], Tsuga
[13] obtained the closed-form expression of the average performance ratio

RNF [a, b] = 2− 2(b− a)
2b− 1

(
sin((1− a)/(b − a))− cos(a/(b − a))
sin(a/(b− a))− cos((1 − a)/(b− a))

), (6)

where 1/2 > a ≥ 1/3 and a + b ≥ 1.



114 J. Chen et al.

Table 1. the Average Performance Ratio under NF Algorithm

(r,B) R1 R2 (r,B) R1 R2

(2,10) 1.2804 1.3038 (3,10) 1.2900 1.2358
(2,20) 1.3041 1.3613 (3,20) 1.3081 1.3335
(2,30) 1.3130 1.3791 (3,30) 1.3152 1.3613
(2,40) 1.3178 1.3878 (3,40) 1.3191 1.3747
(2,50) 1.3207 1.3929 (3,50) 1.3216 1.3826
(2,60) 1.3227 1.3964 (3,60) 1.3234 1.3878
(2,70) 1.3242 1.3988 (3,70) 1.3247 1.3915
(2,80) 1.3253 1.4006 (3,80) 1.3257 1.3942
(2,90) 1.3262 1.4020 (3,90) 1.3265 1.3964
(2,100) 1.3269 1.4031 (3,100) 1.3271 1.3981

Observe the discrete distribution U{sr, sB}, when the item sizes are chosen
from the set {sj, sj+1, · · · , sk}, it would approach to the continuous distribution
U[r/B,1], as s → ∞ after normalization. Then let b=1 and a=r/B, the result
over discrete distribution should converge to that over continuous distribution
when r, B →∞. In table 1, we list our results with Tsuga’s over continuous dis-
tribution, where R1 is the average performance ratio over discrete distribution,
and R2 is that over continuous distribution according to Tsuga’s. It is evident
that they diverge greatly if the values of r and B do not tend to infinity. More-
over, Tsuga’ result increases with the value of B, which seems strange because
the average performance ratio is far away form 4/3 as the value of B increases;
while our result is more reasonable, which converge fast to 4/3 as the value of B
increases. In realistic applications, usually the values of r and B are finite (such
as the bandwidth packing in computer and communication network), therefore
our result is more appropriate for evaluating the bandwidth utilization efficiency
or more helpful for defining the length in fixed-size packet network.
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Appendix A

Proof. According to (3), we obtain

Γ =
B∑

i=r

Πii(B − i) =
B∑

i=r

Πii(B + r − i)−
B∑

i=r

irΠi

=
t2

6
+ tr − t

2
+

3r2 − 3r + 1
3

− r

B∑
i=r

iΠi (7)

Then we see the last term
B∑

i=r

iΠi. In order to find the solution, we use the

generating function approach. According to (3)(4), we define

G(z) = P (z) + V (z) + Q(z), (8)

where P (z) =
B−r+1∑

j=r

Πjz
j, V (z) =

2r−1∑
j=B−r+2

Πjz
j, Q(z) =

B∑
j=2r

Πjz
j.
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Hence we obtain

(1 − z)P (z) = Πrz
r +

2
t2

B−r+1∑
j=r+1

zj − 1
t
z1−rQ(z)−ΠB−r+1z

B−r+2. (9)

The same procedures are implemented to Q(z) and V(z).

(1 − z)Q(z) =
1
t
zrP (z)− 1

t
ΠB−r+1z

B+1 −ΠBzB+1 + Π2r−1z
2r. (10)

(1− z)V (z) = ΠB−r+1z
B+2−r −Π2r−1z

2r. (11)

Thus there are

Q(z = 1) = tΠr + 2(t− r)/t− tΠt, (12)
P (z = 1) = Πt + tΠB − tΠ2r−1, (13)

Π2r−1 = Πt. (14)

Moreover, by differentiation we achieve

P ′(z = 1) = −2t2Πr + r + 1 + t, (15)
Q′(z = 1) = (2rt− t− t2)Πr + r + t− (3r − 1)r/t, (16)

V ′(z = 1) =
(3r − 2−B)(B + r + 1)

2t
. (17)

Therefore

1
t
Γ =

t

6
− r + 1

2
+

2− 9r − 6r2

6t
+

r3

t2
− (2r2 − r − 3rt)Πr . (18)

It is the same process to find Θ.

1
t
Θ = (2r2 − t2 − 4tr − r + t)Πr + t/3 + 3r/2 + (12r2 − 2 + 3r)/6t − r3t−2. (19)

Then the average combined size of items can be expressed as

Iav(NF ) = t + 2r − 1 + r(r − 1)t−1 − t(t + r − 1)Πr (20)

Hence the proof is complete. ��

Appendix B

Proof. Observe (3)(4), they can be simplified into (21), where only half the
variables are left. ⎛⎜⎜⎜⎜⎜⎜⎝

∏
r∏
r+1

.

.∏
B−r−1∏
B−r

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

1−
∏

B−r

t(
∏

B−r−
∏

B−r−1)
.
.
t(
∏

r+2−
∏

r+1)
t(
∏

r+1−
∏

r)

⎞⎟⎟⎟⎟⎟⎟⎠ (21)
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For clarity we define a sequence of variables ai(1 ≤ i ≤ n, n = t − r), where ai

corresponds to
∏

i+r−1. Equations (21) become⎧⎪⎪⎨⎪⎪⎩
ak = (2− 1

t2 )ak−1 − ak−2, 3 ≤ k ≤ (n + 1)∑
ak = 1− ta1, 1 ≤ k ≤ n

ak − ak−1 = an+2−k

t , 2 ≤ k ≤ (n + 1)
an+1 = 1/t

(22)

Note that the sequence ai is a linear homogenous recurrent sequence. According
to the theorem 7.2.1[20], for linear homogenous recurrent sequence there exists a
general solution of ak, which could be expressed by ak = c1q

k
1 + c2q

k
2 . Here q1, q2

are two roots of the characteristic equation of the recurrent sequence, and c1, c2
are both constants. For the sequence in (21) the characteristic equation could be
written as x2−(2−t−2)x+1 = 0. Thus the roots of it are q1,2 = (2t2−1)±i

√
4t2−1

2t2 .
To avoid of complex numbers in our expression, we define q1 = cosα + i sinα,
q2 = cosα − i sinα (0 < α < π

2 ). Then we have cosα = (2t2 − 1)/2t2, sin α =√
4t2 − 1/2t2. According to the constraints of (22), the constants c1, c2 are

c1 = −1
t

q2(qn−1
2 + 1

t − qn
2 )

q2 − q1 + 1
t (q

n
2 − qn

1 )
, c2 =

1
t

q1(qn−1
1 + 1

t − qn
1 )

q2 − q1 + 1
t (q

n
2 − qn

1 )
.

Therefore we obtain Πr = sin(B−2r+1)α−sin(B−2r)α
(B−r+1) sin α+sin(B−2r+1)α , and theorem is proved. ��
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Abstract. Normal batching machine scheduling problems are assumed
that the capacity of the machine, the maximum number of jobs that
the machine can handle up to simultaneously, is fixed. However, in some
realistic situations, the capacity of a machine is not constant. We call
it a flexible batching machine. In this paper, we address the problem of
scheduling jobs on a flexible batching machine to minimize the makespan.
We prove that the problem is strong NP-hard, and its two agreeable cases
are NP-hard. Then two pseudo-polynomial algorithms for the two cases
are presented respectively.

Keywords: scheduling; batching machine; complexity; dynamic
programming.

1 Introduction

A machine cannot process two jobs at the same time in classical scheduling
problems. But, in some situations, a machine can process more than one job
simultaneously. For example, burn-in ovens in semiconductor manufacturing are
modelled as batch processing machines. A batch processing machine is one that
can handle up to B jobs simultaneously. The jobs that are processed together
form a batch, and all jobs contained in the same batch start and complete at
the same time since the completion time of a job is equal to the completion time
of the batch to which it belongs. The processing time of a batch is equal to the
largest processing time of any job in the batch (denoted by p − batch) or the
sum of processing times of all jobs in the batch (denoted by s − batch). There
are two variants: the unbounded model, where B ≥ n and the bounded model,
where B < n [13]. In this paper, we address bounded problems of scheduling a
p-batch processing machine, i.e. we assume that B < n and the processing time
of a batch is equal to the largest processing time of any job in the batch.

A number of researchers have directed their attention toward batching prob-
lems. Santos and Magazine (1985)[11], and Tang (1990)[12] present integer pro-
gramming formulations and several procedures to determine optimal batches of
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jobs for a single-stage production system. Ikura and Gimple [5] are the first re-
searchers to address the problem of scheduling batch processing machines from a
deterministic scheduling perspective. J.Ahmadi, al et. (1992)[1] examine a class
of problems defined by a two or three machine flowshop where one of the ma-
chines is a batch processing machine. More work on batching and scheduling in-
cludes Coffman, Nozari and Yannakakis (1989)[3], Julien and Magazine(1989)[6],
Vickson, Magazine and Santos (1989)[14], and Chung-Yee Lee, et al. (1992)[9].
Webster and Baker (1995)[15], and P.Brucker, et al. (1998)[2] present overviews
of algorithms and complexity results for scheduling batch processing machines.

In the bounded problems of scheduling a batching machine, the capacity B
of the machine, the maximum number of jobs that the machine can process
simultaneously, is fixed. But a burn-in oven in semiconductor manufacturing
has different capacities for different sizes of wafer. So the capacity B of the
machine is not constant. This kind machine is called a flexible batching machine.
To be able to refer to the problems under study in a concise manner, we shall
use the notation of Lageweg et al.[7], extended to flexible batching machines.
The problem of minimizing makespan on a single flexible batching machine is
represented by 1|d−Batch|Cmax, where d stands for different capacities of the
flexible batching machine, and the bounded problems of scheduling a normal(not
flexible)batching machine is denoted by 1|p− Batch|Cmax or 1|B|Cmax, where
B means a batching machine.

In this paper, we deal with the problem 1|d − Batch|Cmax described as fol-
lows. There are n independent jobs to be processed on a flexible batching machine
which can handle up to Bi jobs simultaneously in time [ti−1, ti), where Bi is the
capacity of the machine in [ti−1, ti) and t0 = 0, i = 1, 2, · · ·. For j = 1, 2, · · · , n,
each job Jj requires processing during a given non-negative uninterrupted time
pj , and is available for processing from time zero onwards. All data are as-
sumed to be deterministic. The objective is to determine a schedule π so that
the makespan(i.e., the maximum completion time of jobs)Cmax is minimized.
Two cases of the problem are discussed in this paper. One is that capacities Bi

and ti are agreeable(i.e. ti ≤ tj implies Bi ≤ Bj), we represent the problem
by 1|inc − d − Batch|Cmax, where inc stands for increasing. Another case(i.e.
ti ≤ tj implies Bi ≥ Bj)denoted 1|dec − d − Batch|Cmax, where dec means
decreasing.

If all the capacities are identical, such as Bi ≡ B(i = 1, 2, · · ·), our problem
1|d − Batch|Cmax becomes a normal batching scheduling problem 1|B|Cmax.
Chung-Yee Lee and Reha Uzsoy [8] provided an O(n2) time optimal algorithm
FBLPT(full batch largest processing time) for the problem. Ikura and Gimple
[5] developed an efficient optimization algorithm for 1|rj , pj = p, B|Cmax. Zhao-
hui Liu and Wenci Yu [10] proved that the problem 1|ri ∈ {0, r}, B|Cmax is
NP-hard and given a pseudopolynomial-time algorithm for 1|ri, B|Cmax with a
fixed number of distinct release dates. Chung-Yee Lee and Reha Uzsoy[8] given
an on-line greedy heuristic GRLPT (greedy longest processing time) with the
performance ratio 2 for the problem 1|ri, B|Cmax. Guochuan Zhang al et. [16]
proofed that the lower bound of the on-line algorithm for 1|ri, B|Cmax is 1 + α,
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where α =
√

5−1
2 . As to the unbounded model, P.Brucker al et. [2] given a char-

acterization of a class of optimal schedules, which leads to a generic dynamic
programming algorithm for minimizing any regular cost function

∑n
j=1 fj .

This paper is organized as follows. In Section 2, we prove that the problem
1|d−Batch|Cmax is strong NP-hard. Then we show that 1|inc−d−Batch|Cmax

and 1|dec− d−Batch|Cmax are NP-hard. We give two pseudo-polynomial time
dynamic programming algorithms for those two special cases respectively in
Section 3. Section 4 is a brief conclusion.

2 NP-hardness Proof

Firstly, we show that the problem of minimizing makespan on a flexible batching
machine is strong NP-hard. This is done by reducing the strong NP-hard 3-
Partition [4] to the decision version of our problem 1|d−Batch|Cmax. Then we
prove the NP-hardiness of the problems 1|inc− d−Batch|Cmax and 1|des− d−
Batch|Cmax by the PARTITION problem[4].

Definition 1. Suppose π is a feasible schedule of 1|inc− d − Batch|Cmax and
the capacities Bi are indexed according to the order 0 < Bi ≤ Bi+1, i = 1, 2, · · ·.
If a batch Bj of π meets Bi <| Bj |≤ Bi+1, we denote the Bj as Bi+1 type batch.

3-Partition. Given positive integers t, A and a set of integers S = {a1, · · · , a3t}
with

∑3t
j=1 aj = nA and A/4 < aj < A/2 for 1 ≤ j ≤ 3t, does there exit a

partition 〈S1, S2, · · · , St〉 of S into 3-element sets such that∑
aj∈Si

aj = A,

for each j?

Theorem 1. The problem 1|d−Batch|Cmax is strong NP-hard.

Proof. Suppose we are given the 3-partition problem n, A and a set of integers
{a1, · · · , a3n}. We will first describe the details of decision version I.

There are basically two classes of jobs in I. The first class, {J1
ij |1 ≤ i ≤ t, j =

1, 2}, where job lengths are specified as follows:

p1
ij = tA + i, i = 1, 2, · · · , t, j = 1, 2.

The second class, {J2
i |1 ≤ i ≤ 3t}, with job lengths specified as follows:

p2
i = ai, i = 1, 2, · · · , 3t.

We define the machine can handle up to B1 = 1 jobs simultaneously in time
[t2(i−1), t2i−1), B2 = 2 jobs in other time, where t2(i−1) = (i− 1)(t + 1)A + i(i−
1)i/2, t2i−1 = t2(i−1) + A, i = 1, 2, · · · , t. The bound is given by δ = tA + t2A +
t(t+1)/2. All the remains is to show that the desired partition of S exists if and
only if there is a schedule for I of length less than or equal to δ.
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Fig. 1. Where the jobs in the same column can be processed as a batch

First, suppose a partition 〈S1, S2, · · · , St〉 exists which has the desired form.
That is, each set Si consists of three elements ai1, ai2 and ai3, such that for
all 1 ≤ i ≤ t,

∑3
j=1 aij = A. Then the following schedule π has length δ =

tA+t2A+t(t+1)/2. About the first class jobs in such schedule, the jobs {J1
i1, J

1
i2}

are processed as a batch with the start processing time S({Ji1, Ji2}) = t2i−1,
i = 1, 2, · · · , t.

From Fig.1, we note that this basic framework leaves a series of t “time slots”
open, each of length exactly A and in which the machine can handle up to one
job simultaneously. These are precisely tailored so that we can fit in the second
class jobs as follows. For each i = 1, 2, · · · , t,

S(J2
i1) = t2(i−1),

S(J2
i2) = t2(i−1) + ai1,

S(J2
i3) = t2(i−1) + ai1 + ai2.

Since
∑3

j=1 aij = A, i = 1, 2, · · · , t, this yields a valid schedule with Cmax(π) = δ.
Conversely, suppose a schedule π with Cmax(π) ≤ δ does exist. It is easy to

see that we must have Cmax(π) = δ = tA + t2A + t(t + 1)/2, and that the first
class jobs must be scheduled the same way as they are in Fig.1. Thus there are
again t slots of length A into which the second class jobs must be placed.

Since the total length of the second class jobs is
∑3t

i=1 ai = tA, every one
of these t slots must be filled completely, and hence must contain a set of the
second class jobs whose total length is exactly A. Now since every ai > A/4, no
such set can contain more than three jobs. Similarly, since every ai < A/2, no
such set can contain less than three jobs. Thus each set contains exactly three
jobs of the second class. Hence, by setting Si = {ai|t2(i−1) < S(p2

i ) ≤ t2i−1},
i = 1, 2, · · · , t, we obtain our desired partition.

PARTITION. Given m positive integers a1, a2, · · · , am, with
∑m

j=1 aj = 2A,
do there exit two disjoint subsets S1, S2 ∈ I = {1, 2, · · · , m} such that∑

j∈Si

aj = A,

for i = 1, 2?
Without loss generality, we assume that m > 2 throughout the section. To

any instance of the PARTITION problem, we construct an instance I of 1|inc−
d − Batch|Cmax as follows. For each i(1 ≤ i ≤ m), define three jobs of type i:
Ji1, Ji2, and Ji3. Their processing times are given by
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pi1 = 4iA + ai, pi2 = 4iA− ai, pi3 = 4iA.

We define the machine can handle up to B1 = 1 jobs simultaneously in the time
[0, t), B2 = 2 jobs in other time, where t = 2m(m+1)A. Let δ = 4m(m+1)A+A.
We are going to show that for the constructed scheduling problem I, a schedule π
with Cmax(π) ≤ δ exists if and only if the PARTITION problem has a solution.

Theorem 2. 1|inc − d − Batch|Cmax is NP-hard, even if there have only two
capacities all the time.

Proof. It is easy to show that our reduction is polynomial. In the remainder of
the proof, we show that PARTITION has a solution if and only if there exists a
schedule for the corresponding instance of the problem 1|inc− d−Batch|Cmax,
and the makespan of such schedule can not exceed δ.

First, suppose that the instance of PARTITION has a solution. Without loss
of generality, we assume that S1 = {1, 2, · · · , k}, and S2 = {k + 1, k + 2, · · · , m}.
Now, construct schedule π as the Fig.2. It is easy to check that Cmax(π) = δ.

J1,1 · · · Jk,1 Jk+1,2 · · · Jm,2
J1,2

J1,3

· · · Jk,2

Jk,3

Jk+1,1

Jk+1,3

· · · Jm,1

Jm,3 ��

0
�

t
�

δ

Fig. 2. Illustration of the scheduling π, in which the jobs in the same column are
processed as a batch

Conversely, suppose that there exists a schedule π with Cmax(π) ≤ δ. By a
standard interchange argument of jobs and batches, we can get a new schedule
π

′
from π, all the B1 type batches are processed before the B2 type batches in

such new schedule and Cmax(π
′
) ≤ Cmax(π) ≤ δ. About π

′
, suppose the sum

of the time, in which the machine is idle, is a(a ≥ 0) before time t. Let |B1| is
the sum of the processing time of B1 type batches in π

′
. Because there are only

B1 type batches processed before the time t, a + |B1| ≥ t. Let d(F ) be defined
for each batch F ∈ B2 in π

′
as follows. d(F ) is equal to the difference of the

processing times of its two jobs. Then the processing time of batch F is

1
2

(∑
{pij |Jij ∈ F}+ d(F )

)
,

where d(F ) acts as the wasted time during the processing of batch F . From the
above expression of the F , we obtain that

Cmax(π
′
) = |B1|+ 1

2

( ∑
F∈B2

∑
{pij |Jij ∈ F}+

∑
F∈B2

d(F )

)
+ a

= 3m(m + 1)A +
1
2

(
|B1|+

∑
F∈B2

d(F )

)
+ a.
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Since Cmax(π
′
) ≤ δ, it follows that

|B1|+ d(F ) + 2a ≤ 2m(m + 1)A + 2A.

Due to a + |B1| ≥ t, d(F ) + a ≤ 2A, hence d(F ) ≤ 2A.
If there exists a batch F in π

′
contains two jobs Ji, Jj of distinct types, from

the constructor of the jobs, d(F ) ≥ 4A− ai − aj > 2A. Thus every batch in π
′
,

which includes two jobs in π
′
, contains two jobs of the same type.

Let Sj ⊆ I be the subset of {J1,j, · · · , Jm,j}, in which every job is processed
as a batch itself, j = 1, 2, 3. obviously, S1 ∪ S2 ∪ S3 = I and S1 ∩ S2 ∩ S3 = ∅.
Then

Cmax(π
′
) = max

{∑
i∈S1

pi,1 +
∑
i∈S2

pi,2 +
∑
i∈S3

pi,3, 2m(m + 1)A

}
+
∑
i∈S1

pi,3 +
∑
i∈S2

pi,1 +
∑
i∈S3

pi,1

= 4m(m + 1)A + max

{∑
i∈S1

ai −
∑
i∈S2

ai, 0

}
+
∑
i∈S2

ai +
∑
i∈S3

ai

≤ 4m(m + 1)A + A.

Accordingly, we can obtain two inequations as the following.

2A−
∑
i∈S2

ai ≤ A, (1)

∑
i∈S2

ai +
∑
i∈S3

ai ≤ A. (2)

Thus, due to the above inequalities (1) and (2), we have
∑

i∈S2
ai ≥ A and∑

i∈S2
ai ≤ A. So it follows that

∑
i∈S2

ai = A.
Then the PARTITION instance has a solution X = S1.

Similarly, we can show the problem 1|dec − d − batch|Cmax is NP-hard by a
reduction from the PARTITION Problem. To any instance of the PARTITION,
we construct an instance I of 1|des− d− Batch|Cmax as the following.

For each i(1 ≤ i ≤ m), define three jobs of type i: Ji1, Ji2, and Ji3. Their
processing times are given by

pi1 = 4iA + ai, pi2 = 4iA− ai, pi3 = 4iA.

We define the machine can handle up to B1 = 2 jobs simultaneously in the
time [0, t), B2 = 1 jobs in other time, where t = 2m(m + 1)A + A. Let δ =
4m(m+1)A+A. We can proof that for the constructed scheduling problem I, a
schedule π with Cmax(π) ≤ δ exists if and only if the PARTITION problem has
a solution. The following theorem 3 can be proved similarly to the Theorem 2.

Theorem 3. The flexible batching scheduling problem 1|dec− d− Batch|Cmax

is NP-hard, even if there have only two capacities all the time.



124 B. Fan and G. Tang

3 Pseudo-polynomial Time Dynamic Programming
Algorithms

In this section, two pseudo-polynomial time dynamic programming algorithms
for problems 1|inc − d − Batch|Cmax and 1|dec − d − Batch|Cmax are pre-
sented respectively. We generalize algorithms to the case with k distinct ca-
pacities such that the flexible batching machine can handle up to Bi jobs in
time [ti−1, ti) simultaneously, where t0 = 0, tk = ∞ and k is a fixed positive
integer. Let p = max1≤j≤n{pj}. Without lose of the generality, ti+1 − ti ≥ p,
i = 0, 1, · · · , k − 1. When there is only one capacity all the time, our problems
become classical batching scheduling problem 1|B|Cmax, which has polynomial
time optimal algorithms FBLPT. We denote the optimal value of classical batch-
ing scheduling problem 1|B|Cmax as v(FB).

We assume throughout that jobs have been re-index according to the LPT
rule so that p1 ≥ p2 ≥ · · · ≥ pn. We will need the following definition(Chung-Yee
Lee al.et.[9],p.767).

Definition 2. We say a sequence is in batch-LPT order if for any two batches
P and Q in the sequence, where batch P is processed before batch Q, there is no
pair of jobs Ji, Jj such that Ji ∈ P, Jj ∈ Q and pi < pj.

We first introduce some useful properties associated with optimal schedules of the
problems 1|d−Batch|Cmax, 1|inc−d−Batch|Cmax and 1|dec−d−Batch|Cmax.

Lemma 1. For the problem 1|d−Batch|Cmax, There exists an optimal schedule
π with the form (π1, · · · , πk) which satisfy the following two properties.

1. πi includes all batches of Bi and is processed before πi+1 which includes all
batches of Bi+1, i = 1, 2, · · · , k − 1.

2. πi is in batch-LPT order, and there is no idle time between any two batches
of πi, i = 1, 2, · · · , k.

For any feasible schedule of the problem 1|inc− d − Batch|Cmax, due to B1 <
· · · < Bk, there be likely to exist a batch of Bi being completed after ti, i =
1, 2, · · · , k. However, such Bi type batch is completed not later than a constant.
There has a conclusion as following.

Lemma 2. For the problem 1|inc−d−Batch|Cmax, there is an optimal schedule
π = (π1, · · · , πk) which satisfies the form required by Lemma 1. The last batch of
πi is completed no later than ti + p, for i = 1, 2, · · · , k.

Let r = (r1, · · · , rk), where ri is the batch of Bi available time, 0 ≤ ri ≤
ri+1 ≤ ti, i = 1, 2, · · · , k−1. For the problem 1|inc−d−Batch|Cmax, let f i

h(j, r)
be the minimal makespan of all schedules for {J1, · · · , Jj} subjecting to that
{Jh, · · · , Jj} are processed in the last batch of Bi, such batch is completed by
the time Ci and Ci ≤ ti + p.
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Lemma 3. For the problem 1|inc−d−Batch|Cmax, there is an optimal schedule
for {J1, · · · , Jj} with {Jh, · · · , Jj} being the last batch of Bi. For i = 1, · · · , k,
the value of such optimal schedule is

f i
h(j, r) = f(h− 1, r

′
) + ph,

where f(j, r
′
) denotes the minimal makespan of all schedules for {J1, · · · , Jj}

subject to r
′
= (r1, · · · , ri, max{ri, ri+1 − ph}, · · · , max{rk−1, rk − ph}).

We are now ready to give the generic forward dynamic programming algorithm
for the problem 1|inc− d− batch|Cmax.

Algorithm DP1

Let f(j, r) denotes the minimal makespan of all schedules for {J1, · · · , Jj}, In
such schedule, the batches of Bi become available at time ri, i = 1, · · · , k. Let
t = (t0, · · · , tk−1), t0 = 0, B0 = 0.

The initialization is

f(0, r) = 0, 0 ≤ r ≤ t; f(j, 0) = v(FBk{1, 2, · · · , j}), 0 ≤ j ≤ n; f(j, r) =∞,

0 ≤ j ≤ n, r < 0.

For j = 1, 2, · · · , n and 0 ≤ r ≤ t, the recursion is

f(j, r) = min
1≤i≤k

{
min

max{1,j−Bi+1}≤h≤j−Bi−1
f i

h(j, r)
}

,

where

f1
h(j, r) = v(FB1{1, · · · , h− 1}) + ph, j ≤ B1,

f i
h(j, r) =

{
f(h− 1, r

′
) + ph, j > Bi−1,

∞, j ≤ Bi−1,
for i = 2, 3, · · · , k. (3)

f i
h(j, r) denotes the minimal makespan of all schedules for {J1, · · · , Jj} subjecting

to that {Jh, · · · , Jj} are processed in the last batch of Bi and Bi−1 < |j−h| ≤ Bi.
r

′
= (r1, · · · , ri, max{ri, ri+1 − ph}, · · · , max{rk−1, rk − ph}).
The optimal solution value is equal to

f(n, t).

To justify Algorithm DP1, note that each batch will contain no more than Bk

consecutively indexed jobs due to the properties proven in Lemma 1. We require
max{1, j−Bi+1} ≤ h ≤ j−Bi−1 for i = 1, 2, · · · , k from the Definition 1. To be
feasible, based the Lemma 3, we must have the equations (3) so that the starting
time of batches of Bi is later than ri. Since jobs are indexed in descending order
of processing times, this implies that p({Jh, · · · , Jj}) = ph.

There are n states in this dynamic program, and each state is evaluated in
O(k3tk−1

∑k
i=1(B

i−Bi−1)) operations, Hence the time complexity of Algorithm
DP1 is O(k3tk−1B

kn).
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Based the following Lemma 4, the generic forward dynamic programming
algorithm for the problem 1|dec− d− batch|Cmax can be similarly given. Since
Bi > Bi+1, the Bi batch must be completed before the time ti. Due to the
tk = ∞, the Bk batches have no the deadline. From the Lemma 1, for any
feasible schedule, let d = (d1, · · · , dk−1), where di is the deadline of the Bi

batches and the starting time of the next type batch is earlier than it. Then
there have di−1 ≤ di ≤ ti, i = 1, · · · , k − 1 and d0 = 0.

Let f i
h(j, d) be the minimal makespan of all schedules for {J1, · · · , Jj} sub-

jecting to that {Jh, · · · , Jj} are processed in the last batch of Bi, such batch is
completed before the time di. Then a conclusion is similar to the Lemma 3 for
the problem 1|des− d− batch|Cmax as following.

Lemma 4. There is an optimal schedule for {J1, · · · , Jj} with {Jh, · · · , Jj} being
the last batch of Bi. For i = 1, 2, · · · , k, the value of such optimal schedule is

f i
h(j, d) = f(h− 1, d

′
) + ph.

Where f(j, d
′
) denotes the minimal makespan of all schedules for {J1, · · · , Jj}

subject to d
′
= (d1, · · · , di−1, max{di−1, di − ph}, · · · , max{dk−2, dk−1 − ph}).

Algorithm DP2

Let f(j, d) denotes the minimal makespan of all schedules for {J1, · · · , Jj}, where
all the batches of Bi type are completed before the time di, i = 1, 2, · · · , k. Let
t = (t1, · · · , tk−1), Bk+1 = 0.

The initialization is

f(0, d) = 0, 0 < d ≤ t; f(j, d) =∞, 0 ≤ j ≤ n, d = 0.

For j = 1, 2, · · · , n and 0 < d ≤ t, the recursion is

f(j, d) = min
1≤i≤k

{
min

max{1,j−Bi+1}≤h≤j−Bi+1
f i

h(j, d)
}

,

where

f i
h(j, d) =

{
f(h− 1, d

′
) + ph, d

′
> 0,

∞, otherwise.

f i
h(j, d) denotes the minimal makespan of all schedules for {J1, · · · , Jj} with
{Ji, · · · , Jj} being processed in the last batch of Bi type. d

′
= (d1, · · · , di−1,

max{di−1, di − ph}, · · · , max{dk−2, dk−1 − ph}).
The optimal solution value is equal to

f(n, t).

Similarly to Algorithm DP1, DP2 is an optimal algorithm. The time complex-
ity of DP2 is O(k4ntk−1B

1).
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4 Concluding Remarks

In this paper, we address the problem of scheduling n jobs on a flexible batching
professor to minimize the makespan. We will go on researching this problem
with other objective(i.e.

∑
Cj , Tmax,

∑
Uj) and studying the on-line algorithms.

Another research topic is about scheduling jobs on the parallel machines.
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Abstract. In this paper, we present a new data structure–permutation
tree to improve the running time of sorting permutation by transpositions
and sorting permutation by block-interchanges. The 1.5-approximation
algorithm for sorting permutation by transpositions has time complexity
O(n

3
2
√

logn). By the permutation tree, we can improve this algorithm to
achieve time complexity O(nlogn). We can also improve the algorithm for
sorting permutation by block interchanges to make its time complexity
from O(n2) down to O(nlogn).

1 Introduction

One of the most promising ways to trace the evolutionary events is to compare
the order of appearance of identical genes in two different genomes. In the 1980’s,
evidence was found that different species have essentially the same set of genes,
but their order may differ between species[1, 2]. This suggests that global rear-
rangement events, such as reversal, transposition and block interchange, can be
used to trace the evolutionary path between genomes. Such rare events may pro-
vide more accurate clues to the evolution than local mutations (i.e. insertions,
deletions and substitutions of nucleotides).

A transposition is a rearrangement operation for a permutation, in which a
segment is cut out of the permutation and pasted in a different location. Sorting
permutation by transpositions was first studied by Bafna and Pevzner, who
devised the first 1.5-approximation algorithm, which runs in quadratic time[3].
Christie gave a somewhat simpler O(n4) algorithm with the same approximation
ratio[4]. An O(n3) implementation of this algorithm, along with heuristics that
improve its performance were given by [5]. Eriksson et al. gave an algorithm that
sorts any given permutation of n elements by at most 2n/3 transpositions[6].

Later, Hartman and Shamir showed that sorting circular permutation by
transpositions is equivalent to the problem of sorting linear permutation by
transpositions[7]. They used the simplified breakpoint graph to give a simpler
1.5-approximation algorithm running in O(n2) time [7]. They further used splay
tree to implement the simplified algorithm, thus achieved the time complexity

� Supported by NSFC 60573024.
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O(n
3
2
√

logn)[8, 9] for sorting a permutation of n elements. Recently, a 1.375-
approximation algorithm appeared in [10]. Combination operations of reversals
and transpositions was studied in [11, 12, 13].

A block-interchange can be regarded as a generalized transposition. Sorting
permutation by block-interchanges was studied by Christie at first[14]. Lin YC et
al. showed that block-interchange seems to play a significant role in the evolution
of vibrio species. They proposed an algorithm running in O(δn) time, where n is
the length of the circular chromosome and δ is the minimum number of block-
interchanges required for the transformation[15].

In this paper, we suggest a new data structure which can be used to compute
the rearrangement sorting of permutations. The data structure is a balanced
binary tree whose leaf nodes are arranged for representing the given permutation.
We call the data structure to be the permutation tree. Using the permutation tree,
we can improve the transposition sorting algorithm to achieve a time complexity
O(nlogn). We can also improve the algorithm of sorting permutation by block-
interchanges to achieve a time complexity O(nlogn), where n is the number of
the elements of the given permutation.

This paper is organized as follows. The basic concepts and related results are
reviewed in section 2. The permutation tree is described in section 3. Then in
section 4 and section 5, we show how to use the permutation tree to implement
the algorithms of sorting permutation by transpositions and sorting permutation
by block-interchanges in [9] and [14] respectively.

2 Preliminaries

Let π = π1, π2, . . . , πn be a permutation of n integers, where every πi∈
{1, 2, . . . , n}, 1 ≤ i ≤ n, represents a gene of a chromosome. A transposition
ρ(i, j, k) acting on π inserts the interval [πi, πi+1, . . . , πj−1] between πk−1 and πk,
1 ≤ i < j < k ≤ n + 1, thus transforms π into π̂=π1, . . . , πi−1, πj , . . . , πk−1,
πi, . . . πj−1, πk, . . . , πn. The transposition to transform π into π̂ is denoted as
π · ρ(i, j, k)=π̂. Given a permutation π, the transposition sorting problem asks to
find a sequence of transpositions ρ1, ρ2, ..., ρt to transform π into σ =1, 2, ..., n,
π· ρ1· ... ·ρt=σ, such that the number of transpositions, t, is minimized. The min-
imum number of transpositions to transform π into σ is defined to be the trans-
position distance between π and σ, which is referred to as d(π).

2.1 Breakpoint Graph

Replace each gene πi with two vertices l(πi)=2πi−1, r(πi)=2πi, then add 0 and
2n + 1 as the first and the last vertex respectively, we get a sequence of 2n + 2
vertices.

V (π) = 0, l(π1), r(π1), ..., l(πn), r(πn), 2n + 1
= 0, 2π1 − 1, 2π1, . . . , 2πn − 1, 2πn, 2n + 1. (1)

The breakpoint graph of π, denoted as G(π) is constructed as follows. The
vertex set of G(π) is {0, 1, . . . , 2n+1}. G(π) has two types of edges. For every i
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with 0 ≤ i ≤ n, set a grey edge (2i, 2i + 1) and a black edge (r(πi), l(πi+1)) =
(2πi, 2πi+1−1), where r(π0)=0 and l(πn+1)=2n+1. There are n+1 black edges
and n+1 grey edges in G(π). Let n(π) denote the number of black edges in G(π).
Every vertex in G(π) is adjacent to one black edge and one grey edge, thus G(π)
can be uniquely decomposed into cycles, where the black and grey edges appear
in a cycle alternately. The length of a cycle is defined to be the number of black
edges of the cycle. A cycle of length k is called a k-cycle. Moreover the k-cycle
is called an even cycle if k is even, otherwise the k-cycle is called an odd cycle.
Let c(π) denote the number of cycles in G(π), codd(π) denote the number of odd
cycles in G(π).

2.2 Transformation into Simple Permutation

A permutation is called simple if the breakpoint graph for the permutation
only contains 1-cycles, 2-cycles and 3-cycles. Following from [16] and [13], any
permutation π can be transformed into a simple permutation π̂ while maintaining
the lower bound d(π) ≥ n(π)−codd(π)

2 [3] and every sorting of π̂ mimics a sorting
of π with the same number of transpositions. Hartman and Shamir designed an
1.5-approximation algorithm for sorting simple permutations, which leads to an
1.5-approximation algorithm for sorting arbitrary permutation[9].

2.3 Sorting Permutation by Block-Interchanges

A block-interchange ρ(i, j, k, l) acting on π = π1, π2, . . . , πn exchanges the in-
terval [πi, . . . , πj−1] and [πk, . . . , πl−1], where 1 ≤ i < j ≤ k < l ≤ n + 1.
The block-interchange ρ transforming π into π̂ is denoted as π · ρ=π̂. The
block-interchange sorting problem asks to find a sequence of block-interchanges
ρ1, ρ2, · · · , ρt to transform the given permutation π into the identity permuta-
tion σ, i.e., π · ρ1 · ρ2 · · · · · ρt = σ and t is minimized. The minimum number of
block-interchanges is defined to be the block-interchange distance of π, denoted
as bid(π). Christie proved that bid(π) = n(π)−c(π)

2 in [14].

3 Permutation Tree

A permutation tree is, firstly, a balanced binary tree T with root r, where each
internal node of T has two children. Let t be a node of T . The left and right child
of t is denoted as L(t) and R(t) respectively. The height of a leaf node is defined
to be zero. The height of an internal node is defined to be H(t) = max{H(L(t)),
H(R(t))} +1. Moreover, the tree must have the property of balance, i.e. for any
node t of T , |H(L(t))−H(R(t))| ≤ 1. The height of T is defined to be the height
of the root, H(T )=H(r).

Secondly, a permutation tree must correspond to a permutation. For the per-
mutation π = π1, π2, . . . , πn, the permutation tree corresponding to π has n
leaf nodes, which are labelled by π1, π2, ..., πn respectively. Each node of T
corresponds to an interval of π and is labelled by the maximum number in the



Faster Algorithms for Sorting by Transpositions 131

interval. For any internal node t of T , the interval corresponding to t must equal
the concatenation of the two intervals corresponding to L(t) and R(t). The num-
ber labelled to t is called the value of t. Clearly, the value of node t must be
the maximum value of L(t) and R(t). In the following, we may directly use the
element πi to represent the leaf node labelled by πi and use the node t of T to
represent the subtree of T rooted at t. As an example, Figure 1 is a permutation
tree corresponding to permutation π = 9, 6, 1, 4, 7, 5, 2, 3, 8.

Because permutation tree is a balanced binary tree, we have the following
well-known theorem about the height of a permutation tree.

Theorem 1. The height of the permutation tree corresponding to π =
π1, π2, . . . , πn, is bounded by O(logn).

9 6 1 4 7 5 2 3 8

9 4 7 3

89

8

9

Fig. 1. A permutation tree for π = 9, 6, 1, 4, 7, 5, 2, 3, 8

We present three operations for permutation tree. They are Build which builds
a permutation tree corresponding to a given permutation, Join which joins two
trees into one and Split which splits one tree into two.

Building the permutation tree from a permutation can be done by creating
nodes layer by layer in bottom-up way. The algorithm is given formally as follows.

Algorithm Build(π)
1. Create leaf nodes ui for πi, 1 ≤ i ≤ n. U ← [ui|1 ≤ i ≤ n]. k ← n.
2. while k > 1 do

begin
Create vi, set L(vi) = u2i−1, R(vi) = u2i for 1 ≤ i ≤ $k/2%.
If k is even, U ← [vi|1 ≤ i ≤ k/2].
If k is odd, create v, L(v) = v�k/2, R(v) = uk,

U ← [vi|1 ≤ i < $k/2%] ∪ [v].
k ← $k/2%.

end
3. Return U .
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For simplicity, we only give the computation steps for creating nodes, and
omit computing the value and height of the new nodes. As an example, Figure
1 is a permutation tree corresponding to 9,6,1,4,7,5,2,3,8, created by Build.

Theorem 2. Build always creates a permutation tree corresponding to a given
permutation. The time complexity of Build is O(n).

t1 t2k t1 t2

t

k

k+1

Fig. 2. The step 1 of Join(t1, t2). H(t1) = k, H(t2) = k or k − 1

t1

L(t1)

R(t1)

t2

k+2

k+1 k k

t′

L(t1)

R(t1)

t2

t

k+1

k+1 k k

k+2

Fig. 3. The step 2.1 of Join(t1, t2). H(t1) = k+2, H(t2) = k and H(L(t1)) > H(R(t1))

t1

L(t1)

R(t1)
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k+2

k+1 k+1 k

t′

L(t1)

R(t1)

t2

t

k+2

k+1 k+1 k

k+3

Fig. 4. The step 2.1 of Join(t1, t2). H(t1) = k+2, H(t2) = k and H(L(t1)) = H(R(t1))

Let t1 be a permutation tree corresponding to ρ1 = π1, . . . , πm, t2 be a permu-
tation tree corresponding to ρ2 = πm+1, . . . , πn. The following procedure joins t1
and t2 into a permutation tree corresponding to π = π1,. . . ,πm, πm+1, . . . ,πn.
For simplicity, we only give the computation steps for the case of H(t1) ≥ H(t2),
and omit the steps computing the value and height of the new nodes.

Algorithm Join(t1, t2)
1. If H(t1)−H(t2) ≤ 1, create a new node t, set L(t) = t1 and R(t) = t2.

Return t.
2. If H(t1)−H(t2) = 2.
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t1

L(t1) R(t1) t2

L(R(t1)) R(R(t1))

k+2
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L(t1)
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t′ t”

t

k k

k+1 k+1

k+2

Fig. 5. The step 2.2 of Join(t1, t2). H(t1) = k+2, H(t2) = k and H(L(t1)) < H(R(t1))

2.1 If H(L(t1)) ≥ H(R(t1)), create two new nodes t′ and t.
SetL(t′) = R(t1), R(t′) = t2, L(t) = L(t1) and R(t) = t′.
Return t.

2.2 If H(L(t1)) < H(R(t1)), create three new nodes t”, t′

and t. Set L(t′) = L(t1), R(t′) = L(R(t1)), L(t”) =
R(R(t1)), R(t”) = t2, L(t) = t′, R(t) = t”. Return t.

3. If H(t1)−H(t2) > 2, t = Join(L(t1), Join(R(t1), t2)). Return t.

Theorem 3. If t1 corresponds to π1, . . . , πm, t2 corresponds to πm+1,..., πn,
then Join(t1, t2) returns a permutation tree corresponding to π1,. . .,πm,
πm+1,. . .,πn. The time complexity of Join(t1, t2) is O(H(t1)−H(t2)).

Split(T, m) splits permutation tree T corresponding to ρ = π1, . . ., πm−1, πm, . . .,
πn into two trees such that one corresponds to ρl=π1, . . . , πm−1, and the other
corresponds to ρr = πm, . . . , πn.

Lemma 4. Let T be a permutation tree corresponding to ρ = π1, . . ., πm−1,
πm, . . ., πn. Let P = v0, v1, ..., vk be the path from πm to r, the root of T ,
where v0 = πm, vk = r. If Ul = {L(vi)|vi−1 = R(vi), 0 < i ≤ k} and Ur =
{v0} ∪ {R(vi)|vi−1 = L(vi), 0 < i ≤ k}, then the concatenation of the intervals
corresponding to the nodes in Ul in left to right order must be ρl=π1, . . . , πm−1,
the concatenation of the intervals corresponding to the nodes in Ur in left to
right order must be ρr = πm, . . . , πn.

Therefore, we have the following algorithm for Split.

Algorithm Split(T, m)
1. Find the path from πm to r, the root of T . Assume the path is

v0, v1, . . . , vk, where v0 = πm and vk = r. tr ← v0, tl ← null.
2. for i = 1 to k do

begin
if L(vi) = vi−1 then tr ← Join(tr, R(vi)).
if R(vi) = vi−1 then tl ← Join(L(vi), tl).

end
3. Return tr and tl.

Lemma 5. Let Ur be defined as in Lemma 4. Suppose Ur contains k′ nodes and
rename the nodes in Ur as u1, u2, ..., uk′ by the order of joining operation in
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algorithm Split. Let ti denote the production of joining u1, ..., ui, 1 ≤ i ≤ k′,
then H(ti−1)−H(ui) ≤ 2 always hold.

Theorem 6. Suppose T is the permutation tree corresponding to ρ = π1,...,
πm−1, πm,...,πn. The algorithm Split(T, m) always returns tl corresponding to
ρl= π1,...,πm−1, and tr corresponding to ρr= πm,...,πn. The time complexity of
Split(T, m) is O(logn).

4 Sorting Permutation by Transpositions

From the viewpoint of the breakpoint graph, the transposition ρ(i, j, k) acting
on π cuts three black edges (r(πi−1), l(πi)), (r(πj−1), l(πj)), (r(πk−1), l(πk)), and
sets three new black edges (r(πi−1), l(πj)), (r(πk−1), l(πi)), and (r(πj−1), l(πk)).
In what follows, we use bi to denote the black edge (r(πi), l(πi+1)), 0 ≤ i ≤ n.
We say that one pair of black edges < bi, bj > intersects with another pair
< bk, bl >, if i < k < j < l or k < i < l < j.

4.1 Hartman and Shamir’s Algorithm

What follows is the algorithm proposed by Hartman and Shamir. Out improve-
ment is based on it. For simplicity, some definitions appearing in the algorithm
are omitted.

Algorithm Sort
1. Transform permutation π into a simple permutation π̂ by safe splits.
2. Call SimpleSort(π̂) to compute the transposition sequence ρ1, ρ2, ...,

ρt for sorting π̂.
3. Mimic the transpositions ρ1, ρ2, ..., ρt on π to get the transposition

sequence to sort π.

Algorithm SimpleSort(π̂)
1. While G = G(π̂) contains a 2-cycle, apply a 2-transposition.
2. while G contains an 3-cycle do

begin
2.1 Pick a 3-cycle C = bi1 ,bi2 ,bi3 . If C is oriented, apply a

2-transposition.
2.2 Otherwise, pick another cycle D which has one pair of black

edges intersecting with < bi1 , bi2 >. If C interleaves with D,
apply a (0, 2, 2)-sequence.

2.3 Otherwise, pick a cycle E which has a pair of black edges
intersecting with <bi2 , bi3 >. If E interleaves with C or D,
apply a (0, 2, 2)-sequence.

2.4 Otherwise, cycle C is shattered by cycles D and E,
apply a (0, 2, 2)-sequence for C,D and E.

end
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It takes O(n) time to transform a permutation into a simple permutation.
Hartman and Shamir only considered the time complexity of sorting the simple
permutation. They use procedure Transposition to modify the data structures
for the transposition operation and procedure Query to find a pair of black
edges intersecting with the given pair of black edges. The two operations can be
implemented in O(

√
nlogn) time respectively. Therefore, the time complexity of

SimpleSort is O(n
3
2
√

logn).

4.2 Our Improved Algorithm

In order to implement the algorithm Sort in O(nlogn) time, the critical part is
using the permutation tree to implement Query and Transposition in O(logn)
time respectively.

The following lemma implies the method of using the permutation tree to find
the pair of black edges intersecting with a given pair.

Lemma 7. ([3]) Let bi and bj be two black edges in an unoriented cycle C,
i < j. Let πk = max

i<m≤j
πm, πl = πk + 1, then black edges bk and bl−1 belong to

the same cycle, and the pair < bk, bl−1 > intersects with < bi, bj >.

Let π = π1...πn be a simple permutation. The permutation tree corresponding
to π have been constructed by Build. Query and Transposition are implemented
as follows.

Query(π, i, j): Find a pair of black edges intersecting with the given pair
<bi, bj >. Split T into three permutation trees : t1 corresponding to [π1, . . . , πi],
t2 corresponding to [πi+1, . . . , πj ] and t3 corresponding to [πj+1, . . . , πn] re-
spectively. The value of the root of t2 is the biggest element in the interval
[πi+1, . . . , πj ]. Let it be πk and πl = πk + 1. By Lemma 7, the pair <bk, bl−1 >
intersects with the pair <bi, bj >.

Transposition(π, i, j, k): Apply a transposition ρ(i, j, k) on π. Split T into four
trees: t1 corresponding to [π1, . . . , πi−1], t2 corresponding to [πi, . . . , πj−1], t3
corresponding to [πj , . . . , πk−1], t4 corresponding to [πk, . . . , πn]. Then, join the
four trees together by Join(Join(Join(t1, t3), t2), t4).

Lemma 8. The procedure Query and Transposition each can be completed in
O(logn) time.

Lemma 9. The number of even cycles in a breakpoint graph must be even.

Lemma 10. Step 1 of SimpleSort can be implemented in O(nlogn) time.

Lemma 11. Step 2 of SimpleSort can be implemented in O(nlogn) time.

Lemma 12. Step 3 of Sort can be implemented in O(nlogn) time.

Proof. Safe splits used to transform π into π̂ can be considered as adding some
new elements into π. Every transposition acting on π̂ can be mimicked on π
by ignoring the added elements[16]. Suppose a transposition ρ cutting the black
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edges (r(π̂i−1), l(π̂i)), (r(π̂j−1), l(π̂j)), (r(π̂k−1), l(π̂k)) of G(π̂). If we can find
the three black edges in G(π) corresponding to them, it is enough to mimic ρ.
Without loss of generality, consider how to find the black edge in G(π) corre-
sponding to (r(π̂i−1), l(π̂i)). Let α = max{a|a ≤ i− 1, π̂a is not newly added }
and β = min{b|b ≥ i, π̂b is not newly added }, then the black edge (r(π̂α), l(π̂β))
is what we want.

We have to use a new permutation tree to compute π̂α and π̂β . Produce a new
permutation p = p1, ..., pn, such that pi = π̂i if π̂i is not newly added, else pi =
−π̂i for i = 1,2,..., n, where n is the number of elements in permutation π̂. Build
up a permutation tree Tp for p. When do transposition on π̂, do transposition
on p at the same position. π̂α and π̂β corresponding to π̂i−1 and π̂i respectively
can be computed by the following way.

• Search along the path from the leaf node pi−1 to the root of Tp. Find
the first node t on the path, such that the value of t and L(t) are
positive and L(t) is not on the path. Search down from t’s left child
find the rightmost leaf node tα whose value is positive, then tα is π̂α.

• Search along the path from the leaf node pi to the root of Tp. Find
the first node t on the path, such that the value of t and R(t) are
positive and R(t) is not on the path. Search down from t’s right child
find the leftmost leaf node tβ whose value is positive, then tβ is π̂β .

�

Theorem 13. Algorithm Sort implemented with permutation tree runs in
O(nlogn) time.

5 Sorting Permutation by Block-Interchanges

The two critical operations of the O(n2) algorithm for sorting by block-
interchanges, proposed by Christie in [14], are the same as the algorithm for
sorting by transposition.

Theorem 14. Sorting permutation by block-interchanges implemented with per-
mutation tree runs in O(nlogn) time.

References

1. Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of brassica and
raphanus: reversal of repeat configurations by inversion. Nucleic Acids Research
14(24) (1986) 9755–9764

2. Hoot, S.B., Palmer, J.D.: Structural rearrangements, including parallel inversions,
within the chloroplast genome of anemone and related genera. Journal of molcular
evolution 38(3) (1994) 274–281

3. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete
Mathematics 11(2) (1998) 224–240

4. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glas-
gow (1999)



Faster Algorithms for Sorting by Transpositions 137

5. Walter, M.E.M., Curado, L.R.A.F., Oliveira, A.G.: Working on the problem of
sorting by transpositions on genome rearrangements. In: 14th annual symposium
on combinatorial pattern matching. Volume 2676 of Lecture Notes in Computer
Science., Springer-Verlag GmbH (2003) 372–383

6. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wastlund, J.: Sorting a
bridge hand. Discrete Mathematics 241(1-3) (2001) 289–300

7. Hartman, T., Shamir, R.: A simpler 1.5-approximation algorithm for sorting by
transpositions. In: 14th Annual Symposium on Combinatorial Pattern Matching.
Volume 2676 of Lecture Notes in Computer Science., Springer-Verlag GmbH (2003)
156–169

8. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
32(3) (1985) 652–686

9. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for
sorting by transpositions. Information and Computation(Article in Press) (2005)

10. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpo-
sitions. In: 5th International Workshop on Algorithms in Bioinformatics. Volume
3692 of Lecture Notes in Computer Science., Springer-Verlag GmbH (2005) 204–
215

11. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoretical Computer Science
210(2) (1999) 327–339

12. Eriksen, N.: 1+ε-approximation of sorting by reversals and transpositions. Theo-
retical Computer Science 289(1) (2002) 517–529

13. Lin, G.H., Xue, G.L.: Signed genome rearrangements by reversals and transposi-
tions:models and approximations. Theoretical Computer Science 259 (2001) 513–
531

14. Christie, D.A.: Sorting permutation by block-interchanges. Information Processing
Letters 60 (1996) 165–169

15. Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by
block-interchanges and its application to the evolution of vibrio species. J. Comput
Biol. 12(1) (2005) 102–112

16. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial al-
gorithm for sorting signed permutations by reversals. Journal of the ACM 46(1)
(1999) 1–27



An ACO-Based Approach for Task Assignment
and Scheduling of Multiprocessor

Control Systems�

Hong Jin, Hui Wang, Hongan Wang, and Guozhong Dai

Institute of Software, Chinese Academy of Sciences, Beijing 100080
{hjin, hui.wang, wha, dgz}@iel.iscas.ac.cn

Abstract. In order to solve whether a set of periodic tasks can be as-
signed to a set of identical processors in such a way that all timing
constraints can be met, the model of travelling salesman problem is used
to describe the task assignment and scheduling in real-time multipro-
cessor control systems. Combined with the scheduling characteristics of
multiprocessor systems, a new feasible algorithm based on ant colony
optimization metaheuristic is presented for solving this problem. Both
the scheduling performance index and the control performance index are
proposed and used as fitness functions of optimization. Simulation re-
sults show that the proposed approach can solve the task assignment
and scheduling problem in multiprocessor control systems.

1 Introduction

Real-time multiprocessor control systems (MCS) have evolved rapidly in recent
years. For example, time- and safety-critical industrial control applications are
usually run on digital computer systems, each of which is composed of mul-
tiple processors joined by a certain interconnection network [1]. Such systems
are widely used in avionic control and nuclear plant control, automotive and
astronautics systems, and also to control automatic manufacturing systems and
other autonomic systems. In many control applications, the system needs to run
a collection of persistent tasks, Each such task needs to be executed frequently
enough to guarantee quick response [2].

Modern safety-critical real-time control systems require various functions such
as feedback control, adaptation, command and monitoring, which are usually
considered as different kinds of control tasks and should be efficiently integrated
to obtain good control system performance. These tasks should be executed
cooperatively, exchanging information among them. Thus, there is a need for
efficient task assignment and scheduling (TAS) for real-time controllers built
with multiple processors.

Control tasks are usually taken periodically. The set of tasks assigned to each
processor must be scheduled to complete within their deadlines, as the system
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is not overloaded, which means that tasks should be distributed to processors
without overloading any of them (task assignment), and those tasks assigned to
each processor should be schedulable to meet their timing requirements (task
scheduling). The overall system should provide the best control performance
for a suitable performance index (including control performance and scheduling
performance). The TAS problem in a MCS is significantly harder to solve than
the uniprocessor case, since it has to determine when and where to execute a
control task such that the total control performance cost is minimized.

The problem of scheduling real-time tasks on multiprocessors has attracted
considerable research in the past [3][4][5][6]. The existing methods include the
graph-theoretic, integerprogramming, or heuristic approaches [1], and the third
is used combined with the ant colony optimization (ACO) algorithm to solve
the TAS problem for periodic control tasks executing on an MCS in this paper.
The proposed method will present an off-line solution for the TAS. To the best
of our knowledge, this is the first paper that applies the ACO algorithm to solve
the TAS problem in MCS which should consider the control performance.

The essential trait of ACO algorithms is the combination of a priori informa-
tion about the structure of a promising solution with a posteriori information
about the structure of previously obtained good solutions. ACO has been ap-
plied successfully to a large number of difficult discrete optimization problems
including the travelling salesman problem (TSP), the quadratic assignment prob-
lem, scheduling, vehicle routing, etc., as well as to routing in telecommunication
networks [7], especially to the scheduling problem, such as the shop scheduling
problem [8] and the resource-constraint scheduling problem [9].

In this paper, we study the TAS in MCS upon an even more general machine
model: the identical multiprocessor model, where each task is exclusively as-
signed to a specific processor without violating its computing capacity. For each
processor, a classical scheduling policy is employed to schedule all tasks assigned
to it. There are no precedence constraints among the tasks. The implications of
inter-task communication are also completely ignored in this research. The main
goal of this paper is to formulate a scheduling performance index and a control
performance index for the TAS problem in the identical MCS. We propose a
new feasible ACO-based TAS method which can be solved by minimizing the
proposed performance indexes for given a set of tasks for a control application.

2 Background

2.1 Control Task

In the computer-controlled system depicted in Figure 1(a), the dispersion be-
tween r(t) (the reference input) and y(t) (the measurement) is used as the input
of the controller that recalculates the manipulated variable u(t) used as the con-
trol signal of the plant for every p seconds. The state update of manipulated
variable and the calculation of system output will make up of a close loop, in
which the controller can be derived and implemented as an example of a periodic
and hard real-time control task usually.
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2.2 Multiple Control Tasks

Figure 1(b) shows that several control loops (e.g., feedback-control loop,
adaptive-control loop, etc.) may be assigned and scheduled on different pro-
cessor in the multi-processor systems, each one in charge of controlling a plant.
However, existing works focus on the scheduling of multiple control tasks on the
uniprocessor. Another example of multiple control tasks is the networked con-
trol systems where the performance requirement of each control loop is satisfied
as well as the utilization of network resources [10]. The task assignment and
scheduling among control tasks will affect the control performance themselves.

Let Ti be a periodic, hard real-time control task, which is characterized by two
parameters (Ci, pi) - an estimated worst-case execution time Ci and a sampling
period pi. It must complete by a deadline di equal to its sampling period.

A centralized scheduling mode is adopted here, and following assumptions are
required in next scheduling discussion:

a) Hard real-time systems; overhead is negligible.
b) Task set: independent; fully preemptive; periodic; all tasks arrive at time 0;

the arrival time is fixed and same with the ready time or releasing time.

Fig. 1. (a) Computer-controlled system. (b) Multiple control loops executing on differ-
ent processor.

3 Problem Description

3.1 Problem Statement

Suppose that an MCS is composed of n identical processors (P1,· · ·,Pn) except
the central processor, and a periodic control-task set, PCS=(T1,· · ·,Tm), com-
posed of m real-time control tasks (m>n). All identical processors are assumed
to be equally powerful and have the same processing speed [3]. Each processor
can process one unit of work in each unit of time, and each task may be executed
on at most one processor at a time.

The TAS problem can be formally described as follows. Given an MCS and
a PCS, it is determined whether there is a solution to assigning each of tasks in
PCS to a specific processor in MCS in such a way that some requirements are
met, e.g., all tasks are schedulable in every processor.
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3.2 TSP Description

The TAS in MCS can be similarly described by using TSP model as shown
in Figure 2. Every task is considered as a PCS node and mapped to a city in
TSP, and every processor is considered as an MCS arc and mapped to an edge
between two cities. Intuitively, the m PCS nodes (T1,· · ·,Tm) orderly enclose
linked by n MCS arcs (P1,· · ·,Pn) between two neighbor nodes such that the
TAS can be represented by a single-direction graph with m PCS nodes and m×n
MCS arcs, just link the clockwise direction. One and only one MCS arc between
two neighbor nodes can be chosen as an ant goes across from one city to the
next.

Definition 1. A “move”, called as a choice that a task is assigned to a processor
as referred to [11], is denoted by a pair of (Task, Processor). For example, a move
of (Ti, Pj) means that Task i is assigned to Processor j, or adding (Ti, Pj) to a
tour. On the other hand, (Ti, Pj) denotes the choice of the jth MCS arc between
Node i and Node i+1 described in Figure 2 also.

Definition 2. A “tour”, which an ant starts from Node 1, walks or moves across
Node 2, · · ·, Node m in sequence, and finally goes back to the starting node suc-
cessfully, is called as a solution for the TAS in MCS and composed of m moves.
Obviously, there may be nm possible choices of tour for an ant.

Fig. 2. An ant will start from Node 1, and choose an arc to go to Node 2 according
to the choosing probability. Then it will continue to walk across Node 2, · · ·, Node m
orderly. Finally, it chooses an MCS arc between Node m and Node 1 to go back to
Node 1. All ants will go around in clockwise.

4 Applying ACO to the TAS

4.1 Pheromone Trails

Let τij(t) denote the pheromone trail of a move of (Ti, Pj) at time t, and be
also used to encode the favorability of assigning task Ti to processor Pj or the
desirability of adding (Ti, Pj) to a tour, which needs to establish a 1:1 mapping
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between a pheromone trial and a move. The trail level indicates how proficient
an artificial ant has been in the past to make the particular choice; therefore, it
represents a posteriori indication of the desirability also.

4.2 Heuristic Information

Let ηij(t) denote the heuristic desirability or the attractiveness of the move
(Ti, Pj), which indicates its a priori desirability. The calculation of heuristic
desirability proposed in [11] is dependent on both the accumulative utilization
of processor Pj and the relative quickness of executing Ti on Pj among all eligible
processors, and the later given is unpractical. However, for identical MCS and if
no special requirement, the a priori desirability of a move can be only considered
as combined with the accumulative utilization here.

Case 1. The a priori desirability for every feasible move can be chosen to be
the same, e.g., ηij(t)=1 for any move (Ti, Pj), j=1,· · ·,n.

Case 2. A processor with the less accumulative utilization will be assigned the
higher a priori desirability. Let Uj be the accumulative utilization of proces-
sor Pj , um be the minimum utilization among m tasks. Obviously, Uj=0 for
idle processor j; otherwise, Uj≥um. The a priori desirability can be defined as
ηij(t)=1/Uj if Processor j is not idle; otherwise, 1/ε, where ε is a given positive
number less than um.

Case 3. A processor with the larger accumulative utilization will be assigned the
higher a priori desirability. Let bu be the upper bound of utilization for a chosen
scheduling algorithm, the a priori desirability is defined as ηij(t)=min(Uj ,bu) if
Processor j is not idle; otherwise, ε.

The former two cases emphasize that tasks are assigned to processors as uniform
as possible in order to avoid several processors be overloaded. And the later
emphasizes that the number of used processors is as smaller as possible.

4.3 Choosing Probability

An artificial ant will move stochastically according to a probability distribution
of move. The choosing probability, prob

(k)
ij , for the choice of the move (Ti, Pj)

- also called the transition probabilities with which ant k in Node i chooses to
move to the next Node i+1 [12], is defined as follows:

prob
(k)
ij (t) =

τα
ij(t)η

β
ij(t)∑

r∈allowedik
τα
ir(t)η

β
ir(t)

(Ti, Pj) ∈ allowedik (1)

where, the value of parameters α and β, α>0 and β>0, are user-defined and
determines the relative importance of the pheromone trail and the heuristic
information on the move decision respectively. The allowed move set, allowedik,
is composed of eligible moves of (Ti, Pj) for ant k. Note that potentially there
are many different ways of choosing the transition probabilities.
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4.4 Pheromone Update

The pheromone trails will be evaporated with the time gradually. The calculation
of pheromone updating used in [11] need consider two factors, i.e. the number
of EDF-schedulable tasks along the time dimension and the energy consumption
along the resource dimension, and needs to make statistics of the number of
assigned tasks in a solution and to estimate its energy consumption which has
been a little unpractical. A more feasible method of pheromone updating is
proposed as follows.

Let ρ be a user-defined parameter called evaporation coefficient of pheromone
trails, and q be the number of ants. Let EU

(k)
j be the efficient utilization of pro-

cessor Pj defined in next section, Lk be the sum information of spare utilization
or the laxity in the computing capacity of all processors after ant k goes around
across all nodes defined as Lk =

∑
i(bu − EU

(k)
i ).

In the ant system of TAS, once all ants have built their tours, the global
updating rule on all moves is implemented by using following formula:

τij(t + 1) = ρτij(t) + Δτij where Δτij =
∑

k
Δτ

(k)
ij for ρ ∈ (0, 1) (2)

where Δτij represents the contribution sum of all ants, Δτ
(k)
ij is the amount of

trail laid on the move (Ti, Pj) by ant k and is equal to Q/Lk if the move of (Ti,
Pj) is chosen by ant k in its tour, otherwise, zero. Q is a const parameter.

Obviously, the pheromone updating is intended to allocate a greater amount
of pheromone to shorter tours, and is composed of two parts of the change in
the amount of pheromone, one is the addition of new pheromone deposited by
ants on the visited arcs, and another is the pheromone evaporation.

5 Fitness Functions

5.1 Scheduling Performance

Let Ω
(k)
j and U

(k)
j be the set of tasks assigned to processor Pj and its accumu-

lative utilization respectively in the tour of ant k, and U
(k)
j =
∑

i∈Ω
(k)
j

(Ci/pi),
then, the efficient utilization of Pj can be defined as follows

EU
(k)
j = min{U (k)

j , bu} (3)

As processor Pj is overload, its efficient utilization is set to be bu. Let S
(k)
j =bu−

EU
(k)
j defined as the spare utilization of processor Pj in the tour of ant k. Then

the average of total spare utilization of all processors for all ants can be used as
the fitness function of ACO algorithm,

fs = min{1
q

∑
k

∑
j
S

(k)
j } (4)
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The object of this optimization index is to make more use of the computing ca-
pacity of every processor averagely, and the idle processor is not allowed usually
[2]. Moreover, as the system is overload, another usual scheduling performance
index is the missed deadline ratio.

5.2 Control Performance

In the TAS, it is best that the subset of tasks assigned to every processor is
schedulable such that the desired idea control results of every subsystem can be
implemented as control engineers hope. In [3][4], the optimal utilization bounds
for classic RM and EDF scheduling policies are given on identical multiprocessors
respectively, which can be used in the ant system to judge whether the MCS is
overload. As the MCS is overload, the following control performance index will
be considered besides the above scheduling performance index. Let ei(t)=yi(t)-
ri(t), W=diag(w1,· · ·,wm), E(t)=(e1(t),· · ·,em(t)), tij=jpi, where, yi and ri are
the actual output and reference input of the ith subsystem respectively. The
total control performance cost is defined as follows:

fc =
∫ TS

0
E(t)WE(t)′dt =

∫ TS

0

m∑
i=1

wie
2
i (t)dt =

m∑
i=1

wific(pi) (5)

fic(pi) =
∫ TS

0
e2

i (t)dt =
∫ TS

0
(yi(t)− ri(t))

2
dt = pi

ni∑
j=1

(yi(tij)− ri(tij))
2 (6)

where, ni=$TS/pi%, TS is the simulation time. The quadratic term emphasizes
minimizing the magnitude of weighted square error between the control output
and reference input, where, fic and wi are the control performance cost and
weighed coefficient of the ith subsystem respectively. Here, fc can be considered
as the integrated control performance cost and used as another complementary
fitness function in the proposed ACO-based approach.

6 Experimental Results

6.1 Parameters Given

In following simulations, the execute time and sampling period of tasks are
generated by using the following method:

a) Ci of integer value is created by setting it to a uniform random number in
the interval of [Cmin, Cmax] (ms), where Cmin and Cmax are the minimum
and maximum values of execute time respectively. Here Cmin=2, Cmax=5;

b) pi of integer value is computed by using the relationship of pi=m×Ci/δ,
where, m is the number of tasks, δ is the expected workload.

Parameter settings in following simulation are given as follows: α=0.5, β=0.5,
ρ=0.5, Q=1, and the initial trail level and heuristic level are given randomly.
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6.2 Simulating Schemes

The ACO algorithm simply iterates a main loop where q ants construct their
solutions in parallel, thereafter updating the trail levels. Two implementing
schemes are given here. The performance of the ACO-based algorithm depends
on the correct tuning of several parameters, namely: relative importance of trail
and attractiveness, trail persistence, initial trail level and heuristic level, number
of ants, used for defining to be of high quality solutions with low cost.

Scheme 1: Consideration of fitness functions. In this simulation scheme,
after q ants move around one times, it is dependent on the improvement of fit-
ness functions whether the pheromone trail and heuristic information need be
updated. As the fitness functions have not got improved, q ants will continue to
move around many times with the same pheromone trail and heuristic informa-
tion until an improved fitness function is achieved and will be instead of the last
optimal value. Let SubLoop be the admitted maximum number of sub-iteration
in the searching of improved fitness function. When the iteration number that
q ants move around with the same pheromone trail and heuristic information is
larger than SubLoop, the iteration move will stop. Once the iteration move stops
no matter either finding an improved fitness function or reaching the maximum
sub-iteration, the pheromone trail will be updated and heuristic information will
be recalculated all according to the last sub-iteration information of q ants, then
the main iteration continues.

Scheme 2: No consideration of fitness functions. In this simulation scheme,
after q ants move around one times, the pheromone trail and heuristic information
will be updated all no matter whether the fitness function gets improved.

6.3 Simulation Comparisons

For Scheme 1. For m=10, n=3, q=100, δ=3, in Figure 3(a) compares the
average of total spare utilization of all processors, derived by using three methods
of choosing the heuristic information in ACO, where SubLoop=10 and the main
iteration number is 300. In Table 1, for the same m, n, q and SubLoop, gives
values of scheduling fitness function derived for different expected workload δ,
and the main iteration number is 300. In Figure 3, the X-axis scales the main
iteration number, and Y -axis scales the average laxity sum of all processors.

For Scheme 2. For m=30, n=3, q=100, δ=3, in Figure 3(b) gives their com-
parisons, where, SubLoop=1 and the main iteration number is 1000.

Remark 1. For Scheme 1, the final optimization values of scheduling fitness func-
tion for three choices of heuristic information in ACO have small and even little
difference for different expected workload.

Remark 2. For Scheme 2, the optimization process is not stable because of no
considering the sub-iteration and the frequently updating of heuristic informa-
tion at every main-iteration. The choice of Case 1 is a little better than other
two cases.



146 H. Jin et al.

Fig. 3. (a) Comparisons of former 250 values of scheduling fitness function for Scheme 1,
where the real/dashdot/dashed line for Case 1/2/3 described in Section 4.2. (b) Compar-
isons of former 200 values of that for Scheme 2, where the upper/middle/below subfigure
for Case 1/2/3.

Table 1. Values of scheduling fitness function, derived by using three methods of
choosing the heuristic information in ACO described in Section 4.2, for Scheme 1 and
different workload

Workload(δ) 1 2 3 4 5

Case 1 2.000 1.0260 0.5024 0.3100 0.1600
Case 2 2.000 1.0240 0.4964 0.3100 0.1700
Case 3 2.000 1.0240 0.5065 0.3161 0.1700

Remark 3. For given a PCS, because the utilization of every processor changes
discontinuously and the fitness functions at every sub-iteration are dependent on
a choice generated randomly according to choosing probability, the sub-iteration
number of finding a better solution is not determined, however, the larger the
SubLoop is, the more the calculation is.

7 Conclusions

The task assignment and scheduling problem in multiprocessor control systems
is discussed and described using the model of travelling salesman problem, where
every control task is mapped to a city, and every identical processor is mapped
to an edge between two neighbor cities in the travelling salesman problem. A new
ACO-based approach is presented to solve the similar travelling salesman prob-
lem. In the proposed method, the updating calculation of pheromone trails and the
definition of heuristic information are combined with the characteristics of multi-
processor scheduling. Moreover, two indexes for scheduling performance and con-
trol performance are proposed and used as the fitness functions in the ACO-based
algorithm. Simulation shows that the proposed method can be used to solve the
task assignment and scheduling problem in multiprocessor control systems.
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Abstract. We design a time and energy efficient algorithm concerning size ap-
proximation for single-hop radio networks. The most important feature of the
algorithm is that it is immune against an adversary that may scramble a certain
number of communication steps. The previous algorithms presented in the lit-
erature provide false estimations if an adversary causes certain communication
collisions.

1 Introduction

Ad hoc networks have gained a lot of attention due to their broad potential applications.
However, optimistic reports about future perspectives often disregard some fundamen-
tal design problems. While on the hardware side the advances are encouraging, many
algorithmic problems of self-organization of ad hoc networks still need to be solved.

Algorithmic issues for ad hoc networks are quite different from the classical ones:
the communication channel has different characteristics than in wired networks, the
network might change quite fast, the network stations may move, etc. Due to technical
limitations new complexity measures are to be considered: one of the most important
ones is the energy cost. It is related to the amount of time that a station uses for sending
or listening (not necessarily getting any message).

One of the crucial issues which has been almost completely disregarded in the algo-
rithm design are transmission faults. Some work has been done on the hardware side
– however, this approach must be limited to a “standard” fault rate. Above this level
it is quite inefficient to provide immunity to transmission faults by hardware means. It
seems that higher levels of communication protocols should take care of this.

Random transmission faults of physical nature are not the worst things that may hap-
pen. Since everybody may have physical access to the shared communication channel,
a malicious user or an adversary may cause transmission faults at chosen moments.
On the other hand, many classical algorithms (also those for ad hoc networks) have
“hot spots” and their efficiency and correctness depends on a faultless communication.
For this reason such algorithms are broken down through an adversary that knows the
algorithm details.

� Partially supported by Polish Committee for Scientific Research grant 3 T11C 033 26 (the third
author) and the EU within the 6th Framework Programme under contract 001907 (DELIS).

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 148–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Adversary Immune Size Approximation of Single-Hop Radio Networks 149

This paper is concerned with size approximation of ad hoc networks, where the main
focus is to make it immune to an adversary that may cause a limited number of trans-
mission faults.

2 Model

Radio Network. A radio network (RN) consists of a number of stations, which are
small devices with weak computational power. Each station is equipped with a radio
transmitter and a radio receiver. A station can be in the following internal states:

– dead: it means that the station did not survive deployment of the network or its
battery is exhausted,

– transmitting: it means that the station broadcasts some data via its transmitter,
– receiving: it means that the receiver is switched on and the station monitors the

radio channel.
– inactive: it means that the station has its antenna turned off, but the station can do

some internal calculations.

We assume that a station cannot be in two different states in the same moment, in
particular, it cannot simultaneously send and receive, as stated by IEEE 802 standard.

The stations communicate through a single broadcast channel. We consider here a
single-hop model. That is, a message sent by one station can be received by every
other station, unless other message is sent at the same time. When two or more sta-
tions send messages simultaneously, then a collision occurs. We work here with the
no-collision detection model. That is, we assume that a collision is indistinguishable
from a random noise which appears when no station broadcasts. (In practice, this is a
strong assumption, but we would like to design solutions that do not depend on detect-
ing collisions).

We assume that the stations have synchronized clocks and start the algorithm exe-
cution in the same moment. The execution consists in a number of synchronous steps.
Each step is executed within a single time slot. Within a step a station is in one of the
states listed above and cannot change it.

Complexity Measures. The parameters concerned are:

– time complexity, which is the maximum number of steps executed by a station of
the network during algorithm execution,

– energy usage, which is the maximum number of steps within which a station is
either transmitting or listening, taken over all stations.

If a RN executes a probabilistic algorithm, we consider also the probability that it does
not reach its goal within the specified number of steps.

Adversary Model. We consider two factors that can influence algorithm execution.
First, it is possible that burst errors occur on the broadcast channel caused by some
physical conditions. Then the messages sent by the stations participating in the protocol
will be lost. The second situation is that an adversary causes collisions on the broadcast
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channel at certain moments. The effect is the same - nobody receives a message. This
may have profound consequences, since the popular approach for size approximation is
to make estimations based on observations whether certain messages came through the
channel. Of course, if an algorithm works for the second scenario, it works also for the
first one.

If the communication channel is scrambled all the time, no algorithm may achieve its
goal. So it is necessary to limit the energy cost of an adversary. In this paper we focus
on adversaries that have limited energy cost. This models an adversary (or adversaries)
holding similar devices as the legitimate stations.

We assume that the legitimate users have a shared secret unknown by the adversary.
The secret can be used to protect communication between the network users.

3 Size Approximation Problem

We assume that we are given a (single-hop) RN consisting of an unknown number of
stations. Each station knows only its unique ID and an upper bound on the number of
radio stations in this RN. (For physical reasons, in practice we always have some bound
on the number of stations.) It has no information on the actual size N of the network
and the ID’s of the other stations in the network.

The goal of size approximation is to find a number n such that, for some constants c
and d, which are parameters of the algorithm, the following inequality holds

1/c · n− d ≤ N < c · n + d .

Previous results on size approximation. Size approximation problem for single-hop
RN was considered in [9]. Later, more efficient solutions with respect to time and energy
complexity were found. In [4] a deterministic solution for the exact counting the number
of stations was presented, it runs in time O(n) and has energy cost O((log n)ε). Paper
[2] presents a size approximation algorithm with runtime O(log2+ε n) and energy cost
O((log log n)ε) for any constant ε > 0.

Each of these algorithms is quite fragile. Namely, even a single transmission error
could yield false estimations or no estimation at all.

Adversary immune algorithms. Adversary immune algorithms for single hop RN
were presented in two papers: [7] presents a randomized leader election algorithm run-
ning in time O(log3 N) with energy cost O(

√
log N). Paper [8] presents a randomized

initialization algorithm with runtime O(N) and energy cost O(
√

log N). The adversary
may use more energy than the protocol participants, namely Θ(log N). Both papers
mentioned above assume that the approximate network size is known.

Main Result. We present here the following result:

Theorem 1. Size approximation problem of a single-hop radio network consisting of
N stations can be solved in time O(log2.5 N · log log N) and energy cost O(log log N ·√

log N) where a correct output is given with probability at least 1 − 2−z where
z = Ω(

√
log N) in the presence of an adversary with energy cost log(N). The same

(correct) answer will be known to all station except o(N/2
√

log N ) of them.
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4 Basic Techniques

Basic Experiment. Size approximation is usually based on the following simple trick
with Bernoulli trials. Suppose we have K radio stations. If each of these stations decides
to transmit a message with probability p, then the probability that exactly one station
transmitted equals K ·p ·(1−p)K−1. It is well known that this expression is maximized
for p = 1/K and the value achieved is about 1/e. The event mentioned will be called
SINGLE for the rest of the paper.

We repeat this experiment t times and call it a basic experiment. The expected num-
ber of SINGLES in a basic experiment is about t/e. The algorithm examines the number
of SINGLES for basic experiments for different probabilities p. If the maximal num-
ber of SINGLES is achieved for p0, then we take 1/p0 as an approximation of the
number of stations.

Time Windows. To make things harder for an adversary, we can waste some time to
reduce adversary’s ability to make collisions. For this purpose we combine K consec-
utive time slots into one time window. Within each time window we perform one step
of the algorithm executed. The time slot within the window to be used by the algorithm
is determined by a strong cryptographic pseudorandom function generating numbers in
the range [1..K] from the shared secret as a seed.

Now, the adversary can still make collisions, but since the transmissions occur at
random moments within a window, either the chances of a collision are reduced or the
adversary has to use more energy.

Interleaving. Assume that an algorithm is designed so that there are K independent
groups of stations performing the same algorithm. Therefore, we can run these groups
simultaneously so that each time slot is devoted to one group, but the assignment of the
time slots to the groups is hidden from the adversary. From the adversary point of view
it is hard to attack a single group – the situation looks like in the case of time windows.
On the other hand, each time slot is utilized by the algorithm.

Assignment of the time slots to the groups are either by a pseudorandom generator
yielding permutations over {1, . . . , K} (then we have time windows of width K), or
by a pseudorandom function generating numbers in the range [1..K], where the number
denotes which group should transmit at a given time slot.

5 Algorithm Description

The algorithm consists of phases executed sequentially. Within phase i the algorithm
checks if the size of the network is between 22i

and 22i+1
and finds an appropriate

approximation if this is the case. In fact, for small size networks we substitute the first
three phases by one and execute it differently (see [6]). A phase ends with a common
agreement on the size of the network. In case there is no agreement, the algorithm steps
into the next phase. Now let us describe phase i. It consists of five subphases.

Subphase 1. We consider 2i groups of stations, each group consisting of 2i subgroups
(so there are 22i subgroups in total).
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The stations are assigned to groups independently at random. No communication is
required. Namely, each station decides to join a single subgroup chosen at random. So
from the point of view of a single subgroup this is a Bernoulli process with N trials
and success probability 2−2i. These Bernoulli processes for different subgroups are not
stochastically independent, but if 2−2i is small, then the numbers of stations assigned
to subgroups have approximately the same probability distribution as in the case of
independent Bernoulli trials (for a detailed discussion see [2]).

Subphase 2. There are 16 time slots assigned to each subgroup. We use interleaving
technique for mixing the time slots assigned to the subgroups.

Each subgroup performs the basic experiment consisting of 8 trials. For this purpose,
we assign probabilities of broadcasting – in the first subgroup the probability is set to 1

3 ·
2−(2i−2i−1), and it decreases twice when we increase the subgroup number by 1. So in
the last subgroup the probability equals 1

3 ·2−(2i+1−2i−2). A station that transmits at any
trial is called an active subgroup member. Each active subgroup member listens during
all time slots assigned to its subgroup (except for the moments when it transmits).

We will be interested in subgroups such that the broadcast probability is approxi-
mately inversely proportional to the expected number of stations within this subgroup.
In that case, the expected number of SINGLES within eight trials in such a subgroup is
about 8

e ≈ 3. Therefore, we seek subgroups with 3 SINGLES.
For each subgroup, we would like to inform all its active members whether 3 SIN-

GLES have occurred in this subgroup. For this purpose, after eight time slots described
above, we use eight additional time slots which mirror the first 8 time slots. It means
that a station transmits during time slot j if and only if it has transmitted in time slot
j − 8. The message sent by this station in the mirror phase is slightly different: it
contains a vector of length 8 that contains 1 at position s, if and only if it has re-
ceived a valid message during time slot s, for s ≤ 8. (Additionally, it contains a 1 at
position j.)

It is easy to see that if at least two SINGLES have occurred, then all active subgroup
members get informed about all SINGLES in this subgroup. Indeed, a station that has
successfully transmitted in time slot s gets a confirmation about this SINGLE within
a mirror time slot from every station that has transmitted without a collision. For s ≤
8, a station that has successfully transmitted in trial s gets ID s. If there is exactly
one SINGLE, then all but one station knows this SINGLE, but the station that has
transmitted successfully cannot say if its message came through or there was a collision.
For this reason, in such a case the subgroup will not be used in subsequent subphases
as the source of SINGLES.

If 3 SINGLES have occurred in a subgroup with broadcast probability p, then 1
p can

be taken as an estimate for the number of stations in this subgroup, and 1
p · 22i as an

estimate for the total number of stations. However, the algorithm takes an estimate from
all subgroups with 3 SINGLES from all groups. For this purpose we collect all such
subgroups, sort their list based on the subgroup number and finally take a subgroup that
is in a middle position of the sorted list (so we take the median). Then we use broadcast
probability p of the subgroup chosen and take 1

p · 22i as an estimate for the number
of stations.
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The main problem is to construct a list v of all subgroups with 3 SINGLES. This is
nontrivial, since for most subgroups there are no 3 SINGLES and inspecting all sub-
groups by a station would require too much energy. Our strategy is first to find all
subgroups with 3 SINGLES within each group – this is done during Subphase 3. We
take advantage of the fact that there is a small number of such subgroups within each
group. Then we perform gossiping between the groups (Subphase 4).

Subphase 3. Each group separately collects indexes of its subgroups with 3 SINGLES.
For this purpose, 8

√
2i time slots are used (which is much less than the number of

subgroups 2i). The idea is that only for a few neighboring subgroups 3 SINGLES
should occur.

An active subgroup member listens during all 8
√

2i time slots appointed to its group.
Let us consider a subgroup r with 3 SINGLES. Let m = r mod

√
2i. Then the active

member of subgroup r, which has transmitted in trial number j of its subgroup, trans-
mits at time slot 8 ·m+ j of its group in Subphase 3. The message transmitted contains
the subgroup number.

Of course, a collision occurs, if there are two subgroups with 3 SINGLES and in-
dexes differing by a multiple of

√
2i. However, such events have probabilities o( 1

2z ) as
shown in the next section and therefore can be neglected.

As the adversary can scramble the transmission, the whole procedure is repeated
i times.

Each active subgroup member maintains a list v of known subgroups with 3 SIN-
GLES. If it receives a message with a subgroup number, say j, (it is a subgroup num-
ber where 3 SINGLES occurred) it checks if there is an entry for j in its local
vector v. If not, then j together with the group number is appended to the local
vector v.

Finally, using a deterministic algorithm, the active members from a group elect one
representative of the group. It is done by choosing the station corresponding to the
first SINGLE in the subgroup i with the lowest index and exactly 3 SINGLES which
succeeds in transmitting at least one message in Subphase 3. As transmission errors can
occur, let us explain some details. The main problem is that the potential leader must
be sure that all other stations will agree that it is the leader. For this purpose we assume
that during Subphase 3 every message includes also information which messages came
through so far. The first case is that the second or the third message from subgroup
i comes through. Then the first station with a SINGLE from subgroup i can consider
itself the leader, since all other active stations have heard this message as well. The
second case is when only the first message from subgroup i comes through. If there is
another subgroup with 3 SINGLES such that at least one its message comes through,
then this message confirms the message from the first active station in subgroup i. So
again, it can safely decide to be the leader. The last case is that no other message comes
through. Then no leader will be elected.

During the next subphases, each group will be represented by its leader.

Subphase 4: During this subphase the leaders collect information on subgroups with
3 SINGLES over all groups. We execute a simple gossiping algorithm among the group
leaders. It consists of Θ(

√
2i) rounds, where a round uses 2i + 22i time slots. During



154 J. Kabarowski, M. Kutyłowski, and W. Rutkowski

a round, 2i out of 22i time slots are assigned to the group leaders, one slot per group.
The remaining time slots are unused and serve for confusing an adversary. The choice
of the slots used for communication is pseudorandom and based on the secret known
to network participants. Each leader transmits during its time slot. A message sent is a
collection of known pairs (j, vj), where j denotes a group number and vj is the v list
of this group.

At each round a leader listens during i time slots and updates its list of vectors v by
appending yet unknown pairs. Namely, a leader chooses i groups at random and listens
at the moments when the leaders of these groups transmit (provided that they exist).

After this part, with high probability, all active leaders have the same information
about the SINGLES in all groups, so that they can get the same estimate of the number
of stations in the network computed locally by each leader.

Subphase 5: During this subphase the non-leaders get the knowledge of leaders on
3 SINGLES collected during Subphase 4. Each leader transmits its estimate of the
number of stations and each non-leader listens at some moments chosen at random.
Namely, during each of

√
2i rounds the leaders use 2i time slots to broadcast, each

leader responsible for O(1) time slots. Since the leaders know themselves with high
probability, each of them can derive locally for which of the 2i time slots it is responsi-
ble for. As before, time slots used for transmission are dispersed among 22i time slots
in a pseudorandom way. Unlike in Subphase 4, each time slot devoted to transmission is
now used.

During each round a non-leader listens during i time slots randomly chosen from the
ones used by leaders to transmit.

6 Algorithm Complexity and Correctness

Energy Cost and Runtime. First we compute energy cost. Consider Phase i. Sub-
phase 1 requires no communication. Energy cost of Subphase 2 is 16. During Sub-
phase 3, if there are 3 SINGLEs in a subgroup, the active subgroup members use√

2i · 8 time slots to learn the other subgroups with 3 SINGLEs within its group. In
Subphase 4 and 5 energy cost is (i + 1) ·

√
2i + O(1) for the leaders and i ·

√
2i for the

other stations. Therefore, the energy expense for all phases equals O(i ·
√

2i), which is
O(
√

log N log log N).
Time complexity is as follows: O(1) for Subphase 1, 22i · 16 for Subphase 2; Sub-

phase 3 requires O(21.5i) time slots, whereas Subphase 4 and 5 require 2 · (22i) ·
√

2i

time slots, as the leaders perform twice the
√

2i rounds, each consisting of 22i slots.
After summing over all phases we get O(log2.5 N log log N).

Correctness of the Results. There are two reasons for which a transmission within
the algorithm may fail. The first one is a collision between legitimate participants
of the protocol. The second one is a collision caused by an adversary. The first sub-
phase is not a problem, since no communication takes place. During the second phase
the collisions between the participants occur, but as already mentioned in Section 4
if the broadcast probability is about inverse of the number of stations choosing to
broadcast, then with probability approximately 1

e a transmission succeeds. Even if
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the adversary knows the size of the network he cannot change this significantly. In-
deed, the number of subgroups is Ω(log2 N), the subgroups where 3 SINGLES oc-
cur are dispersed at random from the adversary point of view. So in order to reduce
the number of 3 SINGLES significantly the adversary has to hit Θ(log N) subgroups
out of Ω(log2 N). This occurs with probability of the magnitude 1/N and can be
neglected.

Now we consider Subphase 3. We observe that the probability of getting 3 SINGLEs
in the subgroup with broadcast probability 20.5

√
2i

times greater or lesser than in the
optimal subgroup is o(2−z) for z = Ω(

√
log N). Indeed, the probability for 3 SINGLEs

in the subgroup with broadcast probability at least 20.5
√

2i
times greater than optimal

(popt = 1/K , where K is the number of stations) can be estimated according to a

formula from Section 4 (substituting p = 20.5
√

2i
/K):

(8
3

)(
20.5

√
2i ( 1

e

)20.5
√

2i
)3 (

1− 20.5
√

2i ( 1
e

)20.5
√

2i
)5

< 1
N ,

for the subgroup with broadcast probability at least 20.5
√

2i times smaller the est-
imation is:

(8
3

)(
2−0.5

√
2i
( 1

e

)2−0.5
√

2i
)3(

1− 2−0.5
√

2i
( 1

e

)2−0.5
√

2i
)5

< 1
2
√

log N
.

So it is easy to see that the probability that for at least half of the groups with the
optimal broadcast probability and 3 SINGLES a collision will occur is less than 1

N .
So the number of groups with 3 SINGLES observed at Subphase 3 is Ω(2i) with high
probability. From now on assume that the number of such groups is c · 2i.

For Subphase 4 it is crucial to calculate the rate of spreading knowledge about 3 SIN-
GLES among the leaders. Let us consider a single leader L. Initially, only L knows that
his group has a leader. At each round the number of stations knowing L may increase.
Let Xt be this number immediately after round t of the Subphase 4. Let us consider two
stages: the first one lasts as long as Xt ≤ c log N

log log N .

6.1 Stage 1: Xt ≤ c log N
log log N

It is easy to see that the number of informed users will increase geometrically, even-
tually reaching c log N

log log N . Let us compute conditional expected value of Xt+1, that is
E(Xt+1|Xt). A conditional probability that a leader L′ has not learned about L equals:

log log N−1∏
j=0

(
1− Xt

log N−j

)
≤
(
1− Xt

log N

)log log N

≤ 1−Xt log log N
log N + 1

2

(
Xt log log N

log N

)2

(the last inequality follows from Taylor expansion). So the conditional probability that
L′ has received the information about L is at least:

Xt log log N
log N

(
1− c

2

)
.
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By multiplying the above value by c log N −Xt we get a lower bound of the expected
number of leaders, which learn about L at this round:

Xt

(
1− c

2

)
c (log log N − 1) = ω(Xt) ≥ d ·Xt

for some d and sufficiently large N .
For estimating the number of rounds in Stage 1 we call a round successful, if Xi

increases at least d times. This occurs with probability Θ(1). So we can talk about
a process with success probabilities higher than in a Bernoulli process. After logd

( c log N
log log N ) = O(log log N) successes Stage 1 must terminate. Using Chernoff Bound

we can easily see that this happens with probability at least 1 − 2−Θ(
√

log N) after√
log N rounds.

6.2 Stage 2: Xt > c log N
log log N

At round t + 1, probability that a leader L′ does not learn about (yet unknown) leader
L is less than 1− c

log log N . As we have
√

log N rounds and in each round the leader L′

listens log log N times, the probability that L′ does not learn about L is at most:(
1− c

log log N

)log log N
√

log N

� e−c
√

log N

So, probability that at least one of c log N leaders does not know about any of remaining
leaders is at most c log N · e−c

√
log N = O(2−

√
log N ). In the opposite case, if there is

no adversary, all stations have to query only once to get the size estimate. The only
problem appears when an adversary causes collisions.

An adversary may disturb the algorithm in Subphases 3 and 4 in two ways: he can
collide messages so that stations cannot make a common decision in a single group,
and he can collide messages so that propagation of information in Subphase 4 in order
to disable possibility to derive a common quantity estimate of the network size. In the
first case the adversary has to collide at least a constant fraction of groups - otherwise
a smaller number of the leaders still suffices to derive the estimate. Since making a
collision occurs with probability about log N/ log1.5 N = log−0.5 N , it follows eas-
ily from a Chernoff Bound that hitting Ω(log N) groups has probability bounded by
e−g log N ·

√
log N for some constant g which is o(1/N).

For the first part of Subsection 4, it is easy to see that the adversary cannot change
significantly each probability concerned and so the bound derived previously still
holds.

Now consider a non-leader that tries to get an estimate during Subphase 4. Probabil-
ity that a time slot monitored by this station is scrambled is not higher than log N/
log2 N , hence probability that every transmission is scrambled by the adversary is
at most (log N)− log log N ·

√
log N = o(2−

√
log N ). Hence the expected number of sta-

tions that get no estimation is o(N/2−
√

log N ). By Chernoff Bounds one can easily
derive that probability that N/2−

√
log N get not informed about the estimate is

o(1/N).
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7 Practical Implementation Issues

Good asymptotic behavior of an algorithm does not automatically mean that it is rel-
evant for practical applications. Especially, it is often the case for algorithms where
complexity measures are polylogarithmic and sublogarithmic. Moreover, for obvious
reasons we should assume that the number of stations N is fairly small. Also, failure
probability of order O(1/N) is less interesting than, say, smaller than 0.01.

We have implemented the algorithm presented and tuned several parameters. Here
we summarize the most important observations. The probability of 3 SINGLES in a
specific group is not symmetric with respect to the optimal subgroup (the one with
broadcast probability corresponding to N ). In order to decrease the bias of the total
stations quantity estimate, we propose to use median instead of mean. The advantage
of the median is that it disregards the extreme values (which are rare, but if occur, then
they change the mean value significantly). Another advantage is that if two stations have
different knowledge which 3 SINGLES have occurred, the median is still likely to be
the same. On the other hand, the mean value has the advantage that it is less quantized
so the estimate might better fit the actual size.

Below we present results of 100 000 simulations for N ∈ [28, 216]. Then there are 8
groups, each consisting of 8 subgroups. For each simulation, estimates based on mean
and median were constructed. We computed the error for both estimates. Furthermore,
we examined how many stations have the same knowledge and how many fail to get
any estimate. Let∇ be a random variable denoting the percentage of stations that share
the same knowledge on 3 SINGLES. The results are as follows:

Table 1. Simulation results

mean median
average estimation error (%) -11.48 -2.26

average absolute value of estimation error (%) 35.61 31.75
average value of ∇ (%) 98.30 98.47

standard deviation of ∇ (%) 4.71 4.38
95% quantile of ∇(%) 92.00 92.90
99% quantile of ∇ (%) 78.12 78.40
lack of knowledge(%) 1.13

We can clearly see that the estimate based on median performs significantly better than
the one based on mean. In only 0.7% of cases there was no subgroup with 3 SINGLES.

Final Remarks
In the algorithm presented a certain fraction of stations get no estimation on the size
of the network. If we increase the time complexity to 2Θ(

√
log N), then with probability

O(1/N) all non-leaders get informed about the estimation. It is fairly easy to see that
for an algorithm with a polylogarithmic runtime and an adversary with runtime O(log n)
the expected number of stations that do not get an estimate is always ω(1).

Let us remark that the results hold also if each transmission fails with a constant
probability.
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Abstract. A semi-matching on a bipartite graph G = (U ∪V, E) is a set
of edges X ⊆ E such that each vertex in U is incident to exactly one edge
in X. The sum of the weights of the vertices from U that are assigned
(semi-matched) to some vertex v ∈ V is referred to as the load of vertex
v. In this paper, we consider the problem to finding a semi-matching that
minimizes the maximum load among all vertices in V . This problem has
been shown to be solvable in polynomial time by Harvey et. al.[3] and
Fakcharoenphol et. al.[5] for unweighted graphs. However, the compu-
tational complexity for the weighted version of the problem was left as
an open problem. In this paper, we prove that the problem of finding a
semi-matching that minimizes the maximum load among all vertices in a
weighted bipartite graph is NP-complete. A 3

2 -approximation algorithm
is proposed for this problem.

Keywords: semi-matching, bipartite graphs, load balancing, NP-hard,
approximation algorithm.

1 Introduction

A bipartite graph is an undirected graph G = (X, E) where the vertex set X
can be partitioned into disjoint sets U and V such that every edge e ∈ E has
exactly one endpoint in each of the two sets. A matching M for a bipartite graph
G = (U ∪ V, E) is a subset of E such that every vertex in G is incident to at
most one edge in M . A matching M is maximum if there is no matching with
greater cardinality. The problem of finding a maximum matching for a bipartite
graph is one of the classical combinatorial optimization problems which can be
used to model numerous practical applications[1] and is known to be solvable in
polynomial time [2].

Harvey et. al.[3] consider a relaxation of the maximum bipartite matching prob-
lem and introduces the notion of semi-matching which is defined as follows.A semi-
matching on a bipartite graph G = (U ∪ V, E) is a set of edges X ⊆ E such that
each vertex in U is incident to exactly one edge in X . For each edge (u, v) in a
semi-matching X where u ∈ U and v ∈ V , we say that vertex u is semi-matched
(assigned) to vertex v .The sum of the weights of the vertices from U that are semi-
matched to some vertex v ∈ V is referred to as the load of vertex v.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 159–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The problem of finding semi-matchings for unweighted bipartite graphs
(whereby all vertices in U have the same weight) was first addressed by Low[4].
Their work was motivated by the need to balance the load among video disks while
retrieving data blocks from the disks in a video-on-demand (VoD) system. This
problem was shown to be equivalent to that of finding a semi-matching that min-
imizes the maximum load among all vertices in V (i.e. the L∞ − norm) and was
proven to be optimally solvable in O(|U |2+|U ||V |)[4]. Harvey et. al.[3] consider the
problem of finding semi-matchings for unweighted bipartite graphs with the objec-
tive of balancing the load1 of the vertices in V under any Lp-norm. Their work was
motivated by various load-balancing problems that arise in machine scheduling. In
particular, givenm machines and n tasks, the machine scheduling problem seeks to
assign each task to some machine that can process it. The tasks are to be assigned
to machines in a manner that minimizes some optimization objective. Under this
setting, Harvey et. al.[3] defined the cost of a semi-matching to be sum of the load of
all vertices in V . They showed that minimizing the cost of semi-matching is equiv-
alent to minimizing the load under various metrics (Lp-norms) which include the
makespan (maximum completion time) of a schedule, average completion time (or
flow time) of a schedule, and variance in the completion times (loads) of the ma-
chines. They proposed two algorithms that optimally solve the problem with time
complexities of O(|U ||E|) and O(min{|U |3/2, |U ||V |}|E|). Recently, Fakcharoen-
phol et al[5] proposed a faster algorithm that runs in O(|E|

√
|U |log|U |). However,

the computational complexity for the weighted version of the problem was left as
an open problem in [3]and [5].

In this paper, we address the problem to finding a semi-matching that mini-
mizes the maximum load among all vertices in V ( i.e the L∞-norm) for
weighted bipartite graph. We refer to this problem as the load-balanced semi-
matching problem (LBSMP). An optimal solution to the problem is a semi-
matching that minimizes the maximum load of the vertices in V . The main
contributions of this paper are: (i) we prove that the problem of finding an
optimal solution for the load-balanced semi-matching problem on weighted bi-
partite graphs is NP-complete. This settles the open problem that was raised in
[3] and [5] and (ii) we propose a 3

2 -approximation2 algorithm for LBSMP. The
rest of this paper is organized as follows. In section 2, a formal definition of the
load-balanced semi-matching problem is presented and the problem is shown
to be NP-complete. Some properties relating to optimal load-balanced semi-
matchings are described in section 3. An approximation algorithm is presented in
section 4. This paper concludes with section 5.

2 The Load-Balanced Semi-matching Problem

Given a bipartite graph G = (U∪V, E) where E ⊆ U×V , we refer to the vertices
in U and V as U -vertices and V -vertices, respectively. We denote the sizes of U

1 The load of a vertex in an unweighted graph is equal to the degree of the vertex.
2 An algorithm A is said to be an α-approximation algorithm, if the ratio of the

solution generated by A and an optimal solution, is bounded by α.
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and V by n and m, respectively (i.e. n = |U | and m = |V |). Every U -vertex u
in G is associated with non-negative weight w(u).

From the viewpoint of machine scheduling, we may consider the U -vertices as
a set of tasks and the V -vertices as a set of machines onto which tasks are to be
assigned. An edge exists between vertices u and v, where u ∈ U and v ∈ V if the
task corresponding to vertex u may be processed by the machine that corresponds
to vertex v. For each vertex u ∈ U , let N(u) denote the set of V -vertices that are
adjacent to u, i.e. the neighbourhood of vertex u (the set of machines that can be
used to process the task correponding to u). For each vertex u ∈ U , its weight w(u)
corresponds to the amount time needed to process the task u.

A semi-matching on a bipartite graph G = (U ∪V, E) is a set of edges X ⊆ E
such that each vertex in U is incident to exactly one edge in X . A semi-matching
thus gives an assignment of each task to a machine that can process it. It is easy
to see that in order to assign each task to some machine, the degree each U -
vertex must be at least one (since an isolated U -vertex (task) cannot participate
in any semi-matching (assignment)). For each v ∈ V , let UX

v denote the set of
U -vertices that are assigned to v using semi-matching X . Let l(v) denote the
sum of the weights of all vertices in UX

v , i.e. l(v) =
∑

u∈UX
v

w(u). The Load-
balanced Semi-matching Problem (LBSMP) is that of finding a semi-matching
X : U → V such that lmax is minimized, where lmax = max

v∈V
l(v).

2.1 The Intractability of the Load-Balanced Semi-matching
Problem

In this section, we will show that the Load-balanced Semi-matching Problem
is intractable, being NP-complete. The decision version of the problem can be
stated as follows.

Load-balanced Semi-matching
Instance: Bipartite graph G = (U ∪ V, E), W = {w(u) ∈ Z+ : ∀u ∈ U}, positive
integer k > min

u∈U
w(u).

Question: Is there a semi-matching for G such that max
v∈V

l(v) ≤ k?

We next show that the Load-balanced Semi-matching Problem is related to the
following machine scheduling problem.

Problem 1: Minimum Makespan Scheduling Problem on Identical Ma-
chines (MMSPIM)[6]

We are given m machines and n tasks with respective processing times p1,
p2, . . . , pn ∈ Z+. The processing times are the same no matter on which ma-
chine a job is run and pre-emption is not allowed. Find an assignment of jobs
to m identical machines such that the makespan (which is the latest completion
time among all machines) is minimized.

Lemma 1. The Load-balanced Semi-matching Problem is NP-complete.
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Proof. It is easy to see that the problem is in NP since a non-deterministic al-
gorithm just need to guess a set of edges that matches each U−vertex to some
V−vertex and check in polynomial time if themaximum load among allV−vertices
is no more than k. We next show that a special case of LBSMP is identical to MM-
SPIM. In particular, consider a special case of LBSMP whereby each U−vertex
can be assigned to any V−vertex. It is easy to see that this special case of LBSMP
is identical to MMSPIM. Thus LBSMP is a generalization of MMSPIM. Since the
MMSPIM is known to be NP-complete[7], LBSMP is also NP-complete. ��

2.2 Related Work

We observe that LBSMP is also related to another machine scheduling problem,
namely the Minimum Makespan Scheduling Problem on Unrelated Machines
(MMSPUM), which is defined as follows:

Problem 2: Minimum Makespan Scheduling Problem on Unrelated
Machines (MMSPUM)[6]

We are given a set J of n jobs and a set K of m machines. The processing time
for a job j ∈ J on machine i ∈ K is pij ∈ Z+ and pre-emption is not allowed.
Find an assignment of jobs in J to the machines in K such that the makespan
is minimized.

We note that each instance of LBSMP can be represented as a restricted instance
of MMSPUM, whereby the U -vertices and the V -vertices of LBSMP correspond
to the jobs and machines of MMSPUM, respectively. For each vertex i ∈ U , let
pij = w(i) ∀j ∈ N(i) and let pij =∞ ∀j /∈ N(i). Then it is easy to see that an
optimal solution for LBSMP corresponds to a schedule for MMSPUM with min-
imum makespan and vice versa. MMSPUM is also known to be NP-complete[7]
and Lenstra et. al.[9] gave a 2-approximation algorithm for the problem. This
performance bound was further improved to 2− 1

m by Shchepin et. al.[10] and
this is currently the best-known approximation ratio that can be achieved in
polynomial time.

3 Properties of Optimal Load-Balanced Semi-matchings

This section presents some properties of the load-balanced semi-matching problem
which will be used in the design of an approximation algorithm for the problem.
Given a bipartite graphG = (U∪V, E), let M denote a maximum bipartite match-
ing in G. For each edge (u, v) ∈M , we say that vertex u is matched to vertex v and
vice-versa. In contrast, for each edge (u, v) in a semi-matching X where u ∈ U and
v ∈ V , we say that vertex u is semi-matched or (assigned) to vertex v.

Lemma 2. The maximum number of V -vertices that may be used in any semi-
matching is equal to |M |.

Proof. Let M be a maximum matching for the bipartite graph G. Let UM

and VM denote the set of matched vertices corresponding to U -vertices and
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Fig. 1. An Optimal Assignment using | M | V −vertices

V -vertices, respectively. It is easy to see that each vertex in UM can be assigned
to the corresponding vertex in VM to which it is matched, thus utilizing |M | V -
vertices in this partial semi-matching. Next we argue that the vertices in U−UM

can only be semi-matched to the vertices in VM . This in turn implies that the
maximum number of V -vertices that may be used in any semi-matching is equal
to |M |.

The argument is as follows. Since M is a maximum matching, there does not
exist any augmenting path3 in G with respect to M . Hence each path that begins
with an unmatched vertex u ∈ U−UM must terminates at some matched vertex
w ∈ UM and each of the U -vertices and V -vertices on this path are matched
vertices. Hence each vertex u ∈ U − UM can only be adjacent to the vertices in
VM . This in turn implies that each vertex u ∈ U−UM can only be semi-matched
to one of the vertices in VM . Hence the maximum number of V -vertices that may
be used in any semi-matching is equal to |M |. ��
3 An augmenting path with respect to M is one whose edges are alternately in M and

not in M and the first and last vertices of the path are not incident to any edge
of M .



164 C.P. Low

Lemma 3. There exists an optimal load-balanced semi-matching that uses ex-
actly |M | V -vertices.

Proof. Let X be an optimal load-balanced semi-matching and VX denote the
set of V -vertices utilized by X . Let | VX |= δ and suppose that δ < |M |. For
each V -vertex v ∈ VX , let UX

v denote the set of U -vertices that are assigned to
v (refer to Figure 1(a) & (b) for an illustration). We next construct a bipartite
matching as follows. For each V -vertex v ∈ VX , match v to a vertex, say u, where
u ∈ UX

v . Let the resultant matching be denoted by M ′ (refer to Figure 1(c) for
an illustration). Clearly, |M ′| = δ. Since M ′ is not a maximum matching4 in
G, there must exist |M | - δ augmenting paths in G with respect to M ′. Each
augmenting path in G will begin at some unmatched V -vertex v (a vertex with
zero load) which is adjacent to a vertex u (corresponding to a U -vertex) which
has been assigned to a V -vertex, say w, using X , i.e. w ∈ Vx. We consider the
following two possibilities.

Case (i): u is an unmatched vertex.
In this case, we will reassign u to v and removes its assignment to w. We note
that there will be no increase in the overall maximum load following the reas-
signment. In addition, by matching u to v, the size of the bipartite matching
will be increased by one.

Case (ii): u is matched to w.
Let the augmenting path that begins with v be denoted by Pv = v − u−w− x,
where u, x and v, w denote U−vertices and V−vertices, respectively and x ∈
UX

w − u. We note that since both u and x are assigned to w and since u is
matched to w, x must be an unmatched vertex. Hence the augmenting path Pv

will terminate at x, i.e. all augmenting paths Pv contain at most 4 vertices.
The vertex v may be assigned with a U -vertex and the matched edges in path

Pv may be augmented as follows. Assign u to v and removes its assignment to
w. Match u to v in G and removes its matching to w. Next match x to w. We
note that by reassigning u to v, the load of vertex v, l(v), will be increased by an
amount which is equal to the weight of vertex u while the load of vertex w, l(w),
will be reduced by the same amount. Let lold(w) denote the load of w prior to
the reassignment of vertex u to v. Since l(u) and l(w) are both less than lold(w),
there will not be any increase in the maximum load of the resultant assignment.
In addition, by matching u to v and x to w, the size of the matching (and the
utilization of V -vertices) will be increased by one (refer to Figure 1(d) for an
illustration). By repeating the above procedure for each augmenting path, we
will establish a new optimal assignment which utilizes exactly |M | V−vertices.

4 An Approximation Algorithm

As noted in section 3, the algorithms proposed in [9] and [10] for MMSPUM
are also applicable to LBSMP. However, we note that these algorithms rely
4 A matching M on a graph G is a maximum matching if and only if there is no

augmenting path in G with respect to M [8].
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on solving a linear programming relaxation of the problem and uses the infor-
mation obtained from the solution to allocate tasks (U−vertices) to machines
(V−vertices). In this section, we present a new algorithm, called the Min-Max
Load Semi-matching Algorithm, for LBSMP that achieves a lower performance
ratio than that of [10] without solving a linear program. In addition, our algo-
rithm runs in O(|U |[|U |+ |V |+ |E|]) and is combinatorial, hence is more efficient
than the algorithm proposed in [10].

4.1 The Min-Max Load Semi-matching Algorithm

Our proposed algorithm adopts the approach of utilizing the maximum number
of V -vertices possible in a semi-matching so as to distribute the load among as
many V -vertices as possible. Based on Lemma 2, we know that the maximum
number of V -vertices that may be used in any semi-matching is equal to |M |,
where |M | is the size of a maximum matching in the corresponding bipartite
graph G. Hence our algorithm will utilize exactly |M | V−vertices in its assign-
ment. We first sort the list of U -vertices in non-increasing order of the weights
of the vertices. Let the resultant list be denoted by U = {u1, u2, . . . , un}, where
w(u1) ≥ w(u2) ≥ . . . ≥ w(un). Starting with the first U -vertex u1 in the sorted
list, we will attempt to match u1 to V -vertex with zero load in the corresponding
bipartite graph G. Next, the algorithm will proceed to match u2 with another
V -vertex with zero load in G. The algorithm will iterate in this manner where
in each iteration, we will attempt to find an augmenting path P that connects a
given U -vertex ui to some unmatched V -vertex (with zero load) in G. If such a
path is found , we will augment the edges in P which results in the assignment
of ui to some V -vertex in P and the reassignment of the other U -vertices to
V -vertices in P . In addition the size of the resultant matching will be increased
by one. If there does not exist any augmenting path that begins with ui in G,
we will then assign ui to a least-loaded V -vertex in N(ui). The algorithm termi-
nates when all U -vertices have been assigned. The pseudocode of the algorithm
is given in Figure 2.

Lemma 4. The time complexity of the proposed algorithm is O(|U |[|U |+ |V |+
|E|]).

Proof. The sorted list in step 1 can be done in O(|U |log|U |). The initialization
of the load of the V−vertices in step 2 can be done in O(|V |). The while loop in
step 3 will iterates |U | times. In step 3.1, each augmenting path can be found in
O(|U |+ |V |+ |E|) using breadth-first search. The augmentation of the edges in
step 3.2 can be done in O(|U |+ |V |+ |E|); the reassignment of U -vertices to V -
vertices and computation of the new load in step 3.3 can be done in O(|U |+ |V |).
In step 3.4, the assignment of a U -vertex to a least loaded V -vertex can be done
in O(|V |) and the computation of the resultant load can be done in O(1). Hence
step 3 can be completed in O(|U |[|U |+ |V |+ |E|]). Thus, the overall complexity
of the algorithm is O(|U |[|U |+ |V |+ |E|]). ��
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Input: Bipartite graph G = (U ∪ V, E), W = {w(u) ∈ Z+ : ∀u ∈ U}.
Output: A semi-matching(assignment) of U -vertices to V -vertices

1.let U = list of U -vertices sorted in non-increasing order of vertex weights;
2.for j = 1 to m do

set l(vj) = 0;
endfor
set i = 1;

3.while U 
= ∅ do
3.1.find augmenting path P with ui as one of its end vertex;

if P exists then
3.2. augment the edges in P ;
3.3. for each matched edge (ux, vy) in P do

assign ux to vy ;
let uz be a U -vertex in P which was assigned to vy prior to the augmentation of P ;
l(vy) = l(vy) + w(ux) − w(uz);

endfor
3.4.else

let vj be a V −vertex with the least load in N(ui);
assign ui to vj ;
l(vj) = l(vj) + w(ui);

endif
U = U − {ui};
i = i + 1;

endwhile

Fig. 2. Min-Max Load Semi-matching Algorithm

4.2 Performance Ratio

We will prove that our proposed algorithm is able to achieve a performance ratio
of 3

2 for LBSMP.

Lemma 5. The Min-Max Load Semi-matching Algorithm is a 3
2 -approximation

algorithm for LBSMP and this bound is tight.

Proof. Let W denote the sum of the weights of all the U -vertices, i.e. W =∑n
i=1 w(ui). Let OPT denote the maximum load of an optimal solution. Then it

is clear that the sum of the weights of all the U -vertices is no more than m·OPT .
Hence OPT ≥ W

m . In addition, it is easy to see that OPT ≥ w(ui) ∀i.
Let I be an instance with the smallest number of U -vertices such that an

assignment of I which is obtained using proposed algorithm has maximum load
> OPT . Let Φ denote this assignment. Let ui be a U -vertex whose assignment
to some V -vertex, say v∗, using Φ results in the overall maximum load of the
assignment, i.e. l(v∗) = max l(v) ∀v ∈ V − {v∗}, and l(v∗) > OPT . Suppose
that i �= n. Then consider an instance I ′ which is equal to I without vertex un.
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Then I ′ is a smaller instance of I for which the proposed algorithm computes
an assignment with maximum load > OPT . But this contradicts the choice of
I. Hence we can assume that i = n. Note that this also implies that the load of
each V -vertex prior to the assignment of U -vertex un to some V -vertex using Φ,
is no more than OPT (otherwise we will again have a smaller problem instance
with maximum load exceeding OPT ).

Let A be an optimal assignment which uses the same number of V -vertices
as Φ, i.e. |M |, (it follows from Lemma 3 that there exists such an optimal
assignment). We first claim that w(un) ≤ OPT

2 − ε, where ε is a small pos-
itive constant. Suppose otherwise and assume that w(un) > OPT

2 − ε. Since
w(ui) ≥ w(un)∀i < n, each V -vertex can be assigned with at most two U -
vertices using A. Without loss of generality, we may assume that each V -vertex
is assigned with exactly two U -vertices (by adding dummy U -vertices with zero
weight). We normalize the optimal assignment A as follows:

– for each V -vertex, order the U−vertex (assigned to it) with the larger weight
as the first vertex

– sort the V−vertices so that the first U−vertices assigned are in descending
order of node weights. Let the resultant set of V−vertices be denoted by {
v1, v2, . . . , vm }.

For each V -vertex vq, let the first and second U -vertices assigned to vq using
A be denoted by u1

q and u2
q, respectively. The corresponding node weights of u1

q

and u2
q are denoted by w(u1

q) and w(u2
q), respectively. The assignment A may be

further normalized as follows. Starting from j = m downto 1, we compare the
node weight of u1

j with the node weight of u2
k where k < j. Let u2

h be a U -vertex
with highest node weight among all U -vertices u2

k, where k < j which satisfies
the following conditions, referred to as the swapping conditions:

– u1
j may be assigned to vh

– u2
h may be assigned to vj

– w(u2
h) > w(u1

j )

We note that by interchanging the assignment of U -vertices u2
h and u1

j , we will
have U -vertices u2

h and u2
j assigned to vj and U -vertices u1

h and u1
j assigned to

vh. Since w(u2
j ) ≤ w(u1

h), w(u2
h) + w(u2

j ) ≤ w(u2
h) + w(u1

h) ≤ OPT . Similarly
since w(u1

j ) < w(u2
h), w(u1

h) + w(u1
j ) < w(u1

h) + w(u2
h) ≤ OPT . Hence, we can

interchange the assignment of U−vertices u2
h and u1

j and yet keep an optimal
assignment (refer to Figure 3 for an illustration). The resultant list of V−vertices
(after considering all vertices u1

j for j = m downto 1) is then sorted again so
that the first U−vertices assigned are in decending order of node weights.

Following that, we will again check for the possibility of swapping the first U -
vertex assigned to vj with a second U -vertex assigned to another V -vertex which
satisfy the above-mentioned swapping conditions for j = m downto 1. If such pos-
sibility exists, then the above-mentionedprocedure is repeated.Otherwise,we next
proceed to compare the node weights of the second U -vertices assigned to the V -
vertices. Starting from j = m downto 1, we compare the node weight of u2

j with
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(a)  Assignment  A (b)   A:  After swapping u1
j and u2

h

Fig. 3. Further normalization of assignment A
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Fig. 4. Swapping the assignment of the second demand points in A

node weight of u2
k where k < j. Let u2

h be a U -vertex with highest node weight
among all U -vertices u2

k where k < j, which satisfies the following conditions:

– u2
h may be assigned to vj

– u2
j may be assigned to vh

– w(u2
h) > w(u2

j )

We note that by interchanging the assignment of U−vertices u2
h and u2

j , we
will have U−vertices u1

j and u2
h assigned to V−vertex vj and U−vertices u1

h and
u2

j assigned to vh. Since w(u2
j ) < w(u2

h), w(u1
h)+w(u2

j ) < w(u1
h)+w(u2

h) ≤ OPT .
Similarly since w(u1

j ) ≤ w(u1
h), w(u1

j )+w(u2
h) ≤ w(u1

h)+w(u2
h) ≤ OPT . Hence,

we can interchange the assignment of U−vertices u2
h and u2

j and yet maintain an
optimal assignment (refer to Figure 4 for an illustration). By iterating exchanges
of this kind for j = m downto 1, it is easy to see that our proposed algorithm
gives an assignment that is equivalent to this. But this contradicts that the
assumption that the maximum load of an assignment obtained by proposed
algorithm, i.e. Φ, is > OPT .

Hence w(un) ≤ OPT
2 − ε. As noted earlier, the load of each V -vertex prior to

the assignment of wn to some V -vertex using Φ, is no more than OPT . Hence,
following the assignment of wn to some V -vertex by Φ, the overall maximum
load L ≤ OPT + w(un) ≤ 3

2OPT − ε.
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5 + e 5 5 - e 5 - e

u1 u2
u3 u4

v1
v2

Fig. 5. A Problem Instance: Performance Bound is Tight

We next show that the bound is tight by using the following problem instance.
Consider a problem instance whereby we have 2 V -vertices and 4 U -vertices with
weights of 5 + ε, 5, 5 − ε and 5− ε, respectively. The bipartite graph depicting
the adjacency relationships between the two set of vertices is shown in Figure 5.

Using the proposed algorithm, vertex u1 will be assigned to vertex v1 while
vertices u2, u3 and 44 will be assigned to vertex v2 giving an overall maximum
load of 15− 2ε. However an optimal assignment will assign u1 and u2 to v1 and
assign u3 and u4 to v2 and the overall maximum load is 10+ε. Thus, the solution
obtained by our algorithm is a factor 1.5 worse than the optimum. ��

5 Conclusion

In this paper, we address the problem of assigning each vertex in U to a vertex
in V of a given weighted bipartite graph G = (U ∪ V, E), with the objective of
minimizing the maximum load among the vertices in V . We prove that the problem
is intractable, being NP-complete thus settling an open problem raised in [3]and
[5]. We proposed a 3

2 -approximation algorithm for the problem which runs in time
O(|U |[|U |+|V |+|E|]). Future researchdirections include the study of the average-
case performance of our proposed algorithm and the investigation of the possibility
of designing polynomial-time approximation schemes for the problem.
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Abstract. Chain Programming is a restricted form of Linear Program-
ming; in a Chain Program, there exists a total ordering on the program
variables. In other words, the constraints x1 ≤ x2 . . . xn are either implic-
itly or explicitly part of the constraint system. At the present juncture, it
is not clear whether an arbitrary linear program augmented with a chain
is easier to solve than linear programs in general, either asymptotically or
computationally. However, if the linear program is constituted entirely of
difference constraints, then the total ordering results in a number of in-
teresting properties, which are not true of constraint systems in general.
Inasmuch as difference constraint logic is an integral part of a number of
verification problems in both model-checking and real-time scheduling,
our results are of particular importance to these communities.

1 Introduction

Difference constraint logic (DCL) has been part of the Artificial Intelligence (AI)
and Model-checking communities for quite some time [8, 5] on account of its ex-
pressiveness and flexibility. From the perspective of AI, the Simple Temporal
Problem (STP) is one of the fundamental problems in temporal reasoning. In
model-checking, DCL is used to express constraints on the transitions of Timed
Automata [1], as also safety and liveness properties [15, 17]. Additionally, con-
junctions of difference constraints have been used to express and solve a number
of problems in real-time scheduling [10, 26]. This paper considers a special class
of DCL problems which are characterized by two features:

(a) All the constraints are conjunctively linked, and
(b) There exists a total ordering on the variables defining the constraint system.

Linear Programming refers to the problem of checking whether a conjunc-
tion of any class of linear constraints, not necessarily difference constraints is
feasible. When each constraint is of the form: xi − xj{≤, <,≥, >, =}c, then the
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constraint system is called a Difference Constraint System (DCS). If the DCS
is further augmented by a chain, i.e., the variables are totally ordered, then the
problem is called a Chain Program over difference constraints (CPD). Inasmuch
as CPDs are a special class of Difference Constraint Systems, any algorithm for
the latter also serves as an algorithm for the former. In particular, the Bellman-
Ford procedure [7, 11] which is widely used for solving conjunctions of difference
constraints can also be used for solving CPDs. In this method, the DCS is con-
verted to a directed, weighted constraint network called a constraint network,
using a linear time procedure. An application of Farkas’ lemma establishes that
the DCS is feasible if and only if the corresponding constraint network does not
contain a negative cost cycle; further, in the absence of negative cost cycles, the
solution to a Single Source Shortest Paths problem in the constraint network
serves as a solution to the DCS. However, this algorithm which runs in time
O(m · n) on a DCS with m constraints on n variables cannot be easily paral-
lelized. In this paper, we study a number of properties of chain programs that
point to the existence of an easily parallelizable algorithm.

The rest of this paper is organized as follows: Section 2 provides a formal
description of the problem under consideration. In Section 3, we discuss the mo-
tivation for our work, using examples from real-world design. Section 4 describes
the related work in the literature. Properties of Chain Programs over differ-
ence constraints are identified and proved in Section 5. Section 5 also provides
a sketch of a divide and conquer approach for solving CPDs. We conclude in
Section 6, by summarizing our contributions and outlining problems for future
research.

2 Statement of Problem

Definition 1. A difference constraint is a linear relationship of the form xi −
xj ≤ c, where c is a numerical constraint.

Note that constraints of the form xi − xj{≥, >, <,=}c are also called difference
constraints, since they can be easily transformed into the form demanded by
Definition 1 [13].

Definition 2. A conjunction of difference constraints is called a Difference
Constraint system.

A DCS is usually expressed in matrix form as: A · x ≤ b, where A is an m× n
matrix, b is an m-vector and x = [x1, x2, . . . , xn]T is an n-vector.

Definition 3. A Chain Program over difference constraints is a DCS augmented
by the constraints x1 ≤ x2 . . . ≤ xn.

Observation 1. The chain constraints can themselves be expressed as difference
constraints; for instance, the constraint x1 ≤ x2, can be expressed as x1 − x2 ≤
0. Accordingly, the chain constraints can be integrated into the original DCS.
From this point onwards, we shall assume that the chain constraints have been
integrated into the DCS, so that we shall only refer to the DCS A · x ≤ b.
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Thus the formal problem statement is as follows: Given a Chain Program over
Difference Constraints, is it feasible?

Given the CPD A · x ≤ b, we can construct the following constraint network
(G =< V,E, b >) in linear time:

(a) Corresponding to each variable xi, there is a vertex vi

(b) Corresponding to each constraint xi − xj ≤ bij , there is an edge from vj to
vi with weight bij .

This construction is different from the construction described in [7], since
there is no v0 vertex; as we shall see later, the vertex vn plays the role of this
vertex.

We can think of the constraint network G as being laid out from left to
right, with v1 being the leftmost vertex and vn being the rightmost vertex.
In this representation, every edge can be classified as going from right-to-left
(RTL) (from a vertex to a lower numbered vertex) or from left-to-right (LTR)
(from a vertex to a higher numbered vertex). We assume the adjacency-list
representation for G, with the added provision that each vertex has a Right list
and a Left List. The Right List of vertex vi contains LTR edges originating from
vi, while its Left list contains RTL edges originating from vi.

Lemma 1. If G has a negative cost cycle, then the CPD A · x ≤ b is infeasible.

Proof: The proof is identical to the proof in [7]. Write down the constraints
corresponding to the cycle and add up both the LHS and the RHS. We get
0 ≤ −a; a > 0, which is a contradiction and implies that the constraint system
is infeasible. �

Lemma 2. An RTL edge of positive weight is redundant and can be discarded
from G.

Proof: Let (vi, vj), j < i denote the RTL edge with positive weight. As per the
construction outlined above, this edge represents the constraint l1 : xj − xi ≤
c, c > 0. But observe that in a chain program, l2 : xj ≤ xi, since j < i. Now
observe that any assignment that satisfies l2 clearly satisfies l1 and hence l1 is
redundant. �

Lemma 3. An LTR edge of negative weight implies that there exists a negative
cost cycle in G.

Proof: Let (vi, vj), j > i denote the LTR edge with negative weight. As per
the construction outlined above, there exists a path of cost at most 0 from xj

to xi. It follows that this path can be threaded with the arc of cost −c to get a
negative cost cycle. �

From Lemma 3 and Lemma 1, it is clear that if the constraint network cor-
responding to a chain program has a negative cost LTR edge, then the chain
program is infeasible.
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 x1  x2  x3  x4
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Fig. 1. Constraint graph representation of Chain Program represented by System 1

System 1 and Figure 1 represent an instance of a CPD in matrix form
(A · x ≤ b) and the corresponding constraint network. The first three constraints
in the matrix form correspond to the chain constraints. It is important to note
that redundant constraints are not represented in the constraint network; for in-
stance the constraint x1 ≤ x2 is made redundant by the constraint x1−x2 ≤ −12,
since any assignment satisfying the latter will satisfy the former. Accordingly,
only x1 − x2 ≤ −12 is represented in the constraint network.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 1 0 0
1 −1 0 0
0 −1 1 0
−1 0 1 0
0 0 −1 1
0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎠ ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
10
−12
20
5
3
−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

In order to clarify the chain program structure, we denote every negative edge
as a “red” edge, every positive edge as a “blue” edge and the ordering constraints
as “black” edges. As per the above discussion, the constraint network of a CPD
cannot have a

3 Motivation

Conjunctions of difference constraints are used to capture requirements in a
number of application domains such as Symbolic Model checking [6], Verifica-
tion of Timed Systems [29, 16], Timed Automata [1, 24] and so on. Difference
Constraint feasibility has also been studied as the Single Source Shortest Paths
problem within the Operations Research and Algorithms communities [11]. Ad-
ditionally, separation relationships in a number of scheduling problems are cap-
tured through difference constraints [23, 4, 12]. In real-time software, temporal
requirements are modeled through variants of difference constraints [18, 19].
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Fig. 2. Basic example of CPD visualization
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Fig. 3. Complex example of CPD visualization

Our work in this paper though is concerned with Chain Programming, i.e.,
conjunctions of difference constraint augmented by a chain. We now discuss some
application areas wherein the constraints can be described by a CPD.

3.1 Embedded Systems Software

[14] discusses the design of an embedded controller for a real-time coffee ma-
chine. In this machine, there is a continuous operation that begins with the user
selecting the number of coffee cups that he wants. The process of delivering the
coffee to the user is constituted of a number of sub-tasks. For instance, there is a
task that decides how much coffee is to be released; a second task that controls
the creamer amount and yet another task that controls the sugar levels. All these
sub-tasks are performed in a strict sequential order. Further, there are relative
timing constraints between these sub-tasks of the form:

(a) Release the creamer at least 8 seconds after the coffee has been poured;
(b) Move the coffee cup within 2 inches of the sugar orifice (Distance constraints

can be converted into timing requirements.)
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For additional examples, see the full paper. These examples demonstrate that
Chain Programs over difference constraints occur in a number of natural exam-
ples and an analysis of their properties is justified.

4 Related Work

It is well known that the problem of feasibility checking in arbitrary boolean
combinations of Difference constraints is NP-complete [2]. SAT-based proce-
dures have found reasonable success in solving practical instances of this class of
problems [6, 25]. Many of these procedures have also been implemented as part
of practical systems such as UPPAL [3].

From the perspective of pure conjunctions only of difference constraints, there
has been a lot of work within the Operations Research and Theoretical Com-
puter Science communities, inasmuch as DCS solving is closely connected to the
The Single Source Shortest Path (SSSP) problem (in the presence of negative
weights). We note that most of the approaches in the literature use a variant of
the Bellman-Ford approach (Dynamic Programming) for this problem, although
there exist other approaches (greedy) as well [28, 27].

Special-purpose approaches for the SSSP problem have also been designed
and enjoyed reasonable success [20, 21, 22]. Each of these approaches is designed
for problem instances occurring in a specific domain; for instance [20] performed
very well on transportation networks

To the best of our knowledge Chain Programing over Difference constraints
has not been addressed in the literature.

5 Properties of Chain Programs over Difference
Constraints

Let δ(vi, vj) denote the shortest path between vertices vi and vj in the constraint
network G =< V, E, c > corresponding to a CPD A · x ≤ c.

Let

M =

⎡⎢⎢⎢⎣
δ(v1, v1) δ(v1, v2) . . . δ(v1, vn)
δ(v2, v1) δ(v2, v2) . . . δ(v2, vn)

...
... . . .

...
δ(vn, v1) δ(vn, v2) . . . δ(vn, vn)

⎤⎥⎥⎥⎦ (2)

denote the matrix of shortest path distances.

Theorem 1. The CPD A · x ≤ c is infeasible if and only if ∃ vi, vj such that
i ≤ j, j = i + 1 and δ(vi, vj) < 0.

Proof: If there exist vertices vi, vj , j = i + 1, such that δ(vi, vj) < 0, then a
negative cost cycle can be constructed around vi as follows: Follow the negative
cost path from vi to vj and then complete the cycle by taking the path of cost 0
(the “black” edge) from vj to vi. From Farkas’ lemma, it follows that the CPD
is infeasible.
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Now consider the case, in which the CPD is infeasible. Hence there must be a
negative cost cycle in the constraint network. Let va denote the leftmost vertex
in this cycle; note that as per the discussion in Section 2, the concept of leftmost
is well-defined. Clearly, we can visit va+1 from va by traversing the negative cost
cycle as many times as needed and then charting out a path va+1, using “black”
edges only. �

Theorem 2. For any vertex vj,

δ(vi, vj) ≥ δ(vi+k, vj) k = 1, 2, . . . n− i.

Proof: There is an edge of cost 0 connecting vi+k to vi. �

In other words, every column of Matrix 2 is linearly ordered, with the largest
element being at the top and the smallest element being at the bottom.

Theorem 3. For any vertex vj,

δ(vj , vi) ≤ δ(vj , vi+k) k = 1, 2, . . . n− i.

Proof: Same observation as above. �

In other words, each row is linearly ordered with the smallest element at the left
and the largest element at the right.

Corollary 1. In the absence of negative cost cycles, δ(vn, v1) is the smallest
element of M and δ(v1, vn) is the largest element.

Corollary 2. In the absence of negative cost cycles, all the entries below the
diagonal of Matrix 2 are non-positive, the diagonal entries are zero and the
entries above the diagonal are non-negative.

Lemma 4. Let vi denote a vertex in G and let vk and vl be two vertices such
that k < l < i. If cik, cij �=∞, cik ≤ cij.

Proof: Observe that the edge vi � vk represents the constraint xk − xi ≤ cij ;
likewise, the edge vi � vl represents the constraint xl − xi ≤ cil. Thus, xk ≤
xi + cik and xl ≤ xi + cil. Note that cik, cil < 0 and that xl ≥ xk. Suppose that
cik > cil; then vi � vk represents a redundant constraint. �

Accordingly, if x4 ≤ x10 − 2 is a constraint, then the constraint x3 ≤ x10 − 1 is
redundant.

Arguing similarly, we can establish the following three lemmata.

Lemma 5. Let vi denote a vertex in G and let vk and vl be two vertices such
that i < k < l. If cki, cli �=∞, cli ≤ cki.

For instance, if x6 ≤ x9 − 10 is a constraint, then the constraint x6 ≤ x10 − 7 is
redundant.

Lemma 6. Let vi denote a vertex in G and let vk and vl be two vertices such
that i < k < l. If cik, cil �=∞, cik ≤ cil.
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For instance, if x10 ≤ x4 + 2 is a constraint, then the constraint x9 ≤ x4 + 4 is
redundant.

Lemma 7. Let vi denote a vertex in G and let vk and vl be two vertices such
that k < l < i. If cki, clil �=∞, cli ≤ cki.

For instance, if x10 ≤ x3 + 4 is a constraint, then the constraint x10 ≤ x4 + 2 is
redundant.

The shortest path distances also satisfy a quasi-triangle inequality property.

Theorem 4. Let vi, vj and vk be a triplet of vertices in the chain constraint
network, such that i > j > k. Then δ(vi, vj)+δ(vj , vk) ≤ δ(vk, vi), in the absence
of negative cost cycles.

Proof: Note that δ(vk, vi) ≥ 0, while both δ(vi, vj) and δ(vj , vk) are at most
zero. If δ(vi, vj) + δ(vj , vk) > δ(vk, vi), then δ(vk, vi) < 0 and there exists
a negative cost cycle involving the vertices vi, vk and vk, contradicting the
hypothesis. �

Observe that we could solve a CPD using the following divide and conquer
approach:

(a) Break the network into two subnetworks with n
2 vertices each.

(b) Recursively solve the chain programs over the subnetworks; note that for
networks with one or two vertices, the problem is trivial.

(c) Combine the individual solutions by accounting for the inter-partition edges,
as described in [9].

Lemma 8. Let C(n, m) and P (n, m) denote the sequential time and parallel
time to process a single edge on a network of m edges and n vertices. Then the
Chain Programming problem can be solved in sequential time O(m·C(n, m) log n)
and parallel time P (n, m) logn.

Proof: In full paper. �

6 Conclusion

This paper introduced the problem of chain programming over difference con-
straints and obtained a divide and conquer algorithm for the same. As discussed
in the sections above, chain programming occurs in a number of practical situa-
tions in real-time scheduling and verification problems. Thus, our work here can
be integrated into existing tools that deal with difference logic.

Some of the important open problems that have arisen are:

(i) Can we extend this idea to general linear programs?
(ii) Do the duals of Chain Programs have a greater structure, which can be

exploited to design efficient algorithms?
(iii) What is the parallel complexity of Chain Programming over difference con-

straints?
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Linear-Time 2-Approximation Algorithm
for the Watchman Route Problem

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. Given a simple polygon P of n vertices, the watchman route
problem asks for a shortest (closed) route inside P such that each point in
the interior of P can be seen from at least one point along the route. We
present a simple, linear-time algorithm for computing a watchman route
of length at most 2 times that of the shortest watchman route. The
best known algorithm for computing a shortest watchman route takes
O(n4 log n) time, which is too complicated to be suitable in practice.

This paper also involves an optimal O(n) time algorithm for comput-
ing the set of so-called essential cuts, which are the line segments inside
the polygon P such that any route visiting them is a watchman route. It
solves an intriguing open problem by improving the previous O(n log n)
time result, and is thus of interest in its own right.

1 Introduction

Motivated by the relations to the well-known Art Gallery and Traveling Sales-
person problems, much attention has been devoted to the problem of computing
a shortest watchman route (i.e., a closed curve) in a simple polygon P of n ver-
tices such that each interior point of P is visible from at least one point along the
route [2, 6, 10, 11, 12]. Two points x, y inside P are said to be mutually visible if
the segment connecting them, denoted by xy, lies entirely in P .

The first polynomial-time solution is due to Tan et al. [12], who gave an O(n4)
time algorithm for the fixed watchman route problem, i.e., the watchman route
is restricted to pass through a starting point s on the boundary of P . An O(n5)
time algorithm was later developed for the general case where no starting point is
specified [10]. Recenty, Dror et al. have improved these two results to O(n3 log n)
and O(n4 log n), respectively [6, 10]. On the other hand, Tan has given a linear-
time

√
2-approximation algorithm for the fixed watchman route problem [11],

and Carlsson et al. have given a 99.98-approximation algorithm with O(n log n)
running time for the general watchman route problem [2].

In Section 2 of this paper, we present a linear-time algorithm to compute
the set of so-called essential cuts, which are the line segments inside P such any
route visiting them is a watchman route. Our algorithm makes a novel use of the
shortest path trees rooted at three boundary points of P . In Section 3, we first
select a point s on an essential cut, and compute the watchman route through
s using the known

√
2-aprroximation algorithm [11]. The found route is then

shown to be of length at most twice than that of a shortest watchman route.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 181–191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminary

Let v be a reflex vertex of P (whose internal angle is larger than π) and u the
vertex adjacent to v. Denote by v′ the point of P that is hit by the ray shot at
v in the direction from u to v. See Fig. 1. The line segment C = vv′ partitions
P into two parts. We call C a cut of P , v and v′ the defining vertex and the hit
point of C, respectively. The part of P not containing u is called the essential
part of C, and denoted by P (C). Thus, a watchman route has to visit all cuts
so that each corner of P can be seen. Two endpoints of a cut C are referred to
as the left endpoint and the right endpoint of C, as viewed from the watchman.
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C
C

C

s

4
C

1
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q

p

Fig. 1. Definitions of cuts and essential cuts

We say cut Cj dominates cut Ci if P (Cj) contains P (Ci). A cut is essential if
it is not dominated by any other cuts. In Fig. 1, the cuts C1, C2, C3, C4 and C5
are essential, and the cut xx′ (resp. yy′) is dominated by C2 (resp. C5). Denote
by C the set of essential cuts. The watchman route problem is then reduced to
that of finding the shortest route that visits all essential cuts [1, 10].

The following visibility result will be used in our algorithm for computing C.
Lemma 1. (Heffernan [8]) Let Q be a polygon of m vertices, with a marked
edge E. After an O(m) preprocessing step on Q, one can determine in O(1)
time whether two boundary points, one on E and one not on E, are visible.

3 Computing the Set of Essential Cuts in a Simple
Polygon

Using standard ray shooting algorithm, one can easily compute C in O(n log n)
time [3], since each shot requires O(log n) time [4]. If P is an LR-visibility poly-
gon, Das et al. have reduced the time bound to O(n) [5]. A polygon P is LR-
visible if there are two points u, v on the boundary of P such that each point
on the boundary chain from u to v is visible from some point of the other chain
from v to u and visa versa. Note that a polygon is not LR-visible if it has three
cuts whose non-essential parts are disjoint. Whether or not an optimal O(n)
time algorithm for computing the set of essential cuts in a simple polygon can
be developed is still an open problem in computational geometry.1

1 The algorithm of Das et al. makes use of a linear-time procedure three times [5].
Applying their algorithm directly to a simple polygon may invoke that procedure
O(n) times (it was overlooked in [1, 11]), and thus results in an O(n2) time solution.
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The main observations made in this paper are the followings. First, the prob-
lem of computing C is reduced to three subproblems of computing the set of
essential cuts, each assuming that the watchman routes pass through a bound-
ary point. Second, the essential cuts with respect to a given boundary point are
computed in groups such that any cut of a group intersects all others of the
same group. This implies a vital property that the first cut of a group does not
intersect with the first cut of any other group. Finally, Lemma 1 is applied to the
non-essential part of each first cut so that the hit points of the cuts intersecting
that first cut can quickly be found.

3.1 Overview of Algorithm

We first show that the set C of essential cuts can be obtained by computing three
sets of essential cuts, each assuming that the watchman routes pass through a
boundary point. Let s be an arbitrary point on the boundary of P . By placing a
restriction that s should be contained in the essential part of any cut, the set of
essential cuts for the watchman routes through s can similarly be defined [11].
Denote by Cs the set of essential cuts for the watchman routes through s. So
we have Cs ⊆ C. There may be some cuts of C such that s is contained in the
non-essential parts of them. For the polygon shown in Fig. 1, the cuts C1 and
C4 do not belong to Cs (= {C2, C3, C5}).

Let p, q be two endpoints of a cut of Cs. Denote by Cp and Cq the sets of
essential cuts defined for the watchman routes through p and q, respectively.

Lemma 2. The union of Cs, Cp and Cq is the set C of essential cuts.

Proof. Omitted in this extended abstract (see Fig. 1 for an example). �

Let us now consider how to compute a set of essential cuts, say, Cs. For a vertex
x of P , denote by pred(x) and succ(x) two vertices immediately preceding and
succeeding x clockwise, respectively. A cut with the defining vertex v is called
the clockwise (resp. counterclockwise) cut if its hit point v′ is determined by the
ray shot at v in the direction from pred(v) (resp. succ(v)) to v.

The shortest path between two vertices u and v of P , denoted by π(u, v),
is the Euclidean minimum-distance curve that connects u and v and entirely
lies in the interior of P . Consider the shortest paths from a vertex s to all
vertices of P . Since there is only one shortest path from s to any vertex, these
paths form a tree. We call it the shortest path tree rooted at s, and denote by
SPT (s).

We will present a procedure that produces a superset of all clockwsie essential
cuts. A symmetric procedure does the same for counterclockwise cuts. As in [5],
the set Cs of essential cuts can then be extracted from these two sets. We first
establish a connection between the shortest path tree SPT (s) and clockwise es-
sential cuts, and then show how to divide the problem of computing the superset
of clockwise essential cuts into smaller and independent subproblems.

Lemma 3. Suppose that v is the defining vertex of a clockwise cut C ∈ Cs.
Then, the path π(s, pred(v)) turns right at v, and the vertex pred(v) is convex.
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Proof. Simple and omitted in this extended abstract. �

Let [x, y] denote the clockwise boundary chain of P from a boundary point x to
the other y. Let T (a) denote a set of reflex vertices v1, v2, . . . , vk, ordered clock-
wise from s, such that pred(vi) (1 ≤ i ≤ k) is convex and the path π(s, pred(vi))
turns left at the vertex a (it may be s) and then keep turning right toward
pred(vi), including vi. Thus, a is the last common point of the paths π(s, v),
v ∈ T (a). Assume that all the vertices vk′ , vk′+1, . . . , vk lie on π(a, vk′ ), but not
on π(a, vk′−1) (if vk′−1 exists). Denote by P (a) the region bounded by [a, v′k]
and the path π(a, vk′ ). (An example can be found in Fig. 3a.) Then, we have the
following result.

Lemma 4. Let T (a) and T (b) denote two sets of reflex vertices described above,
with a �= b. Then, two regions P (a) and P (b) are disjoint.

Since the defining vertex of any clockwise essential cut belongs to some set T (a),
the problem of finding a superset of clockwise essential cuts is then reduced to
that of computing the clockwise cuts for all sets T (a). Note that the shortest
path tree SPT (s) can be construted in O(n) time [7], and all sets T (a) can be
found by a depth-first traversal of SPT (s).

In the next section, we show that a superset of clockwise essential cuts with
the defining vertices belonging to T (a) can be computed in time linear in the
size of P (a) (Lemma 6). Since all sets T (a) and their regions P (a) are dis-
joint, a superset of clockwise essential cuts can be reported in O(n) time. Fur-
thermore, a symmetric procedure is performed for counterclockwise cuts, and
the set of essential cuts can then be extracted from these two sets in linear
time [5].

Lemma 5. Given a simple polygon P and a starting point s on the boundary of
P , the set Cs of essential cuts can be computed in O(n) time.

Finally, since three sets Cs Cp and Cq can be merged into C in linear time, we
have the following result.

Theorem 1. Given a simple polygon P , the set C of essential cuts for the watch-
man routes in P can be computed in O(n) time.2

3.2 Computing a Superset of Clockwise Essential Cuts for T (a)

We define the inward-convex chain of [x, y] to be the convex chain of [x, y] which
is contained in (or whose convexity faces) the interior of P . For a cut vv′, denote
its non-essential part by Q(vv′), i.e., Q(vv′) = P − P (vv′). Clearly, the point s
is not contained in Q(vv′).

Suppose that T (a) = {v1, v2, . . . , vk, }. To compute the clockwise cuts for
T (a), we traverse on the boundary of P (a) clockwise from a, with a pointer α.

2 Our procedure for computing a superset of the clockwise essential cuts is simpler
and more efficient than the same-purpose algorithm of Das et al. [5], even in the case
of LR-visibility polygons, because of new observations made in this paper.
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Denote by S(a) the set of clockwise cuts being computed. Whenever a vertex
v of T (a) is encountered, we check if the cut vv′ is dominated by the cut most
recently added to S(a). If not, we compute the hit point v′ and add vv′ to S(a).

The cuts of S(a) are computed in groups such that any cut of a group intersects
all others of the same group. So the first cut of the current group of intersecting
cuts is always kept. In additional to the pointer α used to find the vertices of
T (a), we use a pointer β to find the hit point of the first cut of a group, and a
pointer γ to compute the hit points of all other cuts of the group.

It follows from Lemmas 3 and 4 that v1v′1 is the first cut of S(a). To find the hit
point v′1, we make a clockwise traversal of [a, pred(v1)] with β, and compute the
intersection points of the scanned edges with the line through pred(v1) and v1.
Among all intersection points, the one closest to v1 gives the point v′1. (Remember
that all preceding and succeeding relations are defined on the boundary of the
polygon P , rather than on P (a).) After the point v′1 is found, we take v1v′1 as
the edge E, as described in Lemma 1, and preprocess the polygon Q(v1v′1).

Suppose that the cut viv′i (i ≥ 1) is most recently added to S(a) and intersects
with v1v′1. Note that v′i is contained in [v′1, v1], if i > 1. Assume that vi+1 is now
encountered by the traversal with α. If the cut vi+1v′i+1 intersects with v1v′1
and viv′i, then it belongs to the group having the first cut v1v′1 and is added to
S(a). Clearly, the cut vi+1v′i+1 intersects with v1v′1 and viv′i if and only if the
line through pred(vi+1) and vi+1 does not intersect [v1, pred(vi+1)] nor [a, v′i].
See Figs. 2 and 3 for some examples, where the cuts added to S(a) are drawn
in bold line. Let us now describe how to find the point v′i+1, provided that the
considered line does not intersect [v1, pred(vi+1)] nor [a, v′i]. First, compute the
intersection point w of the considered line with v1v′1. Then, traverse the chain
[v′i, v1] clockwise with the pointer γ, until an intersection point of the scanned
edge with the line is found. If the intersection point is visible from w, which
can be determined in O(1) time using Lemma 1, it gives the point v′i+1. See
Fig. 2a. Otherwise, continue the traversal until the third intersection point is
found. Also, we check if it is visible from w (see Fig. 2b), and so on. In this way,
the point v′i+1 can eventually be found, and the pointer γ finally stops at v′i+1.
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Fig. 2. Illustrating Case 1 and Case 3

To quickly determine if there is an intersection between the chain [v1, pred
(vi+1)] and the line through pred(vi+1) and vi+1, we maintain the inward-
convex chain of [v1, pred(vi+1)] during the traversal with α. Since [v1, pred(vi+1)]
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is a part of the boundary of P , the inward-convex chain of [v1, pred(vi+1)]
can be maintained in linear time by applying the Graham scan directly to
[v1, pred(vi+1)] such that three consecutive vertices on the convex chain are
always counterclockwise [9]. Whether or not the considered line intersects with
[v1, pred(vi+1)] depends on if the edge vi+1pred(vi+1) is contained in the con-
vex chain (or convex hull) of [v1, pred(vi+1]. This can be verified in constant
time, by comparing the slope of vi+1pred(vi+1) with the slope of the edge of the
inward-convex chain having the endpoint pred(vi+1). See Fig. 2.

To check the intersection between [a, v′i] and the considered line, the inward-
convex chain of [a, v′i] is also used. Observe first that two convex chains of
[a, v′i] and [v1, pred(vi+1)] cannot intersect each other, as they are separated
by the path π(a, v1). During the traversal with β for computing the point v′1,
the inward-convex chain of [a, v′1] can carefully be maintained (i.e, delete the
part [v′1, v1] after v1 is reached). The following inward-convex chain of [a, v′i],
i > 1, can also be maintained during the traversal with γ. In additional to
the inward-convex chain of [a, v′i], we need a new variable r on [a, v′i] such that
the line through r and the last vertex scanned by α is tangent to the current
convex chain of [a, v′i]. Whether the line through pred(vi+1) and vi+1 intersects
with [a, v′i] can then be determined in constant time, by comparing the slope
of the line with the slope of vi+1r. See Fig. 2. In the case that the consid-
ered line does not intersect with [a, v′i] nor [v1, pred(vi+1)], the hit point v′i+1 is
then computed by the traversal with γ, and the new convex chain of [a, v′i+1] is
maintained.
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Fig. 3. Illustrating Case 2

Consider how to maintain the variable r. First, the value of r is initially set
to v′1 (after v′1 is found). Suppose now that the cut viv′i (i ≥ 1) is most recently
added to S(a) and r = v′i. When vi+1 is encountered, we maintain r such that the
line through vi+1 and r is tangent to the inward-convex chain of [a, v′i]. Clearly,
the variable r can be maintained by a conterclockwise walk on the convex chain
of [a, v′i], starting at v′i. If the line through pred(vi+1) and vi+1 intersects with
[a, v′i], then vi+1v′i+1 is dominated by viv′i (the point v′i+1 is not computed in
this case). So we continue to traverse P (a) with α until the next vertex vi+2 is
encountered. The variable r is then maintained by a counterclockwise walk on
the inward-convex chain of [a, v′i], starting at the previous position of r. In the
case that the cut next to viv′i and added to S(a) is vjv′j (i + 1 ≤ j), we reset r
to v′j .
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We can now give the whole procedure for computing S(a). Denote by vfv′f the
first cut of the current group of intersecting cuts, and viv′i the cut intersecting
vfv′f (f ≤ i) and most recently added to S(a). Assume that Q(vfv′f ) is prepro-
cessed as required by Lemma 1. Suppose that vj (i < j ≤ k) is now encountered,
and the variable r as well as the inward-convex chains of [vf , pred(vj)] and [a, v′i]
are maintained. We distinguish the following three situations.

Case 1. The line through pred(vj) and vj does not intersect with [vf , pred(vj))
nor [a, v′i].

In this case, the cut with the defining vertex vj intersects with viv′i and vfv′f .
The hit point v′j as well as the convex chain of [a, v′j ] can be computed as de-
scribed above. Finally, we set r = v′j .
Case 2. The line through pred(vj) and vj intersects with [vf , pred(vj)].

In this case, the non-essential part Q(vjv′j) is disjoint from Q(vfv′f ). See Fig.
3a (resp. Fig. 3b) for an example, where the part Q(v1v′1) is disjoint from Q(v2v′2)
(resp. Q(v3v′3)). The hit point v′j is then computed by a clockwise traversal of
[vf , pred(vj)] with β. Also, the polygon Q(vjv′j) is preprocessed as required by
Lemma 1, and two convex chains and the variable r are maintained for the first
cut vjv′j of the new group.
Case 3. The line through pred(vj) and vj intersects with [a, v′i].

Since the cut vjv′j is dominated by viv′i in this case, we only need to maintain
the variable r. It can be done by walking on the inward-convex chain of [a, v′i]
toward a till the line through r and vj is tangent to that convex chain.

Let us now analyze the time complexity of our recursive procedure. For a set
T (a), the boundary of its region P (a) is traversed clockwise three times, each
for one of α, β and γ. In order to compute the set S(a) of clockwise cuts, all
non-essential parts of the first cuts of groups of intersecting cuts are prepro-
cessed as required by Lemma 1. Since these non-essential parts are all disjoint,
the total time taken for preprocessing them is O(na), where na denotes the size
of P (a). Maintaining two inward-convex chains as well as the variable r dur-
ing the traverals also takes linear time. Hence, we can compute S(a) in O(na)
time.

Lemma 6. Give a vertex set T (a) and its region P (a), a superset of clockwise
essential cuts for T (a) can be computed in time linear in the size of P (a).

4 Approximating the Shortest Watchman Route

In this section, we denote by |ab| the length of the line segment ab, and |R|
the Euclidean distance of a route R. Before presenting our approximation algo-
rithm, we briefly review the unfolding method used in the known solutions to
the watchman route problem.

A cut may intersect with some others and is thus divided into fragments
by intersection points. A set of fragments is called the watchman fragment set
if (i) any route that visits all fragments is a watchman route and (ii) any of



188 X. Tan

(c)

a

b
c

d
s

(b)

e

s

d
a

b
c

d

s'
a

s

(a)

C1C
1

C
1

C3C3

C3

C4

C4 C4

e

e

c
b

Fig. 4. The unfolding method

its proper subset does not satisfy the property (i) [10, 11, 12]. For a watch-
man fragment set, a fragment is said to be active if it belongs to the frag-
ment set. Otherwise, it is inactive. A cut is active if it contains an active
fragment.

Given a watchman fragment set, its locally optimum watchman route can
be constructed as follows. First, the non-essential parts of all active cuts are
removed and the resulting polygon P ′ is triangulated. The active fragments
are then used as mirrors to ”unfold” the triangulation of P ′ in the order they
appear in the boundary of P ′. The problem is now reduced to that of finding the
shortest path from the starting point s to the point s′ in the unfolded polygon,
where s′ is obtained by reflecting s across the last active fragment. (We have
assumed that a point s on the boundary of P is given.) The optimum watchman
route is finally obtained by folding back the shortest path. See Fig. 4 for an
example.

If a watchman route W comes into a cut C at some point and then reflects
on C and goes away from that point, we say that W makes a reflection contact
with the cut C [10, 12]. See Fig. 4a. We refer to the incoming (outgoing) angle
of W with respect to C as the angle between C and the segment of W coming
into (moving away from) C when one follows W in the clockwise direction. The
route W is said to be adjustable on C if the incoming angle of W with C is not
equal to the outgoing angle and a shorter watchman route can be obtained by
moving the reflection point on C [10].

The idea of our approximation algorithm is to select a point s inside P and
then compute the watchman route through s using the known

√
2-approximation

algorithm [11]. Let Ws−app be the watchman route through s, which is computed
by the algorithm of [11]. Denote by Ws−opt the shortest watchman route through
s, and Wopt an overall shortest watchman route.

Lemma 7. It takes O(n) to compute a shortest path inside an LR-visibility
polygon P such that each point of P is visible from at least one point along the
path.

Proof. Omitted in this extended abstract. �

Note that the shortest watchman route in an LP -visibility polygon may not walk
along a shortest path twice. But, the important thing is that Lemma 6 allows
us to consider the watchman routes which reflects on at least three cuts.



Linear-Time 2-Approximation Algorithm 189

Theorem 2. For any instance of the watchman route problem, we can find a
point s inside P such that |Ws−app| ≤ 2|Wopt| holds. Moreover, the route Ws−app

can be computed in O(n) time.

Proof. Assume that walking along any shortest path inside P twice does not
give the shortest watchman route; otherwise, it follows from Lemma 7 that such
a shortest watchman route can be found in O(n) time. (Actually, if P is an LR-
visiblity polygon, we first find the shortest path within P such that P is weakly
visible from that path, and then run the following algorithm to compute the
route Ws−app. The shorter of two routes is finally reported as our approximation
route.) Then, there are three cuts C1, C2 and C3 in C, indexed by their left
endpoints clockwise, such that there is at most one cut intersection among them;
otherwise, walking along the shortest path between two cut intersections twice
gives the shortest watchman route (see Fig. 5a for an example). If no intersection
occurs among them, we compute two shortest paths between the right endpoint
of C2 and the left endpoint of C1 and between the left endpoint of C2 and the
right endpoint of C3. Clearly, these two paths cross. Denote by p the intersection
point of two paths closest to C2 (in the geodesic sense inside P ). If p is a vertex
of the polygon P , then any shortest watchman route has to pass through p, and
thus we let s = p. Otherwise, denote by s the point of C2 such that the length of
π(p, s) gives the closest distance between p and C2. In this case, the path π(p, s)
consists of a single line segment ps, and the angle at s between C2 and ps is
π/2. See Fig. 5b for an example. For any shortest path that starts at a point on
C1, then visits s and ends at a point on C3, neither the incoming angle nor the
outgoing angle of the shortest path with C2 can exceed π/2. Thus, neither the
incoming angle nor the outgoing angle of Ws−opt with C2 can exceed π/2. In the
case that there is a pair of intersecting cuts, we can also compute two shortest
paths by considering the intersection point as an endpoint of a path, and then
find the starting point s. See Fig. 5c for an example.
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C

2
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1

i
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p
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Fig. 5. Illustration for finding the starting point s

The cuts C1, C2 and C3, described above, can be computed by a clockwise
scan of all essential cuts, and the starting point s can also be found in O(n)
time. Then, we compute the route Ws−app using the linear-time algorithm of
[11]. Our main work is to show that |Ws−opt| ≤

√
2|Wopt|, as the inequality

|Ws−app| ≤
√

2|Ws−opt| is already known [11]. Assume below that s is a point
on some cut C (say, C2); otherwise, s is a vertex of P such that any shortest
watchman route passes through it and thus |Ws−app| ≤

√
2|Wopt| holds.
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Since Ws−opt is the shortest watchman route through s, it cannot be adjusted
at all reflection points, except for the starting point s on C. (If Ws−opt cannot
be adjusted at s either, then we have Ws−opt = Wopt [10].) Suppose that the
adjustment on C is made using the algorithm of [10]. Denote by t the point of
C at which the adjusted route reflects, and Wt−opt the shortest watchman route
through t. Clearly, |Wt−opt| ≤ |Ws−opt| holds. See Fig. 6 for some examples,
where solid and dotted lines show the routes Ws−opt and Wt−opt, respectively.
(The point s is assumed to be an intersection point of two cuts.) Note that
the route Wt−opt may be identical to Ws−opt in Fig. 6c, which is followed by an
adjustment shown in Fig. 6b; in this case, the starting point we consider changes
from the cut C to the other.

Denote by a an intersection point of Ws−opt with Wt−opt. Then, unfold the
route Ws−opt by taking a as the starting point. Let a′ denote the point obtained
by reflecting a across the last active fragment. Since Ws−opt is adjustable only on
C at the point s, the unfolded route Ws−opt can topologically be considered as
two line segments as and sa′. See Fig. 6. (Acutally, in the case that the unfolded
route Ws−opt consists of more than two segments, we can stretch out the unfolded
route Ws−opt along its two segments incident to s so that the stretched route
consists of only as and sa′.) Since neither of the incoming angle nor the outgoing
angle of Ws−opt with the cut C can exceed π/2, the angle � asa′ of the triangle
0asa′ is at least π/2. Thus, |Ws−opt| = |as|+ |sa′| ≤

√
2|aa′| holds [11].
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Fig. 6. Adjustments and the unfoleded routes Ws−opt, Wt−opt

Let b be the starting point of Wt−opt, which is identical to a, and b′ the point
obtained by reflecting b across the last active fragment for the route Wt−opt. Also,
the unfolded route Wt−opt can topologically be considered as two line segments
tb and tb′. See Fig. 6. Since |Wt−opt| ≤ |Ws−opt| holds, the distance from t to bb′

is smaller than or equal to the distance from s to aa′, so as to obtain the route
Wopt whose unfolded version can be considered as a line segment. Furthermore,



Linear-Time 2-Approximation Algorithm 191

since the length function of the shortest watchman routes through the points
from s to t is monotonically decreasing, we have |sa′| = |sb′|. Hence, |bb′| ≥ |aa′|
holds. See Fig. 6.

The route Wopt can be obtained by repeatedly performing the only adjustment
on some cut (it may differ from C), and computing the shortest watchman route
through the new point of that cut at which the route obtained after the only
adjustment is made reflects, until the non-adjustable route, which is just Wopt,
is obtained [10]. Then, we have |aa′| ≤ |bb′| ≤ . . . ≤ |Wopt|. Since |Ws−opt| ≤√

2|aa′|, we obtain |Ws−opt| ≤
√

2|Wopt|. It completes the proof. �
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Abstract. In this short communication, we extend the known relation-
ships between Cayley digraphs and their subgraphs and coset graphs
with respect to subgroups and obtain some general results on homomor-
phism and distance between them. Intuitively, our results correspond to
synthesizing alternative, more economical, interconnection networks by
reducing the number of dimensions and/or link density of existing net-
works via mapping and pruning. We discuss applications of these results
to well-known and useful interconnection networks such as hexagonal
and honeycomb meshes.

1 Introduction

The fact that Cayley (di)graphs and coset graphs are excellent models for in-
terconnection networks, studied in connection with parallel processing and dis-
tributed computation, is widely acknowledged [1], [2], [4]. Many well-known in-
terconnection networks are Cayley (di)graphs or coset graphs. For example, hy-
percube, butterfly, and cube-connected cycles networks are Cayley graphs, while
de Bruijn and shuffle-exchange networks are coset graphs [4], [11].

Much work on interconnection networks can be categorized as ad hoc de-
sign and evaluation. Typically, a new interconnection scheme is suggested and
shown to be superior to some previously studied network(s) with respect to one
or more performance or complexity attributes. Whereas Cayley (di)graphs have
been used to explain and unify interconnection networks with some success,
much work remains to be done. As suggested by Heydemann [4], general theo-
rems are lacking for Cayley digraphs and more group theory has to be exploited
to find properties of Cayley digraphs. In this paper, we explore the relationships
between Cayley (di)graphs and their subgraphs and coset graphs with respect
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to subgroups and obtain general results on homomorphism between them. We
provide several applications of these results to well-known interconnection net-
works such as hexagonal and honeycomb meshes. Our Cayley graph addressing
scheme of interconnection networks is a unified and elegant representation for
network nodes, which efficiently uses the results of group theory. Clearly, this
addressing method is superior to those such as in [6] and [10] in this respect.
For example, we prove the formula on the distance of the honeycomb network
by means of the method of group theory. We think that our method will have
further applications for interconnection networks.

Before proceeding further, we introduce some definitions and notations related
to (di)graphs, Cayley (di)graphs in particular, and interconnection networks. For
more definitions and basic results on graphs and groups we refer the reader to [3],
for instance, and on interconnection networks to [5], [7]. Unless noted otherwise,
all graphs in this paper are undirected graphs.

A digraph Γ = (V, E) is defined by a set V of vertices and a set E of arcs or
directed edges. The set E is a subset of elements (u, v) of V × V . If the subset
E is symmetric, that is, (u, v) ∈ E implies (v, u) ∈ E, we identify two opposite
arcs (u, v) and (v, u) by the undirected edge (u, v). Because we deal primarily
with undirected graphs in this paper, no problem arises from using the same
notation (u, v) for a directed arc from u to v or an undirected edge between u
and v. Let G be a (possibly infinite) group and S a subset of G. The subset S
is said to be a generating set for G, and the elements of S are called generators
of G, if every element of G can be expressed as a finite product of their powers.
We also say that G is generated by S. The Cayley digraph of the group G and
the subset S, denoted by Cay(G, S), has vertices that are elements of G and
arcs that are ordered pairs (g, gs) for g ∈ G, s ∈ S. If S is a generating set
of G then we say that Cay(G, S) is the Cayley digraph of G generated by S.
If 1 /∈ S (1 is the identity element of G) and S = S−1, then Cay(G, S) is a
simple graph. Assume that Γ and Σ are two digraphs. The mapping φ of V (Γ )
to V (Σ) is a homomorphism from Γ to Σ if for any (u, v) ∈ E(Γ ) we have
(φ(u), φ(v)) ∈ E(Σ). In particular, if φ is a bijection such that both φ and the
inverse of φ are homomorphisms then it is called an isomorphism of Γ to Σ.
Let G be a (possible infinite) group and S a subset of G. Assume that K is a
subgroup of G (denoted as K ≤ G). Let G/K denote the set of the right cosets of
K in G. The (right) coset graph of G with respect to the subgroup K and subset
S, denoted by Cos(G, K, S), is the digraph with the vertex set G/K such that
there exists an arc (Kg, Kg′) if and only if there exists s ∈ S and Kgs = Kg′ .
The following basic result is easily verified.

Theorem 1. The mapping φ : g → Kg is a homomorphism from Cay(G, S) to
Cos(G, K, S) for g ∈ G.

2 Hexagonal Mesh Networks

Let G = Z × Z, where Z is the infinite cyclic group of integers, and consider
Γ = Cay(G, S) with S = {(1, 0), (−1, 0), (0, 1), (0,−1), (1, 1), (−1,−1)}. It is
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evident that Γ is isomorphic to the hexagonal (hex) mesh network [10]. A finite
hex mesh is obtained by simply using the same connectivity rules for a finite
subset of the nodes located within a regular boundary (often a rectangle or
hexagon). In the latter case, wraparound links are sometimes provided to keep
the node degree uniformly equal to 6, leading to a hexagonal torus network.
Here, we do not concern ourselves with these variations and deal only with the
infinite hex mesh. Let N = {(d, d, d)|d ∈ Z}. Then, N is a normal subgroup of
Z × Z × Z. Let H = (Z × Z × Z)/N and Σ = Cos(Z × Z × Z, N, T ), where
T = {(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)}. Then, it is clear
that Γ is isomorphic to the Cayley graph Cay(H, NT ) by Theorem 1, where
NT = {Nt|t ∈ T } is a subset of the group H . Now we are prepared to show the
following result.

Proposition 1. The network Σ, defined above, is isomorphic to the hex mesh
network.

Proof. Omitted.

Proposition 1 has interesting applications to parallel and distributed systems,
including in certain problems pertaining to cellular communication networks [6].

Using the Cayley-graph formulation of hex mesh networks, we can easily de-
rive the distance dis((a, b), (c, d)) between the vertices (a, b) and (c, d) in such
networks.

Proposition 2. In the hex mesh Γ , dis((0, 0), (a, b)) equals max(|a|, |b|) if a and
b have the same sign and |a|+ |b| otherwise.

Proof. Omitted.

By symmetry of Cayley graphs, we can easily obtain the distance between
any two vertices in the graph Γ from Proposition 2, using dis((a, b), (c, d))
= dis((0, 0), (c − a, d − b)). We also can obtain the routing algorithm of the
graph Γ from the proof of Proposition 2 directly.

We now consider the automorphism group Aut(Γ ) of the graph Γ . We know
that Aut(Γ ) contains the (left) regular automorphism group of Γ which is iso-
morphic to the group Z ×Z; we still denote it as Z ×Z. Furthermore, we know
that Aut(Γ ) = (Z ×Z)(Aut(Γ ))(u,v), where (Aut(Γ ))(u,v) is the stabilizer (sub-
group) of Aut(Γ ) which fixes the vertex (u, v). we easily prove the following.

Proposition 3. Let σ : (x, y)→ (x, x−y) and λ : (x, y)→ (x−y, x) be mappings
from Z×Z to Z×Z. Then, (Aut(Γ )) = (Z×Z) < σ, λ > , , where σ2 = λ6 = 1
and σλσ = λ−1.

3 Honeycomb and Other Networks

Let G be a (possibly infinite) group and S a subset of G and consider the prob-
lem of constructing a group G” and its generating set S” such that G” = G as
sets and S” ⊆ S, and a homomorphism φ : Γ” → Γ , where Γ = Cay(G, S)
and Γ” = Cay(G”, S”). It is easily shown that a number of pruning schemes, in-
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cluding the one studied in [8], are equivalent to the construction above. Pruning
of interconnection networks constitutes a way of obtaining variants with lower
implementation cost, and greater scalability and packageability [9]. If pruning is
done with care, and in a systematic fashion, many of the desirable properties of
the original (unpruned) network, including (node, edge) symmetry and regular-
ity, can be maintained while reducing both the node degree and wiring density
which influence the network cost.

Example 1. In [8], the authors studied the honeycomb torus network as a
pruned 2D torus. They also proved that the honeycomb torus network is a
Cayley graph, without explicating its associated group. We fill this gap in the
following, while also showing (in the proof of Proposition 4 below) why the
parameter k in [8] must be even. Let G = (< c >< b >) < a > be the group
generated by the elements a, b, c, satisfying the relations ak = b2 = cl/2 = 1,
bcb = c−1, aba−1 = c−1b, aca−1 = c−1. Here, k and l are even integers. Thus
the group < c >< b >=< c, b > is a semidirect product of < c > by < b > ,
and G is a semidirect product of < c, b > by < a > . Let S = {a, a−1, b} and
Δ = Cay(G, S). We may prove that Δ is isomorphic to the honeycomb torus
network in [8] (denoted as Σ).

Proposition 4. The Cayley digraph Δ, defined in Example 1, is isomorphic to
the honeycomb torus network Σ of reference [8].

Proof. Omitted.

Remark 1. We may consider the infinite honeycomb mesh network as a Cayley
graph of a different group. Let G = (< c >< b >) < a > , where < c > and
< a > are infinite cyclic groups, and c, b, a satisfy the relations b2 = 1, bcb =
c−1, aba−1 = c−1b, aca−1 = c−1. Let S = {a, a−1, b} and Δ∞ = Cay(G, S).
Then Δ∞ is isomorphic to the infinite honeycomb mesh network.

Now let N =< ak >< cl/2 > , where k and l are even integers. We can easily
verify that N is a normal subgroup of G. Construct the quotient group G′ =
G/N and let S′ = {Na, Na−1, Nb}; the graph Cay(G′, S′) is isomorphic to the
honeycomb torus network.

Remark 2. An important case in the construction above arises for G = Zk1 ×
...× Zkn (n > 1), where k1, ..., kn are positive integers. In general, G” = N ⊗K
is a semidirect product of groups N and K. If φ is the identity mapping of G to
G” , then for s” ∈ S” we have (x1, ..., xn)⊗ s” = (x1, ..., xn) + s for some s ∈ S.
In particular, if (x1, ..., xn) is the identity element of G, we obtain that s” = s
for some s ∈ S. Hence S” ⊆ S. For instance, for the honeycomb torus network,
we have N =< c >< b >, K =< a >, S = {a, a−1, b, b−1}, S” = {a, a−1, b}.
As an application of the method above, we now consider the problem of finding
the distance between two vertices in the honeycomb mesh network Δ∞ . We
know that the infinite honeycomb mesh network Δ∞ = Cay(G, S), where G =
(< c >< b >) < a > ,S = {a, a−1, b}, < c > and < a > are infinite cyclic groups
and c, b, a satisfy the relations b2 = 1, bcb = c−1, aba−1 = c−1b, aca−1 = c−1.
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Thus, any element of G can be expressed as the product cjblai, where l is 0 or 1
and j and i are integers. We first formulate the distance between vertex 1 (the
identity of G) and vertex cjblai in the following theorem.

Theorem 2. For |i| ≤ |2j + l|, we have dis(1, cjblai) = |4j + l + 1/2[(−1)i+l −
(−1)l]|; otherwise, dis(1, cjblai) = |i|+ |2j + l|.
Proof. Omitted.

Applying the pruning scheme to the infinite mesh, we obtain the infinite honey-
comb mesh. By Remark 1, it is isomorphic to the Cayley graph Δ∞ . Thus by
Theorem 2 we have the following.

Corollary 1. In the infinite honeycomb mesh, the distance between nodes (x, y)
and (u, v) is obtained as follows: if |v − y| ≤ |u − x|, then dis((x, y), (u, v))
equals |2(u − x) + 1/2[(−1)u+v − 1]| when x + y ≡ 0(mod 2), and |2(x − u) +
1/2[(−1)u+v+1−1]| otherwise. In the case of |v−y| > |u−x|, we have dis((x, y),
(u, v)) = |u− x|+ |v − y|.
Proof. Omitted.

Finally, we embark on determining the automorphism group of the infinite hon-
eycomb mesh network. Let σ be the mapping of the set G to itself such that
1 ↔ 1, a ↔ a−1, b ↔ b, and σ2 = 1. This is the reflection to the straight line
through two vertices 1 and b. Similarly, let λ be the mapping of the set G to
itself such that 1↔ 1, a↔ b,a−1 ↔ a−1, and λ2 = 1. The latter is the reflection
to the straight line through two vertices 1 and a−1. Then we have (σλ)3 = 1.
We easily prove (Aut(Δ∞))1 =< σ, λ >. Thus we have proved the following.

Proposition 5. Let the mappings σ and λ be defined as above. Then, Aut(Δ∞) =
G < σ, λ > .

4 Conclusion

In this paper, we have provided a number of general results on homomorphism
between Cayley (di)graphs and their subgraphs and coset graphs. We have also
demonstrated the applications of these results to some well-known interconnec-
tion networks, including hexagonal and honeycomb meshes and related networks.
Because of the generality of these theorems, which can be viewed as allowing the
synthesis of alternative, more economical, interconnection networks by reducing
the number of dimensions and/or link density of existing networks via mapping
and pruning, we expect that they will find many more applications.

We are currently investigating the applications of our method to the problems
related to routing and average internode distance in certain subgraphs of the in-
finite honeycomb mesh network. These results, along with potential applications
in the following areas will be reported in future:

(1) Load balancing and congestion control
(2) Scheduling and resource allocation
(3) Fault tolerance and graceful degradation
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These constitute important practical problems in the design, evaluation, and
efficient operation of parallel and distributed computer systems.
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Abstract. In transportation networks, a vehicle always travels longer
than the shortest path due to sudden edge failure caused by unexpected
events such as accident. In this situation, which edge failure results in
the maximum of the travel distance between the source node and the
destination node? If we know the edge, we can reduce the transporta-
tion cost and improve the networks structure. Regarding this problem,
the most vital edge (MVE) problem considers in a global view and from
the perspective of static decision-making based on complete information,
while the longest detour (LD) problem solves in a local view and in terms
of real time. This paper reconsiders this problem in a global view and
in terms of real time. We propose the real time critical edge (RTCE)
problem of the shortest path, and present an O(n2) time algorithm by
constructing the shortest path tree. Then, by giving a numerical example
of urban transportation networks, we compare the results of MVE, LD
and RTCE, and conclude that the RTCE problem has more practical
significance.

Keywords: Real Time Critical Edge, The Shortest Path, Algorithm,
Transportation Networks.

1 Introduction

In urban transportation, there are always many road blockages caused by un-
expected events such as accidents. These sudden events make the vehicles to
detour thus lengthening the whole travel distance and increasing the transporta-
tion cost. In fact, these events are unforeseen, particularly, one can not obtain
complete information regarding the blockages during the process of travelling. It
is important to know the real time critical edge of the shortest path for trans-
portation management. Studying the real time critical edge of the shortest path
provides scientific basis for raising transportation efficiency and reducing the loss
caused by the real time critical edge failure.
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Previous related research mainly focused on the most vital edge (MVE) prob-
lem and the longest detour (LD) problem. The MVE problem was originally
presented by Corley and Sha [1] who studied the problem of finding an edge
whose removal from the graph G(V, E) results in the largest increase of the dis-
tance between two given nodes. This edge is generally denoted as the most vital
edge with respect to the shortest path. This problem has been solved efficiently
by K. Malik, A. K. Mittal and S. K. Gupta [2], who gave an O(m + n log n)
time algorithm by making use of Fibonacci heap. E. Nardelli, G. Proietti and
P. Widmyer [3] improved the previous time bound to O(m · α(m, n)), where α
is the functional inverse of the Ackermann function, and n and m denote the
number of nodes and edges in the graph, respectively.

The LD problem was first introduced by E. Nardelli, G. Proiett and P. Wid-
myer [4]. They focused on the problem of finding an edge e = (u, v) in the
shortest path where u is closer to source node s than v , such that when
this edge is removed, the distance of detour satisfies dG−e∗(u∗, t) − dG(u∗, t) ≥
dG−e(u, t) − dG(u, t), where G − e = (V, E − e), e∗ = (u∗, v∗). This problem
was denoted as the longest detour (LD) problem, and the edge whose removal
will result in the longest detour is named the detour-critical edge. They showed
that this problem can be solved in O(m + n log n) time, and then [3] improved
the result to O(m · α(m, n)) time bound. In addition, there are some other re-
lated literatures focusing on this problem such as E. Nardelli, G. Proiett and P.
Widmyer [5], LI Yinzhen and GUO Yaohuang [6], and A. M. Bhosle [7].

In the MVE problem, decision-making of route is made based on the com-
plete information, namely the decision maker knows in advance which edge is
destroyed. In this sense, the MVE problem does not consider the real time situa-
tion under incomplete information. In addition, the LD problem merely focuses
on the distance of detour in a local view thus neglecting the distance before de-
tour. Aiming at improving the deficiency mentioned above, this paper presents
the RTCE problem which contributes (1) Considering the problem from the view
of real time under incomplete information and (2) Computing the whole route
in a global view including not only the distance of detour but also the distance
before detour.

This paper is organized as follows: in section 2 we give definition of the real
time critical edge of the shortest path; in section 3 we present an algorithm to
solve the RTCE problem efficiently and analyze its time complexity; in section
4, we show a numerical example of urban transportation networks to illustrate
the application of the algorithm; finally, section 5 contains concluding remarks
and lists some further research problems.

2 Problem Statement and Definition

Model a realistic road transportation networks as a graph in which the inter-
section could be abstracted as the node and the road between two nodes as the
edge. The weight of edge could be represented as the distance of the road. For
the sake of brevity, we will refer to road transportation networks as transporta-
tion networks and denoted as G(V, E). Let V = {s, v1, v2, . . . , vn−2, t} denotes
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the set of nodes and E = {e1, e2, . . . , em} denotes the set of edges, where n and
m denote the number of nodes and edges in the graph respectively.

All discussions in this paper are based on the following assumptions:

1. The vehicle always travels along the shortest path from source node s to
destination node t. If an edge e = (u, v) that is on the shortest path fails, the
vehicle will travel along the shortest path (from u to t) that does not use edge
e = (u, v), where node u is nearer to source node s than node v.
2. Sudden failure of edge only happens on the shortest path from source node
to destination node, and we suppose that the shortest path between two nodes
is unique in this paper.
3. During the process of travelling, there is only one edge sudden failure.
4. The information of ”edge failure” could be obtained when the vehicle travels
to node u of the failure edge (u, v), in particular, node u is nearer to source node
s than node v .

The MVE problem is based on the static situation under complete infor-
mation. Here, considering the real time situation in which information of edge
failure is incomplete, we define the real time critical edge (RTCE) problem of the
shortest path which consider real time situation and includes both the distance
of detour and the distance before detour.

Definition. In an 2-edge connected, undirected graph G(V, E). Given source
node s and destination node t, the shortest path PG(s, t) from s to t in G is
defined as the shortest path which minimizes the sum of the weights of the
edges along PG(s, t). A detour at node u ∈ PG(s, t) = {s, . . . , u, v, . . . , t} is
defined as the shortest path from u to t which does not make use of edge e =
(u, v) ∈ PG(s, t) with u is closer to s than v, and let dG−e(u, t) denotes the
travel distance of detour from u to t in G(V, E − e). Here we focus on the
problem of finding an edge e∗ = (u∗, v∗) ∈ PG(s, t) whose removal results in the
longest travel distance dG−e∗(s, t) ≥ dG−e(s, t) for every edge of PG(s, t), where
G− e = (V, E − e). For the sake of brevity, we will refer to this problem in the
following as the real time critical edge (RTCE) problem of the shortest path,
where dG−e∗(s, t) = dG(s, u∗) + dG−e∗(u∗, t), dG−e(s, t) = dG(s, u) + dG−e(u, t),
and dG(s, u) is denoted as the travel distance between s and u before detour.

In realistic situation, one can not obtain the complete information before set-
ting out because of sudden accidents. Therefore, research on the RTCE problem
has extremely practical significance.

3 Solving the RTCE Problem

Let PG(s, t) be the shortest path joining s and t in G. It is worth noting that
solving the RTCE problem in the naive way that is by sequentially removing all
the edges e = (u, v) along PG(s, t) and computing at each step PG−e(s, t). In
fact, this leads to a total amount of time of O(n3) for the O(n) edges in PG(s, t).
Especially, if there is large number of nodes in the networks, the computation
will cost too much time.
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We now discuss an improved approach. Since that the distance before de-
tour does not change after deleting the failure edge, we need only compute the
distance of detour for any edge along the shortest path PG(s, t), thus avoiding
repeatedly computing the distance before detour at each step. As we know, the
whole route from s to t includes the distance before detour and the distance of
detour. Note that the distance before detour must be on PG(s, t) and could be
obtained directly which denoted as dG(s, u), so we need only compute the short-
est path joining node u and destination node t thus reducing the complexity,
where node u ∈ e = (u, v) is nearer to source node s than node v.

In what follows, we present this approach in detail. We start by computing
the shortest path tree rooted at t denoted as SG(t). This gives us all the shortest
paths toward destination node t, where we suppose that the shortest path is
unique. Let e = (u, v) be an edge on PG(s, t) with u closer to s than v. When
edge e is removed, the shortest path tree SG(t) is partitioned into two subtrees,
as shown in Figure 1. Let Mt(u) denotes the set of nodes reachable in SG(t)
from t without passing through edge e = (u, v) and let Nt(u) = V −Mt(u) be
the remaining nodes, then Nt(u) could be regarded as the shortest path tree
rooted at u (i.e., the subtree of SG(t) rooted at u ). Note that for the nodes in
Mt(u), the distance from t does not change after deleting edge e, while for the
nodes in Nt(u) the distance from t may increase as a consequence of deleting
edge e.

t

u

v

s

Nt (u )

Mt (u )

SG (t)

Fig. 1. Edge (u, v) is removed, the shortest path tree SG(t) is partitioned into Mt(u)
and Nt(u)

According to the analysis above, we can yield the shortest path tree rooted at
u and t, respectively. Figure 1 illustrates this situation. Since the detour joining u
and t must contain an edge as the linking edge w(x, y), in particular, x ∈ Nt(u),
y ∈Mt(u), it follows that it corresponds to the set of edges whose weights satisfy
the following condition, figure 2 illustrates this situation.
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dG−e(u, t) = min
x∈Nt(u),y∈Mt(u)

{dG−e(u, x) + w(x, y) + dG−e(y, t)}

In fact, x ∈ Nt(u), such that

dG−e(u, x) = dG(u, x) = dG(t, x)− dG(t, u)

Also, since y ∈Mt(u), so

dG−e(y, t) = dG(y, t)

Therefore

dG−e(u, t) = min
x∈Nt(u),y∈Mt(u)

{dG−e(u, x) + w(x, y) + dG−e(y, t)}

= min
x∈Nt(u),y∈Mt(u)

{dG(t, x) − dG(t, u) + w(x, y) + dG(y, t)}

t

u

v

s
Nt (u )

Mt (u )

SG (t)

x

y

Fig. 2. Edge (u, v) is removed, dashed lines represent the linking edges. In bold, the
detour at u with its linking edge (x, y).

Now, add the distance before detour dG(s, u) which has already been obtained,
we can compute the whole travel distance as follow

dG−e(s, t) = dG(s, u) + dG−e(u, t)

3.1 Algorithm

The following algorithm for obtaining the real time critical edge is based on the
results mentioned above.
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Step 1: Compute the shortest path from t to all the other vertexes by using
the algorithm of Bellman-Ford. Meanwhile, record PG(s, t), SG(t) and k (the
number of edges along PG(s, t)).
Step 2: Set i = 1
Step 3: Remove edge ei from PG(s, t) thus produce SG−ei(t), Mt(u), Nt(u)
Step 4: Compute

dG−ei(s, t) = dG(s, u)+ min
x∈Nt(u),y∈Mt(u)

{dG(t, x) − dG(t, u) + w(x, y) + dG(y, t)}

Step 5: Set i = i + 1, if i ≤ k, then go back to step 3. Otherwise, go to step 6
Step 6: Compute dG−e∗(s, t) = max

i=1,...,k
{dG−ei(s, t)}, the edge e∗ which maxi-

mizes dG−ei(s, t) is the real time critical edge.

3.2 Analysis of Algorithm Complexity

Now we discuss its time complexity for a planar transportation networks, where
n and m denote the number of nodes and edges in G(V, E).

1. In step 1, the set of the shortest path can be obtained by the algorithm of
Bellman-Ford in O(mn) time
2. In step 3, we obtain a total time of O(1)
3. The time for step 4 is O(m)
4. Step 2-5 are loop computation and its repeat times is k. Since k ≤ n− 1, the
total time for step 2-5 is O(mn)
5. The time for step 6 is O(n)

It follows that the time complexity of this improving algorithm is O(mn).
Specifically, for a planar transportation networks, m = O(n), so the total time
complexity of the algorithm presented this paper is O(n2).

4 Numerical Result

We investigate part of urban transportation networks as illustrated in Figure 3.
A transportation company sends a vehicle to carry the freight from source node
s to railway station t. The vehicle travels along the shortest path from s to t, if
the road to the station is blocked because of accident, the vehicle has to detour
to the station. In this situation, in order to reach the railway station in time,
when should the vehicle set out?

In fact, solving this problem means to find the real time critical edge in terms
of real time. If we identify the real time critical edge of the shortest path, we can
determine the longest travel distance from s to t when the real time critical edge
failure. From the view of transportation management, it is a significant issue.

As illustrated in Figure 3, the shortest path PG(s, t) from source node s to
destination node t is s → v4 → v9 → t, and its distance is 32. We compute
the MVE, LD and RTCE problem. The numerical results are as follows. See
Table 1.
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Fig. 3. Part of urban transportation networks

Table 1. Numerical Result

MVE LD RTCE
dG−e(s, t) dG−e(u, t)− dG(u, t) dG(s, u) dG−e(u, t) dG−e(s, t)

(s, v4) fails 37 37− 32 = 5 0 37 37
(v4, v9) fails 41 34− 20 = 14 12 34 46
(v9, t) fails 45 25− 12 = 13 20 25 45

e∗ edge(v9, t) edge(v4, v9) edge(v4, v9)

From the numerical result, we can make some comparisons among the three
problems: the MVE problem, the RTCE problem and the LD problem.

Firstly, note that in the RTCE problem the vehicle travels one unit more than
it does in the MVE problem. This is because the RTCE problem is a real time
process under incomplete information, which implies the vehicle can not get the
information of edge failure until it travels to the blockage edge, and the travelling
route of the RTCE problem is s → v4 → v3 → v10 → v9 → t; But in the MVE
problem the information could be totally obtained in advance, and the travelling
route of the MVE problem is s→ v4 → v9 → v8 → t.

Then, let us see the difference between the RTCE problem and the LD prob-
lem. Obviously, the travelling route of the LD problem is v4 → v3 → v10 → v9 →
t and its distance is 34; While the distance of the RTCE problem is 46. This is
because the RTCE problem targets at the whole travel distance in a global view
while the LD problem only considers the distance of detour in a local view.

Finally, the critical edge of the LD, MVE and RTCE problem are different.
The critical edge of the LD and RTCE problem are edge (v4, v9), but the critical
edge of the MVE problem is edge (v9, t). Which is the critical edge depends
on the network structure of the urban transportation networks given in this
paper. If the structure changes, the result will be changed, which depends on
the structure of the transportation networks.
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In realistic transportation networks, those sudden edges failure are unforeseen,
particularly, the vehicle does not get the information of edge failure until it
travels to the failure edge. According to comparisons above, we can conclude
that the RTCE problem has more practical significance, and from the view of
transportation management, the RTCE problem which focuses on a real time
process is an important problem and worthwhile to consider.

5 Conclusions

In urban transportation, there are always many road blockages caused by un-
expected events such as accidents. Since these sudden events are unforeseen,
making it more difficult to choose an optimal travel route, finding the real time
critical edge of the shortest path under incomplete information has further prac-
tical significance for transportation management. This paper presents a detailed
algorithm whose time complexity is O(n2) and gives a realistic case of urban
transportation networks to illustrate the application of our algorithm. We com-
pare the results of the MVE, LD and RTCE problem, and conclude that the
RTCE problem has more practical significance. We can further reduce the time
complexity of algorithm by making use of Fibonacci heap or the functional in-
verse of the Ackermann function. In addition, the real time critical node of the
shortest path can be studied as future work.
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Abstract. Given a graph G = (V, E) with |V | = n, |E| = m, and a
source node s, we consider the problem of finding two disjoint paths
from s to two destination nodes t1 and t2 with minimum total length,
for every pair nodes t1, t2 ∈ V − {s}. One efficient solution is to trans-
form this problem into the problem of finding shortest pairs of disjoint
paths, and use the Suurballe-Tarjan algorithm to solve the new problem
in O(n2 log n) time and O(n2) space. We present an algorithm that solves
this problem in O(n2) time and O(n2) space, with the solution paths are
implicitly represented. Given such a representation, the time necessary
to explicitly construct all the solution paths is O(1) for each edge on
the paths. Based on this algorithm, we present another algorithm that
solves this problem in O(m log(1+m/n) n) time and O(m) space, with the
compromise of longer searching time on solution paths.

Keywords: network, routing, reliability, graph, survival, shortest path,
disjoint paths, algorithm, complexity.

1 Introduction

In a reliable telecommunication network, we often face the problem of finding
shortest disjoint pair of paths from one source to two destinations. In situa-
tions where the source is fixed but drops are changeable, it is convenient to find
shortest paths from a source to all pairs of possible drops. We call this problem
the Min-Sum Single-Source All-Destination-Pairs Shortest Disjoint Two Paths
problem (Min-Sum SSADP Disjoint 2-Path problem for short). Formally, it is
defined as follows: Given a graph G = (V, E) with |V | = n, |E| = m, and a
source s, and a length function l(u, v) ∈ R for edges (u, v), find two paths from
s to t1 and t2, for every pair t1, t2 ∈ V − {s}, such that the sum of the lengths
of the two paths is minimum.

Many problems of finding shortest path(s) in a graph have been investigated
[1, 2, 3, 4, 5, 6, 7]. In [7], Suurballe and Tarjan considered the problem of finding
two Min-Sum disjoint paths from s to any other node in V , and provided an
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algorithm that runs faster than applying the algorithm of [6] from s to each
other node [7]. We call this problem the Min-Sum Single-Source All-Destinations
Disjoint Shortest Two Paths problem (Min-Sum SSAD Disjoint 2-Path problem
for short). For convenience, we call the algorithm in [7] for the Min-Sum SSAD
Disjoint 2-Path problem the Suurballe-Tarjan algorithm.

An algorithmic solution for the Min-Sum SSADP Disjoint 2-Path problem
consists of two major steps. The first step, called the information structure com-
puting step, is to compute all information needed for generating all paths. The
second step, called paths enumeration step, is to enumerate all paths based on
the information computed in the first part. The time and space complexities of
these two steps can be separated. The time and space complexities for the first
step are optimal if the time and space required is the same as the amount of
information is to be computed. The time and space complexities for the second
step are optimal if the time and space required is the same as the total number
of edges to be enumerated in all paths.

The Min-Sum SSADP Disjoint 2-Path problem can be reduced to the Min-
Sum SSAD Disjoint 2-Path problem by connecting every two nodes in V −{s} to
a newly introduced node and then applying the Suurballe-Tarjan algorithm. This
approach can be used as the information structure computing step of a Min-Sum
SSADP Disjoint 2-Path solution with time and space complexity O(n2 log n) and
O(n2), respectively. Based on the Suurballe-Tarjan algorithm we present an al-
gorithm that computes the information structure that contains solution values of
all pairs of destinations using Θ(n2) time and Θ(n2) space. Since the total num-
ber of different paths in a solution is O(n2), our algorithm is the best possible in
terms of both time and space complexities. We further present another algorithm
that computes a more implicit information structure using O(m log(1+m/n) n)
time and Θ(m) space. For each of these two algorithms, we provide a matching
path enumeration algorithm that runs in Θ(r) and Θ(r + t) time, respectively,
to enumerate Min-Sum 2 paths from s to any pair of destinations u, v, where r
is the number of edges in the disjoint paths, and t is the number of nodes in the
tree path from u to v in a shortest path tree of G (generated in the information
structure computing step).

2 Suurballe-Tarjan Algorithm

In this section we briefly introduce the Suurballe-Tarjan algorithm [7]. The
Suurballe-Tarjan algorithm for directed graphs is abstracted as consisting of
the following steps:

1) Find a shortest-path tree T rooted at s, and, on-the-fly, obtain D(s, v), the
shortest distance from s to v, for each v ∈ V − {s}. Edges in T are called
tree edges, and edges not in T are called non-tree edges.

2) Make canonic transformation on the length of each edge u→ v by computing
l(u→ v) := l(u→ v) + D(s, u)−D(s, v). After the transformation, all edge
lengths are non-negative and all the edges in T have length 0.
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3) Associate with each node v a 3-tuple (d(v), p(v), q(v)), where d(v) represents
the total length of a pair of shortest edge-disjoint paths from s to v, and
p(v), q(v) are used to backtrack the preceding nodes in the two disjoint paths.
Set (d(v), p(v), q(v)) := (∞,−,−) for each node v, and set d(s) := 0. Also
set all nodes as unlabeled.

4) Use S to represent the set of unlabeled subtrees. Initially, set S := {T }.
5) Choose an unlabeled node v such that d(v) is the minimum among all unla-

beled nodes.
a) Labeling. Let T ′ be the unlabeled subtree in S such that v is in T ′ and

let S := S − {T ′}. Mark v as labeled. Then T ′ is split into multiple new
unlabeled subtrees T ′

1, · · · , T ′
k - one for the parent of v, and one for its

each child, if any of them exists. Include them into S.
b) Non-tree edge processing. For each non-tree edge u→ w such that either

u = v, w ∈ T ′
i , or u ∈ T ′

i , w ∈ T ′
j , i �= j, if d(v) + l(u→ w) < d(w), define

d(w) := d(v) + l(u→ w), p(w) := u, q(w) := v.

Clearly this algorithm always terminates. Suurballe and Tarjan proved the
following results when the algorithm terminates:

R1) For a node v that has d(v) < ∞, there exist two edge-disjoint paths from
s to v with total length d(v), which is the smallest among the total lengths
of all pairs of edge-disjoint paths from s to v. As d(v) is the length obtained
after the edge canonic transformation, the total original length of the same
paths is 2 ·D(s, v) + d(v).

R2) The two Min-Sum disjoint paths from s to v can be traced as follows:
1. Initialize all nodes as unmarked.
2. Let w := v. While w �= s do the following: mark q(w) as marked and set

w := q(w).
3. Constructing path 1. Take edge p(v)→ v. Let w := p(v). Then start the

trace procedure, which includes the following operations: While w �= s
do the following: if w is marked then select edge p(w) → w, unmark w
and set w := p(w); else (i.e. w is unmarked) select edge y → w with y
being the parent node of w in T , and set w := y.

4. Constructing path 2. Let y be the parent node of v in T . Select edge
y → v. Let w := y and run the trace procedure described in the previous
step.

R3) If d(v) =∞, then there do not exist two edge-disjoint paths from s to v.

It is shown in [7] that this algorithm has complexity of O(m log(1+m/n) n),
which is the same as that of the Dijkstra’s algorithm using d-heap data structure.
The space used is only O(m).

Figures 1 and 2 show how the Suurballe-Tarjan algorithm works on an example
(taken from [7]).

Regarding the Suurballe-Tarjan algorithm, we have the following two impor-
tant facts that are critical to our ideas of generating new algorithms:
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Fig. 1. (a) Graph G. The shortest-path tree T is formed by the solid edges. The shortest
distance from s to v is marked next to v. (b) The graph G after edge length canonic
transformation.
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Fig. 2. Values of (d(v), p(v), q(v)) when algorithm terminates. Execution proceeds as
follows: s is labeled, s → d processed ⇒ d(1, s, s); a → e processed ⇒ e(2, a, s);
g → f processed ⇒ f(8, g, s). d is labeled, c → f processed ⇒ f(2, c, d). e is labeled,
g → b processed ⇒ b(12, g, e). f is labeled. b is labeled. Finding 2 paths from s to b is
carried out as follows: q(b) = e, q(e) = s are marked, and others are unmarked. Path
1: select p(b) → b = g → b; g is unmarked, so select e → g; e is marked, so select
p(e) → e = a → e, and unmark e; a is unmarked, so select s → a. Path 2: select s → b.
So the two paths are: s → a → e → g → b, and s → b.

Fact 1. For any node v ∈ V , d(v) can be modified only when processing a non-
tree edge that points to v. Furthermore, every non-tree edge can be processed at
most once.

Fact 2. A non-tree edge u → w is processed as a part of procedure of labeling
some node v, only when following conditions are satisfied:

1. before labeling, nodes u, v, w are in a same subtree, Tα;
2. either v = u, or v is a separator of u, w in T , the shortest path tree. For

three nodes v1, v2 and v3 in a tree T̂ , v1 is called a separator of v2 and v3 if
removing v1 from T̂ will make v2 and v3 separated. Clearly, v1 is a separator
of v2 and v3 if and only if v1 is a node in the tree path between v2 and v3.
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3 A Min-Sum SSADP Algorithm

The Suurballe-Tarjan algorithm can be used to solve the Min-Sum SSADP Dis-
joint 2-Path problem as follows:

– For every u, v �= s, add a new node uv.
– Add new edges u→ uv, v → uv with length 0.

Then, we create a new graph G∗ = (V ∗, E∗) with n∗ = |V ∗| = n +
(
n−1

2

)
,

and m∗ = |E∗| = m + 2 ·
(
n−1

2

)
. After applying the Suurballe-Tarjan algorithm

on G∗, a shortest pair of paths from s to uv in G∗ form a shortest pair of paths
from s to u and s to v in G. Using this approach, the Min-Sum SSADP Disjoint
2-Path problem can be solved with time complexity O(m∗ log(1+m∗/n∗) n∗) =
O(n2 log n).

We modify the Suurballe-Tarjan algorithm to obtain a more efficient algorithm
with time complexity O(n2) by calculating (d(uv), p(uv), q(uv)) values without
processing all uv nodes and all u → uv, v → uv edges. More specifically, we
obtain (d(uv), p(uv), q(uv)) values by only processing nodes and edges in G. This
is based on the following lemmas on applying the Suurballe-Tarjan algorithm
to G∗. For convenience, each node in v is represented by a unique integer in
{1, 2, · · · , n}. Unless otherwise specified, symbols u, v, w are used to represent
the nodes in G, and symbols uv, uw, vw are used to represent the new nodes
introduced in transforming G into G∗. In addition, for any node v �= s, we
define order(v) = D(s, v) · |V | + v. Then clearly, for any two nodes u, v �= s,
order(u) < order(v) if and only if D(s, u) < D(s, v), or D(s, u) = D(s, v) and
u < v. For convenience, a new node corresponds to nodes u and v is represented
by symbol uv if order(u) < order(v), otherwise it is represented by symbol vu.

Due to page limit, we omit formal proofs in the entire paper.

Lemma 1. A shortest path tree of G∗, T ∗, computed by applying the Suurballe-
Tarjan algorithm to G∗ can be constructed from T computed by applying the
Suurballe-Tarjan algorithm to G by adding edges u→ uv for every new node uv.

From now on, we assume that the tree T ∗ used in the algorithm is the same one
as we constructed in Lemma 1. Then clearly, for each new node uv, u→ uv is a
tree edge and v → uv is a non-tree edge.

Lemma 2. Applying the Suurballe-Tarjan algorithm to G∗, l(u→ uv) = 0, and
l(v → uv) = D(s, v)−D(s, u) after edge canonic transformation.

Lemma 3. For a node uv ∈ V ∗, the value of d(uv) is changed at most once by
the Suurballe-Tarjan algorithm.

Lemma 4. Applying the Suurballe-Tarjan algorithm to G∗, d(uw) is set to
d(v) + d(w) − d(u), p(uw) is set to w and q(uw) is set to v when a non-tree
edge w → uw is processed as part of the procedure of labeling node v in Step 5.

Lemma 5. Applying the Suurballe-Tarjan algorithm to G∗, when a non-tree
edge w → uw is processed as part of the procedure of labeling a node v in Step 5,
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then (d(uw), p(uw), q(uw)) = (d(v)+D(s, w)−D(s, u), w, v) when the algorithm
terminates. The total length of the original path from s to d(uw) (without canonic
transformation) is d(uw) + D(s, u) + D(s, w).

Lemma 6. Considering applying the Suurballe-Tarjan algorithm to G∗. For a
node uw ∈ G∗, let P be the tree path between u and w in T , the shortest path
tree of G. Then d(uw) is set when the first node in P , say v, is labeled. And if
v �= u and v �= w, u and w are in separate subtrees after Step 5(a) is executed.

Lemma 7. Consider applying the Suurballe-Tarjan algorithm to G∗. In Step
5.b, non-tree edge u→ uw is processed, where order(u) < order(w) such that

– u = v, w ∈ T ′
i , or

– w = v, u ∈ T ′
i , or

– u ∈ T ′
i , w ∈ T ′

j , i �= j. Furthermore, such u→ uw edges are the only non-tree
edges in E∗ − E that are processed in Step 5.b.

Theorem 1. Values of (d(uw), p(uw), q(uw)) for all different uw-pairs can be
set properly as the procedure of applying the Suurballe-Tarjan algorithm on G,
with the following extra step right after step 5.(b):

– For two nodes u, w such that either u = v, w ∈ T ′
i , or u ∈ T ′

i , w ∈ T ′
j , i �= j

do: if order(u) < order(w), set (d(uw), p(uw), q(uw)) := (d(v) + D(s, w) −
D(s, u), w, v); otherwise set (d(wu), p(wu), q(wu) := (d(v) + D(s, u) −
D(s, w), u, v).

Based on this theorem, we obtain the following algorithm:

Algorithm I

0) Let M be an n× n matrix. Each element Mu,v is associated with a
3-tuple (du,v, pu,v, qu,v), where du,v is the total length of the Min-
Sum shortest two disjoint paths from s to u and v, and pu,v, qu,v are
used to trace the two paths. Initially set all of them as (∞,−,−).

1) Find a shortest-path tree T rooted at s, and, on-the-fly, obtain D(s, v), the
shortest distance from s to v, for each v ∈ V − {s}.

2) Make canonic transformation on the length of each edge u→ v by computing
l(u→ v) := l(u→ v)−D(s, v) + D(s, u). After the transformation, all edge
lengths are non-negative and all the edges in T have length 0.

3) Associate with each node v a 3-tuple (d(v), p(v), q(v)), where d(v) represents
the total length of a pair of shortest edge-disjoint paths from s to v, and
p(v), q(v) are used to backtrack the preceding nodes in the two disjoint paths.
Set (d(v), p(v), q(v)) := (∞,−,−) for each node v, and set d(s) := 0. Also
set all nodes as unlabeled.

4) Use S to represent the set of unlabeled subtrees. Initially, set S := {T }.
5) Choose an unlabeled node v such that d(v) ≤ ∞ and d(v) is the minimum

among all unlabeled nodes.
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a) Let T ′ be the unlabeled subtree in S such that v is in T ′ and let S :=
S−{T ′}. Mark v as labeled. Then T ′ is split into multiple new unlabeled
subtrees T ′

1, · · · , T ′
k - one for the parent of v, and one for its each child,

if any of them exists. Include them into S.
b) For each two nodes u, w such that either u = v, w ∈ T ′

i , or u ∈ T ′
i , w ∈

T ′
j , i �= j:

1) If u → w is a non-tree edge, if d(v) + l(u → w) < d(w), define
d(w) := d(v) + l(u→ w), p(w) := u, q(w) := v.

2) If u �= s and v �= s, do following:
If D(s, u) < D(s, w), or D(s, u) = D(s, w) and u < w, set (dw,u,
pw,u, qw,u) := (du,w , pu,w, qu,w) := (d(v)+ D(s, w)− D(s, u), w, v);
otherwise set (du,w, pu,w, qu,w) := (dw,u, pw,u, qw,u) := (d(v)+
D(s, u)− D(s, w), u, v).

We make the following claims:

1. For any two nodes u, v �= s, if du,v <∞, there exist two edge-disjoint paths
from s to u and v with total length du,v, which is the shortest among all edge-
disjoint pairs of paths from s to u and v. While du,v is the length obtained
after the edge canonic transformation, the total original length of the same
paths is du,v + D(s, u) + D(s, v).

2. The two Min-Sum edge-disjoint paths from s to u and v (du,v <∞) can be
traced as follows:
(a) Mark all nodes as unmarked.
(b) Let w := qu,v. While w �= s do the following: mark q(w) as marked, and

set w := q(w).
(c) Constructing path 1. Let w := pu,v. Then starts the trace procedure,

which include the following operations: while w �= s do the following: if
w is marked then select edge p(w) → w, unmark w and set w := p(w);
else (i.e. w is unmarked) select edge y → w with y being the parent node
of w in T , and set w := y.

(d) Constructing path 2. Let w be the node in {u, v}−{pu,v}. Then run the
trace procedure described in the previous step.

3. For two nodes u, v �= s, if du,v = ∞, there do not exist edge-disjoint paths
from s to u and v.

Clearly these claims are derived from previous lemmas and theorem.
Now we analyze the complexity of this algorithm. In addition to including all

the steps of the Suurballe-Tarjan algorithm, this algorithm also includes addi-
tional steps, namely Step 0 and Step 5.b.2 (bold items). Clearly the operations
for these additional steps take time O(n2) and use additional n2 space for the
matrix M . Thus, the time complexity of this algorithm is O(m log(1+m/n) n+n2)
= O(n2), and its space complexity is O(m + n2) = O(n2). Since there are
n(n − 1)/2 = O(n2) distinct pairs of nodes from V − {s}, the O(n2) time and
space complexities are the best possible if the solution values are required to
be computed explicitly. Summarizing above discussions, we have the following
result:
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Theorem 2. For the directed edge-disjoint Min-Sum SSADP Disjoint 2-Path
problem, Algorithm I computes the Min-Sum lengths and other relevant informa-
tion of all paths using Θ(n2) time and Θ(n2) space, where n = |V |. Furthermore,
these paths (as long as they exist) can be enumerated in Θ(L(n)) time, where
L(n) is the number of edges in all the paths.

Example 1. Consider graph G of Figure 1. The matrix M after running Algo-
rithm I is given in Figure 3.
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Fig. 3. The matrix M for the graph G of Figure 1. Each element is a 3-tuple (du,v,
pu,v, qu,v). Execution proceeds as follows: (1) s is labeled, d(s) = 0. The tree rooted
at s is divided into subtrees {a, c, d, f} and {b, e, g}. Set the values of elements of M
at positions (b, a), (a, e), (a, g), (b, c), (c, e), (c, g), (b, d), (d, e), (d, g). (2) d is labeled,
d(d) = 1, and the subtree {a, c, d, f} is divided into subtrees {a, c}, {f}. Set the values
of elements of M at positions (a, d), (c, d), (d, f), (a, f), (c, f). (3) e is labeled, d(e) = 2,
the subtree {b, e, g} is divided into subtrees {b}, {g}. Set the values of elements of M
at positions (b, e), (e, g), (b, g). (4) f is labeled. (5) b is labeled. Finding 2 paths from s
to f is carried out as follows: qf,d = d, q(d) = s are marked, and others are unmarked.
Path 1: start from pf,d = f . f is unmarked, so select d → f ; d is marked, so unmark
d, and select p(d) → d = s → d. Path 2: start from d. d is unmarked (unmarked in the
previous step), so select a → d; a is unmarked, so select s → a. So the two paths are:
s → d → f , and s → a → d. The total length is df,d = 1. It is the value after canonic
transformation on edge lengths. The total length before the canonic transformation is
df,d + D(s, f) + D(s, d) = 1 + 8 + 7 = 16.

Remarks: This algorithm can be used to solve both the edge-disjoint Min-Sum
SSADP Disjoint 2-Path problem and the edge-disjoint Min-Sum SSAD Disjoint
2-Path problem on a directed graph simultaneously with time and space require-
ments for the Min-Sum SSADP Disjoint 2-Path problem.

4 Efficient Algorithm with Implicit Data Structure

The algorithm presented in the last section has the best possible time and space
complexities assuming that the Min-Sum total lengths for all pairs are required
to be computed and explicitly stored (i.e. matrix M ). In this section, we consider
another trade-off, which is stated as follows: how do we represent M implicitly to
reduced space (and time) so that the two paths from s to any given pair of u and
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v can be enumerated quickly? We present another algorithm, named Algorithm
II, that computes an information structure in O(m log(1+m/n) n) time and O(m)
space so that for a given node pair u and v the two Min-Sum edge-disjoint paths
from s to them can be enumerated using the information structure in O(r + t)
time, where r is the number of nodes on the disjoint paths from s to u and v,
and t is the number of nodes in the tree path between u and v in the shortest
path tree T . The basic idea behind this approach is to store (du,v, pu,v, qu,v) for
each pair (u, v) implicitly.

Algorithm II

0) Let L be an array of size |V |, which is used to record the labeling
order. If a node v is the kth labeled node, L(v) = k. Initially, set
L(v) :=∞ for every v, and set l := 0.

1) Find a shortest-path tree T rooted at s, and, on-the-fly, obtain D(s, v), the
shortest distance from s to v, for each v ∈ V − {s}.

2) Make canonic transformation on the length of each edge u→ v by computing
l(u→ v) := l(u→ v)+D(s, u)−D(s, v). After the transformation, all edges
are non-negative and all the edges in T have length 0.

3) Associate with each node v a 3-tuple (d(v), p(v), q(v)), where d(v) represents
the total length of pair of shortest edge-disjoint paths from s to v, and
p(v), q(v) are used to backtrack the preceding nodes in the two disjoint paths.
Set (d(v), p(v), q(v)) := (∞,−,−) for each node v, and set d(s) := 0. Also
set all nodes as unlabeled.

4) Use S to represent the set of unlabeled subtrees. Initially, set S := {T }.
5) Choose an unlabeled node v such that d(v) ≤ ∞ and d(v) is the minimum

among all unlabeled nodes.
a) Let T ′ be the unlabeled subtree in S such that v is in T ′ and let S :=

S−{T ′}. Mark v as labeled. Then T ′ is split into multiple new unlabeled
subtrees T ′

1, · · · , T ′
k - one for the parent of v, and one for its each child,

if any of them exists. Include them into S.
a+) Set L(v) := l, and set l := l + 1.
b) For each non-tree edge u → w such that either u = v, w ∈ T ′

i , or u ∈
T ′

i , w ∈ T ′
j, i �= j, if d(v)+ l(u→ w) < d(w), define d(w) := d(v)+ l(u→

w), p(w) := u, q(w) := v.

Comparing with the Suurballe-Tarjan algorithm, Algorithm II includes all the
steps of the Suurballe-Tarjan algorithm, and adds extra steps, Step 0 and Step
5.a+ (bold items). Since these two extra steps take additional time O(n) and
additional space O(n), Algorithm II takes same time and space as the Suurballe-
Tarjan algorithm, which is O(m log(1+m/n) n) on space O(m). Now we discuss
how to retrieve the (du,v, pu,v, du,v) for a (u, v) pair.

From Step 5.b.2 of Algorithm I, we can easily see that pu,v is one of u and v,
whichever has larger order number. That is:

pu,v =
{

v : if D(s, u) < D(s, v), or D(s, u) = D(s, v) and u < v
u : if D(s, v) < D(s, u), or D(s, v) = D(s, u) and v < u
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From Lemma 6, if du,v and qu,v are set in the procedure of labeling a node x,
which is the first node labeled along the path from u to v in T , then from Step
5.b.2 of Algorithm I, du,v = d(x) and qu,v = x. And if no node in the tree path is
labeled when the algorithm terminates, du,v is not set and thus there is no two
edge-disjoint paths from s to u and s to v.

Given u and v, the following steps are used to compute (du,v, pu,v, qu,v).

1. Let S be an empty set.
2. Set w := u. While w is not an ancestor of v in T , do following: add w into

S and set w := parent(w).
3. Set c := w. Add c into S.
4. Set w := v. While w �= c, do following:

add w into S and let w := parent(w).
5. Set min :=∞.
6. For every node w in S, if L(w) < min, set x := w and min := L(w).
7. If min =∞, then set (du,v, pu,v, qu,v) := (∞,−,−). Report “no two disjoint

paths exist” and return.
8. If min <∞, set r := v if D(s, u) < D(s, v), or D(s, u) = D(s, v) and u < v;

otherwise set r := u. Then set (du,v, pu,v, qu,v) := (d(x), r, x).

As the determination of ancestor-descendant relation between two nodes takes
O(1) time (see [7]), the above steps have the complexity Θ(t) with t being the
number of nodes on the tree path between u and v in T .

Note t ≤ 2 · height(T ), Θ(t) ≤ Θ(height(T )). So the complexity is O(n) in
a worst case, and is O(log n) in the average case. After getting the (du,v, pu,v,
qu,v), the shortest paths can be calculated in O(r), where r is the number of
nodes on the disjoint paths from s to u and v. Summarizing these discussions,
we have the following results:

Theorem 3. For the directed edge-disjoint Min-Sum SSADP Disjoint 2-Path
problem Algorithm II computes an information structure using O(m log(1+m/n) n)
and O(m) space. Min-Sum edge-disjoint paths from s to for a pair of nodes u and v
can be generated using this information structure in O(r + t) time, where r is the
number of nodes on the disjoint paths from s to u and v, and t is the number of nodes
in the tree path between u and v in the shortest path tree T .

5 Concluding Remarks

For the Min-Sum Single-Source All-Destination-Pairs Shortest Disjoint Two
Paths problem, we extended the Suurballe-Tarjan algorithm in several directions,
as demonstrated by our algorithms. Compared with the straightforward adap-
tation of the Suurballe-Tarjan algorithmalgorithm, our new algorithms achieve
better time and space complexities. The basic issue behind our algorithms is
how to compute, store and utilize the information about target solutions ef-
ficiently. We believe that our techniques can be used in solving many other
problems.
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Abstract. The k-facility location problem is a common generalization
of the facility location and the k-median problems. For the metric un-
capacitated k-facility location problem, we propose a polynomial-time
2 +

√
3 + ε-approximation algorithm using the local search approach,

which significantly improves the previously known approximation ratio
4, given by Jain et al. using the greedy method (J. ACM 50 (2003)
795–824).

1 Introduction

1.1 Background of the Problem

The study of facility location problems has occupied a central place in operations
research (see [10, 11]). The metric uncapacitated facility location problem (UFL)
finds a minimum cost solution to connect each city to an open facility, given the
connection costs for cities and open costs for facilities. The problem is called k-
median if there is no open costs for facilities but at most k facilities are allowed to
open. Both UFL and k-median are NP-hard. The currently best known approx-
imation ratio for UFL is 1.52 [13]. Guha and Khuller proved in [4] that UFL can
not be approximated within 1.463 assuming NP �⊆ DTIME(nO(log log n)). For
k-median, the currently best known approximation ratio is 3 + ε [1]. Adopting
the method in [4], Jain, Mahdian, and Saberi gave a hardness of 1 + 2

e ≥ 1.735
for k-median with the same assumption NP �⊆ DTIME(nO(log log n)) [7]. For a
survey about approximation algorithms for facility location problems the readers
are advised to refer to [14].

The metric uncapacitated k-facility location problem (k-UFL) is a common
generalization of the UFL and the k-median problems. This problem is first
proposed in [8], and is approximated to factor of 6 there using the primal-dual
scheme in linear programming. The approximation ratio is improved to 4 later
[6, 7], using the greedy approach analyzed by the factor-revealing LP and the so-
called Lagrangian Multiplier Preserving property possed by the approximation
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algorithm. In this paper we improve the approximation ratio to 2 +
√

3 + ε for
this problem using the local search approach.

1.2 Definition of k-UFL

In k-UFL, there is a set F of facilities and a set C of cities. Denote |F | and |C|
by nf and nc, respectively. An opening cost fi ∈ Q+ is given for each facility
i. Furthermore, there is a connection cost cij ∈ Q+ for every pair of facility i
and city j. All cij ’s form a metric, that is, the connection costs are symmetric
and satisfy the triangle inequality. Finally, a positive integer k is given. The
goal of this problem is to open at most k facilities, denoted by set S ⊆ F , and
connect each city to one facility in S so that the total cost is minimized. We use
function φS : C → S to specify the connection relationship between C and S,
that is, φS(j) = i means that city j is connected to facility i under the solution
S. The total cost of solution S is defined as cost(S) = costf (S)+costs(S), where
costf (S) =

∑
i∈S fi denotes the facility cost of S, and costs(S) =

∑
j∈C cφS(j)j

denotes the service cost of S.
From the definition of k-UFL, it is interesting to notice that a solution to

k-UFL is fully qualified by the set S ⊆ F , since once S is fixed, the minimum
costs(S) is obtained by connecting each city to its nearest open facility. That is,
the function φS can be deduced from S directly. Throughout this paper, we use
symbols i, o, b, and e to denote facilities, and symbol j city.

1.3 Our Results

1. We propose a polynomial-time approximation algorithm for k-UFL using the
local search approach, whose approximation ratio is 2 +

√
3+ ε for any fixed

constant ε > 0. This significantly improves the previously known approxi-
mation ratio of 4 given in [6].

2. We extend our algorithm to some variants of k-UFL.
3. Experimental results of our algorithm on benchmark instances show that the

algorithm has good performance in practice.

The main difficulty in the analysis of the performance of local search approach
for k-UFL comes from the fact that there is a limit k on the number of facilities
allowed to open, which leads to that one cannot arbitrarily use the add operation
in the analysis. We overcome the difficulty by giving a partition of the solution
S found by the algorithm and the optimum solution O for the instance. Another
difficulty is that one cannot simply assume |S| = |O|, since there is an open cost
for each facility in k-UFL. We deal with this problem by a non-uniform analysis
treating the cases |S| < |O| and |S| ≥ |O| differently. Our analysis eventually
gives rise to a better bound of the cost of S.

2 The Local Search Heuristic

2.1 The Paradigm of Local Search

The local search approach is a good method dealing with NP-hard optimiza-
tion problems in practice, whereas whose performance is somewhat difficult to
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analyze. The paradigm of local search approach is very simple. First we find
an initial feasible solution to the problem (this is often trivial). Then we find
an improved solution S′ in the neighborhood N(S) of the current solution S,
where N(S) is defined as the set of solutions reachable through performing one
of the predefined local operations on S. And then we take S′ as the new current
solution and repeat the above procedure, until there is no such solution in N(S).
The solution finally found is called the local optimal solution. The locality gap
of a local search heuristic is defined as the supremum of the ratio of the cost of
local optimal solution to the cost of global optimum solution over all instances
(for minimized NP-hard optimization problems).

For k-UFL, we define the following three local operations.

1. add(i). In add operation, a facility i ∈ F −S is added to the current solution
S, provided |S| < k.

2. drop(i). In drop operation, a facility i ∈ S is dropped.
3. swap(A, B). In swap operation, all facilities in A ⊆ S are dropped out of S,

while a set of facilities B ⊆ F is added to S. We only consider the swap(A, B)
operation that |A| = |B| ≤ p, where p is a fixed constant.

Given the local operations, the neighborhood of solution S is defined as

N(S) = {S + i : i ∈ F − S} ∪
{S − i : i ∈ S} ∪
{S −A + B : A ⊆ S ∧B ⊆ F ∧ |A| = |B| ≤ p},

where, for clarity, we use S + i to denote S + {i}.

2.2 Analysis of Locality Gap

Suppose that for a k-UFL instance I, the local optimal solution S={i1, i2, · · · , il},
and the global optimum solution O = {o1, o2, · · · , or}. Since S is local optimal,
there is no any local operation improving S any more. We estimate the locality
gap by utilizing this property. Our analysis is based on that of k-median and
UFL problems given by Arya et al [1]. First we introduce some notations def-
ined in [1].

Suppose that U is an arbitrary solution to I. Define neighborhood NU (i) =
{j ∈ C : φU (j) = i} for facility i ∈ U , and neighborhood NU (A) =

⋃
i∈A NU (i)

for subset A ⊆ U . For city j, denote service cost cφU (j)j by Uj . Also, we say that
facility i ∈ S captures facility o ∈ O if |NS(i)∩NO(o)| > 1

2 |NO(o)|. If i captures
some o, then it is called bad, otherwise good. The expression NS(i) ∩ NO(o)
is also abbreviated to No

i when S and O are known from the context. The
neighborhood NO(o) is partitioned into several parts by such facilities i that
|No

i | �= ∅, and so is NS(i). Since each facility o is captured by at most one
facility in S, one can see that a 1-1 and onto mapping π : NO(o)→ NO(o) exists
(see Figure 1(a)), such that for all i satisfying No

i �= ∅, if i does not capture
o, we have π(No

i ) ∩ No
i = ∅, otherwise for all j ∈ No

i , we have π(π(j)) = j if
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π(j) ∈ NS(i). The concepts of capture and mapping can also be extended to
subset A ⊆ S. Define No

A =
⋃

i∈A No
i . If |No

A| > 1
2 |NO(o)|, then we say that A

captures o. In this case, the neighborhood NO(o) is partitioned by some subsets
A ⊆ S and facilities i ∈ S. A 1-1 and onto mapping ρ on NO(o) also exists (see
Figure 1(b)), such that if A (resp. i) does not capture o, then ρ(No

A) ∩No
A = ∅

(resp. ρ(No
i ) ∩No

i = ∅).

Fig. 1. Mapping π and mapping ρ

The following lemma 1, lemma 2, and lemma 3 are taken from [1].

Lemma 1. Suppose that for some o ∈ O facility i ∈ S that No
i �= ∅ is taken

out of S. If i does not capture (resp. captures) o, then for each city j ∈ No
i

(resp. j ∈ No
i ∧ π(j) /∈ NS(i)), the new service cost of j can be bounded by

Oj + Oπ(j) + Sπ(j). ��

Lemma 2. Suppose that for some o ∈ O subset A ⊆ S (resp. i ∈ S) that No
A �= ∅

(resp. No
i �= ∅) is taken out of S. If A (resp. i) does not capture o, then for each

city j ∈ No
A, the new service cost of j can be bounded by Oj + Oρ(j) + Sρ(j). ��

Lemma 3. Consider swap(i, o) operation, where o ∈ O is the nearest facility
that i captures. Then for any other o′ �= o that i captures, and for each city
j ∈ No′

i such that π(j) ∈ NS(i), the new service cost of j can be bounded by
2Sj + Oj. ��

In the following analysis of the approach, all local operations considered are
mutually independent, and all inequalities deduced by each local operation hold
since S is local optimal. Our new technical contribution is an upper bound of
facility cost and an upper bound of service cost of S for k-UFL, given in the
following lemma 4 and lemma 5 respectively.

Lemma 4 (Bounding facility cost of S). costf (S) ≤ costf (O) + 2costs(O).

Proof. We partition S and O into some subsets as follows (see Figure 2). Pick a
bad facility i ∈ S, and define B = {o ∈ O : i captures o}. Arbitrarily pick as
many as possible good facilities in S, together with i, to form a subset A such that
|A| = |B|, unless there is not sufficiently many good facilities. Then we get a subset
pair (A, B). Denote by b the bad facility in A, and by e the facility in B that is
nearest to b. Repeat this procedure, until for each bad facility in S a subset pair is
defined. Recall that l = |S| and r = |O|. For the case l ≥ r (see Figure 2(a)), all



A New Approximation Algorithm for the k-Facility Location Problem 221

the facilities in O that are not captured will form the last subset Bm, and arbitrary
|Bm| good facilities remaining in S shall form the corresponding subset Am. The
good facilities still remaining in S form a subset, called R. For the case l < r (see
Figure 2(b)), arbitrary |B| − |A| facilities from B − e for every pair (A, B) that
|B| > |A|, together with all not captured facilities in O form a subset, called P .
Suppose that there are m such pairs (A, B) in total. The line between i and o in
Figure 2 means that i captures o.

Fig. 2. Partitioin of S and O in lemma 4

First consider the case k ≥ l ≥ r. For each facility i ∈ R, consider drop(i)
operation. After i is dropped, each city in NS(i) is reassigned to its nearest
facility in S − i. Since i is good, every city j ∈ NS(i) is mapped out of NS(i) by
π. By lemma 1 we have

−fi +
∑

j∈NS(i)
π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (1)

Notice that since i is good, the condition π(j) /∈ NS(i) in the second term of (1)
is redundant in fact.

For each pair (A, B) that A contains a bad facility, consider swap(b, e) opera-
tion. Since e is swapped in, every city in C is reassigned to its nearest facility in
S−b+e. But we can bound the incurred change of service cost of S by only con-
sidering that of all cities in NS(b). For each city j ∈ Ne

b that π(j) ∈ NS(b), the
new service cost can be bounded by Oj . For each city j ∈ No

b that π(j) ∈ NS(b),
where o �= e is another facility captured by b, the new service cost of j is at
most 2Sj + Oj by lemma 3. At last, by lemma 1, the new service cost of such
j ∈ NS(b) that π(j) /∈ NS(b) is at most Oj + Oπ(j) + Sπ(j). This gives

−fb + fe +
∑

j∈Ne
b

π(j)∈NS(b)

(Oj − Sj) +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(2Sj + Oj − Sj) +

∑
j∈NS(b)

π(j)/∈NS(b)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (2)

Then, for the remaining facilities in (A, B), consider each of the |A−b| swap(i, o)
operations. For example, if A = {i1 = b, i2, i3}, B = {o1 = e, o2, o3}, we consider
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swap(i2, o2) and swap(i3, o3). We only consider the incurred change of service
costs of all cities j ∈ NS(i) ∪ {j′ ∈ No

b : π(j′) ∈ NS(b)}. Since o is swapped in,
all cities j ∈ No

b that π(j) ∈ NS(b) can be reassigned to o. By lemma 1, we have

−fi + fo +
∑

j∈No
b

π(j)∈NS(b)

(Oj − Sj) +
∑

j∈NS(i)
π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (3)

Summing (2) and (3) for all swap operations considered for (A, B), meanwhile
noticing that Oj − Sj ≤ 2Oj for the third term of (2), and that the fourth term
of (2) plus all the third terms of (3) for the |A− b| swap(i, o) operations equals
to
∑

j∈NS(b)−NO(e)∧π(j)∈NS(b) 2Oj, for each such pair we get

−
∑
i∈A

fi +
∑
o∈B

fo + 2
∑

j∈NS(b)
π(j)∈NS(b)

Oj +

∑
i∈A

∑
j∈NS(i)

π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (4)

If the last pair (Am, Bm) does not contain bad facility, consider each of the
|Am| swap(i, o) operations. For example, if Am = {i4, i5}, Bm = {o4, o5}, we
consider swap(i4, o4) and swap(i5, o5). We have to bound the new service cost
of j ∈ NS(i) since i is swapped out. By lemma 1, we have

−fi + fo +
∑

j∈NS(i)
π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (5)

Summing (5) for all swap operations considered for (Am, Bm), we get

−
∑

i∈Am

fi +
∑

o∈Bm

fo +
∑

i∈Am

∑
j∈NS(i)

π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (6)

Summing (4) for all first m − 1 pairs, (6) for the last pair, and (1) for all
facilities in R, we get

−
∑
i∈S

fi +
∑
o∈O

fo + 2
m∑

t=1

∑
j∈NS(bt)

π(j)∈NS(bt)

Oj +

∑
i∈S

∑
j∈NS(i)

π(j)/∈NS(i)

(Oj + Oπ(j) + Sπ(j) − Sj) ≥ 0. (7)

Since π is also a 1-1 and onto function on {j : π(j) /∈ NS(φS(j))}, the fourth
term of (7) equals to 2

∑
π(j)/∈NS(φS(j)) Oj . This implies −

∑
i∈S fi +

∑
o∈O fo +

2
∑

j∈C Oj ≥ 0.
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Next consider the case l < r ≤ k. We only need to consider facilities in P .
For each o ∈ P that is captured by some b, consider add(o) operation. Since o is
added in, all cities j ∈ No

b that π(j) ∈ NS(b) can be reassigned to o. So we get

fo +
∑

j∈No
b

π(j)∈NS(b)

(Oj − Sj) ≥ 0. (8)

Summing (2) and (3) for all swap operations considered for (A, B), and (8) for
all facilities in B ∩ P , we also have inequality (4).

At last, summing (4) for all pairs of subsets, and adding fo for all not captured
o ∈ P , we have the same conclusion as in the case of k ≥ l ≥ r. The lemma
follows. ��

Lemma 5 (Bounding service cost of S). costs(S) ≤ costf (O) + (3 + 2
p )

costs(O).

Proof. First consider the case l < r ≤ k. Since l < r, we can add a facility o ∈ O
to S. For each city j ∈ NO(o), the new service cost of j can be bounded by Oj .
This gives

fo +
∑

j∈NO(o)

(Oj − Sj) ≥ 0. (9)

Summing (9) for all facilities in O, we have
∑

o∈O fo +
∑

j∈C Oj −
∑

j∈C Sj ≥ 0.
Next consider the case k ≥ l ≥ r. We extend the analysis for k-median in

[1] to deal with the cases that facility costs are considered and |S| �= |O|. Both
S and O are partitioned into several subsets as follows (see Figure 3). For each
bad facility b ∈ S, let A = {b} and B = {o ∈ O : A captures o} initially.
Arbitrarily add a good facility i remaining in S to A (B changes accordingly),
until |A| = |B|. Then, all the facilities remaining in O that are not captured will
form the last subset Bm, and arbitrary |Bm| good facilities remaining in S form
the corresponding subset Am. And for this case, arbitrarily pick one facility from
Am as the “bad” facility for it. Finally, all the facilities still remaining in S form
a subset, called R. Suppose that in this procedure we get m subset pairs. The
line between i (resp. A) and o in Figure 3 means that i (resp. A) captures o.
For all facilities o and subsets A that No

A �= ∅, if |A| > p, then each individual
facility i ∈ A that No

i �= ∅, instead of A, is considered under the mapping ρ on
NO(o).

For each pair (A, B) such that |A| = |B| ≤ p, consider swap(A, B) operation.
We can bound the incurred change of service cost of S by only considering that
of all cities in NO(B) ∪ NS(A). For each j ∈ NS(A) − NO(B), suppose that it
is served by o′ ∈ O. Since A does not capture o′, j is mapped out of NS(φS(j))
by ρ. By lemma 2, we get

−
∑
i∈A

fi +
∑
o∈B

fo +
∑
o∈B

∑
j∈NO(o)

(Oj − Sj) +

∑
i∈A

∑
j∈NS(i)−NO(B)

(Oj + Oρ(j) + Sρ(j) − Sj) ≥ 0. (10)
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Fig. 3. Partitioin of S and O in lemma 5

For each pair (A, B) such that |A| = |B| = q > p, consider swap(i, o) operation
on each (i, o) ∈ (A − b) × B. For each j ∈ NS(i) − NO(o), suppose that it is
served by o′ ∈ O. Since i does not capture o′, j is mapped out of NS(i) by ρ. So
we also have

−fi + fo +
∑

j∈NO(o)

(Oj − Sj) +
∑

j∈NS(i)−NO(o)

(Oj + Oρ(j) + Sρ(j) − Sj) ≥ 0. (11)

In fact, for all j ∈ C, since φS(j) is the nearest facility to j, by the triangle
inequality, we have Oj + Oρ(j) + Sρ(j) ≥ Sj . This implies that the condition in
the fourth term of (11) can be extended to j ∈ NS(i). Summing (11) for all
q(q − 1) swap operations of (A, B), meanwhile noticing that fi has nothing to
do with B, and that fo has nothing to do with A− b, we get

−q
∑

i∈A−b

fi + (q − 1)
∑
o∈B

fo + (q − 1)
∑
o∈B

∑
j∈NO(o)

(Oj − Sj) +

q
∑

i∈A−b

∑
j∈NS(i)

(Oj + Oρ(j) + Sρ(j) − Sj) ≥ 0. (12)

Noticing that −q/(q − 1) < −1 and q/(q − 1) ≤ (p + 1)/p, we get

−
∑

i∈A−b

fi +
∑
o∈B

fo +
∑
o∈B

∑
j∈NO(o)

(Oj − Sj) +

(1 +
1
p
)
∑
i∈A

∑
j∈NS(i)

(Oj + Oρ(j) + Sρ(j) − Sj) ≥ 0 (13)

for such pair (A, B) by dividing q − 1 on the two sides of (12).
Finally, consider drop(i) operation for each i ∈ R. Since i is good, we have

that ρ(j) �∈ NS(i) for all j ∈ NS(i). For each such operation, by lemma 2, we
have

−fi +
∑

j∈NS(i)

(Oj + Oρ(j) + Sρ(j) − Sj) ≥ 0. (14)

Summing (10) for all pairs (A, B) that |A| = |B| ≤ p, (13) for all pairs (A, B)
that |A| = |B| > p, and (14) for all facilities in R, meanwhile noticing that the
condition in the fourth term of (10) can be extended to j ∈ NS(i), we get

−
∑

i/∈{bt : |At|>p}
fi+
∑
o∈O

fo+
∑
j∈C

(Oj−Sj)+(1+
1
p
)
∑
j∈C

(Oj +Oρ(j)+Sρ(j)−Sj) ≥ 0.
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Since ρ is also a 1-1 and onto mapping on C, this implies
∑

o∈O fo + (3 +
2
p )
∑

j∈C Oj −
∑

j∈C Sj ≥ 0.
Both cases give the lemma. ��

The straightforward consequence of lemma 4 and lemma 5 is an upper bound of
the locality gap of our local search heuristic for k-UFL.

Theorem 1. The local search heuristic for k-UFL with the three predefined local
operations has locality gap at most 5 + 2

p , where p is the maximum number of
facilities interchanged between S and F in one swap operation. ��

2.3 Improving the Locality Gap

Since the analysis of lemma 4 and lemma 5 only take advantage of the local
optimality of S, they hold for arbitrary feasible solution U of arbitrary instance
I of k-UFL. That is,

∀I, ∀U, costf (I, S) ≤ costf (I, U) + 2costs(I, U),

costs(I, S) ≤ costf (I, U) + (3 +
2
p
)costs(I, U).

Thus we can use the standard scaling technique due to Charikar and Guha [3]
to get an improved locality gap.

Theorem 2. Using the standard scaling technique, the local search heuristic
for k-UFL with the three predefined local operations has locality gap at most
2 + 1

p +
√

3 + 2
p + 1

p2 .

Proof. First we uniformly augment opening cost fi for every facility in I to
δfi, resulting in a modified instance I ′. Then run the local search heuristic on
I ′, getting a local optimal solution S. Finally output S as the solution to I.
Notice that the optimum solution O to I is also a feasible solution to I ′, with
costf (I ′, O) = δcostf (I, O), costs(I ′, O) = costs(I, O). By lemma 4 and lemma
5, we have that costf (I ′, S) ≤ δcostf (I, O) + 2costs(I, O), and costs(I ′, S) ≤
δcostf (I, O) + (3 + 2

p )costs(I, O). This implies that

costf (I, S) = costf (I ′, S)/δ ≤ costf (I, O) +
2
δ
costs(I, O),

costs(I, S) = costs(I ′, S) ≤ δcostf (I, O) + (3 +
2
p
)costs(I, O).

Setting δ = 1+ 1
p +
√

3 + 2
p + 1

p2 gives a locality gap of 2+ 1
p +
√

3 + 2
p + 1

p2 . ��

3 Approximation Algorithm for k-UFL

A key point to apply local search approach is how to guarantee that the algorithm
finishes in polynomial time. Using the method proposed in [9] and [1], instead
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of performing local operations whenever the cost of the modified solution is less
than that of the current solution, we introduce a small error ε′ > 0 to stop the
search procedure once there is no local operation which can decrease the cost of
the current solution by a fraction of this error. This gives the algorithm A.

Algorithm A(p, ε′)

1. Uniformly augment opening cost fi for every facility to δfi, where δ = 1 +
1
p +
√

3 + 2
p + 1

p2 .
2. S ← an arbitrary feasible solution S0.
3. while ∃S′ ∈ N(S) such that cost(S′) ≤ (1− ε′

n2
f
+nf

)cost(S) do

4. S ← S′.
5. endwhile
6. Output S.

Lemma 6. The approximation ratio of algorithm A(p, ε′) is 2 +
√

3 + ε for any
fixed constant ε > 0 when constant p is large enough.

Proof. By step 3 of algorithm A we know that A outputs a solution S satisfying

∀S′ ∈ N(S), cost(S′)− cost(S) > − ε′

n2
f + nf

cost(S)

when it finishes. The number of inequalities of the form cost(S′) − cost(S) ≥ 0
used in the analysis of lemma 4 and lemma 5, p′(nf ), is at most n2

f +nf . So when

we get the locality gap of α = 2+ 1
p +
√

3 + 2
p + 1

p2 in theorem 2, it really means

that αcost(O) − cost(S) > − p′(nf )
n2

f+nf
· ε′′ · cost(S) ≥ −ε′′cost(S) (the calculus in

theorem 2 when error control is considered shows that taking ε′′ = (2 +
√

6)ε′ is
enough). This gives a approximation ratio of α(1 + 2ε′′) = 2 +

√
3 + ε for any

constant ε > 0 when constants p and ε′ are picked accordingly. ��

When p = 6, the approximation ratio of algorithm A is 4 + ε. When p > 6, the
ratio is strictly better than 4, the previously known approximation ratio [6].

Lemma 7. The time complexity of algorithm A(p, ε′) is O(L ·nc ·n2p+3
f ), where

L = log cost(S0)
cost(O) .

Proof. Denote n2
f + nf by p(nf ). At each iteration of algorithm A, the cost

of current solution decreases by a fraction of at least ε′/p(nf). The number of
iterations is at most log cost(S0)

cost(O) / log 1
1−ε′/p(nf ) ≤ L· 1

ε′ log ep(nf). In each iteration,

finding a local operation takes time |N(S)| = O(n2p
f ), and calculating cost(S)

takes time O(ncnf ). The lemma follows. ��

Lemma 6 and lemma 7 together give theorem 3.
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Table 1. Experimental results on instances from OR library

Instance nf nc k rp=1 rp=2

cap71 16 50 11 1 1
cap72 16 50 9 1 1
cap73 16 50 5 1 1
cap74 16 50 4 1 1
cap101 25 50 15 1.0011 1
cap102 25 50 11 1 1
cap103 25 50 8 1.0012 1
cap104 25 50 4 1 1
cap131 50 50 15 1.0011 1
cap132 50 50 11 1 1
cap133 50 50 8 1.0008 1
cap134 50 50 4 1 1
capa 100 1000 4 1 1
capb 100 1000 7 1.0155 1
capc 100 1000 9 1 1

Theorem 3. Algorithm A is a 2 +
√

3 + ε-approximation algorithm running in
time O(L ·nc ·n2p+3

f ) for the metric uncapacitated k-facility location problem. ��

When considering the implementation of algorithm A, it is very interesting to
notice that although the scaling technique theoretically guarantees an improved
approximation ratio, it may lead to a not very good approximation solution in the
case that the the optimum solution consists of relatively many facilities, since on
the scaled instance the local search heuristic may find an approximation solution
in which the service cost partially compensates the extra augmented facility cost.
Knowing of this, algorithm A is implemented to call the local search heuristic
twice, with one the scaling technique is used, and the other not, as shown in
algorithm B.

Algorithm B(p, ε′)

1. Call algorithm A(p, ε′), getting an approximation solution S1.
2. Call the pure local search heuristic with parameters (p, ε′), getting another

approximation solution S2.
3. Output the solution of minimal cost between S1 and S2.

We have implemented our algorithm and tested it on all 15 benchmark instances
from Operations Research (OR) library [2] with ε′ = 0.001. Since the benchmark
instances are for UFL, we set k to be the number of facilities opened in the optimum
solution for each instance so that they can be taken as instances of k-UFL. Our re-
sults are shown in Table 1. Experiment for each instance starts at the trivial initial
feasible solution {0}. Our results are better than that in [6] as a whole from the
aspect of approximation ratio. It is interesting to notice that our algorithm finds
all optimum solutions for these instances when p = 2, but the algorithm can’t beat
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the approximation bound of 3 + 2
p (when k tends to infinity) on the tight example

of the local search heuristic for k-median given in [1].

4 Variants of the Problem

Algorithm A also applies to several variants of k-UFL.
In the arbitrary demand version of k-UFL, each city j has a positive demand

dj . The cost of routing a unit of service from facility i to city j is cij . Only
changing the service cost of solution to

∑
j∈C cφ(j)jdj , algorithm A gives a 2 +√

3 + ε-approximation for this variant.
In the linear-cost version of k-UFL (k-LinFL), instead of the opening cost

fi, a startup cost si and an incremental cost ti are provided for each facility
i ∈ F . The new opening cost for connecting w > 0 cities to facility i is si + wti.
Since costs cij + ti also form a metric [12], k-LinFL can be reduced to k-UFL
meanwhile the approximation ratio is preserved.

The concave-cost facility location problem (ConFL), in which the opening cost
function for each facility is concave, is more general with respect to the linear-cost
facility location problem. A non-decreasing nonnegative function f : N → N is
concave if and only if for each x ≥ 1, f(x + 1) − f(x) ≤ f(x) − f(x − 1).
By the key observation that any concave function f(x) can be represented by
minw{Lw(x) : 1 ≤ w ≤ nc}, where Lw(x) is defined as Lw(x) = (f(w) − f(w −
1))x + wf(w − 1) − (w − 1)f(w), it is proved in [5] that any α-approximation
algorithm for UFL yields an approximation algorithm with the same factor for
ConFL. This conclusion can be extended to the corresponding problem k-ConFL,
in which each facility has concave opening cost function, and at most k facilities
can be opened. So algorithmA also gives a 2+

√
3+ε-approximation for k-ConFL.

5 Discussion

A new approximation algorithm based on local search approach for k-UFL is
proposed. The approximation ratio of the algorithm approaches 2 +

√
3 + ε for

any constant ε > 0. This is the current best approximation ratio for k-UFL to
our knowledge, but we don’t know whether our analysis is tight.

If an algorithm for every solution U to k-UFL instance I outputs in poly-
nomial time a solution whose cost is not more than γfcostf (U) + γscosts(U),
then this algorithm is called a (γf , γs)-approximation algorithm. It follows from
[7] that k-UFL can not be approximated within (1, 1 + 2

e ) assuming NP �⊆
DTIME(nO(log log n)). Obviously our algorithm is a (2 +

√
3 + ε, 2 +

√
3 + ε)-

approximation algorithm for k-UFL. So there is still a large gap between the
approximation ratio and the known approximation hardness for k-UFL. On the
other hand, since the best approximation ratio and hardness currently known
for k-median are respectively 3 + ε and 1 + 2

e , it seems that decreasing the gap
of k-UFL relies heavily on decreasing that of k-median.

Acknowledgement. We would like to thank Yicheng Pan, Mingji Xia, and
Wenbo Zhao for helpful discussions during the preparation of this paper.



A New Approximation Algorithm for the k-Facility Location Problem 229

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristic for k-median and facility location problem. SIAM J. Comput.
33(2004) 544–562

2. Beasley, J.: Operations research library, 2005
Available at http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/uncapinfo.html

3. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In Proceedings of the 40th IEEE Annual Symposium on
Foundations of Computer Science. (1999) 378–388

4. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms.
J. Algorithms 31 (1999) 228–248

5. Hajiaghayi, M., Mahdian, M., Mirrokni, V.: The facility location problem with
general cost functions. Networks 42 (2003) 42–47

6. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility lo-
cation algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50
(2003) 795–824

7. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location.
In Proceedings of the 34th ACM Symposium on Theory of Computing. (2002)
731–740

8. Jain, K., Vazirani, V.: Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. J. ACM
48 (2001) 274–296

9. Korupolu, M., Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for
facility location problems. J. Algorithms 37(2000) 146–188

10. Love, R., Morris, J., Wesolowsky, G.: Facilities location: models and methods.
North Holland, New York. (1988)

11. Mirchandani, P., Francis, R. (editors): Discrete location theory. John Wiley and
Sons, New York. (1990)

12. Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: A greedy facility location algo-
rithms analyzed using dual fitting. In Proceedings of 5th International Workshop
on Randomization and Approximation Techniques in Computer Science, LNCS
2129. (2001) 127–137

13. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric
facility location problems. In Proceedings of the 5th International Workshop on
Approximation Algorithms for Combinatorial Optimization. (2002) 229–242

14. Shmoys, D.: Approximation algorithms for facility location problems. In Proceed-
ings of the 3th International Workshop on Approximation Algorithms for Combi-
natorial Optimization, LNCS 1913. (2000) 27–33

Appendix

For the sake of completeness, we prove the lemmas 1–3 used in the paper.

Construction of Mapping π and ρ
We give the construction of mapping π. The construction of mapping ρ is the
same as that of π. Suppose that NO(o) contains m cities and is partitioned by n
facilities. Renumber these facilities sequentially from 1 such that |No

i1 | ≥ |No
i2 | ≥

· · · ≥ |No
in
|. Denote |No

iu
| by mu. Sequentially renumber all cities in NO(o) from
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1 such that for any u and u′, if u < u′, we have that the number of each city
in No

iu
is less than that of all cities in No

iu′ . If o is not captured, then, for each
facility iu, 1 ≤ u ≤ n, map city jv ∈ No

iu
to j(v+u+mu−2 mod m)+1. Otherwise, o

is captured by i1. For each city jv, 1 ≤ v ≤ m−m1, construct a mutual mapping
between jv and jv+m1 . For each city jv, m−m1 + 1 ≤ v ≤ m−m1 + $ 2m1−m

2 %,
construct a mutual mapping between jv and j

v+� 2m1−m
2 �, also. Finally, if 2m1−m

is odd, map j
m−m1+� 2m1−m

2 � to itself.

Proof of Lemma 1

Proof. After i is taken out, every city j ∈ NS(i) is reassigned to its nearest
facility still in S, say i∗. If i does not capture o, by the property of π we know
that π(j) /∈ No

i . If i captures o, since π(j) /∈ NS(i), we also have π(j) /∈ No
i .

So we have i′ �= i, supposing that i′ is the facility that serves π(j) in S. By the
triangle inequality, we have ci∗j ≤ ci′j ≤ cj,π(j)+ci′,π(j) ≤ coj +co,π(j)+ci′,π(j) =
Oj + Oπ(j) + Sπ(j). ��

Proof of Lemma 2

Proof. After A is taken out, every city j ∈ NS(A) is reassigned to its nearest
facility still in S, say i∗. Since A is good, by the property of ρ we know that
ρ(j) /∈ No

A. So we have i′ /∈ A, assuming that i′ is the facility that serves ρ(j) in
S. By similar argument to the proof of lemma 1, we have ci∗j ≤ Oj+Oρ(j)+Sρ(j).
The proof for the case when i is taken out is the same as that of A. ��

Proof of Lemma 3

Proof. Since o is swapped in, the new service cost of j does not exceed coj . By
triangle inequality, coj ≤ coi + cij = coi + Sj . Since o is the nearest facility in
O that i captures, by triangle inequality, coi ≤ co′i ≤ cij + co′j = Sj + Oj . The
lemma follows. ��
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Abstract. We address a fundamental problem of complexity theory -
the inadequacy of worst-case complexity for the task of evaluating the
computational resources required for real life problems. While being the
best known measure and enjoying the support of a rich and elegant the-
ory, worst-case complexity seems gives rise to over-pessimistic complex-
ity values. Many standard task, that are being carried out routinely in
machine learning applications, are NP-hard, that is, infeasible from the
worst-case-complexity perspective. In this work we offer an alternative
measure of complexity for approximations-optimization tasks. Our ap-
proach is to define a hierarchy on the set of inputs to a learning task,
so that natural (’real data’) inputs occupy only bounded levels of this
hierarchy and that there are algorithms that handle in polynomial time
each such bounded level.

1 Introduction

Computational complexity theory aims to provide tools for the quantification
and analysis of the computational resources needed for algorithms to perform
computational tasks. Worst-case complexity is by far the best known, most gen-
eral, most researched and best understood approach in computational complex-
ity theory. However, it is becoming apparent that this measure is unrealistically
pessimistic. As a conspicuous example one may consider the satisfiability prob-
lem for propositional logic, SAT. Being NP complete, SAT is infeasible from
the point of view of worst-case complexity. Just the same, SAT solvers, pro-
grams that efficiently solve large instances of SAT, are becoming more and more
popular and useful as a practical tool for solving large scale real life problems.
Similar phenomena occurs in many other areas. In particular, in the machine
learning domain, empirical risk minimization (i.e., the minimization of training
error) have been shown to be NP-hard to approximate for practically all com-
mon learning classes, yet many machine learning tools solve such problems on a
regular basis.

The reason for this phenomena is pretty obvious. The worst-case complexity
of a problem, as the name suggests, is determined by the hardest instances.
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If a problem is, say, exponential time hard, it means that for every algorithm
that answers correctly on all inputs, there exist an infinite sequence of inputs
on which it will run for exponential number of steps. However, it does not rule
out the possibility that these hard inputs are very sparsely scattered and that
in practice one never encounters any instance that requires a long run of the
algorithm.

This raises the following question - is there a way to measure the complexity
of problems in a manner that is more relevant to our actual experience with
these problems? Can one define complexity measures that reflects the hardness
of tasks on real data?

In this work, we wish to propose an alternative approach to measuring the
computational complexity of optimization tasks. The new approach defines (im-
plicitly) a measure of ”naturalness” of an input. The intention is that one hand
it is reasonable to assume that reality-generated instances satisfy this ”natural-
ness” property and that, on the other hand, there exist algorithms that solve all
”natural” instances in polynomial time (for problems that may be NP hard).

We focus our attention on optimization problems. In these problems, there
is an objective function that associates a real-valued cost with every input-
solution pair. Our approach can be viewed as measuring the robustness of an
input in terms of the objective function. Namely, inputs are considered ”natural”
if the value of the objective function for their optimal solutions does not change
dramatically when these optimal solution are mildly perturbed.

The over-pessimismof worst case complexity bounds has been addressedbefore.
Average case complexity [1], [2], as well as parameterized complexity [3], offer alter-
native measure of complexity that provide some partial answers to this question.
The work of Spielman and Teng on Smoothed Analysis [4] is probably the most
prominent approach explicitly aimed at answering the concerns described above.
Roughly speaking, they propose to perturb inputs and replace the complexity of
solving each particular input, by the average complexity over its perturbed images.
We take quite a different approach, focussing on finding features that distinguish
real-life inputs from arbitrary theoretically-constructed ones.

2 Notation and Definitions

2.1 Some Basic Combinatorial Optimization Terminology

A combinatorial optimization problem is define by a triple P = (I, T , Π) where I
is the set of possible inputs, T is the set of possible solutions and Π : I×T ,→ R+

is a gain (or loss) function. An optimization algorithm for P , A, maps inputs
to solutions. For concreteness, let us focus on maximization problems, where
the goal of an algorithm is to find, for an input I, a solution T that maximizes
the gain Π(I, T ). We denote by OptP the function that maps each input I ∈ I
to sup{Π(I, T ) : T ∈ T } (we omit the subscript P when it is clear from the
context). We assume, throughout this paper, that this supremum is achievable,
and denote by Topt(I) the solution that achieves this maximum value (so, for
every I, Π(I, Topt(I)) = Opt(I)).
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Definition 1. 1. The relative loss of an algorithm A on an input I is defined
as

Opt(I) −Π(I, A(I))
Opt(I)

2. For ε ≤ 1, we say that A is a ε-approximation algorithm for P, if its relative
loss, is at most ε, Namely

Π(I, A(I)) ≥ sup
T∈T

Π(I, T )(1− ε)

for every I ∈ I.
It turns out that for many natural approximation problems the task of finding
good approximations is computationally infeasible. Namely, assuming P �= NP ,
for some ε > 0, no ε-approximation algorithm runs in polynomial time. We say
that such problems are NP-hard to approximate.

2.2 Combinatorial Approximation Problems in Machine Learning

We shall consider a family of optimization problems that arise when one wishes
to carry out Empirical Risk Minimization in the context of agnostic learning.
Namely,

The Maximal Agreement Problem for a concept class: Given a concept
class H over some domain set X (so, H ⊆ {B : B ⊆ X}), the maximum
agreement problem for H is defined by having as inputs the set of all finite
labeled samples I = {((x1, η1), . . . (xm, ηm)) : m ∈ N, xi ∈ X and ηi ∈
{−1, 1}}, the set of solutions T = H, and the gain is defined by

Π(S, h) =
|{(x, η) ∈ S : h(x) = η}|

|S|
In particular, we shall consider

Best Separating Hyper-plane (BSH): For some n ≥ 1, inputs are of the
form S = {(x1, η1), . . . , (xm, ηm)}, where (xi, ηi) ∈ 2n × {+1,−1} for all i.
For a hyper-plane h(w, t), where w ∈ 2n and t ∈ 2, h(x) = sign(< w, x >
−t) where < w, x > denotes the dot product of the vectors w and x.
The goal of a Best Separating Hyper-plane algorithm is to find a pair (w, t)
so that Π(S, h(w, t)) is as large as possible.

Best Separating Homogeneous Hyper-plane (BSHH): Is the same prob-
lem as BSH, except that we restrict the search to homogeneous hyper-planes.

Densest Open Ball (DOB): For some n ≥ 1, inputs are lists of points from
2n, P = (x1, . . . xm). The problem is to find the Densest Open Ball of radius
1 for P . Formally, T = 2n, and Π(P, z) = |{i : xi ∈ B(z, 1)}|, where the
xi’s are the points listed in P and B(z, 1) is the n dimensional ball of radius
1 centered at z.

Theorem 1 ([5]). The Best Separating Hyperplane problem, as well as its ho-
mogenous version BSHH, are NP-hard to approximate.

Theorem 2 ([6]). The Densest Open Ball problem is, NP-hard to approximate.
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3 A Different Measure of Approximation

3.1 Definition and Intuition

We propose to add a measure of proximity between solutions. That is, a function
d : T × T ,→ 2+ so that

∀T , T ′ d(T , T ′) = d(T ′T ) and d(T , T ′) = 0 iff T = T ′

Examples of such natural proximity measures are the distance between ball
centers for the DOB problem, namely, d(B(z, 1), B(z′, 1) = |z−z′|, any common
distance between hyper-planes for the BSH problem (say, the L2 distance over
the n + 1 dimensional spaces of solutions (w, t), or d(w, w′) = 1− < w, w′ > for
homogenous hyper-planes of unit weight).

Definition 2. 1. For I ∈ I, T ∈ T ,

λ(I,T )
def
= sup

T ′∈T

Π(I, T )−Π(I, T ′)
Π(I, T )d(T , T ′)

I.e., λ(I,T ) measures the rate by which the gain function changes (normalized
by its value at T ) as d(T , T ′) grows (in other words, the slope of the gain
function for I around T ).

2. For ρ > 0 let

λρ
(I,T )

def
= sup

T ′∈T ,d(T,T ′)≤ρ

Π(I, T )−Π(I, T ′)
Π(I, T )d(T , T ′)

The only difference here is that we only care about the slope of the gain
function in the ρ-neighborhood of T .

3. An algorithm A is a ρ-approximation for an optimization problem P w.r.t a
proximity measure d if, for every input I,

Π(I, A(I)) ≥ sup
T∈T

Π(I, T )(1− ρλρ
(I,T ))

Note that that λρ is a monotone function of ρ. It therefore follows that so is
ρλρ. Consequently, the approximation improves as ρ shrinks.

Recall that the usual ε-approximation definition requires Π(I, A(I)) ≥
supT∈T Π(I, T )(1 − ε). So, rather than approximating the optimal solution to
within some fixed ε fraction of the gain of the optimal solution, we require an
approximation margin that depends on a property of the input I - the slope of
the gain function for I. It allows a loose approximation for inputs all of whose
close-to-optimal solutions are very frail - small perturbations of these solutions
result in a sharp deterioration of their gain.

3.2 Some Results for Specific Hypotheses Classes

Claim. For every combinatorial optimization maximization problem P =
(I, T , Π) with a metric d over the space of its solutions, and for every solu-
tion I ∈ T and ρ > 0,
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sup
T∈T

inf
T ′∈B(T,ρ)

Π(I, T ′) ≥ sup
T∈T

Π(I, T )(1− ρλρ
(I,T ))

Theorem 3. For every ρ > 0, the Best Separating Hyper-plane problem (for
both the general and homogenous hyper-planes), as well as the Densest Open Ball
Problem, have a polynomial time ρ-approximation algorithms that find solutions
satisfying

Π(I, A(I)) ≥ sup
T∈T

inf
T ′∈B(T,ρ)

Π(I, T ′)

Corollary 1. For each of the problems BSH, BSHH and DOP, for every ρ > 0,
there exist a polynomial time ρ-approximation algorithm.

4 Discussion

The work reported here is the beginning of an ambitious project aimed to identify
which features of real-life inputs make them easier to process than the complexity
predictions of worst-case analysis. Once such features are detected, we wish to
design measures of complexity that will take these features into account and
result in realistic computational complexity estimates.

The current paper focuses on one such feature. We believe that natural inputs
for learning problems (that is, application-generated training data) are robust, in
the sense that small perturbations of the parameters of learnt hypotheses should
not result in dramatic changes in the training errors. To reflect this belief, this
paper puts forward a new measure of the quality of approximations to opti-
mization problems. This measure reduces to common approximation measures
for robust inputs, while being more lenient on non-robust inputs. We prove, in
Theorem 3 and Corollary 1, that there exist polynomial time algorithms that
are guaranteed to find arbitrarily good approximations (in the new sense) to the
optimization problems resulting from basic some learning tasks. Assuming that
it is indeed the case that real-life data is robust, our results demonstrate that
the new measure of complexity overcomes (at least some of) the over-pessimism
phenomena of worst-case complexity.
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Abstract. For a proof system P we introduce the complexity class
DNPP(P ) of all disjoint NP-pairs for which the disjointness of the pair
is efficiently provable in the proof system P . We exhibit structural prop-
erties of proof systems which make the previously defined canonical NP-
pairs of these proof systems hard or complete for DNPP(P ). Moreover
we demonstrate that non-equivalent proof systems can have equivalent
canonical pairs and that depending on the properties of the proof sys-
tems different scenarios for DNPP(P ) and the reductions between the
canonical pairs exist.

1 Introduction

Disjoint NP-pairs (DNPP) have been introduced as a complexity theoretic tool to
model security aspects of public-key crypto systems [11, 12]. Further, the theory
of disjoint NP-pairs is intimately connected to propositional proof complexity
with applications to automated theorem proving and lower bounds to the length
of proofs [21, 22, 16]. These applications attracted more complexity theoretic
research on the structure of the class of disjoint NP-pairs (cf. [8, 9, 10, 13, 2]).

Various disjoint NP-pairs have been defined from propositional proof systems
which characterize properties of these proof systems. Razborov [22] was the
first to associate a canonical pair with a proof system. This pair corresponds
to the reflection property of the proof system. Pudlák [21] showed that also the
automatizability of the proof system and the feasible interpolation property are
expressible by disjoint NP-pairs. In this way disjoint NP-pairs have substantially
contributed to the understanding of propositional proof systems.

Conversely, this paper aims to transfer proof-theoretic knowledge to the theory
of NP-pairs to gain a more detailed understanding of the structure of the class
of disjoint NP-pairs and in particular of the NP-pairs defined from propositional
proof systems. For this we define the notions of propositional representations
for NP-sets and pairs. The complexity class DNPP(P ) contains all disjoint NP-
pairs for which there exist short P -proofs of its disjointness with respect to some
representation of the pair. In [22] and [2] similar classes of disjoint NP-pairs
corresponding to first order arithmetic theories were considered with the main
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goal to obtain information on the open problem of the existence of complete pairs
for the class of all DNPP. As theories of bounded arithmetic correspond to strong
proof systems the results of [22] and [2] can be transformed into statements about
the complexity class DNPP(P ) for strong systems P . However, these results
do not apply for weaker systems like resolution or cutting planes which are
nevertheless of great interest.

In this paper we demonstrate that also weak proof systems P satisfying certain
regularity conditions define reasonable complexity classes DNPP(P ) for which
the canonical pairs are complete or hard under the respective reductions. The
mentioned regularity conditions are of logical nature: it should be feasible to
carry out basic operations like modus ponens or substitutions by constants in
the proof system. We also show that proof systems P not satisfying these con-
ditions do not define natural classes DNPP(P ). A recent result of Glaßer et al.
[10] states that every DNPP is equivalent to the canonical pair of some proof
system. However, the proof systems constructed for this purpose do not sat-
isfy our regularity conditions. The observations of this paper indicate that the
Cook-Reckhow framework of propositional proof systems might be too broad
for the study of naturally defined classes of disjoint NP-pairs (and in fact for
other topics in proof complexity as well). It therefore seems to be natural to
make additional assumptions on the properties of proof systems. Consequently,
in our opinion, the canonical pairs of these natural proof systems deserve special
attention.

The paper is organized as follows. Sections 2 and 3 contain some new re-
sults but its main intention is to recall relevant material about propositional
proof systems and disjoint NP-pairs. We define and investigate natural proper-
ties of proof systems which we use throughout the paper. In Sect. 3 we introduce
propositional representations for NP-pairs and the complexity class DNPP(P ).

In Sect. 4 we analyse a weak notion of simulation for proof systems introduced
in [17] but not much studied elsewhere. This simulation is provably weaker than
the ordinary reduction between proof systems but is equivalent with respect to
the existence of optimal proof systems.

In Sect. 5 we provide different ways to construct non-equivalent proof systems
with equivalent canonical pairs. A first example for this situation is due to Pudlák
[21]. Here we prove that all proof systems that are equivalent with respect to
the weak simulation from Sect. 4 possess equivalent canonical pairs.

Section 6 is devoted to the complexity class DNPP(P ). We demonstrate that
proof systems P with different properties give rise to different scenarios for
DNPP(P ) and the reductions between the NP-pairs associated with P .

Due to space limitations we only sketch proofs or omit them in this extended
abstract. The complete paper is available as a technical report [3].

2 Proof Systems with Natural Properties

Propositional proof systems were defined in a very general way by Cook and Reck-
how in [7] as polynomial time functions P which have as its range the set of all
tautologies. A string π with P (π) = ϕ is called a P -proof of the tautology ϕ. By



238 O. Beyersdorff

P )≤m ϕ we indicate that there is a P -proof of ϕ of size≤ m. If Φ is a set of propo-
sitional formulas we write P )∗ Φ if there is a polynomial p such that P )≤p(|ϕ|) ϕ
for all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is a sequence of formulas we also write P )∗ ϕn

instead of P )∗ Φ.
Proof systems are compared according to their strength by simulations intro-

duced in [7] and [17]. A proof system S simulates a proof system P (denoted by
P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and P -proofs
π of ϕ there is a S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′ can even
be computed from π in polynomial time we say that S p-simulates P and denote
this by P ≤p S. A proof system is called (p-)optimal if it (p-)simulates all proof
systems. A system P is polynomially bounded if P )∗ TAUT. By a theorem of
Cook and Reckhow [7] polynomially bounded proof systems exist iff NP = coNP.

In the following we will often consider proof systems satisfying some additional
properties. We say that a proof system P is closed under modus ponens if there
exists a constant c such that P )≤m ϕ and P )≤n ϕ → ψ imply P )≤m+n+c

ψ for all formulas ϕ and ψ. P is closed under substitutions if there exists a
polynomial q such that P )≤m ϕ implies P )≤q(m+|σ(ϕ)|) σ(ϕ) for all formulas
ϕ and all substitutions σ. Likewise we say that P is closed under substitutions
by constants if there exists a polynomial q such that P )≤m ϕ(x̄, ȳ) implies
P )≤q(m) ϕ(ā, ȳ) for all formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|. A system P
is closed under disjunctions if there is a polynomial q such that P )≤m ϕ implies
P )≤q(m+|ψ|) ϕ ∨ ψ for arbitrary formulas ψ. The following property is shared
by all systems that simulate the truth-table system: a proof system evaluates
formulas without variables if these formulas have polynomially long proofs.

We call a proof system line based if proofs in the system consist of sequences
of formulas, and formulas in such a sequence are derived from earlier formulas in
the sequence by the rules available in the proof system. Most of the studied proof
systems like resolution, cutting planes and Frege systems are line based in this
sense. The most interesting proof system for us will be the extended Frege proof
system EF that is a usual textbook proof system based on axioms and rules and
augmented by the possibility to abbreviate complex formulas by propositional
variables to reduce the proof size (see e.g. [14]).

In the following we will often enhance line based proof systems by additional
axioms. We will do this in two different ways. Let Φ be a set of tautologies which
can be decided in polynomial time. By P + Φ we denote the proof system P
augmented by the possibility to use all formulas from Φ as axiom schemes. This
means that formulas from Φ as well as substitution instances of these formulas
can be freely introduced as new lines in P +Φ -proofs. In contrast to this we use
the notation P ∪ Φ for the proof system that extends P by formulas from Φ as
new axioms. The difference to P + Φ is that in P ∪Φ we are only allowed to use
formulas from Φ but not their substitution instances in proofs.

We say that a line based proof system P allows efficient deduction if there
exists a polynomial p such that for all finite sets Φ of tautologies P ∪ Φ )≤m ψ
implies P )≤p(m+n) (

∧
ϕ∈Φ ϕ) → ψ where n = |

∧
ϕ∈Φ ϕ|. Along the lines of the

proof of the deduction theorem for Frege systems (see e.g. [14]) we can prove:
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Theorem 1 (Deduction theorem for EF ). EF allows efficient deduction.

A class of particularly well behaved proof systems is formed by proof systems
which correspond to arithmetic theories. To explain this correspondence we
have to translate first order arithmetic formulas into propositional formulas. Πb

1-
formulas have only bounded universal quantifiers and describe coNP-predicates.
A Πb

1-formula ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propositional for-
mulas containing one formula per input length for the number x (cf. [14]). We
use ‖ϕ(x)‖ to denote the set {‖ϕ(x)‖n | n ≥ 1}.

The reflection principle for a propositional proof system P states a strong form
of the consistency of the proof system P . It is formalized by the ∀Πb

1-formula

RFN(P ) = (∀π)(∀ϕ)PrfP (π, ϕ)→ Taut(ϕ)

where PrfP and Taut are suitable arithmetic formulas describing P -proofs and
tautologies, respectively. A proof system P has the reflection property if P )∗
‖RFN(P )‖n holds.

In [18] a general correspondence between arithmetic theories T and propo-
sitional proof systems P is introduced. Pairs (T , P ) from this correspondence
possess in particular the following two properties:

1. For all ϕ(x) ∈ Πb
1 with T ) (∀x)ϕ(x) we have P )∗ ‖ϕ(x)‖n.

2. P is the strongest system for which T proves the correctness, i.e. T ) RFN(P )
and if T ) RFN(S) for a proof system S, then S ≤ P .

In the following we call a proof system P regular if there exists an arithmetic
theory T such that the properties 1 and 2 are fulfilled for (T , P ). The most
prominent example for this correspondence is the pair (S1

2 , EF ). Using this result
from [6] we can show that a combination of our extra assumptions on proof
systems guarantees the regularity of the system, namely:

Theorem 2. Let P be a proof system such that EF ≤ P and P has reflection
and is closed under modus ponens and substitutions. Then EF +‖RFN(P )‖ ≡ P .
Hence P is regular and corresponds to the theory S1

2 + RFN(P ).

3 NP-Pairs Defined from Proof Systems

A pair (A, B) is called a disjoint NP-pair (DNPP) if A, B ∈ NP and A ∩B = ∅.
The pair (A, B) is p-separable if there exists a polynomial time computable set C
such that A ⊆ C and B∩C = ∅. Grollmann and Selman [11] defined the following
reduction between disjoint NP-pairs: (A, B) ≤p (C, D) if there exists a polyno-
mial time computable function f such that f(A) ⊆ C and f(B) ⊆ D. Because
elements from A ∪B can be mapped to C ∪ D a reduction (A, B) ≤p (C, D)
does not imply that A and B are many-one reducible to C and D, respec-
tively. This is, however, the case for the following stronger reduction defined in
[13]: (A, B) ≤s (C, D) if there exists a function f ∈ FP with f−1(C) = A and
f−1(D) = B. As usual we define the equivalence relation ≡p as (A, B) ≡p (C, D)
if (A, B) ≤p (C, D) and (C, D) ≤p (A, B), and similarly for ≡s.
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In order to speak about disjoint NP-pairs in proof systems we need to define
a propositional encoding of NP-sets.

Definition 3. Let A be an NP-set over the alphabet {0, 1}. A propositional rep-
resentation for A is a sequence of propositional formulas ϕn(x̄, ȳ) such that:

1. ϕn(x̄, ȳ) has propositional variables x̄ and ȳ, and x̄ is a vector of n variables.
2. There exists a polynomial time algorithm that on input 1n outputs ϕn(x̄, ȳ).
3. Let ā ∈ {0, 1}n. Then ā ∈ A if and only if ϕn(ā, ȳ) is satisfiable.

Once we have a propositional description of NP-sets we can also represent disjoint
NP-sets in proof systems. This notion is captured by the next definition.

Definition 4. A disjoint NP-pair (A, B) is representable in a proof system P
if there are representations ϕn(x̄, ȳ) of A and ψn(x̄, z̄) of B such that x̄ are the
common variables of ϕn(x̄, ȳ) and ψn(x̄, z̄) and P )∗ ¬ϕn(x̄, ȳ) ∨ ¬ψn(x̄, z̄).

By DNPP(P ) we denote the class of all pairs which are representable in P .

Coding hard tautologies into representations of NP-pairs we can show that the
provability of the disjointness of a pair (A, B) in some proof system depends
crucially on the choice of the representations for A and B, namely:

Proposition 5. If optimal proof systems do not exist, then for all proof systems
P and all disjoint NP-pairs (A, B) ∈ DNPP(P ) there exist representations ϕn of
A and ψn of B such that P �)∗ ¬ϕn ∨ ¬ψn.

Razborov [22] associated a canonical disjoint NP-pair (Ref(P ), SAT∗) with a
proof system P where the first component Ref(P ) = {(ϕ, 1m) | P )≤m ϕ} con-
tains information about proof lengths in P and SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT}
is a padded version of SAT. The canonical pair corresponds to the reflection
principle of the proof system. Using the above terminology we can express this
more precisely as: if P has reflection, then (Ref(P ), SAT∗) ∈ DNPP(P ). Canon-
ical pairs of strong systems provide candidates for complete NP-pairs. Namely,
Razborov showed that if P is an optimal proof system, then the canonical pair
of P is ≤p-complete for the class of all DNPP.

The canonical pair is also linked to the automatizability of the proof system, a
concept that is of great relevance for automated theorem proving. In [5] a proof
system P is called automatizable if there exists a deterministic procedure that
takes as input a formula ϕ and outputs a P -proof of ϕ in time polynomial in the
length of the shortest P -proof of ϕ. This is equivalent to the existence of a deter-
ministic polynomial time algorithm that takes as input (ϕ, 1m) and produces a
P -proof of ϕ if (ϕ, 1m) ∈ Ref(P ). From this reformulation of automatizability it
is clear that automatizable proof systems have p-separable canonical pairs. The
converse is probably not true as the following proposition shows.

Proposition 6. There exists a proof system P that has a p-separable canonical
pair. But P is not automatizable unless P = NP.

However, Pudlák showed in [21] that the canonical pair of a proof system P
is p-separable if and only if there exists an automatizable proof system which
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simulates P . Therefore proof systems with p-separable canonical pair are called
weakly automatizable.

Pudlák [21] introduced a second NP-pair for a proof system:

I1(P ) = {(ϕ, ψ, π) |Var(ϕ) ∩Var(ψ) = ∅, ¬ϕ ∈ SAT and P (π) = ϕ ∨ ψ}
I2(P ) = {(ϕ, ψ, π) |Var(ϕ) ∩Var(ψ) = ∅, ¬ψ ∈ SAT and P (π) = ϕ ∨ ψ}

where Var(ϕ) denotes the set of variables occurring in ϕ. This pair is p-separable
if and only if the proof system P has the efficient interpolation property. Efficient
interpolation has been successfully used to show lower bounds to the proof size
of a number of proof systems like resolution and cutting planes [4, 15, 20].

In [2] we have defined another kind of canonical pair which is quite similar to
the previous pair and which corresponds to the stronger reduction ≤s:

U1(P ) = {(ϕ, ψ, 1m) |Var(ϕ) ∩Var(ψ) = ∅, ¬ϕ ∈ SAT and P )≤m ϕ ∨ ψ}
U2 = {(ϕ, ψ, 1m) |Var(ϕ) ∩Var(ψ) = ∅ and ¬ψ ∈ SAT} .

In [2] we investigated classes of disjoint NP-pairs which are representable in
theories of bounded arithmetic. As these classes correspond to DNPP(P ) for
regular P our results from [2] imply the following:

Theorem 7. Let P be a regular proof system. Then (I1(P ), I2(P )) and (U1
(P ), U2) are ≤s-complete for DNPP(P ). In particular (I1(P ), I2(P )) ≡s

(U1(P ), U2).

In Sect. 6 we will analyse this situation for non-regular proof systems.

4 A Weak Reduction Between Proof Systems

Besides ≤ and ≤p we can also study weaker reductions for propositional proof
systems. In [17] a weak reduction ≤′ is defined between proof systems P and Q
as follows: P ≤′ Q holds if for all polynomials p there exists a polynomial q such
that P )≤p(|ϕ|) ϕ implies Q )≤q(|ϕ|) ϕ for all tautologies ϕ. Using the notation
)∗ which hides the actual polynomials we can also express the reduction ≤′ more
compactly as: P ≤′ Q iff for all sets Φ of tautologies P )∗ Φ implies Q )∗ Φ.

Let us try to motivate the above definition. If we express combinatorial princi-
ples in propositional logic we arrive at collections Φ of tautologies that typically
contain one tautology per input length. We say that a proof system P proves
a combinatorial principle if there exist polynomially long P -proofs of the corre-
sponding collection of tautologies. If P ≤ Q, then every principle that is provable
in P is also provable in Q. The Q-proofs are allowed to be longer than the P -
proofs but only up to fixed polynomial amount independent of the principle
proven. The reduction ≤′ is more flexible as it allows a different polynomial
increase for each principle.

It is clear from the above explanation that ≤ is a refinement of ≤′. We observe
that it is indeed a proper refinement, i.e. we can separate≤ and≤′. It is, however,
not possible to achieve this separation with regular proof systems.
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Proposition 8. 1. Let P be a proof system that is not polynomially bounded.
Then there exists a proof system Q such that P ≤′ Q but P �≤ Q.

2. Let P and Q be regular proof systems. Then P ≤′ Q implies P ≤ Q.

However, Kra j́ıček and Pudlák [17] proved that the reductions ≤ and ≤′ are
equivalent with respect to the existence of optimal proof systems.

5 Proof Systems with Equivalent Canonical Pairs

The simulation order of proof systems is reflected in reductions between canon-
ical pairs as the following well known proposition shows (see e.g. [21]):

Proposition 9. If P and Q are proof systems with P ≤ Q, then the canonical
pair of P is ≤p-reducible to the canonical pair of Q.

Proof. The reduction is given by (ϕ, 1m) ,→ (ϕ, 1p(m)) where p is the polynomial
from P ≤ Q. ��

If P �≤ Q, then we cannot hope to reduce (Ref(P ), SAT∗) to (Ref(Q), SAT∗) by
a reduction of the form (ϕ, 1m) ,→ (ϕ, 1n) that changes only the proof length and
not the formula. But unlike in the case of simulations between proof systems the
reductions between canonical pairs have the flexibility to change the formula.

The aim of this section is to provide different techniques for the construction
of non-equivalent proof systems with equivalent pairs. We first show an analogue
of Proposition 9 for ≤′.

Proposition 10. Let P be a proof system that is closed under disjunctions
and let Q be a proof system such that P ≤′ Q. Then (Ref(P ), SAT∗) ≤p

(Ref(Q), SAT∗).

Proof. The idea of the reduction is to use padding for propositional formulas.
For a suitable polynomial q the mapping (ϕ, 1m) ,→ (ϕ ∨ ⊥m, 1q(m)) performs
the desired ≤p-reduction where ⊥m stands for ⊥ ∨ . . . ∨⊥ (m disjuncts). ��

Combining Propositions 8 and 10 we get the afore mentioned counterexamples
to the converse of Proposition 9.

Corollary 11. Let P be a proof system that is closed under disjunctions and is
not polynomially bounded. Then there exists a proof system Q such that P �≡ Q
and (Ref(P ), SAT∗) ≡p (Ref(Q), SAT∗).

The proof systems P and Q from the last corollary have equivalent canoni-
cal pairs and are also ≤′-equivalent. Moreover, Proposition 10 implies that the
canonical pair is already determined by the ≤′-degree of the system:

Proposition 12. Let P and Q be ≤′-equivalent proof systems that are closed
under disjunctions. Then (Ref(P ), SAT∗) ≡p (Ref(Q), SAT∗).

Nevertheless we can also construct proof systems that have equivalent canonical
pairs but are not ≤′-equivalent, namely we can show:
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Proposition 13. Let P be a proof system that is not optimal. Then there exists
a proof system Q such that P �≡′ Q and (Ref(P ), SAT∗) ≡p (Ref(Q), SAT∗).

Proof. (Idea) For non-optimal proof systems P we can find a polynomial time
constructible sequence ϕn with P �)∗ ϕn. Incorporating ϕn as new axioms
into P we define a system Q with Q )∗ ϕn that has the same canonical pair
as P . ��

The proof systems Q constructed in Proposition 13 have the drawback that they
do not satisfy the normality conditions from Sect. 2. In the next theorem we will
construct proof systems with somewhat better properties.

Theorem 14. Let P be a line based proof system that allows efficient deduction
and let Φ be a sparse set of tautologies which can be generated in polynomial
time. Then (Ref(P ), SAT∗) ≡p (Ref(P ∪ Φ), SAT∗).

Proof. (Idea) The interesting part is to reduce the canonical pair of P ∪Φ to the
canonical pair of P . This is done via (ψ, 1m) ,→ ((

∧
ϕ∈Φm

ϕ) → ψ, 1p(m)) where
Φm = Φ ∩Σ≤m, and p is the polynomial from the deduction property of P . ��

If we start with a well defined line based system P , then also P ∪ Φ will have
good properties (it will lose closure under substitutions). Hence, in contrast to
Proposition 13, both P and P ∪Φ can be chosen to satisfy a reasonable amount
of the normality conditions of Sect. 2. As for any non-optimal proof system there
exists a sequence of hard tautologies we obtain:

Corollary 15. For any non-optimal line based proof system P with efficient de-
duction there exists a sparse set Φ of tautologies which can be generated in poly-
nomial time such that P ∪ Φ �≤′ P and (Ref(P ), SAT∗) ≡p (Ref(P ∪ Φ), SAT∗).

Because EF admits efficient deduction (Theorem 1) we can formulate the fol-
lowing corollary:

Corollary 16. Let Φ be a sparse polynomial time set of tautologies. Then we
have (Ref(EF ), SAT∗) ≡p (Ref(EF ∪ Φ), SAT∗).

Every proof system P is simulated by EF + ‖RFN(P )‖. Clearly ‖RFN(P )‖ is a
sparse polynomial time set of tautologies. From this information together with
Corollary 16 it might be tempting to deduce that the canonical pair of EF is
≤p-complete for the class of all disjoint NP-pairs. The problem, however, is that
Corollary 16 only holds for the system EF ∪ ‖RFN(P )‖ whereas to show the
≤p-completeness of (Ref(EF ), SAT∗) we would need it for EF +‖RFN(P )‖. We
can formulate this observation somewhat differently as:

Theorem 17. At least one of the following is true:

1. The canonical pair of EF is complete for the class of all disjoint NP-pairs.
2. There exists a proof system P such that EF ≤p EF ∪ ‖RFN(P )‖ ≤p EF +
‖RFN(P )‖ is a chain of pairwise non-equivalent proof systems.
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Both assertions of Theorem 17 contain important information. The first alter-
native would solve the open problem, posed by Razborov [22], on the existence
of complete pairs. But also part 2 is interesting as there is only very limited
knowledge about strong proof systems P ≥ EF .

6 The Complexity Class DNPP(P )

In this section we investigate DNPP(P ) for non-regular proof systems. Translat-
ing the reductions to the propositional level we have to work with uniform circuit
families computing the reduction functions. Since it is possible in resolution to
prove the uniqueness of circuit computations we can show the following:

Proposition 18. Let P be a proof system which simulates resolution and is
closed under disjunctions. Then DNPP(P ) is closed under ≤p.

Next we show the hardness of the canonical pair for the class DNPP(P ):

Theorem 19. Let P be a proof system that is closed under substitutions by
constants and modus ponens and can evaluate formulas without variables. Then
(Ref(P ), SAT∗) is ≤p-hard for DNPP(P ).

Proof. (Sketch) Assume that the pair (A, B) is representable in P via the rep-
resentations ϕn(x̄, ȳ) and ψn(x̄, z̄), i.e. P )∗ ¬ϕn ∨¬ψn. Then we reduce (A, B)
to (Ref(P ), SAT∗) by a ,→ (¬ψ|a|(ā, z̄), 1p(|a|)) with some polynomial p. ��

Building on the results of the previous section we construct counterexamples to
Theorem 19 under a suitable assumption:

Theorem 20. There exists a sparse polynomial time constructible set Φ of tau-
tologies such that the canonical pair of EF ∪Φ is not ≤p-hard for DNPP(EF ∪Φ)
if and only if (Ref(EF ), SAT∗) is not ≤p-complete for all pairs.

Proof. (Sketch) Assume that (A, B) �≤p (Ref(EF ), SAT∗). We choose proposi-
tional representations ϕn for A and ψn for B, and define the set Φ as {¬ϕn ∨
¬ψn | n ≥ 0}. Then (A, B) is representable in EF ∪ Φ but not reducible to its
canonical pair which equals the canonical pair of EF . ��

We can interpret Propositions 19 and 20 in such a way that the canonical pairs of
sufficiently well defined proof systems like regular proof systems are meaningful
as complete pairs for some class of DNPP but that this property is lost for
canonical pairs defined from arbitrary proof systems. Therefore the canonical
pairs of regular proof systems seem to deserve special attention.

Analogously to Theorem 19 we can prove a propositional variant of Theorem 7,
stating the ≤s-hardness of (U1(P ), U2) for DNPP(P ) for proof systems P that
are closed under substitutions by constants. In combination with the reflection
property we even get completeness results:
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Theorem 21. Let P be a proof system that has the reflection property. Assume
further that P is closed under substitutions by constants, modus ponens and
disjunctions and can evaluate formulas without variables. Then (Ref(P ), SAT∗)
is ≤p-complete for DNPP(P ) while (U1(P ), U2) is ≤s-complete for DNPP(P ).

What is actually needed for Theorem 21 is not the reflection property of P but
the representability of (Ref(P ), SAT∗) in the proof system P , which is implied
by the reflection property of P . However, the next proposition shows that the
provability of the reflection principle of a system and the representability of its
canonical pair are different concepts.

Proposition 22. Let P be a regular proof system that is closed under disjunc-
tions. Let further Q be a proof system such that Q �≤ P but (Ref(Q), SAT∗) ≤p

(Ref(P ), SAT∗). Then (Ref(Q), SAT∗) is representable in P butP �)∗ ‖RFN(Q)‖n.

The following table gives a detailed picture of the properties of the class DNPP(P )
and its associated NP-pairs for three different types of proof systems. Reductions
between these NP-pairs and its hardness properties are determined by the prop-
erties of the proof system.

weak systems P resolution, cutting planes
(Ref(P ), SAT∗) ≤p-hard for DNPP(P )
(U1(P ), U2) ≤s-hard for DNPP(P )
(I1(P ), I2(P )) p-separable [21]
reductions (I1(P ), I2(P )) ≤p (U1(P ), U2) ≡p (Ref(P ), SAT∗)

(U1(P ), U2) �≤p (I1(P ), I2(P )) unless P is weakly automatizable
properties closed under modus ponens and substitutions by constants

efficient interpolation [15], no reflection [1]
strong systems P extensions EF + ‖Φ‖ of EF

by polynomial time computable sets of true Πb
1-formulas Φ

(Ref(P ), SAT∗) ≤p-complete for DNPP(P )
(U1(P ), U2) ≤s-complete for DNPP(P )
(I1(P ), I2(P )) ≤s-complete for DNPP(P )
reductions (I1(P ), I2(P )) ≡s (U1(P ), U2) ≡p (Ref(P ), SAT∗)
properties closed under modus ponens and substitutions

no efficient interpolation under cryptographic assumptions [19]
reflection property [18], regular

other systems P extensions EF ∪ Φ of EF by suitable choices
of polynomial time constructible sets Φ ⊆ TAUT

(Ref(P ), SAT∗) not ≤p-hard for DNPP(P )
unless (Ref(EF ), SAT∗) is ≤p-hard for all DNPP

reductions (I1(P ), I2(P )) ≤p (U1(P ), U2), (Ref(P ), SAT∗) ≤p (U1(P ), U2)
properties closed under modus ponens, not closed under substitutions by

constants unless (Ref(EF ), SAT∗) is ≤p-hard for all DNPP
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Some interesting questions are still unanswered by the last table. For instance,
how do (Ref(P ), SAT∗) and (U1(P ), U2) compare with respect to the strong
reduction ≤s? At least for regular systems we know that (Ref(P ), SAT∗) ≤s

(U1(P ), U2). Since U1(P ) is NP-complete the NP-completeness of Ref(P ) is a
necessary condition for the opposite reduction to exist. To determine the com-
plexity of Ref(P ) for natural proof systems seems to be an interesting open
problem. Approaching this question we note the following:

Proposition 23. For every proof system P that is closed under disjunctions
there is a proof system P ′ with P ′ ≡p P and Ref(P ′) is NP-complete.

On the other hand there are proof systems P and P ′ such that P ≡p P
′ and

Ref(P ) is decidable in polynomial time while Ref(P ′) is NP-complete.
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19. J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures for
S1

2 and EF . Information and Computation, 140(1):82–94, 1998.
20. P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone

computations. The Journal of Symbolic Logic, 62:981–998, 1997.
21. P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Com-

puter Science, 295:323–339, 2003.
22. A. A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006,

Electronic Colloquium on Computational Complexity, 1994.



Valiant’s Holant Theorem
and Matchgate Tensors

Jin-Yi Cai� and Vinay Choudhary��

Computer Sciences Department,
University of Wisconsin, Madison, WI 53706 USA

{jyc, vinchr}@cs.wisc.edu

Abstract. We propose matchgate tensors as a natural and proper lan-
guage to develop Valiant’s new theory of Holographic Algorithms. We
give a treatment of the central theorem in this theory—the Holant
Theorem—in terms of matchgate tensors. Some generalizations are
presented.

1 Background

In a remarkable paper, Valiant [9] in 2004 has proposed a completely new the-
ory of Holographic Algorithms or Holographic Reductions. In this framework,
Valiant has developed a most novel methodology of designing polynomial time
(indeed NC2) algorithms, a methodology by which one can design a custom
made process capable of carrying out a seemingly exponential computation with
exponentially many cancellations so that the computation can actually be done
in polynomial time.

The simplest analogy is perhaps with Strassen’s matrix multiplication algo-
rithm [5]. Here the algorithm computes some extraneous quantities in terms
of the submatrices, which do not directly appear in the answer yet only to
be canceled later, but the purpose of which is to speedup computation by in-
troducing cancelations. In the several cases such clever algorithms had been
found, they tend to work in a linear algebraic setting, in particular the com-
putation of the determinant figures prominently [8, 2, 6]. Valiant’s new theory
manages to create a process of custom made cancelation which gives polynomial
time algorithms for combinatorial problems which do not appear to be linear
algebraic.

In terms of its broader impact in complexity theory, one can view Valiant’s new
theory as another algorithmic design paradigm which pushes back the frontier
of what is solvable by polynomial time. Admittedly, at this early stage, it is still
premature to say what drastic consequence it might have on the landscape of
the big questions of complexity theory, such as P vs. NP. But the new theory has
already been used by Valiant to devise polynomial time algorithms for a number
of problems for which no polynomial time algorithms were known before.
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Unless and until a proof of P �= NP is found, one should regard this as an open
problem. We can ask ourselves on what basis we derive confidence on the truth
of this conjecture. In our view this confidence is not based on any partial lower
bound which are either for very restricted models of computation or are still very
weak. Fundamentally this source of confidence in P �= NP comes from the fact
that all existing algorithmic approaches do not seem to tackle a myriad of NP-
complete problems. Valiant’s new theory of holographic algorithms challenges us
to re-examine this belief critically.

The theory is quite unlike anything before, and it is a delicate theory that
will be difficult to explain without all the definitions. The central theorem in
this theory is the beautiful Holant Theorem, which is the linchpin that holds
everything together and makes it all possible. But, at least to this author, the
actual proof of the theorem in [9] was a little mysterious and somewhat difficult
to understand. We believe the source of this difficulty lies in the way how one
defines the main concepts of the theory.

The main purpose of this paper is to give a development of the theory based
on the concept of tensors. While tensor product as an operation was already
used by Valiant in [9], here our viewpoint is different in that we start off with
the concepts of covariant and contravariant tensors, and, as it is customary in
modern geometry, we strive to give it a coordinate free framework. Then various
transformations of these tensors follow from general principles in tensor space.
We then give a tensor theoretic proof of Valiant’s Holant Theorem. It is suggested
that once we have properly defined all the concepts based on covariant and
contravariant tensors, Valiant’s beautiful Holant Theorem can be understood as
a natural expression of tensors.

Given the conceptual clarity afforded by the tensor perspective, we can
easily see some generalizations of the Holant Theorem which follow from this
framework.

2 Valiant’s Definitions

In this section we give a brief account of the key definitions of Valiant’s theory,
starting with the matching problem. More details can be found in [9].

Given a graph G, a matching of G is a set of edges no two of which share
a vertex. A perfect matching M is a matching such that every vertex of G is
incident to one edge of M . The decision problem of whether there is a perfect
matching in G is computable in P, one of the notable achievements in the study of
Algorithms. However, it is known that counting the number of perfect matchings
in G is #P-complete.

We assign to every edge e = (i, j) a variable xij , where i < j. Then we define
the following polynomial

PerfMatch(G) =
∑
M

∏
(i,j)∈M

xij ,

where the sum is over all perfect matchings M . PerfMatch(G) is a polynomial
on
(
n
2

)
many variables xij , 1 ≤ i < j ≤ n. If the graph is a weighted graph with
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weights wij , we can also evaluate PerfMatch(G) at xij = wij . Note that if all the
weights are 1, then PerfMatch(G) just counts the number of perfect matchings
in the graph.

A most remarkable result due to Fisher, Kasteleyn and Temperley (FKT),
([7], [3], and [4]) from statistical physics is that for planar graphs, this Per-
fect Matching polynomial PerfMatch(G) can be evaluated in polynomial time.
In fact it can be evaluated as a Pfaffian of a skew-symmetric matrix which is
constructible from a planar embedding of G in polynomial time.

In effect, Valiant’s theory allows the expression of a desired computation as
an exponential sum, called the Holant, and via the Holant Theorem, reduces to
the problem of computing the number of perfect matchings on planar graphs.
This is done via the evaluation of PerfMatch(G) by the FKT method, for a
suitably constructed Macthgrid, composed of matchgates, which we proceed to
define. These reductions are called holographic reductions, because they carry
out exponentially many cancellations analogous to a pattern of interference in
quantum computing.

Define a planar matchgate Γ as a triple (G,X, Y ) where G is a planar embed-
ding of a weighted planar graph (V,E,W ), X ⊆ V is a set of input nodes, Y ⊆ V
is a set of output nodes, and X∩Y = ∅. Furthermore in the planar embedding of
G, counter-clock wise one encounters vertices of X , labeled 1, . . . , |X | and then
vertices of Y , labeled |Y |, . . . , 1.

Valiant defines the standard signature, u(Γ ), of Γ to be a 2|X| × 2|Y | matrix
whose entries are indexed by subsets X ′ ⊆ X and Y ′ ⊆ Y , and the entry indexed
by (X ′, Y ′) is PerfMatch(G − Z), where Z = X ′ ∪ Y ′. Here G− Z denotes the
subgraph of G obtained by removing the subset of nodes in Z (and all their
incident edges). We will make one slight (harmless) change here. We take the
transpose of this matrix to be the standard signature. This is to conform to
(one standard) notation in view of later development in terms of covariant and
contravariant tensors [1]. Thus the standard signature for us is a 2|Y | × 2|X|

matrix.
Matchgates with only output nodes are called generators. Matchgates with

only input nodes are called recognizers. More generally, with both input and
output nodes a matchgate is called a transducer. We note that the standard
signature of a generator is a column vector and the standard signature of a
recognizer is a row vector.

Let b denote the standard basis for two dimensional space, b = [e0, e1] =[(
1
0

)
,

(
0
1

)]
. Consider another basis β = [n, p] =

[(
n0
n1

)
,

(
p0
p1

)]
.

Let Γ be a generator with m output nodes. Then by definition its standard
signature u(Γ ) is a 2m-vector. Valiant then defines the signature of this generator
with respect to the basis β as the coefficients of u(Γ ) when expressed in the
new basis β. More precisely, for an m-tuple tensor product x = x1 ⊗ x2 ⊗
· · · ⊗ xm, where xi = n or p, Valiant defines valG(Γ, x), “the signature element
corresponding to x” [9], to be the coefficient of x when u(Γ ) is expressed as a
sum over {n, p}⊗ {n, p}⊗ · · · ⊗ {n, p}. (Technically, Valiant’s theory also allows
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a basis to be a set of dependent vectors; but in order that u(Γ ) be expressible
in the new basis, it is implicitly required that the standard signature be in the
linear span of the tensor products of the new basis. In this case, any such linear
expression gives arise to a set of values valG(Γ, x). We will see that this slight
complication can be easily handled (see the discussion at the end of the Section 3
and 4); but for simplicity of development, we will assume for now that the basis
β = [n, p] consists of independent vectors as a basis ordinarily does.)

Turning to recognizers, let Γ ′ be a recognizer with m input nodes. Let x =
x1 ⊗ x2 ⊗ · · · ⊗ xm range over 2m possible values, where each xi = n or p. Now
Valiant treats x as a 2m-vector in the standard basis, and defines valR(Γ ′, x),
“the recognizer matchgate Γ ′ ‘evaluated at input’ x” [9], to be the inner product
of the standard signature u(Γ ) with x.

Next Valiant defines a matchgrid Ω = (A,B,C) to be a weighted planar graph
consisting of a disjoint union of: a set of g generators A = (A1, . . . , Ag), a set of r
recognizers B = (B1, . . . , Br), and a set of f connecting edges C = (C1, . . . , Cf ),
where each Ci edge has weight 1 and joins an output node of a generator with
a input node of a recognizer, so that every input and output node in every
constituent matchgate has exactly one such incident connecting edge.

Now we come to the central definition of Valiant’s theory—the Holant.

Holant(Ω) =
∑

x∈β⊗f

{
[Π1≤i≤gvalG(Ai, x|Ai)] · [Π1≤j≤rvalR(Bj , x|Bj )]

}
.

The following is the beautiful Holant Theorem

Theorem 1 (Valiant). For any matchgrid Ω over any basis β, let G be its
underlying weighted graph, then

Holant(Ω) = PerfMatch(G).

3 A Treatment in Terms of Vectors

In this section we rephrase Valiant’s definitions in terms of vectors, this serves
as a transition to the ultimate tensor framework.

Let Γ be a generator with m output nodes. We now consider the object
called valG(Γ ) as a (column) vector, whose entries are indexed by x ∈ β⊗m =
{n, p}⊗m. Let T be the transformation matrix from b to β, namely

[n, p] = [e0, e1]T,

where

T =
(
n0 p0
n1 p1

)
.

We form the tensor product matrix T⊗m which transforms the basis b⊗m to
β⊗m. This follows because tensor product “distributes” over matrix product,
from β = bT we get,

β⊗m = (bT )⊗m = b⊗mT⊗m.
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Then we claim that the vector valG(Γ ) is obtained from the standard signature
u(Γ ) by multiplying the tensor product matrix (T⊗m)−1 = (T−1)⊗m:

valG(Γ ) = (T−1)⊗mu(Γ ),

where for a generator Γ , we recall that the standard signature u(Γ ) is a column
vector of dimension 2m. This agrees with Valiant’s definition since

b⊗m = β⊗m(T⊗m)−1 = β⊗m(T−1)⊗m,

and therefore
(b)⊗mu(Γ ) = (β)⊗m(T−1)⊗mu(Γ )

is the expression of the standard signature expressed in the new basis β, i.e., the
entry of the vector (T−1)⊗mu(Γ ) indexed by x ∈ {n, p}⊗m is what was called
valG(Γ, x) in Section 2.

We next consider recognizers. Let Γ ′ be a recognizer with m input nodes.
We will define valR(Γ ′) as a (row) vector. But more precisely we will consider
valR(Γ ′) as a vector belonging to the dual space X∗, where X is the linear span
of β⊗m.

Let β∗ =
(
n∗

p∗

)
denote the dual basis to β, namely n∗, p∗ are linear functions

on the linear space spanned by β, such that n∗(n) = 1, n∗(p) = 0, p∗(n) =
0, p∗(p) = 1. Then the dual basis to β⊗m is simply (β∗)⊗m.

When we have a basis transformation β = bT from b to β, the dual basis
transforms as follows

β∗ = T−1b∗.

This follows from general principles. (See Section 4.)
Now we claim that what was defined by Valiant as valR(Γ ′, x), as x ranges

over β⊗m, amounts to a dual vector valR(Γ ′) in X∗, whose entries are indexed
by x∗ ∈ (β∗)⊗m, i.e., we claim

valR(Γ ′) = u(Γ ′)T⊗m,

under the basis (β∗)⊗m in X∗.
The standard signature u(Γ ′) is really a dual vector in X∗,

u(Γ ′)(b∗)⊗m.

Since the dual basis transforms as

b∗ = Tβ∗,

we get
(b∗)⊗m = T⊗m(β∗)⊗m,

and therefore u(Γ ′)(b∗)⊗m takes the form

u(Γ ′)(b∗)⊗m = u(Γ ′)T⊗m(β∗)⊗m,
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in the new basis. Notice that the entry of this vector indexed by x∗ ∈ (β∗)⊗m is
precisely the inner product of u(Γ ′) with the column of T⊗m indexed by x∗, and
the latter is nothing but the vector of coefficients when x ∈ β⊗m is expressed in
terms of the standard basis b⊗m. Thus we have reconciled this formulation with
Valiant’s definition.

Now consider the definition of the Holant. We assume Ω = (A,B,C) is a
matchgrid where each generator Ai has mi output nodes and each recognizer Bj

has �j input nodes.
The definition of valG and valR in our linear algebra formulation makes the

following observation transparent. The Holant in fact is an evaluation of an inner
product of two vectors, one of which is the tensor product of all the valG(Ai)
over the generators, and the other is the tensor product of all the valR(Bj)
over the recognizers. More precisely (and it gives the same numerical result) this
quantity Holant(Ω) is the result of applying a dual vector in X∗, which is the
tensor product

⊗
j [valR(Bj)(β∗)⊗�j ], on a primal vector in X , which is also a

tensor product
⊗

i[(β)⊗mivalG(Ai)], where the f copies of the basis vectors in
β are in 1-1 correspondence as given by the f connecting edges in C.

Thus

Holant(Ω) =
∑

x∈β⊗f

[⊗
i

valG(Ai)

]
x

·
[⊗

j

valR(Bj)

]
x∗

= 〈
⊗

j

valR(Bj),
⊗

i

valG(Ai)〉.

Note that the sum
∑

x∈β⊗f is precisely over all the entries in the two tensor

product vectors which are indexed by x ∈ β⊗f , and by the corresponding x∗ ∈
(β∗)⊗f , respectively. Here we have adopted the conventional notation 〈·, ·〉 for
the inner product. For a row vector Y and a column vector Z of the same
dimension, the inner product 〈Y, Z〉 is just Y · Z =

∑
i YiZi.

The total number of output nodes of all Ai is the same as the total number
of input nodes of all Bj , i.e.,

∑
imi =

∑
j �j = f , the total number of intercon-

necting wires between the generators and the recognizers. Note that, according
to an appropriate ordering of the indices,

⊗
i valG(Ai) can be expressed by the

matrix-vector product form

[⊗i(T⊗mi)−1][⊗iu(Ai)],

which is just (T⊗f)−1[⊗iu(Ai)].
Similarly the tensor product

⊗
j valR(Bj , ·) can be expressed by

[⊗ju(Bj)]T⊗f .

Now the beautiful thing is that the adjacent T⊗f and (T⊗f)−1 cancel in the
inner product, and finally we get

Holant(Ω) = 〈⊗ju(Bj),⊗iu(Ai)〉.

What we have now is the definition of the Holant under the standard basis b.



254 J.-Y. Cai and V. Choudhary

Stripped away of all its linear algebraic layers, we have come now to the com-
binatorial reason why the Holant Theorem holds: The set of all perfect matchings
on G can be partitioned according to exactly the subset of edges S among the
f connecting edges C1, C2, . . . , Cf that is part of the matching. And summed
over this partition is precisely what the Holant Theorem states in the standard
basis b:

Holant(Ω) = PerfMatch(G).

As a postcript, we note that the transformation matrix T need not be invert-
ible or even square, as long as the standard signature of the generators can be
expressed in the linear span of β⊗.

Assume the standard signature b⊗mu(Γ ) is in the linear span of β⊗m, where
Γ has m output nodes. Then there exists a (column) vector v such that

b⊗mu(Γ ) = β⊗mv.

We can then define valG(Γ ) to be this v,

valG(Γ ) = v.

(This v may not be unique, but any such v will do.) It follows that

b⊗mu(Γ ) = β⊗mv = b⊗mT⊗mvalG(Γ ).

So
u(Γ ) = T⊗mvalG(Γ ).

Then the proof of the Holant Theorem above still holds, as

Holant(Ω) = 〈
⊗

j

valR(Bj),
⊗

i

valG(Ai)〉

= [⊗ju(Bj)T⊗f ] · [⊗ivalG(Ai)]
= [⊗ju(Bj)] · [⊗iu(Ai)]
= 〈⊗ju(Bj),⊗iu(Ai)〉.

4 Valiant’s Theory Based on Tensors

In this section we will give a tensor theoretic treatment of Valiant’s Holant
Theorem.

4.1 Covariant and Contravariant Tensors

First we briefly recall some notations regarding covariant and contravariant ten-
sors. We will avoid any overly abstract framework of these concepts, but will
appeal to the notion of a coordinate-free definition of a tensor, which exists in a
certain tensor space a priori. Such a tensor has various expressions according to
the basis of the tensor space chosen, and these expressions transform according
to simple transformation rules when one changes from one basis to another.
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At an operational level, one can think of it as follows: Let V be a vector space
of dimension d over some field F. Let b = {b1, . . . ,bd} be a basis. Now with
respect to this basis b, every vector of V has a unique expression as

∑d
i=1 x

ibi,
(which is usually abbreviated in this area of mathematics as just xibi, with a
matching upper and lower index i automatically being summed.) One has a dual
space V ∗ and a dual basis to b, denoted as b∗ = {b1, . . . ,bd}, where bi(bj) = δi

j .
From V and V ∗ one can form tensor product space of any arity. So, e.g., the

space V 3
2 of type

(3
2

)
is a tensor product space of dimension d5, and has a basis

{bi⊗bj⊗bk⊗b�⊗bm}, where all indices run from 1 to d. Any element x ∈ V 3
2 is

called a tensor, and has the expression
∑

ijk�m xijk
�mbi⊗bj⊗bk⊗b�⊗bm, or simply

(xijk
�m), and is called covariant on �,m and contravariant on i, j, k. In particular

vectors in V are contravariant and dual vector in V ∗ are covariant. They are called
as such because the way they transform under a basis transformation.

Let β = bT be a new basis. In coordinates,

βj =
∑

i

bit
i
j ,

where the (i, j) entry of T is tij . (Upper index is for row, lower index is for
column.) Then it can be easily verified for the dual basis that

β∗ = T−1b∗,

where β∗ = {β1, . . . ,βd} is dual to β. Indeed, by denoting T−1 = (t̃ij), we have
βi(βj) =

∑
k t̃

i
kb

k(
∑

l blt
l
j) =

∑
k,l t̃

i
kt

l
jδ

k
l = δi

j .
In coordinates, if x =

∑
xibi ∈ V , then under a basis transformation, x =∑

(x′)i′
βi′ where

(x′)i′
=
∑

i

t̃i
′

i x
i.

If x∗ =
∑
xibi ∈ V ∗ in the dual space, then under the same basis transforma-

tion, x∗ =
∑

(x′)i′βi′
where

(x′)i′ =
∑

i

tii′xi.

Thus, vectors in V are contravariant and vectors in V ∗ are covariant.
This extends to tensors of any “type”. E.g., a tensor in V 3

2 , x = (xijk
�m) is

contravariant on the three upper indices and covariant on the two lower indices.
And it transforms as

(x′)i′j′k′
�′m′ =

∑
i,j,k,�,m

t̃i
′

i t̃
j′
j t̃

k′
k t

�
�′tmm′x

ijk
�m .

Finally a contraction on an index i for a pair of tensors (xi...
j...) and (yk...

i... ) is
simply an application of the dual on the primal; in terms of coordinates∑

i

xi...
j...y

k...
i... .

The reader is referred to [1] for more details.
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4.2 Holant Theorem Based on Tensors

In this section we will give a tensor theoretic treatment of Valiant’s Holant
Theorem.

In Section 2, we defined the objects valG and valR as vectors. However, an
even more appropriate home for these objects are in tensor spaces of type

(
m
0

)
for the generators and

( 0
m

)
for the recognizers.

Thus, consider a generator matchgate Γ whose underlying weighted graph G
has m output nodes. We consider a vector space V of dimension 2 over some
field F has already been fixed. We may choose some basis b of V and consider it
the standard basis. We assign to this matchgate a tensor G ∈ V m

0 of type
(
m
0

)
.

This tensor under the standard basis has the form∑
Gi1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where
Gi1i2...im = PerfMatch(G− Z),

where Z is the subset of the output nodes having the characteristic sequence
χZ = i1i2 . . . im. Note that we are putting the matchgate tensor G in a tensor
space a priori, and the expression of G under a particular basis is subordinate
to that. In particular, G transforms as a contravariant tensor under a basis
transformation β = bT , as

(G′)i′
1i′

2...i′
m =
∑

Gi1i2...im t̃
i′
1

i1
t̃
i′
2

i2
. . . t̃

i′
m

im
.

This tensor is what we have been calling valG(Γ ). As a tensor of type
(
m
0

)
, it is

usually abbreviated as simply Gi1i2...im .
Now consider a recognizer Γ ∗ whose underlying weighted graph G∗ has m

input nodes. To Γ ∗ we will assign a tensor R ∈ V 0
m of type

( 0
m

)
. This tensor

under the standard (dual) basis has the form∑
Ri1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim ,

where
Ri1i2...im = PerfMatch(G∗ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . im. Again we put
the matchgate tensor R in a tensor space a priori. In particular, when changing
a basis βj =

∑
i bit

i
j , R transforms as a covariant tensor should, namely

(R′)i′
1i′

2...i′
m

=
∑

Ri1i2...im t
i1
i′
1
ti2i′

2
. . . tim

i′
m
.

This tensor is what we have been calling valR(Γ ∗).
In a matchgrid Ω = (A,B,C) the indices of various generators and recognizers

are matched up in a 1-1 correspondence by the f connecting edges. Then, in the
language of tensors, the definition of the Holant is just a contraction on all pairs
of corresponding indices.
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We denote by G the tensor product of all the generator tensors over Ai and
R the tensor product of all the recogizer tensors over Bj. Then G ∈ V f

0 and
R ∈ V 0

f , and the Holant is the contraction of R with G by contracting on all
the corresponding indices, which we can denote simply as

〈R,G〉.

Note that the coordinate-free definition of valG and valR as tensors immedi-
ately implies that the Holant is independent of any basis. In terms of coordinates
we can verify that pairwise

∑
i′ tii′ t̃i

′
j = δi

j . One can say that the correspond-
ing pair of (tik) and (t̃kj ) cancels out. Thus we can use the standard basis with
PerfMatch(Ai−Z) and PerfMatch(Bj−Z), where Ai and Bj are the constituent
generators and recognizers respectively. Then combinatorially we see clearly,

Holant(Ω) = PerfMatch(G),

as all perfect matchings M of G are partitioned according to the subset M ∩C.
We can now consider a generalization of the Holant Theorem. We will consider

a more general matchgrid having transducers, in addition to generators and
recognizers.

Let Γ be a transducer matchgate with � input nodes and k output nodes. We
attach to Γ a tensor T in V k

� , contravariant on k upper indices and covariant on
� lower indices. Under basis b it has the expression∑

T j1j2...jk

i1i2...i�
bi1 ⊗ bi2 ⊗ · · · ⊗ bi� ⊗ bj1 ⊗ bj2 ⊗ · · · ⊗ bjk

,

where
T j1j2...jk

i1i2...i�
= PerfMatch(G− Z),

and G−Z is the graph of Γ obtained by removing the subset of the input/output
vertices with χZ = i1i2 . . . i�j1j2 . . . jk. This agrees with the definition of the
standard signature u(Γ ), except now we have a tensor in V k

� . In short T =
(T j1j2...jk

i1i2...i�
).

Then it follows from general principles that under a basis transformation
βj =

∑
i bit

i
j , T transforms as

(T ′)b1b2...bk
a1a2...a�

=
∑

T j1j2...jk

i1i2...i�
ti1a1
ti2a2

. . . ti�
a�
t̃b1j1 t̃

b2
j2
. . . t̃bk

jk
.

In Valiant’s notation [9], under a basis β, this could have been denoted as
valT(Γ, ·).

We define a generalized matchgrid Ω = (A,B,C,D) to be a weighted planar
graph G which consists of a disjoint set of g generators A1, . . . , Ag, r recognizers
B1, . . . , Br, t transducers C1, . . . , Ct, and f connecting edges D1, . . . , Df , where
each Di has weight 1 and they connect output nodes of some Aα or Cγ to input
nodes of some Bβ or Cγ′ in a 1-1 fashion.

Then we can define the extended Holant in the notation in [9]:

Holant(Ω) =
∑

x∈β⊗f

{
[Π1≤α≤gvalG(Aα, x|Aα)] · [Π1≤β≤rvalR(Bβ , x|Bβ

)] · [Π1≤γ≤tvalT(Cγ , x|Cγ )]
}
.
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In terms of the tensors, we simply compute a contraction on all the matching
pairs of upper and lower indices, indicated by the f connecting edges.

Since all the corresponding pairs of (tik) and (t̃kj ) cancel out, the extended
Holant also reduces to the expression under the standard basis. Then it follows
from the same combinatorial reason that

Theorem 2. For matchgrid Ω = (A,B,C,D),

Holant(Ω) = PerfMatch(G).

Finally, we briefly discuss what happens when the new “basis” β is only a set
of vectors (and not necessarily a basis in the linear algebra sense.) This allows for
the possibility that the transformation matrix T = (tij) is not a square matrix.
This flexibility was shown to be useful for one problem solved by Valiant in [9].

Consider a generator Γ with m output nodes, and its tensor G ∈ V m
0 . Even

though β may be linearly dependent, we will assume that G =
∑
Gi1i2...imbi1 ⊗

bi2 ⊗ · · · ⊗ bim belong to the linear span of {βj1 ⊗ βj2 ⊗ · · · ⊗ βjm
},∑

i

Gi1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim =
∑

j

G′j1j2...jmβj1 ⊗ βj2 ⊗ · · · ⊗ βjm
,

for some numbers G′j1j2...jm . By a slight abuse of notation, we also say the
tensor G takes the form (G′j1j2...jm) in the new basis. These numbers are not
unique, when β is not linearly independent, i.e., the columns of T are not linearly
independent. But any such set of numbers will do. This will be called valG(Γ ).

Now consider a recognizer Γ ′ with m input nodes, to which we have already
assigned a covariant tensor R ∈ V 0

m. When T is not invertible, there will not be
a set of corresponding dual basis {βj} as before. However, the covariant tensor
R =

∑
Ri1i2...imbi1 ⊗ bi2 ⊗ · · · ⊗ bim has the following evaluations: It sends

βj1 ⊗ βj2 ⊗ · · · ⊗ βjm
→
∑

i Ri1i2...im t
i1
j1
ti2j2 . . . t

im

jm
. Thus, when we consider the

transformation βj =
∑

i bit
i
j , we will denote this tensor as (R′

j1j2...jm), simply
as a notation, where the values R′

j1j2...jm =
∑

i Ri1i2...im t
i1
j1
ti2j2 . . . t

im

jm
.

The simple proof above for the Holant Theorem is still valid. Note that in
the tensor framework, we did not change the intrinsic meanings of G, R and
the Holant as a contraction 〈R,G〉. Under a change of vectors, from b to β, we
merely changed the expression of the tensors. This change of expression is only
useful in expressing a desired computation by the matchgrid. It has no effect on
the validity and proof of the Holant Theorem.

5 Performance and Defect Problem

In [9] Valiant showed how to solve several combinatorial problems in polynomial
time using holographic algorithms.

To his list of problems, we add the following problem.
A Boolean formula F consists of a set of clauses {Cj}, each of which is a set

of literals xi or xi. F is called a planar formula if it can be drawn as a planar
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graph where vertices correspond to variables xi and clauses Cj , and an edge
exists between xi and Cj iff xi or xi appear in Cj .

We will consider a planar formula F where each clause has three literals. Each
clause is labeled as either compulsory or non-compulsory. For a clause C and
any assignment σ, let w(σ |C) = # of 1’s that σ assigns to the literals in C. σ
is called exacting on C if w(σ |C) = 0 or 3. σ is k-exacting on F if σ is exacting
on all the compulsory clauses and precisely k non-compulsory clauses. Let

perf(σ) = (−1)|{C|w(σ|C)≥2}|,

and
defect(σ) = (−1)|{C|w(σ|C)≤1}|.

PERFORMANCE

Input. A planar formula F where each clause has three literals, and is labeled
as either compulsory or non-compulsory; integer k.
Output.

∑
σ:k-exacting perf(σ).

DEFECT

Input. A planar formula F as above.
Output.

∑
σ:k-exacting defect(σ).

Comment. The two problems are #P -hard if the −1 is replaced by 1. For
the PERFORMANCE problem if we call an assignment σ Even if the num-
ber of clauses C for which w(σ |C) ≥ 2 is even, and Odd otherwise, then∑

σ:k-exacting perf(σ) is clearly the number of Even k-exacting assignments mi-
nus the number of Odd ones. Similarly for the DEFECT problem. Viewed in this
way, one can easily see that the two problems are essentially the same problem.

To describe the holographic polynomial time solution to the PERFORMANCE

problem, we use the basis b2 = [n, p], where n =
(

1
1

)
, and p =

(
1
−1

)
. It can

be shown that the following symmetric signature [x, y,−y,−x] is achievable by
a matchgate under basis b2, for any real values x and y. Here the notation
[x, y,−y,−x] is a short hand for the 8-dimensional tensor, with coefficients x on
n⊗ n⊗ n (for the bit pattern 000), −x on p⊗ p⊗ p (for the bit pattern 111), y
on n⊗ n⊗ p, n⊗ p⊗ n and p⊗ n⊗ n (for bit patterns of Hamming weight 1),
and −y on bit patterns of Hamming weight 2. In particular we have [1, 0, 0,−1]
and [1, y,−y,−1].

We also note that the matrix T =
(

1 1
1 −1

)
has inverse T−1 = 1

2T , so that

for this basis b2 what is achievable as a generator tensor G is also achievable as
a recognizer tensor T.

One can also realize the symmetric signature [1, 0, 0, 1], [1, 0, 1], and [0, 1, 0].
[1, 0, 0, 1] has the effect of 3 equal bits. [1, 0, 1] has the effect of 2 equal bits.
[0, 1, 0] has the effect of 2 unequal bits. Using a planar generator matchgate with
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its matchgate tensor corresponding to [1, 0, 0, 1] for a variable x has the effect
of setting the possible truth assignments of n (for 0) or p (for 1) with 3 output
nodes. If a variable appears more than 3 times as a literal in clauses, then we
can “chain” together two such generator matchgates above, with a recognizer
having the symmetric signature [1, 0, 1]. This effectively produces a generator
matchgate with 4 output nodes, which sets truth assignments to x. “Chaining”
k such generators together gives a “truth-setting” matchgate with k + 2 output
nodes.

For each clause C, if it is compulsory, we use a clause matchgate with sym-
metric signature [1, 0, 0,−1]. If it is non-compulsory we use [1, y,−y,−1]. If a
variable appears positively in a clause we can use the “equal” matchgate with
the symmetric signature [1, 0, 1] to connect to this clause matchgate. If x appears
negatively in a clause we can use the “unequal” matchgate with the symmetric
signature [0, 1, 0].

Then, in the Holant evaluation, for each assignment σ, for every exacting
clause (either compulsory or non-compulsory) we get a value 1 for w(σ |C) = 0
and a value −1 for w(σ |C) = 3. For a non-exacting clause (which must be non-
compulsory) we get a value y for w(σ |C) = 1 and a value −y for w(σ |C) = 2.
Overall, we get a polynomial in y, where the coefficient of yd is a sum over all
assignments σ, which are exacting on all the compulsory clauses (and perhaps
some non-compulsory clauses) and non-exacting on precisely d non-compulsory
clauses; and for each such a σ, the contribution to the coefficient is the value
(−1)|{C|w(σ|C)=2 or 3}| = perf(σ).

Now if one evaluates the Holant at m+ 1 many distinct values of y, where m
is the number of clauses, we can find all the coefficients of this polynomial.

For the DEFECT problem we can use the symmetric signatures [−x,−y, y, x]
and [−1, 0, 0, 1] instead.
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Abstract. In this paper, we present variable minimal unsatisfiability
(VMU), which is a generalization of minimal unsatisfiability (MU). A
characterization of a VMU formula F is that every variable of F is used in
every resolution refutation of F . We show that the class of VMU formulas
is DP -complete. For fixed deficiency (the difference of the number of
clauses and the number of variables), the VMU formulas can be solved
in polynomial time. Furthermore, we investigate more subclasses of VMU
formulas. Although the theoretic results on VMU and MU are similar,
some observations are shown that the extraction of VMU may be more
practical than MU in some cases.

1 Introduction

A typical design task is formulated as an instance of boolean satisfiability (SAT),
i.e., a satisfying assignment for the propositional formula. Formulations of system
design tasks as instances of SAT fall into two categories: One, a propositional
formula is formed such that it is satisfiable when the object being verified con-
tains bugs. SAT solving proves their absence when the formula is unsatisfiable. A
successful example is bounded model checking (BMC) [1]. The other, a proposi-
tional formula is formed such that a feasible design is obtained when the formula
is satisfiable, and design infeasibility is indicated when the formula is unsatis-
fiable. In this scenario, unsatisfiability in the design context implies a negative
result. And it needs further analysis of the causes of unsatisfiability to obtain
a feasible design. Such requirements always need to extract unsatisfiable cores,
i.e., small unsatisfiable subformulas.

There are many applications that can benefit from being able to obtain a
small unsatisfiable core from an unsatisfiable propositional formula. In abstrac-
tion refinement of model checking [2, 3, 4, 5], the abstract model grows larger
after refinement, which potentially prohibits the success of model checking for
an enormous state space. The abstraction for next iteration is constructed by
identification of an unsatisfiable core to rule out its spurious counterexamples.
The abstraction refinement made by a backend engine of extraction of unsatis-
fiable cores often yields a drastically model size reductions in the final iteration.
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The extraction of unsatisfiable core promotes the scalability of model checking
in practice [6].

A well known problem relative to unsatisfiable core is called minimal unsatis-
fiability (MU) [7, 8]. Consider a propositional formula F in conjunctive normal
form (CNF), F is minimal unsatisfiable if and only if the formula is unsatisfiable
and any proper subformula is satisfiable. There are many existing work on theo-
retical results [8, 9, 10, 11, 12, 13, 14] and experimental results [15, 16] of minimal
unsatisfiability. The class of minimal unsatisfiable formulas is denoted as MU
and shown to be DP -complete [9]. DP is the class of problems which can be
described as the difference of two NP -problems.

Motivation. Intuitively, the set of clauses of an MU formula is the minimal set
which guarantees the unsatisfiability. That is, an MU formula F is characterized
by the condition that every clause of F is used in every resolution refutation of
F . A similar characterization of variable minimal unsatisfiability (VMU) is that
every variable(or literal) of F is used in every resolution refutation of F . That is,
the set of variables of F is a minimal set which guarantees the unsatisfiability of
F . In the application context [4, 5], a mathematics definition of VMU is firstly
introduced in this paper. Given a CNF formula F , F is variable minimal unsat-
isfiability if and only if F is unsatisfiability, and for any variable x, deleting the
clauses containing x (positive occurrence or negative occurrence) will result in a
satisfiable formula.

For proof calculi hard formulas are almost all minimal unsatisfiable (see for
example [18, 19]). In the past decade, many breakthroughs has been made in
order to have a deeper understanding of MU formulas and to develop new hard
formulas and new satisfiability algorithms. A similar motivation of VMU formu-
las lies in the construction of efficient satisfiability algorithms. A deeper under-
standing of the structure of VMU formulas for example may help to improve
Davis-Putnam algorithms.

Related Work. Two main topics relative to minimal unsatisfiability are:

With respect to complexity, it may be of interest which natural subclasses
have an easier or feasible decision problem. For example, the deficiency property
leads to new polynomially solvable classes of formulas, where the deficiency is
the difference of the number of clauses and the number of variables. MU(k)
is the class of formulas in MU with fixed deficiency k and shown to be decid-
able in polynomial time [11]. More results of MU subclasses could be found
in [8, 12]. MAX-MU is the class in MU with maximal formulas, i.e., formulas
for which no literal can be added to any clause without violating the minimal
unsatisfiability. MAR-MU is the class in MU with marginal formulas, i.e., re-
moving an arbitrary occurrence of a literal results in a non-minimal unsatisfiable
formula. Both MAX-MU and MAR-MU are DP -complete [8, 12]. F is a hit-
ting formula if any two different clauses of F hit each other, i.e., there is one
literal l, l in one clause and ¬l in the other clause. HIT -MU is the class of
all minimal unsatisfiable hitting formulas and it can be solvable in quadratic
time [8, 12].
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With respect to generalization, it may be of interest which natural extensions
include more instances on unsatisfiability cores. For example, a generalization
to minimal unsatisfiability is the notion of lean formulas [17]. A lean formula
F is characterized by the condition that every clause of F can be used in some
resolution refutation of F . For every F there is a largest lean sub-clause-set
Na(F ) ⊆ F . By reducing F to the satisfiability equivalent formula Na(F ) (in-
stead of some minimally unsatisfiable formulas) we get a lean formula by elim-
inating only absolutely superfluous clauses. The problem of deciding whether a
formula is lean is coNP -complete [17].

Main Results. The class of variable minimal unsatisfiability formulas is denoted
as VMU . We show that MU ⊂ VMU ⊂ UNSAT and VMU is DP -complete
(in section 3). For the deficiency property, VMU(k) is the class of formulas in
VMU with deficiency k and and shown to be decidable in polynomial time. We
also show that VMU(1) = MU(1), thus VMU(1) can be solved in linear time.
MU(k) ⊂ VMU(k) for any k ≥ 2 (in section 4).

Similar to the subclasses of MU [12], MAX-VMU is the subclass of VMU
with maximal formulas, MAR-VMU is the subclass of VMU with marginal for-
mulas, HIT -VMU is the subclass of VMU with hitting formulas. We show that
the complexity of these subclasses is the same as the corresponding subclasses of
MU (in section 5). Although the theoretic results on VMU and MU are similar,
some observations are shown that the extraction of VMU may be more practical
than MU (in section 6). Table 1 summarizes the main results proved in this
paper.

Table 1. Main Results

Class Inclusion Relation Complexity
V MU MU ⊂ V MU DP -complete

V MU(1) MU(1) = V MU(1) Linear time
V MU(k) MU(k) ⊂ V MU(k) Polynomial time
(k ≥ 2)

MAX-V MU MAX-MU = MAX-V MU DP -complete
MAR-V MU MAR-MU 
= MAR-V MU DP -complete
HIT -V MU HIT -MU = HIT -V MU Quadratic time

2 Notations

A propositional formula F in conjunctive normal form (CNF) is a conjunction
of clauses (C1 ∧ ... ∧ Cn) and it is regarded as a set {C1, ..., Cn}. A clause Ci is
a disjunction of literals (l1 ∨ ... ∨ lm) and it is regarded as a set {l1, ..., lm}. A
literal l is a positive variable x or a negative variable ¬x. The empty clause is
denoted by �.

In this paper, we consider formulas in CNF. SAT is the class of satisfiable
formulas and UNSAT is the class of unsatisfiable formulas. The set of variables
of a clause Ci is denoted by var(Ci) and the set of variables of a formula F is
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denoted by var(F ). |F | denotes the number of clauses of F . For the conjunction
of formulas F ∧G, we write F +G. For a clause C = (l1 ∨ · · · ∨ lm) and a literal
l, a new clause (l ∨ l1 ∨ · · · ∨ lm) is denoted by l ∨ C.

3 Variable Minimal Unsatisfiability

There are many applications that can benefit from extracting a small unsatisfi-
able core from an unsatisfiable formula. When a propositional formula is shown
unsatisfiable, a need arises to identify the causes of its unsatisfiability in order
that a feasible design may be obtainable by revising its model specifications.
Smaller unsatisfiable cores would be helpful to localize the reasons of the unsat-
isfiability.

A CNF formula is minimal unsatisfiable if and only if the formula is unsat-
isfiable and any proper formula is satisfiable. The mathematical definition is
described as follows:

MU := {F |F ∈ UNSAT , and ∀F ′ ⊂ F.F ′ ∈ SAT } (1)

In this section, we introduce minimal unsatisfiability w.r.t. variables. If both
x and ¬x occur in F , it will be regarded as some constraints of variable x in F .
In order to define variable minimal unsatisfiability, we define a projection on a
set of variables. Given a CNF formula F = {C1, ..., Cn}, considering V ⊆ var(F )
as a set of visible variables, the projection on V is defined as follows:

F [V ] := {C ∈ F |var(C) ⊆ V } (2)

Given a CNF formula F and a set of variables V ⊆ var(F ), obviously F ⇒
F [V ]. Therefore, for any unsatisfiable formula F , there is V ⊆ var(F ), such that
F [V ] is satisfiable. F is variable minimal unsatisfiable, if and only if var(F ) is a
minimal set of variables which guarantees unsatisfiability to F . The mathemat-
ical definition is described as follows:

Definition 1 (Variable Minimal Unsatisfiability)

VMU := {F |F ∈ UNSAT , and ∀V ⊂ var(F ).F [V ] ∈ SAT } (3)

Please notice that {�} is in VMU but F ({�} ⊂ F ) is not in VMU . Let F\x :=
{C ∈ F |x �∈ var(C)}, i.e., removing all clauses containing variable x from F . It is
called hiding variable x from F . F is variable minimal unsatisfiability if and only
if F is unsatisfiable and hiding any variable in var(F ) will result in a satisfiable
formula. Thus, an equivalent definition of variable minimal unsatisfiability is
described as follows:

VMU := {F |F ∈ UNSAT , and ∀x ∈ var(F ).F\x ∈ SAT } (4)

Lemma 1. MU ⊂ VMU ⊂ UNSAT
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Proof. Following the definition of VMU , if F ∈ VMU , then F ∈ UNSAT .
Obviously, hiding a variable will lead to removing at least one clause. If F ∈MU ,
for any variable x ∈ var(F ), there exists a clause C, F\x ⊆ F − {C}. F −
{C} ∈ SAT , thus F\x ∈ SAT . That is F ∈ VMU . Therefore, MU ⊆ VMU ⊆
UNSAT . F1 = {(a ∨ b), (¬a ∨ b), (a ∨ ¬b), (¬a)} , F2 = {(a), (¬a), (b), (¬b)}.
F1 ∈ VMU −MU , F2 ∈ UNSAT − VMU . Thus MU ⊂ VMU ⊂ UNSAT . 	

An equivalent characterization of VMU formula is that every variable of F is
used in every resolution refutation of F . A lean formula F is characterized by
the condition that every clause of F can be used in some resolution refutation
of F [17]. Lean denotes the class of lean formulas. It is not difficult to see that
VMU �= Lean (F3 = {(a), (¬a), (b), (¬b)}, F4 = {(a), (¬a ∨ b), (¬b), (a ∨ ¬b)}.
F3 ∈ Lean− VMU and F4 ∈ VMU −Lean). Please notice that MU ⊂ Lean ⊂
UNSAT , thus MU ⊆ VMU ∩ Lean. F5 = {(a), (¬a ∨ b), (¬b), (a ∨ b)}. F5 ∈
VMU ∩ Lean and F5 �∈ MU . Therefore MU ⊂ VMU ∩ Lean. The inclusion
relation of MU , VMU , Lean and UNSAT is shown in Fig.1.

�

�

�

�

�
�

�
	MU

Lean

V MU UNSAT

Fig. 1. Inclusion Relation of MU , V MU , Lean and UNSAT

In [9], MU is shown to be DP -complete, where DP is the class which can be
described as the difference between two NP problems. A DP -complete problem
is equivalent to solving a SAT -UNSAT problem defined as: given two formulas
F and F ′ , is it the case that F is satisfiable and F ′ is unsatisfiable?DP -complete
problems are both NP -hard and coNP -hard. It is strongly conjectured that DP

is different from NP and from coNP . MU is DP -complete [9] and UNSAT is
coNP -complete. Due to an observation by Stefan Szeider, each class between
MU and UNSAT is coNP -hard [17]. Furthermore, we prove that the problem
of VMU is as hard as MU , i.e., DP -complete.

Theorem 1. VMU is DP -complete.

Proof. Please notice that MU is DP -complete [9]. And it is not difficult to
see that VMU is in DP . For MU ≤p VMU , we have to show that there is a
polynomial time computable function δ, such that for any F , F ∈ MU if and
only if δ(F ) ∈ VMU . Given a formula F = {C1, · · · , Cn}, for each clause Ci

of F , we pick new variable xi and replace Ci with two clauses {(¬xi)} and
{(xi ∨ Ci)}. Thus δ(F ) = {(¬x1), (x1 ∨ C1), · · · , (¬xn), (xn ∨ Cn)}. Obviously,
F ∈ UNSAT if and only if δ(F ) ∈ UNSAT .
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(1) F ∈ MU . Considering a variable x ∈ var(δ(F )). Case 1: x ∈ var(F ), i.e.,
x ∈ var(Ci) for some i. δ(F )\x ⊆ δ(F − {Ci}). Case 2: x �∈ var(F ), i.e., x = xi

for some i, δ(F )\x = δ(F − {Ci}).
Since F − {Ci} ∈ SAT , δ(F )\x ∈ SAT .Therefore δ(F ) ∈ VMU .
(2) If F �∈ MU(but F ∈ UNSAT ), then there exists a clause Ci, F − {Ci} ∈
UNSAT . δ(F )\xi = δ(F − Ci) ∈ UNSAT , therefore δ(F ) �∈ VMU .

Therefore, F ∈ MU if and only if δ(F ) ∈ VMU . Please notice that δ is a
polynomial time reduction function. 	

4 Formulas with Fixed Deficiency

Given a CNF formula F , the deficiency, denoted as d(F ), is the difference be-
tween the number of clauses of F and the number of variables occurring in F .
That is d(F ) = |F |−|var(F )|. It is known that any minimal unsatisfiable formula
over n variables consists of at least n+ 1 clauses.

Lemma 2. (Tarsi’s lemma) If F ∈MU , then d(F ) ≥ 1.

For generalizations of Tarsi’s lemma see [17]. For variable minimal unsatisfiabil-
ity, there is a similar result as follows.

Lemma 3. If F ∈ VMU , then d(F ) ≥ 1.

Proof. For any F ∈ VMU , ∃F ′ ⊆ F.F ′ ∈MU . Thus F ′ ∈ UNSAT , and we have
var(F ) = var(F ′) (otherwise F �∈ VMU). d(F ) ≥ d(F ′), because |F | ≥ |F ′|.
Since d(F ′) ≥ 1( Tarsi’s lemma), d(F ) ≥ 1. 	

A formula F is stable if and only if the deficiency of any proper subformula
is less than the deficiency of F , i.e., d(F ′) < d(F ). Generally, a satisfiable (or
unsatisfiable, or lean) formula may not be stable. However, if F is a minimal
unsatisfiable formula, then F is stable. We show a more general result as follows:

Lemma 4. If F ∈ VMU , then d(F ′) < d(F ) for any F ′ ⊂ F .

Proof. Let d∗ be the maximum deficiency among all subsets of F , including F
itself. Choose some subset F1 ⊆ F that is maximal among all subsets whose de-
ficiency is d∗. It is shown that if F is unsatisfiable, then F1 must be unsatisfiable
[20]. Thus var(F1) = var(F ), by the definition of variable minimal unsatisfi-
ability. Since d(F1) ≥ d(F ), |F1| ≥ |F |. On the other hand, |F1| ≤ |F |, since
F1 ⊆ F . Thus |F1| = |F |, that is, F1 = F . Therefore, d(F ′) < d(F ) for any
F ′ ⊂ F . 	

Definition 2 (Subclass with fixed Deficiency)

MU(k) := {F ∈MU |d(F ) = k}
VMU(k) := {F ∈ VMU |d(F ) = k}
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Please notice that the satisfiability problem for formulas with fixed deficiency
is still NP -complete. Kleine Büning [10] showed that, if k is a fixed integer,
then the recognition problem with deficiency k is in NP, and conjectured that
for fixed k, MU(k) can be solved in polynomial time. Finally the question was
completely solved by H. Fleischner, O. Kullmann, S.Szeider in [11].

Theorem 2 ([11]). For each fixed k, MU(k) can be solved in polynomial time.

Lemma 5. Given a CNF formula F , F ∈ VMU(k) if and only if ∃F ′ ⊆ F.F ′ ∈
MU(k′), in which 1 ≤ k′ ≤ k, and var(F ′) = var(F ).

Proof. (1)“ =⇒ ”. F ∈ VMU , ∃F ′ ⊆ F.F ′ ∈ MU . Since |F ′| ≤ |F |, therefore
d(F ′) ≤ d(F ). And var(F ′) = var(F ) is concluded by the definition of VMU .
(2) “ ⇐= ”. Suppose F �∈ VMU for a contradiction. Case 1: F ∈ UNSAT ,
∀F ′ ⊆ F , if F ′ ∈ MU , then F ′ ∈ VMU , thus var(F ′) ⊂ var(F ). Case 2:
F ∈ SAT , then there is no F ′ ⊆ F , such that F ′ ∈ MU . Therefore, if F ′ ⊆ F ,
F ′ ∈MU , d(F ′) ≤ d(F ), and var(F ′) = var(F ), then F ∈ VMU . 	

Given a CNF formula F (|F | = n), let Pi(F ) = {F ′ ⊆ F ||F | − |F ′| = i, and var

(F ′) = var(F )}. |Pi(F )| ≤ Ci
n = n×(n−1)×···×(n−i+1)

i×(i−1)×···1 = O(ni). Please no-
tice that if d(F ) < 1 then F �∈ VMU(lemma 3). Therefore, F ∈ VMU(k)
if and only if there exists a subformula F ′ ∈ Pi(F )(0 ≤ i ≤ k − 1), such that
F ′ ∈MU(k−i). In order to decide whether F ∈ VMU(k), we look for such a sub-
formula F ′.

Now we introduce the above mentioned procedure based on lemma 5.

Procedure VMU(k)
Input: A CNF formula F , and k.
begin
for i = 0 to k − 1

for each F ′ ∈ Pi(F )
if F ′ ∈MU(k − i) then return TRUE

end for
end for
return FALSE
end

Theorem 3. For each fixed k, VMU(k) can be solved in polynomial time.

Proof. Please notice that MU(k) can be solved in polynomial time and the
degree of loop in the above procedure is O(nk). 	

Lemma 6. For any fixed positive integer k, MU(k) ⊆ VMU(k). Moreover,

(1)MU(1) = VMU(1)
(2)MU(k) ⊂ VMU(k)(for any k ≥ 2)

Proof. Following the definitions of MU(k) and VMU(k), it is not difficult to see
that MU(k) ⊆ VMU(k).
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(1)Obviously, F ∈ MU(1)⇒ F ∈ VMU(1). On the other hand, F ∈ VMU(1),
for any clause C, suppose F − {C} ∈ UNSAT for a contradiction. Since F ∈
VMU and F −{C} ∈ UNSAT , F −{C} ∈ VMU , and var(F ) = var(F −{C}).
d(F − {C}) = 0, because d(F ) = 1. Following lemma 3, there is a contradiction
for F − {C} ∈ VMU and d(F − {C}) = 0. Therefore F − {C} ∈ SAT for any
clause C. F ∈MU , thus F ∈MU(1).
(2)F = {(x1), (¬x1, x2), ..., (¬xn−1, xn), (¬xn)}. F1 ∈ MU , and d(F ) = 1. Sup-
pose Vn = {x1, ..., xn}, Fn = {C|var(C) = Vn}. Obviously, |Fn| = 2n. For any
∅ �= F ′ ⊆ Fn, F +F ′ ∈ UNSAT , and (F +F ′)\xi = F\xi for each i. Therefore,
F + F ′ ∈ VMU . Because the size of F ′ can range from 1 to 2n, d(F + F ′) can
range from 2 to 2n + 1. That is, F + F ′ ∈ VMU(k), and F + F ′ �∈ MU(k)
(2 ≤ k ≤ 2n + 1). 	

Corollary 1. VMU(1) is solvable in linear time.

Please notice that MU(1) is solvable in linear time [10].

5 More Subclasses of VMU Formulas

5.1 Subclass with Maximal Formulas

The first class MAX consists of maximal MU (resp. to VMU) formulas, i.e.,
formulas for which no literal can be added to any clause without violating the
minimal unsatisfiability(resp. to variable minimal unsatisfiability).

Definition 3 (Subclass with Maximal Formulas)

MAX := {F ∈ UNSAT |∀C ∈ F∀l �∈ C.F − {C}+ {l ∨ C} �∈ UNSAT }
MAX-MU := {F ∈MU |∀C ∈ F∀l �∈ C.F − {C}+ {l ∨ C} �∈MU}
MAX-VMU := {F ∈ VMU |∀C ∈ F∀l �∈ C.F − {C}+ (l ∨C) �∈ VMU}

Lemma 7. MAX ⊆MU

Proof. F ∈ MAX , thus F ∈ UNSAT . Suppose F �∈ MU for a contradiction,
then ∃C, l.F − {C} ∈ UNSAT , and F − {C} + {l ∨ C} ∈ SAT . However,
F − {C} + {l ∨ C} ⇒ F − {C}, there is a contradiction. F ∈ MU . Therefore,
MAX ⊆MU . 	

Please notice that for any C ∈ F and l �∈ C, F ⇒ F − {C} + {l ∨ C}. If
F−{C′} ∈ SAT for a clause C′, then F−{C}+{l∨C}−{C′} ∈ SAT . Therefore,
if F ∈MU and F − {C}+ {l ∨C} ∈ UNSAT , then F − {C}+ {l ∨C} ∈MU .
Similarly, if F ∈ VMU and F−{C}+{l∨C} ∈ UNSAT , then F−{C}+{l∨C} ∈
VMU . That is, if F ∈MAX-MU or MAX-VMU , F − {C}+ {l ∨C} ∈ SAT .
Therefore, it can be conclude that MAX-MU = MAX ∩ MU , and MAX-
VMU = MAX ∩ VMU . On the other hand, since MAX ⊆ MU , for any class
CLA ⊇ MU , CLA ∩ MAX = MAX . Furthermore, MAX = MAX-MU =
MAX-VMU .
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Corollary 2. MAX-MU=MAX-VMU

Corollary 3. MAX-VMU is DP -complete.

Please notice that MAX-MU is DP -complete [12].

5.2 Subclass with Marginal Formulas

The second class MAR consists of MU (resp. to VMU) formulas which we call
marginal. An MU(resp. to VMU) formula is marginal if removing an arbitrary
occurrence of a literal results in a non-minimal unsatisfiable(resp. to non-variable
minimal unsatisfiable) formula. That means marginal formulas contain no super-
fluous literals.

Definition 4 (Subclass with Marginal Formulas)

MAR-MU := {F ∈MU |∀C ∈ F∀l ∈ C.F − C + {C − {l}} �∈MU}
MAR-VMU := {F ∈ VMU |∀C ∈ F∀l ∈ C.F − C + {C − {l}} �∈ VMU}

Lemma 8. MAR-MU �⊆MAR-VMU and MAR-VMU �⊆MAR-MU

(1) F = {(a, b), (a,¬b), (¬a, b), (¬a,¬b)}
F ∈MAR-MU , but F �∈MAR-VMU .
(2) F = {(a, b), (¬a, b), (¬a,¬b), (b, c), (¬b, c), (¬b,¬c), (c, a), (¬c, a), (¬c,¬a)}
F ∈MAR-VMU , but F �∈MAR-MU .

Theorem 4. MAR-VMU is DP -complete.

Proof. Please notice that MAR-MU is DP -complete [12]. And it is not difficult
to see that MAR-VMU is in DP . For MAR-MU ≤p MAR-VMU , we have to
show that there is a polynomial time computable function δ, such that for any
F , F ∈MAR-MU if and only if δ(F ) ∈MAR-VMU .

If there is a unit clause (l) in F , we delete (l) and remove the occurrence of
¬l in other clauses, the resulting formula is denoted by UC(F, l) and we call it
unit clause rule. It is not difficult to see that UC(F, l) ∈ MAR-MU ∪ {�} ⇔
F ∈MAR-MU for any unit clause (l). We use this unit clause rule to eliminate
all unit clauses in F . F ′ denotes the resulting formula.

Case 1: F ′ = {�}, then F ∈MAR-MU .
Case 2: {�} ⊂ F ′, then F �∈MAR-MU .
Case 3: There is no unit clause and empty clause in F , i.e., each clause has
at least two literals. For each clause Ci = (li1 ∨ · · · ∨ lis ∨ lis+1 ∨ · · · ∨ lim) , we
pick a new variable xi, and replace Ci with two clause C1

i = (xi ∨ li1 ∨ · · · ∨ lis),
C2

i = (¬xi ∨ lis+1 ∨ · · · ∨ lim). The resulting formula is denoted by δ(F ′). It is not
difficult to see that F ′ ∈MU if and only if δ(F ′) ∈ VMU .

If F ′ ∈ MAR-MU . For a clause C1
i , (1) Let δ(F ′′) = δ(F ′) − {C1

i } + {C1
i −

{xi}}, F ′′ is a resulting formula which is removed at least one literal from Ci.
F ′′ �∈MU , thus δ(F ′′) �∈ VMU . (2) Let δ(F ′′) = δ(F ′)−{C1

i }+{C1
i −{l}}(l ∈ C1

i
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and l �= xi), then F ′′ is a resulting formula which is removed literal l from Ci.
F ′′ �∈ MU , thus δ(F ′′) �∈ VMU . It is similar for C2

i . Therefore δ(F ′) ∈ MAR-
VMU .

If δ(F ′) ∈MAR-VMU . For any clause Ci, if l ∈ C1
i , then δ(F ′−{Ci}+{Ci−

{l}}) = δ(F ′)−{C1
i }+ {C1

i −{l}} �∈ VMU , thus F ′−{Ci}+ {Ci−{l}} �∈MU .
It is similar for C2

i . Therefore F ′ ∈MAR-MU . 	

5.3 Subclass with Hitting Formulas

Let F = {C1, ..., Cn} be a formula not necessarily minimal unsatisfiable or vari-
able minimal unsatisfiable. Two clauses Ci and Cj (i �= j) hit each other, if there
is some literal l with l ∈ Ci and ¬l ∈ Cj . The literal l is called a hitting literal.
We say F is a hitting formula if any two different clauses of F hit each other.

Definition 5 (Subclass with Hitting Formulas)

Hit := {F ∈ CNF |∀Ci, Cj ∈ F,Ci �= Cj , ∃l : l ∈ Ci and ¬l ∈ Cj}
HIT := Hit ∩ UNSAT
HIT -MU := Hit ∩MU
HIT -VMU := Hit ∩ VMU

Lemma 9 ([12]). ∀F ∈ Hit.(F ∈ UNSAT ⇔ F ∈MU)

Please notice that MU ⊂ VMU ⊂ UNSAT . For any class CLA, if MU ⊆
CLA ⊆ UNSAT , then Hit ∩ CLA = HIT .

Corollary 4. HIT -MU=HIT -VMU

Corollary 5. (1) HIT -VMU ⊆MAX-VMU .
(2) HIT -VMU is solvable in quadratic time.

Please notice that HIT -MU ⊆ MAX-MU and HIT -MU is solvable in
quadratic time [12].

6 Discussion and Conclusion

In this paper, we present a generalization of minimal unsatisfiability which is
called variable minimal unsatisfiability. That is MU ⊂ VMU ⊂ UNSAT . It
is shown that VMU is DP -complete and VMU(k) can be solved in polyno-
mial time (for fixed k). With respect to the subclass, we show that MAX-
MU = MAX-VMU ,HIT -MU = HIT -VMU , andMAR-MU �= MAR-VMU .
Furthermore, we show that both MAR-MU and MAR-VMU are DP -complete,
HIT -VMU can be solved in quadratic time.

In general, there exists no efficient procedure to solve MU and VMU (DP -
complete problems are both NP -hard and coNP -hard). Besides, the theoretic
results on VMU and MU are similar. However, we believe that extraction of
VMU would be more practical than MU in some cases, based on the following
observations:
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E1. In an unsatisfiable CNF formula, the variables are often far less than the
clauses. Extraction based on variables would be easier than clauses. For
example, there exists an unsatisfiable formula F (var(F ) = n), which has
O(3n) redundant clauses, but only 1 redundant variable.

E2. As we known: (a) F ∈ UNSAT ⇒ ∃F ′ ⊆ F.F ′ ∈ VMU ⇒ ∃F ′′ ⊆ F ′.F ′′ ∈
MU . (b) MU ⊂ VMU ⊂ UNSAT . VMU is a generalization of MU. That
means, for a minimal set of variables which guarantees the unsatifiability,
extraction of VMU would be potentially easier than MU. For example, there
exists a variable minimal unsatisfiable formula F (var(F ) = n), it needs to
remove more than (n− 2)(2n−1 − 1) clauses to be minimal unsatisfiable.
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Abstract. (k, s)–SAT is the propositional satisfiable problem restricted
to the instance where each clause has exactly k distinct literals and every
variable occurs at most s times. It is known that there exits a critical
function f such that for s ≤ f(k), all (k, s)–SAT instances are satisfiable,
but (k, f(k)+1)–SAT is already NP–complete(k ≥ 3). It’s open whether
f is computable. In this paper, analogous to the randomized algorithm
for finding a two-coloring for given uniform k–hypergraph, the similar
one for outputting an assignment for a given formula is presented. Based
on it and the probabilistic method, we prove, for every integer k ≥ 2,

each formula F in (k, ∗)–CNF with less than 0.58 ×
√

k
lnk

2k clauses is
satisfiable. In addition, by the Lovász Local Lemma, we improve the
previous result about the lower bound of f(k).

1 Introduction

A literal is a propositional variable or a negated propositional variable. A clause
C is a disjunction of literals, C = (L1∨· · ·∨Lm), or a set of literals, {L1, · · ·Lm}.
A formula F in conjunctive normal form (CNF) is a conjunction of clauses,
F = (C1∧· · ·∧Cn), or a set of clauses, {C1, · · · , Cn}. |F | is the number of clauses
in the formula F and |C| is the number of literal in the clause C. var(F ) is the
set of variables occurring in the formula F . It was observed by Tovey [1] that all
formulas in (3, 3)-CNF are satisfiable, and the satisfiability problem restricted to
(3, 4)-CNF is already NP-complete. This was generalized in Kratochv́ıl’s work,
where it is shown that for every k ≥ 3, there is a function f(.) concerned with
k, such that

– all formulas in (k, f(k))-CNF are satisfiable, and
– (k, s)-SAT, the satisfiability problem restricted to (k, s)-CNF, is already NP-

complete, where integer s > f(k).
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Therefore we call f critical function for (k, s)-SAT. From [1], it follows that
f(3) = 3 and f(k) ≥ k for k > 3. However it is open whether f is computable.
The upper and lower bounds for f(k), k = 5, . . . , 9, have been obtained in [2–4].
For larger values of k, the best known lower bound is due to Kratochv́ıl [5],

f(k) ≥ Ω(2k/k) . (1)

The best known upper bound, due to Savický and Sgall [6], is given by

f(k) ≤ O(2k/kα) . (2)

where α = log4
3−1 ≈ 0.26.

In this paper, analogous to the randomized algorithm for finding a two-
coloring of the k-uniform hypergraph[3, 9–12], we present one for outputting
an assignment for formulas in (k, ∗)–CNF. And then, for the formula, there
exits a probability space, the samples of which are the assignments derived ran-
domly from the randomized algorithm. Based on it, we show that, for formulas in

(k, ∗)–CNF with less than 0.58×
√

k
ln k2k clauses, the probability of such formula

with a truth assignment is positive, Therefore, by the probabilistic method[7, 8],
the formula is satisfiable. Besides, based on the randomized algorithm and the

Lovász Local Lemma, we obtain a new lower bound of f(k), Ω(
√

k
ln k 2k/k),

which improves the previous result Ω(2k/k).

2 Basic Notations

Let F = {C1, . . . Cm} be a formula in CNF with variables set var(F ) =
{x1, . . . , xn}. An assignment to the formula F is a map τ : var(F ) −→ {0, 1}.
We define τ(¬x) := 0 if τ(x) = 1 and τ(¬x) = 1 otherwise. A variable x occurs
in a clause C if x ∈ C or ¬x ∈ C. For C ∈ F , we define τ(C) := max

x∈C
τ(x) and

τ(F ) := min
C∈F

τ(C). A formula F is satisfied by an assignment τ if τ(F ) = 1.

A formula F is satisfiable if there exits a truth assignment which satisfies F ;
otherwise F is called unsatisfiable. ASS(F ) is the set of all assignments of F on
var(F ).

For τ ∈ASS(F ), T Cτ (F ) = {C ∈ F : τ(C) = 1}; FCτ (F ) = {C ∈ F :
τ(C) = 0}.

For C ∈ F , T Vτ (C) = {x ∈ var(C) : τ(x) = 1 if x ∈ C; τ(¬x) = 1 if ¬x ∈
C}; FVτ (C) = var(C) − T Vτ (C).

For x ∈ var(F ), T Cτ (x) = {C ∈ T Cτ (F ) : x ∈ T Vτ (C)}; FCτ (x) = {C ∈
FCτ (F ) : x ∈ var(C)}.

Besides, let F (C, τ) denote the event “C is unsatisfiable in assignment τ”,
and T (C, τ) is reverse to F (C, τ). We use SAT to denote the class of all sat-
isfiable formulas and UNSAT to the class of unsatisfiable formulas in CNF.
(k, ∗)–CNF denotes the class of formula in CNF where |C| = k for each clause
C ∈ F .
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3 The Randomize Algorithm

In this section, A useful tool, which will be applied following, is the probabil-
ity method. Roughly speaking, the method works as follows: Trying to prove a
structure with certain desired properties exists, one defines an appropriate prob-
ability space of the structure and then shows that the probability of an object
selected uniformly from the space satisfying the desired properties is positive or
falsifying them is less than 1.

For a (k, ∗)–CNF formula F with variables set var(F ) = {x1, · · · , xn}, we
first define two following functions.

The function ord : var(F ) −→ [0, 1]. For each x ∈ var(F ), the value of ord(x)
is randomly picked from [0, 1]. The purpose of function ord is to give a random
order among variables set var(F )(please note that with probability 1, no two
variables were assigned same values)1.

The function b : var(F ) −→ {0, 1}. For each x ∈ var(F ), b(x) = 1 with
probability p and b(x) = 0 with probability 1 − p. p is a parameter which will
be presented properly later.

The Algorithm
Input: a formula F in (k, ∗)-CNF with variables set var(F ) = {x1, · · · , xn}.
Output: an assignment τ∗ for formula F .

Phase 1. Generate a random assignment τ0 by choosing τ0(x) to be 0 or 1
with probability 1/2 independently for each variable x ∈ var(F ).

Phase 2. For each x ∈ var(F ), we got the values ord(x) and b(x) indepen-
dently. Let x1, · · · , xn be an increasing variables sequence ordered in values of
ord(.). Next n = |var(F )| steps are reassignment steps based on the variables
order and values of b(.).

Step 1. If FCτ0(x1) �= ∅ and b(x1) = 1, then flip the value of x1. Otherwise,
go to next step. Let the resulting assignment be τ1.(Please note if the value of
xi was not flipped, then τi = τi−1 for i = 1, · · · , n.).

Step 2. If FCτ0(x2) ∩ FCτ1(F ) �= ∅ and b(x2) = 1, then flip the value of x2.
Otherwise, go to next step. Let the resulting assignment be τ2.

...
Step n. If FCτ0(xn)∩FCτn−1(F ) �= ∅ and b(xn) = 1, then flip the value of xn.

Let the resulting assignment be τ∗, output τ∗ and stop the algorithm.

Remark 1. The purpose of defining the functions of b(.) and ord(.) is to con-
trol the reassignment steps. More precisely, they can avoid the situation of
some previously-processed variables reassigning their values again. The nota-
tion FCτ0(xi) ∩ FCτi−1(F ) �= ∅ means there exit some clauses, which contain
the variable xi making their falseness in assignment τ0 , and are still false in the
new assignment τi−1.

For F ∈ (k, ∗)–CNF, a random assignment τ0 ∈ ASS(F ) is generated in
Phase 1, and by values of ord(.) and b(.), the algorithm reassigns the assignments

1 Similar argument can be checked in [12].
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from Step 1 to Step n of Phase 2. At the final step, the result assignment τ∗ is out-
putted concerned with the values of ord(.) and b(.). Thus for formula F , we define
a dual structure (F,SF), where

SF = {τ∗ : τ∗ is derived randomly from the algorithm} . (3)

For the structure, we want to know, whether there is an assignment τ∗ ∈ SF
satisfying F . To solve this question, based on the probabilistic method, a proper
probability space ΩF = (SF,R,P) is defined firstly, where R is a σ-algebra on
SF and P is a measure on R the values of which are concerned with the values of
ord(.) and b(.). To prove there exits an assignment satisfying formula, we need
to prove, in the probability space ΩF, for an assignment τ∗ picked uniformly
from SF, the probability of the assignment τ∗ failing satisfying formula F is less
than 1. Formally,

Pr[τ∗(F ) = 0] = Pr[FCτ∗(F ) �= ∅] < 1 . (4)

Based on above discussions, we begin to estimate the probability of the event
that there exists a clause C ∈ F which is false in assignment τ∗. For the exitance
of clause C falseness, there are only two following cases based on whether or not
there exists at least one variable in the clause whose value was reassigned during
the reassignment steps:

Case 1. C is false in both τ0 and τ∗, that is the value of all the variables in C
are not flipped during whole reassignment steps. We say that event A(C) takes
place. Formally, A(C) = F (C, τ0)∧F (C, τ∗) . In fact, it is the event of b(x) = 0
for each x ∈ var(C) which triggers A(C).

Case 2. C is true in τ0, but becomes false in the final result assignment. Suppos-
ing C’s falseness occurs firstly in the Step i+1 and x is the last variable in var(C)
flipping its value. Therefore, before Step i + 1, each variable in T Vτ0(C) − {x}
has been flipped its value and in the Step i+ 1, clause C becomes false because
of variable x’s flip. Then there must exit at least one clause C′ �= C, such that
x ∈ var(C)∩var(C′) and C′ ∈ FCτ0(x)∩FCτi(F ). We call C′ making C’s false-
ness. Let B(C,C′) denote the event of C′ making C false. Following, we expend
two steps to define B(C,C′) formally:

1. Φ1(C,C′) ≡ T (C, τ0) ∧ (∀x′ ∈ T Vτ0(C) : b(x′) = 1).
The event means, C is true in assignment τ0 and each variable in T Vτ0(C)
owns ‘qualification’ for reassignment.

2. Φ2(C,C′) ≡ (∀x′ ∈ T Vτ0(C) − {x} : ord(x′) < ord(x)) ∧ (∀x′ ∈ var(C′) −
{x}) : (ord(x′) ≥ ord(x) ∨ (b(x′) = 0)).
The event means, the variable x is the last one in var(C) performing reas-
signment and every variable in var(C′) − {x} processes reassignment after
x does, or doesn’t own qualification at all.

Therefore,
B(C,C′) ≡ (∃C′ : C′ ∈ FCτ0(x) ∩ FCτi(F ))

∧ (∃x : x ∈ T Vτ0(C) ∩ FVτ0(C
′))

∧ Φ1(C,C′) ∧ Φ2(C,C′) .
(5)
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By above discussion, we have following lemma.

Lemma 1. Pr[FCτ∗(F ) �= ∅] = Pr[∃C ∈ F : A(C)]+Pr[∃C,C′ ∈ F : B(C,C′)]

The following three claims will help us estimate the probabilities of those events.

Claim 1. Pr[A(C)] = 2−k(1 − p)k.

Its proof can be completed by following its definition.

Claim 2. If |T Vτ0(C) ∩ FVτ0(C′)| > 1, then Pr[B(C,C′)] = 0.

Proof. Suppose T Vτ0(C) ∩ FVτ0(C′) = {x, x′} and ord(x) > ord(x′). Then the
value of x′ is flipped before the x’s. Let the result assignment be τ ′ after flipping
the value of x′. As a result, C′ ∈ FCτ0(x), but C′ �∈ FCτ ′(F ). Therefore, C′ can
not make C false. ��

Claim 3. If |T Vτ0(C) ∩ FVτ0(C′)| = 1, then Pr[B(C,C′)] ≤ 2−2k+1p.

Proof. Suppose T Cτ0(C) ∩ var(C′) = {x} and ord(x) = w. By the definition of
the event B(C,C′),

Pr[B(C,C′)] = 2−2k+1p|S|−1w|S|(1− wp)k−1 . (6)

Where S = T Vτ0(C) − {x}. On integrating over w and summing over all S, we
obtain

Pr[B(C,C′)] ≤ 2−2k+1
k−1∑
l=0

(
k − l
l

)
pl+1

1∫
0
wl(1 − wp)k−1dw

= 2−2k+1p
1∫
0
(1 − wp)k−1[

k−1∑
l=0

(
k − l
l

)
plwl]dw

= 2−2k+1p
1∫
0
(1 − wp)k−1(1 + wp)k−1dw

= 2−2k+1p
1∫
0
(1 − (wp)2)k−1dw

≤ 2−2k+1p
1∫
0

1dw

= 2−2k+1p.

(7)

��

From Claim 1, we have Pr[∃C ∈ F : A(C)] ≤ |F | × 2−k(1− p)k .
From Claim 2, 3. we have Pr[∃C,C′ ∈ F : B(C,C′)] ≤ |F |2 × 2−2k+1p .
By Lemma 1, for the random assignment τ∗ ∈ SF , we have

Pr[FCτ∗(F ) �= ∅] ≤ |F | × 2−k(1− p)k + |F |2 × 2−2k+1p. (8)

Now based on the idea of the probabilistic method, we confine formula F , s.t.,
the inequality (8) less than 1.

Theorem 1. Let F be a (k, ∗)-CNF formula with less than 0.58 ×
√

k
ln k2k

clauses(k ≥ 2). Then F is satisfiable.
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Proof. Let |F | = l2k, then the inequality (8) becomes

Pr[FCτ∗(F ) �= ∅] ≤ l(1− p)k + 2l2p . (9)

For 0 < ε < 1, set l = (1 − ε)
√

k
lnk , and p = (1/2) lnk/k. We have

Pr[FCτ∗(F ) �= ∅] ≤ l(1− p)k + 2l2p

= (1− ε)
√

k
ln k (1 − lnk

2k )k + (1− ε)2

= (1− ε)[1 + (
√

k
ln k (1− ln k

2k )k − ε)]

(10)

Let g(k) =
√

k
lnk (1− ln k

2k )k. g(k) is decreasing function on k. Since g(2) < 1.15,
g(k) < 1.15 is correct for all k ≥ 2. By analysis (10), set ε = 0.42 which is the
minimal number satisfying the inequality of (10) < 1 for all k ≥ 2. Therefore

l = (1− ε)
√

k
ln k = 0.58×

√
k

ln k is the maximal number satisfying the inequality
of (10) < 1. By (4) and the probabilistic method, there exists a truth assignment
satisfying formula F . ��

4 The Lower Bound of f(k)

For each clause C ∈ F , the overlap of C, denoted by dc, is defined by dc = |{C′ ∈
F −{C} : var(C)∩var(C′) �= ∅}|. The overlap of F is the maximal dc for C ∈ F ,
denoted by d. We first present the upper bound of d within which every (k, ∗)-
CNF formula is satisfiable. Then we conclude the lower bound of f(k) based
on the relation between parameters s and d, where s is the maximal-occurred
number of variable in formula F .

We will apply a special case of Lovász Local Lemma, which shows a useful suffi-
cient condition for simultaneously avoiding a set A1, A2, . . . , AN of “bad” events:

Theorem 2. Suppose events A1, A2, . . . , AN are given. Let S1, S2, . . . , SN be
subsets of [N ] = {1, 2, . . . , N} such that for each i, Ai is independent of the
events {Aj : j ∈ ([N ] − Si)}. Suppose that ∀i ∈ [N ] : (1)Pr[Ai] < 1/2, and
(2)
∑

j∈Si

Pr[Aj ] ≤ 1/4. Then Pr[
∧

i∈[N ]
(¬Ai)] > 0.

Remark 2. Often, each i ∈ N will be an element of at least one of the sets Sj ;
In such cases, it clearly suffices to only verify condition (2) of theorem. ��

Suppose F is a (k, ∗)-CNF formula with overlap d = λ2k. Let τ∗ be the random
assignment obtained by running the above algorithm. By Lemma 1. if we can
simultaneously avoid the following two types events, then τ∗ will be a valid truth
assignment of F :

(a) Type 1 events: {A(C) : C ∈ F}.
(b) Type 2 events:{B(C,C′) : C,C′ ∈ F}.
We call above two types events bad events.
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For a bad event B. Let S(B) be the set of all bad events at least one of whose
arguments has a non-empty intersection with an argument of B. Formally, if
B= A(C), S(B) = {A(C′) : C′ ∈ F∧var(C′)∩var(C) �= ∅}; And if B= B(C,C′),
S(B) = {B(C0, C

′
0) : C0, C

′
0 ∈ F ∧ ((var(C0) ∪ var(C′

0)) ∩ (var(C) ∪ var
(C′)) �= ∅)}.

Thus, as discussed above, B is independent of any events outside S(B). Thus
to apply Theorem 3, we need to bound the sum of probabilities of events in S(B).

Claim 4. For all bad events B, S(B) has at most 2d events of Type 1 and
at most 4d2 events of Type 2.

Proof. Suppose C and C′ are the arguments of B(we will take C = C′ if B is a
type 1 event). Since the argument of events of Type 1 in S(B) intersect either C
or C′, there are at most 2d events of Type 1 in S(B) by the definition of overlap;

For Type 2 events with arguments (C0, C
′
0) in S(B), at least one of C0 and

C′
0 must intersect at least one of C and C′. It follows that there are at most 4d2

possibilities for (C0, C
′
0). ��

Claim 5. Suppose d = λ2k, where λ ≤ 0.1×
√

k
ln k and k ≥ 2, then for any bad

events B,
∑

B′∈S(B)
Pr[B′] ≤ 1/4.

Proof. By the Claim 1, 3 and 4,∑
B′∈S(B)

Pr[B′] ≤ 2d× 2−k(1− p)k + 4d22−2k+1p

= 2λ(1− p)k + 8λ2p
(11)

Set p = (1/2)(lnk)/k, ε > 0 and λ = 1/4(1− ε)
√

k
ln k , the Equation

(11) = 1/4(1− ε)(2g(k) + (1− ε)) (12)

Please note that g(k) =
√

k
ln k (1 − lnk

2k )k and it is a decreasing function. It is
enough to just choose a proper ε to make

(1− ε)(2g(k) + (1 − ε)) < 1 . (13)

We choose (1 − ε) = 0.37 which is maximal number satisfying the inequality of
(13) for all k ≥ 2. Therefore, when

λ = 1/4× (1− ε)

√
k

ln k
≤ 1/4× 0.37

√
k

lnk
< 0.1

√
k

ln k
, (14)

the inequality (11) < 1/4 is always correct. ��

We have established Condition (2) of Theorem 3 by choosing d properly. As
remarked before, this implies that Condition (1) holds as well. Then by the
Theorem 3 and probabilistic method, we obtain following result.
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Theorem 3. For any k ≥ 2, let F be a formula in (k, ∗)-CNF with overlap less

than 0.1×
√

k
ln k × 2k . Then F is a satisfiable formula.

Now, we study the connection between parameters s and d by following lemma.

Lemma 2. For a formula F ∈ (k, ∗)−CNF , s and d are the maximal-occurred
number of variable and the overlap of F respectively. Then s ≥ d/k + 1.

Proof. For a given clause C0 ∈ F , |C0| = k. Let C(x) = {C ∈ F : x ∈ var(C)}
for any variable x ∈ var(C0). Obviously,

C(x) ⊆ {C ∈ F − {C0} : var(C) ∩ var(C0) �= ∅} ∪ {C0} (15)

and ⋃
x∈var(C0)

C(x) = {C ∈ F − {C0} : var(C) ∩ var(C0) �= ∅} ∪ {C0} . (16)

Thus
d = |

⋃
x∈var(C0)

C(x)| − 1 . (17)

For each two variables x, x′ ∈ var(C0), C0 ∈ C(x) ∩ C(x0). By the principle of
inclusion and exclusion,

| ⋃
x∈var(C0)

C(x)| =
∑

x∈var(C0)
|C(x)| −

k∑
i=2

(−1)i ∑
2≤i1<···<ii≤k

|C(xi1) ∩ · · · ∩ C(xii)|

≤ ∑
x∈var(C0)

|C(x)| −
k∑

i=2
(−1)i ∑

2≤i1<···<ii≤k

1

=
∑

x∈var(C0)
|C(x)| −

k∑
i=2

(−1)i

(
k
i

)
=

∑
x∈var(C0)

|C(x)| − (k − 1)

≤ k × s − (k − 1). (18)

By (17), we have d ≤ k × s− (k − 1)− 1 = k × s− k. Therefore, s ≥ d/k + 1 is
correct. ��
By the Theorem 4 and Lemma 5, we have following theorem.

Theorem 4. f(k) = Ω(
√

k
ln k 2k/k).

5 Conclusion

The key basis of this paper is the randomize algorithm presented in Section 3.
Based on it and by applying other useful tools– probabilistic method and Lovász
Local Lemma, we establish our two contributions. In Section 3, we obtain the re-
lation between the (k, ∗)-CNF formula’s satisfiability and the number of clauses
it has. In Section 4, we first study the close connection between (k, ∗)-CNF for-
mula’s satisfiability and its overlap. And then, by the Lemma 5, we improve the
lower bound of critical function f(k) for (k, s)-SAT.
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Abstract. Although complexity theory already extensively studies path-cardi-
nality-based restrictions on the power of nondeterminism, this paper is motivated
by a more recent goal: To gain insight into how much of a restriction it is of non-
determinism to limit machines to have just one contiguous (with respect to some
simple order) interval of accepting paths. In particular, we study the robustness—
the invariance under definition changes—of the cluster class CL#P [8]. This class
contains each #P function that is computed by a balanced Turing machine whose
accepting paths always form a cluster with respect to some length-respecting to-
tal order with efficient adjacency checks. The definition of CL#P is heavily influ-
enced by the defining paper’s focus on (global) orders. In contrast, we define a
cluster class, CLU#P, to capture what seems to us a more natural model of clus-
ter computing. We prove that the naturalness is costless: CL#P = CLU#P. Then
we exploit the more natural, flexible features of CLU#P to prove new robust-
ness results for CL#P and to expand what is known about the closure properties
of CL#P.

The complexity of recognizing edges—of an ordered collection of computa-
tion paths or of a cluster of accepting computation paths—is central to this study.
Most particularly, our proofs exploit the power of unique discovery of edges—
the ability of nondeterministic functions to, in certain settings, discover on ex-
actly one (in some cases, on at most one) computation path a critical piece of
information regarding edges of orderings or clusters.

1 Introduction

Complexity theory already extensively studies the power of nondeterminism when re-
stricted by cardinality of path issues. For example, the language and function classes
UP, US, FewP, #P, and many others focus on the cardinality of the accepting path
set of a (polynomial-time) nondeterministic machine. A 1999 paper by Kosub [10]
proposed a different type of limitation on nondeterminism, namely, requiring there
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to be just one contiguous block (cluster) of accepting computations. And so with re-
spect to some reasonable notion of equivalence relation based on adjacency and same-
ness of accept/reject-ness, all the accepting paths are identified with each other—very
loosely put, there is only one “kind” of acceptance, as opposed to the scatter-shot
chaos of accepting paths that characterizes unrestricted nondeterministic computation.
The desire to study whether the cluster limitation is restrictive motivated both Ko-
sub’s paper and the present paper. Very briefly put, one could say that Kosub’s paper
shows that clusters with respect to lexicographic order are tremendously restrictive.
And one could say that [8] and the present paper show that clusters with respect to
more general orders are far less so: They are very robust, flexible, and computationally
powerful.

Let us now cover what Kosub modeled, and the generalization of [8] that we are par-
ticularly interested in, in more detail. Cluster computing, in the complexity-theoretic
use of the term, was introduced by Kosub in [10] (though he notes there that there was
earlier work that focused in a rather different sense on cluster-like behavior, for exam-
ple [15], and we mention in passing that the so-called telescoping normal form of the
boolean hierarchy [5] and the parallel census technique of Selman [13] also provide
early examples of the type of behavior Kosub was there observing, namely, settings in
which “yes” answers always occur in a contiguous block). In particular, Kosub defined
and studied the class c#P, which is the set of all #P functions computed by (i.e., given
by the number of accepting paths of) lexicographical cluster machines—loosely put,
machines such that on each input, all the accepting paths are lexicographically adja-
cent to each other (they form a contiguous block). He obtained quite comprehensive
results, but they depended critically on the very simple structure of lexicographical or-
der, namely, that if one knows the left and right edges of a lexicographical cluster, it is
easy to compute the size of the cluster.

Yet the underlying motivating issue—to what extent does requiring that all accept-
ing paths be closely related in some order restrict the ability of nondeterministic Turing
machines to compute #P functions?—certainly is not tied to the artificial simplicity of
lexicographical order. Just as self-reducibility [12, 11] has not only been defined with
respect to a focus on the lexicographical order and decreasing chains with respect to
length there (as in [2, 1]) but also (and most elegantly) has been defined with respect to
having polynomially length-bounded decreasing chains within appropriate more gen-
eral classes of orders (as in [11, 12]), so also is it natural to study cluster computing
with respect to more flexible ordering.

To imagine how to naturally do this, we think of the model underlying c#P, which,
again, is the class of functions that are the numbers of accepting computation paths of
balanced (a Turing machine is balanced if there is some polynomial p such that on each
input x it holds that each nondeterministic path has exactly p(|x|) binary nondeterminis-
tic guesses) Turing machines in which the accepting paths are always lexicographically
adjacent. So the accepting block on a given input is, assuming any paths accept, just a
lexicographically contiguous block among the length p(|x|) strings, where one views—
as we do throughout this paper—each accepting path (on a given input) as being named
by its nondeterministic guesses. Intuitively speaking, we suggest that it might be very
natural to generalize this by keeping essentially the entire setting mentioned above,
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except on input x viewing the strings at length p(|x|) not as being in lexicographical
order, but rather viewing them as follows. For each balanced nondeterministic machine
whose number of accepting paths defines a function in our new class, there must be
polynomial-time computable functions b (the bottom function), t (the top function),
and ≺ (the adjacency function) such that: We view b(x) ∈ {0,1}p(|x|) as the least string
of length p(|x|); ≺(x,y,z) tells whether on input x the string z ∈ {0,1}p(|x|) comes im-
mediately after y ∈ {0,1}p(|x|) in our linear ordering of the length p(|x|) strings; if one
using those two functions starts at b(x) and moves through one string after another
under the adjacency rule specified by ≺(x, ·, ·), one goes though each string of length
p(|x|) and ends up at t(x); and if there are any accepting paths on input x, then all the
accepting paths on input x form a cluster—a contiguous block—within this ordering.
In particular, regarding the ordering, we allow an arbitrary linear ordering of the length
p(|x|) strings subject to it being easy to tell the biggest and smallest elements in our new
order, and to recognize adjacency in our new order. Let us call the class thus defined
CLU#P.

Though we suggest that the CLU#P definition and model are very easy to work with,
it is very important to note that a previous paper already defined a generalization of
Kosub’s notion with exactly the goal of handling more general orderings. In particular,
this was done by [8], resulting in the class CL#P. CL#P’s definition, however, is heavily
influenced by the overall focus of that paper on global orders (rather than input-specific
orderings). In particular, that paper requires all inputs to have their computation paths
share the same order with respect to defining what it means to be a cluster. For example,
if on input x computation paths y and z exist and y ≺ z (respectively, y �≺ z), then for
each input x′ on which those computation paths exist (namely, all strings x′ on which
the nondeterminism polynomial happens to evaluate to the same value on |x′| as it does
on |x|, and so certainly for all strings x′ of the same length as x) it must also hold that
y ≺ z (respectively, y �≺ z). Further, the fact that that paper really requires a global—
over all of Σ∗—order forces the ordering for each input x to smoothly link the strings
related to computation on input x to the other, utterly irrelevant paths. Although these
constraints are arguably reasonable in a paper whose focus is on global, total orders (in
the formal sense), we here suggest that if one were to simply take the idea of Kosub
and shuffle1 the paths that apply to that input, the notion of CLU#P would seem a more
natural approach to and model of doing that.

Fortunately, one does not have to choose between the classes CL#P and CLU#P. This
is because our main result is that the new class CLU#P, which was defined to directly
capture a natural, local, machine-directed notion of cluster computing, has exactly the
same descriptive power as the class CL#P, which is based on a global shared order:
CL#P = CLU#P. This result is in Section 3, which also shows another robustness result
that will be central to our later study of two other notions—free cluster and circular
cluster machines. That other robustness result is essentially that unambiguity of cluster
edge recognition is sufficient to ensure that even seemingly more flexible models in fact
generate just the CL#P functions.

1 Throughout this paper, we use “shuffle” in its common-language sense of permuting a sin-
gle collection, rather than in the very different sense in which the term is sometimes used in
theoretical computer science, namely, taking two separate lists and interleaving them.
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Section 4, partially by using our newfound freedom to study CL#P by studying
CLU#P, shows a number of closure properties of CL#P. For example, [8] proved that
if CL#P is closed under increment then UP = coUP, and we show that the converse
holds.

Our model, CLU#P-type machines, has FPt (total, polynomial-time computable) top
and bottom elements on each input. Section 5 studies two alternate models. CLU#Pfree

removes any explicit complexity requirement regarding the top and bottom elements.
CLU#Pcircular requires the ordering on our computation paths to be circular—thus there is
no top or bottom element. We prove a number of results about these classes, and most par-
ticularly we show (a) that UP = coUP is a sufficient condition for CL#P = CLU#Pfree =
CLU#Pcircular, and (b) that UP = coUP is a necessary condition for CL#P = CLU#Pfree,
and even for CLU#Pfree ⊆ CLU#Pcircular. Result (b) can be viewed as reasonably strong
evidence that CLU#Pfree is a strictly more powerful, flexible class than CL#P, and can
also be viewed as reasonably strong evidence that some CLU#Pfree functions are not in
CLU#Pcircular. So freeing the endpoints from their FPt constraint seems to yield a real
increase in descriptive power.

The proofs in this paper are thematically linked. Most of them focus on the power of
what we will call “unique discovery” of facts about about top and bottom elements and
about greatest and least accepting paths—i.e., about “edges.” By unique discovery we
mean that critical pieces of edge-related information used in our proofs are partial or
total UPSV (unambiguous polynomial-time single-valued) functions [6, 10]. Informally
speaking, we mean that our proof strategy will often be:

1. Seek to guess some critical piece of information (such as the right edge of a cluster).
2. If we succeeded on the current path in guessing that information correctly, do FOO

and otherwise do BAR,

and, critically, our settings will variously ensure that in step (1) either exactly one
or at most one path guesses the critical information, that that path “knows” it has
done so (i.e., could write on an output tape the information and set a bit declaring it
has successfully obtained the information), and each other path knows that it has not
done so.

2 Definitions

Σ = {0,1} will be our alphabet. The boolean relation ≺lex is defined as: a≺lexb is true
when b is the lexicographical successor of a and is false otherwise, e.g., 111≺lex0000
and 010≺lex011, but 00 �≺lex11. We use NPTM as a shorthand for “nondeterministic
polynomial-time Turing machine.” As is common, for a given nondeterministic ma-
chine M and a string x, accM(x) denotes the set of accepting paths of machine M on
input x, and #accM(x) is defined as ||accM(x)||. FPt denotes the total, polynomial-time
computable functions (usually from Σ∗ to Σ∗).

Given any string x ∈ Σ∗ and any integer n≤ |x|, prefix(x,n) denotes the first n bits of
x and suffix(x,n) denotes the last n bits of x. If n > |x| these functions are undefined.

For each polynomial p and each NPTM M, M will be said to be p-balanced (see [10])
exactly if for each input x the set of nondeterministic guesses along the computation
paths of M is precisely {0,1}p(|x|). That is, M on input x has exactly 2p(|x|) computation
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paths, one corresponding to each possible guess of p(|x|) bits. Note that we do not
require that each step of the machine involves a nondeterministic guess.

We turn immediately to defining the central class of this paper, CLU#P. In defining
CLU#P, we seek to keep Kosub’s notion of a cluster as a block of adjacent paths, but we
allow that adjacency to be with respect to a “shuffling” of the paths, rather than to have
to be with respect to lexicographical order. However, the shuffle must be simple enough
that in polynomial time we can get the first and last paths’ names, and also in polynomial
time we can, given paths q and r, determine whether the path immediately greater than
(i.e., right-adjacent to) q is r. And a function f belongs to CLU#P if the function gives
the number of accepting paths of an (appropriately balanced) Turing machine whose
accepting paths always form a cluster of this sort. Although the formal definition is a
bit intimidating, we stress that it is merely rigorously capturing this intuitively simple
notion.

Definition 2.1. A (total) function f : Σ∗ → N belongs to CLU#P if (∃ polynomial p)
(∃ p-balanced NPTM M)(∃ b,t ∈ FPt)(∃ 3-argument, polynomial-time computable
predicate≺)(∀x)(∃ bijection hx from Σ p(|x|) to Σ p(|x|)) such that:

1. |b(x)|= |t(x)|= p(|x|).
2. hx(b(x)) = 0p(|x|)∧hx(t(x)) = 1p(|x|).
3. (∀y,z ∈ Σ p(|x|))[≺(x,y,z) ⇐⇒ hx(y)≺lexhx(z)].
4. All accepting paths are clustered with respect to ≺(x, ·, ·). That is, if f (x) �= 0 then

(∃�,u ∈ Σ p(|x|))[accM(x) = {w ∈ Σ p(|x|) |hx(�)≤lexhx(w)≤lexhx(u)}].
5. f (x) = #accM(x).

As mentioned in the introduction, even for two same-length strings x and y, it is com-
pletely possible that ≺(x, ·, ·) and ≺(y, ·, ·) will differ dramatically. That is, CLU#P fo-
cuses heavily on reordering the paths related to the given input, and just those paths,
and indeed may do so in a way that can vary based on the input. (Though formally
speaking the definition above requires ≺ to be defined on all input triples, it is easy to
see from the above definition that on input x all that matters is what≺(x, ·, ·) does when
its second two arguments are distinct strings in {0,1}p(|x|). For all other inputs, we can
typically just ignore≺’s output or view it as being false.)

We now turn to the definition of CL#P [8]. That definition requires the entire uni-
verse of paths—over all inputs to a machine—to be embedded in a single, shared or-
der. As noted earlier, this limits one in two ways: the obvious constraint that one must
embed paths over different inputs into the same order (and so when inputs have the
same length, their paths must be identically shuffled) and a more subtle side-constraint
that even though all computation paths of a machine on a given input are of the same
length, in this setting the adjacency test must work even between that length and other
lengths, i.e., all of Σ∗ must be woven into a single, giant order with the right feasibility
properties.

To support the definition of CL#P, we briefly define some related notions (see [8],
from which we take these definitions essentially word for word, for consistency),
namely, “length-respecting total order A” and “A-cluster.” A binary relation A⊆Σ∗×Σ∗
is a partial order if it is reflexive, antisymmetric (i.e., (∀x,y ∈ Σ∗)[x �= y =⇒ ((x,y) �∈
A∨ (y,x) �∈ A)]), and transitive. A partial order A is a total order if, for all x,y ∈ Σ∗,
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(x,y) ∈ A or (y,x) ∈ A. We write x≺A y if x<A y and there is no z such that x<A z<A y.
If x ≺A y, we say that x is left-adjacent to y or, equivalently, y is right-adjacent to
x. Let M be NPTM that is p-balanced for some polynomial p. Let y and z encode
computation paths of M on x. By the above assumption that M is balanced, |y| =
|z|. Fix a total order A on Σ∗. We say that y ∼A,M,x z if (a) y ≺A z or z ≺A y, and
(b) M on x accepts on path y if and only if M on x accepts on path z. Let ≡A,M,x

be the equivalence closure (i.e., the reflexive-symmetric-transitive closure) of ∼A,M,x.
Then the relation ≡A,M,x is an equivalence relation and thus induces a partitioning
of the computation tree of M on x. An A-cluster is an equivalence class whose
representatives are accepting paths. Additionally, we consider /0 to be a valid A-cluster.
An order A on Σ∗ is said to be length-respecting if, for all x,y, |x| < |y|
implies x <A y.

Definition 2.2 ([8]). A function f belongs to the class CL#P if there exist a polynomial
p, a p-balanced NPTM M, and a length-respecting total order A with efficient adjacency
checks such that, for all x, the following conditions hold:

1. The set of all accepting paths of M on x is an A-cluster.
2. f (x) = #accM(x).

We now define the classes CLU#Pfree and CLU#Pcircular. Their definitions are similar
to that of CLU#P. However, CLU#Pfree removes the constraint that top- and bottom-
finding must be polynomial-time computable, though ≺ will implicitly create top and
bottom elements. CLU#Pcircular makes the order be a circular order, thus removing any
notion of “top” and “bottom.”

Definition 2.3. A (total) function f : Σ∗ → N belongs to CLU#Pfree if (∃ polynomial
p)(∃ p-balanced NPTM M)(∃ 3-argument, polynomial-time computable predicate ≺)
(∀x)(∃ bijection hx from Σ p(|x|) to Σ p(|x|)) such that:

1. (∀y,z ∈ Σ p(|x|))[≺(x,y,z) ⇐⇒ hx(y)≺lexhx(z)].
2. All accepting paths are clustered with respect to ≺(x, ·, ·). That is, if f (x) �= 0 then

(∃�,u ∈ Σ p(|x|))[accM(x) = {w ∈ Σ p(|x|) |hx(�)≤lexhx(w)≤lexhx(u)}].
3. f (x) = #accM(x).

Definition 2.4. A (total) function f : Σ∗ →N belongs to CLU#Pcircular if (∃ polynomial
p)(∃ p-balanced NPTM M)(∃ 3-argument, polynomial-time computable predicate ≺)
(∀x)(∃ bijection hx from Σ p(|x|) to Σ p(|x|)) such that:

1. (∀y,z ∈ Σ p(|x|))
[≺(x,y,z) ⇐⇒ (hx(y)≺lexhx(z)∨ (hx(y) = 1p(|x|)∧hx(z) = 0p(|x|)))].

2. All accepting paths are clustered with respect to ≺(x, ·, ·). That is, if f (x) �= 0 then
(∃�,u ∈ Σ p(|x|))[accM(x) = {w ∈ Σ p(|x|) |hx(�)≤lexhx(w)≤lexhx(u)}].

3. f (x) = #accM(x).

The reader may reasonably worry that our definition of CLU#Pcircular is cheating. In
particular, one may worry that Definition 2.4’s part 1 has the adjacency definition go
“around the corner” (that is, it adjacency-links 0p(|x|) and 1p(|x|) in the under-the-image-
of-h space), but that Definition 2.4’s part 2 doesn’t similarly allow the accepting paths
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to go “around the corner,” and that this is a somewhat strange and striking asymme-
try of approach between those two aspects of the definition. However, note that in the
definition of a CLU#Pcircular function we can without loss of generality require that the
preimage of the bijection hx has the property that h−1

x (0p(|x|)) is an accepting path of
the machine (on that input) if any accepting paths exist (on that input). That is, the first
condition in Definition 2.4 is invariant under cyclic shifts of the numbering hx of the
elements in {0,1}p(|x|). So the above-mentioned worry about the definition turns out,
upon some thought, not to be a worry at all. Indeed, later in the paper this observation
will be a useful feature, namely, in the proof of Proposition 5.5.

Note that it follows immediately from the definitions that CLU#P⊆ CLU#Pfree and
CLU#P⊆ CLU#Pcircular.

Finally, let us state the definitions of the function classes UPSVt and UPSVp [6, 10],
which are the (respectively total and partial) unambiguous versions of the central,
single-valued nondeterministic function classes NPSVt and NPSVp [3, 4, 14]. When
speaking of nondeterministic machines as computing (possibly partial) functions from
Σ∗ to Σ∗, we view each path as having no output if the path is a rejecting path, and if
a path is an accepting path then it is viewed as outputting whatever string s ∈ Σ∗ is on
the output tape (along that path) when that path halts. A (potentially partial) function
f : Σ∗ → Σ∗ belongs to UPSVp if there is an NPTM M that (a) on each input has at
most one accepting path, (b) on each input x on which M has exactly one accepting
path, f (x) is the output on that path, and (c) on each input x on which M has no ac-
cepting paths, f (x) is undefined (i.e., domain( f ) = {x |M(x) has at least one accepting
path}). A function f : Σ∗ → Σ∗ belongs to UPSVt if f belongs to UPSVp and f is total.
UPSVp and UPSVt functions capture the flavor of “unique discovery,” and will (often
implicitly and sometimes explicitly) be central in our proofs.

3 Robustness of CLU#P

In this section, we study the robustness of CLU#P. CLU#P on its surface might seem
to be far more flexible than CL#P, given that unlike CL#P it is not chained by the
requirement of a global order and the related need to have same-length strings’ paths
coexist in the same order and to link consistently between lengths.2 Nonetheless, we
now prove that these two classes are equal: CL#P = CLU#P.

Briefly put, to show that CLU#P⊆ CL#P we tie together the exponential number of
orderings (over all inputs sharing the same path length). To show that CL#P⊆ CLU#P,
we uniquely discover the top and the bottom elements and then embed into a broader
search space a clone of the action of our CL#P machine on the current input.

2 One might note that, on the other hand, CL#P lacks the FPt constraints (on the top and bottom
elements among the computation paths) that CLU#P obeys, and in that way at least potentially
might seem to have some flexibility that CLU#P might lack. However, though CL#P does not
explicitly speak of top and bottom functions at each length, it is not hard to see that it has
top and bottom functions (mapping from each x—or even from 0|x|—to the top and bottom
elements at length p(|x|)) that are computable in UPSVt. We will show later in this section
that CLU#P remains unchanged if one allows its top and bottom functions to be drawn not just
from FPt but even from UPSVt. Thus, CLU#P is not at a disadvantage on this issue.
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Theorem 3.1. CLU#P = CL#P.

This proof, and all proofs omitted from the body of the paper due to space, can be found
in the full version [7].

We now derive a robustness result that might seem a bit less natural than Theorem 3.1.
However, this robustness result provides a critical tool for proving natural results and
gives substantial insight into what suffices to make cluster computation simple.

To state the result, we must define notions of the greatest element and the least ele-
ment of an accepting path cluster. The slight unnaturalness occurs in the circular model,
in particular in the case when all paths are accepting paths since in that case, even
though there is no natural choice of greatest and least accepting paths, our definition
makes a choice.

Note that we are speaking not about top and bottom notions among all paths of a
given length, but rather are seeking the greatest and least accepting paths with respect
to a given input and the ordering implicit in ≺.

Let p, M, and≺ be a nondeterminism polynomial, machine, and adjacency predicate
in either the CLU#Pfree model or the CLU#Pcircular model. We define two partial func-
tions (p is implicit in M, but for uniformity and clarity in settings like this we include
p throughout the paper) greatestp,M,≺ and leastp,M,≺ as follows. Let M compute the
function f , i.e., on input x, f (x) = #accM(x).

If f (x) = 0, then (in both the free and the circular models) greatestp,M,≺(x) and
leastp,M,≺(x) are undefined. In the free model, if f (x) �= 0, then greatestp,M,≺(x) is the
unique length p(|x|) string z that is an accepting path to which no length p(|x|) accepting
path is right-adjacent (i.e., the unique string z of length p(|x|) such that z is an accepting
path of M on input x and yet (∀w ∈ {0,1}p(|x|))[w ∈ accM(x) =⇒ ¬≺(x,z,w)]). Simi-
larly, in the free model, if f (x) �= 0, then leastp,M,≺(x) is the unique length p(|x|) string
z that is an accepting path to which no length p(|x|) accepting path is left-adjacent.

The above definitions will not work in the circular model if M, on input x, accepts on
all paths, as there the definition would give nothing, but for our proofs we cannot allow
that to happen. It actually is fine to break this impasse by saying that when that happens,
the greatest function takes on the value of any of M’s accepting paths such that the least
function has as its value the path right-adjacent to that path. However, for clarity and speci-
ficity, we sacrifice a bit of flexibility and choose one particular impasse-breaking splitting
point as follows for the circular model. If f (x) = 0, greatestp,M,≺(x) and leastp,M,≺(x)
still are undefined. If f (x) = 2p(|x|) then greatestp,M,≺(x) = 1p(|x|). If f (x) = 2p(|x|) and

p(|x|) = 0 then leastp,M,≺(x) = ε . If f (x) = 2p(|x|) and p(|x|) �= 0 then leastp,M,≺(x)
equals the unique length p(|x|) string z satisfying≺(x,1p(|x|),z). In the circular model, if
0≤ f (x)< 2p(|x|), greatest and least are defined exactly as in the free model.

Theorem 3.2. 1. Let f be computed by p, M, ≺ in the free model. If greatestp,M,≺ ∈
UPSVp and leastp,M,≺ ∈ UPSVp, then f ∈ CLU#P.

2. Let f be computed by p, M, ≺ in the circular model. If greatestp,M,≺ ∈UPSVp and
leastp,M,≺ ∈ UPSVp, then f ∈ CLU#P.

That is, unique discovery of boundaries is sufficient in both the free and the circular
models to remove any power beyond that of CLU#P.
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Briefly summarized, our proof seeks to uniquely discover the greatest and least ac-
cepting paths, and on the (at most one) block that discovers them will simulate the origi-
nal machine except with each path sheathed in three dummy rejecting paths. Blocks that
fail to make the unique discovery will follow lexicographical order, and the unique dis-
covery block (which will exist exactly when f (x)> 0) will adopt a somewhat complex
order that allows us to indeed be CLU#P-like.

The proof (please see the full version of this paper) of a result of Section 5 draws on
Theorem 3.2, but let us note now that focusing on the boundaries of the accepting block
is enough to speak to issues regarding the complexity of the top and bottom functions.

Corollary 3.3. If in Definition 2.1 “∃ b,t ∈ FPt” is replaced with “∃ b, t ∈UPSVt,” the
class defined by the new definition remains precisely CLU#P.

4 Closure Properties of CLU#P

Arithmetic closure properties are not the focus of this paper. However, in this section
we briefly study some as an example of the power of unique discovery of boundaries
and to take advantage of the fact that Theorem 3.1 allows us to prove closure properties
of CL#P via the easier to work with model of CLU#P. In particular, we show that an
implication of [8] is in fact a complete characterization.

Theorem 4.1 ([8]). If CL#P (equivalently in light of Theorem 3.1, CLU#P) is closed
under increment (i.e., f ∈ CL#P =⇒ (λ x. f (x)+ 1) ∈ CL#P), then UP = coUP.

We prove that the converse holds and in fact prove that UP = coUP characterizes a
number of closures of CLU#P. We say a function is natural-number-valued if it maps
from Σ∗ to N. All CLU#P functions are natural-number-valued.

Theorem 4.2. The following statements are equivalent:

1. UP = coUP.
2. CLU#P is closed under increment.
3. CLU#P is closed under addition of natural-number-valued FPt functions.
4. CLU#P is closed under addition of natural-number-valued UPSVt functions.
5. CLU#P is closed under addition.

Theorem 4.2 may be viewed as evidence that CLU#P lacks various closure properties,
e.g., closure under increment. In contrast, the following result provides a closure prop-
erty, proper decrement, that CLU#P possesses unconditionally.

Theorem 4.3. CLU#P is closed under proper decrement. (That is, f ∈ CLU#P =⇒
(λ x.max{0, f (x)−1}) ∈ CLU#P.)

5 Free Cluster and Circular Cluster Computation

We defined CLU#Pfree and CLU#Pcircular in Section 2. Are these seemingly more flex-
ible models truly more powerful than CLU#P? We have not been able to prove that,
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though we will later, as Theorems 5.2 and 5.6, show that unless they are more powerful,
certain collapses and closures hold. On the other hand, we now prove that UP = coUP
is sufficient to reduce the power of these two seemingly more flexible classes to that of
CLU#P.

Theorem 5.1. UP = coUP =⇒ CLU#P = CLU#Pfree = CLU#Pcircular.

We now show that if cluster machines with free boundaries no more powerful than the
regular or circular models then UP = coUP.

Theorem 5.2. The following are equivalent.

1. UP = coUP.
2. CLU#Pfree = CLU#P.
3. CLU#Pfree ⊆ CLU#Pcircular.

The technique used to prove Theorem 5.2 (one that we will later use to prove Theo-
rem 5.7) is, roughly speaking, to impose over an unambiguous or “nearly unambigu-
ous” NPTM an order that skips over any accepting paths but then, at the end, sticks the
skipped paths to the top of the order. Because the free model imposes no restrictions on
the last element, this is relatively easy to do. But this makes accepting paths relatively
easy to locate in the other, “non-free” models, and that will allow us to get coUP⊆UP.
(The proof itself appears, as do all omitted proofs, in the appendix.)

The most pressing open question posed by Theorems 5.1 and 5.2 and indeed by this
paper is whether UP = coUP is a necessary condition for CLU#P = CLU#Pcircular.

Finally, we present three results that show that the free and circular classes are in
some ways relatively close to CLU#P.

Let 0-1-F denote all 0-1-valued total functions, i.e., total functions f mapping from
Σ∗ to {0,1}.

Theorem 5.3. CLU#Pfree ∩0-1-F = CLU#P∩0-1-F.

Whether Theorem 5.3 holds for 0-1-2-valued functions is open. (If we knew that the
accepting-path cluster could without loss of generality be assumed never to extend to the
top or bottom element, then 0-1-2-valued functions, O(1)-valued functions, and much
more would work in Theorem 5.3, via Theorem 3.2. However, the desired “without loss
of generality” is not currently known to hold.)

Somewhat related to Theorem 5.3 is the following result, which shows that the sole
obstacle to achieving CLU#P = CLU#Pcircular is the possibility that the CLU#Pcircular

machine (i.e., M of p, M, ≺) has all paths accept on a hard-to-predict set of inputs. In

particular, define C̃LU#Pcircular to be the class of all CLU#Pcircular functions f whose
membership in CLU#Pcircular is instantiated by some p, M, and ≺ (in the sense of Defi-
nition 2.4) such that {x | f (x) = 2p(|x|)} ∈ P.

Theorem 5.4. C̃LU#Pcircular = CLU#P.

Considering Theorem 3.2 and the above proof closely, it is not hard to see that one can

prove the⊆ direction above even if in the definition of C̃LU#Pcircular one were to replace
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“{x | f (x) = 2p(|x|)} ∈ P” with “{x | f (x) = 2p(|x|)} ∈ UP∩ coUP.” And the ⊇ direction
of course holds with this adjustment. Thus, Theorem 5.4 remains true even under that
less restrictive alternate definition.

Though Theorem 5.4 shows that CLU#Pcircular and CLU#P have only one obstacle
blocking their equality, Theorem 5.6 below provides a bit of evidence against their
equality. It shows that from equality there follows a consequence that we do not see
how to establish without the assumption of equality. (We say that a function g : Σ∗ →
N is strictly positive if (∀x ∈ Σ∗)[g(x) > 0]. The proof of Theorem 5.6 relies on a
“complementarity” property of the circular model, stated here as Proposition 5.5.)

Proposition 5.5. Let f be computed by M, p,≺ in the circular model. Then the function
f (x) = 2p(|x|)− f (x) can be computed in the circular model.

Theorem 5.6. If CLU#P = CLU#Pcircular, then for every CLU#P function f there is a
strictly positive FPt function g such that f + g is in CLU#P.

Finally, we have the following result, which shows that if it does hold that CLU#P =
CLU#Pfree or CLU#P = CLU#Pcircular, then we probably can expect that CLU#P will at
least need to in some cases use more nondeterminism than the other two classes.

Theorem 5.7

1. If for each p, M, and≺ that instantiate a CLU#Pcircular function that function is also
instantiated by a CLU#P machine having nondeterminism exactly p, then P = UP.

2. If for each p, M, and ≺ that instantiate a CLU#Pfree function that function is also
instantiated by a CLU#P machine having nondeterminism exactly p, then P = UP.

3. If each CLU#Pfree machine has UPSVt functions t and b, then UP = coUP.
4. If each CLU#Pfree machine has FPt functions t and b, then P = UP.

Acknowledgments. We are deeply grateful to Klaus W. Wagner for hosting the visit to
Würzburg during which much of this work was done, for proposing the class CLU#Pfree,
and for many other valuable suggestions and insights.

References
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Abstract. The rigidity of a matrix A with respect to the rank bound r
is the minimum number of entries of A that must be changed to reduce
the rank of A to or below r. It is a major unsolved problem (Valiant,
1977) to construct “explicit” families of n × n matrices of rigidity n1+δ

for r = εn, where ε and δ are positive constants. In fact, no superlinear
lower bounds are known for explicit families of matrices for rank bound
r = Ω(n).

In this paper we give the first optimal, Ω(n2), lower bound on the
rigidity of two “somewhat explicit” families of matrices with respect to
the rank bound r = cn, where c is an absolute positive constant. The
entries of these matrix families are (i) square roots of n2 distinct primes
and (ii) primitive roots of unity of prime orders for the first n2 primes.
Our proofs use an algebraic dimension concept introduced by Shoup and
Smolensky (1997) and a generalization of that concept.

1 Introduction

The rigidity function RA(r) of a matrix A is defined as the minimum number
of entries of A that must be changed to reduce its rank to a value at most r.
This function was introduced by Valiant [20], who motivated this concept by
showing that a lower bound of RA(εn) � n1+δ for a matrix A implies that
the linear transformation given by A cannot be computed in linear size and
logarithmic depth by arithmetic circuits consisting of gates that compute linear
combinations of their inputs. Since then, rigidity and similar notions of rank-
robustness have found numerous applications in complexity theory. See [6] and
[5] for comprehensive surveys on this topic. It is easy to see thatRA(r) 	 (n−r)2
for every n × n matrix A. Valiant showed that almost all n × n matrices have
rigidity (n−r)2 over an infinite field and Ω((n−r)2/ logn) over a finite field. He
posed the question of proving strong superlinear lower bounds on the rigidity of
explicitly defined infinite families of matrices. The best known lower bound for
explicit A is RA(r) = Ω(n2

r log n
r ), first proved by Friedman [10] over finite fields

for parity check matrices of good error-correcting codes; the same lower bound
over infinite fields has been proved by Shokrollahi, Spielman, and Stemann [19]
for the Cauchy matrix, the Discrete Fourier Transform matrix of prime order,
and other families. Note that this type of lower bound collapses to the trivial
RA(r) = Ω(n) when r = Ω(n).

In this paper, we prove that RA(εn) = Ω(n2) for two matrix families: (i)
A = (√pjk) and (ii) A = (e2πi/pjk ), where pjk are the first n2 primes. Our
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bounds hold over C, the field of complex numbers. To the best of our knowledge,
this is the first quadratic lower bound known on the rigidity of a non-generic
matrix over any field for rank bound Ω(n). By “generic” here, we mean a matrix
all of whose entries are algebraically independent transcendentals. Our matrices
are clearly very specific and have a succinct mathematical description. How-
ever, the challenge of finding explicit matrices with small rational entries having
superlinear rigidity is still open. Pudlák and Rödl [17] have shown that most
{0, 1}-matrices have rigidity Ω(n2) over R. Conjectured explicit candidates for
such lower bounds include Hadamard matrices. The best known lower bound for
the rigidity of an Hadamard matrix is Ω(n2/r) due to Kashin and Razborov [12].
Recently, de Wolf [9] initiated a quantum approach to attack rigidity by proving
an Ω(n2/r) (with better constants than in [12]) lower bound for an Hadamard
matrix. We remark that even though the DFT matrix D = (e2πijk/n) does not
have rational entries, an n1+δ lower bound on its rigidity would still be very
interesting since it would imply that an “ultra-Fast Fourier Transform” algo-
rithm (arithmetic circuits of linear size and logarithmic depth) cannot exist. We
conjecture in general that character tables of finite groups are rigid – Hadamard
and DFT matrices being two important special cases.

Our proof for (√pjk) uses an algebraic dimension concept introduced by Shoup
and Smolensky [18] (SS-dimension, for short). To prove the rigidity lower bound
on (e2πi/pjk), we use a higher degree generalization of the SS-dimension. The
SS-dimension was used in [18] to derive superlinear lower bounds on linear cir-
cuits of depths up to poly(log n) for linear transformations defined by a Van-
dermonde matrix and its inverse. In their Vandermonde matrix V = (xj−1

i ),
the xi are either algebraically independent transcendentals or super-increasing
integers (xi = 2ni

). We note that Shoup and Smolensky prove these superlin-
ear lower bounds directly, without appealing to or proving any rigidity bounds
on their matrices. In [15], the author showed that SS-dimension can be used to
prove quadratic lower bounds on the rigidity of generic Vandermonde matrices
for rank bound r = Ω(

√
n). Here, we demonstrate that the SS-dimension and

our generalization of it can in fact be used to prove the rather more impressive
lower bounds stated in the Abstract.

It is interesting that the circuit lower bounds obtained by Shoup and Smolen-
sky [18] using the SS-dimension are stronger than the bounds implied by Valiant’s
rigidity-based approach: they obtain Ω(dn1+1/d) for depths d 	 logn and
Ω(n logn/ log log n) for depths up to poly(logn), whereas the rigidity-based ar-
gument only seems to yield an Ω(n log logn) for depth O(log n) even assuming
an optimal rigidity bound. Shoup and Smolensky raise the question if the depth
restriction in their result can be removed. For the matrices they consider this
question is still open. However, if the SS-dimension and its generalization are
much larger than in their result, then we observe that quadratic or near-quadratic
lower bounds, with no depth restriction, can be shown on the arithmetic com-
plexity of linear transformations. In particular, an Ω(n2) and an Ω(n2/ logn)
arithmetic circuit lower bounds follow for the linear transformations given by
the matrices (e2πi/pjk ) and (√pjk) respectively. Indeed, such lower bounds were
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already proved by Lickteig in his thesis [14]. Nevertheless, we present a proof
of the circuit lower bound using the generalized SS-dimension since we feel it is
simple, intuitive, and fits well within the framework of this paper. Our proof,
when restricted to small-depth and Vandermondes, specializes to the Shoup-
Smolensky result, whereas when applied to (e2πi/pjk) and (√pjk), it yields the
quadratic/near-quadratic lower bounds of Lickteig. To the best of our knowl-
edge, application of the (generalized) SS-dimensions to prove lower bounds on
rigidity appears only in our previous work [15] and this paper. The mathematical
ideas used in [14], [18], and this paper are quite similar. While the starting point
of our approach in this paper is the Shoup-Smolensky result [18], we learned,
while working on this paper, of the use of similar techniques in the past by Lick-
teig and others (see [2] and [4, Chapter 9]) to prove lower bounds in algebraic
complexity.

More generally, algebraic dimension arguments involving square roots of
primes and roots of unity of prime orders have been used in the literature to
replace generic or random elements to fool “low degree” computations. They
have been used to construct specific polynomials that are hard to compute
in [2], [4], and [14]. Square roots of primes are also used to define hard in-
stances (Swinnerton-Dyer polynomials) for certain polynomial factorization al-
gorithms [11, Section 15.3]. Rational approximations of square roots of primes
are used in [8] to reduce randomness in polynomial identity testing based on
the Schwartz-Zippel Lemma. This approach is extended in [7] to prove that
the square roots of any set of rationals independent over squares (i. e., linearly
independent in the F2-space Q∗/Q∗2) can be used in place of square roots of
primes. The approach in [8] is generalized in [16] using square roots of irre-
ducible polynomials to be applicable over arbitrary fields – in particular over
finite fields.

This paper’s contribution is in demonstrating that known ingredients can be
put together to obtain strong lower bounds on matrix rigidity. Techniques in this
paper require the entries of our matrices to live in number fields of exponentially
large algebraic dimensions. It would be interesting to find rigid matrices with
entries from number fields of polynomial dimensions.

2 Main Results

Definition 1. For a matrix A,

RA(r) := min{wt(C) : rank(A− C) 	 r}, (1)

where wt(C) denotes the weight (number of non-zero entries) of the matrix C.

Theorem 2. Let P =
(√

pij

)
where pij are distinct primes for 1 	 i, j 	 n.

Then, RP (r) � n(n− 16r). In particular, we have RP (n/17) � n2/17.

The same holds if the pij > 1 are pairwise relatively prime square-free integers;
and the result remains valid if we multiply each entry by the square of a nonzero
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rational number. In fact, in lieu of the square roots of prime numbers we can
take any collection of n2 numbers as entries such that the 2n2

numbers obtained
as products of subsets of the entries are linearly independent over Q. The fact
that the square roots of primes satisfy this condition is Besicovitch’s theorem [3]
(Theorem 14). As mentioned in the Introduction, Cai and Bach prove a gener-
alization of Besicovitch’s theorem in [7]. Their result can be used to generalize
Theorem 2 where entries of the matrix are any rational numbers independent
over squares.

Theorem 2 is proved using the SS-dimension and Besicovitch’s theorem. We
also define a high degree generalization of SS-dimension (cf. Definition 9), and
combine it with algebraic independence arguments to obtain quadratic lower
bounds on the rigidity of matrices with primitive roots of unity of distinct prime
orders.

Theorem 3. Let Z =
(
e2πi/pjk

)
, where pjk are the first n2 primes for 1 	 j, k 	

n. Then, RZ(r) � n(n− 9r). In particular, we have RZ(n/10) � n2/10.

3 The Shoup–Smolensky Dimensions

In this section, we define the various SS-dimensions we use and prove some pre-
liminary lemmas relating them to matrix rank. Shoup and Smolensky originally
used Definitions 4 and 11 in [18].

Let us fix a field extension F ⊂ G. Let p be a nonnegative integer, P =
(a1, . . . , ap) a sequence of elements (ai ∈ G), and t � 0.

Definition 4. The restricted SS-dimension of degree t of P over F , denoted
by Dt(P, F ), is the rank over F of the set of all the

(
p
t

)
products

∏t
j=1 aij where

1 	 i1 < i2 < · · · < it 	 p.

Definition 5. The unrestricted SS-dimension of degree t of P over F , de-
noted by D∗

t (P, F ), is the rank over F of the set of all the
(
p+t−1

t

)
products∏t

j=1 aij where 1 	 i1 	 i2 	 . . . 	 it 	 p.

So in both definitions we take t-term products of elements of P ; in the restricted
case, repeated entries are not permitted. Henceforth, we will fix F = Q and
G = C and omit them from notations.

The following inequalities are immediate.

Dt(P ) 	 D∗
t (P ) (2)

Dt(P ) 	
(
p

t

)
(3)

D∗
t (P ) 	

(
p+ t− 1

t

)
. (4)

Let now Q = (b1, . . . , bq) and let PQ = (aibj : i = 1, . . . , p; j = 1, . . . , q). The
following is immediate.
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Observation 6
D∗

t (PQ) 	 D∗
t (P )D∗

t (Q). (5)

(Note that the analogous statement for the restricted dimension is false for all
t � 2.)

We define the SS-dimensions Dt(A) and D∗
t (A) of a k× � matrix A over G as

the corresponding dimensions of the list (in some order) of the k� entries of the
matrix.

Even though it is immaterial in what order we list the k� entries of a matrix,
simple inequalities link the SS-dimensions to matrix multiplication and matrix
rank.

The following is an immediate consequence of Observation 6.

Observation 7. Let A and B be matrices over the field G such that the product
AB is defined. Then

D∗
t (AB) 	 D∗

t (A)D∗
t (B). (6)

Corollary 8 ([15]). If the k × � matrix A has rank r (over G, its field of
definition) then

D∗
t (A) 	

(
kr + t− 1

t

)(
�r + t− 1

t

)
. (7)

For completeness, we indicate the proof. A can be written as A = BC where
B is a k × r matrix and C an r × � matrix over G. Hence, a combination of
Observation 7 and the trivial bound (4) yields the result.

Remark 1. By noting that one of the factors B or C can be taken to contain
an r × r identity submatrix, it is possible to slightly improve the bound (7) to(
kr+t−1

t

)(
�r−r2+t

t

)
.

Definition 9. Let P = (a1, . . . , am) be a sequence of complex numbers and let
T ⊆ Nm be a set of vectors of non-negative integers. The generalized SS-
dimension DT (P ) is defined to be the rank over Q of the set of monomials∏m

i=1 a
ei

i , where e := (e1, . . . , em) ∈ T :

DT (P ) := dim

〈
m∏

i=1

aei

i : e ∈ T
〉

Q

. (8)

Note that we obtain Dt(P ) by letting T = {e :
∑
ei = t and ei 	 1} and we

obtain D∗
t (P ) by letting T = {e :

∑
ei = t}.

We will also use the following special case of DT (P ).
Let t = (t1, . . . , tm) be a vector of non-negative integers. We define Dt(P ) by

letting T consist of vectors whose ith coordinate is at most ti:

Dt(P ) := dim

〈
m∏

i=1

aei

i : 0 	 ei 	 ti

〉
Q

. (9)
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Notation: For a vector t, let

σ(t) =
m∑

i=1

ti, and π(t) =
m∏

i=1

(ti + 1).

Note that, in general, DT (P ) 	 |T | and, in particular,Dt(P ) 	 π(t). The weaker
upper bound Dt(P ) 	

(|P |+σ(t)
σ(t)

)
is sometimes useful as in the following lemma

that is analogous to Corollary 8.

Lemma 10. If a k × � matrix A has rank at most r, then

Dt(A) 	
(
kr + σ(t)
σ(t)

)(
�r + σ(t)
σ(t)

)
.

Shoup and Smolensky also define a counting version of their dimension. This
helps in proving lower bounds for matrices containing super-increasing sequences
of integers.

Definition 11. Given a sequence P = (p1, . . . , pm) of elements pi ∈ G, we
define #D∗

t (P ) to be the number of distinct sums of products of length-t subse-
quences (with repetitions allowed) of P :

#D∗
t (P ) :=

∣∣∣∣∣
{∑

σ∈Ψ

t∏
i=1

pσ(i) : Ψ ⊆ seq(m, t)

}∣∣∣∣∣ ,
where seq(m, t) is the set of sequences σ of the form 1 	 σ(1) 	 σ(2) 	 · · · 	
σ(t) 	 m.

If we use #D∗
t (A) with a k× � matrix A over G, then we interpret entries of

A as a sequence of k� elements listed in some order.

An analog of Corollary 8 may now be proved for #D∗
t (A) of low-rank matrices.

Lemma 12. If A ∈ C n×n has rank at most r, then for 1 	 t 	 n2,

#D∗
t (A) 	 (nr)O(t)(nr+t

t )2

.

Proof. By the proof of Corollary 8, we know that a product of t elements of A
(with repetitions) is an integer linear combination of products of t elements (with
repetitions) from P and t elements (with repetitions) from Q, where A = PQ,
P is n× r, and Q is r×n. Thus, every sum in the set defining #D∗

t (A) is also an
integer linear combination

∑
α,β λα,βpαqβ , where α and β range over degree-t

monomials formed from elements of P and Q respectively. It is easy to see also
that 0 	 λα,β 	 (nr)O(t) for every α and β.

4 Proofs

We continue to consider a field extension F ⊂ G.
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Theorem 13. Let A be an n × n matrix over G and let 0 	 r 	 n. Suppose
Dnr(A) =

(
n2

nr

)
, i. e., all products of nr distinct entries of A are linearly inde-

pendent over F . Then
RA(r) � n(n− 16r). (10)

Proof. Let C be a matrix such that RA(r) = wt(C) and rank(A − C) 	 r. By
Corollary 8, we have

Dt(A− C) 	 D∗
t (A− C) 	

(
nr + t

t

)2

. (11)

In order to obtain a lower bound on Dt(A−C), let us consider all t-wise products
of elements of A not affected by C. By assumption, these (as well as the products
of all other t-tuples from A) are linearly independent over F ; therefore

Dt(A− C) �
(
n2 − wt(C)

t

)
. (12)

Set t = nr and combine inequalities (11) and (12). We use the inequality
(
n
k

)
�

(n/k)k. (
n2 − wt(C)

nr

)
	
(

2nr
nr

)2

(
n2 − wt(C)

nr

)nr

	
(
22nr
)2

= 16nr

wt(C) � n2 − 16nr.

We conclude that RA(r) � n(n− 16r).

To obtain Theorem 2, we set F = Q, G = C, and combine Theorem 13 with the
following result (Besicovitch [3], cf. [1, Ex. 2.1.41]). An integer is square-free if
it is not divisible by the square of any prime number.

Theorem 14 (Besicovitch). The square roots of all positive square-free inte-
gers are linearly independent over Q. In particular, for distinct primes p1, . . . , pm,
[Q(
√
p1,. . . ,

√
pm) : Q] = 2m.

The next rigidity lower bound uses the Generalized SS-dimension.

Theorem 15. Let
Z :=

(
e2πi/pjk

)
1�j,k�n

,

where pjk are the first n2 distinct primes. Then, for 0 	 r 	 n, we have

RZ(r) � n(n− 9r),

assuming n is sufficiently large.
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Proof. Let C be a matrix such that wt(C) = RZ(r) and rank(Z − C) 	 r.
Let m := n2 − wt(C) be the number of entries of Z “untouched” by C and

let p1, . . . , pm be the corresponding primes. Let

P := (e2πi/p1 , . . . , e2πi/pm) and
t := (p1 − 1, . . . , pm − 1).

We will consider Dt(P ). To get a lower bound, we use the following facts.

Lemma 16. [Q(e2πi/n) : Q] = ϕ(n).

For a proof of this lemma, see e.g., in [13, Ch VI,Theorem 3.1].

Lemma 17. Q(e2πi/a1 , . . . , e2πi/am) = Q(e2πi/ lcm(a1,...,am)).

This lemma is easy to prove.

It follows that

Dt(P ) = [Q(e2πi/p1 , . . . , e2πi/pm) : Q] = ϕ(p1 · · · · · pm) =
m∏

i=1

(pi − 1). (13)

On the other hand, the elements of P are entries of the matrix Z −C of rank
at most r. Thus, by Lemma 10, we have the upper bound

Dt(P ) 	
(
nr + σ(t)

nr

)2

. (14)

Since
∏m

i=1(pi − 1) � m! and σ(t) =
∑m

i=1(pi − 1) = O(mn2 logn), and using
the inequalities

(
a
b

)
	 ab, we obtain from (13) and (14),

m! 	 Dt(P ) 	 (nr +O(mn2 logn))2nr. (15)

Since nr,m 	 n2, after taking logarithms of the above inequality, we obtain
m logm 	 c2nr logn for some constant c2 > 0. SinceRA(r) 	 (n−r)2 in general,
we note that m = n2 −RZ(r) � 2nr − r2 � 2n− 1 for 1 	 r 	 n. Using this in
the last inequality, we have m 	 9nr assuming n is sufficiently large.

Using Lemma 12, we can show (proof omitted in this abstract) a quadratic
rigidity lower bound for matrices with super-increasing (doubly-exponential in
n) entries.

Theorem 18. Let

S =
(
2n2(ni+j)

)n−1

i,j=0
. (16)

Then, we have RS(r) � Ω(n2) for any r 	 εn for some fixed positive constant ε.

We conclude this section with two auxiliary results (proofs omitted).
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Combining the prime number theorem and the techniques used in Theo-
rems 13 and 15, we can prove the following near-quadratic lower bounds on
matrices of the first n2 square roots and on matrices of roots of unity of the first
n2 orders.

Theorem 19. Let A be the matrix of square roots of the first n2 positive inte-
gers, e.g., A = (

√
n(i− 1) + j)n

i,j=1. Then there exist constants c > 0 and d > 0
such that for all r 	 cn/ logn, RA(r) � dn2/ logn.

Theorem 20. Let
W :=

(
e2πi/n(j−1)+k

)
1�j,k�n

.

Then there exist positive constants c and d such that,

for r 	 cn/ logn, RW (r) � dn2/ logn.

5 Circuit Lower Bounds

By directly applying the Shoup-Smolensky dimension as was done in [18] and its
generalization in Definition 9, we can get a better lower bound than apparently
implied by Valiant’s rigidity-based criterion on the arithmetic circuit complexity
of the linear transformation x → Ax, where A is any of the three matrices with
quadratic rigidity we have seen in the previous section.

First, we recall the definition of linear circuits and Valiant’s result relating
rigidity to linear circuit complexity.

Definition 21. A linear circuit over a field F is a directed acyclic graph L in
which each directed edge is labeled by a non-zero element of F. If g is a gate
with in-coming edges labeled by λ1, . . . , λk from gates g1, . . . , gk, then g com-
putes v(g) := λ1v(g1) + · · ·+ λkv(gk), where v(gi) ∈ F is the value computed at
gate gi.

Suppose L has n input gates (nodes with no in-coming edges) and m output
gates (including nodes with no out-going edges). If we denote by y1, . . . , ym ∈ F
the values computed at the output gates of L starting with the values x1, . . . , xn ∈
F at the input gates, then we will have y = ALx, where AL ∈ Fm×n; in other
words, the circuit L computes the linear transformation given by the matrix AL.
For simplicity, in this paper, we assume that m = n. Also, except if stated
otherwise, we assume F = C.

The size of a linear circuit L is defined to be the number of edges in L. The
depth of L is defined to be the length of a longest path from an input node to
an output node in L. When depth of L is Ω(logn), we assume that each of its
internal nodes (gates) has in-degree (fan-in) exactly 2; otherwise, the in-degree
is at least 2.

The model of linear circuits is a natural model of computation for computing
linear transformations. Furthermore, at the expense of constant factors in size
complexity, any arithmetic circuit computing a linear transformation over C can
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be turned into a linear circuit [4, Theorem 13.1]. It is easy to see that any linear
transformation Fn −→ Fn can be computed by a linear circuit of size O(n2) and
depth O(log n). It is a major challenge in complexity theory to prove superlinear
lower bounds on the size of linear circuits, even of logarithmic depth, computing
explicit linear transformations. In a seminal result [20], Valiant proved a criterion
for such a complexity lower bound in terms of matrix rigidity.

Theorem 22 (Valiant). Suppose the linear transformation x → Ax is com-
puted by a linear circuit of size s and depth d in which each gate has fan-in two.
Then for any t > 1,

RA(s log t/ log d) 	 2O(d/t) · n. (17)

In particular, if RA(εn) � n1+δ for some constants ε, δ > 0, then any linear
circuit of logarithmic depth computing x → Ax must have size Ω(n log logn).

Combining Theorem 2 or Theorem 3 with Theorem 22, we get the following
circuit lower bound.

Theorem 23. Let A =
(√

pjk

)
or A =

(
e2πi/pjk

)
, where pjk the first n2 primes

for 1 	 j, k 	 n. Then any linear circuit of logarithmic depth computing x → Ax
must have size Ω(n log logn).

We get a much better lower bound by adapting the techniques of Shoup and
Smolensky to our matrices proven to have quadratic rigidity. We do not know if
it is possible to extend Valiant’s method to improve Theorem 23. The following
lemma generalizes an inequality from [18] on SS-dimension. We include its proof
for completeness.

Lemma 24. Let L be a linear circuit over C computing the linear transforma-
tion x → Ax. Let s denote the size and d denote the depth of L. Define s̄ := s/d.
For a set T ⊆ Nn2

, define σ(T ) := maxt∈T

∑n2

i=1 ti and let DT (A) be as in
Definition 9. Then,

DT (A) 	
(
s̄+ σ(T )

s̄

)d

. (18)

Proof. Let (a1, . . . , am) be the sequence of entries of the matrix A in some order,
where m := n2. By abuse of notation, we use A to also denote this sequence.
We want to estimate the Q-linear dimension spanned by monomials of the form
ae1
1 · . . . · aem

m , where e ∈ T .
Arrange the circuit L into d levels, where a gate g is at level k if the longest

path to g from an input has k edges; the input nodes are at level 0. For 1 	 k 	 d,
let Lk denote the set of labels on the edges that feed into gates at level k. Our
first observation is that an entry a := aij of the matrix A is equal to the sum
of labels of all the paths from input j to output i, where the label of a path
is defined to be the product of all the labels on its edges. Here and below, we
suppress many subscripts for brevity. The intended summation ranges should be
clear from the context. Thus, we have

a =
∑

p

λ1 · · ·λd,
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where the sum ranges over all paths p from input j to output i and λk ∈ Lk∪{1}
are “labels” on edges of the path p. We include 1 here since an edge may not go
between two consecutive levels and hence 1 may be used as λk for the “skipped”
k. Hence a monomial in the a’s is given by

m∏
i=1

aei

i =
m∏

i=1

∑
pi

(λi1 · · ·λid)ei

=
∑

(λe1
11 · · ·λem

m1) · · · (λe1
1d · · ·λ

em

md)

Note that each monomial λe1
1k · · ·λ

em

mk has labels from Lk ∪ {1} and may have
repetitions. Since e ∈ T , we may thus view it as a monomial of total degree at
most σ(T ) on |Lk| variables. Let sk = |Lk|. There are at most

(
sk+σ(T )

sk

)
such

monomials. Hence, each monomial
∏m

i=1 a
ei

i in our space is an integer linear
combination of products of d such monomials from Lk for 1 	 k 	 d. It follows
that

DT (A) 	
d∏

k=1

(
sk + σ(T )

sk

)

	
( 1

d

∑d
k=1 sk + σ(T )
1
d

∑d
k=1 sk

)d

,

where the last inequality is a consequence of the log-concavity of f(x) =
(
x+c

x

)
.

Since s = size(L) =
∑d

k=1 sk, we have proved the claim.

The following lower bounds were proved earlier by Lickteig [14] (see also [4,
Exercise 9.5]) before the introduction of SS-dimension in [18]. Here, we derive
them by applying the SS-dimension approach from Lemma 24 above.

Corollary 25. Let Z :=
(
e2πi/pjk

)n
j,k=1 where pjk are the first n2 primes. Then

any arithmetic circuit computing the linear transformation x → Zx must have
size Ω(n2).

Proof. Let m := n2. We will apply the special case Dt(Z) of DT (Z) with t =
(p1− 1, . . . , pm− 1). From the proof of Theorem 15, we know that DT (Z) � m!.
On the other hand, σ(T ) = σ(t) =

∑m
i=1(pi − 1) = Θ(m2 logm). Since s 	 n2

always, we have s̄ ! σ(T ) and the easy estimate
(
s̄+σ(t)

s̄

)
	 (2σ(T ))s̄. Using

these in (18),
m! 	 (2σ(T ))s̄d 	 (c.m2 logm)s.

Taking logarithms on both sides of this inequality, we obtain s = Ω(m) =
Ω(n2).

Corollary 26. Let P =
(√

pij

)
, where pij are distinct prime integers. Then,

any arithmetic circuit computing x → Px must have size Ω(n2/ logn).
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Proof. Let m := n2. Let T := {(e1, . . . , em) : 0 	 ei 	 1}. From Theorem 14,
DT (P ) = 2m. Since σ(T ) = m � s, we obtain from (18),

2m 	 (2m)s̄d = (2m)s.

Taking logarithms proves the claim.

The lower bounds in the corollaries above do not depend on the depth of the
circuits. However, Shoup and Smolensky exploit the dependence of (their special
case of) inequality (18) on depth to derive lower bounds of Ω(dn1+1/d) for d 	
logn, and Ω(n log n/(log d − log logn)) for larger d, for Vandermonde matrices
with algebraically independent generators. They also prove similar lower bounds
for Vandermonde matrices generated by super-increasing sequences of integers.
Here, we use n2 such integers to prove a stronger lower bound and with no depth
restriction.

Theorem 27. Let S be the matrix with super-increasing entries as in (16). Then
any arithmetic circuit over C computing the linear transformation x → Sx must
have size Ω(n2/ logn).

Proof. An extension of Lemma 24 using arguments similar to [18] states that
if a linear circuit of depth d computes x → Ax, then #D∗

t (A) is at most
exp2(nO(1)

(
s̄+t
s̄

)d
), where s̄ = s/d and s denotes the size of the circuit. Let

t = Ω(n2) (with a suitable constant). If s̄ � t, then we are done. So, we can
assume that s̄ 	 t and simplify the above bound to exp2(nO(1)(2t)s).

Now, let L be an optimal circuit computing x → Sx. On the one hand, as
noted in the proof of Theorem 18, we have #D∗

t (S) � exp2(
(
n2+t−1

t

)
). On the

other hand, from the above argument, #D∗
t (S) 	 exp2(nO(1)(2t)s). Comparing

these bounds, we get the lower bound s = Ω(n2/ logn).

Acknowledgements. I thank Laci Babai for sharing his insights and making
valuable contributions to this paper.
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Abstract. Let a program p on input a outputs b. We are looking for a
shorter program p′ having the same property (p′(a) = b). In addition, we
want p′ to be simple conditional to p (this means that the conditional
Kolmogorov complexity K (p′|p) is negligible). In the present paper, we
prove that sometimes there is no such program p′, even in the case when
the complexity of p is much bigger than K (b|a). We give three different
constructions that use the game approach, probabilistic arguments and
algebraic (combinatorial) arguments, respectively.

1 Definitions and Statements

Let a and b be binary strings. Consider programs p such that p(a) = b (the
program p on input a outputs b). What is the minimal length of such a program?
If the programming language is chosen appropriately, this length is close to
K (b|a), the conditional Kolmogorov complexity of b given a. [We will ignore
additive terms of order O(log n) where n is the maximum length of the strings
involved. With this precision all the versions of Kolmogorov complexity (the
plain one, the prefix one etc.) coincide.]

To avoid references to a specific programming language we will consider “de-
scriptions” instead of programs. A string p is called a conditional description of
a string b given a if K (b|a, p) is negligible. Here K (b|a, p) stands for the condi-
tional complexity of b given the pair 〈a, p〉. We will specify what is “negligible”
in each case.

� Supported by RFBR grant 04-01-00427.
�� Supported by STINT foundation, Uppsala university (Sweden), Royal Holloway

College (UK), RFBR (grants 02-01-22001, 03-01-00475, NSh-358.2003.1).
� � � Supported in part by the RFBR grants 02-01-22001, 03-01-00475, NSh-358.2003.1.

† Supported in part by the RFBR grants 02-01-22001, 03-01-00475, NSh-358.2003.1.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 308–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Non-reducible Descriptions for Conditional Kolmogorov Complexity 309

For given a and b consider all strings p such that K (b|a, p) ≈ 0. One can easily
verify that the length of any such p is at least K (b|a). This bound is tight. (Both
assertions are true with O(log n) precision; the same precision is required in the
equality K (b|a, p) ≈ 0.)

We say that a description p′ is a simplification of a description p if K (p′|p) ≈ 0
with logarithmic precision. The relation K (p′|p) < ε is not transitive for a fixed
ε: K (p′|p) < ε and K (p′′|p′) < ε imply only K(p′′|p) < 2ε+O(log n). However,
this relation resembles a preordering on strings and we are interested in the
structure of the set of all conditional descriptions (for given a, b) with respect to
this “pre-ordering”.

The string b itself is a conditional description of b given a. Muchnik [1] has
shown that (among all descriptions of b relative to a) there exists a description
of minimal length (≈ K (b|a)) that is a simplification of b. We will prove that
this is not true in the general case (for arbitrary description p instead of b): for
some a, b there is a description p of complexity much larger than K (b|a) that
has no simplifications of length ≈ K (b|a).

The exact statement is as follows:

Theorem. There are constants c1 < c2 < c3 < c4, c and ε > 0 such that for all
sufficiently large n there exist a, b, p of length at most c4n having the following
properties:

(a) K (b|a, p) 	 c logn (“the string p is a conditional description of b given a,
with logarithmic precision”);

(b) K (b|a) 	 c1n (“the conditional complexity of b given a is small . . . ”);
(c) K (p) � c3n (“. . . compared with the complexity of p”);
(d) there is no string p′ such that K (p′) 	 c2n, K (p′|p) 	 εn and K (b|a, p′) 	

εn (“. . . but p has no simplifications of complexity c2n”).

Note that we are using linear upper bounds on K (p′|p) and K (b|a, p′) instead
of previously claimed bounds O(log n). This makes our statement stronger: there
exists p having no simplifications p′ even with linear upper bounds on conditional
complexities. Note also that complexities K(a), K(b) of strings a, b provided by
Theorem 1 are Θ(n) (and hence |a|, |b| = Θ(n)). Indeed, if K(a) < δn where δ is
less than both ε and c2−c1, then p′ = b is a counterexample to (d), since (a) and
(b) imply K(b|p) 	 δn+O(log n) and K(b) 	 (c1 + δ)n+O(log n), respectively.
And if K(b) < δn (where δ < ε), then the empty p′ is a counterexample to (d),
since (a) implies K(b|a) 	 δn+O(1).

Let us mention also that for all our examples of strings a, b (except for the last
example in Section 4 where random points and lines are used) the inequality (b)
holds in a stronger form: K (b) 	 c1n.

In what follows we give three different proofs of the theorem, using three
methods of constructing objects with given complexity properties (games, prob-
abilistic arguments and combinatorial estimates).

In fact, our theorem is stated in a simple, but not the strongest, form. For
example, our proof shows that for all c1 < c2 < c3 < c4 there exist c and
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ε satisfying the statement (we need only that ε is much less than differences
c2 − c1 and c3 − c2).

Recently M. Ustinov has shown that for all a and b (except for trivial cases
K (a) ≈ 0 and K (b|a) ≈ 0) there exists a program p that transforms a to b and
cannot be simplified. This result was further improved by An. Muchnik (see [2]).

The authors are grateful to all participants of Kolmogorov seminar of the
Department of Mathematics (Matematical Logic and Theory of Algorithms Di-
vision) at Moscow University.

2 Game Approach

Consider the following game we play against an adversary.
Let P , P ′, A and B be finite sets (as we see later, they correspond to strings p,

p′, a, b respectively). On our moves we construct a partial function ξ : P×A→ B.
At the start of the game the function ξ is empty, and on each move we may define
the value of ξ at one point (once defined values cannot be changed later). Or we
may skip the move, that is, we may leave ξ unchanged.

The adversary on his moves constructs multi-valued functions ϕ : P → P ′ and
ψ : P ′ ×A → B. That is, the values of ϕ are subsets of P ′, and the values of ψ
are subsets of B. Initially ϕ and ψ are empty (all their values are empty). At
each move the adversary may add one new value to ϕ (adding a new element
to ϕ(p) for some p) or ψ (adding a new element to ψ(p′, a) for some p′, a). The
existing elements cannot be removed. The adversary also may skip the move.

The adversary must obey the following rules: the function ϕ takes on every
argument at most α values (i.e., #ϕ(p) 	 α for any p ∈ P ) and the function ψ
takes on every argument at most β values (#ψ(p′, a) 	 β for any p′, a).

Players’ moves alternate. Obviously, each player can make only finite number
of non-trivial moves (moves that change the functions). Thus after a certain move
all the three functions remain unchanged. The result of the game is defined as
follows: we win if there exist p ∈ P , a ∈ A and b ∈ B such that ξ(p, a) = b
and p, a, b are not “covered” by the adversary: the latter means that there is no
p′ ∈ ϕ(p) such that b ∈ ψ(p′, a).

So the game is determined by the sets A, B, P and P ′ (actually, only their
cardinalities matter) and the parameters α and β. We represent the function
ξ as a table with #P rows and #A columns. The cells of this table initially
are empty; they are filled by elements of B (each cell may contain at most one
element).

The adversary fills the table for function ψ. It has #P ′ rows of the same length
#A as in our table. Each cell may contain up to β elements of B. The adversary
also constructs the function ϕ. It is convenient to represent this function by
arrows going from row p of our table to all rows of adversary’s table that belong
to ϕ(p). The outdegree is bounded by α. We win if our table has a non-covered
cell. A cell (p, a) is covered if its row is connected by an arrow to a row of
adversary’s table that has in the same column the same element of B (and, may
be, some other elements). See Fig. 1.
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Fig. 1. Cells of our table ξ and adversary’s table ψ are filled with elements of B; each
row of ξ has at most α outgoing edges, each cell of ψ contains at most β elements

The proof is based on the following simple observation:

Lemma. If α · β < #B and α ·#P + β ·#A ·#P ′ < #A ·#P then we have a
winning strategy in the game.

Proof of the lemma. The first inequality guarantees that if ξ is not yet defined
on a pair p, a, then we can choose a value b = ξ(p, a) so that the cell (p, a) is
not covered (at the current step). Indeed, for each of at most α values p′ ∈ ϕ(a)
there exist at most β values b ∈ ψ(p′, a), so there exists b that is different from
all those values.

Choosing b in this way (assuming that there are empty slots in ξ-table), we
guarantee that after each our move there exists a non-covered cell (p, a). Our
move is non-trivial only when the previous adversary’s move is non-trivial. The
second inequality guarantees that the number of cells in ξ-table is greater than
the number of adversary’s non-trivial moves (so the empty slots do exist). Indeed,
for each of #P arguments the value of ϕ may be changed at most α times and
for each of #A ·#P ′ pairs 〈p′, a〉 the value of ψ may be changed at most β times.

Hence after every adversary’s non-trivial move we can find an empty cell in
ξ-table and enter a value in it so that the cell becomes non-covered. The lemma
is proved.

Now we prove the theorem using Lemma. Fix some positive rational constants
c1 < c2 < c3 and ε > 0 such that ε is small compared with c1, c2−c1 and c3−c2.
Let B be the set of all strings of length at most c1n, let P ′ be the set of all strings
of length at most c2n and let P be the set of all strings of length at most c3n.
The set A can be chosen in many ways, as we have almost no restrictions on a.
For example, let A be equal to B.

Let us fix the adversary’s strategy now. Assume that the adversary includes in
ϕ(p) (one by one) all p′ ∈ P ′ such that K (p′|p) < εn, and includes in ψ(p′, a) all
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the strings b ∈ B such that K (b|a, p′) < εn. One can do this effectively given n, as
the function K is upper semi-computable (that is, the set {〈x, y, l〉 | K(x|y) < l}
is recursively enumerable). This strategy does not violate the rules provided
α = β = 2εn.

Let us verify that the conditions of the Lemma are satisfied:

α · β 	 22εn+2 ! 2c1n

(we assume that ε is less than c1/2), and both terms in the sum

α ·#P + β ·#A ·#P ′ ≈ 2εn+c3n + 2εn+c1n+c2n

are much less than #A · #P = 2c1n+c3n (we also assume that ε is less than
c3 − c2). Therefore, by the Lemma, we have a winning strategy in the game.

The winning strategy is computable given n. Applying it against the adver-
sary’s strategy described above we obtain a function ξ that is computable given
n (as the adversary’s moves are computable, so are ours). To be precise we
should write ξn indicating the dependence on n; complexity of algorithm that
computes ξn is O(log n) since ξn is determined by n Since our strategy is a win-
ning one, there exists a cell 〈p, a〉 that is not covered after all non-trivial moves
are performed. (It depends on n in a non-computable way, as we do not know
which of the adversary’s moves is the last non-trivial one.)

Let b = ξ(p, a) be the element in the “winning” cell of our table. Then
K (b|a, p) = O(log n). As the length of b is less than c1n we have K (b) 	
c1n + O(1). [This is O(1) larger than the upper bound in the theorem but can
be compensated by a small increase in c1.] As the cell (p, a) is not covered, there
is no string p′ of length at most c2n such that K (p′|p) < εn and K (b|a, p′) < εn.
This is weaker than required: we want the statement to be true for all p′ of com-
plexity (not the length) less than c2n. However it is easy to fix this. Replacing
p′ by its shortest description we increase K (b|a, p′) and K (p′|p) by O(log n) and
this increase can be compensated by a small change in ε. Note also that lengths
of all strings are at most c3n so we may use any c4 > c3. It remains to fix only
one problem: we want the complexity of p to be at least c3n and the rules of the
game do not provide any guarantee for this.

Let us change the game allowing the adversary at any step remove (=“mark
as unusable”) any element of P ; the total number of removed elements should
not exceed #P/2, so at least half of elements in P should remain intact. In the
winning rule we require that element p has not been removed by the adversary.
For the modified game the statement of the Lemma is changed as follows: in the
right hand side of the inequality α · #P + β · #A · #P ′ < #A · #P the term
#A ·#P is replaced by #A ·#P/2. The modified Lemma is still true: Indeed, if
we cannot perform any move then all the non-removed p’s have been used with
all a’s, thus we have done #A ·#P/2 moves. And the conditions of the modified
lemma are still fulfilled for large enough n.

Other changes are as follows: we let P be equal to the set of all strings of length
at most c3n + 2, and the adversary removes all elements of P with complexity
less than c3n. It is clear that at most half of elements could be removed, and



Non-reducible Descriptions for Conditional Kolmogorov Complexity 313

all the other bounds remain true. After this modification we know that for the
winning cell (p, a) the complexity of p is at least c3n, and the theorem is proved.

3 Probabilistic Approach

Assume that finite sets A, B, P , P ′ are fixed. (They will play the same role
as before.) Consider partial functions ξ : P × A → B and multi-valued func-
tions ϕ : P → P ′ and ψ : P ′ × A → B having at most α and β values (respec-
tively) for each argument.

Call a function ξ a winning function (cf. the game described above) if for all
multi-valued ϕ and ψ (satisfying given bounds on the number of values) and for
every set P̄ ⊂ P of cardinality at most #P/2 there exists a non-covered cell in
a row outside P̄ , that is, there exist p ∈ P \ P̄ , a ∈ A and b ∈ B such that
ξ(p, a) = b but there is no p′ ∈ ϕ(p) such that b ∈ ψ(p′, a).

In other words, a function ξ is winning if we can put its values in the table
ignoring the adversary’s moves and be sure that we win. It is clear that with-
out loss of generality we may assume that the functions ϕ and ψ always take
maximum allowed number of values (if ξ wins in this case, it wins always). If a
partial function ξ is a winning one, then any its total extension is also a winning
function, so we consider only total winning functions in the sequel.

Thus if there is a winning function then there is a winning strategy. We will
use probabilistic arguments to show that if the cardinalities of A,B, P satisfy
certain requirements then a winning function exists. That is, we prove that with
positive probability a randomly chosen function ξ is winning (assuming that all
total functions ξ are equiprobable).

Let us estimate the probability that a random (total) function ξ does not win
against given P̄ , ϕ and ψ; it is enough to show that this probability is so small
that being multiplied by the number of different choices for P̄ , ϕ and ψ it is still
less than 1.

Fix P̄ , ϕ and ψ. We need an upper bound for the probability that for all
p ∈ P \ P̄ and all a the value b = ξ(p, a) (that is chosen independently for all
pairs 〈p, a〉) is covered by the functions ϕ and ψ. For a given pair 〈p, a〉 this
probability is less than αβ/#B, and the number of different pairs is at least
#P ·#A/2. So we obtain the upper bound

(αβ/#B)#P ·#A/2.

Let us count now the number of different triples 〈P̄ , ϕ, ψ〉. We have at most
2#P choices for P̄ , at most (#P ′)α·#P choices for ϕ, and at most (#B)β·#A·#P ′

choices for ψ. This gives a sufficient condition for the existence of a winning
function:

(αβ/#B)#P ·#A/2 · 2#P · (#P ′)α·#P · (#B)β·#A·#P ′
< 1.

What does this condition mean? Assume that αβ < #B/2 (significantly larger
αβ do not satisfy the condition anyway). Let us focus on exponents in the in-
equality. The condition is true if all the exponents with bases greater than 1 are
much less than the exponent with base less than 1:
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#P ! #P ·#A/2,
α ·#P ! #P ·#A/2,

β ·#A ·#P ′ ! #P ·#A/2.

The first condition is true almost always, the second one means that α ! #A,
the third one means that β · #P ′ ! #P . We see that all these conditions
(together with the inequality αβ < #B/2) strengthen the conditions of the
Lemma above (It could be expected since winning functions are special cases
of winning strategies—those where all moves are fixed in advance and do not
depend on the adversary’s move).

In particular, a winning function exists if A, B, P , P ′, α, β are chosen as
in the first proof of the theorem. Recall that we want K (ξ(p, a)|a, p) to be
O(log n). This can be achieved if the function ξ has Kolmogorov complexity
O(log n), that is, the Kolmogorov complexity K (ξ) of the graph of ξ is O(log n).
To prove that there is a winning function ξ such that K (ξ) = O(log n) we
can use the following (very general) argument: By a very long (but finite)
exhaustive search we can check whether a given function is winning or not
(checking all P̄ , ϕ and ψ). Thus we can probe all the functions ξ in some
natural order until we find the first winning one. To run this algorithm we
need only to know n, hence the first winning function has Kolmogorov complex-
ity O(log n).

The second proof of the theorem is completed.
What is the advantage of this (more complicated) proof? It shows that the

theorem can be strengthened as follows: for every oracle X there exist p, a, b sat-
isfying conditions (a)–(c) of the theorem (unchanged, without the oracle) such
that there is no p′ for which both K X(p′|p) and K X(b|a, p′) are less than εn.
Indeed, our winning function beats any adversary’s strategy and its contruction
(and the inequality K (b|a, p) = O(log n)) does not depend on the enemy’s strat-
egy. [Instead of relativizing the Kolmogorov complexity by an oracle one can add
any string as the extra condition in K (p′|p) and K (b|a, p′).]

4 Algebraic Construction

Although the proof in the previous section allows us to find the winning function
by an exhaustive search, this search could be very long. We would like to have
a more “explicit” example of the winning function. To this end we formulate
certain conditions that guarantee that a function ξ : P×A→ B is a winning one.
Then we will explicitly present a winning function satisfying those conditions.

Consider a function ξ : P×A→ B. For every p ∈ P consider the corresponding
line in the table ξ, that is, the function ξp : A → B defined as ξp(a) = ξ(p, a).
We require that the functions ξp for different p (=different lines of the table ξ)
are far away from each other. This requirement seems natural: if the number of
different a’s where ξp(a) and ξq(a) coincide is large, then the adversary may use
the same p′ for p and q.
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Formally speaking, we give the following

Definition. A function ξ is γ-regular if for all p �= q the number of a ∈ A such
that ξp(a) = ξq(a) is at most γ (=if the Hamming distance between correspond-
ing lines is at least #A− γ).

Lemma 1. If a function ξ is γ-regular,

8αβ2 < #P/#P ′ and 8αβ
√
γ <
√

#A,

then the function ξ is a winning one.

Proof. First we reduce the general case to the case β = 1. To this end we replace
every line in the table ψ by β lines (that contain the same elements of B as the
old line, one element per cell). The height of the table, #P ′, becomes β times
bigger and the function ϕ has now β times more values (each arrow is replaced by
β arrows). So α is replaced by α̃ = αβ. If a function ξ is winning in the modified
game with P̃ ′ = {1, . . . , β}×P ′, α̃ = αβ and β̃ = 1 (all other parameters remain
unchanged) then ξ is winning in the original game. Indeed, every P̄ , ϕ, ψ for the
original game can be transformed into P̄ , ϕ̃, ψ̃ for the modified game: let ϕ̃(p)
be the set {〈i, p′〉 | p′ ∈ ϕ(p)}, and let ψ̃(〈j, p′〉, a) be equal to the jth value of
ψ(p′, a)), in some order. If ξ beats P̄ , ϕ̃, ψ̃ then it beats also P̄ , ϕ, ψ.

The conditions of the lemma translate into inequalities

8α̃ < #P/#P̃ ′ and 8α̃
√
γ <
√

#A.

So we can assume that β = 1 from now on.
Let us split an α-valued function ϕ into α single-valued functions ϕ1, . . . , ϕα.

Each ϕi covers some cells of the table ξ. We will estimate the fraction of elements
covered by ϕi and prove that it is less than 1/(2α). This implies that less than
half of all cells are covered.

Why any single-valued function ϕ covers few cells? The reason is that #P ′ is
much less than #P , thus the same line of the table ψ must correspond to many
lines of the table ξ. By our assumption the lines of ξ have small intersection and
hence cannot be easily covered by the same line. The formal argument use the
following simple bound:

Lemma 2. Assume that a family of k subsets of an a-element set is given such
that every two subsets in this family have at most γ common elements. Then
the sum of cardinalities of all the subsets in the family is at most

2a+ 2k
√
aγ.

Remark: For small k the first term of the sum 2a+ 2k
√
aγ, not depending on k,

is the main term; for large k the second term, linear in k, is the main term; two
terms are equal for k =

√
a/γ.

Proof of Lemma 2. Let a1, . . . , ak be the cardinalities of the given subsets.
The inclusions-exclusions formula implies that

a � a1 + a2 + . . .+ ak − k2γ
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(there are at most k2 pairwise intersections, each of cardinality at most γ).
Therefore

a1 + . . .+ ak 	 a+ k2γ.

If k 	
√
a/γ then the second term (k2γ) is bounded by a and the sum a+ k2γ

is at most 2a. Hence the inequality of the lemma is true for all k 	
√
a/γ. For

k =
√
a/γ we have also a1+ . . .+ak 	 2k

√
aγ, as in this case 2k

√
aγ = 2a. Since

the right hand side of the last inequality is linear in k, the inequality is true for
all k �

√
a/γ. To demonstrate this let us delete from the sum a1 + . . .+ ak all

terms except for the
√
a/γ largest ones. As the average of remaining terms is

not smaller than the average of all terms, we are done.
Lemma 2 is proved.

In fact this proof works only if
√
a/γ is an integer. This is not really important

since one can easily adapt the arguments below and use Lemma 2 only for integer
case, but we can still prove Lemma 2 in general case using more careful bounds.
Namely, a1 + . . . + ak 	 a + (k(k − 1)/2)γ, since there are at most k(k − 1)/2
pairwise intersections. Then for k 	 "

√
a/γ# one has

a+ (k(k− 1)/2)γ 	 a+
√
a/γ(
√
a/γ+ 1)γ 	 a+

√
a(
√
a+
√
γ) 	 2a 	 2k

√
aγ,

(since we may assume without loss of generality that γ 	 a), and the proof can
be finished as before.

Let us continue the proof of Theorem 1. If k different lines of ξ are mapped
by ϕ onto one line of ψ, then the sets of covered columns in any two of these
lines have at most γ common elements. Hence the total number of covered cells
in these k lines is at most

2 #A+ 2k
√

#Aγ.

We have to sum this numbers for all #P ′ elements that can be values of the
function ϕ, that is, over all lines of table ψ.

The first terms sum up to 2 #A · #P ′, the second ones sum up to 2 · #P√
#A · γ. So the total number of cells covered by each ϕi is at most

2#A ·#P ′ + 2 ·#P
√

#Aγ.

Recalling that there are α functions ϕi we conclude that a function ξ is winning if

2α#A ·#P ′ + 2#Pα
√

#Aγ <
1
2
#A ·#P.

Lemma 1 is proved.

It is instructive to compare the requirements of Lemma 1 with those from the
probabilistic argument. Note that the first requirement strengthens the require-
ment β#P ′ ! #P and the second one strengthens the requirement α! #A.

It remains to construct a function ξ satisfying the conditions of Lemma 1. This
can be done easily by the following algebraic construction. Let A = B be the
field of cardinality 2n, and let P be the set of all linear functions (x → a1x+a2)
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from A to A. A linear function is determined by 2 coefficients, thus #P = 22n.
We can let γ = 1, as if two linear functions coincide in 2 points then they coincide
everywhere. Let P ′ = {0, 1}1.5n. Let α and β be equal to 2εn. For ε < 1/6 the
conditions of Lemma 1 are fulfilled. We obtain a proof of the theorem with, say,
c1 = 1.01, c3 = 1.99, c2 = 1.5 and any ε < 1/6, c > 2 (small changes in c1 and c3
are needed to compensate for O(log n) terms). In place of linear functions we
can take polynomials of small degree obtaining a proof with the same c1, c2 and
larger c3, ε.

Here is a more “geometric” example. Consider the two-dimensional vector
space (the plane) over the finite field of cardinality 2n. The set A consists of all
points of this plane and the set B consists of all lines on it. The set P consists
also of all points of this plane. The function ξ is defined as follows: ξ(p, a) is
the line passing through a and p. This time γ = 2n, as the line ap1 coincides
with the line ap2 only if a lies on the line p1p2. Let P ′ = {0, 1}1.5n. If ε is small
enough the conditions of Lemma 1 are satisfied. And the conditional complexity
of b = ξ(a, p) given a is at most n+O(logn), as there are about 2n lines passing
through any given point. Apply the winning strategy based on the function ξ
against adversary’s strategy from Section 2. The covered subset of A × P is
small and can be enumerated given n. This implies that all the random pairs
in A× P (those whose complexity is close to 4n) are not covered. Therefore we
can reformulate the result as follows (taking into account that the line passing
through a pair of random independent points is random):

any random line b on the plane over the field of cardinality 2n has condi-
tional complexity ≈ n given every its random point a; every other ran-
dom point p on that line is a description of complexity 2n for b (given
the point a) that cannot be reduced to a description of complexity 1.5n.

(More precisely, we should require a and p be independent random points on
b, i.e., K (a, p|b) ≈ 2n.)

The constructions of this section have the following advantage compared with
proofs from Sections 2 and 3: The complexity of K (b|a) remains small even if we
consider time-bounded version of Kolmogorov complexity, i.e., require that the
running time of the machine finding the object from its description is bounded
by a polynomial in n. And the non-reducible program exists even for complexity
relativized by any oracle, as in Section 3.
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Abstract. We generalize the definition of a counter and counter reversal
complexity and investigate the power of generalized deterministic counter
automata in terms of language recognition.

1 Introduction

Deterministic counter (DC) automata are essentially deterministic finite au-
tomata (DFA) enhanced with counters. A (conventional) counter is a device
capable of storing an integer on which three operations can be performed by
the finite control: increment, decrement (or do nothing) and test-for-zero. The
input lies on a tape demarcated by end-markers “¢” and “$”, and is read by a
read-only head.

Two counters can simulate a tape, and therefore a two-counter machine is
as powerful as a Turing machine. However, imposing restrictions on resources
yields proper subclasses of recursive languages. A deterministic counter machine
might be restricted in terms of different resources like (a) the number of counters
it is equipped with, (b) if the head can move both ways on the input tape (if
so, how many such head reversals are allowed) and (c) the number of times the
counter(s) is allowed to switch between increment and decrement modes (called
counter reversal complexity). Moreover, restrictions may also be imposed on the
types of actions permitted. Blind counter machines have no information available
on the contents and sign of the counters. Partially blind counter machines are
also blind; in addition, the contents of the counter must always be non-negative.
The machine crashes on being driven below zero [4, 10].

In this paper we generalize the notion of a counter and investigate the resulting
increase in power. Generalizations based on group theory have been proposed and
investigated by various authors [2, 8, 9]. Instead of a simple counter as described
above, the finite automaton is equipped with a group on which it can perform
the group operation. The counter can store any element of the group. However,
the exact element of the group currently contained in the counter is not available
to the finite control: it can only check whether it is the identity element or not.
The power of various groups (abelian, non-abelian, free etc.) has been studied
extensively in the above mentioned papers.

The main contribution of this paper is threefold. First, we propose a general-
ized algebraic structure for counters that includes a notion of “negativeness” (in
section 2, alongwith somepreliminaries). In the process, we introduce a generalized
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notion of counter reversal complexity. Secondly, we examine specific instances1 of
the generalized counter and show that they recognize non-trivial languages with
low counter and head reversal complexity and overall time complexity. Duris and
Galil [3] showed a witness language that cannot be recognized by any 2-way deter-
ministic one-counter machine, while it can be recognized by a 2-way deterministic
pushdown automata (2DPDA) with one stack.We show that apowerful instance of
the generalized counter given in this paper can recognize this language with small
counter as well as head reversal complexity (in section 3). And finally, we establish
a hierarchy among the corresponding 1-way versions in terms of language recogni-
tion in section 4. Section 5 concludes the paper.

2 Related Previous Work and Definition of a Generalized
Counter

We first give a formal definition of 2-way one-counter deterministic (2DC)
automata.

Definition 1. A 2DC machine M is a 5-tuple (Q,Σ, q0, δ, F ) where Q is a
finite set of states, q0 a special start state, F ⊆ Q the set of accepting states and
Σ is a finite input alphabet. δ is a mapping from Q × (Σ

⋃
{¢, $}) × {0, 1} to

Q× {−1, 0,+1}× {−1, 0,+1}. �
The transition function takes three input parameters: the current state, the
current symbol being read, and the status of the counter (say, 0 if the counter
reads zero and 1 if non-zero), and does the following: changes the state, moves
the head by −1, 0 or +1 position on the tape, and changes the counter value by
−1, 0 or +1.

If the machine is blind (2BDC), the transition function does not get any
information from the counter. Transitions depend only on the current state and
the symbol being scanned. The machine accepts by final state and empty counter.
A partially blind machine (2PBDC) crashes if the counter goes negative at any
stage in the computation.

Many results regarding the power of various models of counter machines ex-
ist [4, 5, 6, 7, 10, 11, 12, 13].

We now give a formal definition of our abstract generalized counter.

Definition 2. Consider a group (U, ◦). Let G = {A1, . . . , Ak} ⊂ U be a finite
counter generating set and Ginv = {X ∈ U | X−1 ∈ G} such that G∗⋂G∗

inv = φ
where “*” denotes the closure operation and φ is the null set. Let F− ⊂ U be such
that F−

⋂
G∗ = φ, G∗

inv ⊆ F− and membership in F− is decidable in constant
time2. Let F+ = U\F−.
1 In this paper, we consider machines that have only one counter. Further, unless other-

wise stated, the machines will be partially blind and accept by final state and empty
store.

2 Checking if an element in the additive (multiplicative) group of real numbers is ≥ 0
(≥ 1) is an example of such a membership test. The counter is endowed with the
capability of performing such tests.



320 M.V. Panduranga Rao

We call the tuple (U,G, F−) a generalized counter. Then, at any step t, Ωt ∈
F+ serves as the non-negativity condition.

Define the operation increment(i) on Ωt−1 to be XiΩt−1 = Ωt and
decrement(i) on Ωt−1 to be X−1

i Ωt−1 = Ωt for Xi ∈ G. In general, XiXj �=
XjXi, for Xi, Xj ∈ G

⋃
Ginv, i �= j. We uniformly identify an incoming X at

step t as a left operand. �
Observe that in this setting, conventional counter is CZ = (Z, {1},Z−). We
now give the formal definition of a deterministic automaton with a generalized
counter.

Definition 3. A 2DC((U,G, F−)) machine M is a 6-tuple (Q,Σ, q0, δ, F,
(U,G, F−)) where Q is a finite set of states, q0 a special start state, F ⊆ Q
the set of accepting states and Σ is a finite input alphabet. δ is a mapping from
Q×(Σ

⋃
{¢, $})×{0, 1} to Q×{−1, 0,+1}×(G

⋃
Ginv). �

In case of partially blind counter machines, the transition function behaves as
follows: ∀q ∈ Q and σ ∈ Σ

⋃
{¢, $}, (a) δ(q, σ,Ω1) = δ(q, σ,Ω2) for all Ω1, Ω2 ∈

F+ (blindness) and (b) δ(q, σ,Ω) = φ if Ω ∈ F− (non-negativity).
Note that F− is not relevant in 2DC machines that are allowed to store nega-

tive elements. It is important, however, for specifying partially blind machines.
We include it in all models, for uniformity of presentation. We call a 2-way
machine with a generalized counter (U,G, F−) a 2DC((U,G, F−)) machine and
the class of languages recognized by such machines, L(2DC((U,G, F−))). Similar
conventions will be followed for PBDC machines also.

3 Applications

We now discuss two powerful instances of the abstract counter defined in the
previous section.

3.1 A Counter over Reals

Consider the counter CR(k) = (R, {ρ1, . . . , ρk},R−), where R is the additive
group of real numbers, ρ1, . . . , ρk are square roots of distinct prime numbers for
some constant k and R− is the set of negative reals. The non-negativity condition
is therefore, Ωt ∈ R+⋃ 0.

It is easy to see that this counter is at least as powerful as the conventional
counter. We now prove that machines with a CR(k) counter can do more. The
language Labc = anbncn is context sensitive and is therefore not recognizable
by any 1DPDA. We can show that there exists an algorithm to recognize the
general family of such languages using a CR(k) counter.

Theorem 1. There exists a 1PBDC(CR(k−1)) machine that recognizes Lgen =
{an

0a
l1n
1 . . . a

lk−1n
k−1 | n ∈ N}, where a0, a1, . . . , ak−1 are symbols of a finite alphabet

and li ∈ N, with one counter reversal and no head reversal.

Proof. We begin by noting the following.
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Definition 4. A set of n real numbers α1, . . . , αn is said to be rationally de-
pendent if the relation c1α1 + . . . + cnαn = 0 holds for some rational numbers
c1, . . . , cn, not all zero. A set that is not rationally dependent is said to be ratio-
nally independent. �

Fact 1. Any set of square roots of distinct prime numbers is rationally
independent.

We use square roots ρ1, . . . , ρk−1 of k − 1 distinct primes. The 1PBDC(CR(k))
machine works as follows. That the input x is indeed of the form a∗0a

∗
1 . . . a

∗
k−1 is

verified by the DFA as the input is scanned. On scanning an a0, the counter is
incremented by (l1ρ1 + . . .+ lk−1ρk−1). Hence, after having scanned all the a0’s,
the counter holds (l1ρ1 + . . .+ lk−1ρk−1)n0, for some n0 ∈ Z+.

As the head moves further, on scanning an ai, 1 ≤ i ≤ k − 1, the counter is
decremented by ρi.

The counter holds 0 if and only if

(l1ρ1 + . . .+ lk−1ρk−1)n0 = n1ρ1 + . . .+ nk−1ρk−1

where n1, . . . , nk−1 are the number of a1, . . . , ak−1 symbols respectively in the
input string. Since ρ1, . . . , ρk−1 are rationally independent by fact 1, the above
equation is true if and only if l1n0 = n1, . . . , lk−1n0 = nk−1. In other words, the
counter reads 0 if and only if the input is in the language. �

In the next section, we will show limitations of the real counter in spite of having
the facility of arbitrary precision.

3.2 A Matrix Counter

The operands of a general matrix counter are finite dimensional invertible ma-
trices, the operator being (left) matrix multiplication. The matrix counter is
defined by (GL(m,R), {A1, . . . , Ak}, F−) where GL(m,R) is the group of m-
dimensional invertible matrices over R, and F− = {X ∈ GL(m,R) | |X | < 1}
where |.| is defined as:

|X | =
√∑

i

∑
j

|Xij |2.

Therefore, the non-negativity condition is
√∑

i

∑
j |(Ωt)i,j |2 ≥ 1 at any time t

during the computation.

Theorem 2. L(2PBDC(CR(k))) ⊆ L(2PBDC(CM(k))).

Proof. Given any 2PBDC(CR(k)) machine M we construct a 2PBDC(CM(k))
machine M ′ that recognizes the same language as M as follows.

Suppose M is described by the tuple (Q,Σ, q0, F, δ, CR(k)). Then, M ′ is
(Q,Σ, q0, F, δ′, CM(k)). The matrix counter and δ′ are defined as follows. Sup-
pose the generating set of CR(k) is {ρ1, . . . , ρk}, consisting of square roots of
distinct primes as mentioned earlier.
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Then the CM(k) counter is
(
GL(1,Z), {[p1], . . . , [pk]}, F−

)
where pi, 1 ≤ i ≤ k,

are the primes ρ2 and F− = {[x] | |[x]| < 1}. If δ(q, σ, β) = (q′, D, ρi or − ρi),
then δ′(q, σ, β) = (q′, D, [pi] or [pi]−1), where q, q′ ∈ Q, σ ∈ Σ

⋃
{¢, $}, β ∈

{0, 1},D ∈ {−1, 0,+1}, 0 ≤ i ≤ k. Thus, if the real counter holds (na,1−nb,1)ρ1+
. . .+(na,k−nb,k)ρk, the matrix counter holds [pna,1−nb,1

1 p
na,2−nb,2
2 . . . p

na,k−nb,k

k ].
Therefore, the matrix counter contains [1] if the real counter contains 0. Further,
as long as the content of the real counter is greater than 0, the non-negativity
condition is maintained for the matrix counter also, because of the way in which
the primes have been chosen. �

Duris and Galil [3] showed that no 2DC can recognize
Lpat = {x0# . . .#xk# | k ≥ 1, xj ∈ {0, 1}∗ for 0 ≤ j ≤ k, for some 1 ≤ i ≤

k, xi = x0}, where a substring between two successive #’s is called a block. In
this section we show a matrix counter machine that recognizes Lpat.

Theorem 3. There exists a 2DC(CM(k)) machine that recognizes Lpat. The
number of reversals O(m) where m is the number of blocks in the input.

Proof. We use a theorem of Ambainis and Watrous:

Theorem 4 (Ambainis and Watrous [1] ). Let

A =

⎛⎝ 4 3 0
−3 4 0
0 0 5

⎞⎠ and B =

⎛⎝ 4 0 3
0 5 0
−3 0 4

⎞⎠
and u be a 3× 1 vector with components u[1], u[2] and u[3].

Let u = Y −1
1 . . . Y −1

n Xn . . . X1(1 0 0 )T where Xj , Yj ∈ {A,B}. Then, u[2]2 +
u[3]2 = 0 if and only if Xj = Yj for 1 ≤ j ≤ n. �
Observe that

A−1 =
1
25

⎛⎝4 −3 0
3 4 0
0 0 5

⎞⎠ and B−1 =
1
25

⎛⎝4 0 −3
0 5 0
3 0 4

⎞⎠
Let the counter be (GL(3,R), {A,B}, F−) where F− is defined as before.

In this proof, “scanning” a block (in whichever direction) is also meant to
involve a non-trivial operation (i.e. other than I, the identity matrix) on the
counter for every symbol in the block. We give a 2DC(CM(k)) algorithm that
recognizes Lpat. For the sake of clarity in presenting the algorithm, we first define
two “subroutines”:

subroutine increment subroutine decrement
If a “0” is being scanned If a “0” is being scanned

Ωt+1 := AΩt. Ωt+1 := A−1Ωt.
If a “1” is being scanned If a “1” is being scanned

Ωt+1 := BΩt. Ωt+1 := B−1Ωt.

where Ωt is the content of the counter at step t. The algorithm is as follows:
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Initially Ω0=I.
Until the first “#” is encountered,

scan right from ¢ performing increment.
For all subsequent blocks do:

scan from the right “#” to that on the left, performing decrement.
if Ωt = I accept.

scan from the left “#” to that on the right, performing increment.
move to the next block.

reject.

Let Cx stand for the product of the matrices taken from G applied while
scanning a block x in the forward direction. Similarly, let C−1

x be the product
of the matrices taken from Ginv, applied while scanning a block x in the reverse
order.

The 2DC(CM(k)) machine M recognizes Lpat as follows. Initially the counter
contains the identity matrix I. After scanning x0, let the counter contain Cx0 . For
every subsequent block i, it checks ifC−1

xi
Cx0 = I. This will be the case if and only

if x0 = xi, by theorem 4. If C−1
xi
Cx0 �= I, the matrices applied in the current block

are undone while scanning to the # on the right end of the block so that the counter
contains CxiC

−1
xi
Cx0 = Cx0 just before entering the next block.

Since there are only two reversals of the counter per block, the reversal com-
plexity of the algorithm is O(m) where m is the number of blocks in the input
string. �

4 One-Way Versions

In this section we discuss some results regarding 1-way PBDC automata.
Let us first note some useful facts. One can view the counter as a container

into which marked coins are added or taken out. Incrementing or decrementing
the counter by Xi corresponds to putting a coin marked Xi into the counter or
taking it out respectively, satisfying the non-negativity condition at any given
time. Therefore,

Observation 1. A counter can hold only countably many values. �
The following is an immediate consequence.

Lemma 1. Let M = (Q,Σ, q0, δ, F, CR(k)) and Ωx denote the state of the
counter after having read a string x ∈ Σ∗. Then, if there exists a positive real
α such that Ωx ≤ α for all x ∈ Σ∗, then L(M) ∈ L(REG), the class of regular
languages.

Proof. The above observation implies that in such a machine, the counter can
contain only finitely many values. Therefore the “state space” of the counter can
be absorbed into the finite control itself, resulting in a DFA. �
Definition 5. If at any step, the 1PBDC(C) machine is in state q ∈ Q, the head
is reading the first symbol of the x and the counter contains Ω, then the triple
(q, x,Ω) describes its instantaneous configuration. �
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If a 1PBDC(C) configuration (q, x, c) yields (q′, ε, c′), where ε denotes the empty
string, after scanning x, then we write (q, x,Ω) |=x (q′, ε, Ω′).

We now state the main theorem of this section.

Theorem 5. L(1PBDC(CZ)) � L(1PBDC(CR(k))) � L (1PBDC(CM(k))).

Proof. (a) L(1PBDC(CZ)) � L(1PBDC(CR(k))):
The conventional counter over Z is a special case of the counter over reals.

So, L(1PBDC(CZ)) ⊆ L(1PBDC(CR(k))). Further, by theorem 1, Labc ∈ L(
1PBDC(CR(k))). Since the conventional one-way counter machine is weaker
than pushdown automata which cannot recognize Labc, it follows that Labc /∈
L(1PBDC(CZ)).

(b) L(1PBDC(CR(k))) � L(1PBDC(CM(k))):
That L(1PBDC(CR(k))) ⊆ L(1PBDC(CM(k))) follows from theorem 2. To

prove proper containment, we need an “interchange” lemma.

Lemma 2. Let CR(k) be a real counter as defined in the previous section, with ρk

as the largest element in the generating set, and let L be a language in L(1PBDC
((CR(k)). There is a constant r and two integers 1 ≤ l < m ≤ r such that for any
decomposition of an input x = v1w1v2w2 . . . vrwrvr+1 ∈ LwithΩv1 ≥ (

∑r
i=2 |vi|+∑r

i=1 |wi|)ρk, |wi| ≥ 1, we have that the string x′ = v1w
′
1v2w

′
2 . . . vrw

′
rvr+1 with

w′
l = wm, w′

m = wl and w′
i = wi for i /∈ {l,m}, is also in L.

Proof. The proof proceeds on the lines of the interchange lemma in [8].
Let M = (Q,Σ, q0, δ, F, CR(k) be a 1PBDC(CR(k)) machine. Let r = |Q|2+1.

Consider a string x ∈ L(M), and a decomposition x = v1w1v2w2 . . . vrwrvr+1,
|wi| ≥ 1, such that Ωv1 ≥ (

∑r
i=2 |vi|+

∑r
i=1 |wi|)ρk. Then there exist qi, si ∈ Q,

1 ≤ i ≤ r, qf ∈ F such that

(qi−1, vi, 0) |=vi (si, ε, Ωi), 1 ≤ i ≤ r

(si, wi, 0) |=wi (qi, ε, Ω′
i), 1 ≤ i ≤ r

(sr, vr+1, 0) |=vr+1 (qf , ε, Ωr+1).

Since x ∈ L, Ω1 +Ω′
1 +Ω2 +Ω′

2 + . . .+Ωr +Ω′
r +Ωr+1 = 0. Since there are at

most |Q|2 pairs of tuples in Q×Q, and the input has a length greater than |Q|2,
by the pigeon hole principle we have (sl, ql) = (sm, qm) for some 1 ≤ l < m ≤ r.

Now consider x′ = v1w
′
1v2w

′
2 . . . vrw

′
rvr+1 with w′

l = wm, w′
m = wl and

w′
i = wi for i /∈ {l,m}. Then,

(qi−1, vi, 0) |=vi (si, ε, Ωi), 1 ≤ i ≤ r

(si, w
′
i, 0) |=w′

i
(qi, ε, Ω′′

i ), 1 ≤ i ≤ r

(sr, vr+1, 0) |=vr+1 (qf , ε, Ωr+1)

with Ω′′
l = Ω′

m, Ω
′′
m = Ω′

l and Ω′′
i = Ω′

i for i /∈ {l,m}. So, Ω1 +Ω′′
1 +Ω2 +Ω′′

2 +
. . .+Ωr +Ω′′

r +Ωr+1 = Ω1 +Ω′
1 +Ω2 +Ω′

2 + . . .+Ωr +Ω′
r +Ωr+1 = 0. Note

that Ω1 = Ωv1 has been chosen such that the interchange still satisfies the non-
negativity condition. Therefore, x′ also belongs to L. �
Let Lpal be {x#xR | x ∈ Σ∗}, where xR is the string x reversed.
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Lemma 3. Suppose M is a CR(k) counter machine recognizing Lpal. Then, for
any positive α, there exists a string v1 ∈ Σ∗ such that Ωv1 > α.

Proof. Follows from lemma 1 and the fact that Lpal is not regular. �

Lemma 4. Lpal /∈ L(1PBDC(CR(k))).

Proof. Let Lpal be recognized by a 1PBDC(CR(k)) machine M . Let r be the
constant from the interchange lemma. Consider x = v1w1v2w2 . . .# . . . wr−1
vrwrvr+1 in Lpal, where w1 �= w2 and Ωv1 ≥ (

∑r
i=2 |vi| +

∑r
i=1 |wi|)ρk. By

the previous lemma, such a v1 exists. Note that vr+1 = vR
1 , wr = wR

1 , vr =
vR
2 and wr−1 = wR

2 . Then, by the interchange lemma, x′ = v1w2v2w1 . . .# . . .
wR

2 v
R
2 w

R
1 v

R
1 also belongs to Lpal, a contradiction. �

However, a simple modification of the algorithm to recognize Lpat given in
the previous section recognizes Lpal. The tape head is now 1-way, and the
counter is queried only on reading “$”. Therefore, L(1PBDC(CR(k))) � L
(1PBDC(CM(k)). �

5 Discussion

In this paper we proposed a natural generalization of the counter. The gener-
alization helps in analyzing the performance of a counter machine in terms of
reversal complexity of the counter. We established a hierarchy of counters when
the head is restricted to move only forward. We believe that characterizing lan-
guages recognized by various types of counter machines and their comparison
with existing models are interesting problems to be addressed.
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Abstract. Multisource information theory in Shannon setting is well
known. In this article we try to develop its algorithmic information theory
counterpart and use it as the general framework for many interesting
questions about Kolmogorov complexity.

1 Introduction

Multisource information theory deals with information transmission in a net-
work. Such a network includes information sources (one or many), the destina-
tions (one or many) where information should be delivered, and channels that
are used for transmission; some (or all) channels may have limited capacity.
Classical Shannon approach considers sources as random variables and is well
developed, see, e.g., [4, 14]. It tries to find conditions that make some information
transmission request feasible.

Similar questions could (and should) be asked for algorithmic information
theory.

Consider a directed graph whose edges are “channels” and nodes are “proces-
sors”. Some nodes get outside information; this information should be processed
(in nodes) and transmitted (via edges) into some other nodes.

More formally, an information transmission request consists of the following
parts:

• A finite acyclic directed graph.
• A set of input nodes.
• An input string for each input node.
• A set of output nodes.
• A (desired) output string for each output node.
• An integer capacity for each edge (the value +∞ that means unlimited

capacity is also allowed).

We say that information request is c-feasible if one can find for each edge e a
string Me in such a way that the length of Me does not exceed the capacity of
edge e and

K(X |Y1, . . . , Yk) ≤ c

for any node z, any outgoing string X (for z) and incoming strings Y1, . . . , Yk

(for z), where
� Supported by RFBR grants 03-01-00475 and Scientific Schools grant 358.2003.1.
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•K stands for (conditional) Kolmogorov complexity, i.e., the length of the short-
est program that gets Y1, . . . , Yk as input and produces X as output, see the
textbook [7] or tutorial [13].
• outgoing strings for node z are strings Me for all outgoing edges e and the
output string for z (if z is an output node);
• incoming strings for node z are strings Me for all incoming edges e and the
input string for z (if z is an input node).

The integer c measures the amount of new information that is allowed to
appear “from nowhere”; we cannot let c = 0 since Kolmogorov complexity is
defined up to an additive constant. The most natural choice is c = O(log n)
for input and output strings of length at most n. With this choice, it does not
matter which version of Kolmogorov complexity (plain, prefix=self-delimiting,
etc.) we are using.

So in fact we should consider not an isolated request but a family of requests
(usually for the same graph and input/output nodes) depending on parameter
N ; the size of the strings used in the request should be at most N (or polyno-
mial in N), and the feasibility means that N -th request is c logN -feasible for
some c and for all N . (This is a standard setting for algorithmic information
theory.)

Our goal is to show how many different results in classical information theory
and Kolmogorov complexity could be naturally expressed in this language (in
terms of feasibility of informational requests for some networks).

2 A Trivial Example

Consider a network that has two nodes and one edge (Fig. 1). (Let us agree
that all edges are directed top-down, so the direction arrows are omitted). The
top node is an input node and has input stgring A; the bottom node is an
output node and has output string B. The channel has capacity k. This request

Fig. 1. The simplest information transmission request

is feasible (for small c) if and only if K(B|A) is close to 0 and K(B) does not
exceed k significantly: information transmission is possible if and only if B does
not have significant information that is not present in A (conditional complexity
of B given A is small) and total amount of information in B does not exceed
(significantly) the capacity of communication channel.

To express this evident idea formally, we (unfortunately) need a rather obscure
statement:



Multisource Algorithmic Information Theory 329

Let An and Bn are sequences of strings and kn be a sequence of integers.
Assume that |An|, |Bn| and kn are bounded by a polynomial in n. Then the
following two properties are equivalent:

(1) there exists a sequence of strings Xn such that |Xn| ≤ kn + O(log n) and
K(Xn|An) = O(log n), K(Bn|Xn) = O(log n);
(2) K(Bn|An) = O(log n) and K(Bn) ≤ kn +O(log n).

This equivalence follows from two (rather trivial) remarks: first says that

K(B|A) ≤ K(B|X) +K(X |A) +O(logK(A,B,X))

for all strings A,B,X (so (1) implies (2)); the second remark says that for any
A, B and k there exists a string X such that

|X | ≤ K(B), K(X |A) ≤ K(B|A) +O(logK(B)), K(B|X) = O(1)

(hint: let X be the shortest program for B) and implies that (1) follows from (2).

For the case A = B the statement has clear intuitive meaning: a string A can
be transmitted through a communication channel if and only if its complexity
does not exceed the capacity of the channel.

3 A Less Trivial Example

Consider the following information transmission request (which can be called
“transmission of A when B is publicly known”), see Fig. 2. We need to encode A

Fig. 2. Transmission of A when B is known

in the top node (using B if needed), transmit the encoding to the bottom node
where decoding is performed (using B, too).

It is easy to see that this request is feasible if and only if K(B|A) ≤ k. (This
statement should be understood also in precise asymptotic way with sequence
of requests and O(log n); we omit the exact formulation.) Indeed, the decoding
algorithm knows B and k additional bits, so its output (A) has conditional
complexity (with condition B) at most k. On the other hand, if K(A|B) ≤ k,
let message X (for the limited capacity channel) be the shortest program that
produces A with input B; both unlimited channels transmit B. Note that the
conditional complexity of the shortest program that transforms B to A (with
pair A,B as the condition) is logarithmic: knowing the length of such a program,
we may try all programs of that length in parallel until some of them does
the job.
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4 A Nontrivial Example: Muchnik’s Theorem

Our next example is Muchnik’s theorem that corresponds to Wolf – Slepyan
theorem in Shannon imformation theory. It says that in the previous example one
does not really need B for encoding (for decoding it is still needed, of course). The
transmission request graph has the corresponding edge deleted (Fig. 3): Muchnik

Fig. 3. Wolf – Slepyan / Muchnik request

noted [9] that the condition K(A|B) ≤ k is still sufficient for the feasibility of
this request. (It remains necessary for evident reasons.)

Here is the exact statement of Muchnik’s theorem: Let A and B be arbitrary
strings of complexity at most n. Then there exists a string X of length K(A|B)+
O(log n) such that K(X |A) ≤ O(log n) and K(A|X,B) ≤ O(log n).

The proof of this theorem used expander-like graphs (similar methods were
used also in [5] to get interesting results about resource-bounded Kolmogorov
complexity). Roughly speaking, the message X sent through the restricted chan-
nel is a “fingerprint” (hash-value) of A that is a simple function of A; it happens
that this hash value (plus small amount of additional information) could be
sufficient to select A among all strings that have conditional complexity (with
respect to B) at most k if a suitable (and small) family of hash functions is
used.

5 Bidirectional Encoding

Our next example is another well known result about Kolmogorov complexity [2]
that says that the length of the shortest program that transforms A into B and
at the same time transforms B to A equals max(K(A|B),K(B|A)) + O(log n)
for any strings A, B of size at most n.

It corresponds to the following transmission request (Fig. 4) and says that
inequalities K(A|B) ≤ k and K(B|A) ≤ k are sufficient to make this request
feasible (again with O(log n) terms that we omit). It is also clear that these
inequalities are necessary since both strings that are sent along the lines in the
bottom have complexity at most k and allow to get A from B and vice versa.

6 Conditional Coding for Two Conditions

This example generalizes two previous ones. Consider the information trans-
mission request shown in Fig. 5: Again the necessary condition for the feasibil-
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Fig. 4. Bidirectional encoding

Fig. 5. Coding C with respect to A and B

ity of this request is simple: K(C|A) ≤ k and K(C|B) ≤ k. As Muchnik has
shown [9], this condition is also sufficient (with standard precautions about log-
arithmic terms). His result says that for any three strings A,B,C of length at
most n and for any k such that K(C|A) ≤ k and K(C|B) ≤ k there exists a
string X of length k such that K(X |C) = O(log n), K(C|A,X) = O(log n) and
K(C|B,X) = O(log n).

Note that this result remains nontrivial even if we omit the condition
K(X |C) = O(log n); no other (simpler) proof is known for this (potentially)
weaker statement that corresponds to a (potentially) easier information trans-
mission request (Fig. 6).

Fig. 6. Coding C with either A or B known

7 Necessary Condition for Feasibility

All the conditions used in the previous examples could be obtained in an uniform
way, by looking at the information flow through cuts in the network.

A cut is an arbitrary set I of nodes. We are interested in the information flow
through I, i.e., the amount of information that comes to I from outside.

More formally, consider the total capacity of all edges whose starting point
does not belong to I and endpoint belongs to I. If there is an unlimited capacity
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edge among them, the cut I gives no necessary condition for feasibility. Assume
now that all capacities u1, . . . , us of these edges are finite. Then the following
necessary condition appears:

K(W1, . . . ,Wm|V1, . . . , Vl) ≤ u1 + . . .+ us,

where V1, . . . , Vl are input strings for all input vertices in I, and W1, . . . ,Wl are
output strings for all output vertices in I. As usually, this inequality should be
true with logarithmic precision, up to O(log n) terms (if all strings are of length
at most n).

Indeed, the amount of information that enters I from outside (aside from
input string) is limited by the total capacity of edges that enter I. (This is a
standard Ford – Fulkerson type inequality.) Knowing s strings for edges that
come into I and input strings, we can reconstruct all the strings inside I (there
is no loops in the graph, so topological sorting is possible).

It is easy to see that all necessary conditions appearing in previous sections
could be obtained in this way. For example, the conditions given in Section 5 are
obtained through the following cut and the symmetric one (Fig. 7):

Fig. 7. A cut for bidirectional encodings

A natural question arises whether the necessary conditions obtained in this
way (for all possible cuts) are also sufficient for the feasibility of an information
transmission request. In the situations considered they were; another case where
they are sufficient is given in the next section. However, there are many cases
where these conditions are not sufficient, as we shall see later.

8 Single-Source Networks

Consider the network with only one input string and several output strings
identical to the input one. In other words, we have a broadcast request with a
single source and several destinations. This problem is considered (for Shannon
setting) in [1, 8]; the same ideas can be used for algorithmic version.

The main difficulty and the way to overcome it could be illustrated by the
following example. Assume that we want to send a message A of size 2k to three
destinations (Fig. 8). Three first channels have limited capacity k; the remaining
channels are unlimited. For each of three destinations (separately) the task is
easy: we cut A into two parts of size k and send these two parts along two
channels. But doing the same for all three destinations at the same time would
require dividing A into “three halves” in such a way that any two are sufficient
to reconstruct A.
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Fig. 8. Broadcast to three destinations

It can be done using standard “linear secret sharing”: three messages of length
k are A1, A2 and A1⊕A2, where A1 and A2 are two halves of A and ⊕ stands for
bitwise addition. Knowing any two of these three k-bit strings, we reconstruct
the third one as bitwise sum of the known two and therefore know A.

A similar trick works for an arbitrary broadcast request. Consider an infor-
mation request that has only one input string of length n and several output
strings identical to the input one, and some integers as edge capacities. Assume
that necessary conditions are fulfilled for any cut I. More precisely, assume that
for any set J of nodes that does not contain input vertex and contains at least
one output vertex, the sum of capacities of edges that go into J is at least n.
Then the request is c logn-feasible for some c that does not depend on n and
input string but may depend on the graph.

The idea of the proof can be explained as follows. If there is only one output
string, we can treat the bits as commodity in Ford – Fulkerson theorem. For
each edge we know the indices of bits that should be sent through it; nodes do
just the repacking of bits.

In a general case (of several destinations) we use linear coding. This means
that all messages are considered as elements of vector space over a finite field. A
message sent through some edge is a linear function of A. So each edge carries
some vector space of possible messages (and its dimension is proportional to
the capacity of the edge). A node performs a linear operation (the vector made
of incoming strings is linearly transformed into the vector made of outcoming
strings).

If transformation matrices are fixed for each node, we get and input – output
linear mapping for each output node. Its matrix is a product of some parts of
node transformation matrices. If input – output matrix is invertible for all output
nodes, we are done. So we need to prove that it is possible to make all these
matrices invertible. It is already known that we can do this for each matrix.
Therefore the determinant as a polynomial function of matrix elements is not
identically zero. Since the number of zeros of a polynomial is bounded, we can
conclude that for some transformation matrices (and even for most of them) all
the determinants are nonzero.

This argument requires technical clarification; in particular, the size of the
field should be chosen carefully. (If it is too small, the zeros of the polynomials
could cover the whole space; if it is too large, the overhead that appears because
capacities are not multiples of the logarithm of the field size, becomes large.)
But this clarification is not difficult.
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Now we switch to the examples where the necessary conditions provided by
information flow considerations are not sufficient. Several examples of this type
were already considered in algorithmic information theory.

9 Common Information

Consider the following information request (Fig. 9): two strings x and y are
given. We should prepare three messages u, v and w of lengths (at most) α, β
and γ such that x can be recontructed from u and v, and at the same time y
can be reconstructed from u and w.

Fig. 9. Common information

The motivation: u contains some “common information” that is present both
in x and y, while v and w are remaining parts of x and y.

The requirements can be reformulated as conditions on u:

|u| ≤ α, K(x|u) ≤ β, K(y|u) ≤ γ

(after u is chosen, v and w could be conditional descriptions of x and y with
respect to u). We can also replace |u| by K(u) (by taking the shortest program
for u instead of u itself).

The necessary conditions are

K(x) ≤ α+ β, K(y) ≤ α+ γ, K(x, y) ≤ α+ β + γ.

For example, let us consider the case when K(x) = K(y) = 2n and K(x, y) = 3n.
Informally, both x and y contain 2n information bits each, but are dependent,
so the total amount of information is only 3n instead of 4n. Let α = β = γ = n,
then all the flow conditions are satisfied. And the question can be reformulated
as follows: is it possible to extract n bits of common information so that n
additional bits are enough to specify x (or y)?

The answer is: it depends on x and y. It is possible, for example, if x and y are
overlapping substrings of an incompressible string (of length 2n with n common
bits). In this case u can be the intersection of x and y. On the other hands, there
exists a triple of strings with the same complexities for which the request is not
feasible.
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There are several examples of this type (starting from [6], where this question
is considered both from Shannon and algorithmic information theory).

More geometric example can be obtained as follows: consider a field of size
2n and a two-dimensional affine plane over it. Let (x, y) be a random pair of
concurrent line and point. With high probability they have complexities as
stated above, but there is no common information. Moreover, one can prove
that

K(u) = O(K(u|x) +K(u|y)),
so that if u has small conditional complexity with respect to x and y (and this
follows from our requirements), then u is (unconditionally) simple.

This (together with other constructions of pairs of strings without common
information) is explained in [3].

10 Program Simplification

One can look for a simple information transmission request whether the neces-
sary conditions (based on information flow) are not sufficient. It turns out that
Muchnik theorem is quite close to the boundary: a bit more general request
provides an example required.

Consider the following request (suggested by M. Vyugin, Fig. 10). The dif-
ference with Muchnik’s theorem is that here the output string differs from
the both input strings. The necessary condition here are K(B|A) ≤ k and
K(B|A,P ) = 0.

Fig. 10. Program simplification

Informally the problem can be explained as follows. There exist a string
B which can be obtained from string A if we know some additional informa-
tion P (which can be considered as a program that transforms A to B). This
program could be rather long. On the other hand, we know that conditional
complexity of B when A is known does not exceed k; this means that there
exists another (shorter) program that transforms B to A. Our goal is to find
a “simplification” P ′ of program of B that has three properties: (1) it has no
new information compared to B (i.e., K(B′|B) = 0); (2) it is still enough to
transform A to B; (3) it has minimal possible length among programs that
satisty (2).

Muchnik theorem says that is is possible (though not at all trivial) to find
such a simplification if P equals B. But in general it is not true, as shown in [10].



336 A. Shen

11 Minimal Sufficient Statistic

Another request where our necessary conditions are not sufficient is motivated
by the notion of minimal sufficient statistic.

Consider two following example. Imagine that we toss a biased coin (probability
θ of heads is unknown, but all coin tosses are independent) and get a string b1 . . . bn
of zeros and ones. Looking at this string, we try to guess θ. Intuitively it is clear that
the only important information in b1 . . . bn is the number of 1’s; no other informa-
tion is relevant to θ. So the number of 1’s is called a “minimal sufficient statistic”
for θ. It contains all the information relevant to θ but nothing else.

Now we consider the information transmission request (Fig. 11) that formal-
izes this situation. Consider two strings A and B. The string B contains some
infomation about A, as well as some other information. We try do delete irrel-
evant information from B and get a string B′ that is simpler but still contains
all information about A that was present in B.

The last requirement can be formalized as follows: K(A|B′) ≤ K(A|B) (if
some information were lost when going fromB toB′, then conditional complexity
would increase).

In terms of the graph: the simplified version B′ is sent along the right edge
and the information needed to restore A from B′ is sent along the left edge. So
our goal is to have p = K(A|B) and q = K(A)−K(A|B).

These values satisfy the information flow conditions, which are

K(A) ≤ p+ q, K(A|B) ≤ p

for this graph.
It is easy to see that this goal is achieved (and conditions are sufficient for the

feasibility of the request) if A and B are overlapping parts of a random string;
in this case B′ is the common part of A and B and the remaining part of A is
sent via the left channel.

However, in general the necessary conditions are not sufficient. For simplicity
let us consider strings A and B that both have complexity 2n and the pair (A,B)
has complexity 3n. Then for a given p and q three cases are possible:

• the request is feasible for all strings A and B (from the class considered);
• the request is unfeasible for all strings A and B (from the class considered);
• none of the above (i.e., the answer depends on the choice of A and B),

and the (p, q)-plane is divided to three regions corresponding to this three cases.
What are these regions? The analysis (which we omit now) gives the following

Fig. 11. Minimal sufficient stgatistic
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Fig. 12. Three possibilities

answer (Fig. 12): the black part corresponds to the first case (always feasible),
the white part corresponds to the second case (always infeasible), and the gray
parallelogram inbetween corresponds to the third case (may be feasible or not
depending on A and B). Note the white region is the region where information
flow conditions are not fulfilled.

(Remark. For simplicity we omitted all the technical precautions about
O(log n) precision that are needed to made the statement precise.)

12 Concluding Remarks

One of the goals of multisource algorithmic information theory is to perform
a similar analysis for an arbitrary graph and (for given complexities of input
and output strings, as well as there combinations) divide the space of capacity
parameters in three regions.

Our examples shows that even for simple graphs this task could be hard
in both directions. Muchnik theorem shows that an elaborated combinatorial
technique is needed to prove the feasibility of the request for all strings. The
constructions of negative examples (in the last three sections) also involve com-
binatorial arguments that seem to be rather specific for the graph considered.
(See [10] where three different methods to obtain negative results are explained.)

It would be interesting to find some more general criteria or, establish some
formal connections between Shannon multisource information theory and algo-
rithmic one (in the spirit of [11, 12]).

Acknowledgments. This article is based on the discussions and results re-
ported at the Kolmogorov seminar (Moscow). The author is grateful to all par-
ticipants of the seminar for many useful comments. I am thankful to Uppsala
University and Laboratoire d’Informatique Fondamentale de Marseille for hos-
pitality and support.

References

1. R. Ahlswede, N. Cai, S.-Y.R. Li, R.W. Yeung, Network information flow, IEEE
Trans. Inform. Theory, v. 46, p. 1004–1016, July 2000.
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Abstract. Block sensitivity, which was introduced by Nisan [5], is one
of the most useful measures of boolean functions. In this paper we in-
vestigate the block sensitivity of weakly symmetric functions (functions
invariant under some transitive group action). We prove a Ω(N1/3)
lower bound for the block sensitivity of weakly symmetric functions. We
also construct a weakly symmetric function which has block sensitivity
Õ(N3/7).

1 Introduction

For a Boolean function f : {0, 1}N → {0, 1}, the block sensitivity of f on input
x is the maximum number b such that there are disjointed subsets B1, . . . , Bb

of [N ] for which f(x) �= f(x(Bi)), here x(Bi) is the input obtained by flipping
all the bits xj that j ∈ Bi. We call each Bi a block. The block sensitivity of f ,
denoted by bs(f), is maxx bs(f, x).

Nisan [5] introduced the concept of block sensitivity and proved tight bound
for computing f on a CREW PRAM in terms of bs(f). It has been shown that
block sensitivity is polynomially related to many other measures of complex-
ity, such as decision tree complexity [5], polynomial degree [6], and quantum
query complexity [1]. The relationship between block sensitivity and sensitivity
complexity is still open. For more information about these complexity measures,
please refer [2] for an excellent survey.

A Boolean function f is called weakly symmetric (or transitive) if there ex-
ists a transitive group1 Γ ⊆ SN such that for all σ ∈ Γ , f(x1 . . . xN ) =
f(xσ(1) . . . fσ(N)). For example, symmetric functions, graph properties, and cycli-
cally invariant functions are all weakly symmetric functions.

Many researches have been done on different complexity measures of weakly
symmetric functions. It is known that the certificate complexity C(f) ≥

√
N

(see [4] for example). Since the decision tree complexity D(f) ≥ C(f), so
D(f) = Ω(

√
N), and this bound is tight. Turán proved that for graph prop-

erty the sensitivity s(f) = Ω(
√
N) and he conjectured that it is also true for

weakly symmetric functions. Recently Chakraborty [3] disproved this conjecture
by giving a certain class of cyclically invariant functions with sensitivity com-
plexity Θ(N1/3). Sun, Yao, and Zhang [8] proved the quantum query complexity
1 A group Γ ⊆ SN is called transitive if ∀i, j ∈ [N ], ∃σ ∈ Γ , σ(i) = j.
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Q(f) = Ω(N1/4) for weakly symmetric functions. They also showed that this
bound is tight (up to logN factor).

Nisan [6] showed that bs(f) = Ω(
√
C(f)), this combining with C(f) ≥

√
N

implies bs(f) = Ω(N1/4) for weakly symmetric function. No better lower bound
is known about block sensitivity. In this paper our main results are the following
theorems:

Theorem 1. For any nontrivial weakly symmetric function f , bs(f) ≥ N1/3.

Theorem 2. There exists a cyclically invariant function f such that bs(f) =
O(N3/7 logN).

2 Proof of the Theorem 1

The following lemma [7] is used in proof of Theorem 1. We denote by w(x) the
number of 1’s in input x, and by σ(x) the input xσ(1)xσ(2)...xσ(N).

Lemma 1 (Rivest and Vuillemin). If Γ ⊆ SN is transitive, then for any
x ∈ {0, 1}N and any i ∈ {1, . . . , N},

w(x) · |{σ(x) : σ ∈ Γ}| = N · |{σ(x) : σ ∈ Γ, σ(x)i = 1}|.

Corollary 1. For any x, y ∈ {0, 1}N , if w(x) · w(y) < N , then there exists a
σ ∈ Γ , such that

{i ∈ [N ] : σ(x)i = 1} ∩ {j ∈ [N ] : yj = 1} = ∅.

Proof. Suppose for any σ ∈ Γ ,

{i ∈ [N ] : σ(x)i = 1} ∩ {j ∈ [N ] : yj = 1} �= ∅,

so ∣∣∣{i ∈ [N ] : σ(x)i = 1} ∩ {j ∈ [N ] : yj = 1}
∣∣∣ ≥ 1, (1)

Let Γ ′ be the minimum subgroup of Γ such that {σ(x) : σ ∈ Γ ′} = {σ(x) :
σ ∈ Γ}, then summation Eq. (1) over all σ ∈ Γ ′, we have∑

σ∈Γ ′

∣∣∣{i : σ(x)i = 1} ∩ {j : yj = 1}
∣∣∣ ≥ |Γ ′| = |{σ(x) : σ ∈ Γ}|. (2)

But on the other hand,∑
σ∈Γ ′

∣∣∣{i : σ(x)i = 1} ∩ {j : yj = 1}
∣∣∣ = ∑

i:yi=1

∣∣∣{σ(x) : σ ∈ Γ ′, σ(x)i = 1}
∣∣∣

=
∑

i:yi=1

∣∣∣{σ(x) : σ ∈ Γ, σ(x)i = 1}
∣∣∣

= w(y) ·
∣∣∣{σ(x) : σ ∈ Γ, σ(x)i = 1}

∣∣∣ (3)
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By Lemma 1 we know

|{σ(x) : σ ∈ Γ, σ(x)i = 1}| = w(x) · |{σ(x) : σ ∈ Γ}|
N

,

thus Eq. (3) implies∑
σ∈Γ ′

∣∣∣{i : σ(x)i = 1} ∩ {j : yj = 1}
∣∣∣ = w(y) · w(x)|{σ(x) : σ ∈ Γ}|

N
. (4)

Combine inequality (2) with inequality (4) we get w(x)w(y) ≥ N , which
contradicts to the precondition. �

Now the proof of Theorem 1 is as follows:

Proof of Theorem 1: Let f be a nontrivial weakly symmetric function. The
transitive permutation group is Γ . We denote 0 = 00...0. Without loss of general-
ity, we assume that f(0) = 0. Let B be a minimal subset such that f(0(B)) = 1,
i.e. for any proper subset B′ ⊂ B, we have f(0(B′)) = 0. Thus flipping any
xi where i ∈ B changes the value of f(0(B)). Therefore bs(f,0(B)) ≥ |B|. If
|B| ≥ N1/3, it is done, since bs(f) ≥ bs(f,0(B)). In the following we assume
|B| < N1/3.

Since w(0(B)) = |B| < N1/3, w(0(B))w(0(B)) < N2/3 < N , according to
Corollary 1 there exists a σ ∈ Γ , that

{i ∈ [N ] : σ(0(B))i = 1} ∩ {i ∈ [N ] : (0(B))i = 1} = ∅.

i.e. σ(B) ∩ B = ∅, where σ(B) denotes the set {σ(b) : b ∈ B}. Let B1 = B,
B2 = σ(B). Since

w(0(B1∪B2))w(0(B)) = 2|B| × |B| < 2N2/3 < N,

from Corollary 1 there exists a σ′ ∈ Γ , σ′(B) ∩ (B1 ∪B2) = ∅. Let B3 = σ′(B),
then B3 ∩ B1 = B3 ∩ B2 = ∅. By repeating this argument, finally we can get
B1, B2, . . . , BN1/3 , such that for each Bi, there exists a σi ∈ Γ that Bi = σi(B),
and ∀i �= j, Bi ∩Bj = ∅.

Now let us consider bs(f,0): {B1, . . . , BN1/3} are disjointed subsets, and for
i = 1, . . . , N1/3,

f(0(Bi)) = f(0(σi(B))) = f(σi(0(B))) = f(0(B)) �= f(0),

So bs(f,0) ≥ N1/3. Therefore bs(f) ≥ N1/3. �

3 Proof of Theorem 2

The idea is that we firstly construct a partial assignment which has a nice prop-
erty, and then use it as the 1-certificate to define the Boolean function.
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Lemma 2. For any large k, there exists a partial assignment p : S → {0, 1},
S ⊆ [100k4 log k], |S| = O(k3 log k), such that for any four distinct integers
i1, i2, i3, i4 ∈ [k4], there exists s1, s2, s3, s4 ∈ S such that

(1) sj1 − sj2 = ij1 − ij2 , j1, j2 = 1, 2, 3, 4;
(2) the multiset {p(s1), p(s2), p(s3), p(s4)} contains two 0’s and two 1’s.

We meet the requirement (1) by a combinatorial design, and then use proba-
bilistic arguments to show we can assign {0, 1} to the set to satisfy (2).

Proof. We represent numbers under base-k and use [dj , . . . , d0]k denote the
number djk

j + · · ·+ d1k + d0. Let

S4 = {s = [s3, s2, s1, 0]k : s2, s1 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},
S3 = {s = [s3, s2, 0/1, s0] : s2, s0 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},
S2 = {s = [s3, 0/1, s1, s0] : s1, s0 = 0, 1, . . . , k, s3 = 0, . . . , k + 1},
S1 = {s = [0, s2, s1, s0] : s2, s1, s0 = 0, 1, . . . , k}.

The third bit of S1 and the second bit of S2 are 0 or 1, 1 will be used to handle
the possible carry of the addition.

Define S̃ = S1 ∪ S2 ∪ S3 ∪ S4, then S̃ ⊆ [2k4] and |S̃| = O(k3). For any
i1 < i2 < i3 < i4 ∈ [k4], let a = i2 − i1, b = i3 − i1, c = i4 − i1, then
1 ≤ a < b < c ≤ k4 − 1. Write a, b, c under base-k: a = [a3a2a1a0]k, b =
[b3b2b1b0]k, c = [c3c2c1c0]k, where 0 ≤ ai, bi, ci ≤ (k − 1), i = 1, 2, 3, 4. Now we
pick s1 = [0, k − a2, k − b1, k − c0]k, by the definition of Si, s1 ∈ S1, and it is
easy to check

s2 = s1 + a ∈ S2, s3 = s1 + b ∈ S3, and s4 = s1 + c ∈ S4.

Thus
s1, s2, s3, s4 ∈ S̃, and sj1 − sj2 = ij1 − ij2 (j1, j2 = 1, 2, 3, 4)

Now we define S = ∪50 log k−1
j=0 (j · 2k4 + S̃), i.e. by repeating set S̃ 50 log k

times. It is clear that S ⊆ [100k4 log k] and |S| = O(k3 log k).
We claim that if we randomly assign {0, 1} to each s ∈ S, then with high prob-

ability it will satisfy (2): We call an assignment “bad” if there exists i1, i2, i3, i4 ∈
[k4] such that the assignment of the related elements s1, s2, s3, s4 ∈ S is not
{0, 0, 1, 1}. For any fixed {i1, i2, i3, i4}, the probability that a random assign-
ment of S̃ is “bad” is 1 − 3/8 = 5/8. Thus the probability that all the 50 logk
copies of S̃ are “bad” is (5

8 )50 log k < 1
k25 . Therefore,

Pr(a random assignment of S is bad) ≤
(
k4

4

)
1
k25 ! 1

So there exists an assignment satisfy (2). �
Proof of Theorem 2: By setting k = N1/7 in Lemma 2 we obtain a partial
assignment p : S → {0, 1}, S ∈ [100N4/7 logN ] and |S| = O(N3/7 logN). For
any x ∈ {0, 1}N , define its j-shift SHj(x) = (xj+1, . . . , xN , x1, . . . , xj), j =
0, 1, . . . , N − 1. For a set B, we use SHj(B) to represent the set {b+ j : b ∈ B},
here “+” is modular N .
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Now we define our function f : {0, 1}N → {0, 1},

f(x) = 1⇔ ∃j, SHj(x) satisfies the partial assignment

p, i.e. (SHj(x))i = p(i), ∀i ∈ S

By the definition we know f is cyclically invariant. Next we prove for any input
x, bs(f, x) ≤ O(N3/7 logN). We separate the two cases f(x) = 1 or f(x) = 0:

(i) f(x) = 1. By definition there is a j0 that SHj0(x) satisfies the partial
assignment p. With loss of generality, we assume j0 = 0 (because for cyclically
invariant function, bs(f, x) = bs(f, SHj(x))), i.e. xi = p(i) for any i ∈ S. Now
let B1, . . . , Bbs(f,x) be the maximum disjointed subsets that f(x) �= f(x(Bl)),
l = 1, . . . , bs(f, x). Then each Bl must contain at least one bit in the partial
assignment p, otherwise flipping the block Bl will not change the value of f(x).
Thus Bl ∩ S �= ∅. But B1, . . . , Bbs(f,x) are disjointed, therefore bs(f, x) ≤ |S| =
O(N3/7 logN).

(ii) f(x) = 0. Let B1, . . . , Bbs(f,x) be the maximum disjointed subsets that
f(x(Bl)) = 1, l = 1, . . . , bs(f, x). By the definition of function f , for eachBl, there
must be a jl that SHjl

(x(Bl)) satisfies partial assignment p. Since SHjl
(x(Bl)) =

(SHjl
(x))(SHjl

(Bl)) and B1, . . . , Bbs(f,x) are disjointed, j1, . . . , jbs(f,x) must be
distinct. With loss of generality, we assume j1 < j2 < · · · < jbs(f,x). We claim
that bs(f, x) ≤ 4N3/7:

Suppose to be the opposite, i.e. bs(f, x) > 4N3/7. Since jl ∈ [N ], there exists
an interval with length N4/7 which contains at least four jl. W.l.o.g. we assume
j1, j2, j3, j4 ∈ [c−N4/7, c) for some c ∈ [N ]. Then c− ji ∈ [N4/7], i = 1, 2, 3, 4.
Now we use the property of S: there exists s1, s2, s3, s4 ∈ S,

s2 − s1 = (c− j2)− (c− j1), s3 − s1 = (c− j3)− (c− j1), s4 − s1 = (c− j4)− (c− j1),

i.e.

s1 + j1 = s2 + j2 = s3 + j3 = s4 + j4, (5)

and multiset {p(s1), p(s2), p(s3), p(s4)} = {0, 0, 1, 1}. Let t = s1 + j1. For i =
1, 2, 3, 4, SHji(x(Bi)) satisfying partial assignment p implies

(SHji(x
(Bi)))si = p(si),

i.e.

(x(Bi))ji+si = p(si), i = 1, 2, 3, 4. (6)

Combine Eq. (5) with (6) we get

(x(Bi))t = p(si), i = 1, 2, 3, 4.

But {p(s1), p(s2), p(s3), p(s4)} contains two 0’s and two 1’s, no matter what xt

is, there must exist two blocks Bi which contain the index t. This contradicts to
the disjointness of Bi.

Combine (i) with (ii) we conclude that bs(f, x) = O(N3/7 logN). �
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Abstract. This talk surveys work on classifying the complexity and
approximability of problems residing in the Polynomial-Time Hierarchy,
above the first level. Along the way, we highlight some prominent natural
problems that are believed – but not yet known – to be Σp

2-complete. We
describe how strong inapproximability results for certain Σp

2 optimiza-
tion problems can be obtained using dispersers to build error-correcting
codes. Finally we adapt a learning algorithm to produce approximation
algorithms for these problems.

1 Introduction

Optimization problems that are NP-hard have provided fertile ground for re-
searchers in theoretical computer science over the past 25 years. The celebrated
PCP Theorem arose from efforts to prove limits on the approximability of NP
optimization problems (subject to the assumption that P �= NP), and proba-
bly the most active area of algorithms research continues to be approximation
algorithms.

Over this same period, researchers have identified a diverse array of optimiza-
tion problems whose complexity is captured by levels in the Polynomial-Time
Hierarchy (PH), above the NP level. In fact, one of Stockmeyer’s main mo-
tivations for defining and studying the PH was the feeling that it “will prove
technically useful in classifying (by completeness results) certain recursive prob-
lems.” [1]. He was right: today more than 70 natural optimization problems are
classified as complete within the PH (most often they are complete in the 2nd
level). See [2] for an up-to-date compendium.

In this extended abstract, I will highlight a few of these problems, including a
prominent one that is suspected – but not yet proven – to be complete in the sec-
ond level of the PH. As these are optimization problems, it makes sense to study
both the limits to approximability, and approximation algorithms, just as we are
accustomed to do at the NP level. In Sections 4 and 5 I will describe hardness
of approximation results, and approximation algorithms for these problems.

The main points I would like to convey are these. First, there remain promi-
nent problems (concerning circuit minimization) that are yet to be proven com-
plete for the second level of the PH. And, classifying these sorts of problems as
� Supported by NSF grant CCF-0346991 and an Alfred P. Sloan Research Fellowship.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 345–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



346 C. Umans

complete within the second level provides meaningful information to practition-
ers, by ruling out specific approaches that are, interestingly, not precluded by the
trivial coNP-hardness known for these problems. Second, the hardness of ap-
proximation results in this arena are often not based on the PCP Theorem, and
are thus less technically daunting. Additionally, for most of the aforementioned
70+ optimization problems, the upper- and lower- bounds on the approximabil-
ity ratio are far apart, so much work remains to be done. Finally, approximation
algorithms for these problems naturally lie in such interesting classes as BPPNP

and AM, and thus provide a unusual set of “algorithm design” challenges within
these classes.

Significant portions of the presentation in this extended abstract are taken
from my survey with Marcus Schaefer [3].

2 Preliminaries

Recall that the levels of the PH are defined as follows:

Σp
0 = P Πp

0 = P

Σp
i = NPΣp

i−1 Πp
i = coNPΣp

i−1

An equivalent definition based on alternating quantifiers is frequently useful:

Lemma 1. A language L is in Σp
i iff there is a language R in P, and an integer

k for which

L = {x : (∃y1)(∀y2)(∃y3) . . . (Qyi), |yi| ≤ |x|k ∀ i, s.t. (x, y1, y2, . . . , yi) ∈ R},

where Q stands for “∃” if i is odd and “∀” if i is even.

An analogous characterization of Πp
i is obtained by interchanging the quantifiers.

The canonical complete problems for the levels of the PH are quantified versions
of 3SAT:

Problem 1 (QSATi). Given a Boolean formula ϕ(x1, x2, . . . xi) on i sets of vari-
ables, where ϕ is a 3-CNF formula if i is odd and a 3-DNF formula if i is even,
is it true that ∃x1 ∀x2 ∃x3 · · · Qxi ϕ(x1, x2, . . . xi) = 1? Here Q stands for “∃”
if i is odd and “∀” if i is even.

Theorem 1 ([1]). QSATi is Σp
i -complete.

Throughout the paper [n] denotes the set of integers {1, 2, 3, . . . , n}.

3 Some Natural Σp
2 Optimization Problems

For a fixed concrete model of computationM and a size measure s :M→ N, we
can ask the question: Given C ∈M, what is the smallest (according to s) C′ ∈M
that computes the same function? Typical choices for M are Boolean circuits,
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formulas, or DNF formulas. (Other, weaker, models have also been considered,
e.g., OBDDs, for which the associated problem is in NP). The associated circuit
minimization problems have long been cited as prime candidates for natural
Σp

2-complete problems—they certainly have the requisite quantifier alternation:
“Does there exist C′ such that on all inputs in the domain, C′ and C compute
the same value?”

These problems are typically trivially coNP-hard, so it is unlikely that they
can be solved in polynomial time. However it turns out that many heuristics
used in practice make use of a subroutine that checks equivalence of two circuits
(a coNP-complete task), and it is often most natural to imagine algorithms
for these problems that have access to such a subroutine (which we expect has
been optimized to run rapidly on real-world instances). The question for the
theoreticians becomes: is it possible to devise a polynomial time algorithm with
access to such a subroutine. It turns out that classifying circuit minimization
problems as Σp

2-complete is precisely the way to rule out such an algorithm,
subject to the belief that the PH does not collapse.

The DNF version of the circuit minimization problem (MIN DNF) is know
to be Σp

2-complete [4], but the complexity of all other versions remain open, in
particular the full Boolean circuit version MINIMUM CIRCUIT. To give a flavor
of the proof in [4], we will describe a relatively simple completeness proof for a
slightly restricted version of MIN DNF, defined below:

Problem 2 (IRREDUNDANT). Given DNF formula ϕ and an integer k, is there
a subset of at most k terms from ϕ whose disjunction is equivalent to ϕ?

This problem differs from MIN DNF only in the restriction that the terms in
the equivalent DNF must come from the original DNF. In the proof that IRRE-
DUNDANT is Σp

2-complete, we will encounter one other Σp
2-complete problem,

defined as follows:

Problem 3 (SUCCINCT SET COVER). Given a collection S = {ϕ1, ϕ2, . . . , ϕm}
of 3-DNF formulas on n variables, and an integer k, is there a subset S′ ⊆ S of
size at most k for which ∨ϕ∈S′ϕ ≡ 1 (S′ is a cover)?

We feel that SUCCINCT SET COVER may play the same role for Σp
2 that (or-

dinary) SET COVER plays for NP—the role of a fundamental and natural
problem that is a useful starting point for reductions. Theorem 5 in the next
section implies that SUCCINCT SET COVER is Σp

2-complete. Here we reduce
SUCCINCT SET COVER to IRREDUNDANT to obtain:

Theorem 2 ([5]). IRREDUNDANT is Σp
2-complete.

Proof. Let S = {ϕ1, ϕ2, . . . , ϕm} be an instance of SUCCINCT SET COVER. The
proof of Theorem 5 shows that we may assume that ϕi consists of a single literal
for 1 ≤ i < m, that every cover S′ ⊆ S contains ϕm, and that S itself is a cover.
Let t1, t2, . . . , tn be the terms in ϕm. We introduce new variables z1, z2, . . . , zn

and define the DNF for the instance of IRREDUNDANT as follows:
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ϕ =
n∨

i=1

(z1z2 . . . zi−1zi+1 . . . znti) ∨
m−1∨
j=1

(z1z2 . . . znϕj). (1)

If S′ ⊆ S is a cover of size k, then we claim that the following k+ n− 1 term
DNF is equivalent to ϕ:

ϕ′ =
n∨

i=1

(z1z2 . . . zi−1zi+1 . . . znti) ∨
∨

ϕj∈S′\{ϕm}
(z1z2 . . . znϕj)

To see this, note that whenever at least two z variable are 0, ϕ and ϕ′ are both
identically 0; whenever zi is 0 and the other z variables are 1, ϕ and ϕ′ are both
equivalent to ti; and when all z variables are 1, both ϕ and ϕ′ are equivalent to
∨ϕi∈Sϕi and ∨ϕi∈S′ϕi, respectively. Since S′ is a cover, both of these expressions
are identically 1, which completes the claim.

Conversely, if there exists a DNF ϕ′ equivalent to ϕ and consisting of a subset
of k + n − 1 terms of ϕ, then we claim that there exists a cover of size k. We
observe that each of the n original terms involving a ti must appear in ϕ′, for
if ϕ′ omitted the term involving ti, then ϕ and ϕ′ would differ on some point
with zi set to 0 and the other z variables set to 1. The remaining k − 1 terms
of ϕ′ each involve some ϕj . Letting S′ consist of these ϕj ’s together with ϕm,
we observe that ∨ϕj∈S′ϕj is equivalent to ϕ′ with all z variables set to 1, which
by assumption is equivalent to ϕ with all z variables set to 1. However, this
restriction of ϕ is just ∨ϕj∈Sϕj , which is identically 1 since S is a cover. Hence
S′ is a cover of size k, completing the claim. ��

4 Hardness of Approximating SUCCINCT SET COVER

As usual, we show that an optimization problem is hard to approximate to
within a factor of c by reducing a complete problem to the gap version of the
optimization problem. For example, if the optimization problem in question is a
Σp

2 minimization problem, we can show that the problem is hard to approximate
to within a factor of c by describing a reduction that maps an instance of QSAT2
to an instance whose optimum is at most k if we started with a YES instance,
and an instance whose optimum is greater than ck if we started with a NO
instance.

It is well known that for many (but not all) problems at the NP level, such a
gap-producing reduction is equivalent to the existence of probabilistically check-
able proofs (PCPs), in which a random “local test” can verify the correctness of
the proof with high probability. Constructing such PCP systems is technically
involved. In contrast, for many optimization problems in the second and higher
levels of the PH, gap-producing reductions do not appear to require anything
resembling PCPs, and they seem to be less complicated. Error-correcting codes
and list-decoding algorithms, two objects at the heart of PCP constructions,
have been particularly successful tools in these reductions (see also [6]), and our
example below will make use of these tools.
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We will now show that SUCCINCT SET COVER is Σp
2-hard to approximate to

within very large factors. One of the salient features of SUCCINCT SET COVER
is that its solution set is monotone, that is, any superset of a set cover is also a set
cover. The (somewhat unusual) asymmetric error-correcting codes that we use
in the reduction showing that SUCCINCT SET COVER is hard to approximate
are tailored for use in this monotone setting: they tolerate errors that flip zeros
to ones but not errors that flip ones to zeros.

Below, ' is the bitwise partial order on binary strings; i.e., x ' y if y can
be obtained from x by flipping zeros to ones. The Hamming weight of a binary
string y, denoted weight(y), is the number of ones in y.

Definition 1. An (�, ε) list-decodable asymmetric code is a function C :
{0, 1}k̄ → {0, 1}n̄ such that for all y ∈ {0, 1}n̄ with weight(y) ≤ (1− ε)n̄, the set
Ly defined as:

Ly = {x|C(x) ' y} (2)

has size at most �. The code is efficiently encodable if C can be computed in poly-
nomial time, and efficiently list-decodable if Ly can be computed from y in time
polynomial in |y| and �. The weight of the code is max {weight(C(x))|x ∈ {0, 1}k̄}.

In Theorem 4 we outline a construction of list-decodable asymmetric codes
described in [5]. We first need one further definition:

Definition 2. A function D : {0, 1}n×{0, 1}t → {0, 1}m is a (k, ε) disperser if
for every set X ⊆ {0, 1}n of size at least 2k, we have

|{z|∃x ∈ X, y ∈ {0, 1}t D(x, y) = z}| > (1 − ε)2m.

We call t the seed length and we say that D is explicit if it can be computed in
polynomial time.

In words, the set X disperses if the image of D with its first argument restricted
to X hits more than an (1 − ε) fraction of {0, 1}m. Many constructions of ex-
plicit dispersers are known; see [7] for a survey. In this presentation we only
need a fairly simple construction of explicit dispersers due to Srinivasan and
Zuckerman [8]:

Theorem 3 (Srinivasan and Zuckerman [8]). For every n, k < n and con-
stant ε > 0, there exists a construction of explicit (k, ε) dispersers with seed
length t = 4k +O(log n), and output length m = k + t−O(1).

Theorem 4 ([5]). One can construct an (� = 2k, ε) list-decodable asymmetric
code C : {0, 1}k̄ → {0, 1}n̄=2m

with weight (k̄ + 1)2t from any (k, ε) disperser
D : {0, 1}n=k̄+1×{0, 1}t=O(log n) → {0, 1}m. If D is explicit, then C is efficiently
encodable and efficiently list-decodable.

Proof. Let D be the (k, ε) disperser in the statement of the theorem, and let T
be the complete depth-k̄ binary tree. We associate the set {0, 1}k̄ with the 2k̄
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leaves of T and the set {0, 1}n \ {0n} with the 2n − 1 vertices of T . Given a leaf
w, we let P (w) denote the set of k̄+1 vertices on the unique path from the root
to w in T .

For a message w ∈ {0, 1}k̄, we define the associated codeword C(w) as follows:

C(w) =
∨

v∈P (w),y∈{0,1}t

eD(v,y), (3)

where ei is the string in {0, 1}n̄ with one in the i-th position, and zero elsewhere,
and we identify {0, 1}m with [n̄]. Clearly C is computable in polynomial time if
D is explicit.

We now argue that C is a (2k, ε) list-decodable asymmetric code. Let y be
any string in {0, 1}n̄ with weight(y) ≤ (1− ε)n̄. We say that a vertex v is active
with respect to y if ∨y∈{0,1}teD(v,y) ' y. Let Ay be the set of vertices active
with respect to y, and observe the following key fact: the associated subset of
{0, 1}n fails to disperse. We immediately conclude that |Ay | < � = 2k, and since
|Ly| ≤ |Ay|, C is a (2k, ε) list-decodable asymmetric code.

To efficiently compute Ly from y, we perform a depth-first search starting
from the root of T , restricted to the vertices in Ay , and output the set of leaves
reachable from the root. It is clear that for all w ∈ Ly, Pw ⊆ Ay , and so w
appears in the output. Since D is explicit we can test whether a given vertex
is active with respect to y in time polynomial in n, and we examine at most
O(|Ay |) = O(�) vertices, so the overall running time is polynomial in n̄ and � as
required. ��

Corollary 1. For every k̄, constant ε > 0, and constant δ > 0, there exists
an (�, ε) asymmetric code C : {0, 1}k̄ → {0, 1}n̄ with � = k̄O(1), n̄ = k̄O(1),
and weight at most n̄4/5+δ. Moreover, C is efficiently decodable and efficiently
list-decodable.

Proof. We use the disperser of Proposition 3 with k = c log k̄ (for some large
constant c) in Theorem 4. As required, � = 2k = k̄c, and n̄ = 2m ≤ k̄5c+O(1), and
observe that the weight is (k̄ + 1)2t ≤ k̄4c+O(1), and so by picking c sufficiently
large the weight can be made to be at most n̄4/5+δ. ��

We can now prove that SUCCINCT SET COVER is hard to approximate.

Theorem 5 ([5]). SUCCINCT SET COVER is Σp
2-hard to approximate to within

a factor of nε for some ε > 0.

Proof. Let ϕ(a, b) be an instance of qsat2 with |a| = n and |b| = poly(n), and
let C̄ : {0, 1}n → {0, 1}n̄ be an (� = nO(1), 1/2) list-decodable asymmetric code
with weight at most n9/10 from Corollary 1. We introduce a new set of variables
s with |s| = n̄, and define the following Boolean function:

f(s, b) =

⎧⎨⎩
0 if weight(s) ≤ n̄/2 and ∀a ∈ Ls ϕ(a, b) = 0
1 if weight(s) ≤ n̄/2 and ∃a ∈ Ls ϕ(a, b) = 1
1 if weight(s) > n̄/2

(4)
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Note that f can be computed by a small circuit, and that f is monotone in
s—that is, flipping any si from a zero to a one can only increase the value of the
function.

We now describe the instance of SUCCINCT SET COVER. We define ϕi = ¬si,
and, using Cook’s Theorem, we produce from the small circuit for f a 3-DNF
formula ϕn̄+1(s, b, w) for which f(s, b) = 1⇔ ∀w ϕn̄+1(s, b, w) = 1.

If ∃a ∀b ϕ(a, b) then we claim that there is a set cover S′ of size n9/10; namely,
take

S′ = {ϕi|C(a)i = 1} ∪ {ϕn̄+1}.
Consider any point (s, b, w): if s can be obtained from C(a) by flipping 0’s to
1’s, then ϕn̄+1(s, b, w) = 1. Otherwise we must have for some i that si = 0 while
C(a)i = 1, and in this case, ϕi(s, b, w) = 1. Thus S′ covers every point in the
domain as required.

Now, suppose there is a cover S′ of size n̄/2. Consider the partial assignment
obtained by setting si = 1 if ϕi ∈ S′ and zero otherwise. Notice that the only
DNF in our collection that can possibly cover points (s, b, w) extending this
partial assignment is ϕn̄+1. Therefore S′ must include ϕn̄+1 and we must have
∀b ∀w ϕn̄+1(s, b, w) = 1. Since weight(s) ≤ n̄/2, this implies that ∀b ∃a ∈
Ls ϕ(a, b) = 1. Thus the qsat2 instance is a positive instance1.

In summary, we have shown that the size of the optimal cover is at most
n̄9/10 if the qsat2 instance was a YES instance, and larger than n̄/2 if the
qsat2 instance was a NO instance. Since n̄ = nO(1), this is a gap of at least nε

for some ε > 0, as required. ��

With additional ideas from [5] (“self-improvement”), and asymmetric codes built
from the dispersers constructed in [9], the hardness of approximation ratio may
be improved from nε to n1−δ for every constant δ > 0, which is optimal up to
lower order terms.

5 Approximation Algorithms

A c-approximation algorithm for an optimization problem is supposed to output
a feasible solution whose value is within a c multiplicative factor of the optimum
value. The set of feasible solutions and the value function are usually evident
from the problem description. For example, in SUCCINCT SET COVER, the fea-
sible solutions consist of all covers of {0, 1}n, and the value of a solution is the
number of sets in the cover. For NP optimization problems, determining mem-
bership in the set of feasible solutions is in polynomial time. In contrast, for Σp

2
optimization problems, determining membership in the set of feasible solutions
is typically coNP- or NP- complete. Thus we can only expect “approxima-
tion algorithms” for these problems in classes that lie above the first level of
the PH.
1 This is actually a slight cheat; in fact we need to initially modify ϕ into ϕ′ with the

property that ∀b ∃a ∈ S ϕ′(a, b) = 1 with |S| ≤ � implies ϕ was a YES instance.
This can be done by setting ϕ′(a, b(1), . . . , b(�)) = ∧jϕ(a, b(j)).
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In this section we will describe approximation algorithms for SUCCINCT SET
COVER and MINIMUM CIRCUIT in (the function version of) the complexity
class ZPPNP. Algorithms in this class are probabilistic, have access to an NP
oracle, and they never produce an incorrect output, although they may output
“fail” with small probability (say, less than 1/2).

We will make use of the following subroutine for sampling from an efficiently
recognizable set:

Theorem 6 ([10]). Given a circuit C and ε > 0, there is a probabilistic proce-
dure running in time poly(|C|, log(1/ε)), with access to an NP oracle, that has
the following behavior: with probability at most ε, the procedure outputs “fail,”
and conditioned on not failing, the procedure outputs a uniformly random ele-
ment of C−1(1).

Now our first attempt to produce an approximation algorithm for SUCCINCT
SET COVER might be to mimic the well-known greedy approximation algorithm
for set cover. That algorithm achieves a lnN approximation ratio, where N is
the size of the universe. In the succinct version of the problem, the size of the
universe is N = 2n where n is the number of variables over which the DNF
formulas are defined. In order to implement the greedy algorithm we need to be
able to determine, at each step, which of the m input DNFs covers the largest
number of yet-uncovered points in {0, 1}n. This is a #P-complete problem, but
this number can be approximated to within a multiplicative error arbitrarily
close to 1 in ZPPNP, and it is not hard to see that this only alters the approx-
imation ratio by a constant. Thus, in ZPPNP, we can implement the greedy
algorithm, and achieve an approximation ratio of O(logN) = O(n), where n is
the number of variables. This can be meaningful in the case thatm is much larger
than n.

Below we will describe a different approximation algorithm in the same com-
plexity class, that achieves a better ratio of n/ logn. It will also extend nat-
urally to an approximation algorithm for other circuit minimization problems
(and MINIMUM CIRCUIT in particular). This algorithm below is adapted from
the learning algorithm of Bshouty et al. [11].

5.1 An Approximation Algorithm for SUCCINCT SET COVER

We are given as input DNF formulas ϕ1, ϕ2, . . . , ϕm, defined over {0, 1}n. We
will run the following algorithm for k = 1, 2, 3, . . . ,m. When k first equals the
size of the minimum set cover, the algorithm is guaranteed to output a cover
that has size at most kn/ logn.

The algorithm operates in rounds. We will implicitly manipulate the set of
DNF formulas:

Tk = {∨i∈Iϕi : I ⊆ [m], |I| ≤ k}.
Note that when k equals the size of the minimum set cover, Tk includes a DNF
formula ϕ that covers all of {0, 1}n. The only explicit information the algorithm
maintains is a set X ⊆ {0, 1}n which is initially empty.
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In Round i, we use Theorem 6 to sample n/ logn elements t1, t2, . . . , tn/ log n

of the set
T

(i)
k = {ϕ ∈ Tk : ∀x ∈ X ϕ(x) = 1}.

If it happens that t = t1 ∨ t2 ∨ . . . ∨ tn/ log n covers all of {0, 1}n (which can be
checked with an NP oracle call), then we are done: each tj is the disjunction
of at most k of the original formulas, and so we have a cover of size at most
kn/ logn.

Otherwise, we use an NP oracle to identify an x on which t(x) = 0, we add
this to X , and we begin the next round. It is easy to see that T (i)

k shrinks in each
round, and therefore the algorithm eventually outputs a cover (since Tk contains
some ϕ that is a cover, and this element is never eliminated).

The following lemma implies that the algorithm terminates in polynomial
time, because T (i)

k in fact shrinks by a (1 − 1/n2) factor in each round.

Lemma 2. With probability at least 1− 2−n, |T (i+1)
k | ≤ (1− 1/n2)|T (i)

k |.

Proof. We will bound the probability that there exists an x for which t(x) = 0
and yet:

|{ϕ ∈ T (i)
k : ϕ(x) = 1}| > (1− 1/n2)|T (i)

k |. (5)

For each such x, the probability that t(x) = 0 is the probability that each
tj(x) = 0. Equation (5) implies that this probability is at most 1/n2. Thus
the probability that t(x) = 0 is at most (1/n2)n/ log n ≤ 2−2n. Taking a union
bound over all 2n possible x, we conclude that the probability of the “bad” event
occurring is at most 2−n. ��

This lemma implies that the algorithm terminates after at most n2 ln |Tk| =
poly(n,m) rounds. We conclude

Theorem 7. There is an (n/ logn)-approximation algorithm for SUCCINCT
SET COVER in (the function version of) ZPPNP.

5.2 An Approximation Algorithm for MINIMUM CIRCUIT

The algorithm from the previous subsection can be extended to several other
minimization problems. One can formalize properties of the minimization prob-
lem that allow such an approach to be used (see [12]). Here we illustrate the
general idea by sketching an approximation algorithm for MINIMUM CIRCUIT.

The general structure of the above algorithm remains intact. We are given an
input circuit C. We begin with a set Tk consisting of all circuits of size at most
k. Observe that when k equals the size of the minimum equivalent circuit, there
is some t ∈ Tk for which t(x) = C(x) for all x.

As before we proceed in rounds, maintaining a subset X ⊆ {0, 1}n which is
initially empty. In Round i, we use Theorem 6 to sample n/(2 logn) elements
t1, t2, . . . , tn/(2 log n) from the set

T
(i)
k = {t ∈ Tk : ∀x ∈ X, t(x) = C(x)}.
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If it happens that t = majority(t1, t2, . . . , tn/(2 log n)) ≡ C (which can be checked
with an NP oracle call), then we are done: each ti is a circuit of size at most
k, and therefore t has size at most kn/(2 logn) + O(n/ logn) which is at most
kn/ logn when k is superconstant.

Otherwise, we use an NP oracle to identify an x on which t(x) �= C(x), we
add this to X , and we begin the next round. The main lemma is nearly identical
to Lemma 2 although its proof requires Chernoff bounds rather than the simple
analysis above. As above, this lemma shows that T (i)

k shrinks by a (1−1/poly(n))
factor in each round, and we conclude

Theorem 8. There is an (n/ logn)-approximation algorithm for MINIMUM
CIRCUITin (the function version of) ZPPNP.

6 Open Problems

I would like to highlight two open problems. First, the conjectured Σp
2-

completeness of circuit minimization problems for any type of circuit more pow-
erful than a DNF (or CNF) remains open. Hemaspaandra and Wechsung have
made some progress on this problem [13] for the case of Boolean formulas. A
plausible next step would be to prove that circuit minimization for “3-level” for-
mulas (ORs of DNFs) is Σp

2-complete. In fact it is not unreasonable to believe
that Σp

2-completeness for AC0 formulas should be within reach, by incorporat-
ing into the reductions known techniques for proving circuit lower bounds for
constant depth circuits.

Second, for the majority of the many optimization problems known to be
complete for the second and higher levels of the PH, we are far from having
optimal hardness of approximation results. The goal of obtaining optimal results
for these problems has received far less attention than the analogous program at
the NP level, so there may be a greater opportunity for significant improvements.
And, as demonstrated above for SUCCINCT SET COVER, it seems possible to
achieve very strong results using error-correcting codes, without resorting to the
full complexity of the PCP machinery.
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Abstract. We generalize the polynomial interpolation method by giv-
ing a sufficient condition, which guarantees that the coefficients of a
polynomial are uniquely determined by its values on a recurrence se-
quence. Using this method, we show that #3-Regular Bipartite Planar
Vertex Cover is #P-complete. The result is unexpected, since the same
question for 2-regular graph is in FP.

1 Introduction

Counting complexity is a natural extension of the complexity of decision prob-
lems, it is an area which has received much attention since Valiant [6] introduced
the complexity class #P. Valiant [6] has actually built some algebraic methods,
such as the polynomial interpolation method for designing gadgets in the reduc-
tions between counting problems, and some #P-complete problems such as the
permanent.

However the whole class of #P is less well understood, perhaps due to the
complexity of combinatorial structures of solutions of problems. An interesting
topic in the area is the study of the counting problems with various restric-
tions, leading to more structural and hierarchical results in the class of counting
complexity, see [5] for recent review.

Vadhan [5] also showed that counting of vertex covers is #P-complete for planar
bipartite graphs with maximum degree 4, and for k-regular graphs for all k ≥
5, Greenhill [3] has improved the later to k = 3. It is interesting to notice that
counting problem of vertex cover for graphs with maximum degree 2 is in FP.

In the other direction, Valiant [7] proposed a new theory of the holographic
reduction that allows for gadgets with many-to-many correspondences. By using
this reduction, he has been successful in designing polynomial time computable
algorithms for a number of counting problems.

It is then an interesting topic to locate the restricted counting problem in
the complexity classes. In the present paper, we show that #3-Regular Bipartite
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Planar Vertex Cover is #P-complete (Theorem 2). The result improves a result
and answers a question in [5].

In the proof of the main result, we introduce a generalized polynomial inter-
polation method (Theorem 1), which is the algebraic tool for our construction.

The terminology and notations are standard, readers are referred to Papadim-
itriou [4].

2 Algebraic Method

To prove the main theorem, we first establish our algebraic method, throrem 1
below.

Denote the set {(a, b, c) | a + b + c = n, a, b, c ∈ IN} (throughout this paper,
IN contains 0) by In, and let

Fn(x, y, z) =
∑

(a,b,c)∈In

c(a,b,c)x
aybzc

be a homogeneous polynomial, which contains
(
n+2

2

)
monomials of degree n, and

(xi, yi, zi)T , i = 0, 1, . . . ,
(
n+2

2

)
− 1 is a sequence of vectors satisfying

(xi+1, yi+1, zi+1)T = B · (xi, yi, zi)T

where B is a 3 × 3 matrix. Given a sequence (xi, yi, zi)T and its corresponding
values Fn(xi, yi, zi), i = 0, 1, . . . ,

(
n+2

2

)
− 1, we get

(
n+2

2

)
equations for c(a,b,c),

(a, b, c) ∈ In. We denote the coefficient matrix of this system of linear equations
by Mn. The following theorem gives a sufficient condition which guarantees
|Mn| �= 0, that is, the coefficients of Fn, c(a,b,c) can be recovered by solving the
system of the linear equations.

Suppose

B = E

⎛⎝α 0 0
0 β 0
0 0 γ

⎞⎠E−1

where α, β and γ are three different eigenvalues of B and E is a 3×3 nonsingular
matrix. Let A be the matrix satisfying the following constraint,⎛⎝xi

yi

zi

⎞⎠ = E

⎛⎝αi 0 0
0 βi 0
0 0 γi

⎞⎠E−1

⎛⎝x0
y0
z0

⎞⎠ = A

⎛⎝αi

βi

γi

⎞⎠ .
Theorem 1 (Recover Theorem). For any n, |Mn| �= 0, if the following two
conditions hold.

1. |A| �= 0;
2. for any (l,m, k) ∈ IN, l +m+ k = 0 and (l,m, k) �= (0, 0, 0), αlβmγk �= 1.

Proof. Let aij and mij denote the (i, j)th entry of A and Mn respectively. And
take In as the index set {1, 2, . . . ,

(
n+2

2

)
}. Then, the (i, (a, b, c))th entry of matrix

Mn is
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mi,(a,b,c) = xa
i−1y

b
i−1z

c
i−1

= (a11α
i−1 + a12β

i−1 + a13γ
i−1)a ·

(a21α
i−1 + a22β

i−1 + a23γ
i−1)b ·

(a31α
i−1 + a32β

i−1 + a33γ
i−1)c.

Take the above equation as a polynomial in variables α, β and γ as follows:∑
(l,m,k)∈In

t(l,m,k),(a,b,c)(αlβmγk)i−1

where t(l,m,k),(a,b,c) are the coefficients of the polynomial.
Define T to be the matrix whose ((l,m, k), (a, b, c))th entry is t(l,m,k),(a,b,c)

and N to be the matrix whose (i, (l,m, k))th entry is (αlβmγk)i−1, i = 1, 2, . . . ,(
n+2

2

)
. By the definition of matrix multiplication, we have Mn = NT . Hence,

we only need to prove that |N | �= 0 and that |T | �= 0. Notice that N is a
Vandermonde matrix in αlβmγk, (l,m, k) ∈ In. By condition 2, all of them are
totally different, thus |N | �= 0.

The (a, b, c)th column of T (denoted by T (a,b,c)) is nothing but the coefficient
vector of polynomial fabc in variables α, β and γ. Here,

fabc 
 xaybzc = (a11α+ a12β + a13γ)a ·
(a21α+ a22β + a23γ)b ·
(a31α+ a32β + a33γ)c.

In order to prove |T | �= 0, we need to prove that all T (a,b,c) are linearly
independent. Suppose ∑

(a,b,c)∈In

habcT (a,b,c) = 0. (1)

We prove that all habc are equal to zero. Since
∑

(a,b,c)∈In
habc ·T (a,b,c) is the coef-

ficient vector of polynomial
∑

(a,b,c)∈In
habcfabc (as a polynomial in α, β and γ),∑

(a,b,c)∈In
habcfabc(α, β, γ) = 0, for any α, β and γ. Because |A| �= 0, for

any x, y and z, vector (x, y, z)T can be expressed by A · (α, β, γ)T , for some
(α, β, γ) = (α(x, y, z), β(x, y, z), γ(x, y, z)), where α, β and γ are viewed as three
functions of variables x, y and z . Thus, for any x, y and z,∑
(a,b,c)∈In

habcx
aybzc =

∑
(a,b,c)∈In

habcfabc(α(x, y, z), β(x, y, z), γ(x, y, z)) = 0 (2)

i.e.
∑

(a,b,c)∈In
habcx

aybzc ≡ 0. Thus, all habc are equal to zero and T (a,b,c),
(a, b, c) ∈ In are linearly independent which implies that |T | �= 0.

Thus, we have |Mn| = |T | · |N | �= 0. ��
A useful consequence of Theorem 1 is that:

Corollary 1. Suppose (x1,i, x2,i, x3,i)T = A′ · (λi
1, . . . , λ

i
k)T , where A′ is a 3× k

matrix and M ′
n is a coefficient matrix of size

(
n+k−1

k−1

)
by
(
n+2

2

)
whose (i, (a, b, c))th

entry is xa
1,ix

b
2,ix

c
3,i. The rank of M ′

n is
(
n+2

2

)
, if:
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1. the rank of A′ is 3;
2. for any (l1, l2, . . . , lk) ∈ INk,

∑k
i=1 li = 0 and (l1, l2, . . . , lk) �= (0, 0, . . . , 0),∏k

i=1 λ
li
i �= 1.

Proof. Spaning row vectors of A′ to form a maximal linearly independent vector

set, we get D =
(

A′

coA′

)
, where D is a k × k matrix and row vectors of D are

linearly independent. Let (x1,i . . . xk,i)T = D · (λi
1 . . . λi

k)T , and define Ln to
be the

(
n+k−1

k−1

)
×
(
n+k−1

k−1

)
matrix whose (i, (a1, a2, . . . , ak))th entry is

∏k
j=1 x

aj

j,i.
By Theorem 1, |Ln| �= 0, and since M ′

n is a sub-matrix of Ln, the conclusion
follows. ��
Although both Theorem 1 and its corollary are proved in the case of three
variables, they also hold for polynomials in any number of variables. The result
above extends the algebraic tool (Lemma 6.1 in [5], stated for the case of two
variables) to a general case.

In addition to the above tool, we need two more properties. The first will be
used together with Theorem 1 or Corollary 1, and the second ensures that the
reduction we will construct is polynomial time computable.

Fact 1. For ∀p, q ∈ IN and any polynomial f , g and h where

f =
∑

i+j=p,
i,j∈IN

aijx
iyj , g =

∑
s+t=q,
s,t∈IN

bstz
swt and h =

∑
i+j=p,s+t=q,

i,j,s,t∈IN

cijstx
iyjzswt.

If all the coefficients of both polynomials f and g can be recovered from their
values on (xk, yk), k = 1, 2, . . . ,m and (zu, wu), u = 1, 2, . . . , n respectively, then
the coefficients of h can be recovered from its values on (xk, yk, zu, wu), k =
1, 2, . . . ,m, u = 1, 2, . . . , n.

Proof. Because the coefficient matrix of the linear equation system for h’s cijst,
which is a matrix determined by (xk, yk, zu, wu), k = 1, 2, . . . ,m, u = 1, 2, . . . , n,
is just the tensor product of the coefficient matrixes of systems for f ’s aij and g’s
bst, which are matrixes determined by (xk, yk), k = 1, 2, . . . ,m and (zu, wu), u =
1, 2, . . . , n respectively. ��
Fact 2. Suppose a system of linear equations has m rational coefficient equa-
tions in n variables and it has a unique solution. Then the solution can be com-
puted in polynomial time, if m,n and the length of coefficients and constant items
are bounded by a polynomial in n.

Proof. By a standard algorithm for finding the solution of a linear equation
system. ��

3 Reductions

In this section, we will prove the #P-completeness of the #3-Regular Planar
Bipartite Vertex Cover (VC), by reducing it to #P-complete problem # Planar
Bipartite VC ([5]). The reduction here is a polynomial time Turing (strictly,
truth table) reduction.
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Fig. 1. In graph G′, set Ec specifies the set of all thick edges, and the set Ee specifies
all the light edges

Let G(V,E) be a planar bipartite graph and |E| = m. Consider the graph
G′(V ′, E′) derived from G by replacing each vertex v ∈ V in G with a cycle
Cv of 2d(v) vertices where d(v) is the degree of v, and connecting two adjacent
vertices of Cv to the two adjacent vertices of cycle Cu respectively, where u ∈ V
and (u, v) ∈ E (Figure 1). Let set Ec ⊆ E′ specify the set of edges in cycles, and
Ee ⊆ E′ specify the set of all the edges between cycles. Clearly, G′ is a 3-regular
planar bipartite graph, and E′ = Ec ∪Ee, and |Ec| = 2|Ee| = 4|E| = 4m.

Fig. 2. An s-block containing s devices G

In Fig. 2, the gadget containing s devices G is called an s-block, and the
vertices p1 and p2 are endpoints of the s-block. The device G is shown in
Fig. 3.

Now we define graph Gs,t to be the graph induced from graph G′ = (V ′, E′)
by replacing each edge ec ∈ Ec by an s-block and replacing each edge ee ∈ Ee

by a t-block. Obviously, Gs,t is also a 3-regular planar bipartite graph. Let

k(a,b,c),(a′,b′,c′) = |{X ⊆ V ′| a edges of Ec have two endpoints in X,

b edges of Ec have exactly one endpoint in X,

c edges of Ec have no endpoint in X ; and similarly,
a′ edges of Ee have two endpoints in X,

b′ edges of Ee have exactly one endpoint in X,

c′ edges of Ee have no endpoint in X}|,
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then the number of VCs of Gs,t is

#VC(Gs,t) =
∑

(a,b,c)∈I2m,
(a′,b′,c′)∈Im

k(a,b,c),(a′,b′,c′) · za
s,11z

b
s,10z

c
s,00z

a′
t,11z

b′
t,10z

c′
t,00

where zs,ij (or zt,ij) denotes the number of VCs of s-block (or t-block) such that
the endpoints p1 and p2 are taken or not according to the values of i, j, that is

zs,ij = |{X is VC of s-block | χX(p1) = i, and χX(p2) = j}|.

For example zs,01 is the number of VCs of an s-block, the VCs are such that
the endpoint p2 is in the VCs but the endpoint p1 is not. Here, χX(·) is the
characteristic function of set X , and we denote vector (zs,00, zs,01, zs,10, zs,11)T

by zs.

Fig. 3. Figure illustrating a device G

By Lemma 2 in the next section, all the zs,ij , zt,ij can be computed in poly-
nomial time, and #VC(Gs,t), s, t = 1, 2, . . . ,

(
n+3

3

)
(by asking oracle) can also be

got in polynomial time. Moreover, all of these numbers above are of polynomial
length. By Lemma 2, (zs,00, zs,10, zs,11)T satisfies conditions in Theorem 2. By
Theorem 1, Fact 1 and Fact 2, all t(a,b,c),(a′,b′,c′) can be computed in polynomial
time.

The key observation to the proof is that

#VC(G) =
∑

(a,b,c)∈I2m,b=0
(a′,b′,c′)∈Im,c′=0

k(a,0,c),(a′,b′,0). (3)

Because b = 0 and c′ = 0 make sure that the summation above is the number
of all such subsets X ⊆ V ′, which satisfy that all or none vertices of a circle
Cv, v ∈ V are contained in the subset X , and every two parallel edges between
two circles are covered simultaneously by X from one side or both sides. Hence,
each subset X is 1-1 and onto mapped to a vertex cover of G, and the equation
(3) follows.

Now we have:

Theorem 2. #3-regular planar bipartite VC is #P-complete. ��
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4 Calculation and Verification

In this section, we verify that Lemma 2 used in the proof in Section 3 hold, which
ensures that the construction in Section 3 satisfies the conditions of Theorem 1.

A part of gadget s-block named Bs shown in Fig. 4, v1, v2, v3, v4 are four
vertices in the four corners of Bs. Let xs,i1i2i3i4 specify the number of VCs of Bs

such that the four vertices v1, v2, v3, v4 are taken or not according to the values
of i1, i2, i3, i4, that is

xs,i1i2i3i4 = |{X is VC of Bs| χX(v1) = i1, χX(v2) = i2,

χX(v3) = i3, χX(v4) = i4}|.

and the vector xs = (xs,i1i2i3i4)16×1 = (xs,0000 xs,0001 . . . xs,1111)T .
To prove the main lemma, Lemma 2, we need a recursive characterization of

the vector sequence xs.

Lemma 1. xs+1 = AB · xs, s = 0, 1, 2, . . ., where

AB =

⎛⎜⎜⎝
AG 0 0 0
0 AG 0 0
0 0 AG 0
0 0 0 AG

⎞⎟⎟⎠ ,AG =

⎛⎜⎜⎝
0 0 0 0
38 64 38 64
38 38 64 64
38 64 64 107

⎞⎟⎟⎠ and

x0 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)T.

Proof. First define xG,i1i2i3i4 as follows

xG,i1i2i3i4 = |{X is VC of G| χX(u1) = i1, χX(u2) = i2,

χX(u3) = i3, χX(u4) = i4}|.

Now it is not difficult to verify that⎛⎜⎜⎝
xG,0000 xG,0001 xG,0010 xG,0011
xG,0100 xG,0101 xG,0110 xG,0111
xG,1000 xG,1001 xG,1010 xG,1011
xG,1100 xG,1101 xG,1110 xG,1111

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0 0
38 64 38 64
38 38 64 64
38 64 64 107

⎞⎟⎟⎠ .

Fig. 4. A part of gadget s-block, Bs
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Given xs, by the definition of xs,i1i2i3i4 and xG,i1i2i3i4 , we observe that:

xs+1,i1i2i3i4 = xs,i1i200 · xG,i3i400 + xs,i1i201 · xG,i3i401 +
xs,i1i210 · xG,i3i410 + xs,i1i211 · xG,i3i411, (4)

so we have xs+1 = AB · xs.
Notice that B0 is just one edge, whose top vertex is labelled by v1 and v3 and

bottom vertex is labelled by v2 and v4 simultaneously. So,

x0 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1)T .

The lemma follows. ��

Now we are ready to verify the main lemma.

Lemma 2. Denote vector (zs,00, zs,01, zs,11)T by zs, we have that zs = A ·
(λs

1, λ
s
2, λ

s
3)

T for any s = 0, 1, 2, . . ., and that the rank of A is 3; and λ1, λ2, λ3
satisfy the condition 2 of Theorem 1.

Proof. By lemma 1, the four eigenvalues of matrix AB are

λ1 = 26, λ2 =
209 +

√
32793

2
, λ3 =

209−
√

32793
2

and λ4 = 0.

Notice that AG can be decomposed as the following form

AG = EλE−1, whereλ =

⎛⎜⎜⎝
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞⎟⎟⎠ .

Thus

xs =

⎛⎜⎜⎝
04×1

EλsE−1 · (0, 1, 0, 0)T

EλsE−1 · (0, 0, 1, 0)T

EλsE−1 · (0, 0, 0, 1)T

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

05×3
1
2 C D

− 1
2 C D
0 A −A
0 0 0

− 1
2 C D
1
2 C D
0 A −A
0 0 0
0 A −A
0 A −A
0 E F

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛⎝λs
1
λs

2
λs

3

⎞⎠ (5)

where

A =
64√
32793

, C =
32793− 5

√
32793

131172
, D =

32793 + 5
√

32793
131172

,

E =
5 +

√
32793

2
√

32793
and F =

−5 +
√

32793
2
√

32793
.
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Recall the definition of zs, xs and by a similar calculation for the equation
(4) we have

zs =

⎛⎝0 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 0 1 1 1 0 1 2 2 0 1 2 2
0 0 0 0 0 2 1 2 0 1 2 2 0 2 2 4

⎞⎠ · xs

=

⎛⎝ 0 4A+ 4C + E −4A+ 4D + F
1
2 6A+ 5C + 2E −6A+ 5D + 2F
1 8A+ 6C + 4E −8A+ 6D + 4F

⎞⎠ ·
⎛⎝λs

1
λs

2
λs

3

⎞⎠ . (6)

It is easy to check that zs,01 = zs,10 and that the rank of matrix in equation
(6) is 3. Thus, we complete the proof of this lemma. ��

5 Conclusion

The study of counting and its computational complexity is interesting and im-
portant. However, we only have a limited understanding of how the complexity
of counting problems behaves in restricted cases. The results of this paper im-
proved the situation somewhat, but there are still many open problems. We hope
that the method developed here are useful in obtaining more #P-completeness
results for other restricted counting problems.
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Abstract. This paper presents an important result addressing a funda-
mental question in synthesizing binary reversible logic circuits for quan-
tum computation. We show that any even-reversible-circuit of n (n > 3)
qubits can be realized using NOT gate and Toffoli gate (‘2’-Controlled-
Not gate), where the numbers of Toffoli and NOT gates required in the
realization are bounded by (n+�n

3 �)(3×22n−3−2n+2) and 4n(n+�n
3 �)2n,

respectively. A provable constructive synthesis algorithm is derived. The
time complexity of the algorithm is 10

3 n2 · 2n. Our algorithm is expo-
nentially lower than breadth-first search based synthesis algorithms with
respect to space and time complexities.

1 Introduction

Reversible logic plays an important role in quantum computing [1, 2]. It has been
shown that any computing system of irreversible logic gates leads inevitably to
energy dissipation [3, 4, 5] from reversible gates. There have been extensive works
[2, 6, 7, 8, 9, 10] on constructing reversible logic gates.

A fundamental question on reversible logic is what kind of reversible functions
can be implemented, given a library of reversible logic gates. In this paper, we
show that any even permutation with n (n > 3) qubits can be constructed
by NOT and Toffoli gates. We present a novel, concise and constructive proof
based on group theory. Our proof does not require the use of ‘1’-CNOT gates
to synthesize n (n > 3) qubit functions. A synthesis algorithm is derived based
on the constructive proof, where the numbers of Toffoli and NOT gates required
in the realization are bounded by (n + (n

3 ))(3 × 22n−3 − 2n+2) and 4n(n +
(n

3 ))2n, respectively. The provable synthesis algorithm outperforms search-based
approaches. The time complexity of our algorithm is 10

3 n
2 · 2n. In contrast, a

search based synthesis algorithm may have a worst case time complexity of over
(2n)!/2.

The rest of the paper is organized as follows. In Section 2, we present the
definitions of reversibility, even and odd permutations, and some elementary
reversible logic gates. In Section 3, we prove that every even permutation can be
synthesized using the bounded number of gates. Based on this proof, we present

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 365–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a synthesis algorithm with an example of synthesizing a function into 8 NOT
gates and 48 Toffoli gates in Section 4. We analyze the time complexity of our
algorithm in Section 5 and conclude in Section 6.

2 Preliminaries

In this section, we introduce some basic concepts and results on permutation
group theory from [11] and binary reversible logic from [12, 13, 14].

Definition 1 (Binary reversible gate). Let B = {0, 1}. A binary logic circuit
f with n inputs and outputs is denoted by a binary multiple-output function
f : Bn → Bn. Let 〈B1, · · · , Bn〉 ∈ Bn and 〈P1, · · · , Pn〉 ∈ Bn be the input and
output vectors, where B1, · · · , Bn are input variables and P1, · · · , Pn are output
variables. There are 2n different assignments for the input vectors. A binary
logic circuit f is reversible if it is a one-to-one and onto function (bijection).
A binary reversible logic circuit with n inputs and n outputs is also called an
n-qubit binary reversible gate. There are a total of (2n)! different n-qubit binary
reversible circuits.

We introduce a permutation group and its relationship with reversible circuits.

Definition 2 (Permutation). Let M = {d1, d2, · · · , dk}. A bijection 1 of M
onto itself is called a permutation on M . The set of all permutations on M
forms a group under composition of mappings, called a symmetric group on M .
It is denoted by Sk [11]. A permutation group is simply a subgroup [11] of a
symmetric group.

A mapping s : M → M can be written as a product of disjoint cycles (Defini-
tion 3) as an alternative notation for a mapping [11]. For example,(d1, d2, d3, d4, d5, d6, d7, d8, d9

d1, d4, d7, d2, d5, d8, d3, d6, d9

)
(1)

can be written as (d2, d4)(d3, d7)(d6, d8). Denote “( )” as the identity mapping
(i.e., direct wiring) and call this the unity element in a permutation group. The
inverse mapping of mapping f is denoted as f−1. Per convention, a product f ∗g
of two permutations applies mapping f before g.

A n-qubit reversible circuit is a permutation in S2n , and vice versa. Cascading
two gates is equivalent to multiplying two permutations in S2n . Thus, in what fol-
lows, we will not distinguish a n-qubit reversible circuit from a permutation inS2n .

Definition 3 (‘j’-cycle). Let Sk be a symmetric group of symbols {d1, d2,· · ·, dk},
then (di1 , di2 , · · · , dij ) is called a ‘j’-cycle, where j ≤ k, 1 ≤ i1, i2, · · · , ij ≤ k.

Definition 4 (even and odd permutations). A permutation is even if it is
a product of an even number of 2-cycles; and odd if it is a product of an odd
number of 2-cycles.
1 Bijection: one-to-one, and onto mapping.
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Obviously, a ‘3’-cycle is an even permutation. For instance, (1, 3, 2) = (2,
3) (3, 1). The product of some even permutations is also an even permutation.
The product of an odd number of odd permutations is an odd permutation. The
product of an even number of even permutations with an odd number of odd
permutations is an odd permutation. The product of an even number of odd
permutations is an even permutation.

Lemma 1. Let Sk be a symmetric group of symbols {d1, d2, · · · , dk}. Then any
even permutation in S2n can be expressed as a product of at most 2n−1 ‘3’-cycles.

Proof. 1. Consider a ‘m’-cycle: (a1, a2, · · · , am), m ≥ 4. It is a product of a
‘3’-cycle and a ‘(m− 2)’-cycle.

(a1, a2, · · · , am) = (a1, a2, a3) ∗ (a1, a4, · · · , am). (2)

If m is an odd number, (a1, a2, · · · , am) is a product of (m−1)
2 ‘3’-cycles. If

m is an even number, (a1, a2, · · · , am) is a product of m
2 ‘3’-cycles and one

‘2’-cycle.
2. ‘m’-cycle is called even (or odd, respectively) cycle if m is even (or odd). An

even cycle is an odd permutation; and an odd cycle is an even permutation.
Even cycle must appear as a pair of even permutation, and

(a, b) ∗ (c, d) = (a, b) ∗ (b, c) ∗ (b, c) ∗ (c, d) = (a, c, b) ∗ (b, d, c), (3)

which means that a product of a pair of ‘2’-cycles is equal to a product of a
pair of ‘3’-cycles.

Therefore, any even permutation in S2n can be expressed as a product of at
most 2n−1 ‘3’-cycles. �

Remark 1. Lemma 1 is a well-known result in permutation group theory [11].
We give a proof in order to analyze the number of ‘3’-cycles which will be used
in the decomposition process of our synthesis algorithm.

Definition 5 (NOT gate). A NOT gate Nj connects an inverter to the j-th
wire, i.e.: Pj = Bj ⊕ 1; Pi = Bi, if i �= j. 1 ≤ j ≤ n.

Definition 6 (‘k’-CNOT gate). A ‘k’-Controlled-NOT (CNOT) gate
Ci1,i2,··· ,ik;j is defined as follows:

– If m �= j, then Pm = Ci1,i2,··· ,ik;j(Bm) = Bm.

– If m = j, and Bi1 = · · · = Bik
= 1, then Pj = Ci1,i2,...,ik;j(Bj) = Bj ⊕ 1,

else, Pj = Bj.

A Toffoli gate is a ‘2’-CNOT gate where two inputs control an output of another
input.



368 G. Yang et al.

3 Theoretical Results

Lemma 2. If n ≥ 5 and 2 ≤ k ≤ n − 3, then any ‘(k + 1)’-CNOT gate can be
constructed by (3× 2k−1− 2) ‘2’-CNOT (Toffoli) gates without ancilla qubit. In
particular, ‘(n− 2)’-CNOT gate can be constructed by (3× 2n−4− 2) ‘2’-CNOT
gates without ancilla qubit.

Proof. Given a ‘(k+1)’-CNOT gate Ci1,··· ,ik,ik+1;j , since n ≥ 5 and 2 ≤ k ≤ n−3,
there is h, 1 ≤ h ≤ n, where h is different from i1, · · · , ik, ik+1, j. In other
words, among these n qubits, there is a qubit Bh different from the qubits
Bi1 , · · · , Bik+1 , Bj . We will prove the following equation:

Ci1,··· ,ik,ik+1;j = (Ci1,··· ,ik;h ∗ Ch,ik+1;j)2 (4)

Consider the outputs of the left side of the equation 4, we have:

Ph = Bh ⊕ (Bi1 · · ·Bik
)⊕ (Bi1 · · ·Bik

)
Pj = Bj ⊕Bik+1(Bh ⊕Bi1 · · ·Bik

)⊕Bik+1Bh

= Bj ⊕ (Bi1 · · ·Bik+1)

Therefore, equation 4 holds. �

This equation tells us that any ‘(k + 1)’-CNOT gate can be constructed by two
‘k’-CNOT gates and two ‘2’-CNOT gates. Using this equation recursively, any
‘(k + 1)’-CNOT gate can be constructed by 3 × 2k−1 − 2 number of ‘2’-CNOT
gates.

For any three different bit vectors u, s and t, the following matrix P is called
the characteristic matrix of the ‘3’-cycle permutation (u, s, t).

P =

⎡⎣us
t

⎤⎦ =

⎡⎣u1, u2, . . . , un

s1, s2, . . . , sn

t1, t2, . . . , tn

⎤⎦
In this 3-row matrix P , a column having different elements (different bits) is

called a heterogeneous column. Otherwise, it is called homogeneous column.

Definition 7 (Neighboring ‘3’-cycle). If the characteristic matrix P of a
‘3’-cycle (u, s, t) has only two heterogeneous columns, this ‘3’-cycle (u, s, t) is
called a neighboring ‘3’-cycle. In other words, only two bits are different among
these three assignment vectors u, s and t.

Lemma 3. Any neighboring ‘3’-cycle permutation (u, s, t) can be generated by
four ‘(n− 2)’-CNOT gates and at most 2n NOT gates without ancilla qubit.

Proof. Suppose in P , the ith and jth columns are heterogeneous, the other
columns are all 1’s (if some are 0’s, we can first apply at most (n−2) NOT gates to
make them become 1’s, then after applying four ‘(n−2)’-CNOT gates, we apply
these NOT gates to restore these 1’s that became 0’s). The vector values in the
ith and jth columns are three out of these four vectors: 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉.
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There are 8 cases and we will prove one of them: (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉).
Let k, l be two indexes different from i, j, respectively. If n > 4, we denote
x = {1, 2, · · · , n} − {i, j, k, l}, namely, the index numbers except i, j, k, l. Bx =∏

h 
=i,j,k,l Bh is the product of variables Bh except Bi, Bj , Bk, Bl.

1. If (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉), then

1, · · · , i, · · · , j, · · · , n 1, · · · , i, · · · , j, · · · , n⎡⎣us
t

⎤⎦=
⎡⎣1, · · · , 1, · · · , 0, · · · , 1

1, · · · , 1, · · · , 1, · · · , 1
1, · · · , 0, · · · , 1, · · · , 1

⎤⎦ (u,s,t)
→

⎡⎣1, · · · , 1, · · · , 1, · · · , 1
1, · · · , 0, · · · , 1, · · · , 1
1, · · · , 1, · · · , 0, · · · , 1

⎤⎦=
⎡⎣ st
u

⎤⎦ (5)

We have the following equation:

(u, s, t) = Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i (6)

After a CNOT gate, only one output qubit changes its value.
After the first CNOT gate, only the second qubit Bj changes it value. Let
the changed value be B(1)

j :

B
(1)
j = Bj ⊕ BiBkBx.

After the second CNOT gate, only the first qubit Bi changes it value. Let
the changed value be B(2)

i :

B
(2)
i = Bi ⊕B

(1)
j BlBx

= Bi ⊕BjBlBx ⊕BiBkBlBx.

After the third CNOT gate, only the second qubit changes it value again.
Let the changed value be B(3)

j :

B
(3)
j = B

(1)
j ⊕B

(2)
i BkBx

= Bj ⊕ (Bi ⊕Bj)BkBlBx.

After the forth CNOT gate, only the first qubit changes it value. Let the
changed value be B(4)

i :
B

(4)
i = B

(2)
i ⊕B

(3)
j BlBx

= Bi ⊕BjBkBlBx.

These exactly consist with the truth table 5 of the reversible circuit (u, s, t).
Therefore, equation 6 holds.
Similarly, we have the following equations:

2. If (u, s, t) = (〈1, 0〉, 〈1, 1〉, 〈0, 1〉), then

(u, s, t) = Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j (7)

3. If (u, s, t) = (〈0, 0〉, 〈1, 0〉, 〈1, 1〉), then

(u, s, t) = Nj ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗Nj (8)
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4. If (u, s, t) = (〈0, 0〉, 〈1, 1〉, 〈1, 0〉), then

(u, s, t) = Nj ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗Nj (9)

5. If (u, s, t) = (〈0, 0〉, 〈0, 1〉, 〈1, 1〉), then

(u, s, t) = Ni ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗Ni (10)

6. If (u, s, t) = (〈0, 0〉, 〈1, 1〉, 〈0, 1〉), then

(u, s, t) = Ni ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗Ni (11)

7. If (u, s, t) = (〈0, 0〉, 〈0, 1〉, 〈1, 0〉), then

(u, s, t) = Ni ∗Nj ∗ Ci,k,x;j ∗ Cj,l,x;i ∗ Ci,k,x;j ∗ Cj,l,x;i ∗Nj ∗Ni (12)

8. If (u, s, t) = (〈0, 0〉, 〈1, 0〉, 〈0, 1〉), then

(u, s, t) = Ni ∗Nj ∗ Cj,k,x;i ∗ Ci,l,x;j ∗ Cj,k,x;i ∗ Ci,l,x;j ∗Nj ∗Ni (13)

Therefore, Lemma 3 holds. �

Lemma 4. If the characteristic matrix of a ‘3’-cycle (u, s, t) has k heteroge-
neous columns, then there is an ordered set M = {a1, a2, · · · , am} with m vector
assignments, such that u, s, t ∈M and a1, am ∈ {u, s, t}. For any r, 1 ≤ r < m,
there are only r bits different among ai, · · · , ai+r, and m ≤ k + (k

3 )+ 1.

Proof. Let k1 be the number of same bits and k2 be the number of different bits
between u and s, respectively. Let ki1 and ki2 be the number of same and different
bits between s and t in ki bits, respectively, i = 1, 2. Then, k11 + k12 + k21 = k,
and k11 + k12 + k21 + k22 = n.

1. According to the order u, s, t, we set a1 = u, ai = s, am1 = t, such that
i = 1 + k11 + k12,m1 = i + k12 + k21 = k + k12 + 1. We add i − 1 vectors
a2, · · · , ai−1 without changing the same bits between u and s. Each time we
change only one bit in the different bits between u and s. We apply the same
method to vectors ai+1, · · · , am1−1.
Then we get a ordered set M1 with m1 vectors such that there are only r
bits different among r neighboring vectors, and m1 = k + k12 + 1.

2. Similarly, according to the order u, t, s, we can get an ordered set M2 with
m2 vectors such that there are only r bits different among r neighboring
vectors, and m2 = k + k21 + 1.

3. According to the order s, u, t, we can get an ordered set M3 with m3 vectors
such that there are only r bits different among r neighboring vectors, and
m3 = k + k11 + 1.

We choose a minimal set M from these three sets M1,M2,M3. Let M =
{a1, a2, · · · , am} be an ordered set with m vector assignments such that there
are only r bits different among r neighboring vectors for any r ≥ 2, and m ≤
k + (k

3 )+ 1. �
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Theorem 1. All n-qubit even binary reversible circuits can be constructed by
NOT and ‘2’-CNOT gates without ancilla qubit.

Proof. For any even reversible circuit, its permutation on assignments of inputs
can be expressed by the product of some ‘3’-cycles (Lemma 1).

By lemma 4, for any ‘3’-cycle (u, s, t), there are m vector assignments
a1, a2, . . . , am, where a1, am ∈ {u, s, t}, such that there is only one bit different be-
tween ai and ai+1. We can decompose the ‘3’-cycle (u, s, t) = (a1, a1+r1 , a1+r1+r2),
or (u, s, t) = (a1, a1+r1+r2 , a1+r1), where 1 + r1 + r2 = m, applying the following
equations:

(a1, a1+r1 , a1+r1+r2) = (a1+r1 , a1+r1+r2 , a1+r1+1) ∗ (a1, a1+r1 , a1+r1+1) (14)

(a1, a1+r1+r2 , a1+r1) = (a1, a1+r1+1, a1+r1) ∗ (a1+r1 , a1+r1+1, a1+r1+r2) (15)

(a1, a1+r1 , a1+r1+1) = (ar1 , a1+r1 , a1+r1+1) ∗ (a1, a1+r1 , ar1) (16)

(a1, a1+r1+1, a1+r1) = (a1, ar1 , a1+r1) ∗ (ar1 , a1+r1+1, a1+r1) (17)

By recursively applying equation 14 or 15 (if r2 > 1) and equation 16 or 16
(if r1 > 1), we can decompose (u, s, t) into neighboring ‘3’-cycles.

By Lemma 3, any neighboring ‘3’-cycle can be constructed by NOT and ‘(n−
2)’-CNOT gates. Applying equation 4 recursively, it can be constructed by NOT
and ‘2’-CNOT gates.

Therefore, all n-qubit even binary reversible circuits can be constructed by
NOT, ‘2’-CNOT gates without ancilla qubit. �

Next, we establish the upper bounds on the number of ‘2’-CNOT gates and the
number of NOT gates used in our construction.

Theorem 2. The number of ‘2’-CNOT gates used in the above construction is
no more than (n+(n

3 ))(3×22n−3−2n+2). The number of NOT gates is no more
than 4n(n+ (n

3 ))2n.

Proof. Let g(r1, r1 + r2) be the number of ‘(n − 2)’-CNOT gates. We need to
synthesize a ‘3’-cycle (aj , aj+r1 , aj+r1+r2) or (aj , aj+r1+r2 , aj+r1), r1 ≥ 1, r2 ≥ 1.

According to Lemma 3, g(1, 2) = 4.
Using equation 14 or 15, we get g(r1, r1 + r2) ≤ g(1, r2) + g(r1, r1 + 1).
Using equation 16 or 17, we get g(r1, r1 + 1) ≤ g(1, 2) + g(r1 − 1, r1). Recur-

sively, we get g(r1, r1 + 1) ≤ (r1 − 1)g(1, 2). Similarly, g(1, r2) ≤ (r2 − 1)g(1, 2).
Therefore,

g(r1, r1 + r2) ≤ (r1 + r2 − 1)g(1, 2) = 4(r1 + r2 − 1) = 4(m− 2). (18)

From equation 18 and Lemma 4, we have

g(r1, r1 + r2) ≤ 4(k + (k
3
) − 1) < 4(n+ (n

3
)). (19)
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Based on Lemmas 1, 2, 4, and equation 19, the upper bound of the number
of ‘2’-cycles that are needed to synthesize any given even reversible circuit is:

2n−1 × 4(n+ (n
3
))× (3 × 2n−4 − 2)

= (n+ (n
3
))(3 × 22n−3 − 2n+2).

In terms of Lemmas 1, 3, and equation 19, the upper bound on the number
of NOT gates is:

2n−1 × 4(n+ (n
3 ))× 2n = 4n(n+ (n

3 ))2n. �

Remark 2. The upper bound for NOT gates can be reduced by removing pair of
the adjacent same NOT gates. (There is commutativity in the product of NOT
gates). This is illustrated by the example in the next section.

4 Algorithm and Synthesis Example

Based on the above analysis, we present the following constructive algorithm for
synthesizing any even binary reversible circuit without using ancilla qubits.

Algorithm
Step 1. Rewrite f as the product of ‘3’-cycles by using equations 2 and 3.
Step 2. For every ‘3’-cycle (u, s, t), find an ordered set M = {a1, · · · , ak}

according to Lemma 4. Based on equations 14, 15, 16, and 17, rewrite this
‘3’-cycle (u, s, t) as a product of some neighboring ‘3’-cycles (ai, ai+1, ai+2) or
(ai, ai+2, ai+1).

Step 3. Synthesize all neighboring ‘3’-cycles by NOT and ‘(n − 2)’-CNOT
gates by Lemma 3 and remove pair of the adjacent same NOT gates.

Step 4. Decompose each ‘(n− 2)’-CNOT gates into (3× 2n−4− 2) ‘2’-CNOT
gates by using equation 4.

Example: Given an even binary reversible circuit f which has a truth table
as shown in Table 1.

Table 1. An even binary reversible function f

input output
B1 B2 B3 B4 B5 encoding P1 P2 P3 P4 P5 encoding
0 1 0 1 0 b1 1 1 1 1 0 b5

0 1 1 1 0 b2 1 0 1 1 0 b4

1 0 0 1 0 b3 0 1 0 1 0 b1

1 0 1 1 0 b4 1 0 0 1 0 b3

1 1 1 1 0 b5 0 1 1 1 0 b2

Therefore, f = (b1, b5, b2, b4, b3).
Step 1. Decompose f into ‘3’-cycles by equation 2. f = (b1, b5, b2)(b1, b4, b3).
Step 2. Decompose each ‘3’-cycle into the product of neighboring ‘3’-cycles.
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– For ‘3’-cycle (b1, b5, b2). This is a neighboring ‘3’-cycle.
– For ‘3’-cycle (b1, b4, b3). Using Lemma 4, we get an ordered set M =
{a1, a2, a3, a4}, where a1 = b1, a2 = 〈0, 0, 0, 1, 0〉 (a new vector), a3 =
b3, a4 = b4. Using equation 17, we get

(b1, b4, b3) = (a1, a4, a3) = (a1, a2, a3)(a2, a4, a3).

Step 3. By applying NOT gates and equation 11, we have:

(b1, b5, b2) = N5 ∗N1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗N1 ∗N5.

By applying NOT gates and equation 13, we have:

(a1, a2, a3) = N5∗N3∗N2∗N1∗C2,3,5;1∗C1,4,5;2∗C2,3,5;1∗C1,4,5;2∗N1∗N2∗N3∗N5.

By applying NOT gates and equation 9, we have:

(a2, a4, a3) = N5 ∗N3 ∗N2 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗N2 ∗N3 ∗N5.

By removing pair of the adjacent same NOT, f is decomposed into the product
of 8 NOT gates (without removing NOT gates, there are 18 NOT gates) and 12
‘3’-CNOT gates.

f = N5 ∗N1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1
∗N3 ∗N2 ∗ C2,3,5;1 ∗ C1,4,5;2 ∗ C2,3,5;1 ∗ C1,4,5;2 ∗N1
∗C1,2,5;3 ∗ C3,4,5;1 ∗ C1,2,5;3 ∗ C3,4,5;1 ∗N2 ∗N3 ∗N5.

Step 4. Using equation 4, decompose each ‘3’-CNOT gate into 4 ‘2’-CNOT
gates.

The synthesis process is finished, and f is decomposed into the product of 8
NOT gates and 48 ‘2’-CNOT gates.

5 Complexity Analysis

Theorem 3. The time complexity of the synthesis algorithm is no more than
10
3 n

2 · 2n.

Proof. Calculate the time complexity of each step, then add them up.

Remark 3. Our method is constructive, since for each step, we are simply trans-
forming the formula to obtain the synthesized gates. We do not need to search
other reversible circuits that do not appear in our method. The computational
complexity of our synthesis algorithm is exponentially lower than the complexity
of breadth-first search based synthesis algorithm. The space complexity of any
breadth-first search based synthesis algorithm for n qubits even reversible cir-
cuit is more than (2n)!/2, since in the worst case, it at least needs to remember
all (2n)!/2 even reversible circuits. This is impossible even when n = 4 since
(24)!/2 ≈ 1.0× 1013. The time complexity is also greater than (2n)!/2, because
in the worst case, it at least needs to compute all even reversible circuits. In
fact, it also has to do a lot of comparisons of equality to determine whether
the calculated circuit is the given circuit or not, so the time complexity of any
breadth-first search based synthesis algorithm is much more than (2n)!/2.
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6 Conclusions

In this paper, we present a constructive proof that any even reversible circuit
can be implemented by NOT and Toffoli gates. Our proof is essentially a con-
struction of the reversible circuit and we also give the upper bounds for the
number of NOT gates and Toffoli gates in such circuit. We present a construc-
tive synthesis algorithm based on this proof and give a synthesis example based
on this algorithm, which shows that even by hand, synthesizing any 5-qubit even
reversible circuit is not difficult. The computational complexity of our synthe-
sis algorithm is exponentially lower than the complexity of breadth-first search
based synthesis algorithm.
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Abstract. This paper studies the complexity of derivatives and inte-
gration of NC real functions (not necessarily analytic) and NC analytic
functions. We show that for NC real functions, derivatives and integra-
tion are infeasible, but analyticity helps to reduce the complexity. For
example, the integration of a log-space computable real function f is as
hard as #P , but if f is an analytic function, then the integration is log-
space computable. As an application, we study the problem of finding all
zeros of an NC analytic function inside a Jordan curve and show that,
under a uniformity condition on the function values of the Jordan curve,
the zeros are all NC computable.

1 Introduction

We are interested in the parallel-time complexity of analytic functions defined on
R or C. The sequential-time complexity of analytic functions has been studied
by Ko [13] and Müller [17]. The parallel-time complexity of real functions has
been studied by Hoover [11, 12], who introduced the notion of NC computable
real functions. NC denotes the class of decision problems solvable by a family of
Boolean circuits with polynomial size and polylog depth. In this paper, by NC we
mean uniform NC , which requires the Boolean circuit family to be constructed
by a log-space Turing machine. It is well known that L ⊆ NC ⊆ P , where L and
P denote the classes of decision problems solvable by log-space Turing machines
and polynomial-time Turing machines, respectively. In this paper, we extend
Ko’s and Hoover’s studies to NC analytic functions.

We first investigate the complexity of derivatives and integration of NC real
functions. It is known that the derivatives of polynomial-time computable real
functions may have arbitrarily high complexity, and that the complexity of inte-
gration of polynomial-time computable real functions may be as high as a #P -
complete discrete function (see Ko [13]). We show that these negative results also
hold for NC real functions. In fact, we show that the integration of log-space
computable real functions may be as hard as the integration of polynomial-time
computable real functions, that is, the complexity is still #P .
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For analytic functions defined on the complex plane, it is known that if f is
a polynomial-time computable, analytic function on a neighborhood containing
the origin 0, then the sequence {f (n)(0)/n!} is polynomial-time uniformly com-
putable (Ko [13]). We extend this result to NC and log-space analytic functions:
If f is an NC or log-space computable, analytic function defined on a neighbor-
hood containing the origin 0, then the sequence {f (n)(0)/n!} of derivatives is
NC or log-space uniformly computable, respectively. This is a nontrivial exten-
sion. We achieve these results through detailed analysis of parallel computation
of the derivatives. For example, we use Newton interpolation to approximate the
derivatives; for the log-space case, we use the recently proved result that integer
division is NC 1 computable. As a consequence, the integral

∫
f(t)dt of an NC

or log-space computable analytic function is also NC or log-space computable,
respectively.

One of the fundamental algorithmic problems in complex analysis is to find
the zeros of an analytic function inside a Jordan curve (see, e.g., Henrici [10]).
This problem has been attempted by various methods and algorithms, namely,
(1) methods based on the bisection algorithm, which keep searching zeros in
subdivided squares using the principle of the argument [10] (see, e.g., Yakoub-
sohn [21] and Meylan et al. [16]); (2) simultaneous iterative methods based on
Newton’s method, which require to make a good guess at the initial step (see,
e.g., Petkovic et al. [19, 20]); and (3) the quadrature methods based on numeri-
cal evaluation of integrals, which turn the problem into that of finding all zeros
of the associated polynomial function (see, e.g., Kravanja et al. [15] and Delves
et al. [8]). We study this problem from the complexity-theoretic point of view.
We study the complexity of finding all zeros of an NC analytic function inside
a given Jordan curve. We give a careful complexity analysis of the quadrature
method and demonstrate that the zeros of an NC analytic function f inside
an NC Jordan curve Γ are all NC computable if (i) f is analytic on a simply
connected domain that covers Γ , and (ii) there is an absolute constant c > 0
such that |f(z)| > c for all z on or near Γ .

The computational models used in this paper include the oracle Turing ma-
chine model of Ko [13] and the Boolean circuit model of Hoover [11]. These two
models are consistent with each other. In fact, as pointed out by Hoover [11],
polynomial-time computable real functions in the model of Ko are exactly the
real functions computable by uniform families of Boolean circuits of polynomial
sizes. The details of these models are presented in Section 2. The complexity
classes such as P , NC and #P used in this paper are exactly those studied in
discrete complexity classes (see, e.g., Du and Ko [9]).

2 Preliminaries

2.1 Notation and Terminology

This paper involves notions used in both discrete computation and continuous
computation. The basic computational objects in discrete computation are inte-
gers and strings in {0, 1}∗. The length of a string w is denoted �(w). We write
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〈·, ·〉 to denote the pairing function on two strings (or integers). We write ||S||
to denote the number of elements in a (finite) set S.

The basic computational objects in continuous computation are dyadic ratio-
nals D =

⋃
n∈N Dn, where Dn = {m/2n : m ∈ Z, n ∈ N}. Each dyadic rational d

has infinitely many binary representations with arbitrarily many trailing zeros.
For each such representation s, we write �(s) to denote its length. If the specific
representation of a dyadic rational d is understood (often the shortest binary
representation), then we write �(d) to denote the length of this representation.
We also use dyadic complex numbers d = 〈dx, dy〉 whose real and imaginary
parts dx and dy are both dyadic rational, and we define the length of d as
�(d) = max(�(dx), �(dy)).

For a subset S of C, we write ∂S to denote its boundary. For a point z ∈ C
and a set S ⊆ C, we let δ(z, S) be the distance between z and S, i.e., δ(z, S) =
inf{|z− z′| : z′ ∈ S}.

2.2 Discrete Complexity Classes

In this paper we consider mainly the circuit complexity class NC as well as
complexity classes defined based on Turing machines listed as follows (see, e.g.,
Du and Ko [9]).
P (or, NP ): the class of sets accepted by (or, nondeterministic, respectively)

polynomial-time Turing machines.
L (or, NL): the class of sets accepted by (or, nondeterministic, respectively)

Turing machines restricted to use an amount of memory logarithmic in the
size of the input.

#P : the class of functions that count the number of accepting paths of non-
deterministic polynomial-time machines.

#L: the class of functions that count the number of accepting paths of non-
deterministic log-space machines.1

Let i ≥ 0. Recall that NC i is the class of languages A ⊆ {0, 1}∗ such that
there exists a family {Cn} of Boolean circuits with the following properties (see,
e.g., Du and Ko [9]).

(a) There exists a Turing machine M that constructs (the encoding of) each
Cn in space O(log n).

(b) For all n, Cn has n input nodes and accepts An = A ∩ {0, 1}n.
(c) There exist a polynomial function p and a constant k > 0, such that for

all n, size(Cn) ≤ p(n) and depth(Cn) ≤ k logi n.

We call {Cn} an NC i circuit family. We let NC be the union of NC i for all
i ≥ 0.

For each complexity class of languages, we add a prefix “F” to denote the
corresponding class of functions, for example, FP is the class of polynomial-time
computable functions (mapping strings to strings).
1 There is a polynomial-time clock, for otherwise there can be infinitely many accepting

paths.
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The inclusive relations among these complexity classes are

NC 1 ⊆ L ⊆ NL ⊆ NC 2 ⊆ NC ⊆ P ⊆ NP

and
#L ⊆ FNC 2 ⊆ FP ⊆ #P .

Whether any of these inclusions is proper is unknown. The interested readers
are referred to Du and Ko [9] for general properties of these complexity classes
and to Alvarez and Jenner [1] for #L.

2.3 Computational Models for Continuous Functions

We use Cauchy functions to represent real (or complex) numbers (see Ko [13]).
We say a function φ : N→D binary converges to (or represents) a real number x,
if (i) for all n ≥ 0, φ(n) ∈ Dn, and (ii) for all n ≥ 0, |φ(n) − x| ≤ 2−n. We call
φ a Cauchy function of x. (To represent a complex number z = x+ yi, we need
two functions φx, φy : N→D that represent x and y respectively.) Suppose C is a
complexity class such as L, NC or P , we say a real number x is a C number if
there exists a Cauchy function φ of x such that φ is C computable.

To compute a real function f : [0, 1]→R, we use oracle Turing machines and
Boolean circuits. For more details, see Ko [13] for the oracle Turing machine
model and Hoover [11] for the Boolean circuit model. The function f is assumed
to have some modulus function m : N→N of continuity in the sense that, for
n ∈ N and x, y ∈ [0, 1], |x − y| ≤ 2−m(n) ⇒ |f(x) − f(y)| ≤ 2−n. This property
allows f to be approximated by its values at dyadic points. The computability
and complexity of f depend on the computability and complexity of m and of
approximations to f on dyadic points.

Definition 2.1. A real function f : [0, 1]→R is computable if

(a) f has a computable modulus of continuity, and
(b) there exists a computable function ψ : (D ∩ [0, 1])× N→D such that for

all d ∈ D ∩ [0, 1] and all n ∈ N, |ψ(d, n)− f(d)| ≤ 2−n.

Definition 2.2. A real function f : [0, 1]→R is polynomial-time computable if

(a) f has a polynomial modulus of continuity, and
(b) there exists a function ψ : (D ∩ [0, 1]) × N→D such that (i) for all d ∈

D∩ [0, 1] and all n ∈ N, |ψ(d, n)−f(d)| ≤ 2−n, and (ii) ψ is polynomial-
time computable, where the complexity is measured in terms of �(d)+n,
i.e., there exist a polynomial p and a Turing machine M such that on
input d ∈ D ∩ [0, 1] and n ∈ N, M output ψ(d, n) in time p(�(d) + n).

We call the integer n in ψ(d, n) above the (output) precision parameter for f .
We use n instead of logn for the complexity measure in Definition 2.2 since we
actually require the error to be within 2−n instead of within n−1.

NC functions can be defined in a similar way:
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Definition 2.3. Suppose i ≥ 0. A function f : [0, 1]→R is NC i computable if
and only if

(a) f has a polynomial modulus, and
(b) There exists an NC i circuit family {Cn} such that for any integers

m,n > 0 and any d ∈ Dm ∩ [0, 1], C〈n,m〉 outputs a dyadic rational
number e such that |e− f(d)| ≤ 2−n.

The above definitions are certainly extensible to functions from [0, 1] or [0, 1]2

to R or C, and to other complexity classes. We omit the details. Suppose C is
a complexity class such as P ,L and NC . We use CR to denote the class of all
C computable real numbers, and CC[0,1] to denote the class of all C computable
real functions defined on [0, 1]. Complexity classes of functions have hierarchies
similar to that of discrete complexity classes because (1) functions in these classes
have polynomial modulus of continuity, thus the error is well controlled, and (2)
the approximation of the value of a function at a given dyadic point can be
computed using the corresponding discrete computational model. For example,
Hoover [12] proved that NCC[0,1] = PC[0,1] iff NC = P .

Let S ⊆ C be a bounded domain, i.e., a bounded, nonempty, open and con-
nected subset of C. How do we define the computability and complexity of func-
tions from S to C? The above definitions do not directly work with open sets.
For example, consider f(x) = 1/x on the open set (0, 1): f(x) does not have
a modulus function because limx→0 f(x) = ∞, so f(x) is not computable by
Definition 2.1. In other words, when a point z ∈ S is closer to the boundary of
S, it takes more resources (time, space, etc.) to approximate f(z) to a required
precision 2−n. Our remedy is to modify the precision parameter, that is, if n is
the precision parameter and δ(z, ∂S) ≥ 2−k for some integer k ≥ 0, we use n+k
instead of n in the complexity measure. Similar treatments were used by Chou
and Ko [7] and Ko and Yu [14]. The following definition is the NC version of
this approach.

Definition 2.4. Let S ⊆ C be a bounded domain. Suppose i ≥ 0. A complex
function f : S→C is NC i computable if the following conditions hold:

(a) f has a polynomial modulus. More precisely, there exists a polynomial
function p : N→N such that for all m,n ∈ N and all z1, z2 ∈ S, if δ(z1, ∂S) ≥
2−p(m) and |z1 − z2| ≤ 2−p(m+n), then |f(z1)− f(z2)| ≤ 2−n.

(b) There exists an NC i circuit family {Cn} such that for any integers m,n,
k > 0 and a dyadic point d ∈ S ∩ D2

m, C〈m,n+k〉 outputs a dyadic point e such
that |e− f(d)| ≤ 2−n provided that δ(d, ∂S) ≥ 2−p(k), where p is the polynomial
in (a).

3 Complexity of Derivatives and Integration of NC
Functions

In this section we first study the complexity of computing derivatives and integrals
ofNC real functions, then restrict ourselves to NC analytic functions and show how
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analyticity affects the complexity. These results may be viewed as the NC versions
of those in Ko [13]. We omit the proofs that are similar to those in Ko [13].

3.1 Derivatives and Integration of NC Real Functions

Before we ask the complexity of finding the derivatives of an NC real function,
the first question is whether they exist.

Theorem 3.1. There exists an NC1 function f : [0, 1]→R such that f is
nowhere differentiable.

In the following, Ck[0, 1] denotes the set of functions f : [0, 1]→R that has contin-
uous k-th derivative f (k) and C∞[0, 1] denotes the set of infinitely differentiable
functions f : [0, 1]→R.

Theorem 3.2. Let f : [0, 1]→R be an NC function and have a continuous
derivative on [0, 1]. Then f ′ is NC computable on [0, 1] iff f ′ has a polynomial
modulus of continuity on [0, 1]. If, furthermore, f ∈ Ck[0, 1] for some k > 0, then
f (i) is NC computable for i < k; if f ∈ C∞[0, 1], then f (i) is NC computable for
all i > 0.

Theorem 3.3. There exists an NC function f : [0, 1]→R whose derivative f ′

exists everywhere but f ′(d) is not a computable real number for all d ∈ D∩ [0, 1].

Now we consider the complexity of integration. As integration is in some sense a
summation, it is not surprising that it is related to counting classes. As pointed
out by Ko [13], the complexity of integration of polynomial-time computable
real functions is characterized by the counting class #P . Now our question is:
what is the complexity of integration of NC real functions?

Theorem 3.4. Let C be one of complexity classes {L,NC, P}, and FC be the
corresponding class of functions. The following are equivalent:

(a) Let f : [0, 1]→R be a C function. Then, h(x) =
∫ x

0 f(t)dt is a C function.
(b) Let f : [0, 1]→R be a C function in C∞[0, 1]. Then, h(x) =

∫ x

0 f(t)dt is a
C function.

(c) FC = #P.

Proof. We first define a class ∃C of languages A such that there exist a language
B ∈ C and a polynomial function p such that for all w ∈ {0, 1}∗,

w ∈ A⇔ (∃v ∈ {0, 1}p(�(w)))〈w, v〉 ∈ B.

Then we define a class #̃C of functions g such that there exist a language B ∈ C
and a polynomial function p such that for all w ∈ {0, 1}∗,

g(w) = ||{u : �(u) = p(�(w)) and 〈w, u〉 ∈ B}||.

It is obvious that ∃P = NP and #̃P = #P (see, e.g., Du and Ko [9]). However,
we do not know whether ∃L = NL or #̃L = #L. In fact, it is not hard to prove
that ∃L = ∃NC = NP and #̃L = #̃NC = #P , and so it is most likely that
#̃L �= #L (recall that #L ⊆ FNC2 ⊆ FP ).
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The proof of Theorem 5.33 in Ko [13] can now be adapted to prove (a) ⇔
(b)⇔ FC = #̃C, and the theorem follows the fact that #̃L = #̃NC = #P . ��

3.2 Derivatives and Integration of NC Analytic Functions

In Section 3.1, we showed that, for a given NC function f ∈ C∞[0, 1], the
sequence {f (n)} is NC computable, but we remark here that it is not necessarily
NC uniformly computable (see Bläser [2]). For integration, we have shown that
it has higher complexity #P than FNC, with the assumption that #P �= FNC.
In this section, we study the same problems for functions f that are analytic.
We consider complex analytic functions instead of real analytic functions, but
the results still hold for the real analytic case.

Let S be a domain. A function f : S→C is called an analytic function if for
every point z ∈ S, f ′(z) exists, or equivalently, if there is a power series that
converges to f at a neighborhood of z for every point z ∈ S. It is obvious that if
f is analytic, then it is infinitely differentiable. If an interval [a, b] ⊆ S is on the
real line R and {f (n)(a)} are all real numbers, we say f is real analytic on [a, b].
Analyticity is a stronger property than continuity and infinite differentiability,
and thus the complexity of operations on analytic functions are sometimes lower
than that on more general functions.

We first recall the concepts of uniform computability (see Ko [13]). Let C be
one of the complexity classes {L,NC , P}. By an L, NC or P machine, we mean a
log-space Turing machine, NC circuit family or polynomial-time Turing machine,
respectively.

Definition 3.5. A sequence {xn} of real (or complex) numbers is C uniformly
computable if there exists a C machine M that for all n, k ≥ 0, M approxi-
mates xn with an error ≤ 2−k with the complexity of C, where the complexity
is measured in terms of n and k. For example, {xn} is NC uniformly com-
putable2 if there exists an NC i circuit family {Cn} for some i ≥ 0 such that
for any n, k > 0, C〈n,k〉 outputs a dyadic number d such that |d − xn| ≤ 2−k.
In other words, {C〈n,k〉}∞k=0 computes xn. (We also say {xn} is NC i uniformly
computable in order to specify the circuit depth.)

Similar to the above definition, we can further define C uniformly computable
sequences {fn} of real functions by modifying Definitions 2.1 to 2.4. For ex-
ample, “{fn} has a uniform polynomial modulus” means that there exists a
polynomial function p such that for any n, k > 0 and any x1, x2 ∈ [0, 1],
|x1 − x2| ≤ 2−p(n+k) ⇒ |fn(x1)− fn(x2)| ≤ 2−k.

Theorem 3.6. Suppose f is an analytic function defined on a domain that con-
tains the closed unit disk, and C is one of the complexity classes P, L or NC i,
i ≥ 1. If f is C computable, then

2 The word “uniformly” here refers to the uniform computation of the sequence {xn},
and is not to be confused with the uniform computation of the Boolean circuit family
in the definition of “uniform NC”.
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(a) {f (n)(0)/n!} is a C uniformly computable sequence.
(b)
∫
[0,x] f(t)dt is C computable.

Proof. Note that the case C = P has been proved in Ko [13]. We give a sketch
of the proof for the case C = NC i (and the case C = L follows from the case
C = NC 1 easily). We assume that f is real analytic on [0, 1] in order to simplify
the presentation (or we can write f = f1 + if2 for two real analytic functions f1
and f2).

For (a), let an = f (n)(0)/n!, n ∈ N. Assume that we want to compute approx-
imate values of a1, a2, · · · , an, with error ≤ 2−n. We use the method of New-
ton Interpolation. Let M be an upper bound of |f | on the closed unit disk. Let
b = 2−cn for some constant c such that bM(n+1) ≤ 2−(n+2) and (1−b)n+2 ≥ 1/2.
Let xk = k · 2−(c+1)n, 0 ≤ k ≤ n, then 0 = x0 < x1 < · · · < xn ≤ b = 2nx1. Let

a′k =

∑k
j=0(−1)j

(
k
j

)
f(xk−j)

k!xk
1

, 1 ≤ k ≤ n.

It is known that a′k = f (k)(ξk)/k! for some ξk ∈ [0, xk] ⊆ [0, b] (see, e.g., Burden
and Faires [4])3, and thus

|a′k − ak| =
∣∣∣ ∫[0,ξk] f

(k+1)(t)dt

k!

∣∣∣ ≤ b max
t∈[0,b]

|f (k+1)(t)|/k!.

Note that f (k+1)(t) = (k+1)!
2πi

∫
|z−t|=1−b

f(z)
(z−t)k+2 dz (Cauchy’s Integral formula

[10]). Therefore,

max
t∈[0,b]

|f (k+1)(t)| ≤ M(k + 1)!
(1− b)k+2 ,

and

|a′k − ak| ≤
bM(k + 1)
(1− b)k+2 ≤

bM(n+ 1)
(1− b)n+2 ≤ 2−(n+1).

Next we design a circuit C〈k,n〉 of four layers to approximate a′k with error
≤ 2−(n+1).

1. The top layer is a division circuit that approximates
∑k

j=0(−1)j
(
k
j

)
f(xk−j)/

(k!xk
1) with error 2−(n+2).

2. The second layer has two circuits: one is an addition circuit that computes∑k
j=0(−1)j

(
k
j

)
f(xk−j), the other is a multiplication circuit that computes

k!xk
1 (since xk

1 = 2−k(c+1)n, this circuit is actually a shift).
3. The third layer contains k + 1 multiplication circuits to compute (−1)j

(
k
j

)
f(xk−j) for 0 ≤ j ≤ k, and a circuit to compute k!.

4. The fourth layer contains k+1 circuits to compute (−1)j
(
k
j

)
, and k+1 circuits

to approximate f(xk−j) with error ≤ 2−(k+k(c+2)n+2), where 0 ≤ j ≤ k.

3 This is the only place where we need the assumption of the real analyticity of f .
Formula a′

k = f (k)(ξk)/k! does not hold for the case that f is complex analytic.
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The first layer and the fourth layer bring an error ≤ 2−(n+2) each, and so
the total error is bounded by 2−(n+1). The numbers involved are all of length
polynomial in n (for example, n! is represented by a binary string of length
O(n log n)). Note that except the one computing f , all other circuits involved
are in NC 1; that is, they are of size polynomial in n, and of depth linear in logn.
In particular, the circuit to compute

(
k
j

)
is in NC 1, since the iterated product of

n n-bit numbers, as well as the division of two n-bit numbers, is computable in
NC 1 (see Chiu et al. [6]). Thus, the whole circuit is of size polynomial in n and
of depth O(depth(f) + logn), where depth(f) is the depth of the circuit family
that computes f . This completes the proof of (a).

For (b), we have a proof similar to that in Ko [13] (pages 208–209), namely,
we write f(t) = Σ∞

n=0ant
n, and to approximate

∫
[0,x] f(t)dt with error ≤ 2−n,

we only need the first cn terms of the power series, where c > 0 is a constant. We
can throw other terms out because |ak| ≤M/rk for some r > 1 and all k (which
makes the terms ak very small if k > cn), since f is analytic in a domain that
contains the closed unit disk. We still do the integration term by term and then
sum up, except that we use circuits to compute ak’s and to add the integrals∫
[0,x] akt

kdt = akx
k+1/(k + 1) up for 0 ≤ k ≤ cn. ��

3.3 Integration of Meromorphic Functions

Now we extend the results on integration of NC analytic functions to integration
of meromorphic functions along Jordan curves.

For a given domain S, a meromorphic function f : S→C is a function that
is analytic in all but possibly a discrete subset of S, and at those singularities
it must go to infinity like a polynomial (i.e., these exceptional points must be
poles and not essential singularities).

First note that, for a meromorphic function f : S→C and a Jordan curve
Γ ⊆ S, the integral

∫
Γ
f of f along Γ is definable, provided that f has no poles

on Γ . To see this, we observe that f has only a finite number of poles z1, · · · ,
zm (m ≥ 0) inside Γ , and so it can be written as

f =
m∑

i=1

ni∑
j=1

aij

(z− zi)j
+ f1,

where ni ∈ N (1 ≤ i ≤ m) is the degree of the pole zi of f , and f1 is an analytic
function. Then, for any piecewise linear closed curve Γ ′ ⊆ S such that f has no
poles on Γ ′ and f has exactly m poles z1, · · · , zm inside Γ ′,

∫
Γ ′ f is defined and

by the residue theory (See, e.g., Henrici [10]),
∫

Γ ′ f = 2πi
∑m

i=1 ai1. Therefore,
we can define

∫
Γ
f =
∫

Γ ′ f = 2πi
∑m

i=1 ai1.
We say a Jordan curve Γ is NC computable if there exists an NC function

f : [0, 1]→C such that f([0, 1]) = Γ , f is 1-1 on [0, 1) and f(0) = f(1). If p is a
modulus function of f , we also say it is a modulus function of Γ .

Theorem 3.7. Let Γ be an NC computable Jordan curve and S be a simply
connected domain that contains Γ . Let f be a meromorphic function on S that
has no poles on Γ . Assume that n0 is a positive integer such that
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(a) For all z ∈ Γ , δ(z, ∂S) ≥ 2−n0 ,
(b) The function f has no poles in S1 = {z : δ(z, Γ ) < 2−n0}, and
(c) f is NC computable in S1.

Then
∫

Γ f is NC computable, with the complexity measured in terms of 2p(n0+1)+
n, where p is the modulus function of Γ and n is the precision parameter. Fur-
thermore, if Γ is log-space computable and f is log-space computable in S1, then∫

Γ f is log-space computable.

4 Finding all Zeros of an Analytic Function Inside a
Jordan Curve

We consider in this section the following problem: given a simply connected
domain S that contains a Jordan curve Γ and an NC function f that is analytic
in S, find all zeros of f inside Γ .

We assume that the function f has no zeros on Γ , because it is, in general,
undecidable whether a zero of f is on Γ . This is equivalent to assume that the
minimum modulus minz∈Γ |f(z)| of f on Γ is greater than zero. Intuitively, the
smaller minz∈Γ |f(z)| is, the harder it is to compute the zeros of f inside Γ .

A quadrature method of computing all zeros of an analytic function f inside
a Jordan curve Γ can be stated as follows.

(a) Computing the number of zeros. Compute the number of zeros n =
1

2πi

∫
Γ

f ′(z)
f(z) dz (by principle of the argument, see, e.g., Henrici [10]).

(b)Computing Newton sums. Let z1, · · · , zn be all zeros of f inside Γ . The
p-th Newton sum sp is defined as sp := zp

1 + · · · + zp
n. We can compute

sp = 1
2πi

∫
Γ

zp f ′(z)
f(z) dz (see, e.g., Henrici [10]).

(c)Computing the associated polynomial. Compute the associated poly-
nomial pn(z) for zeros of f in Γ , where pn(z) := Πn

i=1(z − zi) =: zn +
σ1zn−1 + · · ·+ σn. The coefficients σ1, · · · , σn can be computed using New-
ton’s Identities (see, e.g., Carpentier and Dos Santos [5]):

s1 + σ1 = 0
s2 + s1σ1 + 2σ2 = 0
·
·
·
sn + sn−1σ1 + · · ·+ s1σn−1 + nσn = 0

(1)

(d) Solving the associated polynomial. Compute the zeros of pn(z).

We state the main theorem for this problem as follows.

Theorem 4.1. Let S be a simply connected domain that contains an NC com-
putable Jordan curve Γ . Let f be an analytic function in S. Assume that there
exist two constants n0, n1 ∈ N such that
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(a) For all z ∈ Γ , δ(z, ∂S) ≥ 2−n0 ,
(b) |f(z)| > 2−n1 for all z ∈ S1 = {z ∈ C : δ(z, Γ ) ≤ 2−n0}, and
(c) f(z) is NC computable in S1.

Also assume that f has at most m zeros inside Γ , m ≥ 0. Then the problem of
finding all zeros of f inside Γ is NC solvable, with the complexity measured in
terms of 2p(n0+1) +m+ n+ n1, where n is the precision parameter and p is the
modulus function of Γ .

Proof. (Sketch.) We check that each of the four steps above is in NC . Note
that f ′/f is NC computable with the complexity measured in terms of n1 + n.
Then the first two steps are NC computable by Theorem 3.7. Step (c) involves
the computation of the inverse of a lower triangular matrix, which is NC 2 com-
putable (see, e.g., Bovet et al. [3]). Step (d) was proved to be in NC by Neff [18].
(The known results for steps (c) and (d) need to be adapted to our model. We
omit the details due to space limit.) ��

We remark that when f and Γ are log-space computable, so are the first two
steps of the above quadrature method. However, we do not know whether step
(c) can be done in log-space, and Neff’s NC algorithm of computing all zeros
of a polynomial is of depth log3 n. Thus, it is still open whether the problem is
log-space solvable for this case.

In addition, the constant 2p(n0+1) in the complexity measure appears large,
but it is possible that m = Ω(2p(n0+1)), which makes 2p(n0+1) less significant
in the measure. Moreover, for a fixed function f and a fixed Jordan curve Γ ,
2p(n0+1) is also fixed and the larger n becomes, the less significant 2p(n0+1) is in
the measure.
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Abstract. The combination of two major challenges in algorithmic learning is
investigated: dealing with huge amounts of irrelevant information and learning
from noisy data. It is shown that large classes of Boolean concepts that only
depend on a small fraction of their variables—so-called juntas—can be learned
efficiently from uniformly distributed examples that are corrupted by random at-
tribute and classification noise. We present solutions to cope with the manifold
problems that inhibit a straightforward generalization of the noise-free case. Ad-
ditionally, we extend our methods to non-uniformly distributed examples and de-
rive new results for monotone juntas in this setting. We assume that the attribute
noise is generated by a product distribution. Otherwise fault-tolerant learning is in
general impossible which follows from the construction of a noise distribution P
and a concept class C such that it is impossible to learn C under P-noise.

1 Introduction

Learning in the presence of huge amounts of irrelevant information and learning in
the presence of noise have attracted considerable interest in the past. In this paper,
we investigate what can be done if both phenomena occur: How can we learn n-ary
Boolean concepts that depend on only a small number d of unknown attributes—so-
called d-juntas—under the unpleasant effects of attribute and classification noise?

Efficient learning in the presence of irrelevant information is considered to be among
the most important and challenging issues in machine learning (see Mossel, O’Donnell,
and Servedio [1]) with a wide range of applications (see Akutsu, Miyano, and
Kuhara [2] and Blum and Langley [3]). The goal is to design fast algorithms that learn
from a number of examples that may depend exponentially on d (since the output hy-
potheses are represented by their truth tables being of size 2d) but only logarithmi-
cally on the number n of all attributes. While this goal has been achieved for various
junta subclasses and learning models (see e.g. Littlestone [4]), it is an open question
whether the class of all n-ary d-juntas can be PAC-learned efficiently under the uni-
form distribution. The fastest algorithm to date was proposed by Mossel et al. [1] and
runs in time n0.704d · poly(n,2d, log(1/δ)), where δ is the confidence parameter. Their
algorithm combines two methods: the Fourier method infers relevant variables via esti-
mating Fourier coefficients and the parity method learns the concept via solving linear
equations over GF(2). In particular, the Fourier method yields an algorithm for learn-
ing the class of monotone d-juntas in time poly(n,2d , log(1/δ)). Learning juntas is also
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closely related to other highly important open questions in learning theory: learning
ω(1)-sized decision trees or DNF formulas in polynomial time is equivalent to learn-
ing ω(1)-juntas in polynomial time, see Mossel et al. [1] for more details on this is-
sue. As learning arbitrary k-term DNFs in polynomial time might be a too hard goal
to achieve, positive results for learning monotone juntas may indicate that efficiently
learning monotone DNF in polynomial time might indeed be possible. See Servedio [5]
for a survey on results concerning the latter problem.

As coping with irrelevant information has been identified as a core challenge in many
machine learning applications, it is most natural to take into account that real-world
data are often disturbed by noise. Angluin and Laird [6] were the first to investigate
PAC-learning in the presence of classification noise, whereas attribute-noise was first
considered for the class of k-DNF formulas by Shackelford and Volper [7] and later
by Decatur and Gennaro [8]. Bshouty, Jackson, and Tamon [9] introduced the notion
of noisy distance between concepts and showed how this quantity relates to uniform-
distribution PAC-learning in the presence of attribute and classification noise.

Our main contribution is an algorithm that efficiently learns large classes of jun-
tas despite the presence of almost arbitrary attribute and classification noise. Thus
we manage to cope with both problems: irrelevant information and noise. More pre-
cisely, we assume that a learning algorithm receives uniformly distributed examples
(x1, . . . ,xn,y) ∈ {0,1}n×{−1,+1} in which each attribute value xi is flipped indepen-
dently with probability pi and the sign of the label y is switched with probability η. To
avoid that the noise-affected data is turned into completely random noise, we require
that there be constants γa,γb > 0 such that for all attribute noise rates pi, |1−2pi| ≥ γa

and for the classification noise rate η, |1− 2η| ≥ γb. We call such noise distributions
(γa,γb)-bounded noise. We show that the class of Boolean functions we call s-low
d-juntas is exactly learnable from poly(logn,2d, log(1/δ),γ−d

a ,γ−1
b ) examples in time

ns · poly(n,2d, log(1/δ),γ−d
a ,γ−1

b ) under (γa,γb)-bounded noise. Roughly speaking, a
concept is s-low if it suffices to check all Fourier coefficients up to the s-th level in
order to find all relevant attributes (see Sect. 3). As a main application, the class of
monotone d-juntas, for which s = 1, is learnable in time poly(n,2d , log(1/δ),γ−d

a ,γ−1
b )

under (γa,γb)-bounded noise.
How much do our algorithms have to know about the noise distributions? To in-

fer the relevant attributes, lower bounds on γa,γb suffice. In order to additionally out-
put a matching hypothesis, the attribute noise distribution has to be known exactly (or
at least approximated reasonably well, see [9]). For the classification noise parame-
ter γb, it still suffices to have some lower bound. Miyata et al. [10] showed how to
learn the class AC 0 in quasipolynomial time under product attribute and classifica-
tion noise with p1 = . . . = pn = η without any prior knowledge of η < 1/2. On the
other hand, Goldman and Sloan [11] proved that under unknown product attribute noise,
learning any nontrivial concept class with accuracy ε (which is 2−d for exactly learn-
ing d-juntas) is only possible if pi < 2ε for all i. If the noise distribution can be ar-
bitrary and is unknown to the learner, then learning nontrivial classes is impossible,
see [9].

We now briefly describe how we solve the manifold problems that occur when trying
to extend results from the noise-free case to the noisy case. In the noise-free setting, it
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is trivial to achieve the time bound nd · poly(n,2d , log(1/δ)) for the whole class of n-
ary d-juntas by testing for all subsets of d variables whether these are relevant. This
is accomplished by checking whether the examples restricted to these variables do not
contain any contradictions. In the noisy case, however, there is no obvious way to check
whether a subset of the variables is relevant. We solve this problem by adapting the
Fourier method presented by Mossel et al. [1]. For this it is necessary to approximate
Fourier coefficients of Boolean functions from highly disturbed data.

Also, in the noise-free setting, once the relevant variables are inferred, one can just
read off a truth table from the undisturbed examples. This is impossible in case of
unreliable data. To overcome this problem, we apply a learning algorithm for arbitrary
concepts to the examples restricted to the relevant variables. This restriction is essential
since in this way, the number of examples needed to build a hypothesis does not depend
on n but only on d. The learning algorithm uses the Fourier-based learning approach
originated by Linial, Mansour, and Nisan [12] and extended to the noisy scenario by
Bshouty, Jackson, and Tamon [9]. A direct application of the algorithm of Bshouty et
al. yields a sample complexity of nd+O(1). By first applying our procedure to detect
all relevant attributes, we significantly improve this sample complexity to depend only
polylogarithmically on n (and exponentially on d).

So far all results are valid for uniformly distributed attribute vectors—the only case
for which positive noise-tolerant learning results have previously been obtained in the
literature (as far as we are aware). We extend our methods to non-uniform attribute
distributions, i.e., the oracle first draws an example according to a product distribu-
tion D with rates d1, . . . ,dn ∈ [γc,1− γc] for some γc > 0 and then applies (γa,γb)-
bounded noise. We show that in this setting, monotone d-juntas are learnable from
m = poly(logn,2d2

, log(1/δ),γ−d
a ,γ−1

b ) examples in time poly(m,n), provided that γc ≥
0.2764. It turns out that the extension is not as straightforward as one might first think:
while the method for the case of uniformly distributed attributes relies on the fact that
the orthonormal basis of parity functions is compatible with the exclusive or opera-
tion used in the noise model, this is no more the case for the biased orthonormal bases
that are appropriate for non-uniform distributions. We solve this problem by combining
unbiased parity functions with biased inner products. As a consequence, the analysis
becomes a lot more intricate since in order to approximate a biased Fourier coefficient
f̂ (I), I⊆ [n], one already has to have good approximations to all coefficients f̂ (J), J � I.
In addition, we have to provide a lower bound on the absolute value of nonzero biased
Fourier coefficients for monotone juntas (see Sect. 5).

Finally, we prove that without restricting the attribute noise distributions (for exam-
ple to product distributions), noise-tolerant learning is in general impossible, even if the
noise distribution is completely known: we construct an attribute noise distribution P
(that is not a product distribution) and a concept class C such that it is impossible to
learn C under P-noise. In particular, this shows that our results cannot be extended to
arbitrary noise distributions.

Our proofs have three main ingredients: standard Hoeffding bounds [13], harmonic
analysis of Boolean functions under uniform [14] and non-uniform [15, 16, 5] distribu-
tion, and a noise operator. The latter is a generalization of the Bonami-Beckner opera-
tor, which plays an important role in various contexts [17, 18, 19, 20].
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In Sect. 2, we introduce basic notation, definitions, and tools and present the learning
and noise model under consideration. After reviewing how to learn juntas in the noise-
free case in Sect. 3, we show in Sect. 4 how to handle the noisy case. In Sect. 5, we
extend our results to non-uniformly distributed attributes.

Due to space constraints, most proofs have been omitted. A full version of this work
is available as an ECCC report [21].

2 Preliminaries

We consider Boolean functions f : {0,1}n→{−1,+1}, also called concepts. The class
of all n-variate concepts is denoted by Bn. A concept is monotone if for all x,y ∈ {0,1}n

such that x ≤ y, we have f (x) ≥ f (y) (note that for variables, the value 1 for “true” is
larger than the value 0 for “false”, whereas for function values −1 (true) and 1 (false),
it is the other way round). For I ⊆ [n] = {1, . . .n}, we define the parity function χI ∈
Bn by χI(x) = (−1)∑i∈I xi . For x,y ∈ {0,1}n, x⊕ y denotes the vector obtained from
component-wise exclusive or. We denote probabilities by P and expectations by E. The
uniform distribution over {0,1}n is denoted by Un. The functions log and ln denote the
binary and the natural logarithm, respectively.

A concept class is a set of concepts f ∈ Bn. Let C be a concept class and f ∈ C . A
vector (x1, . . . ,xn,y) ∈ {0,1}n×{−1,+1} is called an example. It is consistent with f
if f (x1, . . . ,xn) = y. A sequence of m examples is called a sample of size m.

Consider the space R{0,1}
n

of real-valued functions on the hypercube. With respect
to the inner product 〈 f ,g〉 = Ex∼Un [ f (x)g(x)], the functions (χI | I ⊆ [n]) form an or-
thonormal basis, see for example Bernasconi [14]. Let f : {0,1}n → R and I ⊆ [n].
The Fourier coefficient of f at I is f̂ (I) = Ex∼Un [ f (x) ·χI(x)]. If I = {i}, we write f̂ (i)
instead of f̂ ({i}). The Fourier expansion of f is

f (x) = ∑I⊆[n] f̂ (I) ·χI(x) (1)

for all x ∈ {0,1}n. Given a sample S = (xk,yk)k∈[m] ∈ ({0,1}n×{−1,+1})m (with yk =
f (xk)), define the empirical Fourier coefficient of f at I given S by

f̃S(I) = 1
m ∑m

k=1 χI(xk) · yk . (2)

By standard Hoeffding bounds [13], f̃S(I) approximates f̂ (I) up to an additive error
of ε with probability at least 1− δ, provided that m ≥ 2 · ln(δ/2) · (1/ε2) uniformly
distributed examples are given.

A function f ∈ Bn depends on variable xi (and xi is relevant to f ) if the (n− 1)-
variate subfunctions fxi=0 and fxi=1 with xi set to 0 and 1, respectively, are not equal.
Denote the set of relevant variables of f by rel( f ). A function that depends on at most
d variables is called a d-junta, and the class of n-variate Boolean d-juntas is denoted by
J n

d . The class of monotone d-juntas is denoted by MONn
d , and the class of juntas such

that the function restricted to its relevant variables is symmetric is denoted by SYMn
d .

To learn a target concept f ∈ C , we assume that a learning algorithm has access to a
noisy example oracle EXP,η( f ), where P : {0,1}n → [0,1] is a probability distribution
called the attribute noise distribution and η ∈ [0,1] is the classification noise rate. On
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request, EXP,η( f ) first generates an attribute vector x ∈ {0,1}n according to Un and
computes y = f (x). Then it generates an attribute noise vector a ∈ {0,1}n according
to P and a classification noise bit b ∈ {−1,+1} which is set to −1 with probability
η and to 1 with probability 1−η. Finally it returns the (P,η)-noisy example (x⊕ a,y ·
b). If an example oracle applies only attribute noise, we denote it by EXP,−( f ). If no
noise is applied at all, we just write EX( f ). Let δ ∈ (0,1] be a confidence parameter.
An algorithm A exactly learns the class C under noise (P,η) (or (P,η)-learns C) with
confidence 1− δ if for every target concept f ∈ C , given access to EXP,η( f ), A outputs
a hypothesis h ∈ Bn such that with probability at least 1− δ, h = f . The class C is
exactly (P,η)-learnable if there is an algorithm A that on any input δ > 0, learns C
under noise (P,η) with confidence 1− δ. The number of calls to EXP,η( f ) is called the
sample complexity of A .

For the time being, we restrict ourselves to uniformly distributed attribute values.
The case of non-uniform distributions will be discussed in Sect. 5.

Since arbitrary attribute noise distributions often turn out to make learning impossi-
ble, we mostly restrict ourselves to product attribute noise considered for example by
Goldman and Sloan [11]. Here, each attribute xi of an example is flipped independently
with some probability pi ∈ [0,1], called the (attribute) noise rate of xi. Thus we have
P(a1, . . . ,an) = ∏n

i=1 pai
i · (1− pi)1−ai .

3 Learning Juntas—A Review of the Noise-Free Case

In this section we review the “Fourier algorithm” described by Mossel et al. [1]. We first
explain how one can learn monotone juntas and then show how to extend the method
to learn larger subclasses of juntas. This will be helpful to make clear why we are
interested in s-low juntas and to understand the methods presented in Sect. 4.

Let f ∈MONn
d be a monotone d-junta. It is well known (cf. [1]) that f is correlated with

all of its relevant variables, i.e., the probability that xi and f (x) take the same value differs
from 1/2 and thus f̂ (i) = Px∼Un [ f (x) = xi]−Px∼Un [ f (x) �= xi] �= 0. This fact may be ex-
ploited to infer the relevant variables of f from (uniformly distributed) random examples
(xk, f (xk)), xk ∈ {0,1}n, k ∈ [m], as follows: simply approximate the Fourier coefficients
f̂ (i) by the empirical coefficients f̃ (i) defined in (2). If sufficiently many independent ex-
amples are available, then with high probability, the relevant variables are exactly those
for which f̃ (i) is sufficiently far away from zero, i.e., | f̂ (i)| ≥ τ for some τ> 0.

Once we have correctly inferred the relevant variables, it is easy to derive a consis-
tent hypothesis: we obtain an appropriate truth table by restricting the given examples
to the relevant variables. With high probability (see Blumer et al. [22]), there is only
one hypothesis having the same set of relevant variables and being consistent with the
function table, namely the target concept f .

Clearly, the approach also works for non-monotone functions with the property that
all relevant variables are correlated with the function value. Moreover, we can use the
following fact (implicitly used in Mossel et al. [1]) to extend the method to larger classes
of Boolean functions:

Lemma 1. Let f ∈ Bn. Then for all i ∈ [n], xi is relevant to f if and only if there exists
I ⊆ [n] such that i ∈ I and f̂ (I) �= 0.
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IRV

1 input δ ∈ (0,1], s ∈ [d]
2 request m = 2 · ln( 2n

δ ) ·22d

examples (xk,yk)k∈[m] from EX( f )
3 R← /0
4 for I ⊆ [n] with 1≤ |I| ≤ s do
5 β← 1

m ·∑
m
k=1 χI(xk) · yk

6 if |β| ≥ 2−d−1

7 then R← R∪{xi | i ∈ I}
8 output “relevant variables:” R

NOISY-IRV

1 input δ ∈ (0,1], s ∈ [d], γa,γb > 0
2 request m = 8 · ln( 2n

δ ) ·22d · (γs
a · γb)−2

examples (xk,yk)k∈[m] from EXP,η( f )
3 R← /0
4 for I ⊆ [n] with 1≤ |I| ≤ s do

5 β← (γ|I|a · γb)−1 · 1
m ·∑

m
k=1 χI(xk) · yk

6 if |β| ≥ 2−d−1

7 then R← R∪{xi | i ∈ I}
8 output “relevant variables:” R

Fig. 1. Algorithms IRV (Infer Relevant Variables) and NOISY-IRV to infer all relevant variables
of concepts in R n

d(s) in the noise-free and the noisy case, respectively

Hence, whenever we find a nonzero Fourier coefficient f̂ (I), we know that all variables
xi, i ∈ I, are relevant to f . Moreover, all relevant variables can be detected in this way,
and we only have to check out subsets of size at most d = | rel( f )|. However, there are
Θ(nd) such subsets, an amount that we would like to reduce. This leads us to:

Definition 1. Let f ∈ J n
d , xi ∈ rel( f ), and s∈ [d]. Variable xi is s-low for f if there exists

I ⊆ [n] such that i ∈ I, |I| ≤ s, and f̂ (I) �= 0. The concept f is s-low if all xi ∈ rel( f ) are
s-low for f . The set of s-low d-juntas is denoted by R n

d(s).

In these terms, monotone juntas are 1-low, i.e., MONn
d ⊆ R n

d(1). Even more: all jun-
tas that are locally (anti-)monotone are 1-low; these are juntas that can be turned into
a monotone function by negating some input variables. This includes all monomials
and clauses of arbitrary literals. Actually, the vast majority of juntas belongs to R n

d(1)
since a random junta fulfills f̂ (i) �= 0 for all xi ∈ rel( f ) with overwhelming proba-
bility, see Blum and Langley [3] and Mossel et al. [1]. Also for other subclasses C
of J n

d , finding the smallest s such that C ⊆ R n
d(s) has recently attracted considerable

interest: The class of all unbalanced d-juntas is contained in R n
d((2/3) · d) (see Mos-

sel et al. [1]), and the class SYMn
d \{χI | |I| ≤ d} of symmetric d-juntas that are not

parity functions is now known to be contained in R n
d(O(d/ logd)) (see Kolountzakis

et al. [23]).
In the left part of Fig. 1, we present the algorithm (which we call IRV) described by

Mossel et al. [1] for inferring the relevant variables of s-low d-juntas.

Proposition 1 ([1]). Let f ∈ R n
d(s) be an s-low d-junta. Then with probability at least

1− δ, algorithm IRV exactly infers the relevant variables of f from a sample of size
poly(logn,2d, log(1/δ)) in time ns ·poly(n,2d , log(1/δ)).

4 Learning Juntas—The Noisy Case

Now let us see what we can do if the example generating oracle is disturbed by noise.
For I ⊆ [n] and a ∼ P, let pI be the probability that an odd number of bits ai with i ∈ I
is set to one, i.e., pI = Pa∼P[χI(a) =−1].
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4.1 Approximating Fourier Coefficients

Given a uniformly distributed (P,η)-noisy sample, the empirical Fourier coefficient
f̃S(I) approximates Ex∼Un,a∼P,b∼η[χI(x⊕ a) · f (x) · b]. It is easy to see that this ex-
pectation equals (1− 2pI) · (1− 2η) · f̂ (I). Using standard Hoeffding bounds [13], we
obtain that for δ,ε > 0, and a (P,η)-noisy sample S of size m ≥ 2 · ln(2/δ) · (1/ε2),
| f̃S(I)− (1− 2pI)(1− 2η) f̂ (I)| ≤ ε with probability at least 1− δ. Thus we can infer
f̂ (I) from f̃ (I) by this method if and only if pI �= 1/2 and η �= 1/2. Unfortunately, it
can happen that pI = 1/2 for some I (even if Pa∼P[ai =−1] �= 1/2 for all i ∈ [n]). Even
worse, we can prove:

Theorem 1. There is a concept class C and an attribute noise distribution P such that
C is not (P,−)-learnable. Additionally, P may be chosen such that p{i} < 1/2 for all
i ∈ [n].

In contrast, things look much nicer for product distributions P with noise rates pi that
are all different from 1/2:

Definition 2 (γa-bounded product distribution). Let P be a product distribution with
rates p1, . . . , pn and γa > 0. P is called a γa-bounded product distribution if for all i∈ [n],
|1−2pi| ≥ γa.

It is easy to prove by induction that γa-bounded product distributions satisfy

∀I ⊆ [n] : |1−2pI| ≥ γ|I|a (3)

From now on, we restrict ourselves to γa-bounded product distributions. However, all
results extend to arbitrary distributions for which condition (3) holds.

If all pI �= 1/2, then all Fourier coefficients are approximable, hence the whole target
concept can be approximated via its Fourier expansion (1). Consequently, all concepts
are learnable under these conditions by computing the hypothesis

h(x) = sgn ∑I⊆[n]
f̃ (I)

(1−2pI)·(1−2η) ·χI(x) . (4)

Proposition 2. Let C = Bn, P be a γa-bounded product attribute noise distribution, and
η be a classification noise rate such that γb = |1− 2η| > 0. Then C is exactly (P,η)-
learnable with confidence 1− δ using sample complexity and running time
poly(2n, log(1/δ),γ−n

a ,γ−1
b ).

Although sample and time complexity are exponential in n, the method described will
prove useful as part of our noise-tolerant learning algorithm for juntas (see Sect. 4.3).

Since by Lemma 1, d-juntas have all of their Fourier weight located in levels 0, . . . ,d,
we obtain a better (but still not satisfactory) sample and time complexity by summing
only over all I ⊆ [n] of size at most d in equation (4).

Proposition 3. Let P be a γa-bounded product attribute noise distribution and η be a
classification noise rate such that γb = |1−2η|> 0. Then J n

d is exactly (P,η)-learnable
with confidence 1− δ using sample complexity and running time

nd ·poly(n, log(1/δ),γ−d
a ,γ−1

b ).
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Unfortunately, sample and time complexity do not drop for subclasses such as the
monotone juntas since the Fourier weight may be spread almost evenly over all Θ(nd)
nonzero coefficients (as it is the case, for example, for monomials.)

In the sequel we show how to combine the method just described with the idea of
first detecting the relevant variables, as we did in the noise-free case. In Theorem 3,
we show that this significantly reduces the sample complexity from O(nd+O(1)) to
poly(logn,2d). In addition, for s-low d-juntas with s < d, also the running time de-
creases from O(nd+O(1)) to O(ns+O(1)).

4.2 Inferring the Relevant Variables

The detection of relevant variables works similarly to the noise-free case. The following
modifications to the algorithm IRV (shown in the left part of Fig. 1) vaccinate it against
noise; the resulting algorithm NOISY-IRV is shown in the right part of Fig. 1.

Firstly, the noisy version has to obtain some information about the noise parame-
ters. In the variant presented here, it receives bounds γa,γb > 0 such that |1−2pi| ≥ γa

for all i ∈ [n] and |1− 2η| ≥ γb as additional inputs. Secondly, the number of exam-
ples that have to be drawn increases by a factor of 4 · (γs

a · γb)−2. Furthermore, the
noise-free oracle EX( f ) is replaced by the noisy oracle EXP,η( f ). In particular, in
line 2 of NOISY-IRV, xk = x′k ⊕ ak and yk = y′k · bk for appropriate noise-free data
x′k,y′k and noise ak,bk. Next, to ensure that in line 5 of the algorithm, β is an ap-
propriate measure to decide whether the Fourier coefficient f̂ (I) vanishes, we divide

the expression given in the noise-free setting by γ|I|a · γb, which is a lower bound for
|1−2pI| · |1−2η|.

Theorem 2. Let f ∈ R n
d(s) be an s-low junta. Let P be a γa-bounded attribute noise

distribution and η be a classification noise rate such that γb = |1−2η|> 0. Then with
probability 1− δ, on input δ,s,γa,γb, the variables classified as “relevant” by NOISY-
IRV are exactly the relevant variables of f .

Note that NOISY-IRV is not only applicable to product attribute noise. The perfor-
mance guaranteed by Theorem 2 is also valid for general distributions, provided that

γa can be chosen such that |1− 2pI| ≥ γ|I|a for all I ⊆ [n] with 1 ≤ |I| ≤ s. The sam-
ple complexity of NOISY-IRV is O(log(n/δ) · 22d · γ−2s

a γ−2
b ) and the running time is

ns ·poly(n,2d , log(1/δ),γ−s
a ,γ−1

b ).

4.3 Two-Phase-Learning of Juntas

The approach of learning juntas in the presence of noise is basically the same as in
the noise-free case. We proceed in two phases: in the first phase, we infer all relevant
variables with high probability. In the second phase, we build up the truth table of a
suitable hypothesis. The main difference to the algorithm used in the noise-free setting
is that we cannot just read off the truth table from the examples since these may contain
inconsistencies. Moreover, such a truth table is unlikely to be correct.

Fortunately, we have seen in Sect. 4.1 how to build a good hypothesis in the presence
of attribute noise. The trick is that we do not apply Proposition 2 to the whole given
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sample, but restrict the sample to the variables classified as relevant in the first phase.
As a consequence, the sample and time complexity for the second phase do not depend
on n anymore, but only on the number d of relevant variables.

This results in an algorithm for learning the class J n
d in the presence of attribute

and classification noise with sample complexity growing only polynomially in logn
and 2d (instead of nd as in Proposition 3). Moreover, for the subclass R n

d(s), the time
complexity depends on ns instead of nd . Precisely, the algorithm, which we call LEARN-
NOISY-JUNTAS, is as follows:

1. Run NOISY-IRV(δ/2,s,γa,γb). Let R be the set of indices of variables classified as
relevant.

2. Request m examples from EXP,η( f ), where m = poly(2d , log(2/δ),γ−d
a ,γ−1

b ) is the
sample size as required in Proposition 2 with n = d.

3. Compute f̃ (I) for all I ⊆ R (see (2)).

4. Output the hypothesis h(x) = sgn∑I⊆R
f̃ (I)

(1−2pI)·(1−2η) ·χI(x).

Theorem 3. LEARN-NOISY-JUNTAS exactly (P,η)-learns the class R n
d(s) with con-

fidence 1− δ from a sample of size poly(logn,2d, log(1/δ),γ−d
a ,γ−1

b ) in running time
ns ·poly(n,2d , log(1/δ),γ−d

a ,γ−1
b ).

Corollary 1. (a) The class J n
d can exactly be (P,η)-learned with confidence 1−δ from

poly(logn,2d , log(1/δ),γ−d
a ,γ−1

b ) examples in time nd ·poly(n, log(1/δ),γ−d
a ,γ−1

b ).
(b) The class MONn

d can exactly be (P,η)-learned with confidence 1− δ from
poly(logn,2d , log(1/δ),γ−d

a ,γ−1
b ) examples in time poly(n,2d , log(1/δ),γ−d

a ,γ−1
b ).

5 Non-uniformly Distributed Attributes

In this section we sketch how to generalize our results to product attribute distributions
(not to be confused with attribute noise). We confine ourselves to presenting results for
monotone functions only. The more delicate task of studying the general applicability
of the methods to s-low juntas will be left for future investigations.

The examples are now distributed according to an attribute distribution D on {0,1}n,
which we assume to be a product distribution with rates d1, . . . ,dn. Let σi =

√
di · (1−di)

be the standard deviation of variable xi. A learning algorithm has access to an oracle
EXP,η( f ,D) that first generates an attribute vector x ∼ D and then applies (P,η)-noise
as in the uniform case. When using methods from the uniform setting, we now obtain
expectations with respect to D instead of Un. Consequently, we have to adjust the inner
product on our concept space and choose an appropriate orthonormal basis, as has been
proposed by Furst, Jackson, and Smith [16]. For i ∈ [n], define χD

i : {0,1}n → R by
χD

i (x) = di−xi
σi

. For I ⊆ [n], define χD
I : {0,1}n → R by χD

I (x) = ∏i∈I χD
i (x). Note that

χUn
I = χI . The functions (χD

I | I ⊆ [n]) form an orthonormal basis with respect to the
inner product 〈 f ,g〉D = Ex∼D[ f (x)g(x)]. The D-biased Fourier coefficient of f at I is
f̂ (I) = 〈 f ,χD

I 〉D, using the same notation as in the uniform case. It is not difficult to see
that Lemma 1 generalizes to biased Fourier coefficients, paving the way to carry over
techniques from the uniform setting, at least for noise-free data.
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In the noisy setting, the main problem is that in general, χD
I (x⊕a) �= χD

I (x) ·χD
I (a).

Hence we cannot just approximate Ex∼D,a∼P,b∼η[χD
I (x⊕a) · f (x) ·b] and proceed as in

the uniform case. On the other hand, using χUn
I , we obtain Ex∼D,a∼P,b∼η[χUn

I (x⊕ a) ·
f (x) ·b] = (1−2pI) ·(1−2η) · 〈 f ,χUn

I 〉D, but 〈 f ,χUn
I 〉D does not properly work together

with the definition of biased Fourier coefficients. The way out is provided by a clever
combination of biased Fourier coefficients, the inner product 〈·, ·〉D, and the “unbiased”
parity functions χUn

I :

f̂ (I) =
(
∏i∈I(2σi)

)−1 · 〈 f ,χUn
I 〉D−∑J�I ∏i∈I\J

1−2di
2σi

· f̂ (J) . (5)

The proof of (5) relies on explicit calculations of the biased Fourier coefficients of the
unbiased parity functions and the application of the identity

〈 f ,χUn
I 〉D = ∑J⊆[n]〈 f ,χD

J 〉D〈χ
Un
I ,χD

J 〉D .

The threshold to recognize nonzero Fourier coefficients is given by the least absolute
value of the considered nonzero coefficients. For monotone functions, xi ∈ rel( f ) if and
only if f̂ (i)≥ 2 ·∏x j∈rel( f ) min{d j,1−d j}.

Theorem 4. There is an algorithm NOISY-MONOTONE-IRV-PDA that accomplishes
the following. Let f ∈ MONn

d be a monotone d-junta. Let D be a product attribute
distribution with rates di ∈ [γc,1− γc] for some γc > 0. Let P be a γa-bounded at-
tribute noise distribution and η be a classification noise rate such that |1− 2η| ≥
γb > 0. Then, given access to EXP,η( f ,D), the variables classified as “relevant” by
NOISY-MONOTONE-IRV-PDA are exactly the relevant variables of f with probabil-
ity at least 1− δ. Moreover, NOISY-MONOTONE-IRV-PDA has sample complexity
poly(logn, log(1/δ),γ−1

a ,γ−1
b ,γ−d

c ) and running time poly(n, log(1/δ),γ−1
a ,γ−1

b ,γ−d
c ).

Next we describe how to construct a hypothesis. We use (5) to successively approxi-
mate all biased Fourier coefficients level by level, i.e., given a D-distributed (P,η)-noisy
sample S = (xk,yk)k∈[m] and having inferred the set R of relevant variable indices, we
compute for each I ⊆ R:

βI = ∑m
k=1 ykχI(xk)

(1−2pI)(1−2η)(∏i∈I 2σi)m
−∑J�I ∏i∈I\J

1−2di
2σi

βJ (6)

and build the hypothesis h(x) = sgn∑I⊆R βI ·χD
I (x).

To ensure that βI approximates f̂ (I) well enough, good approximations of all coef-
ficients f̂ (J), J ⊆ I, are required. This feedback effect leads to a necessary sample size
of 2ω(| rel( f )|). In case that |1− 2di| ≤ σi =

√
di(1−di) (which is the case if and only

if |1− 2di| ≤ 1/
√

5, i.e., di ∈ [0.2764,0.7236]), the following theorem provides upper
bounds on the sample and time complexity for learning monotone juntas from product
distributed examples in the presence of product attribute and classification noise:

Theorem 5. Let D be a product attribute distribution with di ∈ [0.2764,0.7236]. Let P
be a γa-bounded product attribute noise distribution and η be a classification noise rate
with |1−2η| ≥ γb > 0. Then the class MONn

d can exactly be learned under noise (P,η)
with confidence 1− δ from poly(logn,2d2

, log(1/δ),γ−d
a ,γ−1

b ) D-distributed examples

in running time poly(n,2d2
, log(1/δ),γ−d

a ,γ−1
b ).
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The restriction di ∈ [0.2764,0.7236] may seem a bit unnatural. However, if we allow
|1−2di|/σi to become arbitrarily large, then for all J � I, f̂ (J), has to be approximated
way too accurately in order to obtain a good estimate for f̂ (I), thus forcing an unrea-
sonably large sample size. One possible way out is to consider the quotient |1−2di|/σi

as an additional parameter.

6 Conclusion

We have investigated the learnability of Boolean juntas in the presence of attribute and
classification noise. While arbitrary noise distributions may render learning impossible,
an algorithm has been presented to learn the class of s-low d-juntas under product at-
tribute and classification noise with rates different from 1/2. For s = 1, these include
all monotone juntas. Moreover, the algorithm does not only work for product noise dis-
tributions, but for any distribution satisfying a more general condition (as stated in (3)).
In addition, we have shown how to generalize the methods to non-uniformly distributed
examples.

The major goal is to settle the question whether learning juntas in the presence of
noise can be done as efficiently (up to unavoidable factors due to noise) as in the noise-
free case. At present, this means whether or not running time nc·d · poly(n,2d,γd

a ,γ
−1
b )

can be achieved for learning J n
d , with some constant c < 1 (c < 0.704 would even im-

prove the noise-free case). While we have shown that the “Fourier part” of Mossel et
al. [1] carries over to the noisy scenario, it seems that an adaption of the “parity part” is
intractable since it requires noise-tolerant learning of parity functions. We suspect that
non-trivial lower bounds (based on hardness assumptions) can be shown.
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Abstract. New representation and computation mechanisms are key
approaches for learning problems with incomplete information or in large
probabilistic environments. In this paper, traditional reinforcement
learning (RL) methods are combined with grey theory and a novel grey
reinforcement learning (GRL) framework is proposed to solve complex
problems with incomplete information. Typical example of mobile robot
navigation is given out to evaluate the performance and practicability of
GRL. Related issues are also briefly discussed.

1 Introduction

Reinforcement learning (RL) is learning with a critic which provides a feedback
called reinforcement, a scalar signal, r. This method of learning gets optimal
policy through trial-and-error, which makes it suited to problems where models
of the environment are unknown. Since 1980s, RL has become an important ap-
proach to machine learning [1-6] and is widely used in artificial intelligence and
control problems, especially in robot [7-9], due to its good performance of on-line
adaptability and powerful learning ability of complex nonlinear system. However
there are still some difficult problems in practical applications, which lead to the
motivations of this paper, such as incomplete information processing, general-
ization ability, learning speed, prior knowledge incorporation, etc. Especially
When agent interacts with environment, the information is often incomplete.
That means the agent does not exactly know the state of the environment and
itself. More often, maybe the goal is also vague and incomplete, such as the goal
is “around the coordinate (100, 100)”,“between point A and B” and “go straight
for about 10 meters”. Most methods take these data as explicit information, but
it is not proper and new representation is required.

To combat those problems, many methods have been proposed in recent years.
Temporal abstraction and decomposition methods have been explored to solve
such problems as RL and dynamic programming (DP) to speed up learning [10-
15]. Different kinds of learning paradigms are combined to optimize RL. For
example, Dong [16] combined quantum characteristics with traditional RL to
speed up learning and proposed an effective policy for exploration. Smith [17]
� Corresponding author.
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presented a new model for representation and generalization in model-less RL
based on the SOM and standard Q-learning. Glorennec and Jouffe [18] proposed
an adaptation of Watkins’ Q-learning with fuzzy inference systems for problems
with large state-action spaces or with continuous spaces. And many specific
improvements are also implemented to modify related RL methods in practice
[19][20][8][9]. In spite of all these attempts more work is needed to achieve sat-
isfactory successes and new ideas are necessary to explore more effective repre-
sentation methods and learning mechanisms, especially a proper representation
to deal with incomplete information.

On the other hand, grey theory and qualitative simulation theory have been
well developed since 1980s, and have been widely used for simulation and control
problems of complex systems. The grey theory, pioneered by Deng [21], has been
widely applied in many scientific research fields, such as economy prediction,
prospecting mineral and scientific experiments. Meanwhile qualitative simulation
(QSIM) theory was proposed by Benjamin Kuipers [22][23] and has shown its
advantage in design, diagnosis and monitoring about complex physical systems.
Since grey theory and qualitative simulation are all effective means to solve
uncertain problems and both of them have distinctive merits respectively, Huang
combined them and put forward grey qualitative theory [24][25].

In this paper, the traditional reinforcement learning is extended by using grey
state representations to deal with incomplete information of complex problems
and a novel grey reinforcement learning (GRL) framework is proposed. This
paper is organized as follows. Section 2 covers a new representation of grey
information. In Section 3, a grey RL framework is proposed with the grey repre-
sentation. In Section 4 experiments of mobile robot navigation are demonstrated.
Finally, conclusions is given out in Section 5.

2 Representation of Incomplete Information Based on
Grey System

In this section, the grey theory is introduced briefly and a new kind of grey
number (frequency grey number) is defined for the representation of state and
action spaces of RL systems. Originally advocated by Deng [21], grey system

Fig. 1. The typical whitening function of interval grey numbers
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theory has been widely used and is becoming a popular topic in information
science and engineering. The essential concept of grey theory is grey number,
which refers to those numbers that we only know their range instead of precise
values. Several definitions are given out as follows. [24]

Definition 1. The typical whitening function of an interval grey number ⊗ =
[a1, a2] is a continuous function which rises on the left and lowers on the right
(Fig.1).

f1(x) =

⎧⎨⎩
L(x), x ∈ [a1, b1)

1, x ∈ [b1, b2]
R(x), x ∈ (b2, a2]

(1)

where L(x) and R(x) satisfy

L(a1) = R(a2) = 0, L(b1) = R(b2) = 1 (2)

Definition 2. Frequency grey number X[a,b] is a interval grey number with
whitening function

fX(x) = N [
1
2
(a+ b), σ2] =

1√
2πσ

exp{− [x− 0.5(a+ b)]2

2σ2 } (3)

in real interval [a, b](a < b), where σ2 satisfies∫ a

−∞

1√
2πσ

e−
(x−0.5(a+b))2

2σ2 dx =
α

2
(4)

1− α implies the measure of frequency grey number X[a,b], in symbol (Fig.2)

μ(X[a,b]) = 1− α, α ∈ [0, 1] (5)

From the above definition, we know that a frequency grey number is decided
by three components: interval [a, b], measure 1− α and distribution parameter
σ. These three elements are not independent, and if arbitrarily two of them are
known, the third one should be determined.

In Artificial Intelligence, agent must have the ability to learn from an uncertain
environment, where the uncertainty lies in the sensory information, models of
the environment and control precision. In this paper, we suggest to represent the
uncertain information with grey models. For example, we define grey states GS
and grey actions GA as the following:

GS = (GS1, GS2, . . . , GSn)
GA = (GA1, GA2, . . . , GAn)

Each grey state or grey action is an interval grey number or a complex interval
grey number. In this paper, we suggest to use frequency grey number to represent
and process these grey states and grey actions.
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Fig. 2. Frequency grey number X[a, b] with measure 1 − α

3 Grey Reinforcement learning

In this section we first briefly review standard reinforcement learning algorithms
and then grey representation is proposed to extend the traditional RL to GRL.

3.1 Reinforcement Learning (RL)

Standard framework of RL is based on discrete-time, finite Markov decision
processes (MDPs) [1].

Definition 3.(MDP) Markov decision process (MDP) is composed of the fol-
lowing five-factors:{S,A(i), pij(a), r(i,a), V, i, j ∈ S, a ∈ A(i)}, where: S is state
space; A(i) is action space for state i; pij(a) is probability for state transition; r
is reward function,r : Γ → [−∞,+∞], where Γ = {(i, a)|i ∈ S, a ∈ A(i)}; V is
criterion function or objective function.

RL algorithms assume that state S and action A(sn) can be divided into
discrete values. At a certain step, the agent observes the state of the environment
(inside and outside of the agent) St, and then choose an action at. After executing
the action, the agent receives a reward rt+1, which reflects how good that action
is (in a short-term sense).

The goal of reinforcement learning is to learn a mapping from states to actions,
that is to say, the agent is to learn a policy π : S × ∪i∈SA(i) → [0, 1], so that
expected sum of discounted reward of each state will be maximized:

V π
(s) = E{r(t+1) + γr(t+2) + γ2r(t+3) + . . . |st = s, π}

= E[r(t+1) + γV π
s(t+1)

|st = s, π]

=
∑

a∈As

π(s, a)[ra
s + γ

∑
s′
pa

ss′V π
(s′)] (6)

where γ ∈ [0, 1] is discounted factor, π(s, a) is the probability of selecting action
a according to state s under policy π, pa

ss′ = Pr{st+1 = s′|st = s, at = a} is
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probability for state transition and ra
s = E{rt+1|st = s, at = a} is expected

one-step reward. And we will have the optimal state-value function

V ∗
(s) = max

a∈As

[ra
s + γ

∑
s′
pa

ss′V ∗
(s′)] (7)

π∗ = argmax
π

V π
(s), ∀s ∈ S (8)

In dynamic programming, (7) is also called Bellman equation of V ∗.
As for state-action pairs, there are similar value functions and Bellman equa-

tions, where Qπ(s, a) stands for the value of taking action a in state s under
policy π:

Qπ
(s, a) = E{r(t+1) + γr(t+2) + γ2r(t+3) + . . . |st = s, at = a, π}

= ra
s + γ

∑
s′
pa

ss′V π(s′)

= ra
s + γ

∑
s′
pa

ss′
∑
a′
π(s′, a′)Qπ

(s′,a′) (9)

Q∗
(s,a) = max

π
Q(s, a) = ra

s + γ
∑
s′
pa

ss′ max
a′

Q∗
(s′, a′) (10)

Let η be the learning rate, and the one-step update rule of Q-learning [5] is:

Q(st, at)← (1− η)Q(st, at) + η(rt+1 + γmax
a′ Q(st+1, a

′)) (11)

There are many effective standard RL algorithms like Q-learning, such as TD(λ),
Sarsa, etc., and for more details see reference [1].

3.2 Grey Reinforcement Function and Grey Reinforcement
Learning

In a system where precise quantitative information is not available, the learning
models and algorithms should be adapted to process and reason with these vague
values because of lack of sufficient information. Hence we suggest a grey reinforce-
ment learning model which emphasizes on the grey representation of uncertain
states and actions, grey function computation and grey reasoning scheme.

The grey reinforcement learning model is depicted in Fig. 3. In this model, the
information with uncertainty is preprocessed and represented with grey models.
At each learning step, the agent percepts the environment through various sen-
sors and has the state gs. The function GR(gs,ga) show how the agent views
its environment. Then the agent chooses a quantitative/qualitative action ga
through grey reasoning and acts on the environment. Once this action is per-
formed, the environment state changes to gs′ with a probability that depends
on action ga and the agent receives a signal gr from the environment.

The most prominent differences between grey reinforcement learning and tra-
ditional reinforcement learning lie in three aspects: representation, grey rein-
forcement function and updating rules. Here we use frequency grey numbers for
grey reinforcement learning.
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Fig. 3. The Grey Reinforcement Learning Model

Fig. 4. Definition of Similarity between Frequency Grey Numbers

Definition 4.(Similarity between frequency grey numbers) The similar-
ity of two grey numbers is defined as (Fig. 4):

Sim(gs1, gs2) = μ(gs1[c, +∞]) + μ(gs2[−∞, c]) (12)

We define the grey reinforcement function GR(gs, ga) as the function of the
similarity between gs′ and the desired grey goal gg:

GR(gs, ga) = f(Sim(gs′, gg)) (13)

where gs′ is the next grey state after the execution of ga at gs.
Take the Q-learning for example, the updating for GreyQ-Function is:

GreyQ(gs, ga)← GR(gs, ga) + γmax
ga′

GreyQ(gs′, ga′) (14)
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Fig. 5. The algorithm of a grey Q-learning

In this equation, γ is the discount factor. Grey states GS = (gs1, gs2, . . . , gsm)
and grey actions GA = (ga1, ga2, . . . , gan) completely cover the state and ac-
tion space respectively. GS = (gs1, gs2, . . . , gsm) and GA = (ga1, ga2, . . . , gan)
can be adaptively modified while learning, which will be our future work. The
procedural form of a grey Q-learning algorithm is described as Fig. 5.

4 Examples Demonstration and Experimental Results

Mobile robot navigation in unknown environment is a typical kind of prob-
lems with incomplete information, which lies in the sensory information and the
models of the environment. As an illustration of the proposed grey reinforcement
learning method, the navigation problems are demonstrated based on the mo-
bile robot platform named “ATU-II” (Fig. 6). ATU-II is a double-wheel driven
mobile robot with four wheels. Sensors of ATU-II include one CCD camera, two
sonar rings and one ring of tactile sensors. The measurement range of the sensors

Fig. 6. Navigation Example and Simulated Results
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Table 1. Comparisons between QL, FQL and GQL

Incomplete Continuous Self- Prior Adaptability Learning
Type information space adaptability knowledge of learning speed

processing problems incorporation rate

QL Weak Weak No Weak No Slow
FQL Moderate Strong No Strong Weak Fast
GQL Strong Strong Yes Strong Strong Fast

is 0.25 ∼ 5m. We made a series of simulated experiments according to the con-
figurations of ATU-II. Fig. 6 is the results of a simple navigation task in a room.
It shows that the mobile robot system works well while seeking a goal with ob-
stacle avoidance in an unknown environment. And more experiments show that
the algorithm is also robust for dynamic obstacles.

5 Conclusion and Future Work

The key contribution of this paper is a novel knowledge representation method
based on grey theory for incomplete information processing, which leads to an
effective learning and reasoning scheme called grey reinforcement learning. The
initial motivation of this paper is to propose a proper solution for incomplete
information processing and related issues. In fact, grey theory has the advan-
tages of fuzzy logic and probability. Hence grey reinforcement learning has great
potential to deal with those difficult problems in practical application and in this
paper we have demonstrated some of the results. Table 1 shows the comparisons
between standard Q-learning (QL), Fuzzy Q-learning and Grey Q-learning.

However, this method is far from satisfaction and more issues should be ex-
plored and addressed in both theory and application. Besides all these theoretical
research, we need more techniques practical for real intelligent system, such as
mobile robots, agents on internet and intelligent information processing. We
strongly believe that grey reinforcement learning approaches will be useful in
the various cases of the uncertainties in these systems.
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Abstract. Solomonoff completed the Bayesian framework by provid-
ing a rigorous, unique, formal, and universal choice for the model class
and the prior. We discuss in breadth how and in which sense universal
(non-i.i.d.) sequence prediction solves various (philosophical) problems
of traditional Bayesian sequence prediction. We show that Solomonoff’s
model possesses many desirable properties: Fast convergence and strong
bounds, and in contrast to most classical continuous prior densities has
no zero p(oste)rior problem, i.e. can confirm universal hypotheses, is
reparametrization and regrouping invariant, and avoids the old-evidence
and updating problem. It even performs well (actually better) in non-
computable environments.

1 Introduction

Examples and goal. Given the weather in the past, what is the probability
of rain tomorrow? What is the correct answer in an IQ test asking to continue
the sequence 1,4,9,16,? Given historic stock-charts, can one predict the quotes of
tomorrow? Assuming the sun rose 5000 years every day, how likely is doomsday
(that the sun does not rise) tomorrow? These are instances of the important
problem of inductive inference or time-series forecasting or sequence prediction.
Finding prediction rules for every particular (new) problem is possible but cum-
bersome and prone to disagreement or contradiction. What we are interested in
is a formal general theory for prediction.

Bayesian sequence prediction. TheBayesian framework is the most consistent
and successful framework developed thus far [Ear93]. A Bayesian considers a set
of environments=hypotheses=modelsM which includes the true data generating
probability distributionμ. From one’s prior beliefwν in environment ν∈M and the
observed data sequence x= x1...xn, Bayes’ rule yields one’s posterior confidence
in ν. In a predictive setting, one directly determines the predictive probability of
the next symbol xn+1 without the intermediate step of identifying a (true or good
or causal or useful) model. Note that classification and regression can be regarded
as special sequence prediction problems, where the sequence x1y1...xnynxn+1 of
(x,y)-pairs is given and the class label or function value yn+1 shall be predicted.

Universal sequence prediction. The Bayesian framework leaves open how to
choose the model classM and prior wν . General guidelines are thatM should be

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 408–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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small but large enough to contain the true environment μ, and wν should reflect
one’s prior (subjective) belief in ν or should be non-informative or neutral or
objective if no prior knowledge is available. But these are informal and ambigu-
ous considerations outside the formal Bayesian framework. Solomonoff’s [Sol64]
rigorous, essentially unique, formal, and universal solution to this problem is to
consider a single large universal class MU suitable for all induction problems.
The corresponding universal prior wU

ν is biased towards simple environments in
such a way that it dominates=superior to all other priors. This leads to an a
priori probability M(x) which is equivalent to the probability that a universal
Turing machine with random input tape outputs x.

History and motivation. Many interesting, important, and deep results have
been proven for Solomonoff’s universal distribution M [ZL70, Sol78, LV97,
Hut04]. The motivation and goal of this paper is to provide a broad discus-
sion of how and in which sense universal sequence prediction solves all kinds of
(philosophical) problems of Bayesian sequence prediction, and to present some
recent results. Many arguments and ideas could be further developed. I hope
that the exposition stimulates such a future, more detailed, investigation.

Contents. In Section 2 we review the excellent predictive performance of
Bayesian sequence prediction for generic (non-i.i.d.) countable and continuous
model classes. Section 3 critically reviews the classical principles (indifference,
symmetry, minimax) for obtaining objective priors, introduces the universal prior
inspired by Occam’s razor and quantified in terms of Kolmogorov complexity.
In Section 4 (for i.i.d. M) and Section 5 (for universal MU ) we show various
desirable properties of the universal prior and class (non-zero p(oste)rior, con-
firmation of universal hypotheses, reparametrization and regrouping invariance,
no old-evidence and updating problem) in contrast to (most) classical continu-
ous prior densities. Finally, we show that the universal mixture performs better
than classical continuous mixtures, even in uncomputable environments. Section
6 contains critique and summary.

2 Bayesian Sequence Prediction

Notation. We use letters t,n∈ IN for natural numbers, and denote the cardi-
nality of a set S by #S or |S|. We write X ∗ for the set of finite strings over
some alphabet X , and X∞ for the set of infinite sequences. For a string x∈X ∗

of length �(x)=n we write x1x2...xn with xt∈X , and further abbreviate xt:n :=
xtxt+1...xn−1xn and x<n :=x1...xn−1. We assume that sequence ω=ω1:∞∈X∞

is sampled from the “true” probability measure μ, i.e. μ(x1:n):=P[ω1:n =x1:n|μ]
is the μ-probability that ω starts with x1:n. We denote expectations w.r.t. μ
by E. In particular for a function f : Xn → IR, we have E[f ] = E[f(ω1:n)] =∑

x1:n
μ(x1:n)f(x1:n). If μ is unknown but known to belong to a countable class of

environments=models=measuresM={ν1,ν2,...}, and {Hν :ν∈M} forms a mu-
tually exclusive and complete class of hypotheses, and wν :=P[Hν ] is our prior be-
lief in Hν , then ξ(x1:n) :=P[ω1:n=x1:n]=

∑
ν∈MP[ω1:n =x1:n|Hν ]P[Hν ] must be
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our (prior) belief in x1:n, and wν(x1:n) :=P[Hν|ω1:n =x1:n]= P[ω1:n=x1:n|Hν ]P[Hν ]
P[ω1:n=x1:n]

be our posterior belief in ν by Bayes’ rule. For a sequence a1,a2,... of random
variables,

∑∞
t=1E[a2

t ]≤c<∞ implies at
t→∞−→0 with μ-probability 1 (w.p.1). Con-

vergence is rapid in the sense that the probability that a2
t exceeds ε>0 at more

than c
εδ times t is bounded by δ. We sometimes loosely call this the number of

errors.

Sequence prediction. Given a sequence x1x2...xt−1, we want to predict its
likely continuation xt. We assume that the strings which have to be continued are
drawn from a “true” probability distribution μ. The maximal prior information
a prediction algorithm can possess is the exact knowledge of μ, but often the true
distribution is unknown. Instead, prediction is based on a guess ρ of μ. While
we require μ to be a measure, we allow ρ to be a semimeasure [LV97, Hut04]:1

Formally, ρ :X ∗→ [0,1] is a semimeasure if ρ(x)≥
∑

a∈Xρ(xa)∀x ∈X ∗, and a
(probability) measure if equality holds and ρ(ε)=1, where ε is the empty string.
ρ(x) denotes the ρ-probability that a sequence starts with string x. Further,
ρ(a|x) := ρ(xa)/ρ(x) is the “posterior” or “predictive” ρ-probability that the
next symbol is a∈X , given sequence x∈X ∗.

Bayes mixture. We may know or assume that μ belongs to some countable
classM :={ν1,ν2,...}+μ of semimeasures. Then we can use the weighted average
on M (Bayes-mixture, data evidence, marginal)

ξ(x) :=
∑

ν∈M
wν ·ν(x),

∑
ν∈M

wν ≤ 1, wν > 0. (1)

for prediction. The most important property of semimeasure ξ is its dominance
ξ(x) ≥ wνν(x) ∀x and ∀ν∈M, in particular ξ(x) ≥ wμμ(x) (2)

which is a strong form of absolute continuity.

Convergence for deterministic environments. In the predictive setting we
are not interested in identifying the true environment, but to predict the next
symbol well. Let us consider deterministic μ first. An environment is called
deterministic if μ(α1:n) = 1∀n for some sequence α, and μ= 0 elsewhere (off-
sequence). In this case we identify μ with α and the following holds:∑∞

t=1 |1−ξ(αt|α<t)| ≤ lnw−1
α and ξ(αt:n|αt)→ 1 for n≥ t→∞ (3)

where wα > 0 is the weight of α=̂μ ∈M. This shows that ξ(αt|α<t) rapidly
converges to 1 and hence also ξ(ᾱt|α<t)→0 for ᾱt �=αt, and that ξ is also a good
multi-step lookahead predictor. Proof: ξ(α1:n)→c>0, since ξ(α1:n) is monotone
decreasing in n and ξ(α1:n)≥wμμ(α1:n)=wμ>0. Hence ξ(α1:n)/ξ(α1:t)→c/c=1
for any limit sequence t,n→∞. The bound follows from

∑n
t=11−ξ(xt|x<t)≤

−
∑n

t=1lnξ(xt|x<t)=−lnξ(x1:n) and ξ(α1:n)≥wα.

Convergence in probabilistic environments. In the general probabilistic
case we want to know how close ξt :=ξ( · t|ω<t)∈IR|X | is to the true probability
μt :=μ( · t|ω<t). One can show that
1 Readers unfamiliar or uneasy with semimeasures can without loss ignore this

technicality.



On the Foundations of Universal Sequence Prediction 411

∑n
t=1 E[st] ≤ Dn(μ||ξ) := E[ln μ(ω1:n)

ξ(ω1:n) ] ≤ lnw−1
μ , (4)

where st = st(μt,ξt) can be the squared Euclidian or Hellinger or absolute or
KL distance between μt and ξt, or the squared Bayes-regret [Hut04]. The first
inequality actually holds for any two (semi)measures, and the last inequality
follows from (2). These bounds (with n=∞) imply

ξ(xt|ω<t)− μ(xt|ω<t)→ 0 for any xt rapid w.p.1 for t→∞.

One can also show multi-step lookahead convergence ξ(xt:nt |ω<t) −
μ(xt:nt |ω<t) → 0, (even for unbounded horizon 1 ≤ nt− t+1 → ∞) which
is interesting for delayed sequence prediction and in reactive environments
[Hut04].

Continuous environmental classes. The bounds above remain approximately
valid for most parametric model classes. LetM :={νθ :θ∈Θ⊆IRd} be a family of
probability distributions parameterized by a d-dimensional continuous parame-
ter θ, and μ≡νθ0∈M the true generating distribution. For a continuous weight
density2 w(θ)>0 the sums (1) are naturally replaced by integrals:

ξ(x) :=
∫

Θ

w(θ)·νθ(x) dθ,
∫

Θ

w(θ) dθ = 1 (5)

The most important property of ξ was the dominance (2) achieved by dropping
the sum over ν. The analogous construction here is to restrict the integral over θ
to a small vicinity of θ0. Since a continuous parameter can typically be estimated
to accuracy∝n−1/2 after n observations, the largest volume in which νθ as a func-
tion of θ is approximately flat is ∝(n−1/2)d, hence ξ(x1:n)�n−d/2w(θ0)μ(x1:n).
Under some weak regularity conditions one can prove [CB90, Hut04]

Dn(μ||ξ) := E ln μ(ω1:n)
ξ(ω1:n) ≤ lnw(θ0)−1 + d

2 ln n
2π + 1

2 ln det j̄n(θ0) + o(1) (6)

where w(θ0) is the weight density (5) of μ in ξ, and o(1) tends to zero for n→∞,
and the average Fisher information matrix j̄n(θ)=− 1

nE[∇θ∇T
θ lnνθ(ω1:n)] mea-

sures the local smoothness of νθ and is bounded for many reasonable classes,
including all stationary (kth-order) finite-state Markov processes. We see that
in the continuous case, Dn is no longer bounded by a constant, but grows very
slowly (logarithmically) with n, which still implies that ε-deviations are expo-
nentially seldom. Hence, (6) allows to bound (4) even in case of continuous M.

3 How to Choose the Prior

Classical principles. The probability axioms (implying Bayes’ rule) allow to
compute posteriors and predictive distributions from prior ones, but are mute
about how to choose the prior. Much has been written on the choice of non-
informative=neutral=objective priors (see [KW96] for a survey and references; in
Section 6 we briefly discuss how to incorporate subjective prior knowledge). For fi-
niteM, Laplace’s symmetry or indifference argument which sets wν = 1

|M| ∀ν∈M

2 w() will always denote densities, and w() probabilities.
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is a reasonable principle. The analogue uniform density w(θ) = [Vol(Θ)]−1 for a
compact measurable parameter space Θ is less convincing, since w becomes non-
uniform under different parametrization (e.g. θ�θ′ :=

√
θ). Jeffreys’ solution is to

find a symmetry group of the problem (like permutations for finiteM or transla-
tions forΘ=IR) and require the prior to be invariant under group transformations.
Another solution is the minimax approach by Bernardo [CB90] which minimizes
(the quite tight) bound (6) for the worst μ∈M. Choice w(θ)∝

√
detj̄n(θ) equal-

izes and hence minimizes (6). Problems are that there may be no obvious symme-
try, the resulting prior can be improper, depend on which parameters are treated
as nuisance parameters, on the model class, and on n. Other principles are maxi-
mumentropy and conjugate priors. The principles above, although not unproblem-
atic, can provide good objective priors in many cases of small discrete or compact
spaces, but we will meet some more problems later. For “large” model classes we
are interested in, i.e. countably infinite, non-compact, or non-parametric spaces,
the principles typically do not apply or break down.

Occam’s razor et al. Machine learning, the computer science branch of statis-
tics, often deals with very large model classes. Naturally, machine learning has
(re)discovered and exploited quite different principles for choosing priors, appro-
priate for this situation. The overarching principles put together by Solomonoff
[Sol64] are: Occam’s razor (choose the simplest model consistent with the data),
Epicurus’ principle of multiple explanations (keep all explanations consistent
with the data), (Universal) Turing machines (to compute, quantify and assign
codes to all quantities of interest), and Kolmogorov complexity (to define what
simplicity/complexity means).

We will first “derive” the so called universal prior, and subsequently justify it
by presenting various welcome theoretical properties and by examples. The idea
is that a priori, i.e. before seeing the data, all models are “consistent,” so a-priori
Epicurus would regard all models (in M) possible, i.e. choose wν > 0 ∀ν ∈M.
In order to also do (some) justice to Occam’s razor we should prefer simple
hypothesis, i.e. assign high prior/low prior wν to simple/complex hypotheses Hν .
Before we can define this prior, we need to quantify the notion of complexity.

Notation. A function f :S→IR∪{±∞} is said to be lower semi-computable (or
enumerable) if the set {(x,y) : y<f(x), x∈S, y ∈ IQ} is recursively enumerable.
f is upper semi-computable (or co-enumerable) if −f is enumerable. f is com-
putable (or recursive) if f and −f are enumerable. The set of (co)enumerable
functions is recursively enumerable. We write O(1) for a constant of reasonable
size: 100 is reasonable, maybe even 230, but 2500 is not. We write f(x)

+≤ g(x) for
f(x)≤ g(x)+O(1) and f(x)

×≤ g(x) for f(x)≤ 2O(1) ·g(x). Corresponding equal-
ities hold if the inequalities hold in both directions.3 We say that a property
A(n)∈{true,false} holds for most n, if #{t≤n :A(t)}/nn→∞−→ 1.

Kolmogorov complexity. We can now quantify the complexity of a string.
Intuitively, a string is simple if it can be described in a few words, like “the

3 We will ignore this additive/multiplicative fudge in our discussion till Section 6.
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string of one million ones”, and is complex if there is no such short description,
like for a random object whose shortest description is specifying it bit by bit. We
are interested in effective descriptions, and hence restrict decoders to be Turing
machines (TMs). Let us choose some universal (so-called prefix) Turing machine
U with binary input=program tape, Xary output tape, and bidirectional work
tape. We can then define the prefix Kolmogorov complexity [LV97] of string x as
the length � of the shortest binary program p for which U outputs x:

K(x) := min
p
{�(p) : U(p) = x}.

For non-string objects o (like numbers and functions) we define K(o) :=K(〈o〉),
where 〈o〉∈X ∗ is some standard code for o. In particular, if (fi)∞i=1 is an enu-
meration of all (co)enumerable functions, we define K(fi)=K(i).

An important property of K is that it is nearly independent of the choice of
U . More precisely, if we switch from one universal TM to another, K(x) changes
at most by an additive constant independent of x. For reasonable universal
TMs, the compiler constant is of reasonable size O(1). A defining property of
K :X ∗→IN is that it additively dominates all co-enumerable functions f :X ∗→IN
that satisfy Kraft’s inequality

∑
x2−f(x) ≤ 1, i.e. K(x)

+≤ f(x) for K(f)=O(1).
The universal TM provides a shorter prefix code than any other effective prefix
code. K shares many properties with Shannon’s entropy (information measure)
S, but K is superior to S in many respects. To be brief, K is an excellent
universal complexity measure, suitable for quantifying Occam’s razor. We need
the following properties of K:

a) K is not computable, but only upper semi-computable,
b) the upper bound K(n)

+≤ log2n+2log2logn, (7)
c) Kraft’s inequality

∑
x2−K(x)≤1, which implies 2−K(n)≤ 1

n for most n,
d) information non-increase K(f(x))

+≤K(x)+K(f) for recursive f :X ∗→X ∗,
e) K(x)

+≤−log2P (x)+K(P ) if P :X ∗→ [0,1] is enumerable and
∑

xP (x)≤1,
f)
∑

x:f(x)=y2
−K(x) ×= 2−K(y) if f is recursive and K(f)=O(1).

Proofs of (a)−(e) can be found in [LV97], and the (easy) proof of (f) in the
extended version of this paper.

The universal prior. We can now quantify a prior biased towards simple mod-
els. First, we quantify the complexity of an environment ν or hypothesis Hν by
its Kolmogorov complexity K(ν). The universal prior should be a decreasing
function in the model’s complexity, and of course sum to (less than) one. Since
K satisfies Kraft’s inequality (7c), this suggests the following choice:

wν = wU
ν := 2−K(ν) (8)

For this choice, the bound (4) on Dn reads∑∞
t=1 E[st] ≤ Dn ≤ K(μ) ln 2 (9)

i.e. the number of times, ξ deviates from μ by more than ε > 0 is bounded
by O(K(μ)), i.e. is proportional to the complexity of the environment. Could
other choices for wν lead to better bounds? The answer is essentially no
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[Hut04]: Consider any other reasonable prior w′
ν , where reasonable means (lower

semi)computable with a program of size O(1). Then, MDL bound (7e) with
P ()�w′

() and x�〈μ〉 shows K(μ)
+≤−log2w

′
μ+K(w′

()), hence lnw′
μ
−1 +≥K(μ)ln2

leads (within an additive constant) to a weaker bound. A counting argument
also shows that O(K(μ)) errors for most μ are unavoidable. So this choice of
prior leads to very good prediction.

Even for continuous classes M, we can assign a (proper) universal prior (not
density) wU

θ =2−K(θ)>0 for computable θ, and 0 for uncomputable ones. This
effectively reduces M to a discrete class {νθ ∈M :wU

θ > 0} which is typically
dense in M. We will see that this prior has many advantages over the classical
prior densities.

4 Independent Identically Distributed Data

Laplace’s rule for Bernoulli sequences. Let x = x1x2...xn ∈ Xn =
{0,1}n be generated by a biased coin with head=1 probability θ ∈ [0,1], i.e. the
likelihood of x under hypothesis Hθ is νθ(x) = P[x|Hθ] = θn1(1− θ)n0 , where
n1 = x1+ ...+xn = n−n0. Bayes assumed a uniform prior density w(θ) = 1. The
evidence is ξ(x) =

∫ 1
0 νθ(x)w(θ) dθ = n1!n0!

(n+1)! and the posterior probability weight

density w(θ|x)=νθ(x)w(θ)/ξ(x)= (n+1)!
n1!n0!

θn1(1−θ)n0 of θ after seeing x is strongly
peaked around the frequency estimate θ̂= n1

n for largen. Laplace asked for the pre-
dictive probability ξ(1|x) of observing xn+1=1 after having seen x=x1...xn, which
is ξ(1|x)= ξ(x1)

ξ(x) = n1+1
n+2 . (Laplace believed that the sun had risen for 5 000 years =

1 826 213days since creation, so he concluded that the probability ofdoom, i.e. that
the sun won’t rise tomorrow is 1

1826215 .) This looks like a reasonable estimate, since
it is close to the relative frequency, asymptotically consistent, symmetric, even de-
fined for n=0, and not overconfident (never assigns probability 1).

The problem of zero prior. But also Laplace’s rule is not without problems.
The appropriateness of the uniform prior has been questioned in Section 3 and
will be detailed below. Here we discuss a version of the zero prior problem. If the
prior is zero, then the posterior is necessarily also zero. The above example seems
unproblematic, since the prior and posterior densities w(θ) and w(θ|x) are non-
zero. Nevertheless it is problematic e.g. in the context of scientific confirmation
theory [Ear93].

Consider the hypothesis H that all balls in some urn, or all ravens, are black
(=1). A natural model is to assume that balls/ravens are drawn randomly from
an infinite population with fraction θ of black balls/ravens and to assume a
uniform prior over θ, i.e. just the Bayes-Laplace model. Now we draw n objects
and observe that they are all black.

We may formalize H as the hypothesis H ′ := {θ = 1}. Although the posterior
probability of the relaxedhypothesisHε :={θ≥1−ε}, P[Hε|1n]=

∫ 1
1−ε

w(θ|1n) dθ=∫ 1
1−ε

(n+1)θndθ=1−(1−ε)n+1 tends to 1 forn→∞ for every fixed ε>0,P[H ′|1n]=
P[H0|1n] remains identically zero, i.e. no amount of evidence can confirmH ′. The
reason is simply that zero prior P[H ′]=0 implies zero posterior.
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Note that H ′ refers to the unobservable quantity θ and only demands black-
ness with probability 1. So maybe a better formalization of H is purely in terms
of observational quantities: H ′′ :={ω1:∞=1∞}. Since ξ(1n)= 1

n+1 , the predictive
probability of observing k further black objects is ξ(1k|1n) = ξ(1n+k)

ξ(1n) = n+1
n+k+1 .

While for fixed k this tends to 1, P[H ′′|1n] = limk→∞ξ(1k|1n) ≡ 0 ∀n, as
for H ′.

One may speculate that the crux is the infinite population. But for a fi-
nite population of size N and sampling with (similarly without) repetition,
P[H ′′|1n]=ξ(1N−n|1n)= n+1

N+1 is close to one only if a large fraction of objects has
been observed. This contradicts scientific practice: Although only a tiny fraction
of all existing ravens have been observed, we regard this as sufficient evidence
for believing strongly in H .

There are two solutions of this problem: We may abandon strict/logical-
/all-quantified/universal hypotheses altogether in favor of soft hypotheses like
Hε. Although not unreasonable, this approach is unattractive for several rea-
sons. The other solution is to assign a non-zero prior to θ = 1. Consider, for
instance, the improper density w(θ) = 1

2 [1+δ(1−θ)], where δ is the Dirac-
delta (

∫
f(θ)δ(θ−a) dθ = f(a)), or equivalently P[θ ≥ a] = 1− 1

2a. We get
ξ(x1:n) = 1

2 [ n1!n0!
(n+1)! +δ0n0 ], where δij = { 1 if i=j

0 else } is Kronecker’s δ. In particular
ξ(1n)= 1

2
n+2
n+1 is much larger than for uniform prior. Since ξ(1k|1n)= n+k+2

n+k+1 ·
n+1
n+2 ,

we get P[H ′′|1n]=limk→∞ξ(1k|1n)= n+1
n+2→1, i.e. H ′′ gets strongly confirmed by

observing a reasonable number of black objects. This correct asymptotics also
follows from the general result (3). Confirmation of H ′′ is also reflected in the
fact that ξ(0|1n)= 1

(n+2)2 tends much faster to zero than for uniform prior, i.e.
the confidence that the next object is black is much higher. The power actu-
ally depends on the shape of w(θ) around θ= 1. Similarly H ′ gets confirmed:
P[H ′|1n] = μ1(1n)P[θ= 1]/ξ(1n) = n+1

n+2 → 1. On the other hand, if a single (or
more) 0 are observed (n0>0), then the predictive distribution ξ(·|x) and poste-
rior w(θ|x) are the same as for uniform prior.

The findings above remain qualitatively valid for i.i.d. processes over finite
non-binary alphabet |X |>2 and for non-uniform prior.

Surely to get a generally working setup, we should also assign a non-zero
prior to θ= 0 and to all other “special” θ, like 1

2 and 1
6 , which may naturally

appear in a hypothesis, like “is the coin or die fair”. The natural continuation
of this thought is to assign non-zero prior to all computable θ. This is another
motivation for the universal prior wU

θ =2−K(θ) (8) constructed in Section 3. It is
difficult but not impossible to operate with such a prior [PH04]. One may want
to mix the discrete prior wU

ν with a continuous (e.g. uniform) prior density, so
that the set of non-computable θ keeps a non-zero density. Although possible,
we will see that this is actually not necessary.

Reparametrization invariance. Naively, the uniform prior is justified by
the indifference principle, but as discussed in Section 3, uniformity is not
reparametrization invariant. For instance if in our Bernoulli example we intro-
duce a new parametrization θ′=

√
θ, then the θ′-density w′(θ′)=2

√
θw(θ) is no

longer uniform if w(θ)=1 is uniform.
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More generally, assume we have some principle which leads to some prior w(θ).
Now we apply the principle to a different parametrization θ′∈Θ′ and get prior
w′(θ′). Assume that θ and θ′ are related via bijection θ=f(θ′). Another way to
get a θ′-prior is to transform the θ-prior w(θ) � w̃(θ′). The reparametrization
invariance principle (RIP) states that w′ should be equal to w̃.

For discrete Θ, simply w̃θ′ = wf(θ′), and a uniform prior remains uniform
(w′

θ′ = w̃θ′ = wθ = 1
|Θ| ) in any parametrization, i.e. the indifference principle

satisfies RIP in finite model classes.
In case of densities, we have w̃(θ′)=w(f(θ′))df(θ′)

dθ′ , and the indifference prin-
ciple violates RIP for non-linear transformations f . But Jeffrey’s and Bernardo’s
principle satisfy RIP. For instance, in the Bernoulli case we have j̄n(θ)= 1

θ + 1
1−θ ,

hence w(θ)= 1
π [θ(1−θ)]−1/2 and w′(θ′)= 1

π [f(θ′)(1−f(θ′))]−1/2 df(θ′)
dθ′ = w̃(θ′).

Does the universal prior wU
θ = 2−K(θ) satisfy RIP? If we apply the “univer-

sality principle” to a θ′-parametrization, we get w′
θ′
U = 2−K(θ′). On the other

hand, wθ simply transforms to w̃U
θ′ =wU

f(θ′) = 2−K(f(θ′)) (wθ is a discrete (non-
density) prior, which is non-zero on a discrete subset ofM). For computable f we
have K(f(θ′))

+≤K(θ′)+K(f) by (7d), and similarly K(f−1(θ))
+≤K(θ)+K(f)

if f is invertible. Hence for simple bijections f i.e. for K(f) =O(1), we have
K(f(θ′)) +=K(θ′), which implies w′

θ′
U ×= w̃U

θ′ , i.e. the universal prior satisfies RIP
w.r.t. simple transformations f (within a multiplicative constant).

Regrouping invariance. There are important transformations f which are
not bijections, which we consider in the following. A simple non-bijection is
θ=f(θ′)=θ′2 if we consider θ′∈[−1,1]. More interesting is the following example:
Assume we had decided not to record blackness versus non-blackness of objects,
but their “color”. For simplicity of exposition assume we record only whether an
object is black or white or colored, i.e. X ′={B,W,C}. In analogy to the binary
case we use the indifference principle to assign a uniform prior on θ′∈Θ′ :=Δ3,
where Δd := {θ′ ∈ [0,1]d :

∑d
i=1θ

′
i = 1}, and νθ′(x′1:n) =

∏
iθ

′
i
ni . All inferences

regarding blackness (predictive and posterior) are identical to the binomial model
νθ(x1:n) = θn1(1−θ)n0 with x′t = B � xt = 1 and x′t =W orC � xt = 0 and
θ = f(θ′) = θ′B and w(θ) =

∫
Δ3
w′(θ′)δ(θ′B−θ)dθ′. Unfortunately, for uniform

prior w′(θ′)∝1, w(θ)∝1−θ is not uniform, i.e. the indifference principle is not
invariant under splitting/grouping, or general regrouping. Regrouping invariance
is regarded as a very important and desirable property [Wal96].

We now consider general i.i.d. processes νθ(x) =
∏d

i=1θ
ni

i . Dirichlet priors
w(θ)∝

∏d
i=1θ

αi−1
i form a natural conjugate class (w(θ|x)∝

∏d
i=1θ

ni+αi−1
i ) and

are the default priors for multinomial (i.i.d.) processes over finite alphabet X of
size d. Note that ξ(a|x) = na+αa

n+α1+...+αd
generalizes Laplace’s rule and coincides

with Carnap’s [Ear93] confirmation function. Symmetry demands α1 = ...=αd;
for instance α≡ 1 for uniform and α≡ 1

2 for Bernard-Jeffrey’s prior. Grouping
two “colors” i and j results in a Dirichlet prior with αi&j =αi+αj for the group.
The only way to respect symmetry under all possible groupings is to set α≡0.
This is Haldane’s improper prior, which results in unacceptably overconfident
predictions ξ(1|1n)=1. Walley [Wal96] solves the problem that there is no single
acceptable prior density by considering sets of priors.
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We now show that the universal prior wU
θ = 2−K(θ) is invariant under re-

grouping, and more generally under all simple (computable with complex-
ity O(1)) even non-bijective transformations. Consider prior w′

θ′ . If θ = f(θ′)
then w′

θ′ transforms to w̃θ =
∑

θ′:f(θ′)=θw
′
θ′ (note that for non-bijections there

is more than one w′
θ′ consistent with w̃θ). In θ′-parametrization, the univer-

sal prior reads w′
θ′
U = 2−K(θ′). Using (7f) with x = 〈θ′〉 and y = 〈θ〉 we get

w̃U
θ =
∑

θ′:f(θ′)=θ2
−K(θ′) ×= 2−K(θ) =wU

θ , i.e. the universal prior is general trans-
formation and hence regrouping invariant (within a multiplicative constant)
w.r.t. simple computable transformations f .

Note that reparametrization and regrouping invariance hold for arbitrary
classes M and are not limited to the i.i.d. case.

5 Universal Sequence Prediction

Universal choice of M. The bounds of Section 2 apply ifM contains the true
environment μ. The larger M the less restrictive is this assumption. The class
of all computable distributions, although only countable, is pretty large from a
practical point of view, since it includes for instance all of today’s valid physics
theories. It is the largest class, relevant from a computational point of view.
Solomonoff [Sol64, Eq.(13)] defined and studied the mixture over this class.

One problem is that this class is not enumerable, since the class of computable
functions f :X ∗→ IR is not enumerable (halting problem), nor is it decidable
whether a function is a measure. Hence ξ is completely incomputable. Levin
[ZL70] had the idea to “slightly” extend the class and include also lower semi-
computable semimeasures. One can show that this class MU = {ν1,ν2,...} is
enumerable, hence

ξU (x) =
∑

ν∈MU

wU
ν ν(x) (10)

is itself lower semi-computable, i.e. ξU ∈MU , which is a convenient property in
itself. Note that since 1

nlog2n

×≤wU
νn
≤ 1

n for most n by (7b) and (7c), most νn have
prior approximately reciprocal to their index n.

In some sense MU is the largest class of environments for which ξ is in some
sense computable [Hut04], but see [Sch02] for even larger classes.

The problem of old evidence. An important problem in Bayesian inference in
general and (Bayesian) confirmation theory [Ear93] in particular is how to deal
with ‘old evidence’ or equivalently with ‘new theories’. How shall a Bayesian
treat the case when some evidence E=̂x (e.g. Mercury’s perihelion advance) is
known well-before the correct hypothesis/theory/modelH=̂μ (Einstein’s general
relativity theory) is found? How shall H be added to the Bayesian machinery a
posteriori? What is the prior of H? Should it be the belief in H in a hypothetical
counterfactual world in which E is not known? Can old evidence E confirm H?
After all, H could simply be constructed/biased/fitted towards “explaining” E.

The universal class MU and universal prior wU
ν formally solve this problem:

The universal prior of H is 2−K(H). This is independent ofM and of whether E
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is known or not. If we use E to construct H or fit H to explain E, this will lead
to a theory which is more complex (K(H)

+≥K(E)) than a theory from scratch
(K(H)=O(1)), so cheats are automatically penalized. There is no problem of
adding hypotheses to M a posteriori. Priors of old hypotheses are not affected.
Finally, MU includes all hypothesis (including yet unknown or unnamed ones)
a priori. So at least theoretically, updating M is unnecessary.

Other representations of ξU . There is a much more elegant representation of
ξU : Solomonoff [Sol64, Eq.(7)] defined the universal priorM(x) as the probability
that the output of a universal Turing machine U starts with x when provided
with fair coin flips on the input tape. Note that a uniform distribution is also used
in the so-called No-Free-Lunch theorems to prove the impossibility of universal
learners, but in our case the uniform distribution is piped through a universal
Turing machine which defeats these negative implications. Formally, M can be
defined as

M(x) :=
∑

p : U(p)=x∗
2−�(p) ×= ξU (x) (11)

where the sum is over all (so-called minimal) programs p for which U outputs
a string starting with x. M may be regarded as a 2−�(p)-weighted mixture over
all computable deterministic environments νp (νp(x)=1 if U(p)=x∗ and 0 else).
Now, as a positive surprise, M(x) coincides with ξU (x) within an irrelevant
multiplicative constant. So it is actually sufficient to consider the class of deter-
ministic semimeasures. The reason is that the probabilistic semimeasures are in
the convex hull of the deterministic ones, and so need not be taken extra into
account in the mixture.

Bounds for computable environments. The bound (9) surely is applicable
for ξ=ξU and now holds for any computable measure μ. Within an additive con-
stant the bound is also valid forM ×= ξ. That is, ξU and M are excellent predictors
with the only condition that the sequence is drawn from any computable proba-
bility distribution. Bound (9) shows that the total number of prediction errors
is small. Similarly to (3) one can show that

∑n
t=1|1−M(xt|x<t)|≤Km(x1:n)ln2,

where the monotone complexity Km(x):=min{�(p):U(p)=x∗} is defined as the
length of the shortest (nonhalting) program computing a string starting with x
[ZL70, LV97, Hut04].

If x1:∞ is a computable sequence, then Km(x1:∞) is finite, which implies
M(xt|x<t)→ 1 on every computable sequence. This means that if the environ-
ment is a computable sequence (whichsoever, e.g. 1∞ or the digits of π or e), after
having seen the first few digits, M correctly predicts the next digit with high
probability, i.e. it recognizes the structure of the sequence. In particular, observ-
ing an increasing number of black balls or black ravens or sunrises, M(1|1n)→1
(Km(1∞) =O(1)) becomes rapidly confident that future balls and ravens are
black and that the sun will rise tomorrow.

Universal is better than continuous M. Although we argued that incom-
putable environments μ can safely be ignored, one may be nevertheless uneasy
using Solomonoff’sM ×= ξU (11) if outperformed by a continuous mixture ξ (5) on
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suchμ∈M\MU , for instance ifM would fail to predict a Bernoulli(θ) sequence for
incomputable θ. Luckily this is not the case: Although νθ() and wθ can be incom-
putable, the studied classes M themselves, i.e. the two-argument function ν()(),
and the weight function w(), and hence ξ(), are typically computable (the integral
can be approximated to arbitrary precision). Hence M(x) ×= ξU (x)≥ 2−K(ξ)ξ(x)
by (10) and K(ξ) is often quite small. This implies for all μ

Dn(μ||M) ≡ E[ln μ(ω1:n)
M(ω1:n) ] = E[lnμ(ω1:n)

ξ(ω1:n) ]+E[ln ξ(ω1:n)
M(ω1:n) ]

+≤ Dn(μ||ξ)+K(ξ) ln 2

So any bound (6) for Dn(μ||ξ) is directly valid also for Dn(μ||M), save an ad-
ditive constant. That is, M is superior (or equal) to all computable mixture
predictors ξ based on any (continuous or discrete) model class M and weight
w(θ), even if environment μ is not computable. Furthermore, while for essentially
all parametric classes, Dn(μ||ξ)∼ d

2 lnn grows logarithmically in n for all (incl.
computable) μ∈M, Dn(μ||M)≤K(μ)ln2 is finite for computable μ. Bernardo’s
prior even implies a bound for M that is uniform (minimax) in θ∈Θ. Many other
priors based on reasonable principles (see Section 3 and [KW96]) and many other
computable probabilistic predictors ρ are argued for. The above actually shows
that M is superior to all of them.

6 Discussion

Critique and problems. In practice we often have extra information about the
problem at hand, which could and should be used to guide the forecasting. One
way is to explicate all our prior knowledge y and place it on an extra input tape
of our universal Turing machine U , which leads to the conditional complexity
K(·|y). We now assign “subjective” prior wU

ν|y = 2−K(ν|y) to environment ν,
which is large for those ν that are simple (have short description) relative to our
background knowledge y. Since K(μ|y) +≤K(μ), extra knowledge never misguides
(see (9)). Alternatively we could prefix our observation sequence x by y and use
M(yx) for prediction [Hut04].

Another critique concerns the dependence of K and M on U . Predictions for
short sequences x (shorter than typical compiler lengths) can be arbitrary. But
taking into account our (whole) scientific prior knowledge y, and predicting the
now long string yx leads to good (less sensitive to “reasonable” U) predictions
[Hut04].

Finally, K and M can serve as “gold standards” which practitioners should
aim at, but since they are only semi-computable, they have to be (crudely) ap-
proximated in practice. Levin complexity [LV97], Schmidhuber’s speed prior,
the minimal message and description length principles [Wal05], and off-the-shelf
compressors like Lempel-Ziv are such approximations, which have been success-
fully applied to a plethora of problems [CV05, Sch04].

Summary. We compared traditional Bayesian sequence prediction based on
continuous classes and prior densities to Solomonoff’s universal predictor M ,
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prior wU
ν , and class MU . We discussed: Convergence for generic class and prior,

the relative entropy bound for continuous classes, indifference/symmetry princi-
ples, the problem of zero p(oste)rior and confirmation of universal hypotheses,
reparametrization and regrouping invariance, the problem of old evidence and
updating, that M works even in non-computable environments, how to incorpo-
rate prior knowledge, the prediction of short sequences, the constant fudges in all
results and the U -dependence, M ’s incomputability and crude but practical ap-
proximations. In short, universal prediction solves or avoids or meliorates many
foundational and philosophical problems, but has to be compromised in practice.
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Abstract. U-shaped learning deals with a learner first having the cor-
rect hypothesis, then changing it to an incorrect hypothesis and then
relearning the correct hypothesis. This phenomenon has been observed
by psychologists in various studies of children development. In this sur-
vey talk, we will discuss some recent results regarding U-shaped learning
and related criteria.

1 Language Learning

A language is a set of sentences using words over an alphabet. Sentences and
words over an alphabet can be encoded into natural numbers. Thus, one may
model a language as a subset of N , the set of natural numbers. Consider the
following model of learning a language. A learner, over time, receives one by
one elements of the language, in arbitrary order. As the learner is receiving the
data, it conjectures a sequence of grammars, g0, g1, . . ., potentially describing the
input language. One may consider the learner to be successful, if this sequence
of conjectures eventually stabilizes to a grammar g (i.e., beyond certain point all
its conjectures are the grammar g), and this grammar g is a indeed a grammar
for the input language. In our model, we take the learner to be computable. This
criteria of success originated with Gold [16], and is refered to as TxtEx learning
(Txt stands for text, and Ex stands for explanatory learning). Note here that
the learner only gets data about what is in the language, and is not told about
what is not in the language. Thus, such kind of learning is often called learning
from positive data.

It is not so interesting to consider learning of just one language, as a learner
which just outputs the grammar for the single language, will ofcourse be able to
learn it. Thus, one usually considers learnability of a class L of languages, where
the learner is required to learn all the languages L in the class, from all possible
texts for the language L (here a text for L is presentation of all and only the
elements of L, in arbitrary order). This model of learning was first introduced
by Gold [16] and has then been explored by various researchers, see for example,
[12, 17, 18, 20, 22, 29].
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Since Gold, various authors have considered extensions and restrictions of the
above model. Some of the important extensions are as follows. We first consider
behaviourally correct learning in which one requires that the learner semanti-
cally converge to the correct hypothesis rather than the syntactic convergence as
required in explanatory learning. A learner is said to TxtBc-identify a language
L, iff given as input any text for L, the learner outputs an infinite sequence of
conjectures, all but finitely many of which are grammars for the language L. Bc
here stands for behaviourally correct learning. Thus, in the scenario described
above, for all but finitely many n, gn is a grammar for L. This model of learn-
ing was first considered for function learning by [4] and for language learning
by [11, 21].

Another model of learning, called vacillatory learning, can be described as
follows: not only are the conjectures of the learner almost always correct, but
eventually the conjectures come only from a finite set S. The learner is said to
TxtFexn-learn the language L if this set S is of size atmost n. The learner is
said to TxtFex∗-learn the language L, if we just require the set S to be finite.
This model of learning was introduced by [10]. Intuitively, we (eventually) allow
vacillation among at most n correct hypothesis of the language. It can be shown
that TxtEx = TxtFex1 ⊂ TxtFex2 . . . ⊂ TxtFex∗ ⊂ TxtBc.

We now provide the formal definition of above criteria of learning. We first
formally define the notion of sequence of data presented to the learner.

Definition 1. (a) A finite sequence σ is a mapping from an initial segment of
N into N ∪ {#}. An infinite sequence is a mapping from N into N ∪ {#}.

(b) The content of a finite or infinite sequence σ, denoted by content(σ), is
the set of natural numbers occurring in σ.

(c) The length of a sequence σ, denoted by |σ|, is the number of elements in
the domain of σ.

(d) An infinite sequence T is a text for L iff L = content(T ).
(e) T [n] denotes the initial segment of T of length n.
(f) For L ⊆ N , SEG(L) denotes the set of all finite sequences σ such that

content(σ) ⊆ L.

We now define the three criteria of learning presented above.
Let ϕ be an acceptable [24] programming system, and ϕi denote the function

computed by the i-th program in this system. Let Wi = domain(ϕi). Then Wi

can be viewed as the recursively enumerable language accepted/generated by
the i-th grammar in the ϕ-system.

Let E denote the class of all recursively enumerable languages.

Definition 2. [4, 10, 11, 12, 16, 21] (a) A language learning machine M is a (pos-
sibly partial) computable mapping from SEG(N) into N .

(b) M TxtEx-identifies a language L, iff for all texts T for L, there exists a
grammar e such that We = L and for all but finitely many n, M(T [n]) = e.

(c) M TxtBc-identifies a language L, iff for all texts T for L, for all but
finitely many n, WM(T [n]) = L.
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(d) For b ∈ N , M TxtFexb-identifies a language L, iff for all texts T for L,
there exists a set S of size at most b such that (i) for each i ∈ S, Wi = L and
(ii) for all but finitely many n, M(T [n]) ∈ S. If we only require the above set S
to be finite, then we say that M TxtFex∗-identifies L.

(e) For J ∈ {TxtEx,TxtBc,TxtFexb}, we say that M J-identifies a class L
of languages if it J-identifies each L ∈ L.

(f) For J ∈ {TxtEx,TxtBc,TxtFexb}, we define the criteria J = {L |
(∃M)[M J-identifies L]}.

It is known that TxtEx = TxtFex1 ⊂ TxtFex2 ⊂ · · · ⊂ TxtFex∗ ⊂ TxtBc
and E �∈ TxtBc.

2 U-Shaped Behaviour

A U-shaped learning behaviour is one in which a learner first learns a correct
grammar, then changes its mind to an incorrect grammar and then comes back to
a correct grammar. It other words, it involves learning, unlearning and relearn-
ing. This learning behaviour has been observed by cognitive and developmental
psychologists in various child development phenomena, such as language learn-
ing [6, 19, 26], understanding of temperature [26, 27], understanding of weight
conservation [5, 26], object permanence [5, 26] and face recognition [7]. For ex-
ample in language learning during the process of learning past tense of English
verbs, children first learn correct syntactic forms (call/called, go/went), then
undergo a period of overregularization in which they attach regular verb end-
ings such as ‘ed’ to the present tense forms even in the case of irregular verbs
(break/breaked, speak/speaked) and finally reach a final phase in which they
correctly handle both regular and irregular verbs. U-shaped learning behaviour
has figured so prominently in the so-called “Past Tense Debate” in cognitive
science that models of human learning are often judged on their capacity for
modeling the U-shaped learning phenomenon [19, 23, 28].

In this paper we will illustrate some of the recent results which have been ob-
tained regarding necessity of U-shaped learning (rather than just that it happens
in humans due to some peculiarity in evolution). We will also discuss some of the
related models of learning behaviour which are similar to U-shaped behaviour.
Most of the results of this paper are from [1, 2, 8, 9].

Before formally discussing U-shaped behaviour, let us first consider the related
notion of decisive learning. A learner is said to be decisive if it never returns to
an abandoned conjecture. Note that, using a padding function, one can always
make newer conjectures syntactically different from previous conjectures. Thus
what is more interesting is that we require the learner not to semantically return
to any abandoned hypothesis. Formally,

Definition 3. [20] (a) A learner M is said to be decisive on a text T iff there does
not exist m,n, t such that m < n < t, WM(T [m]) = WM(T [t]), but WM(T [m]) �=
WM(T [n]).

(b) A learner M is decisive on L, iff it is decisive on each text T for L.
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(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner DecJ-identifies L, iff for each
L ∈ L, M is decisive on L and J-identifies L.

Osherson, Stob and Weinstein [20] asked the natural question whether deci-
siveness is restrictive. Fulk, Jain and Osherson [15] answered this question for
behaviourally correct learning and Baliga, Case, Merkle and Stephan [1] for ex-
planatory learning. Actually, both results can be subsumed in one theorem which
then also covers the case of vacillatory learning as it is between explanatory and
behaviourally correct learning.

Theorem 4. [1] TxtEx �⊆ DecBc.

The class LEx which witnesses above theorem can be defined as follows.
Let K denote the halting problem. Let M0,M1, . . . be recursive enumeration

of all learning machines. Then one constructs K-recursive sequences e0, e1, . . .
and σ0, σ1, . . . such that

– for all x, σx is a finite sequence and {y | y < x} ⊆ content(σx) ⊂WMex (σx) ⊆
{y | y �= x};

– for all e, if Me TxtBc-identifies infinitely many cosingleton sets and does
not conjecture N on any input, then there is an x with ex = e.

Then, LEx = {content(σx) | x ∈ N} ∪ {WMex(σx) | x ∈ N}, can be used to show
Theorem 4.

Interestingly, if one considers second-time decisive, where a learner is not
allowed to return to a twice abandoned hypothesis, then it is not restrictive in
the context of explanatory learning. However, this notion is still restrictive for
vacillatory learning.

We now formally consider U-shaped behaviour of a learner.

Definition 5. [2] (a) A learner M is non U-shaped on a text T , iff there do not
exist m,n, t such that m < n < t, and WM(T [m]) = WM(T [t]) = content(T ), but
WM(T [n]) �= content(T ).

(b) A learner M is non U-shaped on a language L if it is non U-shaped on
each text for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M NUShJ-identifies L, iff for
each L ∈ L, it is non U-shaped on L and J-identifies L.

One can define the class NUShJ similarly. Intriguingly, unlike the decisive case,
non U-shaped learning does not hurt for explanatory learning.

Theorem 6. [1] NUShEx = TxtEx.

However, non U-shapedness does restrict behaviourally and vacillatory learning
as it is easy to see that the example LBc ∈ TxtBc −DecBc of Fulk, Jain and
Osherson [15] is also not NUShBc-identifiable.

Theorem 7. [1, 15] NUShBc ⊂ TxtBc.

Theorem 8. [8] Suppose b ∈ {1, 2, . . . , ∗}. Then NUShFexb ⊂ TxtFexb.
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In fact, non U-shaped requirement puts severe constraints on vacillatory learning
as [8] showed that NUShFex∗ = NUShTxtEx = TxtEx. Thus, any vacilla-
tory learner for learning the classes in TxtFexb−TxtEx, for b ≥ 2, necessarily
exhibits U-shaped behaviour!

An interesting question is whether non U-shaped requirement can be circum-
vented for classes in TxtFexb−TxtEx if one allows behaviourally correct learn-
ing. Here surprisingly one can circumvent non U-shaped behaviour for classes in
TxtFex2, but not necessarily for classes in TxtFex3!

Theorem 9. [8] TxtFex2 ⊆ NUShTxtBc.

Theorem 10. [8] TxtFex3 �⊆NUShTxtBc.

The class witnessing the above theorem can be constructed as follows. Let 〈·, ·〉
denote a computable 1–1 pairing function fromN×N to N . 〈·, ·〉 can be extended
to triple (and n-tuples) by using 〈x, y, z〉 = 〈x, 〈y, z〉〉.

Let Li,j = {〈i, j, k〉 | k ∈ N}, Ii,j = Wi∩Li,j and Ji,j = Wj ∩Li,j for i, j ∈ N .
Then,

L = {Li,j | i, j ∈ N} ∪ {Ii,j , Ji,j | i, j ∈ N ∧ Ii,j ⊂ Ji,j ∧ |Ii,j | <∞}

witnesses the separation in the above theorem.
On the other hand, it can be shown that there are classes which can be learnt

in non U-shaped manner in behaviourally correct model, but which cannot be
learned, even U-shapedly, in vacillatory learning model. An example is the class
of the graphs of those functions f for which ϕf(0) is defined at almost all inputs
and f is a total extension of ϕf(0).

Theorem 11. NUShBc �⊆ TxtFex∗.

3 Consistent Learning

Consistency requires that the hypothesis output at any stage by the learner
contains the input seen until then.

Definition 12. [3] (a) M is consistent on L, iff for all texts T for L, for all n,
content(T [n]) ⊆WM(T [n]).

(b) Suppose J ∈ {Ex,Fexb,Bc}. A learner M ConsJ-identifies L, iff M is
consistent on each L ∈ L, and it J-identifies L.

One may combine consistency also with the decisive or non U-shapedness re-
quirement considered earlier.

Intuitively consistency is a very natural expectation. However for explainatory
learning it is a severe restriction, as ConsEx ⊂ TxtEx. Interestingly, every class
in ConsEx can also be decisively learnt (while preserving consistency).

Theorem 13. [9] ConsEx = DecConsEx.
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On the other hand one can show that

Theorem 14. [9] DecEx �⊆ ConsEx.

Note that every behaviourally correct learner can be trivially made consistent,
by just patching the input. Thus,

Proposition 15. NUShBc ⊂ ConsBc.

As mentioned above, every behaviourally correct learner can be trivially made
consistent, by patching the input. However this patching may not preserve non U-
shapedness. A more involved construction can be used to show the following.

Theorem 16. [9] NUShBc = NUShConsBc.

4 Team Learning

Smith [25] studied learning by teams of machines. Intuitively, a team of machines
is successful in learning, if some predetermined number of members of the team
are successful in learning.

Definition 17. [25] A class L is in [m,n]TxtEx iff there is a team, M1,M2,
. . . ,Mn, of n machines such that for all L ∈ L, for every text T for L, at least
m of the n machines in the team converge on T to a grammar for L.

A non U-shaped learner does not make a mind change from a correct hypothesis
to an incorrect one. For learning by a team in non U-shaped manner, we require
such a property from each member of the team.

Definition 18. [8] A class L is in [m,n]NUShEx iff there are n machines such
that on any text for any language L in L

(a) at least m machines in the team converge to a grammar for L and
(b) no machine in the team makes a mind change from a grammar for L to a

grammar for some other language.

The following result characterizes vacillatory learning in terms of teams.

Theorem 19. [8] L ∈ TxtFexn iff there exists a team M1, . . . ,Mn of n ma-
chines such that

(a) M1, . . . ,Mn witness that L ∈ [1, n]NUShEx, and
(b) each of M1, . . . ,Mn converge on each text for every L ∈ L.

However note that TxtFexm ⊂ [1,m]NUShEx, and thus we cannot drop the
requirement (b) from above characterization. Here is another result:

Theorem 20. [8] For m ≥ 1, TxtFexm ⊆ [2,m+ 1]NUShEx.

It follows that [2, 3]NUShEx �⊆ NUShEx. For team learning, it can be shown
that non U-shapedness is a restriction.
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Theorem 21. [8] For m ≥ 2, [1,m]NUShEx ⊂ [1,m]TxtEx.

However, one can mitigate the above by considering larger teams as follows.

Theorem 22. [8] For m ≥ 1 and n ≥ m, [m,n]TxtEx ⊆ [m,m+n]NUShEx.

In particular, we have the following hierarchy for non U-shaped team learning.

Theorem 23. [8] For n ≥ 1, [1, n]NUShEx ⊂ [1, n+ 1]NUShEx.

5 Some Related Criteria

U-shaped learning can be seen as a special case of more general situation where
a learner abandons an hypothesis and comes back to it later. One may put differ-
ent requirements on which type of abandoned conjectures a machine may return
to. Non-U-shaped learning concerns the situation when the learner is not allowed
to return to abandoned correct conjectures. As a dual, one can consider the sit-
uation when a learner is not allowed to return to abandoned wrong conjectures.
When a learner returns to correct conjecture, one may view this as being dictated
by the requirements of learning the input – however, returning to wrong conjec-
tures seems to put in unnecessary inefficiency in the learner. Examples of this
kind of apparently inefficient behaviour have been documented by developmen-
tal psychologists in the context of infants’ face recognition. For example, it has
been shown that children exhibit an “inverted-U-shaped” (wrong-correct-wrong)
learning curve for recognition of inverted faces and an “N-shaped” (wrong-
correct-wrong-correct) learning curve for recognition of upright faces [13, 14].
Formally one can define non-return to wrong hypothesis as follows.

Definition 24. [9] (a) We say that M is decisive on wrong conjectures (ab-
breviated Wr-decisive) on text T , if there do not exist any m,n, t such that
m < n < t, and WM(T [m]) = WM(T [t]) �= content(T ) and WM(T [m]) �= WM(T [n]).

(b) We say that M is Wr-decisive on L if M is Wr-decisive on each text for L.
(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M WrDJ-identifies L, iff for each

L ∈ L, M is Wr-decisive on L and J-identifies L.

One can similarly define the class WrDJ.
Interestingly for explanatory learning Wr-decisive learning coincides with de-

cisive learning. Thus, if one could learn a class by not returning to wrong conjec-
tures, then one may as well learn the class without returning to any conjectures,
correct or wrong.

Theorem 25. [9] WrDEx = DecEx.

As a corollary we have that restricting return to wrong conjectures does hurt
explanatory learnability.

For vacillatory learning, non-return to wrong conjectures forces its collapse to
WrDEx = DecEx.
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Theorem 26. [9] WrDFex∗ = DecEx.

Thus, for both explanatory and vacillatory learning, allowing return to wrong con-
jectures is more crucial than allowing return to correct conjectures. On the other
hand for behaviourally correct learning, these two notions are incomparable!

Theorem 27. [9] WrDBc �⊆NUShBc and NUShBc �⊆WrDBc.

In fact, WrDBc does not even contain TxtEx.
As mentioned earlier, inverted-U-shaped learning (wrong-correct-wrong se-

quence of conjectures) has also attracted attention of from psychologists for face
recognition by children. This leads us to the following definition.

Definition 28. [9] (a) We say that M is non inverted-U-shaped on text T , if
there do not exist any m,n, t such that m < n < t, WM(T [m]) = WM(T [t]) �=
WM(T [n]) = content(T ).

(b) We say that M is non inverted-U-shaped on L if M is non inverted-U-
shaped on each text for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M NInvUJ-identifies L, iff for
each L ∈ L, M is non inverted-U-shaped on L and it J-identifies L.

Note that this definition does not rule out all wrong-correct-wrong sequences of
conjectures but only returning to an equivalent wrong hypothesis after having
conjectured a correct one. So every non U shaped learner is also non inverted-U-
shaped but the converse does not hold. For that reason, NInvUEx = TxtEx
follows directly from NUShEx = TxtEx. Furthermore, one can show that
non inverted-U-shaped learning is also not restrictive for behaviourally correct
learning which stands in contrast to the fact that non U-shaped behaviourally
correct learning is restrictive.

Theorem 29. [9] NInvUEx = TxtEx and NInvUBc = TxtBc.

On the other hand,

Theorem 30. [9] NInvUFex∗ = NInvUEx = TxtEx ⊂ TxtFex∗.

Overgeneralization is one of the crucial concerns in language learning from pos-
itive data: as a learner is not getting negative data, a learner may not be able
to restrict its conjecture after overgeneralizing, based on data available. So an
interesting variant to consider is whether one can avoid return to overgeneralized
conjectures. We consider two variants here.

Definition 31. [9] (a) We say that M is decisive on overinclusive conjectures
(abbreviated OI-decisive) on text T , if there do not exist m,n, t such that m <
n < t, WM(T [m]) = WM(T [t]) �⊆ content(T ) and WM(T [m]) �= WM(T [n]).

(b) We say that M is OI-decisive on L if M is OI-decisive on each text for L.
(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M OIDJ-identifies L, iff for each

L ∈ L, M is OI-decisive on L and it J-identifies L.
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Definition 32. [9] (a) We say that M is decisive on overgeneralizing conjectures
(abbreviated OG-decisive) on text T , if there do not exist m,n, t such that
m < n < t, WM(T [m]) = WM(T [t]) ⊃ content(T ) and WM(T [m]) �= WM(T [n]).

(b) We say that M is OG-decisive on L if M is OG-decisive on each text
for L.

(c) Suppose J ∈ {Ex,Fexb,Bc}. A learner M OGDJ-identifies L, iff for each
L ∈ L, M is OG-decisive on L and it J-identifies L.

For explanatory and behaviourally correct learning both the above forms are
not restrictive. For vacillatory learning, OIDFex∗ coincides with OIDEx and
is thus restrictive.

Theorem 33. [9] (a) OIDEx = TxtEx and OGDEx = TxtEx.
(b) OIDBc = TxtBc and OGDBc = TxtBc.
(c) OIDFex∗ = TxtEx ⊂ TxtFex∗.

While these results fit into what was already observed for the notion of non
inverted-U-shaped learning, forbidding return to overgeneralized hypothesis is a
bit different. It is restrictive for vacillatory learning but not as much as some of
the other constraints we have discussed above.

Theorem 34. [9] (a) TxtFex2 �⊆ OGDFex∗.
(b) For m ≥ 1, OGDFexm+1 �⊆ TxtFexm.
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Abstract. Overcomplete representations have been advocated because they 
allow a basis to better approximate the underlying statistical density of the data 
which can lead to representations that better capture the underlying structure in 
the data. The prior distributions for the coefficients of these models, however, 
are assumed to be fixed, not adaptive to the data, and hereby inaccurate. Here 
we describe a method for learning overcomplete representations with a 
generalized Gaussian prior, which can fit a broader range of statistical 
distributions by varying the value of the steepness parameter β . Using this 
distribution in overcomplete representations, empirical results were obtained for 
the blind source separation of more sources than mixtures, which show that the 
accuracy of the density estimation is improved. 

1   Introduction 

In signal processing and pattern classification, the performance of a method is often 
determined by how well it can model the underlying statistical density of the data. 
One recent example of this is the framework of overcomplete representations [1-4], 
which can also be viewed as a generalization of the technique of independent 
component analysis (ICA) [5-6] by allowing for additive noise and overcomplete 
codes, where the number of basis vectors are allowed to exceed the dimensionality of 
the input.  

In the present framework of overcomplete representations, however, the prior 
distribution, ( )P s , is designed to be some fixed sparse density, such as a Laplacian or 

Cauchy,  which will result in an inherent limitation on the data model’s degrees of 
freedom, i.e. increasing the number of basis vectors does not always increase the 
space of distributions that can be modeled. Therefore, the accuracy of the coefficient 
prior, ( )P s , becomes an important concern in the framework of overcomplete 

representations.  
In this paper, we present a flexible approach for improving the prior by modeling 

the coefficients densities, ( )P s , with a generalized Gaussian [7-8], which uses a 
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signal parameter β  to describe the deviation from normality and can capture a wide 

class of distributions from uniform to near-delta functions, including Gaussian, 
Laplacian, and other sub- and super-Gaussian densities, so that the form of prior 
distribution can be inferred from the data and hereby adaptive to the data. It finds out 
that the improved model of the prior distribution will lead to more accurate density 
estimation. 

2   Generalized Gaussian Distributions 

The generalized Gaussian distribution is used to model distributions that deviate from 
the standard normal. The general form of this distribution is 

( ) ( )
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s

P s c s
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and ( )xΓ  is a Gamma function, given by  

1

0
( ) ,    0x tx t e dt x

∞ − −Γ = >  (4) 

When zero mean and unit variance is assumed, that is 0μ = and 1σ = , the  

generalized Gaussian distribution then becomes a function which only has a single 
parameter β  

( ) ( ) ( )2 1
( ) expP s c s

ββ ω β β += −  (5) 

The parameter β  is a measure of steepness which controls the distribution’s 
deviation from the standard normal. By varying the value of β , the generalized 

Gaussian is possible to describe Gaussian, platykurtic and leptokurtic distributions. 
Fig. 1 shows examples of the generalized densities for various value of β , with zero 
mean and unit variance. 
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Fig. 1. Generalized Gaussian distributions for various values of β . When 0β = , the 

distribution is the standard normal. The larger the value of β  is, the steeper the distribution is. 

As β is close to infinite, the distribution becomes a near-delta function at zero; As β  is close 

to 1− , the distribution becomes uniform. 

3   Overcomplete Representations 

In an overcomplete basis, we assume that the observed n − dimensional data vector, 

[ ]1, ,
T

nx x=x , can be modeled as a linear superposition of basis vectors plus 

additive noise  

= +x As N  (6) 

where [ ]1, , mA A=A  is an n m×  matrix with m n> , that is the number of basis 

vectors exceeds the dimensionality of the input data.; [ ]1, ,
T

ms s=s  is a m − element 

vector of basis coefficients; and the variable N  represents Gaussian noise with 
variance 2

Nσ , which can not be well captured by the basis vectors.  

Due to the additive noise N  and the rectangular matrix A , the solution for s  

cannot be found by the pseudo-inverse +=s A x  any more, which is always adopted 
by ICA models. In the framework of overcomplete representations, therefore, we need 
to find a good basis vectors matrix A , as well as to infer for each data the proper 
state of the coefficients s . 

3.1   Inferring the Coefficients 

A probabilistic approach to inferring the coefficients is to choose the coefficients that 
maximize the natural logarithm of the posterior distribution of s  
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( )ˆ arg max ln ,P=s s A x
s

 
(7) 

The posterior distribution can be expressed via Bayes’ rule as 

( ) ( ) ( ),
,

( )

P P
P

P
=

x A s s A
s A x

x
 (8) 

Usually, the distribution ( )P s A does not depend on the basis matrix A  and thus 

( ) ( )P P=s A s . Meanwhile, the density ( )P x  is irrelative with ( ),P s A x  and 

hereby can be regarded as an invariable. Then, the posterior  

( ) ( ) ( ), ,P P P∝s A x x A s s  (9) 

Therefore, the so-called MAP estimator  

( ) ( )( )ˆ arg max ln , lnP P= +s x A s s
s

 (10) 

where the first term  

( ) ( )2

2

1
ln ,

2 N

P
σ

∝ −x A s x As  (11) 

and the second term  

( )
1

ln ln ( )
m

i
i

P P s
=

=s  (12) 

where the components of basis coefficients are assumed to be statistically 
independent. In previous work, the prior distribution over the basis coefficients is 

limited to be fixed, such as a Laplacian, ( ) ( )expi iP s sθ= − . In this paper, we will 

improve the prior more flexible, which can be adaptive to the data. And this will be 
discussed in the section 4. 

3.2   Learning the Basis Vectors 

The event with the biggest probability always happens firstly. In general, the 
objective for adapting the basis vectors, A  , is to maximize the average ln-likelihood 
probability of the data. Then, the maximum likelihood estimator of A  is defined as 

( )ˆ arg max ln P=A x A
A

 (13) 

where the brackets  mean “averaged over all data”. The calculation of the 
likelihood probability needs to make sampling from the full posterior distribution 

( ) ( ) ( ),P P P d=x A x A s s s  (14) 
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Unfortunately, the integration is almost intractable in practice. A simpler approach is 
to approximate the integral by evaluating the posterior at its maximum. Then, the so-
called ML estimator  

( )( )
( )

ˆ arg max max ln , ln ( )

ˆ  arg max ln ,

P P

P

≈ +

= =

A x A s s
A s

x A s s
A

 (15) 

The optimal Â  can be obtained by performing gradient ascent algorithm, that is 

( ) ( )
2

ˆln ,

ˆ

T

T T

N

P

σ
∂ = −

Δ ∝ = −
∂

=

x A s s x As s
A AA AA

A
s s

 (16) 

where the prefactor TAA  produces the natural gradient [9-10] extension, which will 
speed the convergence of learning. 

4   Improving ( )P s  

The prior ( )P s  in previous work is usually fixed and limited, not adaptive to the data. 

Here we present a method to update the prior density during learning. 

4.1   Estimating β  

In the framework of overcomplete representations, zero mean and unit variance is 
always assumed. The prior ( )iP s  hereby can be assumed to be a generalized 

Gaussian distribution as the form in the equation (5) with parameter iβ , which will be 

inferred from the sample values of is , not simply fixed before learning.  

Given [ ]1 , ,
T

i i lis s s= , the optimal estimator ˆ
iβ may be the one which maximizes 

the ln-likelihood function of iβ .  

( )( )ˆ arg maxi i

i

Lβ β
β

=  (17) 

where  

( ) ( ) ( ) ( )
2 (1 )

1
ln ln

il

i i i i i ji
j

L P s l c s
β

β β ω β β
+

=
= = ⋅ −  (18) 

The learning rule for iβ  may be obtained via gradient ascent on ( )iL β  

( )

( )

' '

2 (1 ) 2 (1 )'
2

1 1

3 1
4 1

2         ln
(1 )

i i

i
i

ii

l l

ji ji ji
j j i

L u vl
u v

w s w s s
β β

β
β ββ

β
+ +

= =

∂
Δ = = ⋅ − −

+∂

− ⋅ + ⋅ ⋅ ⋅
+

 (19) 
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Fig. 2. Ln-likelihood functions of β  for various test data with zero mean and unit variance. (a) 

and (b) are the histograms of two random data (5000 samples in each set) drawn from two 
different generalized Gaussian distributions,  with 0β =  and 4β =  respectively. (c) and (d) 

show the corresponding ln-likelihood functions of β . The maximum estimators of these two 

ln-likelihood functions are ˆ 0.05β ≈  (for (a)) and ˆ 4.07β ≈ (for (b)). 

where 
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Finally, the updating rule for iβ  can be described with 

( 1) ( ) ( )
ii i ik k kββ β η β+ = − ⋅ Δ  (24) 

where 
iβη  is the learning rate for iβ  and can be an positive invariable. 

Fig. 2 shows examples of the ln-likelihood functions of β  for two different data 

vectors and their maximum ln-likelihood estimators. 

4.2   Application to Overcomplete Representations 

Since the prior ( )iP s  is modeled with the flexible generalized Gaussian density 

( )ˆ
i i iP s β β= , the equation (12) can be substituted by  

( ) ( )
1

ˆln ln
m

i i i
i

P P s β β
=

= =s  (25) 

The basis coefficients s can be computed by performing gradient ascent on 

( ) ( )ln , lnP P+x A s s . The learning rule of is  is then 

( ) ( ) ( ) ( ) ( )1 1
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sign
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i i i i
iN
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A
s s c s
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where  iA  is the i th  column of the basis matrix A , and ( )sign is  is the signum 

function of is . Consequently, the updating rule for is  can be described with 

( 1) ( ) ( )
ii i s is k s k s kη+ = − ⋅ Δ  (27) 

where 
isη  is the learning rate for is  and can be an positive invariable. 

To make a summary, the process of learning is as follows. 

Step1. Let 1t =  and ( )( ) rand ,t n m=A .  

Step2. Let ( ) ( )Tfake t t=s A x ; and estimate the optimal ˆ( )tβ  according to the 

gradient ascent algorithm described in section 4.1, given ( )fake ts . 

Step3. Estimate the optimal ˆ( )ts  according to the gradient ascent algorithm 

described in section 4.2, given ( )tA  and ˆ( )tβ ; and then let ˆ( ) ( )t t=s s . 

Step4. Let 1t t= + ; and estimate the optimal ˆ ( )tA  according to the gradient ascent 

algorithm described in section 3.2, given ( 1)t −s ; and then let ˆ( ) ( )t t=A A . 

Step5. Stop or go to Step2. 
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5   Experimental Results 

To demonstrate the performance of the learning algorithm described above, we 
generated three random data drawn form generalized Gaussian distributions with 
various β .  The values of β were designed to be 1 , 2  and 3 , resulting in super-

Gaussian densities. We mixed the three data vectors into two mixtures 

[ ] [ ]1 2 1 2 3

0 0.7071 0.7071
,  ,  ,  

1 0.7071 0.7071
T T

x x s s s
−

=
− −

 (28) 

which are shown in Fig.3 as the 2-D scatter plot.  
The task here was to learn the three source vectors, their β  parameters, and the 

three basis vectors, given only the two mixtures. The algorithm always converged 
after 100 to150 iterations depending on the initial conditions. The black bars in Fig.3 
indicate the true (a), initial (b) and estimated (c) values of basis vectors, respectively.  

Table 1 shows the inferred values for parameters β , the Kull-Leiber distance 

between the inferred density and actual source distribution, and the kurtosis of the 
inferred basis coefficients.   
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Fig. 3. An example of separation of three source vectors form two mixtures. The 2-D scatter 
plots show the three directions of the mixtures. The black bars in (a) indicate the true value of 
the basis vectors, those in (b) indicate the randomly initialized values, and those in (c) indicate 
the learned basis vectors after convergence. The learned basis vectors may be permuted and 
have a different sign. 
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Table 1. Estimated β and the KL-divergence 

 1s  2s  3s  

estimated β  1.01 1.97 2.89 
KL-distance 0.0321 0.0384 0.0520 
kurtosis 2.4212 5.4183 8.6903 

6   Discussion 

By modeling the prior with generalized Gaussian distributions, we proposed a flexible 
approach for capturing the underlying statistical structures of the mixed data, in which 
both the prior and the basis vectors can be inferred from the data. It differs from the 
previous framework of overcomplete representations, where the underlying density is 
described by a fixed super-Gaussian distribution.  

The algorithm presented here can also be performed on natural images for 
obtaining image overcomplete and sparse representations [11-13]. Compared to the 
standard sparse codings, this method will improve the coding efficiency, for the 
reason of more accurate estimates of underlying density of natural images. Another 
flexible approach proposed recently is to using a mixture of Gaussian prior [14], 
which also leads to a good performance.  

Furthermore, without sparseness being imposed, the algorithm can be used to infer 
a wide class of distributions, and thus can be applied to the situations where multiple 
classes exist with unknown source densities [15]. 
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Abstract. We survey the fastest known algorithms for learning various
expressive classes of Boolean functions in the Probably Approximately
Correct (PAC) learning model.

1 Introduction

Computational learning theory is the study of the inherent abilities and lim-
itations of algorithms that learn from data. A broad goal of the field is to
design computationally efficient algorithms that can learn Boolean functions
f : {0, 1}n → {0, 1}. A general framework within which this question is often
addressed is roughly the following:

1. There is a fixed class C of possible target functions over {0, 1}n which is
a priori known to the learning algorithm. (Such function classes are often
referred to as concept classes, and the functions in such classes are referred
to as concepts.)

2. The learning algorithm is given some form of access to information about
the unknown target concept c ∈ C.

3. At the end of its execution, the learning algorithm outputs a hypothesis
h : {0, 1}n → {0, 1}, which ideally should be equivalent or close to c.

Different ways of instantiating (2) and (3) above – what form of access to c is
the learner given? what is required of the hypothesis function h? etc. – give rise
to different learning models. Within a given learning model, different choices of
the Boolean function class C (i.e. different ways of instantiating (1) above) give
rise to different learning problems such as the problem of learning an unknown
conjunction, learning an unknown linear threshold function, an unknown decision
tree, and so on.

In this brief survey we will focus exclusively on the widely studied Probably
Approximately Correct (PAC) learning model introduced by Valiant [39]. In this
learning model, which we define precisely in Section 2.1, the learning algorithm
is only given access to independent random examples labelled according to c, i.e.
access to input-output pairs (x, c(x)) where each x is independently drawn from
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the same unknown probability distribution. Thus the learning algorithm has no
control over the choice of examples used for learning. Such a model may be
viewed as a good first-order approximation of commonly encountered scenarios
in machine learning where one must learn from a given training set of examples
generated according to some unknown random process.

(We note that a wide range of models exist in which the learning algorithm
has other forms of access to the target function; in particular several standard
models allow the learner to make black-box queries to the target function, which
are often known as membership queries. Many powerful and elegant learning
algorithms are known in various models that permit membership queries, see
e.g. [1, 4, 10, 19, 28], but we will not discuss this work here. A rich body of
results have also been obtained for the uniform-distribution variant of the PAC
learning model, in which the learner need only succeed when given uniform
random examples from {0, 1}n; see e.g. [40, 29, 12, 20, 34] for some representative
work in this setting. Finally, we note that there also exist well-motivated and
well-studied learning models in which the learning algorithm only has some more
limited form of access to c than random labeled examples, see e.g. [5, 21].)

There are well-known polynomial-time PAC learning algorithms for concept
classes consisting of simple functions such as conjunctions and disjunctions [39],
decision lists [35], parity functions [15, 18], and halfspaces [9]. We give a con-
cise overview of the current state of the art for learning richer concept classes
consisting of more expressive Boolean functions such as decision trees, Disjunc-
tive Normal Form (DNF) formulas, intersections of halfspaces, and various re-
stricted classes of Boolean formulas. For each of these “rich” concept classes true
polynomial-time algorithms are not (yet) known, but as we describe below, it
is possible to give provable guarantees which improve substantially over naive
exponential runtime bounds.

One perhaps surprising point which emerges from our survey is that a single lin-
ear programmingbased algorithm for learning polynomial threshold functions gives
the current state-of-the-art results for learning a wide range of rich concept classes,
including all those we will discuss in Section 3. We close the survey in Section 4
with a brief description of a very different approach to obtaining PAC learning al-
gorithms, based on linear algebra rather than linear programming, which is also
of interest. While to date this linear algebraic approach has not yielded as many
results for learning rich concept classes as the polynomial threshold function ap-
proach, we feel that it presents an interesting direction for future study.

Throughout the survey we highlight various open questions, with an emphasis
on problems where progress both would be of interest and (in the view of the
author) would seem most likely to be feasible.

2 Distribution-Independent Learning

2.1 The Learning Model

In an influential 1984 paper Valiant introduced the Probably Approximately Cor-
rect (PAC) model of learning Boolean functions from random examples [39].
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(See the book [22] for an excellent and detailed introduction to the model.) In
the PAC model a learning algorithm has access to an example oracle EX(c,D)
which, when queried, provides a labeled example (x, c(x)) where x is drawn
from a fixed but unknown distribution D over {0, 1}n and c ∈ C is the un-
known target concept which the algorithm is trying to learn. Given Boolean
functions h, c on {0, 1}n, we say that h is an ε-approximator for c under D if
Prx∈D[h(x) = c(x)] ≥ 1− ε. The goal of a PAC learning algorithm is to output a
hypothesis h which is an ε-approximator for the unknown target concept c with
high probability.

More precisely, an algorithm A is a PAC learning algorithm for concept class
C if the following condition holds: for any c ∈ C, any distribution D on {0, 1}n,
and any 0 < ε < 1

2 , 0 < δ < 1, if A is given ε, δ as input and has access to
EX(c,D), then A outputs (a representation of) some h : {0, 1}n → {0, 1} which
satisfies Prx∈D[h(x) �= c(x)] ≤ ε with probability at least 1 − δ. We say that
A PAC learns C in time t = t(n, ε, δ, s) if A runs for at most t time steps and
outputs a hypothesis h which can be evaluated on any point x ∈ {0, 1}n in time
t; here s =size(c) is a measure of the “size” of the target concept c ∈ C. Note
that no restriction is put on the form of the hypothesis h other than that it be
efficiently evaluatable. In particular, h need not belong to the concept class C
(i.e. we do not restrict ourselves to proper learning algorithms).

It is well known (see e.g. [22]) that the runtime dependence of a PAC learning
algorithm on δ can always be made logarithmic in 1

δ . Moreover, for all the results
we discuss the runtime dependence on ε is polynomial in1

ε . Thus throughout this
paper we discuss the running time of PAC learning algorithms as functions only
of n and (when appropriate) the size parameter s.

2.2 The Main Technique: Polynomial Threshold Functions

A polynomial threshold function is defined by a polynomial p(x1, . . . , xn) with
real coefficients. The output of the polynomial threshold function on input x ∈
{0, 1}n is 1 if p(x1, . . . , xn) ≥ 0 and is 0 otherwise. The degree of a polynomial
threshold function is simply the degree of the polynomial p. A linear threshold
function or halfspace is a polynomial threshold function of degree 1. Since we
will only be concerned with the input space {0, 1}n, we may without loss of
generality only consider polynomial threshold functions which correspond to
multilinear polynomials.

It is well known that there are poly(n)-time PAC learning algorithms for
the concept class of linear threshold functions over {0, 1}n; this follows from
information-theoretic sample complexity arguments [8, 9] combined with the ex-
istence of polynomial-time algorithms for linear programming [23]. As various
authors have noted [7, 26], such algorithms can be run over an expanded feature
space of N =

∑d
i=1

(
n
d

)
monomials of degree at most d to learn degree-d poly-

nomial threshold functions in time poly(N). (This approach is closely related to
using a Support Vector Machine with a degree-d polynomial kernel, see e.g. [36].)
We thus have the following:
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Fact 1. Let C be a class of functions each of which can be expressed as an degree-
d polynomial threshold function over {0, 1}n. Then there is a poly(N)-time PAC
learning algorithm for C, where N =

∑d
i=1

(
n
i

)
≤ ( en

d )d.

Thus, in order to get an upper bound on the runtime required to learn a concept
class C, it is enough to bound the degree of polynomial threshold functions which
represent the concepts in C. This approach has proved quite powerful as we now
describe.

3 Known Results on Learning Rich Boolean Function
Classes

3.1 Decision Trees

A Boolean decision tree T is a rooted binary tree in which each internal node
has two ordered children and is labeled with a variable, and each leaf is labeled
with a bit b ∈ {−1,+1}. The size of a decision tree is the number of leaves. A
decision tree T computes a Boolean function f : {0, 1}n → {0, 1} in the obvious
way: on input x, if variable xi is at the root of T we go to either the left or
right subtree depending on whether xi is 0 or 1. We continue in this way until
reaching a bit leaf; the value of this bit is f(x).

Algorithms for learning decision trees have received much attention both from
applied and theoretical perspectives. Ehrenfeucht and Haussler [14] gave a re-
cursive algorithm which learns any size-s decision tree in nO(log s) time; while
no faster algorithms are known, various alternate algorithms with the same
quasipolynomial runtime have since been given. Blum [6] showed that every
size-s decision tree is equivalent to some log(s)-decision list. (An r-decision list
is a sequence of nested “if-then” rules where each “if” condition is a conjunction
of at most r literals and each “then” statement is of the form “output bit b.”)
Since r-decision lists are PAC learnable in nO(r) time [35], this gives an equally
efficient alternative algorithm to [14].

Blum’s proof is easily seen to establish that any size-s decision tree is com-
puted by a log(s)-degree polynomial threshold function. Thus for decision trees
we may use Fact 1 to obtain the fastest known algorithm, but as described above
other equally fast algorithms are also known. However, for each of the concept
classes discussed below in Sections 3.2 through 3.3, the Fact 1 approach is the
only known way to achieve the current fastest runtimes.

3.2 DNF Formulas

A disjunctive normal form formula, or DNF, is a disjunction T1 ∨ · · · ∨ Ts of
conjunctions of Boolean literals. An s-term DNF is one which has at most s
conjunctions (also known as terms). Learning s-term DNF formulas in time
poly(n, s) is a longstanding open question which goes back to Valiant’s inception
of the PAC learning model.

The first subexponential time algorithm for learning DNF was due to Bshouty
[11] and learns any s-term DNF over n variables in time 2O((n log s)1/2 log3/2 n). At
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the heart of Bshouty’s algorithm is a structural result which shows that that any
s-term DNF can be expressed as an O((n log n log s)1/2)-decision list; together
with the aforementioned algorithm of [35] this gives the result. Subsequently
Tarui and Tsukiji [38] gave a different algorithm for learning DNF with a sim-
ilar runtime bound. Their algorithm adapted the machinery of “approximate
inclusion/exclusion” developed by Linial and Nisan [30] in combination with
hypothesis boosting [16] and learns s-term DNF in time 2O(n1/2 log n log s).

In [26], Klivans and Servedio showed that any DNF formula with s terms
can be expressed as a polynomial threshold function of degree O(n1/3 log s). By
Fact 1 this yields an algorithm for learning s-term DNF in time 2O(n1/3 log n log s),
which is the fastest known time bound.

Several lower bounds on polynomial threshold function degree for DNFs are
known which complement the O(n1/3 log s) upper bound of [26]. A well-known
theorem of Minsky and Papert [31] shows that the “one-in-a-box” function
(which is equivalent to an n1/3-term DNF on n variables) requires polynomial
threshold function degree Ω(n1/3). Minsky and Papert also proved that the par-
ity function on k variables required polynomial threshold function degree at least
k; since s-term DNF formulas can compute the parity function on log s variables,
this gives an Ω(log s) lower bound for s-term DNF as well. These known results
motivate:

Question 1. Can we close the remaining gap between the O(n1/3 log s) upper
bound and the max{n1/3, log s} lower bound on polynomial threshold function
degree for s-term DNF?

Note that for decision trees no gap at all exists; Blum’s approach gives a (log s)
degree upper bound for size-s decision trees, and the parity function shows that
this is tight.

3.3 Boolean Formulas

Known results on learning Boolean formulas of depth greater than two are quite
limited. O’Donnell and Servedio [33] have shown that any unbounded fanin
Boolean AND/OR/NOT formula of depth d and size (number of leaves) s is
computed by a polynomial threshold function of degree

√
s(log s)O(d). By Fact 1

this gives a 2Õ(n1/2+ε) time PAC learning algorithm for linear-size Boolean for-
mulas of depth o( log n

log log n ).
It would be very interesting to weaken the dependence on either size or depth

in the results of [33]:

Question 2. Does every AND/OR/NOT formula of size s have a polynomial
threshold function of degree O(

√
s), independent of its depth?

An O(
√
s) degree bound would be the best possible since size-s formulas can

express the parity function on
√
s variables.

Question 3. Does every depth-3 AND/OR/NOT formula of size poly(n) have a
polynomial threshold function of degree o(n)?
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The strongest degree lower bound known for poly(n)-size formulas of small
depth is Ω(n1/3(log n)2(d−2)/3) for formulas of depth d ≥ 3 [33]. A lower bound of
Ω(n2/5) for an explicit linear-size, depth-3 formula is conjectured in [33]. Some
related results were proved by Krause and Pudlak [27], who gave an explicit
depth-3 formula that requires any polynomial threshold function to have 2nΩ(1)

many monomials.
We note that there is some reason to believe that the class of arbitrary

constant-depth, polynomial-size AND/OR/NOT Boolean formulas (e.g. the class
of AC0 circuits) is not PAC learnable in poly(n) time. Kharitonov [24] has shown
that an n(log n)o(d)

-time algorithm for learning poly(n)-size, depth-d Boolean for-
mulas for sufficiently large constant d would contradict a strong but plausible
cryptographic assumption about the hardness of integer factorization (essentially
the assumption is that factoring n-bit integers is 2nε

-hard in the average case
for some absolute constant ε > 0; see [24] for details).

3.4 Intersections of Halfspaces

In addition to the concept classes of Boolean formulas discussed in the previous
sections, there is considerable interest in studying the learnability of various ge-
ometrically defined concept classes. As noted in Section 2.2, efficient algorithms
are known which can learn a single halfspace over {0, 1}n. Algorithms for learn-
ing a single halfspace are at the heart of some of the most widely used and
successful techniques in machine learning such as support vector machines [36]
and boosting algorithms [16, 17]. Thus it is of great interest to obtain such algo-
rithms for learning richer functions defined in terms of several halfspaces, such
as intersections of two or more halfspaces.

A halfspace f has weight W if it can be expressed as f(x) = sgn(w1x1 + · · · +
wnxn − θ) where each wi is an integer and

∑n
i=1 |wi| ≤ W. Well known results

of Muroga et al. [32] show that any halfspace over {0, 1}n is equivalent to some
halfspace of weight 2O(n log n), and H̊astad [37] has exhibited a halfspace which has
weight 2Ω(n log n).All of the current fastest algorithms for learning intersections of
halfspaces have a significant runtime dependence on the weightW .

Using techniques of Beigel et al. [3], Klivans et al. [25] showed that any intersec-
tion of k halfspaces of weightW is computed by a polynomial threshold function of
degreeO(k log k logW ). By Fact 1, this gives a quasipolynomial-time (npolylog(n))
algorithm for learning an intersection of polylog(n) many polynomial-weight half-
spaces. Since the “one-in-a-box” function on k3 variables can be expressed as an
intersection of k halfspaces each of weightW = k2, we have that forW = k2 there
is an Ω(k) degree lower bound which nearly matches the O(k log k logw) upper
bound. It is also shown in [25] that any intersection of k halfspaces of weight W
can be expressed as a polynomial threshold function of degree O(

√
W log k); this

gives a stronger bound in cases where W is small and k is large.
More generally, [25] showed that any Boolean function of k halfspaces of weight

W is computed by a polynomial threshold function of degree O(k2 logW ). It
follows that not just intersections, but in fact any Boolean function of polylog(n)
many polynomial-weight halfspaces can be learned in quasipolynomial time.
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While the above results are useful for intersections of halfspaces whose weights
are not too large, in the general case they do not give a nontrivial bound even
for an intersection of two halfspaces. A major open question is:

Question 4. Is there a 2o(n) time algorithm which can PAC learn the intersection
of two arbitrary halfspaces over {0, 1}n?

An affirmative answer to the above question would immediately follow from an
affirmative answer to the following:

Question 5. Can every intersection of two halfspaces over {0, 1}n be computed
by a polynomial threshold function of degree o(n)?

The strongest known lower bound on polynomial threshold function degree for
intersections of two halfspaces is quite weak; in [33] it is shown that an in-
tersection of two majority functions (which are weight-n halfspaces) requires
polynomial threshold function degree Ω( log n

log log n ). Thus there is an exponential
gap in our current knowledge of the answer to Question 5.

4 A Different Direction: Linear Algebraic Approaches

We have seen that algorithms for learning polynomial threshold functions have
broad utility in computational learning theory, yielding state-of-the-art PAC
learning results for a wide range of rich concept classes. We note also that, as is
well known, simple concept classes such as conjunctions, disjunctions, r-out-of-k
threshold functions and decision lists can all be learned in poly(n) time using
algorithms to learn linear threshold functions. Thus it is reasonable to ask at this
point whether there are any natural concept classes over {0, 1}n which require
other techniques.

The answer is yes. The parity function defined by a set of variables S ⊆
{x1, . . . , xn} is the Boolean function which outputs

∑
xi∈S xi mod 2. Polyno-

mial threshold function based learning techniques are poorly suited for learning
the concept class C consisting of all 2n parity functions1; however, there are
simple poly(n)-time learning algorithms for this class based on linear algebra
[18, 15]. (Each example which is labeled according to a parity function gives
a linear equation mod 2, and the system of linear equations obtained from a
labeled sample can be solved efficiently to obtain a consistent parity hypothesis.
Standard arguments [8] can be used to show that any parity function hypothesis
which is consistent with a sufficiently large sample is probably approximately
correct.)

As was the case with linear threshold learning algorithms, it is possible to
run algorithms for learning parity functions over an expanded feature space of
all degree-d monomials. Since multiplication corresponds to AND over GF2 and
addition corresponds to parity, we have the following analogue of Fact 1:
1 Indeed, the parity function on all n variables and its negation are the only n-variable

Boolean functions which require every polynomial threshold function representation
to have degree as large as n [2].



On PAC Learning Algorithms for Rich Boolean Function Classes 449

Fact 2. Let C be a class of functions each of which can be expressed as an degree-
d polynomial over GF2. Then there is a poly(N)-time PAC learning algorithm
for C, where N =

∑d
i=1

(
n
i

)
≤ ( en

d )d.

Can Fact 2 can be used, either by itself or in conjunction with other techniques,
to obtain interesting algorithms for learning rich Boolean function classes? One
such result has been achieved by Bshouty et al. [13]. They showed that the
class of strict width two branching programs (branching programs of width two
with exactly two sinks) are PAC learnable in polynomial time, using an algo-
rithm which combines parity learning with a decision list learning technique of
Rivest [35]. The algorithm of [13] is of special interest because it provides an
example where general linear threshold function learning algorithms do not sup-
plant algorithms designed for restricted subclasses of linear threshold functions
(in this case decision lists); while linear threshold function learning algorithms
can learn decision lists, they cannot be combined with the parity learning com-
ponent as required to obtain the results of [13]. Inspection shows that in fact it
is possible to combine the more powerful approach of Ehrenfeucht and Haussler
[14] for learning decision trees (a richer class of functions than decision lists)
with parity (or more generally, GF2 polynomial) learning algorithms in a similar
way to [13]. Exploring the power of such an approach is an interesting direction
for future work.
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Abstract. We consider the problem of on-line prediction of real-valued
labels, assumed bounded in absolute value by a known constant, of new
objects from known labeled objects. The prediction algorithm’s perfor-
mance is measured by the squared deviation of the predictions from the
actual labels. No stochastic assumptions are made about the way the la-
bels and objects are generated. Instead, we are given a benchmark class
of prediction rules some of which are hoped to produce good predictions.
We show that for a wide range of infinite-dimensional benchmark classes
one can construct a prediction algorithm whose cumulative loss over the
first N examples does not exceed the cumulative loss of any prediction
rule in the class plus O(

√
N); the main differences from the known results

are that we do not impose any upper bound on the norm of the consid-
ered prediction rules and that we achieve an optimal leading term in the
excess loss of our algorithm. If the benchmark class is “universal” (dense
in the class of continuous functions on each compact set), this provides
an on-line non-stochastic analogue for universally consistent prediction
in non-parametric statistics. We use two proof techniques: one is based
on the Aggregating Algorithm and the other on the recently developed
method of defensive forecasting.

1 Introduction

The traditional, and still dominant, approach to the problem of regression is
statistical: the objects and their real-valued labels are assumed to be generated
independently from the same probability distribution, and a typical goal is to find
a prediction rule with a small expected loss. A newer approach is “competitive
on-line regression”, in which the goal is to perform almost as well as the best rules
in a given benchmark class of prediction rules. (See, e.g., [18], §1, or [31], §4, for
reviews of some relevant literature.) Unlike the statistical theory of regression,
no stochastic assumptions are made about the data.

A great impetus for the development of the statistical theories of regression
and pattern recognition (see, e.g., [14] and, especially, [6], Preface and Chapter
1) has been Stone’s 1977 result [28] that there exists a “universally consistent”

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 452–463, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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prediction algorithm: an algorithm that asymptotically achieves, with probabil-
ity one (or high probability), the best possible expected loss. The property of
universal consistency is very attractive, but it is asymptotic and does not tell us
anything about the algorithm’s behavior on finite data sequences. Stone’s result
provided a direction in which more practicable results have been sought.

Surprisingly, it appears that universal consistency has not been even defined
in competitive on-line learning theory. We propose such a definition in §2; in §4
we will see how close papers such as [5, 4] came to constructing universally con-
sistent algorithms. However, our Corollary 1 in §2 appears to be the first explicit
statement about the existence of the latter. (Fudenberg and Levine [11] use the
expression “universal consistency” in a sense very different from Stone’s, and
their “universal consistency” is much weaker than ours; in fact, their definition
of “conditional universal consistency” is a step toward our definition.)

As in the case of statistical regression, universal consistency is only a mini-
mal requirement; one also wants good rates of convergence, ideally not involving
unknown constants, for universal benchmark classes. The notion of universality
is discussed, formally and informally, at the end of §2 and in §3; we will argue
that universality for benchmark classes is a matter of degree. Our main results,
Theorems 1–3, are stated in §2. They describe properties of universality of our
prediction algorithms. In §3 we consider an important benchmark class of predic-
tion rules, and in §4 we compare our results to some related ones in the literature.
All proofs and explicit descriptions of some of our prediction algorithms can be
found in [35].

To establish our results we use two very different proof techniques: the old one
introduced in [30, 31] and the one developed in [32]; we are especially interested in
the latter since it appears much more versatile, and competitive on-line regression
is a good testing ground to develop it. This technique has its origin in Levin’s [20]
(for details, see also [12]) discovery of “neutral measures”, probability measures
with respect to which all data sequences are random in the sense of Kolmogorov’s
theory of randomness. Foster and Vohra [10], independently of Levin’s work,
demonstrated the existence of a randomized forecasting strategy that produces
asymptotically well-calibrated forecasts with probability one. Foster and Vohra’s
result was translated into the game-theoretic foundations of probability (see, e.g.,
[25]) in [36]. In June 2004 Akimichi Takemura further developed the method of
[36] showing that for any continuous game-theoretic law of probability there
exists a forecasting strategy that perfectly satisfies this law of probability; such
a strategy was called a “defensive forecasting strategy” in [37]. An important
special case of defensive forecasting is where the law of probability asserts good
calibration and resolution of the forecasts; it was explored in [33], where, in
particular, a non-asymptotic version of Foster and Vohra’s result was proved. In
[32] it was shown that the corresponding forecasting strategies lead to a small
cumulative loss in a fairly wide class of decision protocols. That paper only
dealt with the case of binary classification, and in this paper similar results are
proved for on-line regression. As the loss function we use square-loss, which leads
to significant simplifications as compared with [32]. (Despite [10] being the main
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source of our approach, our proof technique appears to have lost all connections
with that paper and papers, such as [19, 22, 23, 16], further developing it.)

Our results are closely related to those of Cesa-Bianchi et al. [5] and Auer et
al. [4], but we postpone a detailed discussion to §4.

2 Main Results

The simple perfect-information protocol of this paper is:

FOR n = 1, 2, . . . :
Reality announces xn ∈ X.
Predictor announces μn ∈ IR.
Reality announces yn ∈ [−Y, Y ].

END FOR.

At the beginning of each round n Predictor is shown an object xn whose label yn

is to be predicted. The set of a priori possible objects is called the object space
and denoted X; of course, we always assume X �= ∅. After Predictor announces
his prediction μn for the object’s label he is shown the actual label yn ∈ IR.
We assume known an a priori upper bound Y ∈ (0,∞) on the absolute values
of the labels yn. We will sometimes refer to pairs (xn, yn) as examples. By an
on-line prediction algorithm we mean a strategy for Predictor in this protocol;
in this paper, however, we are not concerned with computational complexity of
our prediction algorithms.

Predictor’s loss on round n is measured by (yn − μn)2, and so his cumulative
loss after N rounds of the game is

∑N
n=1(yn−μn)2. His goal is “universal predic-

tion”, in the following, rather vague, sense. If D : X→ IR is a “prediction rule”
(i.e., the function D is interpreted as a rule for choosing the prediction based on
the current object), he would like to have

N∑
n=1

(yn − μn)2 �
N∑

n=1

(yn −D(xn))2 (1)

(� meaning “not much greater than”) provided D is not “too complex”. Tech-
nically, we will be interested in the case where the prediction rule D is assumed
to belong to a large reproducing kernel Hilbert space (to be defined shortly) and
the complexity of D is measured by its norm.

As already mentioned, the results of this section are closely related to several
results in [5] and [4]; see §4.

Reproducing Kernel Hilbert Spaces
A reproducing kernel Hilbert space (RKHS) on a set Z (such as Z = X) is a
Hilbert space F of real-valued functions on Z such that the evaluation functional
f ∈ F → f(z) is continuous for each z ∈ Z. We will use the notation cF (z) for
the norm of this functional:

cF (z) := sup
f :‖f‖F≤1

|f(z)| .
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Let
cF := sup

z∈Z
cF (z); (2)

we will be interested in the case cF <∞.
Examples of RKHS will be given in §3.

Main Theorems
Suppose Predictor’s goal is to compete with prediction rules D from an RKHS
F on X. The first three theorems stated in this subsection bound the difference
between the left-hand and right-hand sides of (1); this bound will be called the
regret term. The simplest regret term, given in the first theorem, is in terms of
cF , ‖D‖F , and N .

Theorem 1. Let F be an RKHS on X. There exists an on-line prediction algo-
rithm producing μn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − μn)2 ≤
N∑

n=1

(yn −D(xn))2 + 2Y
√

c2
F + 1 (‖D‖F + Y )

√
N (3)

for all N = 1, 2, . . . and all D ∈ F .

The regret term in the second theorem is in terms of cF , ‖D‖F , and the cumu-
lative loss of D (which can be significantly less than N).

Theorem 2. Let F be an RKHS on X. There exists an on-line prediction algo-
rithm producing μn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − μn)2 ≤
N∑

n=1

(yn −D(xn))2

+ 2
√

c2
F + 1 (‖D‖F + Y )

√√√√ N∑
n=1

(yn −D(xn))2 + (c2
F + 1) (‖D‖F + Y )2

+ 2
(
c2
F + 1

)
(‖D‖F + Y )2 (4)

for all N and all D ∈ F .

The regret term of Theorem 2 is close to being stronger than that of Theorem 1:
the former is at most twice as large as the latter plus an additive constant, if we
restrict our attention to the prediction rules D such that ‖D‖F is bounded by a
constant and |D(x)| ≤ Y , ∀x ∈ X.

On-line prediction algorithms achieving (3) and (4) are based on the idea of
defensive forecasting. However, the regression problem considered in this paper
is very well studied, and it is natural to expect that similar results can be also
obtained using known techniques. The next theorem gives an upper bound of
the regret term achievable by using the procedure (“Aggregating Algorithm”, or
AA) described in [30] and applied to the problem of regression in [31] and [13]. A
popular alternative technique based on the gradient descent method could also
be used, but it tends to lead to worse leading constants: see §4 for details.
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Fig. 1. The graph of the function f(N, d) for N = 1, . . . , 100 and d ∈ [1, 3]. The two
final values at the corners are f(100, 1) ≈ 12.37 and f(100, 3) ≈ 30.15.

Theorem 3. Let F be a separable RKHS on X. There exists an on-line predic-
tion algorithm producing μn ∈ [−Y, Y ] that are guaranteed to satisfy

N∑
n=1

(yn − μn)2 ≤
N∑

n=1

(yn −D(xn))2

− 2Y 2 ln

(
Γ

(
N

2
+ 1
)
U

(
N

2
+ 1, 0,

c2
F ‖D‖

2
F

2Y 2

))

≤
N∑

n=1

(yn −D(xn))2 + 2Y max
(
cF ‖D‖F , Y δN−1/2+δ

)√
N + 2

+
3
2
Y 2 lnN +

c2
F ‖D‖

2
F

4
+O(Y 2) (5)

for all N = 1, 2, . . . and all D ∈ F , where δ > 0 is an arbitrarily small constant,
Γ is the gamma function ([1], Chapter 6), and U is Kummer’s U function ([1],
Chapter 13). The constant implicit in O(Y 2) depends only on δ.

The bound of Theorem 3 is even closer to being stronger than that of Theorem 1
as N →∞: the leading constant is the same, 2Y cF ‖D‖F (assuming ‖D‖F 0 Y
and cF 0 1), but the other terms are considerably better. The main disadvan-
tage of the bound (5) is the asymptotic character of (namely, the presence of
the O term in) its more explicit version. The version involving the gamma and
Kummer’s U functions is not intuitive, but it can be evaluated using standard
libraries; the function
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f(N, d) := − ln
(
Γ

(
N

2
+ 1
)
U

(
N

2
+ 1, 0,

d2

2

))
is plotted in Figure 1.

The condition of separability in Theorem 3 does not appear restrictive; in
particular, it is satisfied for all examples considered in §3.

Remark. If cF =∞ but it is known in advance that all objects xn, n = 1, 2, . . .,
will be chosen from a set A ⊆ X satisfying X := supx∈A cF (x) <∞, Theorems
1–3 will continue to hold when cF is replaced by X .

Finally, we give a lower bound (a version of Theorem VII.2 in [5]) showing that
the leading constant 2Y cF ‖D‖F is optimal.

Theorem 4. Suppose the object space is X = IR. For any positive constant
c there exists an RKHS F on X with cF = c and a strategy for Reality sat-
isfying the following property. For any N = 1, 2, . . ., any positive constant
d ≤ (Y/cF )

√
N , and any on-line prediction algorithm, there exists a prediction

rule D ∈ F such that ‖D‖F = d and

N∑
n=1

(yn − μn)2 ≥
N∑

n=1

(yn −D(xn))2 + 2Y cF ‖D‖F
√
N − c2

F ‖D‖
2
F , (6)

where, as usual, μn are the predictions produced by the on-line prediction algo-
rithm and (xn, yn) are Reality’s moves.

Universal Consistency
We say that an RKHS F on Z is universal if Z is a topological space and for
every compact subset A of Z every continuous function on A can be arbitrarily
well approximated in the metric C(A) by functions in F (in the case of compact
Z this coincides with the definition given in [27] as Definition 4). All examples
of RKHS given in §3 are universal.

Suppose the object space X is a topological space; as in the rest of the paper,
we are assuming that |yn| are bounded by a known constant Y . Let us say that
an on-line prediction algorithm is universally consistent if its predictions μn

always satisfy

(xn ∈ A, ∀n ∈ {1, 2, . . .})

=⇒ lim sup
N→∞

(
1
N

N∑
n=1

(yn − μn)2 − 1
N

N∑
n=1

(yn −D(xn))2
)
≤ 0 (7)

for any compact subset A of X and any continuous decision rule D (cf. (1)).
By the Tietze–Uryson theorem ([7], Theorem 2.6.4 on p. 65), if X is a normal
topological space, we will obtain an equivalent definition allowing D to be any
continuous function from A to IR.

The definitions of this subsection are most intuitive in the case of compact
X, and in our informal discussion we will be making this assumption. The main
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remaining difference of our definition of universal consistency from the statistical
one [28] is that we requireD to be continuous. IfD is allowed to be discontinuous,
(7) is impossible to achieve: no matter how Predictor chooses his predictions μn,
Reality can choose

xn :=
n−1∑
i=1

sign(μi)
3i

, yn :=

{
1 if μn < 0
−1 otherwise

(assuming X ⊇ [−1, 1], Y ≥ 1, and setting sign(0) := 1) and thus foil (7) for the
prediction rule

D(x) :=

{
−1 if x <

∑∞
i=1 sign(μi)/3i

1 otherwise.

A positive argument in favor of the requirement of continuity of D is that it is
natural for Predictor to compete only with computable prediction rules, and con-
tinuity is often regarded as a necessary condition for computability (Brouwer’s
“continuity principle”).

The existence of universal RKHS on Euclidean spaces IRm (see §3) implies
the following proposition.

Corollary 1. If X ⊆ IRm for some m = 1, 2, . . ., there exists a universally
consistent on-line prediction algorithm.

Proof. Any on-line prediction algorithm satisfying (3) of Theorem 1 for a uni-
versal RKHS F on IRm will be universal. Indeed, let A ⊆ X be compact, f be a
continuous function on X, and ε > 0. Suppose xn ∈ A, n = 1, 2, . . . . Our goal is
to prove that

1
N

N∑
n=1

(yn − μn)2 ≤ 1
N

N∑
n=1

(yn − f(xn))2 + ε

from some N on. It suffices to choose D ∈ F at a distance at most ε/(8Y ) from
f in the metric C(A), apply (3) to D, and notice that∣∣∣∣∣ 1N

N∑
n=1

(yn −D(xn))2 − 1
N

N∑
n=1

(yn − f(xn))2
∣∣∣∣∣ ≤ 4Y

ε

8Y
=
ε

2

(this calculation assumes that f and D take values in [−Y, Y ]; we can always
achieve this by truncating f andD: truncation does not lead outside the universal
RKHS described in §3).

Remark. It is easy to extend Corollary 1 to the case where X is a separable met-
ric space or a compact metric space: indeed, by Theorem 4.2.10 in [8] the Hilbert
cube is a universal space for all separable metric spaces and for all compact met-
ric spaces, and every continuous function on the Hilbert cube (we are interested
in continuous extensions of continuous functions on compact subsets), being uni-
formly continuous (see, e.g., [7], Corollary 2.4.6 on p. 52), can be arbitrarily well



On-Line Regression Competitive with Reproducing Kernel Hilbert Spaces 459

approximated by functions that only depend on the firstm coordinates of their ar-
gument; it remains to notice that the on-line prediction algorithms satisfying the
condition of Theorem 1 for universal RKHS on [0, 1]m can be merged into one on-
line prediction algorithm using, e.g., the Aggregating Algorithm.

So far in this subsection we have only discussed the asymptotic notion of uni-
versal consistency, although it is clear that one needs universality in a stronger
sense. In practical problems, it is not enough for the benchmark class F to be
universal; we also want as many prediction rules D as possible to belong to F ,
or at least to be well approximated by the elements of F ; we also want ‖D‖F
to be as small as possible. The Sobolev spaces on [0, 1]m discussed in §3 are
not only universal RKHS but also include all functions that are smooth in a
fairly weak sense. However, the Hilbert-space methods have their limitations: it
is not clear, e.g., how to apply them to functions that are as “smooth” as typical
trajectories of the Brownian motion. These larger benchmark classes seem to
require Banach-space methods: see [34].

3 Examples of RKHS

The usefulness of the results stated in the previous section depends on the avail-
ability of suitable RKHS. In this section I will only give simplest examples; for
numerous other examples see, e.g., [29], [24], and [26].

The Sobolev norm ‖f‖H1 of an absolutely continuous function f : [0, 1]→ IR
is defined by

‖f‖2H1 :=
∫ 1

0
(f(t))2 dt+

∫ 1

0
(f ′(t))2 dt. (8)

The Sobolev space H1([0, 1]) on [0, 1] is the set of absolutely continuous f :
[0, 1] → IR satisfying ‖f‖H1 < ∞ equipped with the norm ‖·‖H1 . It is easy to
see that H1([0, 1]) is an RKHS.

In fact, H1([0, 1]) is only one of a range of Sobolev spaces; see, e.g., [2] for the
definition of the full range (denoted W s,p(Ω) there; we are interested in the case
s = 1, p = 2, and Ω = (0, 1), with the elements of W 1,2((0, 1)) extended to [0, 1]
by continuity). The space H1([0, 1]) is the “least smooth” among the Sobolev
spaces Hs([0, 1]) if we ignore the slightly less natural case of a fractional s. All
of Hs([0, 1]) are universal RKHS, but H1([0, 1]) is a proper superset of all other
Hs([0, 1]), and so is the “most universal” Sobolev space of this type.

To apply Theorems 1–3 to H1([0, 1]) we need to know the value of cF for it;
it is, however, well known (see [35] for details) that

cH1([0,1]) =
√

coth 1 ≈ 1.15.

We are often interested in the case where the objects xn are vectors in a
Euclidean space IRm; if their components are bounded, we can scale them so
that xn ∈ [0, 1]m. In any case, we can take the mth tensor power F of the RKHS
we have just defined as our benchmark class. (For the definition and properties
of tensor products of RKHS see, e.g., [3], §I.8.) The value of cF for the mth
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tensor power is the mth power of the cF for the original RKHS. The mth tensor
power of H1([0, 1]) is universal on [0, 1]m (this can be seen from the construction
given in [3], §I.8).

Theorem 3 requires separable RKHS; the separability of Sobolev spaces Hs

for integer s is proved in, e.g., [2], Theorem 3.6 (and it also remains true for
fractional s).

4 Some Comparisons

The first paper about competitive on-line regression is [9]; for a brief review of
the work done in the 1990s, see [31], §4. Our results are especially close to those
of [5] and [4].

There are two main proof techniques in the existing theory of competitive
on-line regression: various generalizations of gradient descent (used in, e.g., [5],
[18], and [4]) and the Bayes-type Aggregating Algorithm (proposed in [30] and
described in detail in [15]; for a streamlined presentation, see [31]). In this section
we will only discuss the former; some information about the latter can be found
in [35], §8.

Comparison between our results and the known ones is somewhat complicated
by the fact that most of the existing literature only deals with the Euclidean spaces
IRm. Typically, when loss bounds do not depend on m, they can be carried over
to Hilbert spaces (perhaps satisfying some extra regularity assumptions, such as
separability), and so to some RKHS. To understand what such known results say
in the case of RKHS, the upper bound on the size ‖xn‖ of the objects (if present)
has to be replaced by cF (cf. the remark on p. 457), and the upper bound on the
size ‖w‖ of the weight vector has to be interpreted as an upper bound on ‖D‖F .

With such replacements, Theorem IV.4 on p. 610 of Cesa-Bianchi et al. [5]
becomes

N∑
n=1

(yn − μn)2 ≤ inf
D:‖D‖F ≤Y/X

N∑
n=1

(yn − D(xn))2

+ 9.2

⎛⎝Y

√√√√ inf
D:‖D‖F ≤Y/X

N∑
n=1

(yn − D(xn))2 + Y 2

⎞⎠ ,

where μn are their algorithm’s predictions. This result is of the same type as
(4), but ‖D‖F is bounded by Y/X ; because of such a bound (present in all other
results reviewed here) the corresponding prediction algorithm is not guaranteed
to be universally consistent.

Auer et al. [4] make the upper bound on ‖D‖F more general: their Theorem
3.1 (p. 66) implies that, for their algorithm,

N∑
n=1

(yn − μn)2 ≤
N∑

n=1

(yn − D(xn))2

+ 8c2
FU2 + 8cFU

√√√√ 1
2

N∑
n=1

(yn − D(xn))2 + c2
FU2,
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where U is a known upper bound on ‖D‖F and Y is assumed to be 1. This is
remarkably similar to (4) and (5).

This type of results was extended by Zinkevich ([38], Theorem 1) to a general
class of convex loss functions.

The main differences of these results from our Theorems 1–3 are that their
leading constants are somewhat worse and that they assume a known upper
bound on ‖D‖F . The last circumstance might appear especially serious, since it
prevents universal consistency even when the Hilbert space used is a universal
RKHS. However, there is a simple way to achieve universal consistency: the Ag-
gregating Algorithm, or a similar procedure, may be used on top of the existing
algorithm (the unknown upper bound may be considered to be an “expert”, and
the predictions made by all “experts”, say of the form 2k, k = 1, 2, . . ., can be
merged into one prediction on each round). This was noticed by Auer et al. [4],
although they did not develop this idea further.

The remaining minor component in achieving universal consistency is using
a universal function class as the benchmark class. It is interesting that Cesa-
Bianchi et al. used an “almost universal” function class in their pioneering paper
[5] (§V; their class was not quite universal because of the requirement f(0) = 0).
A very interesting early paper about on-line regression competitive with function
spaces (although not universal) is [17] (continued by [21]); it, however, assumes
that the benchmark class contains a perfect prediction rule, and its results are
very different from ours.

A major advantage of the methods based on gradient descent is their simplicity
and computational efficiency. The technique of defensive forecasting, which we
emphasize in this paper, appears closer to gradient descent than to the Bayes-
type algorithms. There has been a mutually beneficial exchange of ideas between
the gradient descent and Bayes-type approaches, and combining gradient descent
and defensive forecasting might turn out even more productive.
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Abstract. The present paper is a short reflection concerning the role
which inductive inference played and can play in language learning. We
shortly recall some major insights obtained and outline some new direc-
tions based on own work and results recently presented in the literature.

1 Introduction

Humans are excellent learners. In particular, every normal child acquires its
mother tongue, a grammatical system which is very complex as research in lin-
guistics shows.

On the other hand, if we look fifty years back, science fiction had anticipated
that computers will be able to communicate with humans like humans, i.e., by
using any native language. So far, this goal has not been achieved. Thus, it is
only natural to take a closer look at fundamental research in learning theory and
to analyze the state of the art with respect to the ambitious goal of language
learning. Within this extended abstract, we shall confine ourselves to inductive
inference as the underlying framework for language learning.

Formal language learning may be characterized as the study of systems that
map evidence on a language into hypotheses about it. Of special interest is the
investigation of scenarios in which the sequence of hypotheses stabilizes to an
accurate and finite description (a grammar) of the target language. Clearly, then
some form of learning must have taken place. In his pioneering paper, Gold [7]
gave precise definitions of the concepts “evidence,” “stabilization,” and “accu-
racy” resulting in the model of learning in the limit. During the last decades,
Gold-style formal language learning has attracted a lot of attention by computer
scientists (cf., e.g., Osherson, Stob and Weinstein [14], Jain et al. [10] as well as
Zeugmann and Lange [22], and the references therein). Most of the work done in
the field has been aimed at the following goals: showing what general collections
of language classes are learnable, characterizing those collections of language
classes that can be learned, studying the impact of several postulates on the
behavior of learners to their learning power, and dealing with the influence of
various parameters to the efficiency of learning.

Next, we specify the information from which the target languages have to be
learned. A text of a language L is an infinite sequence of strings that eventu-
ally contains all strings of L. Texts may be considered as a first model of the
information available to children when learning their native language.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 464–473, 2006.
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An algorithmic learner, henceforth called inductive inference machine (abbr.
IIM), takes as input initial segments of a text. Using this information, it computes
and outputs hypotheses about the target language. The set H of all admissible
hypotheses is called hypothesis space. Furthermore, the sequence of hypotheses
has to converge to a hypothesis correctly describing the language to be learned,
i.e., after some point, the IIM stabilizes to an accurate hypothesis. If there is an
IIM that learns a language L from all texts for it, then L is said to be learnable in
the limit from text with respect to the hypothesis space H.

Finally, we call a class L of languages learnable in the limit from text if there
are an IIM M and a hypothesis space H such that M learns every language
L ∈ L in limit from text with respect to H.

Since all natural languages have grammars, we may think of hypothesis spaces
as of sets of formal grammars (cf. Hopcroft and Ullman [9]).

Having reached this point of precision, one may ask which language classes
are learnable from text. The first result we would like to mention here, is due to
Gold [7], who proved the following.

Theorem 1. Let L be any class of languages containing all finite languages and
at least one infinite language. Then L is not learnable in the limit from text.

Consequently, neither the class of regular languages nor any superset thereof can
be learned in the limit from text. Taking this into account, many researchers
thought that there is no interesting class of languages at all that can be learned
in the limit from text. As a result, the study of learning from text faced almost
one decade of decline after Gold’s [7] pioneering paper. The situation consid-
erably changed when Angluin [2] proved the pattern languages to be learnable
in the limit from text. Moreover, Angluin [3] provides a very nice character-
ization of language learning from text. A further major step has been done
by Shinohara [17] who showed rich classes to be learnable in the limit from
text.

Additionally, it should be noted that many linguists strongly believe that
children are only prepared to learn any human native language, i.e., a rather
small but distinguished class of languages (cf. [10] for a more detailed discussion).

Taking these insights into account, it seems already plausible that one has to
look for particular language classes when trying to gain a better understanding
of the power and limitations of language learning from text.

Within this paper, we would like to point to some directions that seem promis-
ing in this regard. These directions are concerned with the language classes stud-
ied, the information presentation, the efficiency, and the size of the underlying
terminal alphabet (or vocabulary).

We postpone the discussion of the first three items and discuss shortly the
latter point here. Every natural language has a rather rich vocabulary as a short
look into any dictionary confirms. So, it seems only natural to ask whether
or not this fact may simplify or may complicate the underlying learning task.
Research performed in the area of text classification may suggest that learning
becomes more complicated (cf., e.g., Joachims [11]). On the other hand, there are
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some results obtained within the inductive inference paradigm pointing into the
opposite direction (cf., e.g., Shinohara and Arikawa [18]). In particular, results
surveyed in [18] suggest that learning is sometimes only possible if the underlying
terminal alphabet is rather large.

Additionally, one may also ask to what extend the efficiency of learning al-
gorithms does depend on the underlying terminal alphabet. When studying the
learnability of pattern languages, we could prove that the number of exam-
ples necessary for successful learning decreases if the alphabet size increases (cf.
[15, 16, 21]). However, so far we are not aware of any paper investigating the
influence of the alphabet size systematically.

The paper is structured as follows. Section 2 presents preliminaries. Then we
shortly recall some fundamental results concerning the learnability of languages
from text. In Section 4 we outline some future directions.

2 Preliminaries

Unspecified notation follows Rogers [8]. By N = {0, 1, 2, . . .} we denote the set of
all natural numbers. We set N+ = N \ {0}. The cardinality of a set S is denoted
by |S|. Let ∅, ∈, ⊂, ⊆, ⊃, and ⊇ denote the empty set, element of, proper
subset, subset, proper superset, and superset, respectively.

Let ϕ0, ϕ1, ϕ2, . . . denote any fixed acceptable programming system for all
(and only) the partial recursive functions over N (cf. Rogers [8]). Then ϕk is the
partial recursive function computed by program k.

Gold’s [7] model of learning in the limit allows one to formalize a rather
general class of learning problems, i.e., learning from examples. For defining
this model we assume any recursively enumerable set X and refer to it as the
learning domain. By ℘(X ) we denote the power set of X . Let L ⊆ ℘(X ), and
let L ∈ L be non-empty; then we refer to L and L as a language class and a
language, respectively. Let L be a language, and let t = (xj)j∈N be any infinite
sequence of elements xj ∈ L such that range(t) := {xj j ∈ N} = L. Then t is
said to be a positive presentation or, synonymously, a text for L. By text(L) we
denote the set of all positive presentations for L. Moreover, let t be a positive
presentation, and let y ∈ N. Then, we set ty = x0, . . . , xy , i.e., ty is the initial
segment of t of length y+1, and t+y := {xj j ≤ y}. We refer to t+y as the content
of ty.

Furthermore, let σ = x0, . . . , xn−1 be any finite sequence. Then we use |σ| to
denote the length n of σ, and let σ+ denote the content of σ.

An inductive inference machine (abbr. IIM) is an algorithm that takes as in-
put larger and larger initial segments of a text and outputs, after each input, a
hypothesis from a prespecified hypothesis space H = (hj)j∈N. The indices j are
regarded as suitable finite encodings of the languages described by the hypothe-
ses. A hypothesis h is said to describe a language L iff L = h.

A sequence (jn)n∈N of natural numbers is said to converge to number j if
jn = j for all but finitely many n ∈ N.
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Definition 1. Let L be any language class, and let H = (hj)j∈N be a hypothesis
space for it. L is called learnable in the limit from text with respect to H iff there
is an IIM M such that for every L ∈ L and every text t ∈ text(L),

(1) for all n ∈ N+, M (tn) is defined,
(2) there is a j such that L = hj and the sequence (M (tn))n∈N converges to j.

The set of all language classes that are learnable in the limit with respect to H is
denoted by LimTxtH. By LimTxt we denote the collection of all language classes
L for which there is a hypothesis space H such that L is learnable in the limit
from text with respect to H.

Note that instead of LimTxt sometimes TxtEx is used. In our notation, Lim
stands for “limit.” Since, by the definition of convergence, only finitely many
data of L were seen by the IIM upto the (unknown) point of convergence, when-
ever an IIM identifies the language L, some form of learning must have taken
place. For this reason, hereinafter the terms infer, learn, and identify are used
interchangeably.

Note that Definition 1 does not contain any requirement concerning efficiency.
We shall come back to this point later.

Many settings can be described by the scenario given in Definition 1. In partic-
ular, we can consider the special case that X = N and let L be any subset of the
collection of all recursively enumerable sets over N. Let Wk = domain(ϕk), where
ϕk is the partial recursive function computed by program k in the fixed accept-
able programming system. Clearly, then Wk may be considered as a language.
As a matter of fact, all Wk are recursively enumerable. In this case, (Wk)k∈N is
the most general hypothesis space. We use E to denote the set of all recursively
enumerable languages.

Note that this setting has been used to study the general capabilities of differ-
ent learning models which can be obtained by suitable modifications of Defini-
tion 1. There are numerous papers performing studies along this line of research
(cf., e.g., [10, 14] and the references therein).

3 Learning Languages from Positive Data

Within this section, we shortly recall some fundamental insight concerning the
learnability of language classes from text.

Based on Angluin [3] in Jain et al. [10] the following theorem is proved. Note
that we neglect the computability of IIMs for a moment.

Theorem 2. L ⊆ E is identifiable if and only if for all L ∈ L there is a finite
TL such that for all L′ ∈ L, if TL ⊆ L′ then L′ �⊆ L.

We are not going to repeat the proof of Theorem 2 here. But we like to point
out the basic idea for showing the sufficiency. Let L ∈ L be the target language,
let t ∈ text(L), and let n ∈ N.
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Then the learner has to look for an index i such that

(a) i is an index for L; and
(b) TL ⊆ t+n ⊆ L.

The important part here is the topological structure of the language class
to be learned which is expressed by the properties of the sets TL. Clearly, this
theorem directly implies Theorem 1.

In order to arrive at an IIM, one has to ensure that (a) and (b) can be handled
algorithmically. So, if one would use the most general hypothesis space (Wk)k∈N

then Assertion (a) implies that one has to find an i such that Wi = L. Moreover,
Assertion (b) requires a clever method for ensuring TL ⊆ t+n ⊆ L.

In her pioneering paper, Angluin [3] has proved this characterization theorem
for indexable language classes. A language class is said to be an indexable class
if it possesses an effective enumeration with uniformly decidable membership.
Within the setting of indexable language classes she then showed the sets TL to
be recursively enumerable.

Moreover, when learning from text, a major problem one has to deal with
is avoiding or detecting overgeneralization. An overgeneralization occurs if the
learner guesses a proper superset of the target language. Using positive data
alone, an overgeneralization cannot be detected. Nevertheless, as Angluin [3]
has shown, overgeneralization is unavoidable if one wishes to exhaust the whole
power of LimTxt , even within the setting of indexable language classes.

How can this happen? Assume an enumeration (Li)i∈N of the indexable lan-
guage class, let L be the target and let i∗ be the least index j such that L = Lj .
That is, we have Li∗ = L and L �= Lj for all j < i∗.

Looking at the characterization, one sees that overgeneralization may occur if
some of the sets TLj with j < i∗ and L ⊂ Lj are not yet completely enumerated.

IIMs that completely avoid overgeneralization are called conservative. Another
way to look at conservative learning is to require that the IIM maintains its actual
hypothesis at least as long at it has not seen data contradicting it.

Within the setting of indexable language classes, conservative learning can be
characterized by posing a stronger requirement to the sets TL, i.e., there must
be uniform procedure g recursively generating all sets TL for L ∈ L (cf. [23]).
Here, by recursively generating we mean an algorithm that takes as input any
index i (of the chosen enumeration) and outputs the complete set TLi and stops.

As we shall see below, if one aims at more realistic and efficient learning
algorithms, it may be quite advantageous to have a conservative learner. The
intuitive reason is that a conservative learner converges to its first correct guess
in the sequence of all its guesses.

On the one hand, the results mentioned above are both beautiful and strong.
They already provide a deep insight into the problem what can be learned from
positive data.

On the other hand, they do not really contribute to the problem of how one
can design practical learning algorithms. Even worse, they may suggest that
one has to design learners along the line of testing something like Assertion (b)
above. We therefore continue with some alternative approaches.
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4 Towards More Realistic Learning Scenarios

The first approach we like to mention is learning from good examples. The idea
of learning from good examples is to use finite sets of well selected examples
instead of texts. The model of learning from good examples has been introduced
by Freivalds, Kinber and Wiehagen [6] within the setting of learning recursive
functions. Subsequently, Lange, Nessel and Wiehagen [12] have adopted this
model to learning from positive examples of indexable concept classes.

Following [12], finite sets of good examples

1. are intended to be “important” ones,
2. are required to be computable from the languages to be learned,
3. are intended to be sufficient for learning rich classes of languages.

Then, instead of receiving growing initial sequences of a text, the learner re-
ceives any superset of the set of good examples for the target language. Further-
more, instead of converging in the limit to a correct hypothesis, now the learner
is required to compute a single guess from the finite set it has received and to
output a hypothesis which is correct for the possible infinite target language.

The resulting learning model is referred to as to finite learning from good
examples. The requirement to learn from any superset of the set of good examples
is introduced to avoid coding tricks. For example, if one has a given enumeration
(Li)i∈N of the indexable target class, one could be tempted to provide just i
examples to learn language Li. So, such tricks are excluded.

Then, Lange, Nessel and Wiehagen [12] showed in particular that finite learn-
ing from good examples is exactly as powerful as conservative learning in the
limit from text.

A prominent example known to be conservatively learnable in the limit from
text is the class of all pattern languages.

Following Angluin [2] we define patterns and pattern languages as follows.
Let A = {0, 1, . . .} be any finite alphabet containing at least two elements.
Let X = {xi i ∈ N} be an infinite set of variables such that A ∩ X = ∅.
Patterns are non-empty strings over A∪X , e.g., 01, 0x0111, 1x0x00x1x2x0 are
patterns. The length of a string s ∈ A∗ and of a pattern π is denoted by |s|
and |π|, respectively. A pattern π is in canonical form provided that if k is the
number of different variables in π then the variables occurring in π are precisely
x0, . . . , xk−1. Moreover, for every j with 0 ≤ j < k−1, the leftmost occurrence of
xj in π is left to the leftmost occurrence of xj+1. The examples given above are
patterns in canonical form. In the sequel we assume, without loss of generality,
that all patterns are in canonical form. By Pat we denote the set of all patterns
in canonical form.

If k is the number of different variables in π then we refer to π as to a k-variable
pattern. By Patk we denote the set of all k-variable patterns. Furthermore, let
π ∈ Patk, and let u0, . . . , uk−1 ∈ A+; then we denote by π[x0/u0, . . . , xk−1/uk−1]
the string w ∈ A+ obtained by substituting uj for each occurrence of xj ,
j = 0, . . . , k − 1, in the pattern π. For example, let π = 0x01x1x0. Then
π[x0/10, x1/01] = 01010110. The tuple (u0, . . . , uk−1) is called a substitution.
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Furthermore, if |u0| = · · · = |uk−1| = 1, then we refer to (u0, . . . , uk−1) as to a
shortest substitution. Let π ∈ Patk; we define the language generated by pattern
π by

L(π) = {π[x0/u0, . . . , xk−1/uk−1] u0, . . . , uk−1 ∈ A+} .

By PATk we denote the set of all k-variable pattern languages. Finally, PAT =⋃
k∈N PAT k denotes the set of all pattern languages over A.
Note that deciding membership for the pattern languages is NP–complete.

Therefore, any learning algorithm testing membership will be infeasible in prac-
tice under the usual assumption that P �= NP .

Fortunately, Lange and Wiehagen [13] have designed a pattern language
learner for finitely learning from good examples which completely avoids mem-
bership tests. Also, Lange and Wiehagen [13] have shown that for every pattern
π there is a set of good examples of cardinality linear in |π|.

In [21], we have dealt with the best-case, worst-case and average-case analysis
of Lange and Wiehagen’s [13] pattern language learning algorithm. The results
obtained considerably improve Lange and Wiehagen’s assertion concerning the
minimal size of sets of good examples.

In particular, we proved the matching upper and lower bound of

(log|A|(|A|+ k − 1))+ 1

for the minimal size of sets of good examples for every k-variable pattern.
Note that this number decreases if the alphabet size increases. Thus, we

have found a nice non-trivial example showing that a larger size of terminal
(or constant symbols) does facilitate learning. Given that every natural lan-
guage has a huge vocabulary, it may be worth to investigate the influence of
the size of terminal symbols in a grammar to the complexity of learning. At
a first step, this could be done within the setting of finite learning from good
examples.

Using completely different ideas, we have also studied the learnability of one-
variable pattern languages (cf. [15]). Though this has been done within the
setting of learning in the limit from randomly generated texts, the results are
in some sense similar. Our algorithm could be easily updated to finite learning
from good examples. Then again, one easily sees that a larger alphabet size
considerably reduces the minimal size of sets of good examples.

There is another point to be mentioned within this context. As a matter of
fact, the algorithms sketched above are not consistent. Here consistency means
that the intermediate hypotheses output by the learner do correctly reflect the
data seen so far. Though consistency seems to be a very natural requirement
at first glance, it is not as many results show. We refer the interested reader to
Wiehagen and Zeugmann [19] for a detailed discussion.

In this context, we would also like to point the reader to the discussion con-
cerning human languages and comparative grammar. As outlined in Jain et
al. [10], theories of linguistic development are closely related to theories of com-
parative grammar. As far as natural languages are concerned, it is certain that
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children can master it in a few years on the basis of rather casual and unsys-
tematic exposure to it. So, there must be some properties of natural languages
making them particularly suited for humans to be learnable.

Though I am not a linguist, I have observed on my children the following.
During the first two years, they somehow learned to distinguish words in any
text spoken. Around the age of three, they had acquired a possibly simplified
grammar allowing them to express themselves in simple sentences of three or
four words. Then, from maybe three to six, they enlarged their vocabulary at
an amazing speed on a daily basis. Interestingly, with their growing vocabulary
they also went on to master more and more complex syntactical constructs. So, it
would be very interesting to investigate to what extend the growing vocabulary
is necessary to ensure the whole learning process.

The other point I have observed is that humans are not consistent learners.
Furthermore, humans are for sure not good in learning their mother tongue

from every text for it. Instead, we may assume that humans learn from ran-
domly generated text. Adopting this idea, we studied the learnability of the
pattern languages from randomly generated text for a large class of probabil-
ity distributions. In a first step, we analyzed the expected number of examples
needed until successful learning. Our learner is both conservative and rearrange-
ment independent. A learner is said to be rearrangement independent iff its
output depends only on the content and length of its input. For such learn-
ers we could show that the probability to deviate from the expected number
of examples until convergence is exponentially shrinking. Finally, a bit of ad-
ditional domain knowledge concerning the underlying probability distributions
allows one to arrive at a stochastic finite learner. A stochastic finite learner is
fed randomly generated strings from the target pattern language. Additionally,
it takes a confidence parameter δ as input. But in contrast to learning in the
limit, the stochastic finite learner decides itself how many examples it wishes
to read. Then it computes a hypothesis, outputs it and stops. The hypothe-
sis output is correct for the target with probability at least 1 − δ. We refer
the interested reader to [16] for the details. As a matter of fact, stochastic fi-
nite learning incorporates the requirements concerning efficiency that have been
missing in Gold’s [7] model of learning in the limit. And it inherits the property
stated above that the number of examples needed decreases if the alphabet size
increases.

Last but not least, we would like to point the reader to a direction of research
that deserves attention, i.e., the design and analysis of algorithms learning sub-
classes of context-free grammars in the limit from text. As already stated in
Theorem 1, the whole class of context-free grammars is not learnable in the
limit from text. So, one has to look for suitable subsets. While subsets of reg-
ular languages have attracted considerable attention within the grammatical
inference community, so far not too much work has been done for subclasses of
context-free grammars (cf., e.g., Adriaans et al. [1], Yokomori [20]).

Recently, Clark and Eyraud [4] presented a learning algorithm for a subclass of
context-free languages which they called substitutable languages. Roughly speak-
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ing, substitutable languages are those context-free languages L which satisfy the
condition that lur ∈ L if and only lvr ∈ L for pairs of strings u, v. Intuitively, if
u and v appear in the same context, there should be a non-terminal generating
both of them.

The learning problem is then considered in the setting of identification in the
limit from text with polynomial time and data introduced by de la Higuera [5].
For the sake of better readability we recall the definition here in the form used
by Clark and Eyraud [4]. Within this definition, L(R) denotes the languages
described by representation R.

Definition 2. A representation class R is identifiable in the limit from positive
data with polynomial time and data iff there exist two polynomials p(), q() and
an algorithm A such that

(1) Given a positive sample S of size m A returns a representation R ∈ R in
time p(m).

(2) For each representation R of size n there exists a characteristic set CS of
size less than q(n) such that if CS ⊆ S, A returns a representation R′ such
that L(R) = L(R′).

As far as the characteristic sets are concerned, it is intuitively sufficient to think
of them as sets of “good examples.” Once the learner has seen a super set of the
characteristic set, it converges.

The point I found most interesting in the approach made by Clark and
Eyraud [4] is that they looked for a property of context-free languages that
facilitates learning, i.e., substitutability.
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Abstract. Support vector regressions (SVR) have been applied to time
series prediction recently and perform better than RBF networks. How-
ever, only one kernel scale is used in SVR. We implemented a multi scale
support vector regression (MS-SVR), which has several different kernel
scales, and tested it on two time series benchmarks: Mackey-Glass time
series and Laser generated data. In both cases, MS-SVR improves the per-
formance of SVR greatly: fewer support vectors and less prediction error.

1 Introduction

Support vector regression is a new regression technique [1], which minimizes an
upper bound on the generalization error, and exhibits good performance than
conventional approaches [2, 3, 9]. However, only one kernel scale is used in a SVR
with RBF kernel and this restrains its representation ability sometimes. If both
some rapid variations and some smooth variations are contained in the noisy
data, it will be hard for SVR to fit these variations well simultaneously.

Time series prediction can be viewed as a regression problem in a high dimen-
sional input space and it is usually solved by polynomial/RBF neural network,
support vector regression, or other regressors. However, the model of time series
is non-stationarity, which implies that the time series switch their dynamics be-
tween different regions [9], e.g. Laser generated data. It is hard for SVR with a
single kernel scale to capture a non-stationary input-output relationship inherent
in the time series.

A multi-scale support vector regression (MS-SVR) was proposed in our pre-
vious paper [5], and it extends SVR from one scale to a set of kernel scales for
non-flat function estimations. This paper implemented a special MS-SVR with
the l0-norm regularization term and the quadratic loss function, and applied it to
time series prediction problems. Experimental results illuminate that MS-SVR
gives better predictions and uses fewer support vectors than SVR.

The paper is organized as follows. A brief introduction to the problem of time
series prediction is given in the next section. Then an implementation of MS-
SVR is described in detail: approach model, training procedure and optimiza-
tion algorithm in section 3. Section 4 contains experiments on two benchmarks
and comparisons between SVR and MS-SVR, and finally section 5 gives some
discussion.
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2 Time Series Prediction

Let x(t0+τ), x(t0+2τ), . . . , x(t0+Nτ) be a measured time series with a sampling
time τ , for instance, a variable x(t) evolving according to some unknown dynam-
ical system. Our objective is to predict the future behavior of the time series.
The relationship between x(t0 + kτ) and x(t0 + (k − 1)τ), . . . , x(t0 + (k −m)τ)
is supposed to be a nonlinear map

xk = f(xk−1, . . . , xk−m) (1)

where xk denotes x(t0 + kτ) and m is called the embedding dimension. If m is
small, the past values are not enough to predict the future value; however, if m
is high, the training is hard. Under certain conditions, Takens’ theorem ensures
that f is a smooth map for almost all τ and some D ≤ m ≤ 2D+ 1, where D is
the dimension of the attractor of the dynamical system [3].

The effect of the embedding dimension m on generalization error was exam-
ined in [3]. The minimum generalization error should be achieved at the minimum
embedding dimension m = D. But sometimes it may be achieved for m > D
due to the overfitting of the regression algorithm. The proper sampling time τ is
an information that can be extracted from the time series data, and the optimal
one τ∗ can be calculated as a function of the pseudo-period of oscillation Tp,
τ∗ = Tp

4(m−1) [4].

3 Multi-scale Support Vector Regression

3.1 MS-SVR’s Model

The multi-scale support vector regression (MS-SVR) method originated from
the approximations for the non-flat functions, which comprise both the steep
variations and the smooth variations [5]. MS-SVR learns a flexible estimation
from a committee of multiple regression estimators with different bandwidth
kernels, so it can fit the steep and the smooth variations well simultaneously.

Given a set of l training examples {(xi, yi)}l
i=1 with input data xi ∈ Rd and

output data yi ∈ R, and m RBF kernels with different bandwidths σ1 < σ2 <
. . . < σm, the prediction function is defined in the form of

f(x) =
l∑

i=1

m∑
j=1

αi,jk(
‖xi − x‖

σj
) + b (2)

where k(‖xi−x‖
σj

) are the RBF kernel functions, for example Gaussian kernels,
αi,j and b are their coefficients and the offset. Note that only a small fraction of
the coefficients are nonzero and the Eq.(1) presents a fast prediction.

With the quadratic loss function and the l0-norm regularization term, MS-
SVR optimizes the following problem [5]

min γ
l∑

i=1

m∑
j=1

1
σj
I(αi,j �= 0) +

1
σ̂2

l∑
i=1

(f(xi)− yi)2 (3)
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where I(αi,j �= 0) is an indicator function, σ̂2 is the estimated noise variance
and the parameter γ determines the trade-off between the number of support
vectors (αi,j �= 0) and the training error.

Cristianini and Taylor has given a theoretical bound of the generalization
performance of the kernel-based regression algorithm in [6].

Corollary. (Cristianini and Taylor, 2000) Consider performing regression with
linear function L on an inner product space X and fix θ ∈ R+. There is a constant
c, such that for any probability distribution D on X × R with support in a ball
of radius R around the origin, with probability 1− δ over l random examples S,
the probability that a hypothesis w ∈ L has output more than θ away from its
true value is bounded by

errD(f) ≤ c

l
(
‖w‖22R2 + SSE

θ2 log2 l + log
1
δ
) (4)

where SSE is the sum squared error on the training set S.

In our algorithm, the hypothesis w = (
l∑

i=1
αi,1φ1(xi), . . . ,

l∑
i=1

αi,mφm(xi)),

where φj is implicitly defined by a kernel function 〈φj(xi), φj(x′
i)〉 = k(‖xi−x′

i‖
σj

).
Furthermore, the ball radius R = m for the m RBF kernels, because all the
points φ(xi) = (φ1(xi), . . . , φm(xi)), i = 1, . . . , l in the combined feature space
lie on a hypersphere ∀x ∈ Rd, ‖φ(x)‖22 = k(‖x−x‖

σ1
)+ · · ·+ k(‖x−x‖

σm
) = m around

the origin.

3.2 Training Procedure

The problem (3) is optimized by an iterative expectation-maximization algorithm
that is similar to [7]. First we introduce some denotations used in the algorithm.
The design matrix is defined as H = [1,K1, . . . ,Km]l×(1+ml), where “1” denotes
a column vector with elements 1, and Kk the l× l kernel matrixKij = k(‖xi−xj‖

σk
).

Using the coefficient vector s = (b, α1,1, . . . , αl,1, . . . , α1,m, . . . , αl,m)T and the out-
put vectory = (y1, . . . , yl)T , the noise variance is evaluated by σ̂2 = 1

l−1‖Hs−y‖2.
Andw = (0, 1

σ1
, . . . , 1

σ1
, . . . , 1

σm
, . . . , 1

σm
)T is a weight vector.At each iteration, the

coefficients si that approach to zero are pruned from s, and the corresponding el-
ements wi are removed from w, and the corresponding columns Hi are removed
from H. Then the training procedure is described as below:

Training MS-SVR: (3)
1. Initialize s0 = 1 and σ̂2 = 1, and solve (γdiag(w) + HT H)s1 = HT y;
2. While max

1≤i≤1+ml
|s0i − s1i| > ε do

3. Let s0 = s1, and prune the current solution, s̃1 = s1(nz), where nz denotes a
subscript set of nonzero elements nz = {i : |s1i| > ε};
4. Prune the weight vector w and the design matrix H, w̃ = w(nz) and H̃ =
H(:, nz);
5. Estimate the noise variance σ̂2 = 1

l−1‖H̃s̃1 − y‖2;
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6. Solve a system of linear equations (γσ̂2diag(w̃)+ Ũ(H̃T H̃)Ũ)̃t = ŨH̃T y and
compute s̃1 = Ũt̃, where Ũ = diag(|̃s1|);
7. Update the nonzero elements of the current solution, s1(nz) = s̃1;
8. Output the final solution s = s1.

A small constant ε = 10−5 is used as a threshold of both the stopping criterion
in step 2 and the pruning process in step 3. The training algorithm usually
converges after a few number of iterations.

3.3 Solving Large Scale Linear Equations

At each iteration of the MS-SVR algorithm, a large scale system of linear equa-
tions Ax = b is to be solved. The symmetric positive definite matrix A may not
be stored in memory due to its large scale, and therefore the solution x will be
found by using an iterative method. In this paper, the Hestenes-Stiefel conjugate
gradient algorithm [8] is employed to find x.

Solving Linear Equations: Ax = b
1. Initialize r0 = b, r1 = b, p = 0, and x = 0;
2. While max

i
|r1i| > ε do

3. Compute β = rT
1 r1

rT
0 r0

and update p = r1 + βp;

4. Compute q = Ap and λ = rT
1 r1

pT q , update x = x + λp;
5. Update r0 = r1 and r1 = r1 − λq;
6. Output the final solution x.

If r1 = 0, the exact solution is already achieved. Since it is usually hard
to achieve optimality exactly in numerical solution, the termination condition
is approximated by ‖r1‖2 ≤ ε. Here we set the small constant ε = 10−6. If
A = I + C is symmetric positive definite and rank(C) = r, then the above
algorithm converges in at most r + 1 steps [8].

4 Experiments

4.1 Mackey-Glass Time Series

The Mackey-Glass system is described by the delay-differential equation:

dx(t)
dt

= −0.1x(t) +
0.2x(t−Δ)

1 + x(t−Δ)10
(5)

with the delay Δ = 17 and the initial condition x(t) = 0.9 for 0 ≤ t ≤ Δ.
The time series was generated by numerical integration (step size Δt = 0.1)
using a fourth order Runge-Kutta method. Then we sampled 1000 points {xk =
x(t0 + kτ)}1000k=1 from t0 = Δ at the sampling rate τ = 6, and added Gaussian
noise (SNR=10%, noise level σn = 0.0226) to the time series. The first 500 points
were used for training, the following 100 points were used for validation, and the
remaining 400 points were used for testing. And mtsp = 6 previous points are
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Fig. 1. Tuning parameters of MS-SVR on Mackey-Glass time series: (a) RMSE versus
σ1 while fixing γ = 0.10 and σ2 = 0.50; (b) RMSE versus σ2 while fixing γ = 0.10
and σ∗

1 = 0.20; (c) RMSE versus γ while fixing σ∗
1 = 0.20 and σ∗

2 = 0.45. The optimal
parameters are σ∗

1 = 0.20, σ∗
2 = 0.45 and γ∗ = 0.10.

used as inputs to predict the current point. So there are 494 data patterns in
the training set, 100 data patterns in the validation set and 400 data patterns
in the test set.

A validation set is used to tune the parameters of MS-SVR, i.e. the number
of kernel scales mks, the kernel scales σ1, . . . , σmks

, and the trade-off constant
γ. Suppose the Gaussian kernels k(xi,xj) = exp(− ‖xi−xj‖2

2σ2
k

) are employed and

the kernel scales make up of a geometric sequence, σk = σ1q
k−1, k = 1, . . . ,mks.

For Mackey-Glass Time Series, we utilized mks = 2 kernel scales for MS-
SVR. A total of three parameters σ1, σ2, γ were optimized to minimize the root
mean square error (RMSE) on the validation set. The procedure of parameter
selections consists of three steps: tuning σ1 while fixing γ and σmks

, tuning σmks

while fixing γ and σ∗
1 , and tuning γ while fixing γ∗1 , σ

∗
mks

. Fig. 1 shows the results
of searching the optimal parameters for MS-SVR. And Fig. 2 plots a portion of
the predictions of MS-SVR on the noisy test set.

Fig. 2. Predicting noisy Mackey-Galss time series by MS-SVR: a portion of predictions
(x901 ∼ x1000) for the test set, where dot points and plus points denote xk and x̂k =
f(xk−1, . . . , xk−6)

The parameters of SVR, ε, σ and C, were also selected via the validation set.
Table 1 reports the experimental results of the two methods. MS-SVR utilizes
fewer support vectors (20 SVs with scale σ1, 6 SVs with scale σ2) than SVR (34
SVs), and besides, it gives better prediction performance on the test set.
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Table 1. Comparisons between SVR and MS-SVR on Mackey-Glass time series: the
optimal parameters, the number of support vectors (#SVs) and test error (RMSE)

SVR MS-SVR

Parameters ε = 0.072, σ = 0.70, C = 10 σ1 = 0.20, σ2 = 0.45, γ = 0.10
#SVs 34 20 + 6 = 26
RMSE 0.0350 0.0311

4.2 Laser Generated Data

The laser data has been used in the Santa Fe Time Series Prediction Analysis
Competition (Data Set A)1 [9]. These data were recorded from a Far-Infrared-
Laser in a chaotic state. The experimental SNR was slightly under the half bit
uncertainty of the analog to digital conversion. A total of 1000 points were used
as training set and 100 following points were used as test set. We preprocessed
all the data points, xi = xi

100 ∈ [−5, 5], and used mtsp = 8 previous points as
inputs to predict the next point. Therefore there are 992 data patterns in the
training set and 100 data patterns in the test set.

Fig. 3. Laser generated data: (x9, x9), . . . , (x1000, x1000) are used for training, where
xk = (xk−1, . . . , xk−8) are the inputs and xk the targets

We chose mks = 3 kernel scales for MS-SVR and adjusted its parameters to
minimize the prediction error on the test set. Since σ2 = (σ1σ3)

1
2 , there are

only three parameters σ1, σ3 and γ to be selected. According to the parameter
selection procedure given in section 4.1, we obtained the optimal parameters of
MS-SVR, σ∗

1 = 0.50, σ∗
3 = 0.95 and γ∗ = 0.20.

The parameters of SVR, ε, σ and C, were also obtained by minimizing the
prediction error on the test set. Table 2 gives the experimental results of SVR
and MS-SVR on the laser generated data. It is obvious that MS-SVR exhibits
more excellent prediction performance than SVR: fewer support vectors and less
RMSE error. A small number of support vectors will save much computational
time in the predicting phase.

Fig. 4 plots the predictions of SVR and MS-SVR on the test set respectively.
On the region x1060, . . . , x1080, the predictions of SVR with one kernel scale do
1 It is available from “http://www-psych.stanford.edu/∼andreas/Time-Series/Santa

Fe.html”.
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Table 2. Comparisons between SVR and MS-SVR on laser generated data: the optimal
parameters, the number of support vectors (#SVs) and test error (RMSE)

SVR MS-SVR

Parameters ε = 0.029, σ = 0.60, C = 15 σ1 = 0.50, σ2 = 0.6892, σ3 = 0.95, γ = 0.20
#SVs 119 42 + 16 + 17 = 75
RMSE 0.0580 0.0392

Fig. 4. Predicting laser generated data by (a) SVR, (b) MS-SVR, where dot points
denote xk and plus points x̂k = f(xk−1, . . . , xk−8)

not match the targets well, however, those of MS-SVR with three kernel scales
match them more accurately.

5 Discussion

This paper showed two advantages of MS-SVR on time series predictions by two
benchmarks: the use of fewer support vectors and the more accurate predictions
than SVR. Although multi kernel scales yield a rich and flexible regression model,
they also lead to a large training procedure. The parameters of MS-SVR can be
well selected by a simple line search strategy.
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Abstract. Regulatory elements are important to the regulation of
tissue-specific alternative splicing. Here we report a genome-wide analysis
of motifs involved in human brain-specific or muscle-specific alternative
splicing. Comparing relative abundance of alternative splice forms based
on Bayesian statistics, we identified many tissue-specific exon skipping
events in normal or tumor samples from brain or muscle. Motifs possi-
bly function in these events were subsequently distinguished using EM
algorithm. Analyses of these motifs suggest that some exons are tissue-
specifically skipped through a loop out mechanism and motif locations
are sometimes important. Furthermore, comparison of motifs in normal
and tumor samples suggests that there may exist different tumorigene-
sis mechanisms between brain and muscle. These results provide some
insights into the regulation mechanism of alternative splicing and may
throw light on cancer therapy.

1 Introduction

It has long been anticipated that the human genome would contain a substan-
tially larger number of genes (about 10 times) than Drosophila or C. elegans.
Surprisingly, the sequencing of human genome shows only about 32, 000 human
genes, which are just twice as many as the genes of Drosophila or C. elegans
[1]. This inconsistency can partly be explained by alternative splicing (AS), a
mechanism that can produce many different proteins from a single gene. It has
been reported that about 30%–60% of mammalian genes undergo AS [2], which
suggests AS is prevalent among higher eukaryotes [3, 4, 5].

Splice sites (ss) are obviously important for the splicing process [6], but they
are rather degenerated: only GT at the 5’ss and AG at the 3’ss are well conserved.
Comparing with functional ss, there are far more false ss in the human genome
that have the dinucleotide GT or AG and yet are never recognized by celluar
splicing machinery [7]. Upstream of 3’ss lie some other functional elements: a
branch point sequence (BPS) usually containing an adenine and a poly pyrimi-
dine tract (PPT), which is a stretch of pyrimidine-rich sequence. However, both
sequences are also very degenerated in human. Therefore, ss, BPS and PPT may
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contain insufficient information for splicing [8]. Besides these fundamental ele-
ments, there are many regulatory elements which may stimulate or repress the
splicing process and are referred to as enhancers or silencers, respectively [5].
Regulatory elements are thought to be particularly important in tissue-specific
AS, but the detailed mechanism has not been completely understood [5]. There-
fore, it is necessary to study the characteristics and functions of these regulatory
elements in tissue-specific AS.

On the other hand, it has been suggested that alterations of splicing might
be wide-spread in human cancers [9, 10], which implies that regulation of AS
may be involved in tumorigenesis. Taking into consideration the importance of
regulatory elements in AS, it will be also interesting to compare the splicing
enhancers and silencers between normal and tumor samples.

Brudno, et.al. collected 25 brain-specific cassette exons and identified a motif
UGCAUG in the downstream intron [11]. Yeo, et.al. studied AS events in brain,
testis and liver and found some motifs in these tissues [12]. There are also some
genome-wide researches that have identified hundreds of tumor-associated AS
[9, 10, 13]. However, all these results fail to provide a detailed analysis of motifs
among different tissues and between normal and tumor samples.

In this study, we aimed at exploring the similarities and differences of motifs
between brain-specific and muscle-specific AS, taking into consideration both
normal and tumor cases. Brain-specific and muscle-specific AS were first iden-
tified by a Bayesian statistics method and motifs possibly involved in these
events were then distinguished using EM algorithm. Based on these results, we
examined motifs located in exons, upstream and downstream introns and also
compared putative motifs between normal and tumor cases. The results show
some interesting characteristics of regulatory elements and suggest different tu-
morigenesis mechanisms between brain and muscle.

2 Materials and Methods

2.1 Data Source

Sequences and information of human exons, introns and AS events, together
with ESTs used to delineate gene structures, were downloaded from AltSplice
(human release 2) [14]. Exon skipping events satisfying the following two cri-
teria were then identified: (i) only one exon is skipped in an event; and
(ii) there are no changes in the splice sites of flanking exons (i.e. the ”sim-
ple” cases in AltSplice). After this filtering, 11, 256 exon skipping events were
identified. The sequences of these cassette exons, together with 100nt upstream
and downstream intron sequences, were subsequently extracted from AltSplice
(if an intron is less than 100nt, the full-length sequence of the intron was
adopted).

In order to validate the putative motifs, some negative control sets were gen-
erated. For tissue-specific inclusion events (i.e. exons are mostly included in one
tissue and skipped in other tissues), we randomly chose 2000 internal constitu-
tive exons from AltSplice as the control set. For tissue-specific skip events (i.e.
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exons are mostly skipped in one tissue and included in other tissues), we ex-
tracted all internal constitutive exons from the set of genes that undergo these
events; thus the negative control sets for this kind of events differ from tissue to
tissue: for normal brain, tumor brain, normal muscle and tumor muscle, there
are 470, 386, 84 and 114 exons in the control sets, respectively. For all control
sets, the sequences of exons and their flanking 100nt at each end were extracted.

2.2 Identification of Tissue-Specific AS Using a Bayesian Statistics
Method

To identify tissue-specific AS events, a Bayesian statistics method using ESTs
was adopted [15]. When detecting tissue specificity using ESTs, a main difficulty
is that ESTs usually have sampling bias and thus cannot be compared directly
among tissues. To solve this problem, Xu, et.al. compare the expression of two
alternative splices in an AS event, treating the true proportions of each splice in
each tissue as hidden variables [15]. A description of the algorithm is as follows.
First, the Bayesian posterior probabilities that a splice is preferred in one tissue
and in the pool of all other tissues are calculated based on a binomial distribution
of ESTs. Second, a tissue specificity score TS is defined as the difference of the
two probabilities. Finally, using a resampling strategy, two robustness values
are defined to assess the stability of the TS value. The TS value and the two
robustness values are used to determine tissue specificity.

In the present research, to identify a tissue-specific exon skipping event, two
pairs of splices were compared using the above method: the 5’ splice of the
cassette exon (”left” splice) versus the splice that skipped the cassette exon
(”skip” splice) and the 3’ splice of the cassette exon (”right” splice) versus the
skip splice. If at least one pair of splices show tissue-specificity, the exon skipping
event is taken as tissue-specific. It should be noted that there are possibly two
kinds of tissue-specificity for an exon skipping event in one tissue: one is tissue-
specific inclusion event, in which the cassette exon is specifically included in the
tissue and the other is tissue-specific skip event, in which the cassette exon is
specifically skipped in the tissue.

2.3 Identification of Motifs Using EM Algorithm

In this work, EM algorithm was used to identify motifs involved in tissue-specific
exon skipping events. EM algorithm can search for both conserved domains
in unaligned amino acid sequences and binding sites in unaligned nucleotide
sequences [16]. The algorithm begins with an initial guess of the location of the
site in each sequence and these initial sites are aligned to produce an initial
probability matrix of base compositions of each position in the site and also
compositions of background. Then in the expectation step, the matrix is used
to calculate the probability of the site locates at each position in each sequence.
These site probabilities are subsequently used to update the probability matrix
in the maximization step. The expectation step is then repeated using the new
version of matrix. The cycle is continued until convergence.
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In this paper, we adopted EM algorithm implemented in the program MEME
[17]. A main difference of MEME from the EM method proposed in [16] is that
MEME can search for motifs in sequences possibly containing zero, one or many
occurrences of a motif [17]. In our work, MEME was used to identify motifs
in cassette exons, upstream and downstream 100nt introns of brain-specific and
muscle-specific exon skipping events. We only searched for 6nt-long motif because
it has been shown by a power calculation that hexamers are the most appropriate
motif candidates [8]. The option ”-nmotifs” was set to 6, meaning that for each
region (exon, upstream and downstream introns) in each tissue, six different
motifs would be searched for.

The motif candidates identified by MEME were filtered and the following
oligonucleotides were removed: (i) oligonucleotides that are mainly derived from
5’ss or 3’ss; (ii) pyrimidine-rich oligonucleotides in the upstream intron (for they
may overlap with PPT) and (iii) oligonucleotides that are long-runs of single
nucleotides, e.g. AAAAAA (for the frequencies of these oligonucleotides might
be overestimated).

Using the program MAST [18], the identified motifs were searched in corre-
sponding regions of tissue-specific AS events and the control sets.

3 Results

3.1 Tissue-Specific AS

We first identified tissue-specific exon skipping events. For one tissue, normal
and tumor samples were treated as different tissues. Using the Bayesian statistics
method mentioned above, 1308 tissue-specific inclusion events and 1324 tissue-
specific skip events were identified in 64 and 60 tissues, respectively.

In this study, we focused on tissue-specific exon skipping events occurred in
normal brain, tumor brain, normal muscle and tumor muscle. The numbers of
these events, together with the numbers of exons in corresponding control sets,
are listed in Table 1. Sequences of these AS events comprise the data sets for
motif finding.

3.2 Motifs Involved in Tissue-Specific AS

Various motifs were identified by MEME in the data sets. These motifs were then
filtered using the criteria mentioned above (see section 2.3) and the remaining
ones are shown in Fig. 1 and Fig. 2. To validate the results, these motifs were
searched for in the sequences of data sets and control sets by the program MAST
using an E-value threshold of 10. For each region of each type tissue-specific exon
skipping event (tissue-specific inclusion or skip) in each tissue, the percentage
of sequences found by MAST in data set is at least twice as large as that in
corresponding control set. For example, when examining the exon region, among
35 normal muscle-specific cassette exons, 24 were reported by MAST (68%). In
contrast, in 2000 internal constitutive exons of the control set, only 6 were found
by MAST (0.3%).
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Table 1. The numbers of tissue-specific exon skipping events and the sizes of con-
trol sets. The ”Inclusion” and ”Skip” lines contain numbers of tissue-specific inclusion
events and tissue-specific skip events, respectively. The numbers outside parentheses are
of tissue-specific exon skipping events, while those in parentheses are of corresponding
control sets.

Brain Muscle

normal tumor normal tumor

Inclusion 126(2000) 63(2000) 35(2000) 27(2000)
Skip 153(470) 96(386) 29(84) 26(114)

Some of the motifs identified here are consistent with the functional motifs
found by biochemical experiments. In the downstream intron of normal brain-
specific skipped exons, a motif TTTCTT was found, which contains a potential
binding site TCTT for PTB, a negative regulatory protein of splicing [19]. In
tissue-specific inclusion events, two motifs in the upstream (CTGGGA) and
downstream introns (ACAGGG) in tumor muscle, one motif (CCTGGG) in the
upstream intron in tumor brain and one motif (CAGGGC) in the downstream
intron in normal brain all include a reported intronic splicing enhancer (A/T)
GGG [20].

Both the large difference of percentage of sequences reported by MAST be-
tween data sets and control sets and the consistency of some motifs with ex-
isting experimental results indicate that the motifs identified by EM algorithm
(MEME) are probably functional in tissue-specific AS.

3.3 Reverse Complementary Motifs in the Flanking Introns of
Tissue-Specifically Skipped Exons

Motifs in flanking introns of tissue-specifically skipped exons were compared.
In both normal brain-specific and normal muscle-specific skip events, at least
one motif was observed in the upstream intron with another motif that is almost
reverse complementary to it (except only one nucleotide) lying in the downstream
intron (Fig. 1 and 2).

3.4 Comparison of Motifs in Cassette Exons and Flanking Introns

Motifs identified in tissue-specific inclusion events and tissue-specific skip events
are possible splicing enhancers and silencers, respectively. Enhancers in exons
and introns are termed ESE (exonic splicing enhacer) and ISE (intronic splicing
enhancer). Similarly, silencers lying in exons and introns are called ESS and ISS,
respectively. To investigate possible relationships of motifs and their locations,
putative ESE and ISS, as well as ESS and ISE, were compared.

In normal brain, a putative ISS CCTGGG resembles an ESE candidate
GCTGGG; a putative ISE CCCCAG is similar to ESS CCCAGC. The same



Identification and Comparison of Motifs 487

UP   

GGATGG   

CCCCAG   

ATAAAA   

GAGAAA   

CCCTCC   

GCCACC   

CAGGGC   

CCAGGC   
TAAAAA   

EXON   

CAGCCT   GCTGGG   

TCCTGG   CTGCAG   

AAGAAA   TTTTCT   

a   

DOWN   UP   

GGGAGG   

CCTGGG   

CAGGAG   

GTGGGG   

CCCCTG   

CCTCCT   

G AGAGG   

GCCCAG   

TTTCTT   

EXON   

CCCAGC   CTCTTC   

CTCCTG   CAGGAG   

TTTCAT   TTTTGT   

c   

DOWN   

UP   

CCTGGG   

TAAAAA   

AAATAA   

AAGAGG   

ATAATG   

AACACA   

ACAACA   

TCCCAG   

EXON   

TTCTTG   CCAGAA   

GGAGCA   GCTGGG   

CCAAGA   TTCAGT   

b   

DOWN   UP   

GGGAAG   

GAAAGA   

GGGACA   

GCTGAA   

CCCCAG   

CCACCT   

CCAACC   

CCTACC   

GGAGGC   

EXON   

CTGGAG   CCCCAG   

AGAAAA   TGGACA   

CTGCTG   CTCTCT   

d   

DOWN   

CTGGCC   
CCTCCC   

Fig. 1. Comparison of splicing motifs between normal and tumor brain samples. The
oligonucleotides listed below boxes ”EXON”, ”UP” and ”DOWN” are motifs lying
in cassette exons, upstream 100nt and downstream 100nt introns, respectively. All
putative motifs after filtering have been listed for normal brain-specific inclusion events
(a), tumor brain-specific inclusion events (b), normal brain-specific skip events (c) and
tumor brain-specific skip events (d). Highly similar (only one mismatch) motifs are
indicated (arrows) and nearly reverse complementary (except only one nucleotide)
motifs are also shown (lines).
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d   
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TCAGGA   

AACCTG   
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Fig. 2. Comparison of splicing motifs between normal and tumor muscle samples. The
layout and symbols in this figure are similar to those in Fig. 1. All filtered motifs
have been listed for normal muscle-specific inclusion events (a), tumor muscle-specific
inclusion events (b), normal muscle-specific skip events (c) and tumor muscle-specific
skip events (d).
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phenomenon was observed in normal muscle: both ESS and ISE have the motif
CCTCCC; a putative ISE CTCAAG resembles TTCAAG, a member in ESS
candidates.

3.5 Comparison of Motifs Between Normal and Tumor Tissues

It would be interesting to compare the motifs identified in tissue-specific AS be-
tween normal and tumor tissues. First, motifs involved in normal brain-specific
and tumor brain-specific inclusion events (i.e. enhancers) were compared (Fig.
1). Between corresponding regions in the two cases, similar motifs are rarely
observed except the motif GCTGGG in the exon and ATAAAA (normal brain),
TAAAAA (tumor brain) in the upstream intron. Another observation is that
there are some similar motifs between upstream and downstream introns of nor-
mal brain-specific cassette exons, while in tumor brain there is no such similarity
(Fig. 1). Second, putative splicing silencers in normal and tumor samples of brain
were also compared. It was observed that in each region there are some identi-
cal or highly similar motifs which are shown as follows (in each pair of motifs,
the one from normal samples is placed left and the tumor one, right): in exon,
there are CCCAGC vs. CCCCAG, CTCCTG vs. CTGCTG and CAGGAG vs.
CTGGAG; in upstream intron, there are GGGAGG vs. GGGAAG; in down-
stream intron, there are CCCCTG vs. CCCCAG and CCTCCT vs. CCACCT,
CCTCCC. Moreover, in both normal and tumor cases, there is at least one pair of
nearly reverse complementary motifs existing in flanking introns (Fig. 1). Taken
together, the putative splicing silencers share more similarities between normal
and tumor brain samples than enhancers do.

The same comparisons were performed between normal and tumor samples
of muscle. Interestingly, the observed results seem to be reverse. Comparing
with silencers, the putative enhancers share more similarities between normal
and tumor samples: more enhancers are highly similar in corresponding regions
and there are similar enhancers in flanking introns in both normal and tumor
samples, while nearly reverse complementary silencers were only observed in
normal muscle (Fig. 2).

4 Discussion

4.1 Loop Out Mechanism in Tissue-Specific Skip Events

As shown above, in tissue-specific skip events, some motifs lying in the
upstream introns have nearly reverse complementary counterparts in the down-
stream. Each pair of these motifs thus has the potential to base pair to cre-
ate a stem-loop structure with the skipped exon located in the loop (Fig. 3).
This base pairing would bring 5’ss of upstream intron into proximity with 3’ss
of downstream intron, which may promote skipping of the middle exon. This
“loop out” mechanism in exon skipping events is also reported in other
works [21, 22].
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4.2 Motifs and Their Locations

In this study, some enhancers in exons were observed to resemble silencers in
introns and similarly, some silencers in intronic context are highly similar to
or even the same as enhancers in exons. Another study of motifs functioning
in human brain also found this phenomenon [12]. These results provide proofs
for the viewpoint that the regulatory role of some splicing motifs is dependent
on their locations; for example, an enhancer in exon may repress splicing when
placed in intronic context [8].

Fig. 3. “Loop out” mechanism in tissue-specific exon skipping events. The skipped exon
(black box) and the flanking exons (white boxes) are shown. The reverse complementary
motifs (gray boxes) lying in flanking introns base pair to loop out the middle exon.

4.3 Possible Differences of Tumorigenesis Mechanisms Between
Brain and Muscle

Between normal brain-specific and tumor brain-specific inclusion events, it was
observed that most motifs (enhancers) in each region share low similarities. It
was also observed that in the normal case, some enhancers located in the up-
stream intron resemble enhancers in the downstream. It can be speculated that
protein factors binding to these motifs in upstream and downstream introns may
interact through dimerization, which may promote the recognition of the cas-
sette exon through a process termed exon definition [5]. However, there are no
such similar enhancers in the tumor case. Comparing with enhancers, silencers
between normal and tumor samples of brain have more similarities. There are
similar silencers in each region and in both normal and tumor cases, there are
some nearly reverse complementary silencers in flanking introns, which implies
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that the loop out mechanism may exist in both normal brain-specific and tumor
brain-specific skip events. Taken together, it can be speculated that the change
of splicing enhancers plays a more important role in tumorigenesis in brain than
change of silencers does.

In contrast to brain, the situation is reversed in muscle: enhancers share more
similarities than silencers do between normal and tumor samples. Some puta-
tive splicing enhancers resemble each other between normal and tumor muscle
samples. Moreover, for both normal and tumor cases, cassette exons may be
recognized through interaction of protein factors bound to enhancers in flanking
introns. As for silencers, only in normal muscle did we observe nearly reverse
complementary motifs located in upstream and downstream introns, which sug-
gests a possible loop out mechanism. Therefore, it may be speculated that com-
pared with splicing enhancers, the change in silencers has greater influence on
the tumorigenesis in muscle.

To sum up, the results imply that there may be some differences in tumori-
genesis mechanism between brain and muscle.

4.4 Limits and Future Research

Although we have carefully processed the data, there are still some shortages in
the present study. Firstly, although a Bayesian statistics method has been applied
to overcome the sampling bias of ESTs in the identification of tissue-specific AS,
it cannot completely solve the problems exist in ESTs [15]. Secondly, despite the
deduction that 6nt may be an appropriate width for splicing regulatory elements
[8], this fixed length will miss some other functional motifs.

In the future research, we can identify motifs with various lengths using data
from many sources, such as ESTs and microarray. Furthermore, besides human
brain and muscle, other tissues of other species can also be analyzed. Detailed
analysis of the identified motifs will give us a great deal of information of AS
regulation.

4.5 Significance

Regulation of AS is a complex process which is far from well understood. The
fundamental elements such as 5’ss/3’ss, BPS and PPT contain only part of reg-
ulatory information and other regulatory elements are often necessary for AS. In
this paper, we show some possible functioning mechanisms of splicing regulatory
elements, which may provide a better understanding of regulatory mechanism of
AS. Furthermore, our work suggests that the mechanism of tumorigenesis may
be different between brain and muscle, which may have some implications to
cancer therapy.
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Abstract. Given a class of graphs G, a graph G is a probe graph of G

if its vertices can be partitioned into two sets P, the probes, and N, the
nonprobes, where N is an independent set, such that G can be embedded
into a graph of G by adding edges between certain vertices of N. If the
partition of the vertices into probes and nonprobes is part of the input,
then we call the graph a partitioned probe graph of G. In this paper,
we provide a recognition algorithm for partitioned probe permutation
graphs with time complexity O(n2) where n is the number of vertices
in the input graph. We show that there are at most O(n4) minimal
separators for a probe permutation graph. As a consequence, there exist
polynomial-time algorithms solving treewidth and minimum fill-in
problems for probe permutation graphs.

1 Introduction

A graph is called an interval graph if its vertices can be put into one-to-one
correspondence with a set of intervals of the real line such that two vertices
are adjacent if and only if their corresponding intervals overlap. Zhang et al.
introduced an interval graph model to solve a problem in physical mapping of
DNA [24]. The application in molecular biology is the problem of reconstructing
the arrangement of fragments of DNA taken from multiple copies of the same
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genome. The results of laboratory tests tell us which pairs of fragments oc-
cupy intersecting intervals of the genome. The genetic information is physically
organized in a linear arrangement, and, when full information is available, an
arrangement of intervals can be created in linear time [3].

Probe interval graphs were introduced in [19, 23, 24] as a variant that makes
more efficient use of laboratory resources. A subset of the fragments is designated
as probes, and for each probe one may test all nonprobe fragments for intersec-
tion with the probe. In graph-theoretic terms, the input to the problem is a
graph G and a subset of probe vertices. The other vertices, the nonprobes, form
an independent set in G. The objective is to add edges between certain nonprobe
vertices such that the graph becomes an interval graph [11, Chapter 4]. Recogni-
tion algorithms for these partitioned probe interval graphs appeared in [14, 18].
Let n and m denote the number of vertices and edges of the input graph, re-
spectively. The first of these algorithms takes O(n2) time whereas the second
one can be implemented to run in O(n + m log n) time. For the case where the
partition of the probes and nonprobes is not a part of the input, an algorithm
appeared in [6]. Since then, much research is being done into recognizing also
other probe graph classes, starting with the paper of Golumbic and Lipshteyn
on probe chordal graphs [10].

According to [1], also probe chordal graphs find immediate applications, e.g.,
in the reconstruction of phylogenies. We think that the study into probe graph
classes is of great interest since, first of all, it establishes demarcations on the
robustness of the graph class with respect to irresolute inputs. The concept of
probe graph classes was contemplated initially for this purpose. Also it brings to
light many interesting, sometimes unforeseen properties of the new graph class
in question. For example, it turns out that probe chordal graphs are perfect [10].
This remains true for all classes of Meyniel graphs [13], that is, for any classes of
Meyniel graphs, the probe graphs in the class remain perfect. Another example
is that probe interval graphs and probe distance-hereditary graphs turn out to
be subclasses of weakly chordal graphs. It is easy to see that the clique number
remains solvable in polynomial time for probe graphs of perfect graphs and that
the chromatic number is at most one more than the clique number in those
graphs [5]. This by itself provides motivation to study probe graphs of classes of
perfect graphs.

In this paper, we apply a modular decomposition technique for the recognition
of partitioned probe permutation graphs. The recognition of the unpartitioned
case remains an open problem. Probe permutation graphs are in general not
perfect (see Fig. 1) but it turns out that they have many interesting features. In
Section 4, we prove that probe permutation graphs have at most O(n4) minimal
separators. An algorithm to find all minimal separators in a graph with poly-
nomial delay appeared in [16]. As a consequence, there exist polynomial-time
algorithms solving problems like treewidth and minimum fill-in for probe
permutation graphs [4]. Note that the treewidth and pathwidth parameters co-
incide for permutation graphs [2]. Thus for permutation graphs, the pathwidth
problem, which is in general much more difficult to compute, can be solved in
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polynomial time. It is not hard to see that pathwidth and treewidth do not coin-
cide for probe permutation graphs in general. The pathwidth problem is open
for probe permutation graphs.

2 Preliminaries

A graph G is a pair G = (V, E), where the elements of V are called the vertices
of G and where E is a family of two-element subsets of V , called the edges. We
let n and m be the numbers of vertices and edges of a graph G, respectively.

Definition 1. Let G be a class of graphs. A graph G = (V, E) is a probe graph
of G if its vertices can be partitioned into a set P of probes and an independent
set N of nonprobes such that G can be embedded into a graph G ′ of G by adding
certain edges between vertices of N. We call G′ an embedding of G.

If the partition of the vertices of G into a set P of probes and independent set N
of nonprobes is a part of the input, we refer to the graph as a partitioned probe
graph of G and we denote such a graph as G = (P + N, E).

Recall that permutation graphs form a self-complementary class of graphs,
that is, if a graph is a permutation graph then so is its complement G. Notice
that, unlike the class of permutation graphs, the class of probe permutation
graphs is not self-complementary. The disjoint union of two disjoint 6-cycles
may serve as an example. This is because a C6 can be made permutation only
by choosing two nonprobes of a long diagonal (Fig. 2). If we take the complement
of 2C6, the necessary nonprobes are not independent. This lead us to introduce
the following concept.

Definition 2 ([5]). Let G be a partitioned graph. The sandwich conjugate G∗

of G is the partitioned graph with P(G∗) = P(G) and N(G∗) = N(G) obtained
from G by removing all edges between vertices of N(G).

Note that, if G is a self-complementary class of graphs, then G is a partitioned
probe graph of G if and only if its sandwich conjugate falls into the same category.
For convenience we define permutation graphs by their matching diagrams:

Definition 3. Let π be a permutation of 1, . . . , n. The matching diagram of π is
obtained as follows. Write the numbers 1, . . . , n, horizontally from left to right.
Underneath, write the numbers π1, . . . , πn, also horizontally from left to right.
Draw n straight line segments connecting the two 1’s, the two 2’s, and so on.

Definition 4. A graph is a permutation graph if it is isomorphic to the inter-
section graph of the line segments of a matching diagram.

Theorem 1 ([22]). A graph is a permutation graph if and only if G and G are
comparability graphs.

Theorem 1 permits permutation graphs to be recognized in linear time, using
the linear time algorithm of [17] to find a modular decomposition tree.
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Fig. 1. A 5–cycle. Vertices 2 and 5 are nonprobes.
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Fig. 2. A 6–cycle. Vertices 2 and 5 are nonprobes.

Definition 5. Let G = (V, E) be a graph. A subset M ⊆ V of vertices is called
a module if for every vertex z ∈ V − M, M ⊆ N(z) or M ∩N(z) = ∅.

i. A module M is called strong if for every module M′ the modules M and M′

do not overlap, i.e., either M ∩M′ = ∅, M ⊆M′, or M′ ⊆M.
ii. A module M is trivial if M = V, M = ∅, or |M| = 1.
iii. A graph G is called prime if G contains only trivial modules.

The following celebrated theorem of Gallai started a long line of the research
into modular decompositions.

Theorem 2 ([8]). If G and G are connected, then there is a unique partition P

of V and a transversal set 1 U ⊆ V such that:

1. |U| > 3,
2. G[U] is a maximal prime subgraph of G, and
3. For every class S of the partition P, S is a module and |S ∩U| = 1.

Strong modules satisfy the following property. If M �= V is a strong module then
the smallest strong module M′ properly containing M is uniquely determined.
This property defines a parent relation in the modular decomposition tree.

1. The leaves of this tree are the vertices of the graph.
2. A node is labeled as a parallel node if the subgraph induced by the leaves in

the subtree is disconnected. The children of the node are the components.
3. A node is labeled as a series node if the complement of the subgraph induced

by the leaves in the subtree is disconnected. The children are the components
of this complement.

1 Sometimes the subgraph induced by the transversal is called the quotient graph.
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4. Finally, an internal node is prime if the graph induced by the leaves in the
subtree as well as the complement of this induced subgraph are connected.
The children are the strong modules mentioned in Theorem 2. The node is
labeled with the prime graph induced by the transversal set.

In case the graph G is disconnected, we let the transversal set be the subgraph
induced by one vertex of each component. In this case the subgraph induced by
the transversal set is an independent set. Likewise, when G is disconnected, by
taking one vertex of each component of G we get a transversal set which induces
a clique.

The history of algorithms to find the modular decomposition tree is long,
starting with [7, 15, 20, 21]. The first linear-time algorithm was obtained by Mc-
Connell and Spinrad [17]. Much research is still being done to simplify this
algorithm. See, e.g., [12] for one of the most recent developments. Using mod-
ular decompositions, a transitive orientation of a comparability graph can be
obtained in linear time. However, for checking the transitivity of the obtained
orientation no better algorithm is known than a matrix multiplication. For the
recognition of permutation graphs the situation is much better. Notice that a di-
agram for a permutation graph can be obtained as follows: Let F1 be a transitive
orientation of G and let F2 be a transitive orientation of G. Then F1 + F2 is an
acyclic orientation of the complete graph. Hence it gives a unique linear ordering
of the vertices of G. Likewise, F−1

1 + F2 gives a unique linear ordering. The first
linear ordering can be used for the top line and the second for the bottom line of
a permutation diagram representing G. This leads to a linear-time recognition
algorithm for permutation graphs, since it takes linear time to find F1 and F2

using the modular decomposition algorithm of [12, 17], and one only needs to
check whether the intersection diagram correctly represents G. The transitivity
of F1 and F2 is then guaranteed.

Notice that if G is a prime permutation graph, then both G and G are uniquely
partially orderable, or UPO [9]. That is, F1 and F2 are uniquely determined up
to the reversal. Therefore, we have the following result.

Lemma 1. A prime permutation graph has a unique matching diagram, up to
reversal and exchanging the top and bottom line.

3 Recognition of Partitioned Probe Permutation Graphs

Let G = (P+N, E) be a partitioned graph. We aim at constructing a diagram for
G such that, if x and y are two lines in the diagram, not both nonprobes, then
they cross if and only if the vertices x and y are adjacent in G. Obviously, the
graph G[P] induced by the probes must be a permutation graph, since the class
of permutation graphs is hereditary. Using the algorithm of [17], we compute
the modular decomposition tree for G[P]. Our strategy is to try to insert the
nonprobes into a suitable diagram for G[P].
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Theorem 3. There exists an O(n2) algorithm to determine whether a parti-
tioned graph G = (P + N, E) is a partitioned probe permutation graph and to
obtain an embedding if one exists.

Proof. We describe a recognition algorithm and then analyze its time complexity.
First we check whether G[P] is a permutation graph. If this is not the case we
conclude that G is not a partitioned probe permutation graph. Then we find
the modular decomposition tree T for G[P]. We work on T from the root to
leaves. Consider an internal node of T and let M be the subgraph induced by
the transversal set of this internal node. According to Theorem 2 there are three
cases to consider.

M is prime. According to Lemma 1 the permutation diagram for M is uniquely
determined up to reversal and switching the top and bottom line. Let Mi be the
children of the node, which are the maximal strong proper modules. We think
of the lines representing each representative vertex pi of Mi as a thickened
line or box, but still with disjoint endpoints, reflecting that each module Mi

is a permutation diagram. We must insert the lines of the nonprobes into the
diagram so that they intersect each probe pi correctly: crossing pi, disjoint from
pi or with an endpoint part of the way into pi, i.e., part of the way into the
box representing Mi. By definition, we need not worry about whether nonprobes
cross each other. Consider a nonprobe x which is neither adjacent to all vertices
of M nor disjoint from M, and assume that its closed neighborhood is different
from that of each pi in M + x. We claim that the position of x is completely
determined with respect to the boxes on the top line and bottom line of the
diagram representing the probes. The reason is that G[V(M)+ x] must again be
a prime permutation graph.

If a nonprobe x has the same close neighborhood as a vertex pi in M+x, then
it is placed inside the box representing Mi. We introduce 4 dummy vertices, two
adjacent pairs on each side of Mi. Make each dummy adjacent to one of the four
possible sets of nonprobes that go part of the way into the box representing Mi.
Notice that the graph induced by Mi, the 4 dummies, the nonprobes that are
inside the box, and the nonprobes that are adjacent to one of the 4 dummies is
prime, since it and its complement are both connected. We move to the child
node in the decomposition tree and complete the diagram for the boxes. Since
each nonprobe goes only part of the way into two boxes, we find, by induction,
an embedding in quadratic time since, by Theorem 2 the strong modules form
a partition of the probes and only a constant number of anchoring dummies is
added at the side of each.

M is an independent set. In this case the boxes represent the diagrams for
the components Mi of M. We determine an embedding in two stages. First we
determine the left to right ordering of the components. For each nonprobe x, the
components that have neighbors of x must occur consecutively in the diagram.
Construct a graph with vertex set the representatives pi and the nonprobes that
have adjacencies with at least two Mis as follows. We introduce two dummies
for each Mi, one for each side, left or right, of the box. Fix a component Mi
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and consider the set of nonprobes Si that have partial adjacencies with Mi, and
that have adjacencies in at least one other component. We group the elements
of Si into two groups as follows: Two of these nonprobes are placed into one
group if and only if they have a common neighbor in a component Mj, for some
j �= i. This can be done as follows: Determine the component M�, � �= i that has
adjacencies with a maximal number of elements in Si. The adjacencies of this
M� form one group. If there is no other nonprobe in Si, then all the nonprobes
of Si leave Mi on the same side (the side of M�). In that case we introduce only
one dummy and make this adjacent to all nonprobes of Si. Otherwise, the rest of
the nonprobes in Si form the other group. It is easy to check that this grouping
can be done in overall quadratic time. After completion of this procedure, the
left to right ordering of the components can be found using a PQ-tree algorithm:
The two dummies assigned to each component must be consecutive with the
component, as well as all neighboring modules of each nonprobe.

A diagram for each Mi, all the nonprobes that are inside the box representing
Mi and all the nonprobes that have partial adjacencies in Mi is obtained by
visiting the child node in the decomposition tree. Notice that the graph induced
by Mi, the dummies assigned to it, the nonprobes inside Mi, and the nonprobes
of Si form again a prime graph, hence the embedding is unique up to reversal
and switching the top and bottom line. The relative left to right ordering is
determined by the PQ-algorithm.

The final step is to determine which side of the diagram for each Mi goes to
the top line of the diagram for M. This is taken care of as follows. To each side
of the diagram for Mi, top or bottom, assign arbitrarily two points, say xi and
yi. Construct a graph on these points as follows. Each xi is made adjacent to its
companion yi. If a nonprobe hits Mi at the side of ai, where ai is either xi or
yi, and another Mj at the side of bj, bj ∈ {xj, yj} then construct an edge (ai, bj).
There is an embedding if and only if this graph allows a 2-coloring. It is well
known that checking if a graph is bipartite, and obtaining the two color classes
if it is, can be done in linear time. The two color classes represent the sides of
the boxes that go to the top line and bottom line respectively. By induction it
follows that also in this case an embedding can be obtained in quadratic time.

M is a clique. This case is similar to the second case. We have to omit the
final details of the description due to space limitations. ��

So far, we have been unable to recognize probe permutation graphs when the
partition of the vertices into probes and nonprobes is not a part of the input.
We conjecture that this is polynomial.

Conjecture 1. There exists a polynomial-time algorithm for the recognition of
(unpartitioned) probe permutation graphs.

4 Treewidth of Probe Permutation Graphs

In this section we analyze the structure of the minimal separators in an unpar-
titioned probe permutation graph, proving that problems such as treewidth
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and minimum fill-in are computable in polynomial time for graphs in this class.
Although, at the moment we do not know how to recognize this class, we show
that the treewidth can be determined nevertheless, or else a conclusion is drawn
that the graph is not in the class. Assume throughout that G is connected.

Definition 6. Let G = (V, E) be a graph.

1. A set Ω ⊂ V is a separator if G − Ω has at least two components.
2. If Ω is a separator and C is a component of G − Ω such that every vertex of

Ω has at least one neighbor in C, then C is a full component of Ω.
3. A separator Ω is a minimal separator if it has at least two full components.
4. If x and y are vertices in different full components of Ω, then Ω is called a

minimal x, y-separator.

Definition 7. Consider a matching diagram. A scanline in the diagram is any
line segment with one end vertex on each horizontal line such that the endpoints
do not coincide with endpoints of line segments of the diagram.

Consider a scanline s in a matching diagram such that at least one line segment x

of the diagram has its two endpoints to the left and at least one line segment y has
both its endpoints to the right of s. Take out all the lines in the matching diagram
that cross the scanline s. The corresponding set of vertices clearly separates x

and y into different components. It can be shown that the converse also holds:

Theorem 4 ([2]). Let G be a permutation graph and consider any matching
diagram of G. Let x and y be nonadjacent vertices in G. Then every minimal
x, y-separator consists of all line segments that cross some scanline that lies
between the line segments of x and y in the diagram.

Corollary 1. A permutation graph has at most O(n2) minimal separators.

Theorem 5. Assume G is a connected probe permutation graph equipped with
an embedding H. Consider a matching diagram of H. Let Ω be a minimal sep-
arator in G. Then there exist noncrossing scanlines s1 and s2, possibly equal,
such that

1. ΩP consists of all the probes with both endpoints between s1 and s2 or cross-
ing at least one of s1 and s2, and

2. ΩN consists of all the nonprobes that cross both s1 and s2.

Proof. Let Ω be a minimal (x, y)-separator in G. If x ∈ N and Ω = N(x), then
Ω consists of only probes. We can take one scanline immediately next to x and
the other scanline just outside the last vertices of the diagram. The argument is
similar when Ω = N(y) and y ∈ N.

The other possibility is that the two full components of G − Ω containing x

and y each contain at least one probe. Assume that the probes of the component
Cx that contains x appear to the left of the probes of the component Cy that
contains y.2 Take a scanline s1 immediately to the right of the probes of Cx.

2 Clearly they cannot “interlace.”



502 D.B. Chandler et al.

Also consider the probes of G − Ω, including the probes of Cy, which appear
to the right of the probes of Cx. Take scanline s2 immediately to the left of
these probes. Then Ω contains all the probes between s1 and s2 or crossing at
least one of them. All the nonprobes of Ω cross both of s1 and s2. Since this set
separates x and y and since Ω is minimal, Ω is equal to it. ��

Corollary 2. A probe permutation graph has at most O(n4) minimal separators.

Definition 8. A graph is chordal if every cycle of length at least four has a
chord. A triangulation of a graph G is a chordal supergraph with the same vertex
set. The treewidth (respectively, minimum fill-in) problem for G is to find a
triangulation of G with minimum clique size (respectively, minimum number of
added edges).

Theorem 6. There exist polynomial time algorithms solving the treewidth
and the minimum fill-in problems for the class of probe permutation graphs.

Proof. An algorithm that finds all minimal separators in a graph with polyno-
mial delay appeared in [16]. Bouchitte and Todinca showed in [4] how to solve
the problems mentioned above in polynomial time, given the list of minimal sep-
arators. ��

Definition 9. The pathwidth problem for a graph G is to find an interval
supergraph of G with minimum clique size.

Conjecture 2. There exists a polynomial-time algorithm to solve the pathwidth
problem for probe permutation graphs.

Finally, we investigate cycles contained in probe permutation graphs. To do this,
we look at a larger graph class.

Definition 10. An asteroidal triple, abbreviated AT, in a graph G is a set of
three mutually nonadjacent vertices {x, y, z} such that every pair of them, say x

and y, is in one component of G−N[z]. A graph is AT-free if it does not contain
any AT.

Theorem 7. A probe AT-free graph G cannot have chordless cycles of length
more than 6. Furthermore, every chordless 6-cycle has exactly two nonprobes at
distance 3 in the cycle.

Proof. Consider a chordless cycle C. Consider the set of probes in C. There can
be at most two components in C−N, otherwise there is an AT in any embedding.
Hence, if the length of C is more than 5, there must be exactly two components
in C − N. Furthermore, each component must be a single vertex of an edge,
otherwise there still will be an AT in any embedding. Since the set of nonprobes
is independent, there must be exactly two nonprobes; otherwise there are more
than two components in C− N. Hence C must have length 6, and the nonprobes
must be at distance 3. ��
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Since permutation graphs are AT-free, we obtain the following result.

Theorem 8. Probe permutation graphs cannot have induced cycles of length
more than 6.

It would be interesting to find a forbidden induced subgraph characterization,
although it is unlikely that an ‘easy’ one exists.

5 Conclusion

In this paper we show that the class of partitioned probe permutation graphs
can be recognized in O(n2) time where n is the number of vertices in the input
graph. Furthermore, we show that there are at most O(n4) separators in a probe
permutation graph. As a consequence, the treewidth and minimum fill-in
problems can be solved in polynomial time for the class of probe permutation
graphs.

In Memoriam

It is with deep sadness that we report the death of our friend Jiping (Jim) Liu
on 14 January 2006, as the result of an automobile accident.
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Abstract. The large scale deposited data and existing manual classi-
fication scheme make it possible to study the automatic classification
of protein structures in machine learning framework. In this paper the
classification system is constructed by an integrated feedforward neural
network through incorporating the expert judgements and existing clas-
sification schemes into the learning procedure. Since different aspects of
a protein structure may be relevant to various biological problems, the
protein structure is represented by the convex hull of its backbone and
geometric features are extracted. The training and prediction tests for
different training sets in the class level of CATH indicate that the new
automatic classification scheme is effective and efficient. Also the neural
network model outperforms hidden markov model and support vector
machine in the comparison experiment.

1 Background

A protein is a sequence of amino acid residues in its primary structure and col-
lapses into its tertiary structure. To elucidate the relationship of protein struc-
tures is one of the key tasks of molecular biology in the post-genomic era, which
generally requires accurate classification of protein structures. Currently many
of the tertiary structures of known proteins in three-dimensional space have
been experimentally recorded by X-ray crystallography or NMR spectroscopy
and deposited in the database PDB as a great effort of the structure genomics
project. PDB’s great progress by increasing about 30-50 entries every week calls
for the development of efficient data mining techniques that extract the useful
information hidden in the vast structure database[1].

There are several widely accepted protein structure classification databases
which are classified by a combination of automatic methods and human judg-
ments, such as SCOP (Structural Classification of Proteins[2]), which manually
classifies proteins mainly according to their evolutional information into Class,
Fold, Superfamily, Family levels. Another famous classification database CATH
(Class Architecture Topology Homology [3]), combines automatic and manual
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methods and classifies proteins in Class, Architecture, Topology, Homologous
Superfamily and Sequence Family four levels. FSSP (Families of Structural Sim-
ilar Proteins[4]) is also a fully automatic classification database, which utilizes
protein alignment program Dali[4] to assess similarity but not explicitly classifies
the known protein structures to a designed class.

The large scale deposited data and existing manual classification scheme make
it possible to study the automatic classification of protein structures in machine
learning framework. Based on recent advances of classification techniques and
neural networks, we develop a new automatic classification method for protein
structures in this paper, which includes an abstract representation of a protein
structure from the geometric viewpoint and a new algorithm for the efficient
learning by neural networks.

2 Methods

The automatic classification of protein structures can generally be composed by
two phases. Firstly the geometric features are extracted and used in the assess-
ment of similarity between protein structures. In the second phase the classifi-
cation system is constructed through learning rules from existing databases by
an integrated feedforward neural network.

2.1 The Convex Hull Representation of a Protein Structure and
Geometric Features

A protein structure can be represented as a set of its individual atoms, a folded
3D curve of amino acids or a much coarser assemble of secondary structure ele-
ments. The choice depends on the biological task at hand. Recently the attention
of similarity measure of protein structures focuses on extracting features from
protein structures. An excellent representative of these works is the SGM[5], in
which a protein structure is abstracted to a 30-dimensional array and the score
scheme is simple Euclidean metric. It has been shown that such representation
and measure provide a new way for grouping protein shapes into different classes
at multiple levels.

In this paper the features for machine learning are based on the convex hull
representation of a protein structure. In Fig. 1, we simply illustrate the fea-
ture extracting procedure. First a protein is viewed as a sequence of Cα atoms
described by the position of their centers, which is called the backbone of the
protein. Taking the backbone as the start point, protein structure is represented
by its convex hull [8]. Then the protein surface is approximated by a set of faces
of the protein’s convex hull, since protein surface analysis can help to identify
function determinants, we have reason to believe this representation will provide
the information for protein classification and be a powerful tool to highlight
cases of possible convergent or divergent evolution.

With convex hull representation of protein structure, features or patterns are
extracted from several geometric views. These features are roughly organized
into four catalogs including the features of overall global shape, the features
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Fig. 1. The sketch map of the procedure of how a protein is mapped to a feature vector.
The representative protein is the PDB entry 1acj. Figures from left to right are the
protein graph by Rasmol 2.7, the backbone with only Cα atoms, every plane of the
convex hull and the Cα atoms inside the hull and on the surface of the convex hull.

based on protein surface, the features of the inner distance between amino acids
and the features of simple chemical character of amino acids.

Feature class 1: Overall global shape. Based on the convex hull represen-
tation, some features are extracted from the global shape view. Such as the
number of the amino acids, the vertices number, supporting plane number,
diameter, area and volume of the convex hull. They are considered mainly
on the geometric approximation to real 3D protein structures.

Feature class 2: Protein surface. Protein surface is commonly composed
by the residues defined as the ones that have more than 40% of their area
exposed to water as calculated by DSSP. In this paper we introduce the
convex hull surface to approximate the real protein surface in pure geometric
view. With this start point, we find 22 features try to depict the geometric
character of the surface patches.

Feature class 3: Inner distance distribution. Many protein structure com-
parison methods take the inner distance between amino acids as main infor-
mation of protein structure, such as DALI[4], PRIDE. We also consider the
inner distance distribution of amino acids with adjacent gap from 3 to 30.
Then the average and variance value are taken as features.

Feature class 4: Chemical character of amino acids. The chemical charac-
ter is mainly the hydrophobic and hydrophilic properties, which are thought
to be very important to form and keep the stable folding structure of pro-
teins. As the indirect factors to geometrically impact protein structure, the
percent of hydrophobic amino acids in the whole structure and on the surface
of convex hull are taken as features.

Finally, a protein is abstracted as a 93-dimensional vector based on its structural
information. These features and their expressions will be listed and explained in
details in other paper.

2.2 The Integrated Feedforward Neural Network

It is easy to deduce some rules from the existing classification schemes of protein
structures which are summarized as follows:

1. Hierarchy. The existing databases of protein structures are organized in Hi-
erarchy. Taking the CATH database as an example, in the first level protein
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domains are classified as α class, β class, mixed αβ class and few secondary
structures (coils and curls) classes according to their content of different sec-
ondary structures. In every class they are further classified into different ar-
chitectures by their structure similarity, then fold and superfamily levels. At
last the hierarchy model of protein structures classification is constructed and
every protein domain can be assigned an identification to C, A, T, H levels.

2. Subjective. The existing classification criterions all combine qualitative
standards and expert judgements in some extent. Taking the class level as
an example, there was only a qualitative description when the concept of
protein class was first proposed by Levitt and Chothia in 1976. i.e., α class
is constituted mainly by α helixes as its secondary structure elements and
β class is constituted mainly by β sheets. While α + β and α/β have al-
most equal α helixes and β sheets but the style of arrangement is different.
Although this definition gradually formed the quantitative percentage of sec-
ondary structures widely used today, there are still some subjectivity on the
different choice of the boundary.

3. Coincident. The systematic comparison of protein structure classification
systems by Hadley & Jones (1999)[6] indicates that about two of three pro-
teins have the same label in SCOP, CATH, FSSP databases, though different
structure similarity measures and classification methods are adopted. The
hidden rules behind this phenomena are that there are some invariableness
in the classification systems and protein structure similarity can be explored
in different views. Also it is possible to grasp the knowledge of biologists
and achieve automatic classification of protein structures through properly
extracting key features and designing machine learning algorithms.

we design an integrated feedforward neural network[9] to learn the knowledge
and experience of biologist from existing vast data based on these basic obser-
vations of the existing protein structure classification systems and the abstract
representation of protein structures. Specially, an integrated neural network for
automatic classification of CATH database is designed in this paper. The topol-
ogy structure of the neural network is depicted in Fig. 2. There are five layers
in the perceptron. The first layer contains NF input neurons, and each denotes
the element of the feature vector. The second superfamily layer, third topology
layer and fourth architecture layer(the hidden layers) have NH , NT and NA neu-
rons respectively. The fifth class layer has NC neurons. Each neuron denotes its
belongings in the CATH classification system.

Suppose that the connection weights between the adjacent layers are Whf ,
Wth,Wat and Wca respectively. i.e.,

Whf = {whf}ij i = 1, 2, · · · , NH j = 1, 2, · · · , NF ,

Wth = {wth}ij i = 1, 2, · · · , NT j = 1, 2, · · · , NH ,

Wat = {wat}ij i = 1, 2, · · · , NA j = 1, 2, · · · , NT ,

Wca = {wca}ij i = 1, 2, · · · , NC j = 1, 2, · · · , NA,
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Feature

Superfamily

Class

Architeture

Topology

Fig. 2. The topology structure of the integrated neural network

All the neurons located on superfamily, topology, architecture and class layer
have the continuous Sigmoid activation function φ(x) = 1

1+e−x .

Error function. Given the known protein structure sample P u = [xμ, yμ
h, yμ

t ,
yμ

a , yμ
c ] and the input feature vector xμ = {x0, x

μ
1 , xμ

2 , · · · , xμ
NF
}, then the error

functions for the superfamily, topology, architecture and class layer are defined as:
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Error back-propagation. The direction of error back-propagation is C −→
A −→ T −→ H . Thus, the iteration formulae by simplified gradient method are
derived as

wi
ca(k + 1) = wi

ca(k)− ηc∇wi
ca
Eμ

C , i = 1, 2, · · · , NC (1)

wi
at(k + 1) = wi

at(k)− ηc∇wi
at
Eμ

C − ηa∇wi
at
Eμ

A, i = 1, 2, · · · , NA (2)



510 Y. Wang et al.

wi
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where the expressions of the gradients in the homology level ∇Eμ
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hf ), in the topology level ∇Eμ
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Learning Algorithm. The algorithm of the integrated feedforward neural net-
work for protein structure classification can be concluded as follows:

Step 1: Initialization. Given the training set of protein structures,

{P u = [xμ,yμ
h,y

μ
t ,y

μ
a ,y

μ
c ] μ = 1, 2, · · · , Ns}

let ε > 0, k = 0, and K be a given integer;
Randomly choose the initial connection weights as small random values
wi

ca(0) i = 1, 2, · · · , NC , wi
at(0) i = 1, 2, · · · , NA, wi

th(0) i = 1, 2, · · · , NT ,
wi

hf (0),i=1, 2,· · ·, NH . Set the training parameters to be ηc(0), ηa(0), ηt(0),
ηh(0) and 0 < α, β < 1.

Step 2: Training. Picking P u as teacher data randomly, Compute E =
Eμ

C(k) +Eμ
A(k) + Eμ

T (k) + Eμ
H(k);

If E < ε or k > K, go to Step 3
else update the weights by (1),(2), (3), (4).
E′ = Eμ

C(k + 1) +Eμ
A(k + 1) +Eμ

T (k + 1) +Eμ
H(k + 1);

If Eμ
C(k+1) < Eμ

C(k), then ηc(k+1) = (1+αk)ηc(k), else ηc(k+1) = βηc(k).
If Eμ

A(k+1) < Eμ
A(k), then ηa(k+1) = (1+αk)ηa(k), else ηa(k+1) = βηa(k).

If Eμ
T (k+1) < Eμ

T (k), then ηt(k+1) = (1+αk)ηt(k), else ηt(k+1) = βηt(k).
If Eμ

H(k+1) < Eμ
H(k), then ηh(k+1) = (1+αk)ηh(k), else ηh(k+1) = βηh(k).

If E′ < E, then k = k + 1, go to Step 2; else go to Step 2 directly.
Step 3: Output. Output training parameters, wi

ca(k), i = 1, 2, · · · , NC ,
wi

at(k), i = 1, 2, · · · , NA, wi
th(k), i = 1, 2, · · · , NT , wi

hf (k), i = 1, 2, · · · , NH .

3 Numerical Results

The dataset used in [7] is adopted in our preliminary training and prediction
test. The data are a non-redundant subset of the CATH 2.3 protein domain
database created using the CD-HI program to ensure that none of the domains
had more than 40% sequence identity with one another. These 2771 protein
domains represent 1099 homologous superfamilies, 623 topologies, 36 architec-
tures and 4 classes. The reason for choosing this dataset is that it is used in
as a benchmark data to evaluate seven protein structure comparison methods
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and two sequence comparison programs on their ability to detect either protein
homology or domains with the same topology (fold) as defined by the CATH
structure database.

According to the character of the dataset, we adjust the standard connection
style of the neural network. The simulating perceptron is fully connected by 93
input neurons, 100 hidden neurons and 4 output neurons. And the orthogonal
coding scheme is adopted for the four output neurons to indicate all α, all β, αβ
and few secondary structure classes respectively. The total number of parameters
of the network is 93 × 100 + 100 × 4 + 100 + 4 = 9804. The belonging rule is
taken as 402040. To overcome the difficulty brought by the unbalance structure
of the dataset, the construction of training set is adjusted by the parameter
”Percent” in every category. In the test we try the cases 50%, 60%, 70%, 80%,
90%, 100%, where the case of 100% means that the training set is the same
as the validation set, i.e., the resubstitution test. To be noticed that, we have
sampled the data many times and experimented many times, we found that the
training and prediction results are stable and robust. So the method of choosing
training set ensures that our conclusion is statistically significant, though the
elements of a single training set is drawn randomly.

The numerical results for different training sets are summarized in Tab. 1,
where rows indicate the number of samples of training set, the number of samples
of validation set, the training cycle, training error, the training accuracy, the
prediction accuracy and validation accuracy in class.

From Tab. 1, we can see that the perceptron gives the high accuracy in the
class level. When the percent is set to 50%, the overall training accuracy can
reach 98.99% and overall validation accuracy can reach 81.41%. When we exam-
ine the individual class, the training accuracy in all the classes keeps a high level,
especially for the αβ class, whose prediction accuracy can reach 96.24%. This
class contains almost the half of whole sample set (Total 2771, All α class 586,
All β class 117, αβ class 1384, Few secondary structures class 82). These results
show that the abstract representation of protein from its convex hull’s view can
grasp some important characters of proteins in αβ class. Also it follows the com-
mon sense that the training and validation accuracy increases gradually with the
enlargement of training set.

In Fig. 3, the curves of training and validation error functions show the con-
vergence procedure of the neural network on the condition that ω = 0.9 and
training cycle is 5000. The horizontal axis is the training cycle and vertical axis
denotes squared summed error. The upper curve in the figure is the error of val-
idation error and the lower one is training error. These two curves are steep in
the beginning of training and gradually become smooth. This phenomena accord
with the theory of steepest descent algorithm in unconstrained optimization.

Validation samples can only evaluate the models in some sense and cross-
validation experiments should be conducted to show the performance of general-
izability. As indicated before, it is not proper to conduct it directly to unbalanced
dataset. So the construction of test dataset is also adjusted by the parameter
”Percent” in every category. In the test we pick the 50%, 60%, 70%, 80%, 90%
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Table 1. The training and validation results of protein structures classification in class
level of CATH

Percent 50% 60% 70% 80% 90% 100%
Number of training set 1385 1661 1938 2215 2492 2771
Number of validation set 2771 2771 2771 2771 2771 2771
Training cycles 4000 5000 4000 5000 5000 10000
Training error (SSE) 22.88 35.88 44.55 53.09 66.79 52.8
Overall Training accuracy Right 98.99% 98.62% 98.19% 98.42% 98.23% 98.70%

Unknown 0.51% 0.72% 1.29% 0.86% 0.92% 0.76%
Wrong 0.51% 0.66% 0.52% 0.72% 0.84% 0.54%

Validation error (SSE) 795.25 668.88 319.45 266.29 175.26 52.8
Overall validation accuracy Right 81.41% 83.98% 91.45% 93.83% 95.74% 98.70%

Unknown 6.53% 6.57% 4.19% 2.31% 2.31% 0.76%
Wrong 12.05% 9.46% 4.37% 3.86% 1.95% 0.54%

All α class Training 98.98% 98.86% 95.12% 96.79% 97.91% 98.12%
Validation 71.84% 68.94% 87.71% 92.32% 94.54% 98.12%

All β class Training 99.72% 99.30% 99.60% 99.83% 99.23% 99.58%
Validation 63.56% 77.61% 93.60% 94.44% 96.66% 99.58%

αβ class Training 98.84% 98.67% 98.97% 98.64% 98.47% 98.92%
Validation 96.24% 95.30% 93.14% 95.09% 96.75% 98.92%

Few secondary structures Training 95.12% 89.80% 94.74% 93.85% 87.67% 91.46%
Validation 56.10% 56.10% 70.13% 78.05% 79.27% 91.46%

Fig. 3. The curves of training and validation error functions when percent is set to 90%

of data as training samples and others are test samples. Same as previous, the
test dataset is drawn randomly, in many times in order to make statistically sig-
nificant conclusions. The prediction results are listed in Tab. 2 which shows the
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Table 2. The test results of protein structures classification in class level of CATH

Percent 50% 60% 70% 80% 90%
Number of training set 1385 1661 1938 2215 2492
Number of test set 1386 1110 833 556 279
Test accuracy 62.07% 63.84% 73.50% 75.54% 75.77%

Table 3. The comparison of classification results of MLP, SVM and HMM

Percent 50% 60% 70% 80% 90% 100%
Class MLP (Training accuracy) 98.99% 98.62% 98.56% 98.42% 98.27% 98.70%

SVM (Training accuracy) 88.16% 88.38% 88.65% 88.85% 88.52% 88.42%
HMM (Training accuracy) 87.08% 87.30% 85.55% 85.01% 83.03% 82.39%

MLP (Validation accuracy) 84.16% 86.83% 93.65% 94.59% 96.36% 98.70%
SVM (Validation accuracy) 77.16% 74.81% 86.43% 87.30% 87.51% 88.42%
HMM (Validation accuracy) 60.63% 75.03% 80.80% 81.45% 81.27% 82.39%

pure geometric features and the modified neural network structure are efficient
in protein structure classification in the class level.

To illustrate the remarkable exhibition, we compare the proposed machine
learning method MLP(Multiple Layer Perceptron) with other popular SVM
(Support vector Machine)[10] and HMM (Hidden Markov Model)[11]. The re-
sults are listed in Tab. 3. It is easily deduced that the proposed MLP takes
obvious advantage both in training accuracy and validation accuracy.

4 Conclusion

In this paper, The neural network model for automatic classification of protein
structures is constructed in the framework of machine learning. And the experi-
ments is performed in the class level of CATH. The given computational results
of show that the proposed geometric features based on convex hull representation
of protein structure can indicate protein similarity in some extent, also the in-
tegrated neural network for CATH performs better than Hidden Markov Model
and Support vector Machine. The main contribution in this paper is both in
the new abstract representation of protein structures and the integrated neural
network model for learning.

Though numerical results confirm the effectiveness of the proposed method,
there is still a long way to go for the automatic classification of whole protein
structure database. The promising research topics includes two aspects. One is
automatic classification of protein structures in other levels, which have more
sub-catalogues and will challenge the existing machine learning methods. The
other is performing the classification in a higher accuracy, which can be started
from both improvement of learning algorithm and exactness of features describ-
ing protein structure.
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Abstract. Protein structure comparison is an important tool to explore
and understand the different aspects of protein 3D structures. In this pa-
per, a novel representation of protein structure (complete information set
of Cα −Cα distances, CISD) is formulated at first. Then an FDOD score
scheme is developed to measure the similarity between two representa-
tions. Numerical experiments of the new method are conducted in four
different protein datasets and clustering analyses are given to verify the
effectiveness of this new similarity measure. Furthermore, preliminary re-
sults of detecting homologous protein pairs of an existing non-redundant
subset of CATH v2.5.1 based on the new similarity are given as a pilot
study. All the results show that this new approach to measure the similar-
ities between protein structures is simple to implement, computationally
efficient and fast.

1 Introduction

Understanding protein structure is central to the post-genomic era. A direct and
important method to meet this challenge is protein structure comparison. Sev-
eral reasons for using structure comparison can be summed as follows [1, 2]. First
it comes from the need for managing and organizing the great amount of struc-
ture data. Though existing secondary structure databases such as SCOP,CATH
and FSSP can provide classifications of protein structures, they are just semi-
automatic: their classifications not only rely on structural and evolution infor-
mation but also depend on human expertise to some extent. But in some case,
we need to quickly search and query in structure databases. So the need for a
fully automatic protein structure comparison method is urgent. Secondly, a fully
automatic protein structure comparison method can detect a distant evolution-
ary relation from structure resemblance which the sequence alignment method
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can not provide. This point is very important as the function of a new protein
can be determined through their distant evolutionary neighbors by comparing
its structure to some known ones. Thirdly, many existing structure comparison
algorithms decide the similarity among structures by finding out maximal com-
mon substructure, or a common pattern, i.e. a motif, which always has biological
meaning. Lastly, structure comparison method will be a useful assessment tool
for the protein structure prediction method.

A number of automatic methods have already been proposed as summed in
the comprehensive reviews [1-5]. Generally, these works can be roughly classified
into two classes. Early research works mainly focus on finding the optimal rigid-
body superposition of two structures such that the root mean square deviation
(RMSD) between the aligned atoms is minimized, or these methods are simply
named structure alignment which dedicates to getting the best correspondence
between two protein sequences. They all use the element-based representation
of structure, such as atoms, residues, and secondary structure elements (SSEs),
and adopt the RMSD scoring scheme to measure the similarity [6-8]. But these
methods have some disadvantage. First, RMSD is effective only between nearly
identical structures [9]. Second, it lacks good mathematical properties as a dis-
tance, such as it doesn’t subject to triangular inequality.Third, the correspon-
dence between the elements of two proteins which is necessary for RMSD requires
resource-consuming algorithms. Besides, RMSD values depend not only on con-
formational differences but also on other features, for example, the dimension of
the protein structure [10, 11].

Lots of novel methods to measure the similarity between protein 3D structures
without superposing them or aligning their equivalent residues have recently been
proposed.They all accord with such a framework that the relevant features are ex-
tracted and represented in structure descriptions, and the equivalence is obtained
by the specific score scheme [1-5]. A representative of them is the PRIDE. It can
provide a correct classification even for unrelated structures and canmake 98.8%of
the folds of the CATH database fall into the correct classification[12]. From the re-
cent progress, we can see the tendency that protein is represented in many aspects
and more and more abstract mathematics tools are involved in this field. Further-
more, as paper [5] pointed out, the need for alternative similarity measures and fast
methodologies will probably continue since different aspects of protein 3D struc-
tures may be relevant to various biological problems.

In this paper, a novel approach for protein structure comparison is proposed.
The contribution comes from both the representation of protein and score scheme
respectively. First, a protein structure is measured from the aspect of its Cα−Cα

distances, which is approximated by complete information set [13] of Cα − Cα

distances between residues separated by three to 30 amino acid residues. Then
an CISD (the complete information set of Cα − Cαdistances between residues
separated by three to 30 amino acid residues) is defined and easily computed.
Hence every protein structure is represented by a complete information set.
Secondly, a similarity score called FDOD function [13] is applied to achieve
the comparison of two subsequence distributions of distances between residues
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separated by some amino acid residues. It provides a new measure of protein
similarity and has many good mathematical properties. Combining the above
two phases, a pairwise comparison algorithm is designed and it can be easily
generalized to multiple case [14], which is explained in detail in this paper.

The remainder paper is organized as follows: firstly, we give the details of
our new methods from the aspects of protein representation and score scheme
respectively. Secondly, the results are presented through numerical tests on sev-
eral protein datasets and pilot detection of homologous protein pairs of a existing
subset of CATH. Then, the new macro-structure similarity is discussed, and a
brief conclusion and directions of further research work are presented in the
last section. We explain how to measure similarity by the new protein structure
representation CISD, and the FDOD score scheme.

2 Methods

2.1 CISD Representation of a Protein

Different protein shape representations are used to mine the huge amount of
protein 3D structure data. The choice of a proper representation depends on
the biological task at hand. Most of existing comparison methods often view a
protein as a sequence of Cα atoms described by the position of their centers,
which is called the backbone of the protein. The backbone representation of a
protein is the start point of this paper.

Our motivation of protein representation comes from the successful applica-
tions of complete information set in the comparison of DNA sequence and the
study of phylogeny, where the complete information set is used to extract the
information that the data provides sufficiently. Now we introduce the concept of
complete information set CIS:

let
∑

= {a1, a2, · · · am} be an alphabet of m symbols and suppose S =
{S1, S2, · · ·Ss} is a set of sequences formed from

∑
.We denote the set of all

different sequences formed from
∑

with length l by Θl;For a sequence Sk ∈
S,let Lkbe its length and nl

ikdenote the number of contiguous subsequences in
Sk,which match the i-th sequence of Θl,l ≤ L.It is easy to see that

m(l)∑
i=1

nl
ik = Lk − l + 1, l ≤ Lk 1 ≤ k ≤ s (1)

Letting P l
ik = nl

ik/(L
′
k − l + 1), we obtain a distribution:

U l
k = (P l

1k, P
l
2k, · · ·P l

m(l)k), where
m(l)∑
i=1

P l
ik = 1 (2)

for each k and l ≤ Lk. Let Γ l denotes the set of all distributions satisfying∑m(l)
i=1 P l

ik = 1, i.e.
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Γ l = {(P l
1k, P

l
2k, · · ·P l

m(l)k)T |
m(l)∑
i=1

P l
ik = 1, P l

ik ≥ 0} (3)

Thus, for each sequence Sk , we can get a unique set of distributions (U1
k , U

2
k , · · ·

ULk

k ) ,where U1
k ∈ Γ 1, U2

k ∈ Γ 2, · · ·ULk

k ∈ ΓLk . This set contains all primary
information of a sequence. In particular, ULk

k uniquely determines the original
sequence; so, we call this set a complete information set(CIS) of the sequenceSk.

It is found that Cα − Cα distances between residues separated by three to
30 amino acid residues in a protein structure are variable and distinguishable.
But in one hand using actual values directly can lead to unstable under the
interior flexibility. In another hand, using distribution of Cα−Cα distances can
not extract information sufficiently. In our model, the information contained in
Cα−Cα distances between residues separated by three to 30 amino acid residues
is extracted as complete information set of Cα − Cα distances.
Cα−Cα distances can not be extracted as complete information set directly, as

it is just some numbers rather than sequences of letter. In our model, we encode
the Cα−Cα distances into sequences of letter. Take two structures for example,
we can find the minimum and maximum of all these Cα − Cα distances in the
two structures, then from minimum to maximum, 20 intervals can be divided,
each distance can be given a letter with respect to the order of interval it falls
into.

As discussed above, the procedure of mapping a protein to the correspond-
ing complete information set of Cα − Cα distances between residues separated
by three to 30 amino acid residues can be summarized in three steps. Now we
formally state the CISD representation of a protein structure. Suppose we com-
pare two structures A and B. Their numbers of Cα atoms are denoted byNA

and NB respectively. Based on the coordinates of Cα atoms, assume that the
structures of the two proteins are completely determined by their amino acid
sets respectively.

XA = {xA,k} = {(x1
A,k, x

2
A,k, x

3
A,k), k = 1, 2 · · ·NA}

XB = {xB,k} = {(x1
B,k, x

2
B,k, x

3
B,k), k = 1, 2 · · ·NB}

where (x1
A,k, x

2
A,k, x

3
A,k) and (x1

B,k, x
2
B,k, x

3
B,k) are the coordinate of the Cα

atoms of the two structures. Let Dk
A,n, D

k
B,n denote the distance between k-

th Cα and (k+n)-th Cα in structure A and B respectively. They are formulated
as

Dk
A,n = ‖xA,k − xA,k+n‖ =

√√√√ 3∑
i=1

(xi
A,k − xi

A,k+n)2 (4)

Dk
B,n = ‖xB,k − xB,k+n‖ =

√√√√ 3∑
i=1

(xi
B,k − xi

B,k+n)2 (5)
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DA,n, DB,n denote the sequences of Cα −Cα distances separated by n amino
acid residues in protein A and B respectively, where n = 3, 4 · · ·30. (if not
mentioned specially, n denotes the same meaning below here). That is to say

DA,n = D1
A,nD

2
A,n · · ·DNA−n

A,n

DB,n = D1
B,nD

2
B,n · · ·DNB−n

B,n

Let
mdn = min{min{Di

A,n, 1 ≤ i ≤ NA},min{Di
B,n, 1 ≤ i ≤ NB}}

MDn = max{max{Di
A,n, 1 ≤ i ≤ NA},max{Di

B,n, 1 ≤ i ≤ NB}}

Then we can divide the interval [mdn,MDn] into 20 subintervals:

subintervali,n = (mdn +
(i− 1)× (MDn −mdn)

20
,mdn +

i× (MDn −mdn)
20

]

Each subinterval is designated by a letter with respect to its order.That is to
say, the i-th subinterval corresponds to i-th letter in English alphabet which
is ordered alphabetically. For example, the second subinterval subinterval2,n is
designated by B. Then Dk

A,n and Dk
B,n can be encoded as ssk

A,n and ssk
B,n:ssk

A,n

and ssk
B,n equal to the letters of the subinterval which Dk

A,n and Dk
B,n fall into

respectively (if Dk
A,n or Dk

B,n equals to mdn,then it is encoded as A). At the
same time, DA,n and DB,n can also be encoded into two sequences in the same
way:

SSA,n = ss1A,nss
2
A,n · · · ssNA−n

A,n

SSB,n = ss1B,nss
2
B,n · · · ssNB−n

B,n

With this preparation, we can construct complete information set of SSA,n and
SSB,n:

U l
A,n = (pl

A,n,1, p
l
A,n,2, · · · pl

A,n,m(l))

U l
B,n = (pl

B,n,1, p
l
B,n,2, · · · pl

B,n,m(l))

CISDA,n = (U1
A,n, U

2
A,n, · · ·UNA−n

A,n )

CISDB,n = (U1
B,n, U

2
B,n, · · ·UNB−n

B,n )

CISDA = (CISDA,3, CISDA,4, · · ·CISDA,30)

CISDB = (CISDB,3, CISDB,4, · · ·CISDB,30)

Final, the two proteins A and B are represented by CISDA (complete informa-
tion sets of Cα −Cα distances separated by three to thity amino acid residues)
and CISDB respectively.



520 Z.-K. Wu et al.

2.2 FDOD Score Scheme

Function of Degree of Disagreement (FDOD) is a new measure of information
discrepancy [14]. It has been successfully used to measure the discrepancy be-
tween DNA sequences and amino acid sequences from different species in the
study of phylogeny and prediction of protein structural classes. This measure
has a close connection with Shannon entropy, and has many good mathemati-
cal characteristics, such as symmetry, boundedness, triangle inequality, and so
on.Also this measure is applicable to the multiple sequence comparison [14]. It
is a very important property in our study to achieve easily both protein pairwise
and multiple structure comparisons.

Given a set of distributions of elements:
U l

1 = (pl
11, p

l
21, · · · pl

m(l)1)
U l

2 = (pl
12, p

l
22, · · · pl

m(l)2)
· · ·
U l

s = (pl
1s, p

l
2s, · · · , pl

m(l)s)

where
∑m(l)

i=1 pl
ik = 1, k = 1, 2, · · · , s. The FDOD measure is defined as

R(U1, U2 · · ·Us) =
s∑

k=1

m(l)∑
i=1

pl
ik log

pl
ik∑s

k=1
pl

ik

s

(6)

where 0 · log 0 = 0 and 0 · log(0/0) = 0 are defined. R(U1, U2 · · ·Us) denotes a
measure of discrepancy among distributions.

The whole procedure of the method is summarized in following picture:
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sequence of Dk
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min{Dk
A,n, Dk

B,n},max{Dk
A,n, Dk

B,n}

sequence:SS
A,n

SS
B,n

complete information set:CISDA CISDB

FDOD(CISDA, CISDB)
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3 Results

3.1 Benchmarks on Existing Datasets

In order to assess the ability of the new approach to measure the protein simi-
larity, two existing datasets are picked as the initial assessment examples.

3.1.1 Leluk-Konieczny-Roterman Dataset
The Leluk-Konieczny-Roterman dataset is a small dataset first employed in
Leluk et al (2003) [15] and then used by USM [16] to test the different sim-
ilarity measures. There are six proteins which belong to the same Alpha and
Beta class, the same Serpins fold and the same Serpins family and superfamily
in the SCOP classification. The difference appears in the Protein and Species
level. Our approach surprisingly properly clusters the 1att, 1azx and 2antL into
the Antithrombin, the 7apiA and 2achI into Antitrypsin, Alpha-1 and 1ovaA to
Ovalbumin. The clustering result is summarized in Figure1.

1ovaA   ovalbum in

1att   Antifhrom bin

2antl  Antifhrom bin

1azx   Antifhrom bin

2ac hA  Antitryps in

7apiA    Antitryps in

Fig. 1. Clustering result of the proteins from Leluk-Konieczny-Roterman dataset ac-
cording to the new method

3.1.2 David Dataset
The David dataset is introduced in the David Bostick (2003) [17] to test a new
topological method for measuring protein structure similarity. There are ten
proteins: 1mli, 1ris, 2acy, 1a79A, 1avqA, 1a6m, 2hbg, 1b8dA, 1bu2A and 1aisB,
which belong to three different classes in the SCOP classification.we select 5
domains 1mli, 1ris, 2acy, 1a79A, 1avqA from the dataset to form a new dataset.
The new method can cluster the 5 domains into 2 classes properly while PRIDE
can not. The respective results are summarized in Figure 2 and Figure 3. Clus-
tering result of the whole dataset with the new method shows that only one
protein 1avqA is misplaced. The clustering result is summarized in Figure 4.
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1avqA

1a79A

2acy

1mli

lris

Fig. 2. Clustering result based on the new
method

2acy

1a79A

1ris

1mli

1avqA

Fig. 3. Clustering result based on PRIDE

1ris

1m li

2ac y

1a79A

1avqA

1b8dA

1bu2A

1aisB

2hbg

1a6m

+

+

+

*

*

*

*

*

Fig. 4. Clustering result of the proteins from David dataset according to the new
method. The character following the PDB ID denotes the different class. + is Alpha
and Betas,× denotes the Alpha and beta proteins, ∗ is the all Alpha proteins.

3.2 Cluster Analysis of 45 Domains Selected from CATH Randomly

In order to test our method on a wider range of similarities we selected 45 do-
mains from CATH randomly(5crxB2, 1zqfA1, 1zqu01, 1rpl01, 2bpfA2, 1bpxA2,
7iciA2, 7icpA2, 7ictA2, 8icfA2, 8icnA2, 8icrA2, 9icaA2, 1bvsD2, 1cuk02,
1c0mC2, 1mlgA3, 1nz9A0, 1dj7B0, 1jboE0, 1lvk01, 1mmg01, 1mne01, 1vom01,
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Fig. 5. Clustering result of 45 domains from CATH according to the new method. The
character following the PDB ID denotes the taxonomy number in CATH.

1d0yA1, 1d1bA1, 1g8xA4, 1ospo1, 1bia03, 1bcmB2, 1krhA1, 1l5pA0, 1c4cA1,
2pia03, 1qlaE1, 1qlbE1, 1htoA2, 1f52A2, 1f52C2, 1f52E2, 1f52G2, 1bmlC1,
1bmlC3, 1bmlD2, 1div02). The domains are selected so as to fall into three
groups (with 15 domains in each Group), represented by the following labels:
group 1: C=1, A=10, and T=150; group2: C=2, A=30, and t=30 except for
1ospo1 with the taxonumber 2.30.70; group 3: C=3, A=10, and T=20. The den-
drogram shows that the domains belong to different class defined in CATH are
clearly distinguished. Our method even can discriminate domains at the lower
levels except for 1c4cA1,1div02 and 1ospo1. For example, the domains with the
taxonomy number 1.10.150.20.1.3 are separated from those having the taxonomy
number 1.10.150.20.1.1. The detail of dendrogram can be seen in Figure 5.

3.3 Preliminary Homologous Protein Detection Results

To evaluate the new method’s ability to detect homologous protein pairs, we
design a simple procedure to detect homologous pairs based on the new similarity
measure.
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3.3.1 Data Preparation
We regard the CATH database as the standard for homologous relationship.
The CATH database classifies protein similarity in four hierarchical levels:class,
Architecture, Topology, and Homologous superfamily.In these four levels, pro-
tein pairs within the same ”superfamily” are classified as homologous. The non-
redundant subset of CATH created by MICHAEL L.SIERK In [18] is adopted.
We use the dataset as Library and select a single member from each of 86 families
to serve as a query. When detecting, Each query is compared with each member
of the library.

3.3.2 Design of Detection
The detection is designed coarsely as follows.

Step 1. Distance computation: The Cα −Cα distances are computed for each
member of the dataset.

Step 2. CISD extraction: CISD is extracted from Cα −Cα distances for each
member of the dataset.

Step 3. CISD comparison: The discrepancy between the CISD of each query
and the CISD of each member of library is measured though the FDOD scoring
scheme and a score is gotten respectively.

Step 4. Score sorting: All the scores are sorted in the descent direction.
Step 5. Performance analysis: According to the nature of research, we define

two concepts to evaluate performance: Coverage and Reliablity. They are defined
as in [2]:

Coverage(S) =
Ntp(S)

Nt

Reliablity(S) =
Ntp(S)
Np(S)

where Ntp(S) is the number of homologous protein pairs that have a discrepancy
score smaller than S, Nt is the number of homologous protein pairs, and Np(s)
is the number of protein pairs that have a discrepancy score smaller than S.

3.3.3 Results
The primary results are shown in Table 1.

Table 1. The primary result of Homologous protein pairs on a subset of CATH

S Coverage(S) Reliablity(S)

0.120 0.100488 0.134289

The results are just moderate.There are two reasons for this situation: First,
our new representation is based on the Cα − Cα distance. The global shape is
not just only decided by it. So our new representation is just an approximate
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expression of characters for a protein structure. Second, the scheme of detec-
tion is very coarse as we designed the scheme without knowing in which level
measuring similarity between proteins with the new representation suits for.

4 Discussion and Conclusion

In this paper, a new protein structure comparison method is proposed. In this
method,the protein representation is twenty-eight subsequence distributions of
Cα−Cα distances between residues separated by three to 30 amino acid residues
called CISD and similarity between proteins is measured through comparing
their CISD by FDOD. Numerical experiments conducted in two existing differ-
ent protein datasets and cluster analysis of 45 domains selected randomly from
CATH verify that CISD is a simple and efficient description of protein structure
and FDOD score scheme is also a simple and efficient measure. Furthermore,
preliminary results are given as a pilot study of fast detection of homologous
protein pairs of an existing non-redundant subset of the whole CATH database
based on the new macrostructure similarity. All these experiments also show
the method can provide certain insight into the protein 3D structure and cap-
ture some factors to assess protein structure similarity in a fast and automatic
way.The main contribution of the method is that the representation and compar-
ison method both aim to dig information from protein structures and compare
them in a rapid and automatic way.

If two proteins are similar, the respective Cα −Cα distances between residues
separated by three to 30 amino acid residues in the two proteins are also similar.
But when Cα − Cα distances between residues separated by three to 30 amino
acid residues in two proteins are similar, the two proteins are not similar nec-
essarily. Cα − Cα distances is just an approximate expression of characteristic
for a protein structure. So any representation based on it is also an approximate
representation of protein structure. The quality of representation depends on the
extent of the information be used.

According to the construction of complete information sets, the longer the
subsequence is, the more information it includes. For example,protein A and B’s
sequence of Cα −Cα distances are encoded as AAATTT and ATATAT respec-
tively. Then their distribution are the same: {0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.5} although the Cα − Cα distances of the two proteins are different.
But their differences can be discriminated easily with the subsequence of length
l = 2: their subsequences are {AA, AA, AT, TT, TT } and {AT, TA, AT, TA, AT }
respectively.So their subsequence distributions are also different greatly. With
the length of subsequence increasing, the occurrence of different sequences is
largely confined more and more. Obviously, any sequence can be uniquely recog-
nized by increasing the length of subsequence. In PRIDE, protein is represented
by the distribution of Cα − Cα distances. So the information of Cα − Cα dis-
tances can be extracted more sufficient than PRIDE if the length of subsequence
increases to 2 or more.But with the increase of l, the computation time increases
simultaneously. There is a trade-off between the ability of discrimination and
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computing time. In our method , the length of subsequence l is fixed to 2. Exper-
iments show our method can extract more information from Cα − Cα distances
than PRIDE’s representation and improve the discriminative ability with a fast
computating speed.

Our representation is subsequence distribution of Cα − Cα distances rather
than the actual values. Despite loss of information, the new representation can
give reasonable discrimination in numerical results. Preliminary analysis indi-
cates that the local interaction information is very useful in the protein structure
similarity measure. Further analysis is needed for the different levels of represen-
tation. Also the protein is represented by a series of distance sequences in this
paper, they are deemed as independent sequence by default. It is not always in
this case considering the existing of secondary structure. So it is necessary and
important to explore the relationship between them carefully. These research
works are in progress.
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Abstract. In this paper, we first consider some properties of strings who
have the same suffix array. Next, we design a data structure to support
rank and select operations on an alphabet Σ using nlog|Σ|+ o(nlog|Σ|)
bits in O(log|Σ|) time for a text of length n. It also supports an extended
rank, namely rank≤, such that rank≤

α (T, i) returns the number of letters
which are smaller than α in string T , plus the number of αs up to position
i. Also, it runs in O(log|Σ|) time. By this structure, we implement the
DAWG succinctly. The main structure only takes nlog|Σ| + o(nlog|Σ|)
bits and supports basic operations of DAWG efficiently.

1 Introduction

Given a text string, full-text indexes are data structures that can be used to find
any substring of the text quickly. Many full-text indexes have been proposed,
such as suffix trees [8, 16], DAWGs [3] and suffix arrays [7, 12]. However, the
major drawback that limits the applicability of full-text indexes is their space
complexity–the size of full-text indices are quite larger than the original text.
Standard representations of suffix tree require 4nlogn bits space, where log de-
notes the logarithm base 2.

Suffix array was proposed to reduce the space cost of suffix trees. It consists of
the values of the leaves of the suffix tree in in-order, but without the tree struc-
ture information, hence takes only nlogn bits. Recent researches are focused on
reducing the sizes of full-text indices [6, 9, 10, 15]. The compressed suffix array
structure [9] proposed by Grossi and Vitter is the first method that reduces the
size of the suffix array from O(nlogn) bits to O(n) bits and supports access
to any entry of the original suffix array in O(logε

|Σ|n) time, for any fixed con-
stant 0 < ε < 1 (without computing the entire original suffix array). FM-index
proposed by Ferragina and Manzini [6] is a self-index data structure with good
compression ratio and fast decompressing speed. The FM-index occupies at most
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5nHk(T ) + o(n) bits of storage and allows the search for the occ occurrences of
a pattern P [1..p] within T in O(p + occlog1+εn) time.

He et al. [10] present a succinct representation of suffix arrays of binary strings
that uses n + o(n) bits. For the case of large alphabet, they suggested an ap-
proach which conceptually sets a bit vector for each alphabet symbol to support
operations rank and select, and uses a wavelet tree in the actual implementa-
tion to save space. They also proved a categorization theorem by which one can
determine whether a given permutation is the suffix array for a binary string.

In this paper, we study the same problem over large alphabet, and develop
a space-economical method to solve the problem. We first describe some prop-
erties of strings whose suffix array is a given permutation, such as at least how
many different letters must occur in such strings. We then present a data struc-
ture that supports rank and select operations on large alphabet using at most
nlog|Σ| + o(nlog|Σ|) bits in O(log|Σ|) time. Although these operations can be
implemented to run in constant time [6, 10], the additional space occupation
will be unacceptable if log|Σ| can not be neglected. Thus, it is reasonable to
make the operations run in O(log|Σ|) time to save space. The data structure
also supports an extended rank, namely rank≤, which also runs in O(log|Σ|)
time without using any additional space. More precisely, rank≤

α (T, i) returns
the number of letters which are smaller than α in string T , plus the number
of αs up to position i. Function rank≤ plays a crucial role in succinct index
for large alphabet. In [6, 10], the same function of rank≤ is performed via a
table of |Σ|logn bits which for each symbol stores the number of characters
in the text that lexicographically precede it. Based on this index, we imple-
ment the DAWG [3, 5] in a succinct way, not storing the states and edges ex-
plicitly. The main structure only takes nlog|Σ| + o(nlog|Σ|) bits for a text of
length n on an alphabet Σ and supports basic operations of DAWG without loss
of speed.

2 Basic Definitions

Let Σ be a nonempty alphabet and |Σ| be the number of symbols in Σ. Let
T = t1t2 . . . tn be a word over Σ, |T | denotes its length, T [i] or ti its ith letter,
and Ti its suffix that begins at position i, T [i..j] its substring begins at i ends
at j, 1 ≤ i ≤ j ≤ n. Let T R be the reverse string of T and Suff(T ) the set of
all suffixes of T and Fact(T ) the set of its factors.

Definition 1. For a string T of length n over an ordered alphabet Σ. Denote
the set of different letters occur in T by A(T ). ∀a ∈ A(T ), function OrderT (a)
returns the numbers of letters in A(T ) that is not greater than a. For termination
character $, OrderT ($) = 0. T ∗ denotes the string of length n over integer
alphabet, such that T ∗[i] = OrderT (T [i]).

The rank and select operation play important roles in succinct data structures.
Function rank1(B, i) and rank0(B, i) return the number of 1s and 0s in the bit
vector B[1..n] up to position i, respectively.
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Lemma 1. [11]The rank function can be computed in constant time by using a
data structure of size n + o(n) bits.

Function select1(B, i) and select0(B, i) return the positions of ith 1 and 0, re-
spectively.

Lemma 2. [14]The select function can be computed in constant time by using
a data structure of size n + o(n) bits.

For convenience, we use rankb(B), b ∈ {0, 1}, to denote rankb(B, n). We will
also use rankb(B[s..i]), 1 ≤ s ≤ i ≤ n, to denote rankb(B, i) − rankb(B, s − 1).
Because rank runs in constant time, rankb(B[s..i]) also runs in constant time.

3 Permutations and Suffix Arrays

Permutation P can be treated as a string over alphabet {1, 2, . . . , n}. Because
P [P−1[1]] = 1 < P [P−1[2]] = 2 < . . . < P [P−1[n]] = n, where P−1 denotes
the inverse permutation of P , it is apparent that the suffix array of this string
is P−1 and vice versa. Among the strings who have the same suffix array, the
number of different letters occur in each string can be different. The question is
how to compute the minimal number of different letters occur in such strings.

The core of our solution is a simple fact, that is, for a string T and its suffix ar-
ray P , if T [P [i−1]] = T [P [i]], then TP [i−1]+1 < TP [i]+1, because TP [i−1] < TP [i].
Therefore, if TP [i−1]+1 < TP [i]+1 is true then T [P [i]] can be any letter not less
than T [P [i − 1]], including T [P [i − 1]], such that the suffix array of T is still P ;
otherwise it must be greater than T [P [i − 1]]. According to this fact, we define
the special positions in P that increase the number of symbols must occur in T .

Definition 2. Given a permutation P of {1, 2, . . . , n}. For 1 ≤ i ≤ n, we call i
an increasing position of P , if i = 1 or P−1[P [i − 1] + 1] > P−1[P [i] + 1].

Since $ is the minimal letter, therefore 1 is an increasing position of P . To
achieve this, we assume that for any permutation P of {1, 2, . . . , n}, P [0] = n+1,
P [n + 1] = n + 2. Thus for any string T of length n, T [n + 2] should be greater
than any characters in T . Denote the set of increasing positions of P by IP (P )
and the number of increasing positions in P by ic(P ). Let I be an increasing
position of P , denote the minimum increasing position greater than I by ν(I).
Denote the maximal non-increasing position greater than I such that there is no
increasing position between I and this position by κ(I).

Definition 3. Given a permutation P of {1, 2, . . . , n}. Let T be a string over
an ordered alphabet. For any increasing position of P , say I, if tP [I] ≤ tP [I+1] ≤
. . . ≤ tP [κ(I)] and tP [κ(I)] < tP [ν(I)] if ν(I) exists, then T is called a generating
string of P . Denote the set of generating string of P by G(P ).

The following theorem summarizes the property of strings who have the same
suffix array. The proof can be found in [17].



Succinct Text Indexes on Large Alphabet 531

Theorem 1. The suffix array of T is P if and only if T ∗ ∈ G(P ).

By theorem 1, the following is immediate.

Theorem 2. Given a permutation P of {1, 2, . . . , n}. For any string T whose
suffix array is P , the number of different letters that occur in T is at least ic(P ).

By theorem 2, one can determine at least how many different letters must occur
in a string whose suffix array is a given permutation. The same result was first
revealed by Bannai et al. [2].

To generate the strings whose suffix arrays are P . We can set each letter on
position P [i] of T from P [1] to P [n]. First, the letter T [P [1]] must be the minimal
letter of the alphabet. Because P is treated as suffix array, thus TP [i−1] < TP [i]
and T [P [i − 1]] ≤ T [P [i]]. If i is not an increasing position then T [P [i − 1]] and
T [P [i]] can be set to the same letter, otherwise T [P [i − 1]] < T [P [i]].

Bannai et al. [2] presented an algorithm to generate the string consisting ic(P )
different letters whose suffix array is P . The input of the algorithm is P and a
string w whose suffix array is P . If w is not available, P−1 can take this role.
Then the algorithm is the same as ours.

In [10], He et al. gave an algorithm that checks whether a permutation is the
suffix array for a given binary string. According to the theorem 1, the check
over large alphabet can be done by testing whether T ∗ ∈ G(P ). Precisely, for all
i = 1, . . . , n − 1, if there exits i, such that T [P [i]] < T [P [i − 1]] or T [P [i − 1]] =
T [P [i]] and P−1[P [i] + 1] < P−1[P [i − 1] + 1], then P is not the suffix array
for T . Otherwise, we have TP [1] < TP [2] < · · · < TP [n]; therefore, P is the suffix
array for T . This simple algorithm, of course, can be used to check whether a
permutation is the suffix array of a given binary string.

4 Succinct Indexes on Large Alphabet

For an internal node u of the suffix tree, where u is the longest string in the node,
all the occurrences of u are grouped consecutively in suffix array of T , say SA.
Therefore, u can be represented by an interval [s, e] over SA where all suffixes
with prefix u are included and SA[s] is the lexically smallest one, SA[e] is the
lexically greatest one [1, 10]. In this paper, we use interval to represent the states
of DAWG and give an implementation of DAWG which is succinct and fast.

First, recall the definition of DAWG. For any string u ∈ Σ∗, let u−1S =
{x|ux ∈ S}. The syntactic congruence associated with Suff(w) is denoted by
≡Suff(w) [3] and is defined, for x, y, w ∈ Σ∗, by

x ≡Suff(w) y ⇐⇒ x−1Suff(w) = y−1Suff(w).

We call classes of factors the congruence classes of the relation ≡Suff(w). Let
[u]w denote the congruence class of u ∈ Σ∗ under ≡Suff(w). The longest element
in the equivalence class [u]w is called its representative, denoted by rp([u]w).

Definition 4. The DAWG of w is a directed acyclic graph with set of states
{[u]w|u ∈ Fact(w)} and set of edges {([u]w, a, [ua]w)|u, ua ∈ Fact(w), a ∈ Σ}.
Denoted by DAWG(w).The state [ε]w is called the root of DAWG(w).
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The suffix link of a state p is the state whose representative v is the longest
suffix of u such that v not ≡Suff(w) u. The suffix link is useful for many string
applications.

In a state r of DAWG(T ), any string is a suffix of rp(r). And if a substring
in r ends at a position i of T then other substrings in r also end at i. Therefore,
the nodes and suffix links of DAWG(T ) form the suffix tree of reverse string of
T [3]. Thus a state of DAWG(T ), which corresponds to a node in suffix tree of
T R, can be represented by an interval of suffix array of T R. Denote the suffix
array of T R by SA′, for a state r, if r = [s, e], then for any suffix of T R, say T R

i ,
T R

SA′[s] ≤ T R
i ≤ T R

SA′[e] if rp(r)R is a prefix of T R
i where T R

SA′[s] is the lexically
smallest suffix of T R of which rp(r)R is a prefix, and T R

SA′[e] is the greatest one
of which rp(r)R is a prefix. Fig. 1 shows such an example.
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Fig. 1. (a) The DAWG for ababbaa. (b) The suffix tree for ababbaaR. Each node of the
tree corresponds to a DAWG state marked with same number. Each edge corresponds
to a suffix link of DAWG. The interval for each node is shown on the right.

The edges of DAWG also need not stored explicitly. The state transaction,
which occurs in the process of scanning an input pattern to find its occurrences
in T by DAWG, can be mapped to the changing of interval. For current state s
and input letter a, the state transaction is to find the state which rp(s)a is in,
denoted by goto(s, a). For interval [b, e] and input letter a, we need to find the
interval corresponding to goto([b, e], a).

We define a new succinct data structure that performs goto function. The data
structure extends the index in [10] to the case of large alphabet. Let T [0] = $
and T [n + 1] = $. Define an array T̂ of size n + 1 as follows:

T̂ [i + 1] =
{

T [1], if i = 0,
T R[SA′[i] − 1] = T [n + 2 − SA′[i]], if 1 ≤ i ≤ n.

Each entry of this array stores the character after each prefix of T in the lexical
order of reverse strings of prefixes. For example, for T = ababbaa, T̂ = ab$baaba.
T̂ is the result of Burrows-Wheeler transform(BWT) [4] on T R. The BWT result
on T is first used in FM-index [6].
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To deal with the situation of large alphabet, we extend operation rank to
large alphabet. Operation rankα(T̂ , i) returns the number of αs in T̂ up to
position i, where α ∈ Σ, |Σ| ≥ 2. We also define another useful operation rank≤.
rank≤

α (T̂ , i) returns the number of letters which are smaller than α in string T ,
plus the number of αs up to position i. For bit vectors, the rank operation can
be done in constant time [11]. For arrays over alphabet Σ, we develop a method
by which the rank and rank≤ operation can run in O(log|Σ|) time, which will
be described in the next section. The following algorithm determines whether a
pattern w occurs in a given string T . It is similar to the reverse of BW count
algorithm of FM-index[6].

Scan(w)
1 s ← 1; e ← n + 1
2 for i ← 1 to |w| do
3 a ← w[i]
4 s ← rank≤

a (T̂ , s − 1) + 1
5 e ← rank≤

a (T̂ , e)
6 if s > e then
7 report w is not a substring of T
8 end if
9 end for

10 report w is a substring of T

This function implements the DAWG existential query. The DAWG state
[w[1..i]]T corresponding to interval [s − 1, e − 1] is computed in each step i of
Scan. Changing of interval in each step is corresponding to the state changing
of DAWG existential query. In the end, all the suffixes of T R of which wR is the
prefix are in [s−1, e−1] of SA′. By this procedure, the number of occurrences of
pattern can also be computed, which is e−s+1, the number of suffixes in interval
[s − 1, e − 1]. The running time of these queries are O(|w|log|Σ|), because the
running time of rank≤ is O(log|Σ|). The speed is not slowed down comparing
to other implementations [5] of DAWG.

5 Implementing Rank and Select on Large Alphabet in
O(log|Σ|) Time with nlog|Σ| + o(nlog|Σ|) Bits

5.1 The New Index Structure

In this section, we use E to refer to T̂ ∗ and denote log|Σ| by N . For a bit vector
V , denote the ith bit of V by Vi, the bit segment of V from ith bit to jth bit by
V [i..j].

Our index consists a series of bit vectors of length n, EN , EN−1, . . . , E1,
computed from E. First, EN is defined as follows:

EN
i = E[i]N , 1 ≤ i ≤ n.
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Bit vector EN−1 is defined as follows:

EN−1
i =

⎧⎪⎪⎨⎪⎪⎩
E[select0(EN , i)]N−1, if 1 ≤ i ≤ rank0(EN )

and rank0(EN) 
= 0,
E[select1(EN , i − rank0(EN) + 1)]N−1, if rank0(EN) < i ≤ n

and rank1(EN) 
= 0.

Generally speaking, the bit vector Ek, 1 ≤ k < N , can be constructed by
the following procedures: First, order the positions in E by the most significant
N − k bits of the integers on them. For positions on which the integers have the
same first N − k bits, keep their order in E. This procedure gives us a series of
positions: pos1, pos2, . . . , posn. Second, set Ek

i , 1 ≤ i ≤ n, to the kth significant
bit of the integer on position posi of E.

Precisely, pos1, pos2, . . . , posn are divided into 2N−k groups noted by Gk
0 , . . . ,

Gk
2N−k−1; items of E on positions in Gk

i have the same first N − k bits, which
equal to the binary representation of i. Accordingly, the vector Ek is composed
of 2N−k non-overlapping segments Sk

0 ,. . . , Sk
2N−k−1. The bits in Sk

i are the kth

most significant bits of items of E on positions in Gi
j ; the order of these bits

is in accordance with the order of positions in E. Denote the start position of
Sk

i in Ek by F (Sk
i ) and the end position of Sk

i in Ek by L(Sk
i ). EN has only

one segment SN
� = EN and F (SN

� ) = 1, L(SN
� ) = n, where � denotes the empty

letter. Segments of Ek, 1 ≤ k < N , is defined recursively as follows:

For t from 0 to 2N−k − 1

Sk
2t =

{
Ek[F (Sk+1

t ) .. F (Sk+1
t ) + rank0(Sk+1

t ) − 1], if rank0(Sk+1
t ) 
= ∅,

∅, otherwise;

Sk
2t+1 =

{
Ek[F (Sk+1

t ) + rank0(Sk+1
t ) .. L(Sk+1

t )], if rank1(Sk+1
t ) 
= ∅

∅, otherwise.

Let E(k) denote the array of length n, such that E(k)[i] = E[i][N..k], 1 ≤ i ≤ n,
where E[i] is treated as a bit vector. Then Ek, 1 ≤ k < N , is defined recursively
as follows:

For t from 0 to 2N−k − 1

Ek
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E[select2t(E(k), i − F (Sk+1

t ) + 1)]k, if F (Sk+1
t ) ≤ i ≤ F (Sk+1

t ) + rank0(Sk+1
t )

and Sk+1
t 
= ∅,

E[select2t+1(E(k), i − F (Sk+1
t )−

rank0(Sk+1
t ))]k, if F (Sk+1

t ) + rank0(Sk+1
t ) < k ≤ L(Sk+1

t )
and Sk+1

t 
= ∅;

Fig. 2 gives an example of this structure. Conceptually, the bit vector E0 is
divided into |Σ| segments and all the elements are set to � which denotes the
empty letter. The number of elements in segment S0

a is equal to ranka(E). In
practice, multi-key rank and select can be computed without E0.

5.2 Rank and Select on Large Alphabet

We store the bit vectors EN ,EN−1,. . . ,E1 in continuous memory, and take them
as one bit vector, named E. That is Ek = E[(k − 1)n + 1 .. kn]. We build rank
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i 1 2 3 4 5 6 7 8 9 10 11
E 3 6 1 2 0 4 3 4 5 1 7

b3 0 1 0 0 0 1 0 1 1 0 1
b2 1 1 0 1 0 0 1 0 0 0 1
b1 1 0 1 0 0 0 1 0 1 1 1

S3
�

E3 0 1 0 0 0 1 0 1 1 0 1

S2
0 S2

1

E2 1 0 1 0 1 0 1 0 0 0 1

S1
0 S1

1 S1
2 S1

3

E1 101 101 001 01

S0
0 S0

1 S0
2 S0

3 S0
4 S0

5 S0
6 S0

7

E0 � � � � � � � � � � �

Fig. 2. Example of the bit vectors for E = 36120434517. � denotes the empty letter.

structures over E using the structure of [11]. The operations on any Ek, say
rankα(Ek, i), can be computed by rankα(E, (k−1)n+ i)−rankα(E, (k−1)n). E
with corresponding rank structure are our main indexing data structure, which
together use nlog|Σ| + o(nlog|Σ|) bits. The operation select defined on large
alphabet can also be implemented using this data structure. It is the reverse
computing of rank. selectα(E, i) returns the index of ith α character of E. The
algorithm of rank and select is given below. To be clear, we do not use E in
explaining the algorithm but use separated bit vectors.

rankb(E, end)
1 s ← 1; e ← n; c ← end

2 for k ← log|Σ| downto 1 do
3 c ← rankbk

(Ek[s..c])
4 if bk = 1 then
5 s ← s + rank0(Ek[s..e])
6 else
7 e ← e − rank1(Ek[s..e])
8 end if
9 end for

10 return c

selectb(E, count)
1 sN+1 ← 1; eN+1 ← n; c ← count

2 for i ← log|Σ| downto 1 do
3 if bi = 1 then
4 si ← si+1+rank0(Ei[si+1..ei+1])
5 else
6 ei ← ei+1−rank1(Ei[si+1..ei+1])
7 end if
8 end for
9 for i ← 1 to log|Σ| do

10 c ← selectbi
(Ei[si..c])

11 end for
12 return c

In algorithm rankb(E, end), at the end of each step k, the start position and
end position (s and e), of segment Sk−1

bN bN−1···bk
are computed, where the number

of symbols up to position end, whose first N − k + 1 most significant bits are
bN · · · bk, say c, is also available. In step k + 1, these values can be computed
from the values in step k. Therefore in the end, the number of bs in E can be
computed. Thus the rank algorithm is correct.

By Lemma 1, each iteration of function rank runs in constant time. Therefore,
by this algorithm, the number of bs in array E of length n over an arbitrary
alphabet Σ can be calculated in O(log|Σ|) time using nlog|Σ| + o(nlog|Σ|) bits.
Thus we can find the interval corresponding to goto(s, a) in O(log|Σ|) time. The
total space for succinct DAWG is nlog|Σ| + 4n + o(nlog|Σ|) bits.
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Because when rankα(E, end) finished, the s−1 equals to the number of letters
which are smaller than α in E. Therefore, by replacing line 10 of the algorithm
for rank with the following statement, algorithm rank≤ is available.

return s+ c− 1.
We next consider the correctness of select algorithm. Denote the s, e and c

of each iteration in the running of the for loop of rankb(E, end) by si, ei and
ci, where i is the value of loop variable and cN+1 = end. The sequence of the
computing of si, ei and ci in rank is as follows:

cN = rankbN (EN [sN ..eN ], cN+1)
cN−1 = rankbN−1(E

N−1[sN−1..eN−1], cN )
...

c1 = rankb1(E
1[s1..e1], c2)

Denote the value of c in each for loop in lines 9-11 of select by c′k (k
is the loop variable) and denote the initial value of c by c′1 = count, then
selectb(E, count)=c′N+1. Since the first for loop of function selectb(E, i) is to
compute rankb(E), then s′i = si and e′i = ei. According to the select algorithm,
the sequence of computing of c′i is as follows (we replace s′i, e

′
i with si, ei):

c′
2 = selectb1(E

1[s1..e1], c′
1)

c′
3 = selectb2(E

2[s2..e2], c′
2)

...
c′
N+1 = selectbN (EN [sN ..eN ], c′

N )

Immediately, we get c′N = cN and ci = c′i for 1 ≤ i ≤ N . If E[end] = b, c′N+1 =
cN+1. Therefore selectb(E, count) = end and the select algorithm is correct.

6 Conclusions

We study the properties of strings whose suffix array is a given permutation, and
also give a succinct index structure for large alphabet. The core is a data struc-
ture that supports rank and select on large alphabet using nlog|Σ|+ o(nlog|Σ|)
bits in O(log|Σ|) time. There are still many interesting issues, such as bidirec-
tional index based on this structure, the relation between strings with inverse
suffix arrays. There are works to be done to reveal these structures.
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Abstract. Threshold proxy signature is a variant of the proxy signa-
ture scheme in which only some subgroup of proxy signers with efficient
size can sign messages on behalf of the original signer. Some threshold
proxy signature schemes have been proposed up to data. But nearly all of
them are under the certificate-based (CA-based) public key systems. In
this paper, we put forward an identity-based (ID-based) threshold proxy
signature scheme with known signers from bilinear pairings for the first
time. Most of our constructions would be simpler but still with high se-
curity due to the properties of bilinear map built from Weil pairing or
Tate pairing.

1 Introduction

A proxy signature scheme allows one user Alice, called original signer, to delegate
her signing capability to another user Bob, called proxy signer. After that, the
proxy signer Bob can sign messages on behalf of the original signer Alice. Upon
receiving a proxy signature on some message, a verifier can validate its correct-
ness by the given verification procedure, and then is convinced of the original
signer’s agreement on the signed message. Mambo, Usuda, and Okamoto intro-
duced the concept of proxy signatures and proposed several constructions in [1].
Based on the delegation type, they classified proxy signatures as full delegation,
partial delegation, and delegation by warrant. In full delegation, Alice’s private
key is given to Bob so Bob has the same signing capability as Alice. For most
of real-world settings, such schemes are obviously impractical and insecure. In a
partial delegation scheme, a proxy signer has a new key, called proxy private key,
which is different from Alice’s private key. So, proxy signatures generated by us-
ing proxy private key are different from Alice’s standard signatures. However, the
proxy signer is not limited on the range of messages he can sign. This weakness is
eliminated in delegation by warrant schemes by adding a warrant that specifies
what kinds of messages are delegated, and may contain other information, such
as the identities of Alice and Bob, the delegation period, etc.

According to another criterion, i.e., whether the original signer knows the
proxy private key, proxy signatures can also be classified as proxy-unprotected
and proxy-protected schemes. This differentiation is important in practical
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applications, since it enables proxy signature schemes to avoid potential disputes
between the original signer and proxy signer. Since they clearly distinguish the
rights and responsibilities between the original signer and the proxy signer, the
proxy-protected partial delegation by warrant schemes have attracted much more
investigations than others. In fact, for simplicity, this special kind of schemes is
often called as proxy signature scheme.

A threshold signature scheme distributes the signing abilities to a group of
signers such that only some subgroup with efficient size can sign messages on be-
half of the original signer. Following the development of proxy signature scheme,
the threshold proxy signature was also widely studied in [2],[3]. A (t, n) thresh-
old proxy signature scheme is a variant of the proxy signature scheme in which
the proxy signature key is shared by a group of n proxy signers in such a way
that any t or more proxy signers can cooperatively employ the proxy signature
keys to sign messages on behalf of an original signer, but (t− 1) or fewer proxy
signers cannot. Several threshold proxy signature schemes have been proposed
under the CA-based public key systems. However, there seems no such schemes
under the ID-based public key systems to our knowledge. The concept of ID-
based public key system, proposed by Shamir in 1984 [9], allows a user to use his
identity as the public key. It can simplify key management procedure compared
to CA-based system, so it can be an alternative for CA-based public key system
in some occasions, especially when efficient key management and moderate se-
curity are required. Many ID-based schemes have been proposed after the initial
work of Shamir, but most of them are impractical for low efficiency. Recently,
the bilinear pairings have been found various applications in cryptography, more
precisely, they can be used to construct ID-based cryptographic schemes.

Recently, Zhang and Kim proposed an efficient ID-based blind signature and
proxy signature from bilinear pairings [5]. In this paper, we propose an ID-based
threshold proxy signature scheme from bilinear pairings.

The rest of the paper is organized as follows: Some definitions and preliminary
works are reviewed in section 2. Our new ID-based threshold proxy signature
scheme from bilinear pairings is given in section 3. We then analyze its security
in section 4 and make some conclusions in section 5.

2 Preliminary Works

In this section, we will briefly review the basic definition and properties of bi-
linear pairings and gap Diffi-Hellman group firstly. Then the generic ID-based
public key setting from pairing is presented. Finally the concepts of threshold
cryptosystem and proxy signature are introduced.

2.1 Bilinear Pairings

LetG1 be a cyclic additive group generated by P , whose order is a prime q, andG2
be a cyclic multiplicative group of the same order q. Let a, b be elements of Z∗

q . We
assume that the discrete logarithm problems (DLP) in both G1 and G2 are hard.
A bilinear pairings is a map e : G1 ×G1 → G2 with the following properties:
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(1) Bilinear: e(aP, bQ) = e(P,Q)ab;
(2) Non-degenerate: There exists P and Q ∈ G1 such that e(P,Q) �= 1;
(3) Computable: There is an efficient algorithm to compute e(P,Q) for all

P,Q ∈ G1.

2.2 Gap Diffie-Hellman Group

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
assume that the inversion and multiplication in G1 can be computed efficiently.
We first introduce the following problems in G1.

(1) Discrete Logarithm Problem (DLP): Given two elements P and Q, to find
an integer n ∈ Z∗

q , such that Q = nP whenever such an integer exists.
(2) Computation Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈

Z∗
q , to compute abP .
(3) Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈

Z∗
q , to decide whether c ≡ ab mod q.
We call G1 a Gap Diffie-Hellman Group if DDHP can be solved in polynomial

time but there is no polynomial time algorithm to solve CDHP or DLP with
nonnegligible probability. Such group can be found in supersingular elliptic curve
or hyperelliptic curve over finite field, and the bilinear pairings can be derived
from the Weil or Tate pairings. For more details, see [6], [7], [8].

2.3 ID-based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such
as name, address and email etc., rather than an arbitrary string to be used his
public key. The private key of the user is calculated by a trusted party, called
PKG and sent to the user via a secure channel. ID-based public key setting from
bilinear pairings can be implemented as follows:

Let G1 be a cyclic additive group generated by P , whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is the map e : G1 × G1 → G2. Define two cryptographic hash functions H1 :
{0, 1}∗ → Zq and H2 : {0, 1}∗ → G1.

– Setup: PKG chooses a random number s ∈ Z∗
q and set Ppub = sP . He publishes

system parameters params = {G1, G2, e, q, P, Ppub, H1, H2}, and keeps s secretly
as the master-key.
– Extract: A user submits his/her identity information ID and authenticates
him to PKG. PKG computes the user’s private key SID = sQID = sH2(ID)
and sends it to the user via a secure channel.

2.4 Threshold Cryptosystem and Proxy Signature

The concept of a threshold scheme was first introduced by Shamir [9]. In the
(t, n) threshold scheme, a secret D is divided into n pieces D1, D2, · · · , Dn such
that:
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(1) Knowledge of any t or more Di pieces makes D easy to compute;
(2) Knowledge of any t− 1 or fewer Di pieces leaves D uncomputable.

After Shamir proposed the threshold scheme, Pedersen [10] proposed a thresh-
old cryptosystem without a trust party. In that scheme, each party acts as a
dealer to choose the secret key and distribute it verifiably to the others. Sub-
sequently a group of honest parties is formed and the group members recover
their secret shares.

A strong proxy signature should have the following properties [11]:

– Verifiability: From the proxy signature, the verifier can be convinced of the
original signer’s agreement on the signed message.
– Strong identifiability: Anyone can determine the identity of the correspond-
ing proxy signer from the proxy signature.
– Strong undeniability: Once a proxy signer creates a valid proxy signature
on behalf of an original signer, he cannot repudiate the signature creation.
– Distinguishability: Proxy signatures are distinguishable from normal signa-
tures by everyone.
– Prevention of misuse: The proxy signer cannot use the proxy key for other
purposes than generating a valid proxy signature. That is, he cannot sign, with
the proxy key, messages that have not been authorized by the original signer.
– Strong unforgeability: A designated proxy signer can create a valid proxy
signature for the original signer. But the original signer and other third parties
who are not designated as a proxy signer cannot create a valid proxy signature.

3 ID-based Threshold Proxy Signature Scheme from
Pairings

The proposed scheme involves four roles: the Private Key Generator (PKG), the
original signer, a set of proxy signers L = {P1, P2, · · · , Pn} and the verifier. It
also consists of five algorithms as follows.

3.1 System Setup

PKG publishes system parameters params = {G1, G2, e, q, P, Ppub, H1, H2}; here
G1 is a cyclic additive group generated by P with prime order q, and G2 is a
cyclic multiplicative group of the same order q, e : G1 × G1 → G2 is a bilinear
pairing, H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G1 are two cryptographic hash
functions, Ppub = sP , PKG keeps s secretly as the master-key.

3.2 Private Key Extraction

Let Alice be the original signer with identity ID0 and private key S0 = sQ0 =
sH2(ID0), and {Pi} be the proxy signers with identity {IDPi} and private key
{SPi = sQPi = sH2(IDPi)}.
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3.3 Generation of the Proxy Share Key

Proxy share generation protocol makes use of Verifiable Secret Sharing (VSS)
proposed by Pederson [10]. To delegate the signing capability to proxy signers,
the original signer Alice uses Hess’s ID-based signature scheme [8] to generate
the signed warrant mw, and each proxy signer Pi generates his or her secret
proxy share key. There is an explicit description of the delegation relation, such
as the identity information of original signer and proxy group member and the
limit of the delegated signing capacity etc., in the warrant mw. If the following
process is performed successfully, each proxy signer will get his or her proxy
share key.

Step 1. Alice computes r0 = e(P, P )k, where k ∈R Z∗
q and computes h1 =

H1(mω||r0) and V = h1S0 + kP . Then Alice sends (mw, r0, V ) to each proxy
signer.
Step 2. Each Pi ∈ L verifies the validity of the signature on mw by checking
the soundness of the following equation:

e(V, P ) = e(h1S0 + kP, P ) = e(h1Q0, PPub)r0

If the above equation sounds, then proxy signer Pi selects an integer ki ∈R Z∗
q ,

computes ri = e(P, P )ki , broadcasts ri.

Each Pi ∈ L computes rp =
n∏

i=1
ri, h2 = H1(rp) and si = n−1V +h2SPi + kiP

as his own secret key.
Step 3. In order to distribute proxy signers’ private information, similar to [14],
each Pi ∈ L randomly picks up a (t − 1)-degree polynomial fi(z) such that
fi(0) = si = ai,0. That is

fi(z) = si + zai,1 + z2ai,2 + · · · + zt−1ai,t−1,

where ai,j ∈ G1, for j = 1, · · · , t− 1.
Then Pi computes and broadcasts Ai,j = e(P, ai,j) for j = 1, · · · , t − 1,

sends fi(j) secretly to each proxy signer Pj for j = 1, · · · , n; j �= i. Ai,0 needs
not to be broadcasted, since Ai,0 = e(P, ai,0) = e(P, n−1V + h2SPi + kiP ) =
e(Ppub, n

−1h1Q0)rn−1

0 e(Ppub, h2QPi)ri.
Step 4. Proxy signer Pi after receiving fj(i) from Pj , j = 1, · · · , n; j �= i, verifies
fj(i) by checking e(P, fj(i)) =

∏t−1
k=0Aj,k

ik

.
If the check fails, Pi broadcasts a complaint against Pj . Assume none of the

proxy signers has a complaint. Then the proxy signer Pi computes the secret

proxy share x
′
i =

n∑
k=1

fk(i) and computes the public proxy share Y
′
i = e(P, x

′
i).

The others also can get Y
′
i by computing Y

′
i =
∏n

j=1
∏t−1

k=0Aj,k
ik

.

In this protocol if we let f(z) =
n∑

i=1
fi(z), we will notice that the secret proxy

share is x
′
i = f(i) in fact. The public proxy share Y

′
i is e(P, x

′
i) actually.



Identity-Based Threshold Proxy Signature Scheme 543

3.4 Generation of the Proxy Signature

Without loss of generality, we assume that P1, P2, · · · , Pt are the t proxy signer.
In order to sign message m on behalf of the original signer, they perform the
following process:

Step 1. Each proxy Pi (i = 1, 2, · · · , t) uses his or her secret proxy share
x

′
i to sign the message m. Similar to the signature scheme in [12], each proxy

signer Pi computes ωi =
j∈{1,2,···,t}∏

j 
=i

j
j−i , gets the partial signature of the message

σi = (x
′
iωi + SPi)H1(m).

Step 2. The t proxy signers after gathering σi, verify σi by checking

e(P, σi) = e(P, (x
′
iωi + SPi)H1(m)) = Y

′
i

ωiH1(m)
e(Ppub, QPi)

H1(m).

If the above equation doesn’t hold, they will know Pi does not send the correct
partial signature or Pi is not honest one, we may ask another one or Pi to do
Step 1 again. Now we assume the equation holds, the proxy signature on message

m can be computed as σ
′
i =

t∑
i=1

σi. So the complete valid proxy signature will

be the tuple < σ
′
,m,mω, r0, rP >.

Remark: In step 2 we may designate one of the t proxy signers as a clerk who
is assumed honest to check the correctness of the partial signature and generate
the whole signature.

3.5 Proxy Signature Verification

A recipient can verify the validity of the proxy signature by checking if the
following equation holds or not,

e(σ
′
, P ) = e(h1Q0 +

n∑
i=1

h2QPi +
t∑

i=1

QPi , Ppub)H1(m)(r0rP )
H1(m)

,

where h1 = H1(mω||r0) and h2 = H1(rp).
If it holds, the recipient accepts the signature, otherwise rejects.

4 Security Analysis of the Proposed Scheme

In this section, we will show that our scheme satisfies the security requirements
of proxy signature scheme stated in section 2.

– Correctness and verifiability: The correctness of the signature is justified
by the following equations:
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e(σ
′
, P ) = e(

t∑
i=1

σi, P )

= e((
t∑

i=1
x

′
iωi +

t∑
i=1

SPi)H1(m), P )

= e((f(0) +
t∑

i=1
SPi)H1(m), P )

= e((
n∑

i=1
fi(0) +

t∑
i=1

SPi)H1(m), P )

= e((nn−1V +
n∑

i=1
(h2SPi + kiP ) +

t∑
i=1

SPi)H1(m), P )

= e((h1S0 + kP +
n∑

i=1
(h2SPi + kiP ) +

t∑
i=1

SPi)H1(m), P )

= e(h1Q0 +
n∑

i=1
h2QPi +

t∑
i=1

QPi , Ppub)H1(m)(r0rP )
H1(m)

,

where h1 = H1(mω||r0) and h2 = H1(rp).
From the verification phase, the verifier can be convinced that the proxy signer

has the original signer’s signature on the warrantmω. In general, the warrantmω

contains the identity information and the limit of the delegated signing capacity
etc., so satisfies the verifiability.

– Strong identifiability: The valid signature contains the warrant mω, so any
one can determine the identities of the corresponding proxy signers from the
warrant.
– Strong undeniability: The clerk verifies the individual proxy signature of
each proxy signer, so no one can be deniable of his signature.
– Distinguishability: This is obvious, because there is a warrant mω in a valid
proxy signature, at the same time, this warrant mω and the identities of the
original signer and proxy signer must occur in the verification equation of proxy
signature.
– Prevention of misuse: Due to the use of the warrant mω, the proxy signers
can only sign messages that have been authorized by the original signer.
– Strong unforgeability: As [13] discussed, there are mainly three kinds of
attacks: outsiders, who are not participating the issue of the proxy signature;
some signers who play an active in the signing protocol and the user (signature
owner). Furthermore, some of these attackers might collude.

The outsider-attack consists of the original signer attack and any third adver-
sary attack. The original signer cannot create a valid threshold proxy signature
since each proxy key includes the private key SPi of each proxy signer. On the
other hand, we assume that the third adversary can get the original signer’s
signature on warrant mω (So, our scheme need not the secure channel for the
delivery of the signed warrant). Even this, to forge the threshold proxy sig-
nature of the message m

′
for the proxy group L and the original signer Alice

is to be equivalent to forge a Hess’s ID-based signature with some public key
Q, here
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e(h1Q0 +
n∑

i=1

h2QPi +
t∑

i=1

QPi , Ppub)r0 = e(Q,Ppub).

In our scheme, the clerk is one of the proxy signers, but he has more power
than other proxy signers. Next we will show that even the clerk who acts as
an adversary can corrupt (t − 1) proxy signers, the proposed threshold proxy
signature will still be secure. So we can conclude our scheme is a threshold
proxy signature scheme.

Theorem. Even there exists an adversary who can corrupt (t−1) proxy signers
among n proxy signers, he still cannot forge a valid proxy signature.

Proof. In our scheme, we use the technique of VSS, when each proxy signer
receives the pair (mw, r0, V ) he must use his private key to generate a polynomial
fi(z) of degree (t− 1) such that fi(0) = ai,0 = si = n−1V + h2SPi + kiP in Step
3 of the proxy share key generation algorithm. And in Step 4, each proxy signer
Pi will check each fj(i), so the (t−1) proxy signers cannot do anything to cheat
or to forge.

In the proxy signature generation algorithm, every partial signature σi is verified
by the corresponding public proxy share Y

′
i in Step 2 of the proxy signature

generation algorithm. Even at most (t−1) signers can be corrupted, the adversary
still needs to get one partial signature from the other signers (which the adversary
can’t forge) to form t valid signature shares. Only with t valid signature shares,
the adversary can produce a valid signature.

Finally, the user cannot forge the threshold proxy signature because he cannot
obtain more information than the clerk.

5 Conclusions

Proxy signature schemes and threshold proxy signature schemes have many ap-
plications. However, nearly all of the previously proposed schemes are under
the traditional CA-based pubic key infrastructure. In this paper, we propose
an ID-based threshold proxy signature scheme with known signers from bilinear
pairings for the first time. Due to the good properties of bilinear pairings in
cryptography, our scheme is of great efficiency. We also give a detailed security
analysis of the proposed scheme, which shows that our scheme satisfies all the
security requirements of proxy signature schemes.
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Abstract. This paper deals with secure computations in a minimal
model, and gives a protocol which securely computes every function by
means of the techniques of exclusive-or sum-of-products (ESOP) expres-
sions. The communication complexity of our protocol is proportional to
the size of an obtained multiple-valued-input ESOP expression. Since
the historical research on minimizing ESOP expressions is now still ac-
tive, our protocol will turn to an efficient one as this research progresses.
Thus, this paper gives an application of ESOP expressions to design-
ing cryptographic protocols, and we hope that it would motivate further
research on minimizing ESOP expressions.

1 Introduction

Feige, Kilian and Naor [3] considered secure computations in a minimal model, as
follows. Two honest-but-curious players Alice and Bob hold n-bit private inputs
a ∈ {0, 1}n and b ∈ {0, 1}n, respectively. They want only a third party Carol
to learn the output f(a, b) of a predetermined Boolean function f : {0, 1}n ×
{0, 1}n → {0, 1} without revealing more information about their inputs than
necessary. Alice and Bob may be assumed to have shared a random string,
and they are each allowed to send a single message to Carol (through a private
channel). Furthermore, Alice, Bob and Carol are assumed to be computationally
unbounded. This paper addresses this type of secure computations.

1.1 An Example

As a simple example, consider the case where Alice with a one-bit input a ∈ {0, 1}
and Bob with a one-bit input b ∈ {0, 1} want Carol to compute the exclusive-or
(EXOR) function f(a, b) = a⊕ b. We assume that Alice and Bob have shared a
random bit r ∈ {0, 1}. Then, the following protocol achieves the goal.

– Alice sends the one-bit message a⊕ r to Carol.
– Bob sends the one-bit message b⊕ r to Carol.
– Carol computes (a⊕ r)⊕ (b⊕ r), which is equal to the desired output a⊕ b.
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Note that neither Alice nor Bob learns anything about the other’s input (be-
cause each message is transmitted to Carol through each private channel). Fur-
thermore, note that all the information Carol gains is just the value of a ⊕ b
(because the bit r is random).

We now consider the communication complexity and the randomness com-
plexity. A protocol is called a (cA, cB; cr)-protocol if Alice sends a cA-bit message
to Carol, Bob sends a cB-bit message to Carol, and they use a cr-bit random
string. Thus, the protocol above, which securely computes the EXOR function
f(a, b) = a⊕ b, is a (1, 1; 1)-protocol.

1.2 Known Results

We briefly review known results.
Feige, Kilian and Naor [3] gave a protocol which securely computes every func-

tion; when their protocol runs for an arbitrary function f : {0, 1}n × {0, 1}n →
{0, 1}, Alice sends a 2n-bit message to Carol, Bob sends an (n+ 1)-bit message
to Carol, and a (2n + n)-bit random string is used. Thus, their protocol is a
(2n, n+ 1; 2n + n)-protocol.

They also constructed an efficient protocol with polynomial complexity for
some subclass of functions. Specifically, for a function f ∈ NL (more precisely,
for a function f such that a parameterized family of functions containing f
is in NL), their protocol is a (cA, cB; cr)-protocol such that cA, cB and cr are
polynomials in n. Their protocol is based on randomizing group products.

Ishai and Kushilevitz [10] gave the so-called PSM protocols, which extend
the efficiently computable class from NL to ModkL, C=L, #L or DiffL. Their
protocols are based on linear algebraic machinery.

1.3 Our Results

In this paper, we will design a protocol which securely computes every function
by means of the techniques of AND-EXOR logic expressions, i.e. exclusive-or
sum-of-products (ESOP) expressions. Given an arbitrary function f with one
expression F of its (multiple-valued-input) ESOP expressions, the complexity of
our protocol for securely computing the function f is proportional to the “size”
τ(F ) of the ESOP expression F , namely the number of product terms in F ;
more precisely, our protocol is a (2τ(F ), τ(F ) + 1; 3τ(F ))-protocol.

As mentioned above, the efficiency of our protocol depends on the size of a
given ESOP expression; the smaller the size of an obtained ESOP expression is,
the more efficient our protocol is. For many decades, the problem of minimiza-
tion or simplification of ESOP expressions has attracted much attention of the
researchers in the logic design community (e.g., refer to [13] for a survey). Al-
though no efficient algorithm for minimizing ESOP expressions has been known,
many good heuristic algorithms for simplifying ESOP expressions have been
proposed (e.g. [4, 12, 14, 15, 19]), and there also exist efficient exact minimiza-
tion algorithms for a small number of variables (e.g. [9, 16, 17]). Furthermore,
this historical research area is still active. As this research area progresses, our
protocol will “automatically” turn to an efficient one (because one will be able to



Secure Computations in a Minimal Model 549

obtain smaller ESOP expressions). Therefore, we hope that the existence of our
protocol would motivate the community toward further research on minimization
or simplification of ESOP expressions.

Moreover, as will be seen in the succeeding section, our protocol is quite simple
and easy to implement.

1.4 Related Work

Since the seminal research of Yao [18], a considerable amount of research has
been devoted to the problem of secure computations or private computations; a
comprehensive survey appears in [8]. Related to the third party model considered
in this paper is the work of Cachin and Camenisch [1]: in their secure two-
party computation protocol, Alice and Bob want to securely compute f(a, b)
themselves, where (a trusted third party) Carol is available but not involved in
normal protocol executions. Related to the non-interactive model, there are non-
interactive two-party protocols, e.g. [2]. Although the models differ from ours,
the relationship between circuit size and privacy [11], one between sensitivity
and round complexity [6], and one between randomness complexity and privacy
[7] have been much investigated.

2 The Protocol Using an ESOP Expression

In this section, we design a protocol which securely computes every function
using an ESOP expression. We first outline our protocol in Section 2.1. We
next give its building blocks in Section 2.2. We finally describe our protocol in
Section 2.3.

2.1 Outline

Let f : {0, 1}n × {0, 1}n → {0, 1} be a function to be securely computed, and
assume that Alice and Bob hold private inputs a ∈ {0, 1}n and b ∈ {0, 1}n,
respectively. The outline of our protocol is as follows.

1. Obtain an “exclusive-or sum-of-products (ESOP)” form for f like the fol-
lowing:

f(a, b) = A1(a)B1(b) ⊕A2(a)B2(b) ⊕ · · · ⊕At(a)Bt(b),

where Ai and Bi, 1 ≤ i ≤ t, are functions such that Ai : {0, 1}n → {0, 1}
and Bi : {0, 1}n → {0, 1}. (The detail will be explained in Section 2.2.)

2. For each product term Ai(a)Bi(b), Alice and Bob make Carol learn the value
of Ai(a)Bi(b) ⊕ ki, where ki ∈ {0, 1} is a random key known only to Bob.
(The detail of our method will be explained in Section 2.2.)

3. Note that Carol now has t one-bit values Ai(a)Bi(b) ⊕ ki, 1 ≤ i ≤ t. Bob
sends the one-bit message k1 ⊕ k2 ⊕ · · · ⊕ kt to Carol, who can learn the
value of f(a, b) by adding the received message to

⊕t
i=1Ai(a)Bi(b) ⊕ ki

(modulo 2).
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2.2 Building Blocks

We first formally explain (multiple-valued-input) ESOP expressions. We then
give a method for securely computing a product term with a hidden key.

Multiple-valued-input ESOP expressions. We first explain multiple-
valued-input ESOP expressions formally.

Let m be an integer, and let Pi = {0, 1, . . . , pi − 1}, 1 ≤ i ≤ m, for some
integer pi. Let g(x1, x2, . . . , xm) be a multiple-valued-input m-variable function
such that g : P1 × P2 × · · · × Pm → {0, 1}. Any function X : Pi → {0, 1},
1 ≤ i ≤ m, is called a literal; such a literal is often denoted by XS, where S ⊆ Pi

satisfies

X(x) =
{

0 if x /∈ S
1 if x ∈ S.

For example, if pi = 2, i.e. Pi = {0, 1}, then the literals are X{0,1}, X{0}, X{1}

and X∅, which may be denoted by 1, X, X and 0, respectively. An exclusive-or
sum of product terms

g(x1, x2, . . . , xm) =
⊕

XS1
1 XS2

2 · · ·XSm
m

is an ESOP expression defining the function g, where Si ⊆ Pi for all 1 ≤ i ≤
m. Given an ESOP expression G, the number of product terms in G is called
its size, and is denoted by τ(G). For an arbitrary function g, there are many
ESOP expressions defining g; therefore, minimization or simplification of ESOP
expressions is important and attracts a lot of researchers.

Historically, the binary case of pi = 2 for all 1 ≤ i ≤ m has been much inves-
tigated; of course, one of the most famous (two-valued-input) ESOP expressions
is (positive-polarity) Reed-Muller expressions, which are also called ring-sum ex-
pansions. (Note that the class of ESOP expressions is the most general among
all the classes of AND-EXOR expressions.) For this two-valued-input case, there
are many great heuristic (or exact) algorithms for simplifying (or minimizing)
ESOP expressions (e.g. [4, 9, 16, 19]). The best known upper bound of sizes of
two-valued-inputm-variable ESOP expressions is 29·2m−7 (provided thatm ≥ 7)
[5]. On the other hand, although the studies dealing with multiple-valued-input
cases are somewhat fewer, there are several algorithms working for any inte-
gers pi. Especially, the case of pi = 4 has been greatly studied, e.g. [12, 14]; it
is motivated by modeling input decoders in PLA (Programmable Logic Array)
structures. Furthermore, the case where p1 = p2 = · · · = pm−1 = 2 and pm ≥ 3
has been analyzed in [17].

Now, consider how to apply ESOP expressions to our problem. Remember
that we wish to securely compute a function f : {0, 1}n × {0, 1}n → {0, 1}.
Therefore, it suffices to set m = 2 and p1 = p2 = 2n. In this case, by using some
known heuristic (or exact) algorithm, we can obtain an ESOP expression like

f(a, b) = A1(a)B1(b) ⊕A2(a)B2(b) ⊕ · · · ⊕At(a)Bt(b),

where Ai : {0, 1}n → {0, 1} and Bi : {0, 1}n → {0, 1}.
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Given a function f : {0, 1}n × {0, 1}n → {0, 1}, one can easily observe that
an obvious upper bound of the size of the minimum ESOP expressions defining
f is 2n. Since there is no research carefully analyzing the case of m = 2 and
p1 = p2 = 2n, we hope that many researchers in the logic design community
would be interested in minimizing ESOP expressions especially for such a special
case, and consequently, our protocol will turn to an efficient one.

Securely computing a product term with a hidden key. Let A and B be
functions such that A : {0, 1}n → {0, 1} and B : {0, 1}n → {0, 1}. Alice and Bob
hold private inputs a ∈ {0, 1}n and b ∈ {0, 1}n, respectively. Assume that Alice
and Bob want Carol to learn the value of A(a)B(b) ⊕ k, where k is a random
key known only to Bob. We now give a method for achieving this goal.

Before going into the detail of our method, we define two operations shift and
get. Given a two-bit message (x, y), we define

shift0(x, y) = (x, y);
shift1(x, y) = (y, x);
get0(x, y) = x;
get1(x, y) = y.

Thus, shift0(x, y) returns the two bits without changing, shift1(x, y) swaps the
two bits, get0(x, y) returns the first bit, and get1(x, y) returns the second bit.

Assume that Alice and Bob have shared a three-bit random string

((k0, k1), s);

as seen below, (k0, k1) is used as keys to encrypt a message to Carol, and s is
used to shuffle the message. Alice and Bob execute the following.

– Considering both possibilities B(b) = 0 and B(b) = 1, Alice prepares a two-
bit message (A(a) · 0, A(a) · 1) = (0, A(a)), and she encrypts it using the
keys (k0, k1), i.e. she has (k0, A(a) ⊕ k1). Furthermore, she shuffles it using
the random bit s, i.e. she has shifts(k0, A(a) ⊕ k1). As a result, Alice sends
the two-bit message shifts(k0, A(a) ⊕ k1) to Carol. That is, Alice sends the
two-bit message {

(k0, A(a) ⊕ k1) if s = 0;
(A(a) ⊕ k1, k0) if s = 1

to Carol.
– Concerning the two-bit message shifts(k0, A(a)⊕k1) sent from Alice to Carol,

Bob knows that, if B(b) = s = 0 or B(b) = s = 1, then the first bit in
the message is the “correct” value (namely, the value of A(a)B(b) ⊕ kB(b));
otherwise, the second bit is “correct.” As a result, Bob sends the one-bit
message B(b) ⊕ s to Carol so that Carol learns which value in the message
received from Alice is “correct.”

– Carol obtains getB(b)⊕s(shifts(k0, A(a) ⊕ k1)), which is equal to A(a)B(b) ⊕
kB(b).

Since only Bob knows the random key kB(b), the method above achieves the
goal. Notice that it is a (2, 1; 3)-protocol.
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2.3 Complete Description of our Protocol

We are now ready to present the complete description of our protocol.
Let f be a function such that f : {0, 1}n × {0, 1}n → {0, 1}, and let

f(a, b) = A1(a)B1(b) ⊕A2(a)B2(b) ⊕ · · · ⊕At(a)Bt(b)

be an ESOP expression defining the function f . Assume that Alice and Bob have
shared a 3t-bit random string

(((k0
1 , k

1
1), s1), ((k

0
2 , k

1
2), s2), . . . , ((k

0
t , k

1
t ), st)).

Then, our protocol proceeds as follows, where Alice holds a private input a ∈
{0, 1}n and Bob holds a private input b ∈ {0, 1}n.

– Alice sends the 2t-bit message

(shifts1(k0
1 , A1(a) ⊕ k1

1), shifts2(k0
2 , A2(a) ⊕ k1

2), . . . , shiftst(k0
t , At(a) ⊕ k1

t ))

to Carol.
– Bob sends both the t-bit message

(B1(b) ⊕ s1, B2(b) ⊕ s2, . . . , Bt(b) ⊕ st)

and the one-bit massage

t⊕
i=1

k
Bi(b)
i = k

B1(b)
1 ⊕ k

B2(b)
2 ⊕ · · · ⊕ k

Bt(b)
t

to Carol.
– Carol computes

t⊕
i=1

getBi(b)⊕si(shiftsi(k0
i , Ai(a) ⊕ k1

i )) ⊕
t⊕

i=1

k
Bi(b)
i ,

which is equal to the desired output f(a, b).

Thus, our protocol is a (2t, t+ 1; 3t)-protocol.
Finally, we mention the privacy of our protocol. Let MA be the 2t-bit message

sent by Alice, let MB1 be the t-bit message sent by Bob, and let MB2 be the
one-bit message sent by Bob. Note that the distribution of the messages MA
and MB1 is uniform (because of the 3t-bit random string), and is independent of
the values of a and b. Furthermore, the value of the message MB2 is determined
uniquely by the values of MA, MB1 and f(a, b). Therefore, the distribution of
the messages sent by Alice and Bob depends only on the value of f(a, b). Thus,
all the information Carol gains is just the value of f(a, b).
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3 Conclusions

This paper dealt with secure computations in a minimal model, and gave a proto-
col which securely computes every function by means of the techniques of ESOP
expressions. Our protocol is a (2τ(F ), τ(F ) + 1; 3τ(F ))-protocol where F is an
ESOP expression defining a given function f to be securely computed, and hence
its complexity is proportional to the size τ(F ) of the ESOP expression F . Thus,
this paper gives an application of ESOP expressions to designing cryptographic
protocols. Furthermore, our protocol is quite simple and easy to implement.

Since the historical research on minimizing ESOP expressions is now still
active, our protocol will turn to an efficient one as this research progresses. We
hope that the existence of our protocol would motivate the community toward
further research on minimization or simplification of (especially, 2n-valued-input
2-variable) ESOP expressions.

References

1. C. Cachin and J. Camenisch, “Optimistic fair secure computation,”
Proc. CRYPTO 2000, Lecture Notes in Computer Science, vol. 1880, pp. 93–111,
Springer-Verlag, 2000.

2. C. Cachin, J. Camenisch, J. Kilian, and J. Müller, “One-round secure computa-
tion and secure autonomous mobile agents,” Proc. ICALP 2000, Lecture Notes in
Computer Science, vol. 1853, pp. 512–523, Springer-Verlag, 2000.

3. U. Feige, J. Kilian, and M. Naor, “A minimal model for secure computation,”
Proceedings of the 26th ACM Symposium on Theory of Computing (STOC ’94),
pp. 554–563, 1994.

4. H. Fleisher, M. Tavel, and J. Yeager, “A computer algorithm for minimizing Reed-
Muller canonical forms,” IEEE Transactions on Computers, vol. 36, no. 2, pp. 247–
250, 1987.

5. A. Gaidukov, “Algorithm to derive minimum esop for 6-variable. function,” Pro-
ceedings of the fifth International Workshop on Boolean Problems, 2002.

6. A. Gál and A. Rosén, “A theorem on sensitivity and applications in private com-
putation,” SIAM Journal on Computing, vol. 31, no. 5, pp. 1424–1437, 2002.

7. A. Gál and A. Rosén, “Lower bounds on the amount of randomness in private
computation,” Proceedings of the 35th ACM Symposium on Theory of Computing
(STOC ’03), pp. 659–666, 2003.

8. O. Goldreich, “Foundations of Cryptography II: Basic Applications,” Cambridge
University Press, Cambridge, 2004.

9. T. Hirayama, Y. Nishitani, and T. Sato, “A faster algorithm of minimizing AND-
EXOR expressions,” IEICE Trans. Fundamentals, vol. E85-A, no. 12, pp. 2708-
2714, 2002.

10. Y. Ishai and E. Kushilevitz, “Private simultaneous messages protocols with appli-
cations,” Proceedings of the fifth Israel Symposium on the Theory of Computing
Systems (ISTCS ’97), pp. 174–183, 1997.

11. E. Kushilevitz, R. Ostrovsky, and A. Rosén, “Characterizing linear size circuits
in terms of privacy,” Journal of Computer and System Sciences, vol. 58, no. 1,
pp. 129–136, 1999.



554 T. Mizuki, T. Otagiri, and H. Sone

12. T. Sasao, “EXMIN2: a simplification algorithm for exclusive-or sum-of-products
expressions for multiple-valued-input two-valued-output functions,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
no. 5, pp. 621–632, 1993.

13. T. Sasao, “Switching Theory for Logic Synthesis,” Kluwer Academic Publishers,
Boston, MA, 1999.

14. T. Sasao and P. Besslich, “On the complexity of mod-2 sum PLA’s,” IEEE Trans-
actions on Computers, vol. 39, no. 2, pp. 262–266, 1990.

15. N. Song and M. A. Perkowski, “Minimization of exclusive sum-of-products expres-
sions for multiple-valued input, incompletely specified functions,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 4,
pp. 385–395, 1996.

16. S. Stergiou and G. Papakonstantinou, “Exact minimization of ESOP expressions
with less than eight product terms,” Journal of Circuits, Systems and Computers,
vol. 13, no. 1, pp. 1–15, 2004.

17. S. Stergiou, D. Voudouris, and G. Papakonstantinou, “Multiple-value exclusive-or
sum-of-products minimization algorithms,” IEICE Trans. Fundamentals, vol. E87-
A, no. 5, pp. 1226–1234, 2004.

18. A. Yao, “Protocols for secure computations,” Proceedings of the 23th IEEE Sym-
posium on Foundations of Computer Science (FOCS ’82), pp. 160–164, 1982.

19. Y. Ye and K. Roy, “An XOR-based decomposition diagram and its application
in synthesis of AND/XOR networks,” IEICE Trans. Fundamentals, vol. E80-A,
no. 10, pp. 1742–1748, 1997.



Towards Practical Computable Functions
on Context-Free Languages�

Haiming Chen and Yunmei Dong

Computer Science Laboratory,
Institute of Software, Chinese Academy of Sciences,

Beijing 100080, P.R. China
{chm, dym}@ios.ac.cn

Abstract. Many structures used in computer science and software can
be represented by context-free languages. This paper discusses com-
putable functions on such languages, which give a useful model for studies
of computability and algorithms involving complex data structures. This
paper further tackles some practical issues for using the functions. Some
practical schemes of the functions are presented. A subclass of functions
is provided, which can be implemented efficiently.
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1 Introduction

Many structures used in computer science and software can be represented by
context-free languages (CFLs). We mention some examples here. Many data
structures, such as tree, graph, etc., can be represented by CFLs. Also, hierar-
chical structures that commonly appear in information processing and databases
can be represented by CFLs [13]. More recently, balanced languages [1] (a sub-
class of CFLs) are proposed for XML. We know that structures of programming
languages have long been successfully described by CFLs, which form the basis
for processing (compilation, testing, debugging, etc.) of programming languages.
In software modeling or analysis, many properties and structures of software,
which include method call sequences of classes in object-oriented systems [12],
class diagrams [15], system behaviors [14], reachability problems [18], and so on,
can be reresented by CFLs, or even regular languages. For a recent account of
many applications of CFLs, the reader is referred to [17, 16].

Therefore, a computable model upon the domain of CFLs is useful. This pa-
per discusses the class of recursive functions on context-free languages [10, 11],
denoted by CFRF, which is a such model. Moreover, CFRF is useful for stud-
ies of computability and algorithms involving complex data structures. Classical
computability theory is based on recursive functions on natural numbers. Ex-
tension to the domain of words has also been made. However, it is known that
� Research supported by NSFC under Grants Nos. 60573013, 60273023, 60421001.
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many problems solved on computers have structured domains, so a mathemat-
ical tool that can directly specify such problem-solving algorithms is beneficial
to computer science.

In CFRF, the types of arguments and return values of functions are denoted
by context-free grammars (CFGs). Functions are defined by structural induction
on grammars, or pattern matching on parse trees. Essential CFRF theory has
been well-established; the notions and fundamental results of CFRF theory are
presented in [10, 11]. In particular, the equivalence between (primitive) CFRF
and (primitive) recursive functions on natural numbers has been proved [10, 11].

CFRF provides a straightforward way for describing algorithms involving
structured data objects. It offers means to represent and study computation
involving structured data more directly, without encoding of structured domain
into simple domain, a common technique in classical computability study. CFRF
also provides a “high-level” computation model for algorithms, since data struc-
tures and some high-level nontrivial constructs, such as pattern matching, can be
reflected directly by CFRF functions. Other potential benefits of CFRF exists.
For example, types of data of CFRF functions can be learned by machine from a
few given instances of the data, which is a grammatical identification issue. This
is useful for expressing and solving problems where structures of data objects are
complex or even unclear at first. Some of the earlier researches on using CFRF
are mentioned in Section 6.

A known work with similar purpose of establishing computability theories
on arbitrary data is the work of computable functions on many-sorted algebras
by Tucker and Zucker [20, 21]. They defined schemes for recursive functions on
N-standard algebras, which should include natural number set as one carrier
set. Recursion of functions is defined on the natural number set. They defined
PR and PR∗ computable functions which generalise primitive recursive functions
over natural numbers, and μPR and μPR∗ computable functions which generalise
partial recursive functions over natural numbers.

If we restrict carrier sets to CFLs, then we get many-sorted algebras con-
taining functions over CFLs, with CFRF the computable functions. Since many
structured data types can be represented as CFLs, such restriction is reasonable
in many cases. We can also add natural numbers and booleans to construct N-
standard algebras, as is described in Section 3. Therefore the above theory is
suitable to these algebras. On the other hand, by incorporating CFRF, we can
extend the above theory. For example, with CFRF, recursion can be defined di-
rectly on structured sorts. It would be interesting to study possible combinations
of the two theories.

The present paper tackles some practical issues for using CFRF. In basic
CFRF theory, primitive functions (which form a class named CFPRF, a proper
subclass of CFRF) are defined by mutual recursion and some other schemes. Par-
tial recursive functions (which form the class of CFRF) are defined by also using
minimization operator. These basic schemes for CFRF are sufficient for theoret-
ical studies, but are not in practice. Using only these basic schemes to define
functions may often result in tedious definitions with large bodies of auxiliary
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functions, which is inefficient for defining and evaluating functions. Hence more
and efficient schemes for CFRF functions are necessary for using the functions
in practice, which of course are also useful in theoretical studies.

To this end, we have extended basic CFRF theory by adding several impor-
tant, practical operators. This paper presents some major operators, including
another mutual recursion (mutual recursion II), multiple construction, and par-
tial construction. Together with mutual recursion, they can generate quite a lot
of function forms.

From these operators further extension is made and we get a new function
class, which we have proved is equivalent to CFRF [2]. As a consequence, func-
tions in CFRF can be defined without using minimization operator. Since the
later can not be efficiently implemented yet, this extension is quite useful. We
give the general function form as the result of all extensions.

In the implementation, one major factor that influence the efficiency of eval-
uating CFRF functions is that, since the inclusion of CFLs are not decidable,
types have to be checked at run time. To improve efficiency, we restrict CFRF
functions to a subclass of functions in which inclusion is considered on parse
trees. This restriction turns out to be quite reasonable. Meanwhile, the inclusion
test becomes decidable and hence type checking can be done at compile time. In
fact, based on the above work, efficient algorithms has been implemented and a
formal specification language based on CFRF has been developed.

The rest of this paper is organized as follows. Section 2 introduces notations
and definitions of context-free grammars and languages. Section 3 introduces
computable functions on context-free languages, and reviews the basic schemes
and some results of CFRF theory. Section 4 presents the practical operators
of CFRF. Section 5 sketches a subclass of CFRF. Section 6 contains concluding
remarks. Some knowledge about CFL is assumed, for which the reader is referred
to, e. g. [19].

2 Notations

A context-free grammar (CFG) G = (V,A, P ) consists of a finite set V of
nonterminals, a finite set A of terminal letters (V ∩ A = ∅), and a finite set
P ⊂ V × (V ∪A)∗ of productions P = {X → α | X ∈ V, α ∈ (V ∪A)∗}.

For any production Y → α, α is called a term of Y . Denote Term(Y ) = {α ∈
(V ∪A)∗ | Y → α ∈ P}. A term containing no nonterminal symbol is call a base
term, otherwise it is called a compound term.

Given α, β ∈ (V ∪ A)∗, we write α ⇒ β if α = α1Y α2, β = α1γα2, with
Y → γ a production. α0

∗⇒ αk denotes the sequence αi−1 ⇒ αi for i = 1, . . . , k,
which is a derivation from α0 to αk. The language generated by a nonterminal
X in G is LG(X) = {w ∈ A∗ | X ∗⇒ w}, which is a subset of A∗.

A language L is called a context-free language (CFL) if it is generated by some
nonterminal in a context-free grammar. Note in the above a CFG is interpreted
by set of strings or words, it also has other interpretation, see Section 5.
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Let α = v1V1v2V2 . . . vnVnvn+1, where vi are terminal strings, Vi are non-
terminals, denote vs(α) the sequence of nonterminals occurring in α which are
separated by comma, i. e. vs(α) = V1, . . . , Vn.

3 Computable Functions on CFLs

Now we consider functions on CFLs, called CFL-funcitons in the paper. A n-ary
CFL-function is of the form f : L1 × . . .×Ln −→ L, where Li (i = 1, . . . , n) and
L are CFLs. The domain of the function is a product type of L1 × . . .×Ln, the
range is L.

Computable CFL-functions have been studied. That is CFRF, the class of
recursive functions on CFLs. Below we briefly review the basic definition schemes
and some results of CFRF. For a complete introduction to CFRF theory the
reader is referred to [10, 11].

3.1 Basic Definition Schemes of CFRF

CFRF consists of two classes of recursive functions: primitive recursive functions
CFPRF, and recursive functions CFRF.

(1) CFPRF functions
Similar to primitive recursive functions on natural numbers, CFPRF functions

are those that can be obtained from the initial functions by means of a finite
number of substitutions or mutual recursions.
(a) Initial functions: (i) Constant functions. For a CFL L, constw(x1, . . . , xm) =
w, w ∈ L; (ii) Projection functions. Um

i (x1, . . . , xm) = xi, 1 ≤ i ≤ m; (iii)
Concatenation function. concate(x1, . . . , xm) = x1 · · ·xm.
(b) Substitution: Function f : L1 × · · · × Ln −→ L is given by f(x1, . . . , xn) =
h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)), where gi : L1 × · · · × Ln −→ L(i), i =
1, . . . ,m, and h : L(1) × · · · × L(m) −→ L are given CFPRF functions.
(c) Mutual recursion: For fixed m > 0, n ≥ 0, and CFLs L1, . . . , Ln and L, with
L1 generated by a nonterminal X1 in a grammar G1 = (V,A, P ), this defines m
functions f1, . . . , fm : L1 × · · · × Ln −→ L, such that for all y ∈ L2 × · · · × Ln,
and each i = 1, ...,m, we have for each α ∈ Term(X1),1

1. if α is a base term, then we have a rule
fi(α, y) =df hα,i(y),

2. if α is a compound term, i. e., α = u0Z1u1 . . . urZrur with ui ∈ A∗ and
Zi ∈ V ,2 then we have a rule
fi(α, y) =df hα,i(Z1, . . . , Zr, y, f1(Zl1 , y), . . . , fm(Zlm , y)) l1, . . . , lm ≤ r
where hα,i, i = 1, . . . ,m are given CFPRF functions. fk(k = 1, . . . ,m) may
occur in hα,i only if X1

∗⇒ Zlk .

1 Note the definition presented here is slightly different from, and indeed more general
than, the original one in [10, 11].

2 Note different occurrences of the same nonterminal symbol are distinguished. This
follows in the rest of the paper.
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In case of m = 1, mutual recursion is called primitive recursion.

Note. (1) X1
∗⇒ Zlk is X1 = Zlk or X1

+⇒ Zlk (proper derivation), the later
is a decidable case of LG1(Zlk) ⊆ LG1(X1). (2) The above rules use a pattern-
matching interpretation, which means for any u ∈ L1, if X1 ⇒ α

∗⇒ u then the
evaluation of fi(u, y) takes the rule of which the left-hand side is fi(α, y), i =
1, . . . ,m.

Clearly mutual recursion is the key operator for CFPRF. It defines functions
by structural induction on CFL L1. L1 is called the inductive language of the
functions.
(2) CFRF functions

Given a function f : L0 × L1 × · · · × Ln −→ L, where ε ∈ L, the value
computed by minimization operator μy[f ] is an element z of the set {y ∈
L0 | f(y, x1, . . . , xn) = ε}, such that z is the shortest or simplest structured
element of the set, that is, according to given enumeration method, the first one
to be enumerated which satisfies the associated condition. If the set is empty,
then μy[f ] is undefined.

Function f : L1 ×· · ·×Ln −→ L is in CFRF if, besides allowing the construc-
tion for CFPRF, the minimization operator μy[f ] is allowed in the construction
of f .

The entire theory of CFRF is built upon the above basic operators. It has
been proved that CF(P)RF is equivalent to the class of (primitive) recursive
functions on natural numbers. The proof details can be found in [10, 11].

3.2 Discussion

There is other way to define computable CFL-functions, i. e., by general recur-
sion equations. However, by using the operators of CFRF, primitive recursive
functions, which are computable total functions, can be defined in a constructive
manner.

The theory of computable functions on many-sorted algebras [20, 21] is also
aimed to model computation on structured data. It is obvious that CFGs and
CFL-functions can form many-sorted algebras. In concrete, for a signatureΣ con-
sisting of a finite set of sorts and a finite set of function symbols, a CFL-algebra
A has, for each sort s of Σ, a non-empty CFL Ls as the carrier set of s, defined
by some CFG G, and for each Σ-function symbol F : s1× . . . sm −→ s (m ≥ 0), a
CFL-function FA : Ls1×. . . Lsm −→ Ls. It is clear that CFL-functions are a kind
of ‘many-sorted’ functions. Obviously the basic data types such as booleans and
naturals can be represented as CFLs. Alternately, we may add natural number
set and operations into a CFL-algebra the same way the N-standard algebras are
constructed [21]. Therefore, the theory of computable functions on many-sorted
algebras is suitable to CFL-algebras.

However, in the theory of [20, 21] natural numbers are very important, and
recursion is defined on natural numbers. And in CFRF recursion is directly de-
fined on structured data. It would be interesting to study possible combinations
of the two theories.
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4 Practical Operators

Although mutual recursion is theoretically sufficient as function definition means,
it may sometimes result in tedious and inefficient definitions of functions. So in
practice other efficient schemes are necessary. In addition, presently there has
been no efficient implementation technique for the minimization operator, the
need for practical way to define functions in CFRF is also urgent. To address
these problems, we propose several practical operators which are proved closed
under CFPRF. Together with mutual recursion, they can generate quite a lot of
function forms. From these operators we make further extension and get a class
of functions, which we have proved is equivalent to CFRF. Therefore functions in
CFRF can be defined without using minimization operators. For the limited size
of the paper, in this section we describe some major operators without giving
proofs. More details, including proofs, can be found in [2, 4].

4.1 Mutual Recursion-II

This operator is used in place of mutual recursion when the inductive languages
of the functions to be defined are not identical, such as the example we will see
shortly.
Mutual recursion-II : For fixed m > 0, n ≥ 0, and CFLs M1, . . . ,Mm, L1, . . . , Ln

and L, with M1, . . . ,Mm generated from nonterminals X1, . . . , Xm respectively
in a grammar G = (V,A, P ), it defines m functions fi : Mi × L1 × · · · ×Ln −→
L, i = 1, ...,m, such that for all y ∈ L1 ×· · ·×Ln, and each i = 1, ...,m, we have
for each α ∈ Term(Xi),

1. if α is a base term, then we have a rule
fi(α, y) =df hα,i(y),

2. if α is a compound term, i. e., α = u0Z1u1 . . . urZrur with ui ∈ A∗ and
Zi ∈ V , then we have a rule
fi(α, y) =df hα,i(Z1, . . . , Zr, y, f1(Zl1 , y), . . . , fm(Zlm , y)) 1 ≤ l1, . . . , lm ≤ r
where hα,i is a given function. fk(k = 1, . . . ,m) may occur in hα,i only if
Xk

∗⇒ Zlk .

The form of this operator is similar to mutual recursion, except that each
function may have a different inductive language. An example is as follows.

Example 1. Evaluation of arithmetic expressions. Arithmetic expressions are de-
fined by the grammar: 〈e〉 ::= 〈t〉 | 〈e〉+ 〈t〉 〈t〉 ::= 〈f〉 | 〈t〉∗ 〈f〉 〈f〉 ::= 〈N〉 | (e),
where N denotes integers. The above grammar defines three mutually dependent
languages, i. e. arithmetic expressions e, terms t, and factors f . For simplicity,
only addition and multiplication operations are considered in the grammar.

Evaluation functions are defined as follows:

eval : e → N, evalt : t → N, evalf : f → N
eval(t) = evalt(t), eval(e+ t) = eval(e)+ evalt(t)
evalt(f) = evalf(f), evalt(t ∗ f) = evalt(t) ∗ evalf (f)
evalf (N) = N, evalf((e)) = eval(e)
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where +, ∗ denotes respectively the addition and multiplication operators on
integers, N denotes the value of N .

Theorem 1. If the given functions are in CFPRF, then functions defined by
mutual recursion-II are in CFPRF.

4.2 Multiple Construction

Using this operator, more than one inductive language may occur in the defini-
tion of a function.
Multiple construction: For CFLs L1, . . . , Ln′ and L, with Li generated from a
nonterminalXi in some grammarGi = (V,A, Pi), i = 1, . . . , n′, and fixed n ≤ n′,
it defines a function f : L1×· · ·×Ln′ −→ L, such that for all y ∈ Ln+1×· · ·×Ln′ ,
we have for αj ∈ Term(Xj), j = 1, . . . , n,

1. if α1, . . . , αn are base terms, then we have a rule
f(α1, . . . , αn, y) =df h(α1,...,αn)(y)

2. if αt1 , αt2 , . . . , αtu(1 ≤ t1 < . . . < tu ≤ n, 1 ≤ u ≤ n) are compound terms,
and otherwise αj are base terms, then we have a rule f(α1, . . . , αn, y) =df

h(α1,...,αn)(vs(αt1), . . . , vs(αtu), . . . , f(y1, . . . , yn, y), . . .) where h(α1,...,αn) is
a given function, f may occur 0 or more times in h(α1,...,αn), each occurrence
of f satisfies: if αj is a base term then yj = αj , otherwise yj ∈ {vs(αj)} and
Xj

∗⇒ yj .

Example 2. Boolean functions. The grammar for Boolean values: 〈Bool〉 ::= t | f
Some Boolean functions:
and, or : Bool ×Bool → Bool
and(t, t) = t, and(t, f) = f, and(f, t) = f, and(f, f) = f
or(t, t) = t, or(t, f) = t, or(f, t) = t, or(f, f) = f

Theorem 2. If the given functions are in CFPRF, then functions defined by
multiple construction are in CFPRF.

4.3 Partial Construction

In the above operators, terms of each inductive language are enumerated. If
several rules of a function have same definition, they can be merged into one
rule to avoid redundant definition. Here partial construction can be used.
Partial construction: For fixed n, and CFLs L1, . . . , Ln and L, with Li generated
from a nonterminal Xi in some grammar Gi = (V,A, Pi), i = 1, . . . , n, it defines
a function f : L1 × · · · × Ln −→ L:

f(Aj
1, . . . , A

j
n) = hj(B

j
1 , . . . , B

j
n, . . . , f(y1, . . . , yn), . . .), j = 1, . . . ,m

where hj are given functions, and
1. Aj

i is either Xi, or a term of Xi. When Aj
i is Xi or a base term of Xi,

Bj
i = Aj

i ; Otherwise, Bj
i = vs(Aj

i ), i = 1, . . . , n, j = 1, . . . ,m.
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2. When Aj
i , i = 1, . . . , n are base terms, hj does not contain f . Otherwise hj

may contain f , and each occurrence of f satisfies when Aj
i is Xi or a base term

of Xi, yi = Aj
i ; otherwise, yi ∈ {vs(Aj

i )} and Xi
∗⇒ yi, i = 1, . . . , n.

The above rules must satisfy the following conditions: 1. For every n words
ai ∈ Li, i = 1, . . . , n, there is one rule, assuming it is the uth rule, such that
Au

i is either Xi, or the term of Xi that derives ai, i = 1, . . . , n. This rule is
called the matched rule of f(a1, . . . , an) (Completeness). 2. The left-hand sides
of any two rules are not identical (Consistency). These conditions are easily
checkable.

For ai ∈ Li, i = 1, . . . , n, the evaluation of f(a1, . . . , an) is: find the first
matched rule of f(a1, . . . , an) in a top-down ordering, and evaluate the expression
at the right-hand side of this rule.

In the definition, the number of rules is less than the product of the numbers
of terms of each inductive language. Note here the order of rules is significant,
and rules of f are examined in a top-down ordering. 3

Example 3. The Boolean functions in Example 2 can be defined as follows.
and, or : Bool ×Bool → Bool
and(t, t) = t, and(Bool, Bool) = f
or(f, f) = f, or(Bool, Bool) = t

Theorem 3. If the given functions are in CFPRF, then functions defined by
partial construction are in CFPRF.

4.4 Further Extension

There are also several variations of the above operators. Together with mutual
recursion, they can generate quite a lot of function forms. From these operators
we make further extension and get a new function class, which is sketched in
the following. A common characteristic shared by both mutual recursion and
the above operators is that, at the right-hand side of a rule, the arguments of
the functions to be defined can not be functions. If this constraint is removed,
it can be proved that the resulted functions may not be CFPRF. So they form
a new class of functions which includes CFPRF as its proper subclass. We have
proved that this class is equivalent to CFRF [2]. Therefore functions in CFRF
can be defined without using minimization operator.

There are also other extensions to the functions. After all of the extensions,
a n-ary function f : L1 × . . .×Ln −→ L, where the Li and L are CFLs, with Li

generated from a nonterminal Xi in some grammarGi = (V,A, Pi), i = 1, . . . , n,
will have the following form: f(p1

i , . . . , p
n
i ) = ei (i = 1, . . . ,m), where each

pj
i is either Xj , or a sentential form of Xj ; ei are expressions, whose syntax

is e ::= u | x | e1e2 | f(e1, . . . , en), where u, x, f respectively denote terminal
3 However, functions defined by partial construction can be converted to equivalent

definitions in non-partial construction scheme when necessary, thus the existence of
partial construction scheme does not affect any formal treatment to functions.
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strings, nonterminals, and function names. Note e1e2 is the concatenation of
expressions, not function application.

5 Practical Subclass of CFRF

In the implementation, one major factor that influence the efficiency of evaluat-
ing CFRF functions is that, since the inclusion of CFLs are not decidable, types
have to be checked at run time.

Note that when we use CFLs to represent structured objects, we usually con-
cerns inner structures, i.e., we require two objects are structurally equivalent, or
one object is structurally contained by another, not word equivalence or inclu-
sion. Therefore it is natural to interpret CFGs by sets of parse trees, instead of
sets of words.

With such restriction, we get a subclass of CFRF functions, with decidable
equivalence and inclusion tests.

For a context-free grammar G = (V,A, P ), one can construct a bracketed
grammar Ĝ = (V,A ∪ {[i, ]i}, P̂ ) with X → [iα]i ∈ P̂ whenever X → α ∈ P ,
where the indices of ‘[’ and ‘]’ correspond to labels of productions in P . Then Ĝ
defines the set of parse trees generated by G. Therefore structural equivalence
or inclusion of two CFLs is equivalent to the equivalence or inclusion of their
bracketed languages. It is known that the later is decidable.

In the context of CFRF, structural inclusion can be realized by sentential
form checking efficiently [8].

Based on the above work, several algorithms and related implementation tech-
niques for evaluation of the functions have been proposed [5, 9, 8, 6].

6 Concluding Remarks

CFRF is a new kind of recursive function theory for structured data. The CFL-
functions are introduced and the basic schemes of CFRF theory are reviewed.
Several practical operators are presented. The operators can generate quite a lot
of function forms. A further extension from the operators is also sketched, which
avoids the minimization operator for CFRF functions. Abundant operators for
recursive functions on natural numbers were developed in the literature. These
operators, however, are hard to be directly copied to CFRF, since in CFRF the
domain and range are quite different from natural numbers.

To tackle the issue that inclusion of CFLs is not decidable, we use a subclass
of CFRF functions, which can be implemented efficiently.

Based on the above work, we have developed a formal specification language
based on CFRF theory, and its supporting tool [9]. Earlier experiments were
described in [9], some of the recent experiments includes software prototyping,
programming language processing [7], typed XML processing [3], etc.

Future work includes further exploration of CFRF theory in the orienta-
tion of practicality, and applications. It is also interesting to study the possible
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combinations with other theories such as the theory of computable functions on
many-sorted algebras.
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Abstract. For the semantics of probabilistic features in programming mainly
two approaches are used for building models. One is the Giry monad of Borel
probability measures over metric spaces, and the other is Jones’ probabilistic
powerdomain monad [6] over dcpos (directed complete partial orders). This paper
places itself in the second domain theoretical tradition. The probabilistic power-
domain monad is well understood over continuous domains. In this case the al-
gebras of the monad can be described by an equational theory [6, 9, 5]. It is the
aim of this work to obtain similar results for the (extended) probabilistic pow-
erdomain monad over stably compact spaces. We mainly want to determine the
algebras of this powerdomain monad and the algebra homomorphisms.

1 Introduction

We introduce the extended probabilistic powerdomain monad over the category of all
T0-spaces. For this, we have to deal with objects that we call topological cones. Topo-
logical cones are a kind of asymmetric variant of topological vector spaces over the
reals. The term ’asymmetric’ refers to the features that scalar multiplication is only
defined for nonnegative reals, no element has an additive inverse, and topologies are
never Hausdorff, but only T0. In order to deal with these structures one has to adapt
functional analytic tools to this non-Hausdorff setting extending the work [15]. As far
as necessary, these notions and methods are presented in the first sections. These tools
are also close to classical Choquet theory over compact convex sets (see [2]).

Our main concern are the algebras and the algebra homomorphisms of this extended
probabilistic powerdomain monad. The algebras have to be topological cones and the
algebra homomorphisms have to be continuous linear maps. But these properties are not
strong enough to determine algebras and the algebra homomorphisms, in general. But
if we restrict our attention to stably compact spaces, we conjecture that these properties
together with local convexity are sufficient for being algebras and algebra homomor-
phisms. In the general case, the existence of averaging operators seems to be crucial for
the algebras. Such operators exist for the dual cones of topological cones. Our results
are contained in the last two sections.

The extended probabilistic powerdomain monad has been studied in detail over the
category of continuous domains and Scott-continuous functions. In this case the alge-
bras have been characterized as the cones which are continuous domains at the same

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 566–575, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Extended Probabilistic Powerdomain Monad 567

time, and with addition and scalar multiplication being Scott-continuous. And the al-
gebra homomorphisms are Scott-continuous linear maps (see [6, 9, 5]). In topological
measure theory there is a similar result (see [4, Theorem 2.14]): Over compact Haus-
dorff spaces, the algebras of the monad of probability measures are the compact convex
sets embeddable in locally convex topological vector spaces and the homomorphisms
are the continuous affine maps. It is our goal to obtain analogous results over the cate-
gory of stably compact spaces.

For background material on continuous domains and stably compact spaces we refer
to [5]. Basic concepts on topological cones are collected in [7]. No proofs are included
in this extended abstract.

Alex Simpson has communicated to us that the main result by himself and
M. Schröder announced in a talk at MFPS 21 in May 2005 without proof (see [13])
implies the unicity property that we leave open in our Lemma 2 below and that it also
implies property (1) in our Corollary 2.

2 Ordered Cones and Topological Cones

Elementary topological cones are IR+, the set of nonnegative real numbers, and IR+ =
IR+∪{+∞}, the set of nonnegative real numbers extended by an infinite element, both
with the upper topology ν the only proper nonempty open sets of which are the infinite
upper intervals ]r,+∞] = {s | r < s}, r ∈ IR+. This upper topology is T0 but far from
being Hausdorff. If not specified otherwise, we will use this topology on the (extended)
reals and not the usual open interval topology λ.

We want to consider structures that are close to vector spaces but asymmetric in the
sense that elements do not have additive inverses. Accordingly, scalar multiplication is
restricted to nonnegative real numbers.

Definition 1. A cone is defined to be a commutative monoid C together with a scalar
multiplication by nonnegative real numbers satisfying the same axioms as for vector
spaces; that is, C is endowed with an addition (x, y) �→ x + y:C × C → C which is
associative, commutative and admits a neutral element 0, and with a scalar multiplica-
tion (r, x) �→ r · x: IR+ × C → C satisfying the following axioms for all x, y ∈ C and
all r, s ∈ IR+:

r · (x+ y) = r · x+ r · y (rs) · x = r · (s · x) 1 · x = x
(r + s) · x = r · x+ s · x 0 · x = 0

An ordered cone is a cone C endowed with a partial order ≤ such that, for all x, y, z ∈
C and all r, s ∈ IR+,

x ≤ y and r ≤ s =⇒ x+ z ≤ y + z and r · x ≤ s · y .

Cones may occur as subsets of real vector spaces: such a subsetC is a cone if it satisfies
(1) 0 ∈ C, (2) a, b ∈ C ⇒ a+b ∈ C and (3) a ∈ C, r ∈ IR+ ⇒ ra ∈ C. But unlike for
cones in vector spaces, addition need not satisfy the cancellation property, in general,
and cones need not be embeddable in vector spaces. For example IR+ and its powers

IR
I

+ are ordered cones that are not embeddable in vector spaces. Thus, our notion of
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a cone is more general than that used in classical functional analysis. On the other
hand, our concept of an ordered cone is more restrictive as the one used in in functional
analysis, where our ordered cones would be called pointed ordered cones. In an ordered
cone C in our sense, one has a ≥ 0 for every element a.

As in real vector spaces, there is a notion of convexity in cones. Because of the
possible existence of infinite elements in cones, convex sets may look unusual.

Definition 2. A subset A of a cone C is convex if, for all a, b ∈ A, the convex combi-
nation ra+ (1 − r)b belongs to A for every real number 0 ≤ r ≤ 1.

Recall that a topological vector space is a vector space endowed with a Hausdorff topol-
ogy in such a way that addition and scalar multiplication are jointly continuous. The
scalars are endowed with the usual (Hausdorff) topology λ. For cones we continue our
programme by using asymmetric topologies.

On IR+ and IR+ we use the upper topology ν. Then, for any topological space X ,
there are fewer continuous functions f : IR+ → X than those which are continuous
with respect to the usual topology λ. This fact has striking consequences for topological
cones in our sense. On the other hand, there are more continuous functions f :X → IR
than those which are continuous with respect to the usual topology λ on the reals. The
functions f :X → IR+ which are continuous with respect to the upper topology on IR+
are called lower semicontinuous in classical analysis. We shall adopt this terminology
also for this paper and we use the abbreviation lsc for lower semicontinuous.1

Any T0-space X comes with an intrinsic order, the specialisation order defined by
x ≤ y if the closure of the singleton {y} contains x or, equivalently, if every open
neighbourhood of x is also a neighbourhood of y. In the remainder of the paper, ref-
erences to order will always be with respect to the specialisation order of the space
under consideration. Open sets are upper sets and closed sets are lower sets. Upper sets
are also called saturated, and coincide with those sets that are the intersection of their
neighbourhoods. In Hausdorff spaces, the specialisation order is the identity and hence
trivial. But on IR+ with the upper topology, the specialisation order is just the usual
linear order.

Definition 3. A topological cone is a cone C endowed with a T0-topology such that
addition and scalar multiplication are jointly continuous,

As we use the upper topology on IR+, the continuity of r �→ ra: IR+ → C has the strik-
ing consequence that the topology on a topological coneC cannot satisfy the Hausdorff
separation property: Because continuous maps preserve the respective specialisation
orders, the map r �→ ra: IR+ → C is order preserving, that is, the rays IR+ · a in the
cone are nontrivially ordered (except for the singleton ray {0}). As continuous maps
between topological spaces preserve the specialisation order, a topological cone is an

ordered cone. The cone IR+ and arbitrary powers IR
I

+ with the upper product topology
are topological cones. As for topological vector spaces, we have notions of linearity for
maps and local convexity for cones.

1 It is somewhat unfortunate that those functions are lower semicontinuous which are continuous
with respect to the upper topology. But we do not wish to deviate from the terminology adopted
in analysis and in [5].
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Definition 4. A topological cone C is called locally convex, if each point has a neigh-
bourhood basis of open convex neighbourhoods.

Definition 5. Let C andD be cones. A function f :C → D is called linear if f(r ·a) =
r · f(a) and f(a+ b) = f(a) + f(b) for all a, b ∈ C and all r ∈ IR+.

Maps from a coneC into IR+ are called functionals. Notice that we allow the value +∞.
As for topological vector spaces, local convexity for cones allows to prove Hahn-
Banach type separation theorems.

Lemma 1. ([7]) For any two elements of a locally convex topological cone there is a
lsc linear functional separating these two elements.

Arbitrary powers (IR+, ν)I of the extended nonnegative reals with the upper topology
ν are examples of locally convex topological cones. The same holds for subcones of
such powers with the subspace topology induced from the product topology νI .

3 The Extended Probabilistic Powermonad

TOP will denote the category of T0-spaces X and continuous maps g:X → Y ,
TOPCONE will denote the category of topological conesC and continuous linear maps
ψ:C → D, and LCCONE the subcategory of locally convex cones.

We firstly define a contravariant functor

L: TOPop → LCCONE

from the category of T0-spaces into the category of locally convex topological cones
in the following way: For every topological space X , let LX be the cone of all lsc
functions f :X → IR+ with pointwise addition and scalar multiplication. We endow
LX with the coarsest topology such that, for all x ∈ X , the point evaluations

ηX(x) =
(
f �→ f(x)

)
:LX → IR+

become lsc. Notice that these functionals ηX(x) are linear. The sets

Wx,r = {f ∈ LX | f(x) > r}, x ∈ X, r ∈ IR+ ,

form a subbasis for the open sets of this topology. As this topology is nothing but
the subspace topology induced by the product topology on (IR+, ν)X , the cone LX
becomes indeed a locally convex topological cone. For a continuous map g:X → Y ,
the map

Lg =
(
f �→ f ◦ g

)
:LY → LX

is linear and continuous.
We secondly define a contravariant endofunctor

∗: TOPCONEop → LCCONE
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as follows: For every topological cone C, let C∗ be the dual cone of all lsc linear func-
tionals ϕ:C → IR+ with pointwise addition and scalar multiplication. We endow C∗

with the upper weak*topology, that is, the coarsest topology making lsc the functions

ηC(f) =
(
ϕ �→ ϕ(f)

)
:C∗ → IR+

for all f ∈ C. Notice that these functionals are linear on C∗. The sets

Wf,r = {ϕ ∈ C∗ | ϕ(f) > r}, f ∈ C, r ∈ IR+ ,

form an open subbasis for this topology. Notice again that the upper weak*topology
on C∗ is nothing but the topology induced by the product topology on (IR+, ν)C ,
whence C∗ becomes indeed a locally convex topological cone, in fact, a subcone of
the locally convex topological cone LC. For every continuous linear map ψ:C → D of
topological cones, the map

ψ∗ =
(
ϕ �→ ϕ ◦ ψ

)
:D∗ → C∗

is linear and upper weak*continuous.
Composing the contravariant functors L and ∗ we obtain a (covariant) functor

V : TOP → LCCONE

from the category of T0-spaces to the category of locally convex topological cones. For
a T0-space X , we have VX = (LX)∗ and for a continuous map g:X → Y , the map
Vg:VX → VY is defined by

Vg = (f �→ f ◦ g)∗ =
(
ϕ �→ ϕ ◦ (f �→ f ◦ g)

)
.

We will see that the functor V defines a monad over the category TOP.
The unit η : For a topological space X we have the function

ηX :X → VX ,

which assigns the point evaluation ηX(x): f �→ f(x) to every x ∈ X . We see that ηX

is an embedding; indeed, ηX(x)(f) > r iff f(x) > r. It is readily verified that η is a
natural transformation.

The multiplication μ : For every topological cone C with dual cone C∗, we define

mC∗ :VC∗ → C∗

in the following way: For every f ∈ C, the map ηC(f) =
(
ϕ �→ ϕ(f)

)
: C∗ → IR+

is lsc (and linear), hence an element of the double dual C∗∗ which is a subcone of the
cone LC∗. Thus, every Φ ∈ V(C∗) = (LC∗)∗ may be applied to ηC(f). One checks
that f �→ Φ(ηC(f)):C → IR+ is linear and lsc, hence an element of the dual cone C∗.
We thus may define mC∗ by

mC∗(Φ) =
(
f �→ Φ(ηC(f))

)
.
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Clearly, mC∗ is linear and continuous. It also is surjective as

mC∗(ηC∗(ϕ)) = mC∗(F �→ F (ϕ)) = ϕ ,

whence

(A1) mC∗ ◦ ηC∗ = id C∗ .

We now apply this construction to the case C = LX and C∗ = VX . We define μX

to be mVX as above, i.e.,

μX :V2X → VX is defined by μX(Φ) =
(
f �→ Φ(ηLX(f))

)
.

It is readily seen that μ is a natural transformation. The following requires a lengthy but
straightforward verification:

Proposition 1. The functor V defines a monad over the category TOP of T0-spaces,
with unit η und multiplication μ.

For a space X , the topological cone VX is called the extended probabilistic powerdo-
main over X . This denomination has its justification in a domain theoretical analogue
of a measure which is called a continuous valuation.

A continuous valuation on a spaceX is a function v that associates to every open set
U in X an element v(U) ∈ IR+ such that the following properties are satisfied:

v(∅) = 0 (1)

v(U) + v(U ′) = v(U ∪ U ′) + v(U ∩ U ′) (2)

v(U) ≤ v(U ′) whenever U ⊆ U ′ (3)

v
(⋃

i

Ui

)
= sup

i
v(Ui) for every directed family of open sets Ui (4)

Property (2) corresponds to finite additivity and, together with (4), it replaces and
strengthens countable additivity.

Every lsc function f :X → IR+ has a Choquet type integral with respect to a contin-
uous valuation (see [14]) defined by

(Ch)
∫
f dv =

∫ ∞

0
v
(
f−1(]r,+∞]

))
dr .

There is a Riesz Representation Theorem (see [9]) which tells us that integrating with
respect to a continuous valuation v defines a lsc linear functional f �→

∫
f dv on LX

and that, for every lsc linear functionalϕ on LX , there is a unique continuous valuation
v representing ϕ in the sense that ϕ(f) =

∫
f dv. Thus, we may identify the the linear

functionals ϕ ∈ VX = (LX)∗ with the continuous valuations v on X representing
them.

Consider now any topological cone C and its dual C∗. If we rewrite the definition
of the the map mC∗ :VC∗ → C∗ using the representation of the elements of V(C∗) by
continuous valuations Φ on C∗, then

(V) mC∗(Φ)(f) =
∫
ηC(f) dΦ for all f ∈ C .
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This should be read as follows:mC∗(Φ) is the linear functionalϕ onC given by ϕ(f) =∫
ηC(f) dΦ for all f ∈ C, i.e., by integrating the functional ϕ �→ ϕ(f):C∗ → IR+

with respect to the valuation Φ.
This formula may be better understood by introducing the notion of a cone-valued

integral for functions with values in a cone, in analogy to vector-valued integrals in the
classical theory of topological vector spaces: Let Φ be a valuation on a space Y and D
a locally convex cone. For a continuous function F :Y → D, we say that an element
a ∈ D is the integral of F with respect to Φ, and we write a =

∫
F dΦ if, for every lsc

linear functional g on D, we have

(I) g(a) =
∫
g ◦ F dΦ .

As g ◦ F is a lsc real-valued function, the latter integral is well defined by (Ch). As
the lsc linear functionals on locally convex cones separate the points by Lemma 1, the
cone-valued integral is uniquely determined, if it exists. It even suffices to require that
(I) holds for a separating family of lsc linear functionals g.

We apply the notation of the previous paragraph to the special situation where Y =
D = C∗ and F = idC∗ , and where Φ is a continuous valuation on C∗. As the function-
als ηC(f), f ∈ C, separate the points of C∗, we can rewrite (V) in the form:

mC∗(Φ) =
∫

id C∗ dΦ .

If Φ is a probability valuation (i.e., of total mass 1) on the cone C∗, we may view
mC∗(Φ) to be the barycenter of the mass distribution given by Φ. In the general case
we may view mC∗(Φ) as the average of Φ on C∗ weighted by the total mass Φ(X).
One may compare these concepts with the corresponding ones in the classical theory of
compact convex sets (see e.g. [2]).

As a particular case we may think of μX :V2X → VX as the weighted averaging
operator defined by

μX(Φ) =
∫

id VX dΦ .

4 Algebras of the Extended Probabilistic Powerdomain Monad

One would like to know the algebras of the monad V and the algebra homomorphisms in
an explicit way. Recall that the Eilenberg-Moore algebras of the extended probabilistic
powerdomain monad (V , η, μ) are pairs (A,α), where A is a topological space and
α:VA → A a continuous map such that α ◦ ηA = idA and α ◦ μA = α ◦ Vα. A
homomorphism of two V algebras (A,α) and (B, β) is a continuous function h:A → B
such that h ◦ α = β ◦ Vh.

On every V-algebra (A,α) we may define an addition and a scalar multiplication by
on A by a+ b = α(ηA(a) + ηA(b)) and r · a = α(rηA(a)), which gives the first part
of the following proposition; the converse holds if one assumes local convexity:

Proposition 2. Every V-algebra A carries the structure of a topological cone, and V-
algebra homomorphisms become linear and continuous. Conversely, if A is a locally
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convex topological cone such that mA(ϕ) =
∫

idA dϕ exists for all ϕ ∈ VA, then
(A,mA) is a V-algebra.

The question is whether all V-algebras are of this type. As the hypotheses of the second
part of the previous proposition hold in every dual cone, we have:

Corollary 1. The dual coneA = C∗ of every topological cone with the weighted aver-
aging map mA:VA → A is a V-algebra.

As IR+ is isomorphic to its own dual, we can specialize the above in the following way:
IR+ together with the weighted averaging operator mIR+

:VIR+ → IR+ given by

mIR+
(Φ) =

∫
id IR+

dΦ =
∫
xdΦ(x)

is a V-algebra.
For dual cones A = C∗ and B = D∗, a map h:A → B is a V-algebra homomor-

phism if it preserves weighted averages of valuations, in the sense that, for all continu-
ous valuations Φ on A,

h
( ∫

id A dΦ
)

=
∫

id B d(hΦ) ,

where hΦ is the image of the valuation Φ under the map h given by (hΦ)(U) =
Φ(h−1U) for every open subset U of A.

The question is whether there is a simpler description of the algebras and their ho-
momorphisms. One can try to guess such a description and prove the required universal
property:

Lemma 2. Let X be a T0-space and A a locally convex topological cone for which the
weighted averaging operator mA is well defined. Then, for every continuous function
g:X → A there is a continuous linear map ĝ:V(X) → A such that ĝ ◦ ηX = g.

Proof. We compose the continuous linear maps Vg:VX → VA and μC :VA → A and
we obtain a continuous linear map ĝ = μC ◦ Vg:VX → A which satisfies the required
equation. ��
The problem is that, in general, we cannot assert the uniqueness of the continuous linear
map ĝ in the lemma above. In the special case where X is a continuous domain with its
Scott topology and C a d-cone, then the uniqueness of ĝ has been proved (see [6, 9, 5]).
Thus, over the category of continuous domains, the algebras of the extended probabilis-
tic powermonad V are the continuous d-cones, and the algebra homomorphisms are the
Scott-continuous linear maps. We conjecture that an analogous result holds over the
category of stably compact spaces.

5 Stably Compact Spaces

Recall that a space is stably compact if it is compact, locally compact, sober and coher-
ent. The coherence property says that the intersection of any two compact saturated sets
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is compact. The extended probabilistic powercone VX over a stably compact space X
is stably compact, too (see [3]). Thus, we may restrict the extended probabilistic power-
domain monad to the category SCTOP of stably compact spaces and continuous maps
between them.

Conjecture 1. The algebras (A,α) of the extended probabilistic powerdomain monad V
over the category SCTOP of stably compact spaces are the locally convex stably com-
pact cones and the algebra homomorphisms are the continuous linear maps.

The following universal property (U) for a locally convex topological cone C is crucial
for proving the conjecture:

(U) For every stably compact space X and every continuous map g:X → C, there is a
unique continuous linear map ĝ:VX → C such that ĝ ◦ ηX = g .

The following Theorem is our main tool. It may look quite innocent, but its proof re-
quires quite some work. We essentially use [8, II-3.7/8/9] and [12, Theorem 5.1].

Theorem 1. For a stably compact space X , every lsc linear functional G on VX can
be represented by some g ∈ LX in the sense that G(ϕ) =

∫
g dϕ for all ϕ ∈ VX .

This result is equivalent to the statement that LX ∼= (VX)∗, and hence is a kind of dual
to the Riesz Representation Theorem, which is equivalent to VX ∼= (LX)∗. Thus, LX
and VX are reflexive topological cones, where a topological cone C is called reflexive
if it is naturally isomorphic to C∗∗. We have the following consequences, which in
fact can be easily proved to be equivalent to the statement of the theorem, without
knowledge of its truth.

Corollary 2. 1. The cone C = IR+ satisfies property (U).
2. The dual C = D∗ of every topological cone D has property (U).
3. For every stably compact space Y , the cone C = LY has property (U).
4. For every stably compact space X and every lsc linear functional h:VX → IR+,

h(μX(Φ)) =
∫
h dΦ for all Φ ∈ V2X ,

i.e., the integral of h is equal to the image under h of the weighted average of Φ.
5. For every stably compact space Y , the cone C = VY has property (U).

Notice that the statement (4) of the previous corollary is a variant of a theorem of
Choquet for a compact convex sets X : every lsc affine functional h on X and every
probability measure Φ on X , one has h(β(Φ)) =

∫
h dΦ, where β(Φ) denotes the

barycenter of Φ (see [2]).
The previous results strongly support our conjecture. They allow the following char-

acterization of the Eilenberg-Moore algebras of the monad V over the category of stably
compact spaces:

Theorem 2. Let (A,α) be an Eilenberg-Moore algebra of the extended probabilistic
powerdomain monad V over the category of stably compact spaces. Then A is a stably
compact topological cone. If A is locally convex, then α = mA, i.e., α(ϕ) =

∫
idA dϕ,

and A has property (U).



The Extended Probabilistic Powerdomain Monad 575

That is, the locally convex algebras coincide with the locally convex stably compact
cones, and their homomorphisms are the continuous linear maps. Thus, to prove our
conjecture, it remains to show that every algebra is locally convex.
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Abstract. Petri net synthesis can avoid the state exploration problem,
which is of exponential complexity, by guaranteeing the correctness in
the Petri net while incrementally expanding the net. The conventional
Petri net synthesis approaches, in general, suffer the drawback of only
being able to synthesize a few classes of nets, such as state machines,
marked graphs or asymmetric choice(AC) nets. However, the synthesis
technique of Petri nets shared PP-type subnets can synthesize Petri nets
beyond AC nets. One major advantage of the synthesis technique is that
the resultant Petri net is guaranteed to be live, bounded and reversible.
Most current synthesis techniques cannot handle systems with shared
subsystems. To solve resource-sharing problem, Jiao L. presented the
conditions for an AC net satisfying siphon-trap-property (ST-property)
to be live, bounded and reversible[3]. The major motivation of this work
is to generalize the results in [3] and to extend the resource-sharing tech-
nique to subsystem-sharing technique on AC nets or Petri nets beyond
AC nets.

Keywords: Petri nets, analysis, synthesis, liveness and boundedness.

1 Introduction

Subsystem sharing is a very common and basic issue in system design. In man-
ufacturing engineering, for example, plants and workstations as subsystems are
shared among several processes. In order to save resources, several factories can
share semiautonomous subsystems, which perform local operations, such as pro-
cessing parts, and interact periodically in some way. In terms of convenience, we
can use Petri net synthesis method to verify these subsystems.

There exist many methods to solve the net synthesis problem. For exam-
ple, Agerwala T. et al.[1] presented a synthesis rule for concurrent systems and
proved the preservation of P-invariants under the 1-way merge. An effective solu-
tion to the net synthesis problem for path-automatic specifications is presented
in [2]. Jiao L.[3] investigated the transformation of merging a set of places of
an ordinary AC net and proposed the conditions to preserve the siphon-trap-
property (ST-property), liveness, boundedness and reversibility. Franceschinis
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G.[4] presented the application of a compositional modelling methodology to the
re-engineering of stochastic Well Formed Net (SWN) models of a contact center,
the advantages are that this approach, based on the definition of classes and
instances of submodels, can provide to the application of SWN to complex case
studies. A methodology for synthesis of controlled behavrior for systems mod-
elled by modules of signal sets is presented in [5]. Yoo D. H. proposed a formal
design representation model, called Operation Net System, for high-level synthe-
sis of asynchronous systems which is based on transformational approaches[6].
Mäkelä M. introduced nested modular nets, which are hierarchal collection of
nets synchronizing via shared transitions, and presented a simple algorithm for
model checking safety properties in modular systems[7]. In [8], one WF-net class,
called ST-nets, is presented. These nets are constructed from state machines
and marked graphs by means of refinement. The method, obtained from [9],
can be used to deal with general Petri nets with uncontrollable transitions, and
then provides a systematic way for synthesizing net-based controller discrete
event systems. Christensen S. illustrates some techniques by means of modular
Place/Transition nets (modular PT-nets) in which the individual modules inter-
act via shared places and shared transitions[10]. The knitting technique, orig-
inally proposed by Chao, can synthesize Petri nets beyond asymmetric choice
nets[11].

The above synthesis methods are used to verify some systems, but, in gen-
eral, their synthesis conditions are often either computationally intractable or
too difficult, and are not fit for subsystem-sharing problem. In order to solve
the problem properly, having investigated much of correlative work and many
references for synthesis Petri nets, we propose a PP-type subnet and synthesis
Petri nets shared PP-type subnets.

In this paper, the subsystem-sharing problem is formulated as a problem
of merging several sets of subsystems each into a single place. We have ob-
tained some conditions for ensuring that the synthesis will preserve liveness,
boundedness and reversibility. The results are then applied to the verification
of subsystem-sharing systems. At present, the major approaches for solving
resource-sharing problem are based on state machines, market graphs or AC
nets. Our approach for solving subsystem-sharing problem extends the scopes
of the underlying nets and the verification techniques. The refinement and ab-
stract representation method of Petri net is embodied in the process of proving
liveness, boundedness and reversibility. The results of liveness, boundedness and
reversibility on AC nets are extensions of the corresponding results in [3]. These
results are useful for studying the properties of Petri synthesis nets and estab-
lishing models for large complex system.

This paper is organized as follows. The preliminaries are presented in section
2. The refinement and abstract representation method of Petri net is presented
in section 3. Some conditions which ensure that the synthesis will preserve live-
ness, boundedness and reversibility is obtained in section 4. Section 5 presents
application of the synthesis method to verify subnet-sharing systems. Finally,
we present our conclusions in section 6.
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2 Preliminaries

This section provides some fundamentals of Petri nets required for the rest of
the article.

A weighted net is denoted by N = (P, T ;F,W ), where P is a non-empty
finite set of places, T is a non-empty finite set of transitions with P ∩ T = ∅,
F ⊆ (P × T )∪ (T × P ) is a flow relation and W is a weight function defined on
the arcs, i.e., W : F → {1, 2, 3, ...}. N1 = (P1, T1;F1,W1) is called a subnet of N
if P1 ⊂ P , T1 ⊂ T , P1 �= ∅, T1 �= ∅, F1 = ((P1 ×T1)∪(T1 ×P1)) and W1 = W |F1,
i.e., the restriction of W on F1. The incidence matrix A of a net N is a |P |× |T |
matrix.

A marking of a net N = (P, T ;F,W ) is a mapping M : P → {0, 1, 2, ...}. A
Petri net is a couple (N,M0), where N is a net and M0 is the initial marking
of N . A place p is said to be marked by M if M(p) > 0. A transition t is
enabled or firable at a marking M if for every p ∈ •t, M(p) ≥ W (p, t). A
transition t may be fired if it is enabled. Firing transition t results in changing
the marking M to a new marking M ′, where M ′ is obtained by removing W (p, t)
tokens from each p ∈ •t and by putting W (t, p) tokens to every p ∈ t•. The
process is denoted by M [t > M ′. If M [t1 > M1[t2 > ...Mn−1[tn > Mn, then
σ = t1...tn is called a firing sequence leading from M to Mn and is denoted as
M [σ > Mn. R(M0) denotes the set of all markings reachable from the initial
marking M0.

A transition t is said to be live in (N,M0) iff, for any M ∈ R(M0), there
exists M ′ ∈ R(M) such that t can be fired at M ′. (N,M0) is said to be live iff
every transition of N is live. A place p is said to be bounded in (N,M0) iff there
exists a constant k such that M(p) ≤ k for all M ∈ R(M0). (N,M0) is bounded
iff every place of N is bounded. (N,M0) is said to be reversible iff M0 ∈ R(M),
∀M ∈ R(M0). A net N is said to be conservative (resp., consistant) iff there
exists a |p|− vector α > 0 such that αA = 0 (resp., |T |− vector β > 0 such that
Aβ = 0), where A is the incidence matrix of N .
N is said to be asymmetric choice (AC) iff ∀p1, p2 ∈ P :p•1 ∩ p2

• �= ∅ ⇒
p1

• ⊆ p2
• or p•2 ⊆ p1

•. To avoid confusion, we use OAC nets to denote ordinary
AC nets. A non-empty set of places D is said to be a siphon (resp., trap) iff
•D ⊆ D• (resp., D• ⊆• D). N is said to satisfy the ST-property if every siphon
of N contains at least one trap.

Definition 1. A net N0 = (P0, T0;F0,W0) is said to be a PP-type subnet of
N = (P, T ;F,W ) iff,

(1) N0 is a subnet of N ,
(2) •T0 ∪ T0

• ⊆ P0,
(3) N0 is connected, {px, py} ⊆ P0 and px is the only input place of N0, py is
the only output place of N0.

Supposition 1. A PP-type subnet satisfies:

(1) px is the only place which can contain the initial marking (token(s)).
(2) In a process (tokens from outside flow into px, pass N0 and then flow out
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from py), the number of tokens flowing into px is equal to the number of tokens
flowing out from py.

The example of PP-type subnets is illustrated below (Fig.1.).

Fig. 1. An example of two PP-type subnets

Definition 2. A net (Npp,Mpp0) is said to be a PP-type closed net if add a
transition tpp and two arcs (py, tpp), (tpp, px) to (Npp,Mpp0), and the marking of
(Npp,Mpp0) is preserved.

3 Refinement and Abstract Operations

In this section we present a PP-type subnet refinement operation and a PP-type
abstract operation. The two operations, which preserved boundedness, liveness
and reveribility, are practical to use in the process of proving some theorems in
section 4.

Definition 3. PP-type subnet refinement operation Refpp(p̃, Npp): N ′=(P ′, T ′;
F ′,W ′) is obtained from Petri net N = (P, T ;F,W ) by using a PP-type subnet
Npp = (Ppp, Tpp;Fpp, Wpp) to replace p̃ (p̃ ∈ P ), where

(1) P ′ = (P − {p̃}) ∪ Ppp, (2) T ′ = T ∪ Tpp,
(3) F ′ = F ∪ {(t, px)|t ∈• p̃} ∪ Fpp ∪ {(py, t)|t ∈ p̃•} −{(t, p̃)|t ∈ •p̃} −{(p̃, t)
|t ∈ p̃•}.
Definition 4. (N ′,M ′

0) obtained by PP-type subnet refinement operation com-
prise net N ′ and marking M ′

0 where

M ′
0 =
{

(M(P\p̃)0, θpp), if M0(p̃) = 0,
(M(P\p̃)0,Mpp0), if M0(p̃) > 0.

(M(P\p̃) is obtained from M by deleted the vector corresponding to p̃, θpp is
0-vector of Mpp).

Definition 5. PP-type subnet abstract operation Abspp(Npp, p̃):N ′ = (P ′, T ′;
F ′,W ′) is obtained from Petri net N = (P, T ;F,W ) by using a place p̃ to replace
a PP-type subnet Npp = (Ppp, Tpp;Fpp,Wpp), where,

(1) P ′ = (P − Ppp) ∪ {p̃}, (2) T ′ = T − Tpp,
(3) F ′ = (F − Fpp − {(t, px)|t ∈ •px} − {(py, t)|t ∈ p•y}) ∪{(t, p̃)|t ∈ •px} ∪
{(p̃, t)|t ∈ p•y}.
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Definition 6. (N ′,M ′
0) obtained by PP-type subnet abstract operation com-

prise net N ′ and marking M ′
0, where M ′

0 =
{

(M(P\pp)0, 0), if M0(px) = 0,
(M(P\pp)0,M(px)), if M0(px) > 0.

(M(P\pp) is obtained from M by deleted the vector corresponding to Ppp), and
M ′

0(p̃) = M0(px).

Lemma 1. Suppose that (N ′,M ′
0) is obtained from (N,M0) by PP-type refine-

ment Refpp(p̃, Npp), if px ∈ {p|(p ∈ P ′) ∧ (M ′
0(p) > 0)}, then (N ′,M ′

0) is live
iff (N,M0) and (Npp,Mpp0) are live.

Proof. (⇐=) ∀t′ ∈ T ′, ∀M ′ ∈ R(M ′
0), t

′ ∈ T or t′ ∈ tpp. Without losing of
generality, suppose t′ ∈ T , M ′ = (M(P\p̃),Mpp), where M ∈ R(M0), Mpp ∈
R(Mpp0). Since (N,M0) is live, ∀M ∈ R(M0), ∃M ∈ R(M), such that M [t′ >.
Since (N,M0) and (Npp,Mpp0) are live, by Definition 1, Supposition 1, Defi-
nition 3 and Definition 4, ∃M ′

= (M (P\p̃),Mpp) ∈ R(M ′), such that M
′
[t′ >,

where M ∈ R(M), Mpp ∈ R(Mpp), so t′ is live in (N ′,M ′
0). Hence (N ′,M ′

0) is
live.
(=⇒) Without losing of generality, suppose ∀M ′′

0 ∈ R(M ′
0),(N,M0) obtained

from (N ′,M ′
0) by abstract operation is not live, i.e., ∃M ∈ R(M0), ∃t ∈ T ,

∀M ∈ R(M), such that ⇁(M [t >). Suppose M0[σ > M [σ > M , σ, σ ∈ T , now
add corresponding transitions (or steps) σp of (Npp,Mpp0), obtain σ′, σ′′ ∈ T ′′.
Since (N ′,M ′

0) is live, M ′
0[σ

′ > M ′′[σ′′ > M
′′
, and M is the restriction of

M ′′ on (N,M0), M is the restriction of M
′′

on (N,M0), hence correspond-
ing to M , ∃M ′′ ∈ R(M ′′

0 ), ∃t′ ∈ T ′′, such that corresponding to ∀M ∈ R(M),
∀M ′′ ∈ R(M ′′),⇁(M [t′ >)⇒ ⇁(M

′′
[t′ >), hence (N ′,M ′

0) is not live. This con-
tradicts with the fact that (N ′,M ′

0) is live. Hence ∃M ′′
0 ,M

′′′
0 ∈ R(M ′

0), such
that (N,M0) obtained from (N ′,M ′′

0 ) is live, and (Npp,Mpp0) obtained from
(N ′,M ′′′

0 ) is live. Since px ∈ {p|(p ∈ P ′) ∧ (M ′
0(p) > 0)}, (N,M0) and (Npp,

Mpp0) obtained from (N ′,M ′
0) are live.

Lemma 2. Suppose that (N ′,M ′
0) is obtained from (N,M0) by PP-type refine-

ment Refpp (p̃, Npp), then (N ′,M ′
0) is bounded iff (N,M0) and (Npp,Mpp0) are

bounded.

Proof. (⇐=)Since (N,M0) is bounded, then ∀p ∈ P , there exists a constant
k1 such that M(p) ≤ k1 for all M ∈ R(M0). Since (Npp,Mpp0) is bounded,
∀p ∈ Ppp, there exists a constant k2 such that Mpp(p) ≤ k2 for all Mpp ∈
R(Mpp0). Let k = k1 + k2, by Definition 1, Supposition 1, Definition 3 and
Definition 4, ∀p ∈ P ′, M ′(p) = (M(P\p̃),Mpp)(p) ≤ k for all M ′ ∈ R(M ′

0).
Hence, (N ′,M ′

0) is bounded.
(=⇒) Suppose (N,M0) is not bounded, then ∃p ∈ P , ∀k > 0, M(p) > k. By
Definition 1, Supposition 1, Definition 3 and Definition 4, ∀k > 0, M ′(p) > k.
This contradicts with the fact (N ′,M ′

0) is bounded.

Lemma 3. Suppose that (N ′,M ′
0) is obtained from (N,M0) by PP-type refine-

ment Refpp (p̃, Npp), if px ∈ {p|(p ∈ P ′) ∧ (M ′
0(p) > 0)}, then (N ′,M ′

0) is re-
versible iff (N,M) and (Npp,Mpp0) are reversible.
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Proof. (⇐=) ∀M ′ ∈ R(M ′
0), by Definition 1, Supposition 1, Definition 3 and

Definition 4, M ′ = (M(P\p̃),Mpp), M ′
0 = (M(P\p̃)0,Mpp0). Since (N,M0) is

reversible, ∀M ∈ R(M0), M0 ∈ R(M). Since (Npp,Mpp0) is reversible, then
∀Mpp ∈ R(Mpp0), Mpp0 ∈ R(Mpp). Obviously, M ′

0 ∈ R(M ′), i.e., (N ′,M ′
0) is

reversible.
(=⇒) Suppose (N,M0) is not reversible, then ∃M1 ∈ R(M0), such that M0 /∈
R(M1), by Definition 1, Supposition 1, Definition 3 and Definition 4, ∃M ′

1 =
(M(P\p̃)1,Mpp1) such that M ′

0 /∈ R(M ′
1). This contradicts with the fact that

(N ′,M ′
0) is reversible. Hence ∃M ′′

0 ,M
′′′
0 ∈ R(M ′

0) such that (N,M0) obtained
from (N ′,M ′′

0 ) is reversible, and (Npp,Mpp0) obtained from (N ′,M ′′′
0 ) is re-

versible. Since px ∈ { p|(p ∈ P ′) ∧(M ′
0(p) > 0)}, (N,M0) and (Npp,Mpp0)

obtained from (N ′,M ′
0) are reversible.

4 Analysis Properties of Synthesis Net

In this section, we investigate properties of synthesis net, such as liveness, bound-
edness and reversibility. For the convenience in referencing later, we quote from
the literature [3] the following method and characterizations:
MERGE-PLACE. Suppose (N,M0) is a net, where N = (P0∪Q1∪ ...∪Qk, T ;F )
satisfies the condition:

For i, j = 1, 2, ..., k, where i �= j, P0 ∩ Qi = ∅, Qi ∩ Qj = ∅, and ∀p, q ∈ Qi:
(•p ∩ •q) = ∅ and (p• ∩ q•) = ∅.
Let (N ′,M ′

0) be obtained from (N,M0) by merging the place of each Qi into qi
and creating the initial marking M ′

0 as follows:
N ′ = (P0 ∪ Q0, T

′, F ′), where Q0 = q1, q2, ..., qk, T ′ = T , and F ′ is obtained
from F by merging every arc of the form (t, p) or (p, t), where p ∈ Qi, by (t, qi)
or (qi, t), respectively.
M ′

0 is obtained by one of the following two rules:

Rule 1: M ′
0(p) =

{
M0(p), p ∈ P0,
maxq∈Qi{M0(q)}, p = qi ∈ Q0.

Rule 2: (This rule can be adopted only if M0(q) = M0(q′)∀q, q′ ∈ Qi, for i =
1, 2, ..., k):

M ′
0(p) =

{
M0(p), p ∈ P0,
M0(q), p = qi ∈ Q0.

Lemma 4. [3](MERGE-PLACE preserves asymmetric-free-choice-net).
Suppose N ′ = (P0 ∪ Q0, T

′;F ′) is obtained from an OAC net N = (P0 ∪ Q1 ∪
... ∪ Qk, T ;F ) by MERGE-PLACE. Then, N ′ is an OAC net if the following
conditions hold in N :

(1) ∀p ∈ P0∀q ∈ Q1 ∪ ... ∪Qk, if p• ∩ q• �= ∅ then p• ⊆ q•.
(2) If Q•

i ∩Q•
j �= ∅, then Q•

i ⊆ Q•
j or Q•

j ⊆ Q•
i .

Lemma 5. [3]Let (N,M0) be a live, bounded and reversible ST-OAC net. Sup-
pose that the positive P-invariant α = (a1, a2, ..., a|P0|, a|P0|+1, ..., a|P0|+|Q1|, ...,
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a|P0|+ |Q1|+...+|Qk|) satisfies a|P0| = ... = a|P0|+|Q1|, a|P0|+|Q1|+1 = ... =
a|P0|+|Q1|+ |Q2|,..., a|P0|+|Q1|+...+|Qk−1|+1 = ... = a|P0|+|Q1|+...+|Qk|. Then, the
net (N ′,M ′

0) obtained from (N,M0) by MERGE-PLACE is live, bounded and
reversible if N ′ is also ST-OAC net.

In this section, we propose the definition of synthesis net.

Supposition 2. Suppose that (N1,M10), (N2,M20), ..., (Nv,Mv0) are Petri
nets, N1 ∪N2 ∪ ... ∪Nv = N0 ∪Π1 ∪ ... ∪Πk, where

(1) N0 is a set of subnets, which dose not contain PP-type subnets.
(2)Πi = {Nppi1, Nppi2, ..., Nppiji} is a set of PP-type subnets, whereNppi1, Nppi2,
..., Nppiji are same kind of PP-type subnets (Nppi1, Nppi2, ..., Nppiji can be syn-
thesized into a PP-type subnet N ′

ppi), Nppil (i = 1, 2, ..., k; l = 1, 2, ..., ji) are
PP-type subnets, which satisfy the following conditions:
(a) N0 ∩Πi = ∅, Πi ∩Πj = ∅, i �= j, i, j = 1, 2, ..., k.
(b) ∀Nppi1, Nppi2 ∈ Πi, i = 1, 2, ..., k, (•pi1x ∩• pi2x) = ∅ and (p•i1y ∩ p•i2y) = ∅.
(c) In the initial state, every input place of PP-type subnets of (N1,M10),
(N2,M20), ..., (Nv,Mv0) contains token(s).

Definition 7. (N ′,M ′
0) is said to be a synthesis net of (N1,M10), (N2,M20),

..., (Nv,Mv0), if the following conditions are satisfied:

(1) A PP-type subnet N ′
ppi (i = 1, 2, ..., k) is obtained, when the same kind of

PP-type subnets Nppi1, Nppi2, ..., Nppiji are merged. ( Merging process: let N ′
ppi =

Nppi1. Then obviously P ′
ppi = P ′

ppi0, P
′
ppi0 = Pppi10, p′ix = pi1x, p′iy = pi1y,

T ′
ppi = Tppi1, F ′

ppi = Fppi1. First, let arcs which connect to every input place of
Nppi1, Nppi2, ..., Nppiji previously connect to p′ix; Second, let arcs which connect
to every output place of Nppi1, Nppi2, ..., Nppiji previously connect to p′iy; Third,
delete Nppi2, ..., Nppiji .)
(2) N ′ = N0 ∪ N1 ∪ ... ∪ Nk, Px = {pix|i = 1, 2, ..., k}, pilx(i = 1, 2, ..., k; l =
1, 2, ..., ji) is the input place of PP-type subnet Nppil.
(3) M ′

0 is obtained by one of the following two rules:

Rule 1: M ′
0(p) =

⎧⎨⎩
M0(p), p ∈ P0,
maxl∈{1,2,...,ji}M0(pilx), p = pix ∈ Px,
0, p ∈ P − P0 − Px.

Rule 2: (This rule can be adopted only if M0(q) = M0(q′) ∀q, q′ ∈ {pilx|l =

1, 2, ..., ji} for j = 1, 2, ..., k): M ′
0(p) =

⎧⎨⎩
M0(p), p ∈ P0,
M0(q), p = q ∈ Px,
0, p ∈ P − P0 − Px.

Note 1. If (N,M0) is a single Petri net, where N = N0 ∪Π1 ∪ ... ∪ Πk (Πi =
{Nppi1, Nppi2, ..., Nppiji}, i = 1, 2, ..., k, Nppil(i = 1, 2, ..., k; l = 1, 2, ..., ji) is a
PP-type subnet) satisfies the conditions:

(1) N0 ∩Πi = ∅, Πi ∩Πj = ∅, i �= j, i, j = 1, 2, ..., k.
(2) ∀Nppi1, Nppi2 ∈ Πi, i = 1, 2, ..., k, (•pi1x ∩• pi2x) = ∅ and (p•i1y ∩ p•i2y) = ∅.
(3) In the initial state, every input place of PP-type subnets of (N,M0) contains
token(s).
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Then, obviously, Definition 4.1 fits for synthesis (i.e., merge some PP-type sub-
nets) of the single net (N,M0) shared PP-type subnets.

Let Ωi = {pily|l = 1, 2, ..., ji}, i = 1, 2, ..., k.

Theorem 1. Suppose that N1, N2, ..., Nv are OAC nets, N1, N2, ..., Nv shared
PP-type subnets Nppil(i = 1, 2, ..., k; l = 1, 2, ..., ji), N is a synthesis net of
N1, N2, ..., Nv. Then, N is an OAC net if the following conditions hold:

(1)∀p ∈ P0, ∀q ∈ Ω1 ∪Ω2 ∪ ... ∪Ωk, if p• ∩ q• = ∅, then p• ⊆ q•.
(2) If Ω•

i ∩Ω•
j �= ∅, then Ω•

i ⊆ Ω•
j or Ω•

j ⊆ Ω•
i .

Proof. Firstly, let N ′
1, N

′
2, ..., N

′
v be obtained from N1, N2, ..., Nv by PP-type

abstract Abspp(Npp, p̃), i.e., let p̃il (i = 1, 2, ..., k; l = 1, 2, ..., ji) replace Nppil

(i = 1, 2, ..., k; l = 1, 2, ..., ji). Since N1, N2, ..., Nv are OAC nets, by Definition
5 and the characterization of OAC net, N ′

1, N
′
2, ..., N

′
v are OAC nets. Let N ′ =

N ′
1 ∪ N ′

2 ∪ ... ∪ N ′
v, obviously, N ′ is an OAC net. Let Ω′

i = {p̃il|l = 1, 2, ..., ji},
i = 1, 2, ..., k, by condition (1)∀p ∈ P0, ∀q ∈ Ω1 ∪ Ω2 ∪ ... ∪ Ωk, if p• ∩ q• = ∅,
then p• ⊆ q•, obviously, ∀p ∈ P ′

0, ∀q ∈ Ω′
1 ∪ Ω′

2 ∪ ... ∪ Ω′
k, if p• ∩ q• = ∅, then

p• ⊆ q•. By condition (2)if Ω•
i ∩Ω•

j �= ∅, then Ω•
i ⊆ Ω•

j or Ω•
j ⊆ Ω•

i , obviously,
if Ω′•

i ∩Ω′•
j �= ∅, then Ω′•

i ⊆ Ω′•
j or Ω′•

j ⊆ Ω′•
i . Let N ′′ be obtained from N ′ by

MERGE-PLACE operation. By Lemma 4, N ′′ is an OAC net. Secondly, let N be
obtained from N ′′ by Refpp(p̃, Npp), i.e., let PP-type subnets Nppi(i = 1, 2, ..., k)
replace places p̃i(i = 1, 2, ..., k), respectively. Since N1, N2, ..., Nv are OAC nets,
PP-type subnets Nppi(i = 1, 2, ..., k) are OAC nets. So, by the characterization
of OAC net, N is an OAC net.

Theorem 2. Suppose that (N1,M10), (N2,M20) ,..., (Nv,Mv0) are live,
bounded and reversible Petri nets, (N1,M10), (N2,M20) ,..., (Nv,Mv0) share
PP-type subnets {(Nppil,Mppil0) |l = 1, 2, ..., ji; i = 1, 2, ..., k}. Also suppose
that (N,M0) is the synthesis net of (N1,M10), (N2,M20) ,..., (Nv,Mv0). Let
(N ′

1,M
′
10), (N ′

2, M
′
20) ,..., (Nv,M

′
v0) be obtained from (N1,M10), (N2,M20) ,...,

(Nv,Mv0) by PP-type subnet abstract operation, respectively. Let (N ′,M ′
0) =

{(N ′
1, M

′
10), (N ′

2,M
′
20), ..., (N

′
v,M

′
v0)}, Q′

i = {p̃il|l = 1, 2, ..., ji}, (i = 1, 2, ..., k),
P ′

0 = P ′ − {p̃il|l = 1, 2, ..., ji, i = 1, 2, ..., k}. Let (N ′′,M ′′
0 ) be obtained from

(N ′,M ′
0) by MERGE-PLACE operation. If the following conditions are satis-

fied: (1) N ′ and N ′′ are both ST-OAC nets,
(2) the positive P-invariant α′ = (a′1, a′2, ..., a′|P ′

0|
, a′|P ′

0|+1, ..., a
′
|P ′

0|+|Q′
1|
, ..., a′|P ′

0|+
|Q′

1|+...+|Q′
k|) satisfy a′|P ′

0|+1 = ... = a′|P ′
0|+|Q′

1|
, a′|P ′

0|+|Q′
1|+1 = ... = a′|P ′

0|+|Q′
1|+|Q′

2|
,

... , a′|P ′
0|+|Q′

1|+...+|Q′
k−1|

= ... = a′|P ′
0|+|Q′

1|+...+|Q′
k|
,

then, (N,M0) is a live, bounded and reversible Petri net.

Proof. Since (N ′
1,M

′
10), (N ′

2,M
′
20) ,..., (N ′

v,M
′
v0) are obtained from (N1,M10),

(N2,M20) ,..., (Nv,Mv0) by PP-type abstract operation Abspp(Npp, p̃) i.e., let
places p̃il(l = 1, 2, ..., ji; i = 1, 2, ..., k) replace PP-type subnets (Nppil,Mppil0),
(l = 1, 2, ..., ji; i = 1, 2, ..., k), and (N1,M10), (N2,M20) ,..., (Nv,Mv0) are live,
boundedand reversible, byLemma 1,Lemma 2 andLemma 3, (N ′

1,M
′
10), (N

′
2,M

′
20)
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,..., (N ′
v,M

′
v0) are live, bounded and reversible, and (Nppil,Mppil0), (l = 1, 2, ...,

ji; i = 1, 2, ..., k) are live, bounded and reversible. Since (N ′,M ′
0) = {(N ′

1,M
′
10),

(N ′
2, M

′
20), ..., (N ′

v,M
′
v0)}, (N ′,M ′

0) is live, bounded and reversible, obviously.
SinceN ′ is a ST-OAC net, (N ′,M ′

0) is a live, bounded and reversible ST-OAC net.
Since (N ′′,M ′′

0 ) is obtained from (N ′,M ′
0) by MERGE-PLACE operation, by con-

dition (1), condition (2) and Lemma 5, (N ′′,M ′′
0 ) is a live, bounded and reversible

net. By Definition 3 and Definition 4, obviously, (N,M0) can be obtained from
(N ′′,M ′′

0 ) byRefpp(p̃, Npp), i.e., let PP-type subnets (Nppi,Mppi0),(i = 1, 2, ..., k)
replace places p̃i(i = 1, 2, ..., k). Since (N ′′,M ′′

0 ) is a live, bounded and reversible
Petri net, and (Nppi,Mppi0)(i = 1, 2, ..., k) are live, bounded and reversible Petri
nets, by Lemma 1, Lemma 2 and Lemma 3, (N,M0) is a live, bounded and
reversible Petri net.

Corollary 1. Suppose that (N,M0) is a live, bounded and reversible Petri net,
where N = N0 ∪Π1 ∪ ... ∪Πk (Πi(i = 1, 2, ..., k) is a set of PP-type subnets).
(NS ,MS

0 ) is the synthesis net of (N,M0). Let (N ′,M ′
0) be obtained from (N,M0)

by Abspp(Npp, p̃). Q′
i = {p̃il|l = 1, 2, ..., ji}, (i = 1, 2, ..., k). Let (N ′′,M ′′

0 ) be ob-
tained from (N ′,M ′

0) by MERGE-PLACE operation. If the following conditions
are satisfied: (1) N ′ and N ′′ are both ST-OAC nets,
(2) the positive P-invariant α′ = (a′1, a

′
2, ..., a

′
|P ′

0|
, a′|P ′

0|+1, ..., a
′
|P ′

0|+|Q′
1|
, ..., a′|P ′

0|+
|Q′

1|+...+|Q′
k
|) satisfy a′|P ′

0|+1 = ... = a′|P ′
0|+|Q′

1|
, a′|P ′

0|+|Q′
1|+1 = ... = a′|P ′

0|+|Q′
1|+|Q′

2|
,

... , a′|P ′
0|+|Q′

1|+...+|Q′
k−1|

= ... = a′|P ′
0|+|Q′

1|+...+|Q′
k|
.

then, (NS ,MS
0 ) is a live, bounded and reversible Petri net.

Theorem 3 below follows from Theorem 1 and Theorem 2.

Theorem 3. Suppose that (N1,M10), (N2,M20) ,..., (Nv,Mv0) are live,
bounded and reversible OAC nets and (N1,M10), (N2,M20) ,..., (Nv,Mv0) share
PP-type subnets {(Nppil,Mppil0) |l = 1, 2, ..., ji; i = 1, 2, ..., k}. (N,M0) is the
synthesis net of (N1,M10), (N2,M20) ,..., (Nv,Mv0). Let (N ′

1,M
′
10), (N ′

2,M
′
20)

,..., (Nv,M
′
v0) be obtained from (N1,M10), (N2,M20) ,..., (Nv,Mv0) by PP-type

subnet abstract operation, respectively. Let (N ′,M ′
0) = {(N ′

1, M
′
10), (N ′

2, M
′
20),

..., (N ′
v,M

′
v0)}, Q′

i = {p̃il|l = 1, 2, ..., ji}, (i = 1, 2, ..., k), P ′
0 = P ′ − {p̃il|l =

1, 2, ..., ji, i = 1, 2, ..., k}. Let (N ′′,M ′′
0 ) be obtained from (N ′,M ′

0) by MERGE-
PLACE operation. If the following conditions are satisfied: (1) N ′ and N ′′ are
both ST-OAC nets,
(2) The positive P-invariant α′ = (a′1, a′2, ..., a′|P ′

0|
, a′|P ′

0|+1, ..., a
′
|P ′

0|+|Q′
1|
, ..., a′|P ′

0|+
|Q′

1|+...+|Q′
k|) satisfy a′|P ′

0|+1 = ... = a′|P ′
0|+|Q′

1|
, a′|P ′

0|+|Q′
1|+1 = ... = a′|P ′

0|+|Q′
1|+|Q′

2|
,

... , a′|P ′
0|+|Q′

1|+...+|Q′
k−1|

= ... = a′|P ′
0|+|Q′

1|+...+|Q′
k
|.

(3)∀p ∈ P0, ∀q ∈ Ω1 ∪Ω2 ∪ ... ∪Ωk, if p• ∩ q• = ∅, then p• ⊆ q•.
(4) If Ω•

i ∩Ω•
j �= ∅, then Ω•

i ⊆ Ω•
j or Ω•

j ⊆ Ω•
i .

Then, (N,M0) is a live, bounded and reversible OAC net.

Theorem 4 below follows from Theorem 1 and Corollary 1.

Theorem 4. Suppose (N,M0) is a live, bounded and reversible OAC net, where
N = N0∪Π1∪ ...∪Πk (Πi(i = 1, 2, ..., k) is a set of PP-type subnets). (NS ,MS

0 )
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is the synthesis net of (N,M0). Let (N ′,M ′
0) be obtained from (N,M0) by Abspp

(Npp, p̃). Q′
i = {p̃il|l = 1, 2, ..., ji}, (i = 1, 2, ..., k). Let (N ′′,M ′′

0 ) be obtained
from (N ′,M ′

0) by MERGE-PLACE operation. If the following conditions are
satisfied: (1) N ′ and N ′′ are both ST-OAC nets,
(2) The positive P-invariant α′ = (a′1, a

′
2, ..., a

′
|P ′

0|
, a′|P ′

0|+1, ..., a
′
|P ′

0|+|Q′
1|
, ...,

a′|P ′
0|+ |Q′

1|+...+|Q′
k
|) satisfy: a′|P ′

0|+1 = ... = a′|P ′
0|+|Q′

1|
, a′|P ′

0|+|Q′
1|+1 = ... =

a′|P ′
0|+|Q′

1|+|Q′
2|
, ... , a′|P ′

0|+|Q′
1|+...+|Q′

k−1|
= ... = a′|P ′

0|+|Q′
1|+...+|Q′

k|
.

(3)∀p ∈ P0, ∀q ∈ Ω1 ∪Ω2 ∪ ... ∪Ωk, if p• ∩ q• = ∅, then p• ⊆ q•.
(4) If Ω•

i ∩Ω•
j �= ∅, then Ω•

i ⊆ Ω•
j or Ω•

j ⊆ Ω•
i .

Then, (NS ,MS
0 ) is a live, bounded and reversible OAC net.

5 Applications

In this section we apply results of Section 4 to solve a subnet sharing problem.
In Fig.2.and Fig.3., there exist three live,bounded and reversible OAC nets,

(N1,M10), (N2,M20), (N3,M30), where N1 ∪ N2 ∪ N3 = N0 ∪ Π1 ∪ Π2, Π1 =
{Na1, Na2}, Π2 = {Nb1, Nb2, Nb3, Nb4}, Na1, Na2, Nb1, Nb2, Nb3, Nb4 are all PP-
type subnets. (N,M0) is the synthesis net (N1,M10), (N2,M20), (N3,M30),which
share PP-type subnets.

Firstly, let three nets (N ′
1,M

′
10), (N ′

2,M
′
20), (N ′

3,M
′
30) be obtained from

(N1,M10), (N2,M20), (N3,M30) by PP-type subnet abstract operation Abspp

(Npp, p̃), respectively. By Lemma 1, Lemma 2 and Lemma 3, (N ′
1,M

′
10),

(N ′
2,M

′
20), (N ′

3,M
′
30) are live, bounded and reversible OAC nets. By charac-

terization of ST-OAC net, (N ′
1,M

′
10), (N ′

2,M
′
20), (N ′

3,M
′
30) are ST-OAC nets.

So,(N ′
1,M

′
10), (N ′

2,M
′
20), (N ′

3,M
′
30) are three live bounded and reversible ST-

OAC nets.
Secondly, let (N ′M ′

0) = {(N ′
1M

′
10), (N

′
2,M

′
20), (N

′
3,M

′
30)}. Let (N ′′,M ′′

0 ) be
obtained from (N ′,M ′

0) by MERGE-PLACE operation, by Lemma 5, (N ′′,M ′′
0 )

is a live, bounded and reversible ST-OAC net.
Thirdly, let (N,M0) be obtained from (N ′′,M ′′

0 ) by PP-type refinement op-
eration Refpp(p̃, Npp). By Theorem 3, the synthesis Petri net (N,M0) (Fig.4.)
is a live, bounded and reversible OAC net.

Fig. 2. Live, bounded, and reversible OAC net No.1
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Fig. 3. Live, bounded, and reversible OAC nets No.2 and No.3

Fig. 4. The live, bounded and reversible synthesis OAC net

6 Conclusions

In this paper we investigate property preservations of synthesis Petri net. The
refinement and abstract representation method of Petri net is proposed, which is
the key method to ensure the synthesis net preserving the well-behaved proper-
ties. With some additional constrains, the properties asymmetric-free-choice-net,
liveness, boundedness and reversibility are preserved after merging some sets of
PP-type subnets for Petri nets. As a consequence, this result can be applied
nicely to solve some of the subsystem-sharing problems in software engineering
and manufacturing engineering. In comparison to most of the existing methods
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which are applied to state machines, marked graphs or only AC nets to solve
resource-sharing problems, our method is applicable to AC nets or even Petri
nets beyond AC nets to solve subsystem-sharing problems. Further research is
needed to determine how to extend the results obtained in this paper to more
general types of nets.

Acknowledgements. The author would like to express his gratitude to Prof.
Lu Weiming and Prof. Jiao Li, for their many valuable comments and helpful
suggestions.
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Abstract. One of the most important works in the investigation of
logic programming is to define the semantics of the logic programs and
to find the preferable answer set of them. There are so far three methods
can be used to establish the semantics of the logic programs, i.e., the
means of model, fixpoint and proof theory. According to the form of the
rules contained in a logic program, different logic program classes can be
defined. Although well-defined semantics exist for some restricted classes
of programs like Horn and stratified Programs, the declarative semantics
of the more general program classes are still the subject of research.
In this paper, the properties of the basic disjunctive logic programming
are studied, and the notion of double prioritization is introduced, that
is, the prioritization on both literals and clauses, by which the most
preferable answer set of a basic disjunctive logic program is defined. In
order to obtain the most preferable answer set of a basic disjunctive logic
program explicitly, a recursion-theoretic construction called tree method
is given.
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1 Introduction

The study of the logic programming originates in the mid-seventies last century
([1]). As a tool, logic programming has been widely used in the areas of com-
puter science such as knowledge representation, knowledge reasoning, deductive
databases, artificial intelligence etc. The important work in areas of logic pro-
gramming is to define the semantics of a logic program and find the preferable
answer set of the program. There are so far three methods can be used to es-
tablish the semantics of the logic programs, i.e., the means of model, fixpoint
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and proof theory. These methods are summarized in [2]. According to the form
of the rules contained in a logic program, different logic program classes can be
defined. Extended logic programs and extended disjunctive logic programs use
both classical negation and negation as failure. Their semantics is based on the
method of stable models, which are extensively studied in paper [3]. The sim-
plest class of the logic programs is Horn logic programs, which have been proved
to be r.e. (recursively enumerable) complete. Analogical property also holds for
stratified programs ([4], [5], [6], [7]), that is, for every natural number n, the
n-stratified logic programs are Σ0

n-complete.
The semantics of logic programs are the logical consequences of the literals

inferred from the logic programs. Answer set is usually used as the semantic
model of a logic program. Although well-defined semantics exist for some re-
stricted classes of programs like Horn and stratified Programs, the declarative
semantics of the more general program classes are still the subject of research.
Hence, it will be interesting to find an efficient process used to obtain an an-
swer set of a general logic program. In this paper the properties of the basic
disjunctive logic programming are discussed, and the notion of the double pri-
oritization on both literals and clauses is introduced. By using prioritization,
the most preferable answer set of a basic disjunctive logic program is defined.
In order to find the most preferable answer set of a given basic disjunctive logic
program, a mechanism called tree method is introduced.

The paper is organized as follows. In section 2, There are some terminologies
and notations used in the paper, and also in which the notion of the double pri-
oritized basic disjunctive logic program is introduced, and the preferable answer
set based on double prioritization is discussed. In section 3, the basic notions of
the tree method are introduced, and the most preferable answer set of a basic dis-
junctive logic program is defined. In section 4, a recursion-theoretic construction
for the most preferable answer set of a double prioritized basic disjunctive logic
program is established, and an example is given to show how the construction
works. Section 5 is verification. The last section is for short concluding remarks.

2 Preliminaries

We begin with a nonempty set S of symbols called atoms. The choice of S deter-
mines the language of the programs. An atoms is also called a positive literal;
a negative literal is an atom preceded by the classical negation symbol ¬. A
literal is a positive literal or a negative literal. The set of literals will be de-
noted by LitS , or simply Lit. For any literal l, the literal l and ¬l are said to
be complementary. A set of literals is inconsistent if it contains a complemen-
tary pair, and consistent otherwise. A logic program based on set S consists of
clauses, or rules, of the form:

l1, ..., lk, not lk+1, ..., not ls ← ls+1, ..., lm, not lm+1, ..., not ln

where n ≥ m ≥ s ≥ k ≥ 0, li ∈ LitS for all 1 ≤ i ≤ n and not is negation as
failure.
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Definition 1. A clause is said to be basic disjunctive if every literal in the clause
is ground, i.e., contains no variables, and there is no not in it. A logic program
Π is called basic disjunctive logic program (BDLP) if the clauses contained in
the program are all basic disjunctive.

If π is a clause in a BDLP then π has the form:

l1, ..., ln ← l′1, ..., l
′
m

where li, l′j for 1 ≤ i ≤ n, 1 ≤ j ≤ m are literals. The set {l1, ..., ln}, denoted by
head(π), is called the head of π; and the set {l′1, ..., l′m}, denoted by body(π), is
called the body of π. A clause π is called a fact if body(π) = ∅.
Definition 2. The semantics of BDLG is the answer set semantics. Let Π be a
BDLP and A ⊆ LitΠ , where LitΠ is the set of literals occur in Π . A is said to
be an answer set of Π iff it satisfies the following conditions:

(2.1) For each clause l1, ..., ln ← l′1, ..., l
′
m of Π , {l′1, ..., l′m} ⊆ A implies li ∈ A

for some i, 1 ≤ i ≤ n.
(2.2) A does not contain both l and ¬l for any literal l.
An answer set A of Π is said to be minimal if no B ⊂ A satisfies both (2.1)

and (2.2).

An answer set of a logic program can be regarded as a set of consequences of
the logic program. A BDLP is called consistent if it has an answer set. There
are usually more than one answer set for a BDLP Π. Usually, it has a high
computational complexity to select a preferable answer set among the answer
sets of a BDLP. One way to reduce the computational complexity is to introduce
the notion of the priority. The priorities in logic programs are discussed in many
papers (see [8],[9] etc,). The priority introduced in a logic program can reduce the
number of the answer sets among which the most preferable one is selected. For a
non-disjunctive logic programs, the unique answer set can be fixed if the clause-
prioritization is introduced. For a normal disjunctive logic program, i.e., with no
classical negation in it, the same thing can be done if the literal-prioritization
is used. However, to fix an answer set for a BDLP, the double prioritization on
both literals and clauses must be considered. We look at the following example.
Example 1. let Π be a logic program containing the following clauses:

π1 : wetgrass ←
π2 : rain ∨ sprink ← wetgrass
π3 : dryroad ←
π4 : ¬rain ∨ undertree ← dryroad.

One can verify that the following sets

S1 = {wetgrass, rain, dryroad, undertree},
S2 = {wetgrass, dryroad,¬rain, sprink},
S3 = {wetgrass, sprink, dryroad, undertree},

are all answer sets of Π .
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If there is only a priority order ≤ between the clauses in Π, say π1 < π2 <
π3 < π4, then one can hardly to determine among S1, S2 and S3 that which one
would be a preferable answer set of Π. However, if the double priority on both
clauses and literals is considered, say π1 < π2 < π3 < π4 together with that
rain ≺ sprink and ¬rain ≺ undertree, then the set

S1 = {wetgrass, rain, dryroad, undertree}

may be chosen as an answer set of Π . The reason is that to build the semantics
of the Π according to the double priority given as above, the clause π1 will be
considered firstly and the literal wetgrass is selected, and then for π2, the literal
rain is selected since rain has a higher priority than sprink does, for π3 the
literal dryroad is selected and for π4 only undretree can be selected since π2 has
a higher priority than π4 does and should be satisfied firstly.

If the priority relation on the clauses is changed, say π1 < π4 < π3 < π2, and
the priority on the literals is also rain ≺ sprink and ¬rain ≺ undertree, then
we prefer to choose

S2 = {wetgrass, dryroad,¬rain, sprink}

as an answer set of Π , since this time π4 has a higher priority than π2 does and
should be satisfied before π2 is.

The example shows that to choose a suitable answer set for a disjunctive logical
program, the double priority on both clauses and literals must be considered. It is
usually based on the practical application to build a double priority for a DBLS,
which, however, will not be investigated in this paper. What we considered is how
to find a suitable answer set for a double prioritized DBLP. In the following of
this paper, we shall introduce a method that can be used to construct a suitable
answer set for a double prioritized DBLP.

3 The Tree Method and the Preferable Answer Set

In this section, we shall introduce the notion of the tree method and define the
preferable answer set of a BDLP.

Let � be a linear ordering on the set Π = {πi}i<ω. Without loss of generality,
we may assume that πi � πj for i ≤ j. If πi ≺ πj , i.e., πi � πj and i < j then
we say that πi has a higher priority than πj . The same symbol � is also used
to establish the priority between the literals in a head of a clause. If head(π) =
{l1, · · · , ln} for some clause π then we may assume that l1 ≺ l2 ≺ · · · ≺ ln. If
li ≺ lj then we say that li has a higher priority than lj , or li is less than lj .

Let Π = {πi}i∈ω be a BDLP with the double priority defined as above.
We shall construct an answer set of Π by stages. At stage s, we construct a
set As such that As will do its best to satisfy the clauses so far as we have
scanned. We say a clause πi requires attention at stage s if body(πi) ⊆ As and
head(πi) ∩ As = ∅. When a clause, π say, requires attention at stage s we shall
take some actions to modify the set As, i.e., either to put in As some literal of
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head(π) or extract some literal of body(π) from As. We say that a literal l is
consistent with a set of literals L if ¬l �∈ L.

The tree method is a useful tool in computability theory (See[10]) to construct
an object that satisfies some requirements. Now it will be generalized in this
paper to establish a mechanism to obtain a preferable answer set for a BDLP.
The tree used to construct the most preferable answer set of the Π is called a
priority tree of Π and will be defined as follows:

Definition 3. Let Λ be the set of all the literals occurring in the heads of the
clauses of Π together with a special letter o. The priority tree of Π, denoted by
TΠ , is a subset of Λ<ω, the finite sequences of the elements of Λ, such that

(i) There is a unique node called the root node, denoted by o, at the 0-th level
of TΠ . The direct siblings of o are the literals of head(π1) with the ordering such
that if l, l′ ∈ head(π1) and l ≺ l′ then l′ is to the left of l. The 0-th level of TΠ

is called the π1-level.
(ii) Every node at the πi-level (for i ≥ 1) of the tree is a literal l. If l is at the

πi-level of the tree then its direct siblings are the literals of head(πi+1) with the
ordering such that if l, l′ ∈ head(πi+1) and l ≺ l′ then l′ is to the left of l. The
i-th level of TΠ is called the πi+1-level.

A path through the priority tree is a string of the literals l0l1 · · · ln, where
l0 = o, such that li is a direct sibling of li−1 for every 1 ≤ i ≤ n. We use the
Greek letters α, β, γ, ... to denote the paths. If α = l0l1 · · · ln then α(i) = li for
every 0 ≤ i ≤ n. Let |α| denote the length of α. Let λ be the empty string. Let
αˆβ be the concatenation of α followed by string β.

Definition 4. Let α, β ∈ TΠ , i.e., α and β are paths through TΠ . We say that
α is to the left of β, denoted by α <L β, if

∃l1, l2 ∈ Λ∃γ ∈ TΠ(γ l̂1 ⊆ α & γ l̂2 ⊆ β & l1 ≺ l2).

By the definition of TΠ , we know that every level of the tree is associated with
a clause πi which can be construed as a requirement. For each πi ∈ Π, there
is an α-strategy which is designed for an attempt to satisfy the requirement πi,
where α is a path of TΠ such that |α| = i − 1. If α is a strategy of πi then we
shall replace πi by πα for convenience.

We need the notion of the infinite paths through TΠ to express our last result.
η is an infinite path through TΠ if η n ∈ TΠ for all n, where η n is the restriction
of η to n. We can generalize the relation <L over the infinite paths such that for
any infinite paths δ, η through TΠ , δ <L η if there are paths α, β in TΠ , α ⊆ δ
and β ⊆ η such that α <L β.

Let Π = {πα}α<ω be a BDLP. Then following proposition shows the relation
between the answer sets of Π and the infinite paths through TΠ .

Proposition 1. Every answer set of Π is corresponding to at least an infinite
path through TΠ .

Proof. Let A be an answer set of Π . We define along the tree TΠ the infinite
path η as follows: For any α ⊂ η, if body(πα) ⊆ A then we define α l̂ ⊂ η,
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where l is the literal such that l ∈ head(πα) ∩ A, else choose the least literal
l′ ∈ head(πα) and define α l̂′ ⊂ η. ��
By Proposition 1 we know that every answer set A of a BDLP is corresponding
to some infinite paths through the tree. Under the relation <L, the least such
infinite path through the tree is called the true path of A and is denoted by
trp(A).

Definition 5. Let A be an answer set of a BDLP Π and its true path through
TΠ is trp(A). A is called the most preferable answer set of Π if for any answer
set B of Π , trp(A) <L trp(B).

4 Constructing the Preferable Answer Set

Let Π = {Πα}α<ω be a double prioritized BDLP contains infinitely many
clauses. We shall give an efficient process to obtain the most preferable answer
set of Π . In order to describe our main idea of the construction, we assume that
each literal can appear at most once in all clause heads of the program.

During the construction, the true path δ ∈ Λω through TΠ is what we need
at last. If δ is the true path on TΠ then there will be an answer set A of Π such
that for any α ⊆ δ, the requirement πα is satisfied, i.e., either body(πα) �⊆ A or
head(πα) ∩A �= ∅. Our construction on TΠ will produce a true path δ, which is
the leftmost one on which every node is visited infinitely often, that is, for any
α ∈ T, if α <L δ then α cannot be extended to be a true path. The leftmost true
path produced in our construction will be constructed by stages. At any stage
s, we define a recursive approximation δs to δ, where δs ∈ TΠ and |δs| ≤ s, such
that

δ = lim
s→∞

δs.

Let As be the approximation to the answer set A at stage s, and δs be the
approximation of δ. We say that πα requires attention at stage s if

(4.1) α ⊆ δs, body(πα) ⊆ As, and head(πα) ∩A = ∅; or
(4.2) α ⊆ δs, body(πα) �⊆ As, head(πα) ∩As �= ∅.

When a clause πα requires attention at stage s, the α-strategy attempts to put
some literal of head(πα) into As. If l is such a literal then we say that l is put
in As by the α-strategy. During the construction, some node on the tree will be
initialized. To initialize α at stage s means to move from As the literals which
has been put in As by the α-strategy at some previous stages. Following is the
construction of A:

Stage s = 0 : set A0 = ∅, δ0 = λ.
Stage s+1 : If there is no α ⊆ δs requiring attention then define δs+1 to be the
leftmost path such that |δs+1| = |δs| + 1 and go to the next stage. Otherwise,
let α be the minimal γ ⊆ δs which requires attention, we do our work according
to the following cases:
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Case 1. (4.1) holds. If α = δs and there is a literal l ∈ head(πα+1) such that l
is consistent with As then we choose the least such l and put it in As+1. Define
δs+1 = δs l̂ and go to the next stage; if there is no such literal then we take the
modifying action to give the definition of δs+1.
Case 2. (4.1) holds and that α ⊂ δs. Let l be the literal such that α l̂ ⊆ δs.
If l is consistent with As then put l in As+1 and define δs+1 = δs. If l is not
consistent with As then we go to the modifying action.
Case 3. (4.2) holds. Let l be the literal such that l ∈ head(πα) ∩ As. Extract l
out of As and define δs+1 = δs, go to the next stage.

The modifying action: Let τ = max{γ ⊆ δs : ∃l(γ l̂ ⊆ δs, l ∈ As)}. Define
δs+1 = τ l̂′, where l′ is the least literal in head(πτ ) such that l ≺ l′. Initialize all
α <L δs+1, and go to the next stage.

This completes the construction of A.

The following example give us an intuition that the priority tree works.

Example 2. Let Π = {π1, π2, ..., π5} be a basic disjunctive logic program given
below:

π1 : p1 ←
π2 : p2, p3 ← p1
π3 : p4, p5 ← p2, p1
π4 : ¬p4,¬p2 ← p1, p6
π5 : p6,¬p2 ← p1.

The priority relation is that π1 ≺ π2 ≺ π3 ≺ π4 ≺ π5, and p2 ≺ p3, p4 ≺
p5,¬p4 ≺ ¬p2 and ¬p6 ≺ ¬p2. The priority tree of Π is given as follows:

◦ π1, α0∅

◦������

������

p1 π2, α1

◦


�
��

p2 π3, α2

◦�
�

�

�
�
�

p4 π4, α3

◦�
��
�
��

¬p4 π5, α4

◦
p6 ¬p2

◦

◦�
��
�
��

¬p2

◦
p6 ¬p2

◦

◦�
�

�

�
�
�

p5

◦�
��
�
��

¬p4

◦
p6 ¬p2

◦

◦�
��
�
��

¬p2

◦
p6¬p2

◦

◦�
��




p3

◦�
�

�

�
�
�

p4

◦�
��
�
��

¬p4

◦
p6 ¬p2

◦

◦�
��
�
��

¬p2

◦
p6 ¬p2

◦

◦�
�

�

�
�
�

p5

◦�
��
�
��

¬p4

◦
p6 ¬p2

◦

◦�
��
�
��

¬p2

◦
p6 ¬p2

◦

Fig. 1. The priority tree of Π = {π1, π2, ..., πn}

The construction of the most preferable answer set of Π :

Stage s = 0 : δ0 = λ,A0 = ∅.
Stage s = 1 : π1 requires attention. The α0-strategy puts p1 in A1. Hence,

A1 = {p1} and δ1 = op1.
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Stage s = 2 : π2 requires attention. The α1-strategy puts p2 in A2. Hence,
A2 = {p1, p2} and δ2 = op1p2.

Stage s = 3 : π3 requires attention. The α2-strategy puts p4 in A3. Hence,
A3 = {p1, p2, p4} and δ3 = op1p2p4.

Stage s = 4 : There is no α ⊆ δs requiring attention. Hence, A4 = {p1, p2, p4}
and δ4 = op1p2p4¬p4.

Stage s = 5 : π5 requires attention. The α4-strategy puts p6 in A5. Hence,
A5 = {p1, p2, p4, p6} and δ5 = op1p2p4¬p4p6.

Stage s = 6 : π4 requires attention. α3ˆ¬p4 ⊆ δ5 and ¬p4 is not consistent
to A5. We take the modifying action: firstly we find τ = α4, α4 p̂6 ⊆ δ5 and
p6 ∈ A5. Define δ6 = op1p2p4¬p4¬p2, and initialize α4 i.e., extract p6 from A5,
hence, A6 = {p1, p2, p4}.

Stage s = 7 : π5 requires attention, and α4ˆ¬p2 ⊆ δ6 and ¬p2 is not consistent
to A6. We tack the modifying action: find τ = α2, τ p̂4 ⊆ δ6 and p4 ∈ A6. Define
δ7 = op1p2p5, and extract p4 from A6, hence A7 = {p1, p2}.

Stage s = 8 : π3 requires attention and α2 p̂5 ⊆ δ7, then put p5 in A7. Hence
A8 = {p1, p2, p5} and δ8 = op1p2p5.

Stage s = 9 : No α ⊆ δ8 requires attention. A9 = A8 and δ9 = op1p2p5¬p4.
Stage s = 10 : No α ⊆ δ9 requires attention. A10 =A9 and δ10 =op1p2p5¬p4p6.
Stage s = 11 : π5 requires attention, the α4-strategy puts p6 in A11, δ11 =

op1p2p5¬p4p6, and A11 = {p1, p2, p5, p6}.
Stage s = 12 : π4 requires attention, and α3-strategy ¬p4 in A12, we have

A12 = {p1, p2, p5, p6,¬p4} and δ12 = op1p2p5¬p4p6.
Stage t ≥ 13 : no clause requires attention again.
This ends the construction of A, where δ = lims→∞ δs = δ12 = op1p2p5¬p4p6

is the true path of TΠ , and A = lims→∞ As = A12 = {p1, p2, p5, p6,¬p4} is the
most preferable answer set of Π.

5 The Verification of the Construction

Lemma 2. If Π is consistent then δ = lims→∞ δs exists.

Proof. We prove the lemma by induction on n to show that for any n there exists
a stage s such that δ n ⊆ δt for any t ≥ s. If n = 1 then we do nothing since
δ 1 ⊆ δs for any s.

Assume the result holds for n, i.e., there exists a stage s0, choose the least
one, such that δ n ⊆ δt for all t ≥ s0. Let α = δ n. Notice that α-strategy works
for πα, thus the outputs of α are finite. Assume that the set of the outputs of
α is {l1, ..., ln} = head(πα). Then it is sufficient to show that there is a stage
s ≥ s0 and a literal li ∈ head(πα) such that α l̂i ⊆ δt for all t ≥ s. Without
lose of generality, we may assume that the outputs of α are just l1 ≺ l2, and at
s0 we have that α l̂1 ⊆ δs0 . If α-strategy dose not put l1 in As for any s ≥ s0
then α can never be initialized after stage s0, hence for any s ≥ s0 we have that
α l̂1 ⊆ δs. Let s′ ≥ s0 be the stage at which l1 be put in As′+1 by α-strategy
. If α never be initialized after s′ then α l̂1 ⊆ δs for any s ≥ s′. Let s′′ ≥ s′

be the least stage at which α is initialized. Then at s′′ we extract l1 from As′′
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and define δs′′ = α l̂2. The initialization of α at stage s′′ means that every path
extended the path α l̂1 can not produce a true path. If the same thing happens
on the path α l̂2 then any path through α can not produce a true path. Since Π
is consistent, there must be an answer set of Π . To cope with this, our modifying
action will initialize some node β ⊂ α and make the approximation of true path
go right below the node α, which contradicts the choice of the stage s0. ��

During the construction, we shall choose for each clause πα a literal in head(πα)
as an evidence such that whenever body(πα) ⊆ As at some stage s, the evidence
will be put into As+1. The evidence used to satisfy the requirement πα is also
called a candidate of πα.

Lemma 3. Assume Π is consistent and πα ∈ Π is a clause such that l1, ..., ln ∈
head(πα) with the priority l1 ≺ ... ≺ ln. During the construction if there is a
stage s such that α ⊆ δ and li turns to be a candidate of πα then for any j < i, lj
can never be a candidate of πα again, and furthermore, for any j < i, α l̂j proves
to be to the left of the true path.

Proof. Without loss of generality, we assume that the literals in head(πα) are
just l1 ≺ l2, and l1 is used as a candidate of πα at first. Let s0 be the least
stage at which we have that α ⊆ δ and α l̂1 ⊆ δs0+1. By Lemma 2 s0 exists
if Π is consistent. Notice that the modifying action at stage s + 1 during the
construction is to find the maximum α ⊆ δs such that α-strategy has put a literal
in At at some previous stage t, hence if l1 �∈ As then, as a candidate of πα, l1 can
not be changed at stage s + 1. Thus we may also assume that l1 ∈ As0+1. Let
s1 > s0 be the least stage and the modifying action make l2 to be a candidate
of πα at s1 + 1. Then the following conditions hold:

(i) There is a β ⊆ δs1 such that body(πβ) ⊆ As1 , head(πβ) ∩ As1 = ∅ and
every literal in head(πβ) is not consistence to As1 .

(ii) For any γ, α ⊂ γ ⊆ δs1 , no literal is put into As1 by γ-strategy.

By the choice of s0, each γ ⊆ α can never be initialized after s0 + 1, and the
change of the candidate of πα from l1 to l2, means that any extension of the
path α l̂1 can not produce a model of Π . Hence, after stage s1 + 1 all approx-
imation of the true path will always go along the path α l̂2, thus l1 cannot be
a candidate of πα any more. More precisely, by (ii) above, we know that each
element of As1 is offered by some strategy γ ⊆ α at some previous stage. Since
body(πα) ⊆ As1 , all literals of body(πα) are put into As1 by the strategies below
α. Notice that for any strategy γ ⊆ α, the candidate of γ will hold the line for-
ever, thus if we hold l1 as a candidate of α after l1 is extracted from As1 then l1
must be put in As again at some later stage s, and the condition (i) will happen
again. ��

Lemma 4. If clause πα ∈ Π is a fact such that body(πα) = ∅ and literals in
head(πα) are l1 ≺ ... ≺ ln, then there exists a literal li ∈ head(πα) and a stage
s such that α l̂i ⊆ δt and li ∈ At for all t ≥ s.

Proof. This is straightforward from Lemma 3 and the assumption of πα. ��
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If πα is a fact then the literals in head(πα) are called termination element.
Each fact contributes one and only one termination element to the model of Π
during the construction. By Lemma 4 one can easily prove that for any terminal
q there exists a stage s such that either q ∈ At for all t ≥ s or q �∈ At for all
t ≥ s.

There are dependent relations between the literals in the program, thus we
have the following definition.

Definition 6. A literal l1 is said to be dependent on l2 if there is a clause π
such that l1 ∈ head(π) and l2 ∈ body(π). A sequence of literals l1...ln is called
a dependence chain if for any 1 ≤ i ≤ n − 1 there is a clause πi such that
li ∈ head(πi) and li+1 ∈ body(πi). A dependence chain is complete if the last
literal of the chain does not depend on any literal.

During our construction we consider only those literals, whether or not they can
be the consequences of the logic program. Thus every literal in a dependence
chain is in a head of some clause. Therefore if a finite dependence chain is
complete then the last literal in the chain must be a termination element. We
use φ, ψ, etc, to express dependence chain, and |φ| denote the length of φ, the
number of the literals in π. Dec(l) is the set of all dependence chains with l as
being the first literal.

Lemma 5. Let φ = l1...ln be a dependence chain and li be a literal in the chain.
If there is a stage s such that li �∈ At for all t ≥ s then there exists a stage s′ ≥ s
such that l1 �∈ At for all t ≥ s′.

Proof. Let πα be the clause such that li−1 ∈ head(πα) and li ∈ body(πα).
Notice that any literal can be offered in the answer set by a unique clause, thus
if li �∈ At for all t ≥ s then body(πα) �⊆ At for all t ≥ s. If li−1 �∈ As then it can
not be put in At for any t ≥ s; if li−1 ∈ As then it will be extracted from As′ at
some stage s′ ≥ s and can never be put in At any more at any stage t ≥ s′. By
induction on j < i we can prove at last that l1 �∈ A. ��

Lemma 6. Let Dec(l) be the set of all dependence chains with l as the first
literal. If there is φ ∈ Dec(l) such that |φ| = ∞ then the literal l �∈ As for all s.

Proof. Since at any stage s there are only finitely many clauses can be dealt
with, hence there must be a literal li in φ such that li �∈ At for any t ≤ s, thus
by Lemma 5 we have that l �∈ As. ��

Lemma 7. Let l be a literal. If l is put in As0 at stage s0, then |φ| ≤ s0 for any
φ ∈ Dec(l).

Proof. Let φ ∈ Dec(l). If l is put in A at stage s0 then by Lemma 5 all literals in
φ have been in A at stage s0, and each of them is put in by a strategy α ⊆ δs0 ,
hence |φ| ≤ |δs0 | ≤ s0. ��

Lemma 8. There is no literal l can not be put in or extracted from A infinitely
often, that is for any literal l, there exists a stage s such that either l ∈ At for
all t ≥ s or l �∈ At for all t ≥ s.
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Proof. Let l be a literal such that l ∈ head(πα) for some clause πα, and α be the
strategy for πα. Choose the least stage s0 such that α l̂ ⊆ δt for all t ≥ s0. If
l �∈ At for all t ≥ s0 then there is nothing to do, hence we may also assume that
l ∈ As0 . By Lemma 7, each φ ∈ Dec(l) has the length |φ| ≤ s0 and ends with a
termination element.

Let C be the set of all termination elements appear in Dec(l). It is obvious
that C is finite. By Lemma 4, there are two conditions for the elements in C.

(i) There exists a stage s ≥ s0, C ⊆ At for all t ≥ s;
(ii) There is a q ∈ C and a stage s ≥ s0 such that q �∈ At for all t ≥ s.

If (i) holds then we shall reach to a stage at which all literals appear in Dec(l)
are in A, and l will be kept in A forever.

If (ii) holds, let φ ∈ Dec(l) be the dependence chain ends with terminal q,
then by Lemma 5 there will be a stage at which l must be extracted form A and
can not be put in A again. ��

Lemma 9. Let δ = lims→∞ δs be the true path and A be the set obtained by
our construction. For any clause πα, if body(πα) ⊆ A then there exists a literal
l ∈ head(πα) such that α l̂ ⊆ δ and l ∈ A.

Proof. By Lemma 8 we shall reach to a stage s0 such that body(πα) ⊆ As for all
s ≥ s0. Then at stage s0 + 1, πα will require attention if head(πα) ∩ As0 = ∅,
and the α-strategy will put a literal of head(πα) into As0+1. If the literal is such
that α l̂ ⊆ δ then l will be kept in A forever. ��

Lemma 10. The set A is consistent.

Proof. Assume l is a literal such that l ∈ A. Then there will be a stage s, l ∈ At

for all t ≥ s, hence ¬l can not be put into At for any t ≥ s, and thus ¬l �∈ A. ��

Lemma 11. For any B ⊂ A, B is not an answer set of Π .

Proof. Let l be the literal such that l ∈ A and l �∈ B. Consider the set Dec(l),
and let C be the set of all termination elements appear in Dec(l), hence C ⊆ A.
If there is a termination element q ∈ C such that q �∈ B then there must be a
fact πα such that q ∈ head(πα) and πα offers a q′ ∈ head(πα), q′ �= q, in B.
It is obvious that q′ �∈ A, which contradicts that B ⊂ A. Thus we assume that
C ⊆ B.

Let D be the set such that D = {πα : ∃l′( l′ appears in Dec(l) and l′ ∈
head(πα))}. Notice that every literal appears in Dec(l) is in A and is offered by
a clause in D. Since C ⊆ B, we know that some clauses in D will offer some
literals in B. If all clauses in D offer the same literals as them do for A then
we shall have l ∈ B, which contradicts the assumption that l �∈ B. If there is a
clause πα ∈ D such that it offers a literal different from what it offers to A then
we shall have that B �⊆ A, also a contradiction. ��

Theorem 12. The set A is the most preferable answer set of the logic
program Π .
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Proof. A is an answer set of Π can be proved immediately by Lemma 9, Lemma
10 and Lemma 11. To show that A is most preferable, it is sufficient to show
that δ is the true path of A, because on the tree TΠ every path α <L δ can not
be extended to be a true path. By Proposition 1 and Lemma 9, it is obvious that
trp(A) = δ. ��

6 Conclusion and Further Works

Given a basic disjunctive logic program Π, there are many minimal Herbrand
models of Π. In terms of the prioritization on the clauses and literals, the con-
struction selects the unique minimal Herbrand model of Π, say M(Π). M(Π)
can be taken as the canonical model of Π, and it is assumed that Cn(Π) =
M(Π), where Cn(Π) is the logical closure of Π. Since the construction is re-
cursive in Π, M(Π) is Turing-reducible to the halting problem, that is, every
such constructed M(Π) is recursively-approximatible, comparing to the Σn+1-
completeness of the stratified logic programs.

Further works include the following two aspects: One is to consider the com-
pleteness of the construction. Given a basic disjunctive logic program Π and
its minimal Herbrand model M, whether or not there is a prioritization on the
clauses and literals of Π under which the construction produces the unique
model M(Π) is M . Another is to consider the ω-completeness of the basic dis-
junctive logic programs. We know that the Horn logic programs are recursively
enumerable-complete, that is, given a Horn logic program Π, if Π is recursive
then the least Herbrand model M ′(Π) of Π is recursively enumerable, and con-
versely, given a recursively enumerable subset X ⊆ HB, there is an Horn logic
programΠ such that M ′(Π) = X. We want to know that if the basic disjunctive
logic programs are ω-recursively enumerable-complete.
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Abstract. Most of the existing formal object-oriented methods use
classes or objects as the basic unit of design, and therefore lack a pre-
cise semantics for specifying high-granularity components. The paper
presents a framework of categorical models that focus concern on the
interactive relationships between objects, and that explicitly support
specification composition and refinement at different levels of abstraction
and granularity in object-oriented design. A case study of implementing
templated design patterns demonstrates the ability of category theoretic
computations to mechanize software development.

1 Introduction

Using formal specifications to build and verify software leads to provably correct
code, deeper consistency checking and specification reusability. Over the last
years, many researches have been investigated in formal semantics of object-
oriented concepts (e.g. [1, 2, 3, 4]), which greatly facilitate understanding, vali-
dation, and modification for the kernel constructs of object-oriented specifica-
tions. However, the models presented mostly concern about providing a formal
definition of basic object-oriented concepts by extending current ADT-based
specification language such as Z [5], B [6], and Slang [7]. Precise formalization of
interactive relationships between objects, which are recognized as key to effective
design of object-oriented design (OOD) frameworks in current component-based
software development, remains an intricate, manually intensive activity. Some
other researches have been directed toward improving specification acquisition
by translating informal object-oriented specifications into formal specifications
(e.g. [8]), but such techniques lack a strong notion of refinement from specifica-
tion to code.

� Supported in part by grants from NNSF (No. 60573080) and NGFR 973 Program
(No. 2003CCA02800) of China.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 601–610, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



602 Y. Zheng, J. Xue, and W. Liu

As a “theory of functions”, category theory offers a highly formalized language
for object-oriented specifications, and is especially suited for focusing concern on
reasoning about relations between objects. Also, it is sufficiently abstract that it
can be applied to a wide range of different specification languages [9]. In this pa-
per we extend the current algebraic model of object-orientation to a theory-based
framework that explicitly defines formal notions at different levels of granularity
and abstraction, which support mechanizable specification refinement and code
generation.

The remainder of the paper is structured as follows: Section 2 contains basic
notions of category theory. Section 3 describes the theory-based framework for
composing and refining object-oriented specifications. Section 4 presents a case
study of applying the framework to design pattern implementation. Section 5
concludes with discussion.

2 Preliminaries

2.1 Category Theory

Category theory, with its increasing role in computer science, has proved useful
in the semantic investigation of programming languages [10]. First we introduce
some basic notions of category theory, sufficient to understand the paper.

Definition 1. A category C is

– a collection ObC of objects
– a collection MorC of morphisms (arrows)
– two operations dom, cod assigning to each arrow f two objects respectively

called domain and codomain of f
– an operation id (identity) assigning to each object b a morphism idb such

that dom(idb) = cod(idb) = b
– an operation ◦ (composition) assigning to each pair f , g of arrows with
dom(f) = cod(g) and arrow f ◦g such that dom(f ◦g) = dom(g), cod(f ◦g) =
cod(f)

– identity and composition must satisfy: (1) for any arrows f , g such that
cod(f) = b = dom(g), we have idb ◦ f = f and g ◦ idb = g; (2) for any
arrows f , g, h such that dom(f) = cod(g) and dom(g) = cod(h), we have
(f ◦ g) ◦ h = f ◦ (g ◦ h)

Definition 2. A diagram D in a category C is a directed graph whose vertices
i ∈ I are labeled by objects di ∈ ObC and whose edges e ∈ E labeled by morphisms
fe ∈ MorC .

Definition 3. Let D be a diagram in C, a cocone to D is

– a C-object x
– a family of morphisms {fi: di → x|i ∈ I} such that for each arrow g: di → dj

in D, we have fj ◦ g = fi, as shown in Fig. 1(a).
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x

di dj
g

fi fj
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di
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fi f'i
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(a) Commuting diagram of cocone (b) Commuting diagram of colimit

(c) -diagram (d) Commuting diagram of equalizer

Fig. 1. Basic diagrams in category theory

Definition 4. Let D be a diagram in C, a colimit to D is a cocone with C-
object x such that for any other cocone with C-object x′, there is a unique arrow
k: x → x′ in C such that for each di in D, fi: di → x and f ′

i : di → x′, we have
k ◦ fi = f ′

i , as shown in Fig. 1(b).

Definition 5. An ω-diagram in a category C is a diagram with the structure
shown in Fig. 1(c).

Definition 6. Let C and D be categories, a functor F : C → D is a pair of op-
erations Fob: ObC → ObD, Fmor: MorC → MorD such that, for each morphism
f : a → b, g: c → d in C,

– Fmor(f): Fob(a) → Fob(b)
– Fmor(f ◦ g) = Fmor(f) ◦ Fmor(g)
– Fmor(ida) = idFob(a)

Definition 7. Given a family of morphisms f1, f2 . . . fn ∈ Mor[a, b], an equal-
izer of them is an object e and a morphism i ∈ Mor[e, a] such that (1) f1 ◦ i =
f2 ◦ i = . . . = fn ◦ i; (2) for each h ∈ Mor[c, a], f1 ◦ h = f2 ◦ h = . . . = fn ◦ h,
there exists k ∈ Mor[c, e] such that i ◦ k = h, as shown in Fig. 1(d).

2.2 Basic Constructions

Category theory has been proposed as a framework for synthesizing formal spec-
ifications based on works by Goguen [11]. Following are basic notions of category
localizations, in which a specification is the finite presentation of a theory, and
a signature provides the vocabulary of a specification.

Definition 8. A signature Σ =< S,Ω >, where S denotes a set of sort symbols,
and Ω denotes a set of operators. In more detail, Ω =< C,F, P >, where C is a
set of sorted constant symbols, F a set of sorted function symbols, and P a set
of sorted predicate symbols.
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A1 S1

A2 S2
f g

e

h

Fig. 2. The application of a library refinement to a given structured specification

Definition 9. SIG is a category with signatures as objects, and a signature
morphism is a consistent mapping from one signature to another.

Definition 10. A specification SP =< Σ,Φ >, where Σ is a signature, and Φ
is a (finite) set of axioms over Σ.

Definition 11. SPEC is a category with specifications as objects, and a speci-
fication morphism between specification < Σ1, Φ1 > and specification < Σ2, Φ2 >
is a mapping of signature Σ1 into signature Σ2 such that all the axioms in Φ1
are translated to theorems in Φ2.

Under this framework, the basic principle to specify a system is to build the
specification for each component separately, and then use the colimit opera-
tion to compose these specifications. The colimit operation can also be used for
constructing refinements mechanically [12]. That is, an existing refinement (mor-
phism) f : A1 → A2 can be applied to a new specification S1 by constructing a
morphism e: A1 → S1 which classifies S1 as having A1-structure. In consequence,
the new specification S2 can be obtained by computing the colimit of e and f
instead of performing the refinement g, as shown in Fig. 2.

3 Modular Specifications

As mentioned above, category theory studies “objects” and “morphisms” be-
tween them: objects are not collections of “elements”, and morphisms do not
need to be functions between set; any immediate access to the internal struc-
ture of objects is prevented. This is quite similar to concepts in object-oriented
methodology. In this section, we show how to use notions of category theory to
describe objects, classes, class templates, and OOD frameworks. More details on
the proof theory and the connections with temporal logic can be found in [2].

3.1 Category of Object Specifications

Definition 12. An object signature θ =< Σ,A, Γ >, where Σ =< S,Ω > is a
(universe) signature, A is an S∗ × S-indexed family of attribute symbols, and Γ
is an S∗-indexed family of action symbols.

Definition 13. OBJ-SIG is a category with object signatures as objects, and
an object signature morphism is a consistent mapping from one signature to
another.

Definition 14. An object specification OSP =< θ, Φ >, where θ is an object
signature, and Φ is a (finite) set of θ-axioms.
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Definition 15. OBJ-SPEC is a category with object specifications as objects,
and a morphism between specification < θ1, Φ1 > and specification < θ2, Φ2 > is
a mapping of signature θ1 into signature θ2 such that all the axioms in Φ1 are
translated to theorems in Φ2.

3.2 Categories of Class and Class Template Specifications

In the object-oriented world, there seem to be two different notions of class: a
sort of abstraction and an extensional collection of objects [1]. Here we construct
the category of classes out of the category of objects in the second sense, and
then the category of class templates out of the category of classes.

Definition 16. Let D1, D2 . . .Dn be ω-diagrams in OBJ-SPEC and COLi

be colimits for Di(i = 1, 2 . . . n), then CLS-SPEC is a category with COLi as
objects, and a class morphism between COL1 and COL2 is the colimit of all
morphisms in OBJ-SPEC that between an object in D1 and an object in D2.

Definition 17. Let D1, D2 . . .Dn be ω-diagrams in CLS-SPEC and COLi be
colimits for Di(i = 1, 2 . . . n), then T -CLS-SPEC is a category with COLi as
objects, and a class template morphism between COL1 and COL2 is the colimit
of morphisms in CLS-SPEC that between a class in D1 and a class in D2.

Functors from CLS-SPEC to OBJ-SPEC can be treated syntactically as in-
stantiations or refinements. Similarly, we can consider a class template specifica-
tion as a parameterized specification from a collection of class specifications, and
functors from T -CLS-SPEC to CLS-SPEC as refinements from class template
specifications to class specifications.

Definition 18. E-OBJ-SPEC is a discrete category with (executable) pro-
grams as objects. Functors from OBJ-SPEC to E-OBJ-SPEC just take each
O ∈ ObOBJ−SPEC to (one of) its implementation(s) P ∈ ObE−OBJ−SPEC .

3.3 Categories of Framework Specifications

Taking an OOD framework as a community of objects/classes/class templates,
it is straightforward to construct new categories out of T -CLS-SPEC, CLS-
SPEC, and OBJ-SPEC by composing their objects and relations (morphisms).

Definition 19. T -FRM -SPEC is a category with diagrams in T -CLS-SPEC
as objects, and a morphism between two framework templates, namely T -FRM1
and T -FRM2, is the colimit of morphisms in T -CLS-SPEC that between a
class template of T -FRM1 and a class template of T -FRM2.

Definition 20. FRM -SPEC is a category with diagrams in CLS-SPEC as
objects, and a morphism between two frameworks, namely FRM1 and FRM2,
is the colimit of morphisms in CLS-SPEC that between a class of FRM1 and a
class of FRM2.



606 Y. Zheng, J. Xue, and W. Liu

Class templates Framework templates

Classes Frameworks

Objects Implemented frameworks

Executable objects Executable frameworks

refinement

composition

Fig. 3. Constructing framework-based categories

Definition 21. I-FRM -SPEC is a category with diagrams in OBJ-SPEC as
objects, and a morphism between two implemented frameworks, namely I-FRM1
and I-FRM2, is the colimit of morphisms in OBJ-SPEC that between an object
of I-FRM1 and an object of I-FRM2.

Definition 22. E-FRM -SPEC is a discrete category with (executable) pro-
grams as objects, and that functors from I-FRM -SPEC to E-FRM -SPEC
just take each O ∈ ObI−FRM−SPEC to (one of) its implementation P ∈
ObE−FRM−SPEC .

As illustrated in Fig. 3, the left refinement process of class-based specifications
is brought to the right refinement process of framework-based specifications
through compositions at different granularity levels.

4 Case Study: Implementing Templated Design Patterns

Design patterns can be viewed as a means to achieve large-scale reuse by cap-
turing successful software development within certain contexts [13]. Recently
some efforts have been paid to describe design patterns with formal notations

Library refinement

User construction

T-PTN
g1

PTN2

f1

PTN1

I-PTN1

E-PTN1

I-PTN2

E-PTN2

h1

h3

h2

f2

f3

g2

g3

Auto-generated

Fig. 4. Construct a new refinement process by category theoretic computations
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+Attach()
+Detach()
+Notify()

+Observers
+subjectstate

Subject

State

+Update()
+observerstate

Observer

State

ConcreteSubject ConcreteObserver

1 *

Fig. 5. T -PTN : The observer pattern template

analogClock1 : AnalogClock

digitalClock1 : DigitalClock

UTCClockTimer : ClockTimer

Subject<Time> Observer<Time>

ClockTimer DigitalClock AnalogClock

f1 f2 f3

f4
f5

1 *

f0

(a) PTN1: the library instantiated pattern template

(b) I-PTN1: The library implemented pattern

Fig. 6. The library instantiated pattern template and implemented pattern

(e.g. [14, 15]); however, at least one burdensome aspect remains: even one need
not “design” a pattern twice, he has to implement it each time applied. In
this section we use theory-based specifications and constructions mentioned
above to mechanize the refinement process from design patterns to executable
programs.

4.1 Implementation

A pattern specification can be viewed as the composition of its individual object
specifications while all the properties are preserved; therefore we can use elements
of framework-based categories to define specifications of design patterns, save
their “standard” refinements in a library, and utilize library implementations to
automatic code generation via category theoretic computations.
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Subject<Table> Observer<Table>

DataTable Chart Grid Pie

g1
g2 g3

g5

g7

g4

g6

1 *

g0

Fig. 7. PTN2: The new instantiated pattern

Fig. 8. Pattern morphism F1: PTN1 → PTN2

dataTable1 : DataTable

chart1 : Chart

grid1 : Grid

pie1 : Pie

Fig. 9. I-PTN2: the new implemented pattern

Taking a pattern template T -PTN from category FRM -SPEC, if a refine-
ment path f3◦f2◦f1 already exists, by constructing a pattern morphism h1 from
PTN1 to PTN2, we can work out the refinement path from T -PTN through
PTN2 to E-PTN2, as shown in Fig. 4. In detail, g1 is the composite morphism
h1 ◦ f1, while g2 and h2 can be obtained by computing the colimit of h1 and f2,
so are g3 and h3.

In such a way we eliminate the requirement for refining g1, g2, and g3 manually.
The target program E-PTN2 is generated by colimit computation rather than
refinements through the path g3 ◦ g2 ◦ g1 (which is just the traditional way
for implementing design patterns). We implement such a design library in our
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prototype development tool, which encapsulates the complicated implementation
issues and enable reusability of design knowledge as well as implementation
knowledge [16].

4.2 An Example of the Observer Pattern

To illustrate how our approach is applied, here we choose the Observer pattern
from [13], as shown in Fig. 5 with the UML diagram. Figure 6 describes the
structures of the pattern instance and the implemented pattern in the standard
refinement path, where two observers DigitalClock and AnalogClock query the
subject ClockTimer to synchronize their time with the ClockTime’s state.

Suppose the Observer pattern is about to appear in another design prob-
lem: to present the underlying spreadsheet in separate forms of interface, i.e., a
chart, a grid and a pie. Figure 7 depicts the new pattern named PTN2, which
is automatically constructed from PTN1 in Fig. 6 and pattern morphism F1
illustrated in Fig. 8. Figure 9 shows the implemented pattern generated for the
new refinement path.

5 Conclusion

Formal methods have been increasingly used in software specification, synthesis,
verification and validation. To handle the complexities inherent in large-scale
software systems, formal methods need to be combined with the object-oriented
methodology that supports modularity and reusability. Category theory, with its
capability to reasoning about composition of collections of interacting objects,
provides a utility quite suitable to carry out this work. The paper presents a
theory-based framework that explicitly defines formal notions of objects, classes,
class templates, and their compositions. A case study about design pattern im-
plementation is presented to show how category theoretical computations can
be applied to specification refinement and code generation at high granularity
levels.
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Abstract. The usefulness of Bounded Model Checking(BMC) based on
propositional satisfiability methods has recently proven its efficacy for
bug hunting. The basic idea is to search for a counterexample in exe-
cutions whose length is bounded by some integer k. In fact, for some
properties some bounded paths are equivalent. In the original Bounded
Model Checking equivalent bounded paths may be searched repeatedly.
Therefore some searches are redundant. In this paper with respect to
some properties we exploit new encoding for Bounded Model Checking
such that we can avoid searching for redundant bounded paths.

1 Introduction

Model Checking[1] is a powerful technique for verifying systems and detecting
errors at early stages of the design process, which is obtaining wide acceptance in
industrial setting. In model checking, the specification is expressed in temporal
logic-either Computation Tree Logic(CTL)[2] or Linear Temporal Logic(LTL)[3]-
and the system is modelled as a finite state machine(FSM). A traversal algorithm
verifies exhaustively whether the FSM satisfies the property or not. For realistic
designs, the number of states of the system can be very large and the explicit
traversal of the state space becomes infeasible. Symbolic model checking [4, 5],
with boolean encoding of the finite state machine, can handle more than 1020

states. BDDs[6], a canonical form for boolean expressions, have traditionally
been used as the underlying representation for symbolic model checker[5]. Model
checkers based on BDDs are usually able to handle systems with hundreds of
state variables. However, for larger systems the BDDs generated during model
checking become too large for currently available computers. In addition, select-
ing the right ordering of BDD variables is very important. The generation of
a variable ordering that results in small BDDs often time consuming or needs
manual intervention. For many examples no space efficient variable ordering
exists.

Recently a new approach for symbolic model checking has been proposed
called Bounded Model Checking[7, 8], which is based on SAT techniques. Given
a FSM M and an LTL specification f , the idea is to look for counterexamples of
maximum length k, and to generate a boolean formula which is satisfiable if and
only if such counterexample exists. The boolean formula then is given as input to
a SAT solver[9]. If the formula is satisfiable, the satisfying assignment returned

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 611–620, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



612 C. Zhou and D. Ding

is converted into a counterexample execution path. SAT procedures do not suf-
fer from the potential space explosion of BDDs and can handle propositional
satisfiability with thousands of variables.

Since BMC was proposed by A. Biere in 1999, there are a lot of work
[10, 11, 12, 13, 14] focusing on improving its efficiency. Their work can be divided
two categories: one focuses on obtaining small propositional formulas[10, 11, 12],
another[13, 14] focuses on exploiting the unique characteristics of BMC formulas
for a variety of optimizations in the SAT checking procedure. Our research does
not belong to above two categories . We exploit the characteristics of the system
for optimizing SAT decision procedure.

The motivation of our research is based on the following observation. The
basic idea of BMC is to search for a counterexample in executions whose length
is bounded by some integer k. In fact, we note that if some path bounded by k
is not a counterexample, then we can conclude that some other bounded paths
are also not counterexamples. However, in the original encoding of BMC it can
not guarantee that if a bounded path is searched, then some equivalent bounded
paths will not be searched again. So in the original encoding some searches are
redundant. In this paper for some properties such as LTL−X , Gα, αUβ and αRβ,
we propose a new encoding such that equivalent bounded paths are not searched
repeatedly. Therefore, our new encoding improves the efficiency of BMC.

The rest of the paper is organized as follows: in the next section we sim-
ply introduce Kripke structure, linear time temporal logic LTL, and Bounded
Model Checking. In Section 3, we present our new encoding for LTL−X prop-
erties. In Section 4, we present our new encoding for properties expressed with
Gα,αUβ, αRβ. In Section 5, we give some conclusions and directions for future
research.

2 Formal Preliminaries

2.1 Kripke Structure and Linear Time Temporal Logic LTL

Definition 1. Let AP be a set of atomic propositions. A Kripke structure M
over AP is a four tuple M = (S,R, s0, L) where

1. S is a finite set of states.
2. s0 ∈ S is the initial state.
3. R ⊆ S × S is a transition relation that must be total, that is, for every state

s ∈ S there is state s′ ∈ S such that R(s, s′).
4. L : S → 2AP is a function that labels each state with the set of atomic

propositions true in that state.

For example, Fig. 1 is a simple Kripke structure. In the following we list some
definitions which will be used frequently in this paper.

– A path in Kripke structure M is an infinite state sequence π = s0s1 · · · such
that (si, si+1) ∈ R for each i ∈ N .
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Fig. 1. A simple Kripke structure

– A bounded path in Kripke structure M is an finite state sequence π =
s0s1 · · · sk such that (si, si+1) ∈ R for each 0 ≤ i ≤ k − 1.

– For the path π we use π(i) to denote the ith state in π, use πi to denote the
suffix of π starting at state π(i).

– For l ≤ k we call a path π a (k, l) loop if (π(k), π(l)) ∈ R and π = u · vω

with u = (π(0), . . . , π(l − 1)) and v = (π(l), . . . , π(k)). We call π a k loop if
there exists an integer l with k ≥ l ≥ 0 such that π is a (k, l) loop.

Linear time temporal logic LTL formulas are defined recursively: if p is an atomic
proposition then p,¬p are in LTL; if f, g ∈LTL then so are Xf ,Ff ,Gf ,fUg,fRg,
f ∧ g, f ∨ g.

Definition 2. (Unbounded Semantics of LTL) Let M be a Kripke structure, π
be a path in M , and f, g be formulas of LTL. M,π |= f denotes that f is true
in the path π in M . The relation |= is defined inductively as follows:
M,π |= p iff p ∈ L(π(0)); M,π |= ¬p iff p �∈ L(π(0)).
M,π |= f∧g iff M,π |= f and M,π |= g; M,π |= f∨g iff M,π |= f or M,π |= g.
M,π |= Xf iff M,π1 |= f ; M,π |= Gf iff ∀i ≥ 0,M, πi |= f .
M,π |= Ff iff ∃i ≥ 0,M, πi |= f .
M,π |= fUg iff ∃i ≥ 0(M,πi |= g and ∀0 ≤ j < i,M, πj |= f).
M,π |= fRg iff (∀i ≥ 0,M, πi |= g or ∃j ≥ 0, (M,πj |= f ∧ ∀0 ≤ l ≤ j,M, πl

|= g)).

An LTL formula f is existentially valid in a Kripke sturcture M , denoted as
M |= Ef , if there exists a path π starting from the intial state s0 in M such
that M,π |= f . LTL−X is a subset of LTL. The only difference between LTL−X

and LTL is that there is no temporal operator X in LTL−X .

2.2 Bounded Model Checking

We briefly recall Bounded Model Checking as proposed in [7].

Definition 3. (Bounded Semantics for a Loop) Let k ≥ 0 and π be a k loop.
Then an LTL formula φ is valid along the path π with bound k (in symbols
π |=k φ) iff π |= φ.



614 C. Zhou and D. Ding

Definition 4. (Bounded Semantics without a Loop)Let k ≥ 0 and π be a path
that is not a k loop. Then an LTL formula φ is valid along π with bound k(in
symbols π |=k φ) iff π |=0

k φ where
π |=i

k p iff p ∈ L(π(i)); π |=i
k ¬p iff p �∈ L(π(i)).

π |=i
k f ∧ g iff π |=i

k f and π |=i
k g; π |=i

k f ∨ g iff π |=i
k f or π |=i

k g.
π |=i

k Gf is always false; π |=i
k Ff iff ∃j, i ≤ j ≤ k, π |=j

k f .
π |=i

k Xf iff i ≤ k and π |=i+1
k f .

π |=i
k fUg iff ∃j, i ≤ j ≤ k[π |=j

k g and ∀n, i ≤ n < j.π |=n
k f ].

π |=i
k fRg iff ∃j, i ≤ j ≤ k[π |=j

k f and ∀n, i ≤ n ≤ j.π |=n
k g].

Lemma 1. Let k be an LTL formula and π a path, then π |=k f ⇒ π |= f .

An LTL formula φ is bounded existentially valid with respect to the bound k in
a Kripke structure M , denoted as M |=k Ef , if there exists a path π starting
from the initial state such that M,π |=k φ.

Theorem 1. Let f be an LTL formula and M be a Kripke structure. Then
M |= Ef iff there exists k ≥ 0 such that M |=k Ef .

Given an LTL property φ, a Kripke structure M and a bound k, bounded model
checking is performed by generating and solving a propositional formula [[M ]]k∧
[[φ]]k where [[M ]]k represents the reachable states up to step k and [[φ]]k specifies
which paths of length k satisfy φ.

Definition 5. (Unfolding of the Transition Relation). For a Kripke structure

M , k ≥ 0, [[M ]]k := I(s0) ∧
k−1∧
i=0

R(si, si+1).

I(s0) means that s0 is the initial state. Since in this paper we focus on the
transition relation, the definition of [[φ]]k will not be introduced here.

Theorem 2. M |= Ef iff there exists an integer k such that [[M ]]k ∧ [[φ]]k is
satisfiable.

3 Stuttering Equivalent in Bounded Model Checking

3.1 Stuttering Equivalent in Unbounded Model Checking

We first recall the stuttering equivalent. Two infinite paths π, π′ are stuttering
equivalent[1], denoted π ∼st π

′, if there are two infinite sequences of integers
0 = i0 < i1 < i2 < · · · and 0 = j0 < j1 < j2 < · · · such that for every k ≥ 0,
L(π(ik)) = L(π(ik + 1)) = · · · = L(π(ik+1 − 1)) = L(π′(jk)) = L(π′(jk + 1)) =
· · · = L(π′(jk+1−1)). For example, in Fig 2 two paths in the Kripke structure M
represented by Fig 1:s0s1s2(s4s3)ω,s0s1s2s2(s4s4s3)ω are stuttering equivalent.

3.2 Bounded Stuttering Equivalent

We have recalled the stuttering equivalent in subsection 3.1. In the following we
introduce the bounded stuttering equivalent which is very important for our new
encoding.
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Fig. 2. Two stuttering equivalent paths

Definition 6. (Bounded Stuttering Equivalent) Let π, π′ be two paths, m,n be
two integers. We call π, π′ are (m,n) bounded stuttering equivalent if and only
if one of the following two conditions holds.

(1) For each 0 ≤ l ≤ m, if (π(m), π(l)) ∈ R then there exists an integer h
with 0 ≤ h ≤ n such that (π′(n), π′(h)) ∈ R and two paths π(0), . . . , π(l −
1)(π(l), . . . , π(m))ω, π′(0), . . . , π′(h − 1)(π′(h), . . . , π′(n))ω are stuttering equiv-
alent. For each 0 ≤ h ≤ n, if (π′(n), π′(h)) ∈ R then there exists an integer
l with 0 ≤ l ≤ m such that (π(m), π(l)) ∈ R and two paths π(0), . . . , π(l −
1)(π(l), . . . , π(m))ω , π′(0), . . . , π′(h− 1)(π′(h), . . . , π′(n))ω are stuttering equiv-
alent.
(2) π is not a m loop path, π′ is not a n loop path. And there are two finite
sequences of integers 0 = i0 < i1 < i2 < · · · < il and 0 = j0 < j1 < j2 < · · · < jl
such that for every 0 ≤ x < l, L(π(ix)) = L(π(ix + 1)) = · · · = L(π(ix+1 − 1)) =
L(π′(jx)) = L(π′(jx +1)) = · · · = L(π′(jx+1 − 1)) and L(π(il)) = L(π(il +1)) =
· · · = L(π(m)) = L(π′(jl)) = L(π′(jl + 1)) = · · · = L(π′(n)).

For example, in Fig 2, s0s1s2(s4s3)ω,s0s1s2s2(s4s4s3)ω are (4, 6)bounded stut-
tering equivalent. Essentially bounded stuttering equivalent divides some
bounded path into many finite sequence of identically labelled states. We call
a finite sequence of identically labelled states a block and use the notation
Bπ

i to represent the ith block in the path π. For each block Bπ
i we define

Size(Bπ
i ) is the number of states in Bπ

i , and use the notation Bπ
i (j) to rep-

resent the jth state in Bπ
i . And call the set {Bπ

0 , B
π
1 , . . . , B

π
x} is a partition of

π over m if Bπ
x (Size(Bπ

x ) − 1) = π(m), that is the last state of Bπ
x is π(m).

In [1] they have proved that any LTL−X property is invariant under stuttering
equivalent.

Theorem 3. If π ∼st π
′ then for the LTL−X property φ, π |= φ iff π′ |= φ.

In the following we will show that any LTL−X property is invariant under
bounded stuttering equivalent.

Lemma 2. Let φ be an LTL−X property, π be a path which is not a m loop,

{Bπ
0 , . . . , B

π
x} be a partition of π over m, and Li =

i∑
j=0

Size(Bπ
i ). Then for each

block Bπ
i , π |=Li−1

m φ implies that for each 1 ≤ l < Size(Bπ
i ), π |=Li−1+l

m φ
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Lemma 3. Let φ be an LTL−X property, π be a path which is not a m loop,

{Bπ
0 , . . . , B

π
x} be a partition of π over m, and Li =

i∑
j=0

Size(Bπ
i ). Then for each

block Bπ
i , π |=Li−1

m φ implies that for each 0 ≤ l < Size(Bπ
i ), π |=Li−1+l

m φ

Informally Lemma 2 claims that for each block Bπ
i if φ is valid along π’s suffix start-

ing from the first state ofBπ
i , then φ is valid alongπ’s suffix starting from each state

ofBπ
i . Lemma 3 claims that for each block Bπ

i if φ is valid along π’s suffix starting
from the last state of Bπ

i , then φ is valid along π’s suffix starting from each state
of Bπ

i . Directly from Lemma 2 and 3 we have the following theorem which claims
for each block Bπ

i if φ is valid along π’s suffix starting from some state of Bπ
i , then

φ is valid along π’s suffix starting from each state of Bπ
i .

Theorem 4. Let φ be an LTL−X property, π be a path which is not a m loop,

{Bπ
0 , . . . , B

π
x} be a partition of π over m, and Li =

i∑
j=0

Size(Bπ
i ). Assume that

for block Bπ
i , Bπ

i (0) . . . Bπ
i (Size(Bπ

i ) − 1) = π(j) . . . π(Size(Bπ
i ) − 1 + j). Then

for each 0 ≤ l ≤ Size(Bπ
i )− 1, π |=j+l

k φ implies π |=j
k φ, . . . , π |=j+Size(Bπ

i )−1
k φ

.

Lemma 4. Let two paths π, π′ be (m,n) bounded stuttering equivalent,
{Bπ

0 , . . . , B
π
x} be a partition of π over m, {Bπ′

0 , . . . , Bπ′
x } be a partition of π′ over

n. And let Li =
i∑

j=0
Size(Bπ

i ), L′
i =

i∑
j=0

Size(Bπ′
i ), and L−1 = L′

−1 = 0. Then for

each 0 ≤ i ≤ x, two paths π(Li−1)π(Li−1 +1) . . ., π′(L′
i−1)π

′(L′
i−1 +1) . . . are are

(m− Li−1, n− L′
i−1) bounded stuttering equivalent.

Lemma 5. Let k ≥ 0, π be a path which is not a k loop, and φ be an LTL−X

property. For some integer i with 0 ≤ i ≤ k, π |=i
k φ iff for any path π′ which’s

prefix is π(i) . . . π(k), π′ |=k−i φ.

Informally Lemma 4 says that if two paths are bounded stuttering equivalent
then paths starting from the corresponding block are also bounded stuttering
equivalent.

Theorem 5. If two paths π, π′ are (m,n) bounded stuttering equivalent then for
any LTL−X formula φ, π |=m φ implies π′ |=n φ.

Proof. By the induction on the length of φ. We consider the following two cases:
(1) π is a m loop path and π′ is a n loop path. (2) π is not a m loop path and
π′ is not a n loop path. For the first case the proof is similar with stuttering
equivalent. Thus we only consider the second case. We assume that {Bπ

0 , . . . , B
π
x}

is a partition of π over m, {Bπ′
0 , . . . , Bπ′

x } is a partition of π′ over n. Let Li =
i∑

j=0
Size(Bπ

i ), L′
i =

i∑
j=0

Size(Bπ′
i ), and L−1 = L′

−1 = 0. The theorem follows

directly for the propositional variables, their negations, α∨β and α∧β. Consider
φ to be the following forms:
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– φ = Ff . By the the definition of the bounded semantics π |=m φ means
that there exists an integer i with 0 ≤ i ≤ m such that π |=i

m φ. Assume
that π(i) ∈ Bπ

j . By Theorem 4 π |=Lj−1
m f . Because π is not a m loop path,

by Lemma 5 for the path π′′ = π(Lj−1)π(Lj−1 + 1) . . ., π′′ |=m−Lj−1 f . By
Lemma 4 two paths π′′ = π(Lj−1)π(Lj−1 + 1) . . . , π′′′ = π′(L′

j−1)π
′(L′

j−1 +
1) . . . are (m − Lj−1, n − L′

j−1) bounded stuttering equivalent. By the in-

ductive assumption π′′′ |=n−L′
j−1

f . By Lemma 5, π′ |=L′
j−1

n f . By the the
definition of the bounded semantics π′ |=n φ.

– φ = Gf . By the the definition of the bounded semantics π |=m φ is false
and π′ |=n φ is false.

– φ = fUg. By the the definition of the bounded semantics π |=m φ means
that there is an integer i with 0 ≤ i ≤ m such that π |=i

m g and for each
integer j with 0 ≤ j < i− 1, π |=j

m f . Assume that π(i) ∈ Bπ
j . By Theorem

4 π |=Lj−1
m g and for each 0 ≤ l ≤ Lj−1 − 1, π |=l

m f . According to the case

φ = Ff , by Lemma 4,5 and inductive assumption we have that π′ |=L′
j−1

n g
and for each 0 ≤ l ≤ L′

j−1−1, π′ |=l
n f . By the the definition of the bounded

semantics π′ |=n φ.
– φ = fRg. By the the definition of the bounded semantics π |=m φ means

that there is an integer i with 0 ≤ i ≤ m such that π |=i
m f and for each

integer j with 0 ≤ j ≤ i, π |=j
m g. Assume that π(i) ∈ Bπ

j . By Theorem
4 π |=Lj−1

m f and for each 0 ≤ l ≤ Lj−1, π |=l
m g. According to the case

φ = Ff , by Lemma 4,5 and inductive assumption we have that π′ |=L′
j−1

n f
and for each 0 ≤ l ≤ L′

j−1, π
′ |=l

n g. By the the definition of the bounded
semantics π′ |=n φ.

In the following we redefine the unfolding of the transition relation.

Definition 7. For a Kripke structure M , k ≥ 0, we define

[[M ]]Mod
k := I(s0) ∧

k−1∧
i=0

(R(si, si+1) ∧ si �= si+1).

In our new encoding we restrict that two consecutive states can not be same.
Thus for example, in Fig 2, if s0s1s2s4 is not a counterexample, then we do not
need to check bounded path s0s1s1s2s2s4. The following theorems guarantee the
correctness of our new encoding.

Theorem 6. For some integer k with k ≥ 0, and an LTL−X property φ, if
[[M ]]Mod

k ∧ [[φ]]k is satisfiable then M |= Eφ.

Since [[M ]]Mod
k → [[M ]]k, the proof of Theorem 6 is clear.

Theorem 7. For an LTL−X property φ if M |= Eφ then there exists an integer
k with k ≥ 0 such that [[M ]]Mod

k ∧ [[φ]]k is satisfiable.

Proof. By Theorem 1 if M |= Eφ then there exists a path π and an integer m
such that π |=m φ. For π and m, we construct a path π′ as follows:



618 C. Zhou and D. Ding

{ i=0,k=0;
π′(0) = π(0)
while(i ≤ m){

if π(i) �= π(i+ 1) then k = k + 1, i = i+ 1, π′(k) = π(i)
otherwise i = i+ 1}

∀h > k, π′(h) = π(m+ h− k)}
It is clear π′, π are (k,m) bounded stuttering equivalent. By Theorem 5, π′

|=k φ. By Theorem 1 and 2 [[M ]]Mod
k ∧ [[φ]]k is satisfiable.

4 New Path Encodings of Gα, αUβ and αRβ Formulas

In this section we assume that α and β are propositional formulas. And we want
to use SAT based Bounded Model Checking to check whether Gα,αUβ and αRβ
are existentially valid in some Kripke structure. It is not difficult to note that in
Fig 1. if the bounded path s0s3s4 is not a counterexample of αUβ then bounded
paths s0(s3, s4)k are not counterexamples of αUβ. In the original encoding, if
bounded path s0s3s4 has been checked, they do not guarantee that bounded
path s0(s3s4)k will not be checked again. Therefore there are some redundant
searches. In the following we propose a new path encoding for Gα,αUβ and αRβ
properties such that some redundant search described as above can be avoided.

Definition 8. For a Kripke structure M , an integer k ≥ 0,

[[M ]]simple
k := I(s0) ∧

k−1∧
i=0

R(si, si+1) ∧
k−1∧
i=0

k∧
j=i+1

(si �= sj).

In our new encoding we restrict that in bounded paths no any two states are
same. Thus for example, in Fig 2, if s0s3s4 is not a counterexample, then we do
not need to check bounded path s0(s3s4)k. The following theorems guarantee
the correctness of our new encoding.

Theorem 8. For a Kripke structure M , an integer k ≥ 0, and properties ex-
pressed with φ = Gα or αUβ, or αRβ, if [[M ]]simple

k ∧ [[φ]]k is satisfiable then
M |= Eφ.

Since [[M ]]simple
k → [[M ]]k, the proof of Theorem 8 is clear.

Theorem 9. For the property φ = Gα if M |= Eφ then there exists an integer
k with k ≥ 0 such that [[M ]]simple

k ∧ [[φ]]k is satisfiable.

Proof. By Theorem 1 there is a path π with integer k such that π |=k Gα. If
there exists i, j ≤ k with i �= j such that π(i) = π(j) then by the definition of
bounded semantics π |=j−1 Gα. Therefore we can assume that for the bounded
path π(0)π(1) . . . π(k), there are not two same states. So [[M ]]simple

k ∧ [[φ]]k is
satisfiable.

In order to prove the correctness of our new encoding we define a operation
Simple on bounded paths as follows:
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Simple(π){
Computing the length of π: k.
i = 0.
while(i ≤ k){
For the state π(i), look for a minimum j between i + 1 and k such that

π(i) = π(j).
There are two cases:
Case 1. Find j then return Simple(π(0) . . . π(i)π(j + 1) . . . π(k)).
Case 2. Do not find j then i = i+ 1.
if i = k then return π}.}
Informally the aim of Simple is to obtain a bounded path in which no any

two states are same.

Lemma 6. Given a bounded path s0s1 . . . sk, let s′0 . . . s
′
m = Simple(s0 . . . sk−1),

then (s′m, sk) ∈ R.

Theorem 10. For the property φ = αUβ if M |= Eφ then there exists an
integer k with k ≥ 0 such that [[M ]]simple

k ∧ [[φ]]k is satisfiable.

Proof. By Theorem 1 there is a path π and an integer m such that M,πm |= β
and for each 0 ≤ i < m, M,πi |= α. Assume π′(0) . . . π′(k − 1) =Simple(π(0)
. . . π(m− 1)), π′(k) = π(m). Since α, β are propositional formulas for each
0 ≤ i ≤ k − 1,M, π′i |= α, and M,π′k |= β. By the definition of bounded
semantics and Lemma 6, αUβ are valid along π′ with respect to k. Therefore
[[M ]]simple

k ∧ [[φ]]k is satisfiable.

Theorem 11. For the property φ = αRβ if M |= Eφ then there exists an
integer k with k ≥ 0 such that [[M ]]simple

k ∧ [[φ]]k is satisfiable.

Proof. By the definition of unbounded semantics M,π |= φ if and only if one of
the following conditions holds:

(1) M,π |= Gβ.
(2) there exists an integer i with 0 ≤ i ≤ k such that M,πi |= α, and for each

0 ≤ j ≤ i, M,πj |= β.
For case 1, the proof is similar with Gα. For case 2, the proof is similar with

αUβ.

5 Conclusions

The basic idea of Bounded Model Checking is to search for a counterexample in
executions whose length is bounded by some integer k. In fact, we note that some
bounded executions are equivalent. How to avoid searching for equivalent finite
executions is very important for improving the efficiency of Bounded Model
Checking. In this paper we present a new encoding for Translating Bounded
Model Checking into propositional satisfiability decision. In our new encoding for
properties expressed with LTL−X ,Gα,αUβ and αRβ Bounded Model Checking
can avoid searching equivalent paths. Therefore our new encodings improve the
efficiency of Bounded Model Checking.
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Abstract. Membrane systems represent a new abstract model inspired
by cell biology. This new model works with multisets. In this paper we
deal with various number encodings over multisets. We present the nat-
ural encoding and a most compact encoding, and study their proper-
ties using elements of combinatorics over multisets. We construct the
membrane systems implementing the arithmetic operations using these
encodings. For each encoding and operation we present its complexity.
With respect to their complexity, we compare the encodings and we re-
mark a transfer from the usual encoding lengths and time complexities
of order logbn to lengths and complexities of order b√n.

1 Introduction

Membrane systems represent a new abstract model inspired by cell compart-
ments and molecular membranes. Essentially, such a system is composed of var-
ious compartments, each compartment with a different task, and all of them
working simultaneously to accomplish a more general task of the whole system.
A detailed description of the membrane systems (also called P systems) can be
found in [6]. A membrane system consists of a hierarchy of membranes that do
not intersect, with a distinguishable membrane, called the skin membrane, sur-
rounding them all. The membranes produce a demarcation between regions. For
each membrane there is a unique associated region. Regions contain multisets of
objects, evolution rules and possibly other membranes. Only rules in a region de-
limited by a membrane act on the objects in that region. The multisets of objects
from a region correspond to the “chemicals swimming in the solution in the cell
compartment”, while the rules correspond to the “chemical reactions possible in
the same compartment”. Graphically, a membrane structure is represented by
a Venn diagram in which two sets can be either disjoint, or one is a subset of
the other. We refer mainly to the so-called transition membrane systems. Other
variants and classes are introduced [6].

The membrane systems represent a new abstract machine. For each abstract
machine, theory of programming introduces and study various paradigms of com-
putation. For instance, Turing machines and register machines are mainly related
� Work partially supported by the CEEX Programme, project “ForMol” 47/2005

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 621–630, 2006.
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to imperative programming, and λ-calculus is related to functional programming.
Looking at the membrane systems from the point of view of programming the-
ory, we intend to define an appropriate data representation, and we make the
first steps to define the arithmetic unit for such a device. As far as we know,
this is the first paper defining encodings of numbers based on the multisets of
the membrane systems, and the arithmetic operations over these encodings.

We have designed and implemented sequential and parallel software simulators
[3, 4]; a web-based implementation is presented in [2]. We have implemented the
arithmetic operations, and each example is tested with our web-based simulator
available at http://psystems.ieat.ro.

2 Natural Encoding

In a multiset natural encoding each object of a membrane system represents
a unit; it is similar to numbers in base 1. Addition of numbers is trivial; the
simplest form when we do not perform any rule, and just count the objects in the
skin membrane. Subtraction is described in the following way: given n objects
a and m objects b, a rule ab → λ says that one object a and one object b are
deleted (this is represented by the empty symbol λ). Such a rule is applied in
parallel as many times as possible. Consequently, all the pairs ab are erased. The
remaining number of objects represents the difference between n and m. The
time complexity of this operation is O(1) in P systems.

Multiplication is more complex than addition and subtraction. Figure 1(a)
presents a P system Π1 without promoters for multiplication of n (objects a) by
m (objects b), the result being the number of objects d in membrane 0. In this
P system we use the priority relation between rules; for instance bv → dev has
a higher priority than av → u, meaning the second rule is applied only when
the first one cannot be applied anymore. Initially only the rule au → v can
be applied, generating an object v which activates the rule bv → dev m times,
and then av → u. Now eu → dbu is applied m times, followed by au → v. The
procedure is repeated until no object a is present within the membrane. We note
that each time when one object a is consumed, then m objects d are generated.

Figure 1(b) presents a P system Π2 with promoters for multiplication of
n (objects a) by m (objects b), the result being the number of objects d in

an bm u

eu −> dbu
bv −> dev

0

av −> u
au −> v>

> an bm u

0

au −> u>a|b −> bd 

Fig. 1. Multiplication
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membrane 0. In this P system we use rule with priority and with promoters. The
object a is a promoter in the rule b → bd|a, i.e., this rule can only be applied in
the presence of object a. The available m objects b are used in order to apply
m times the rule b → bd|a in parallel; based on the priority relation and the
availability of a objects (except one a as promoter), the rule au → u is applied
in the same time. The priority relation is motivated because the promoter a is a
resource for which the rules b → bd|aand au → u are competing. The procedure
is repeated until no object a is present within the membrane. We note that each
time when one object a is consumed, then m objects d are generated.

The important aspects related to the complexity of both multipliers are pre-
sented in the following table

Table 1. Minimal P systems for multiplication

Type of objects No of rules No of priority levels Time complexity
Π1 6 4 2 O(n ·m)
Π2 4 2 2 O(n)

The membrane systems for multiplication differ from others presented in the
literature [6] because they do not have exponential space complexity, and do not
require active membranes. As a particular case, it would be quite easy to compute
n2 by just placing the same number n of objects a and b. Another interesting
feature is that the computation may continue after reaching a certain result, and
so the system acts as a P transducer [5].

Thus if initially there are n (objects a) and m (objects b), the system evolves
and produces n ·m objects d. Afterwards, the user can inject more objects a and
the system continues the computation obtaining the same result as if the objects
a are present from the beginning. For example, if the user wishes to compute
(n + k) ·m, it is enough to inject k objects a at any point of the computation.
Therefore this example emphasizes the asynchronous feature and a certain degree
of reusability and robustness.

Division is implemented as repeated subtraction. We compute the quotient
and the remainder of n2 (objects a in membrane 1) divided by n1 (objects a
in membrane 0) in the same P system evolution. The evolution starts in the
outer membrane by applying the rule a→ b(v, in1). The (v, in1) notation means
that the object v is injected into the child membrane 1. Therefore the rule
a → b(v, in1) is applied n1times converting the objects a into objects b, and
object v is injected in the inner membrane 1. The evolution continues with a
subtraction step in the inner membrane, with the rule av → e applied n1 times
whenever possible. Two cases are distinguished in the inner membrane:

– If there are more objects a than objects v, only the rules es→ s(u, out)(c, out)
and e → (u, out) are applicable. The (u, out) notation means that the ob-
ject u is sent out to the parent membrane. Rule es → s(u, out)(c, out) sends
out to membrane 0 a single c (restricted by the existence of a single s into
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0

1

a
n2

s

a −> b(v,in  )

a

bu −> b’

n1

b’ −> a

av −> e> v −> (v,out)

| >v

e −> (u,out)>es −> s(u,out)(c,out)>

1

t

ctu −> u | v

this membrane) for each subtraction step. The number of objects c repre-
sents the quotient. On the other hand, both rules send out n1 objects u
(equal to the number of objects e). The evolution continues in the outer
membrane by applying bu → b′|�v of n1times, meaning the objects b are
converted into objects b′ by consuming the objects u only in the absence of
v (|�v denotes an inhibitor having an effect opposite to that of a promoter).
Then the rule b′ → a produces the necessary objects a to repeat the entire
procedure.

– When there are less objects a than objects v in the inner membrane we
get a division remainder. After applying the rule av → e, the remaining
objects v activate the rule v → (v, out). Therefore all these objects v are
sent out to the parent membrane 0, and the rules es → s(u, out)(c, out)
and e → (u, out) are applied. Due to the fact that we have objects v in
membrane 0, the rule bu → b′|�v cannot be applied. Since n2 is not divis-
ible by n1, the number of the left objects u in membrane 0 represents the
remainder of the division. A final cleanup is required in this case, because
an object c is sent out even if we have not a ”complete” subtraction step;
the rule ctu → u|v removes that extra c from membrane 0 in the pres-
ence of v. This rule is applied only once because we have a unique t in this
membrane.

3 Compact Encodings

The natural encoding is easy to understand and work with; however it has the
disadvantage that for very large numbers the membrane systems should contain
a very large number of objects, undesirable for practical reasons. We discuss
compact encodings where each object of a membrane system is represented in
a more compact way, similarly to numbers in base 2 or higher. These compact
encodings require notions and results from combinatorics over multisets. We
present a review of combinatorics over multisets (see [1]), and then develop
corresponding encoding and decoding algorithms.

Let M be a multiset. An r-permutation of M is an ordered arrangement
of r objects of M . If |M | = r then an r-permutation of M is called simply a
permutation of M .
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Theorem 1. Let M = {∞a1,∞a2, ...,∞an} be a multiset of n different el-
ements where each element has infinite multiplicity. Then the number of r-
permutations of M equals nr.

An r-combination of M is an unordered collection of r objects from M . Thus
an r-combination of M is itself an r-submultiset of M . For a multiset M =
{∞a1,∞a2, ...,∞an}, an r-combination of M is also called an r-combination
with repetition allowed of the support set S = {a1, a2, ..., an}. The number of

r-combinations with repetition allowed of S with |S| = n is denoted by
〈
n
r

〉
.

Theorem 2. Let M = {∞a1,∞a2, ...,∞an} be a multiset of n different ele-
ments. Then the number of r-combinations of M is given by〈

n
r

〉
=
(
n+ r − 1

r

)
=
(
n+ r − 1
n− 1

)
The m-combinations are useful in our compact encodings to determine the num-
ber of numbers represented with m objects in a multiset with b elements; b indi-
cates the base of the encoding. We denote by N(b,m) the number of numbers
encoded in base b with m objects.

N(b,m) =
〈
b
m

〉
=
(
b− 1 +m

m

)
=
(
b− 1 +m
b− 1

)
(1)

In the extended form of the Pascal formula:(
n
r

)
=

r∑
i=0

(
n− 1 − i
r − i

)
(2)

we replace n with b− 1 +m and r with m. Consequently, (1) becomes

N(b,m)=
(

(b-1)-1+(m-i)
(m− i)

)
=

m∑
i=0

〈
b-1
m-i

〉
=

m∑
i=0

〈
b-1
i

〉
=

m∑
i=0

N(b-1, i) (3)

Here we present a few samples of Most Compact Encodings (MCE) in bases 1,
2, 3 using simple multisets.

To develop encoding and decoding algorithms, we start considering the num-
ber n in base b represented by using m objects. As a first step we must determine
m, the encoding length. We look for the first (lowest) number represented using
m objects. This number is

∑m−1
i=0 N(b, i), the count of all numbers represented

using less than m objects, and it is lower or equal to n. Thus we determine m
from the following equation:

m−1∑
i=0

N(b, i) − n = 0
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Table 2. Most Compact Encodings (MCE) in bases 1, 2, 3

Decimal
MCE1

Natural
encoding

MCE2 MCE3

0 00 0010 001020

1 01 0 0
2 02 1 1
3 03 00 2
4 04 01 00
5 05 11 01
6 06 000 02
7 07 001 11
8 08 011 12
9 09 111 22
10 010 0000 000

∑m−1
i=0 N(b, i)=N(b + 1,m − 1)=

〈
b+ 1
m− 1

〉
=
(
b+m− 1
m− 1

)
= (b +m− 1)!

b!(m− 1)! =

b−1∏
i=0

(m+ i)

b! , and we get
∑m−1

i=0 N(b, i) − n=0 iff

b−1∏
i=0

(m+ i)

b! − n=0. The
integer floor part of the greatest real positive root of this equation represents m,
the number of objects needed to represent the natural number n. We also note
that ∏b−1

i=0 (m+ i)
b!

=
b∑

i=1

[
b
i

]
mi (4)

where
[
b
i

]
are the Stirling numbers of the first kind b cycle i. Equation (4) can

generate some notable number sequences:

b Sequence name
2 triangular numbers (2-simplex)
3 tetrahedral numbers (3-simplex)
4 pentatope numbers (4-simplex)
k k-simplex numbers

3.1 Binary Most Compact Encoding MCE2

To minimize the number of objects, we encode natural numbers using two ob-
jects as in Table 2, where a binary encoding over multisets (unordered binary
encoding) is obtained. We describe the encoding and decoding procedures.
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Encoding: In the binary encoding we can represent m + 1 different numbers
using m objects, for m > 0. Thus, the number n represented with m objects
has before it at least

∑m
i=1 i numbers. So m is the greatest natural number

that verifies the inequality
∑m

i=1 i = m(m+1)
2 ≤ n. In order to find m, we solve

the equation x(x+1)
2 − n = 0. The roots are x1,2 = −1±

√
8n+1

2 . The greatest

(and only positive) root is x1 = −1+
√

8n+1
2 , and m = !x1" =

⌊
−1+

√
8n+1

2

⌋
.

To determine the multiset elements of these m objects, we notice that the first
number encoded with m objects use only the element 0. With respect to the
first number encoded with m objects, the position of n is given by the difference
n− m(m+1)

2 . Consequently k = n− m(m+1)
2 objects are 1, and the others are 0.

Decoding: We decode the number encoded using m objects with k elements 1
because n = m(m+1)

2 + k.
We present now the P systems implementing the arithmetic operations on

natural numbers encoded using the binary case of the most compact encoding.

Successor in MCE2

Time complexity: O(1). The successor of a number in this encoding is com-
puted in the following manner: either we have an object 0 and the rule 0s → 1
transforms this 0 into an 1, or we have a number encoded using only objects 1
and the rule 1 → 0|s transforms all 1s into 0s; moreover the rule s → 0 produces
an additional 0.

0
0

n−k k1 s

0s −> 1 > 1 −> 0| s s −> 0>

0n−k k1 s

>1s −> 0
|

0s −> u
0 −> 1 u

0

Fig. 2. Successor and predecessor in MCE2

Predecessor in MCE2
Time complexity: O(1). The predecessor of a number is computed by turning
an 1 into a 0 by the rule 1s → 0 whenever we have objects 1; otherwise we
consume one 0 by the rule 0s → u, and transform all the other objects 0 into 1
by rule 0 → 1|u.

Addition in MCE2

Time complexity: O(n). We implement addition by coupling the predecessor
and successor through a “communication token”. We use the general idea that
we add two natural numbers by incrementing a number while decrementing
the other until we cannot decrement anymore. The evolution is started by the
predecessor computation in the outer membrane which injects a communication
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0 s1

1

0

n1−k1 k1

n2−k2

0

1
k2

0s −> 1(s,out) s −> 0(s,out)>s|1 −> 0>

u −> (s,in )1>| u0 −> 11s −> 0(s,in ) >1 0s −> u >

Fig. 3. Addition in MCE2

token s into the inner membrane. For each predecessor cycle (except the first
one) the inner membrane computes the successor passing back the token s. Since
we want to stop the computation when the predecessor is reaching 0, we omit
computing the successor for one predecessor cycle: the first token s is eaten-up
by the single object p present in the inner membrane.

Multiplication MCE2
Time complexity: O(n1 · n2) = O(n2) if n1 = n2 = n. We imple-
ment multiplication in a similar manner to addition, coupling a predecessor
with an adder. The idea is to provide the first number to a predecessor, and
perform the addition iteratively until the predecessor reaches 0. The evolution
is started by the predecessor working over the first number. The predecessor
activates the adder by passing a communication token. The adder is modified
to use an extra backup membrane which always contains the second number.
When the adder is triggered by the predecessor, it signals the backup mem-
brane which supplies a fresh copy of the second number to the adder, and a
new addition iteration is performed. At the end of the iteration, the adder sends
out a token to the predecessor. The procedure is repeated until the predecessor
reaches 0.

Multiple-iterations successor MCE2

Time complexity: O(p/m) = O(p/
√

n). The multiple-iterations successor
performs p successor iterations on the number n. The number of iterations is
the number of s objects. In this encoding the multiple-iterations successor is
computed in the following manner. Considering the order of priority, the first
rule is applied; it consumes as many s as possible and 0 objects are transformed
into 1 objects. Then if objects s still exist, the second rule generates a single

0
0

n−k 1k p us

0s −> 1 > su −> 0t > 1 −> 0 | t > t −> u

0n−k 1k p us

> > |1s −> 0 0su −> t 0 −> 1 s
t −> u

0

Fig. 4. Multiple-iterations successor and predecessor
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0, and generates a t which promotes the third rule, transforming all objects 1
into objects 0. Together with one 0 generated by the second rule, the number
of objects in the encoding is increased. The last rule converts t into an u which
allows the second rule to consume a single s. If the objects s are not entirely
consumed, then this process is repeated.

Multiple-iterations predecessor MCE2

Time complexity: O(m) = O(
⌊

−1+
√

8n+1
2

⌋
) = O(

√
n). The multiple-

iterations predecessor performs p predecessor iterations on the number n. The
number of iterations is the number of s objects. The multiple-iterations prede-
cessor is computed in the following manner. Considering the order of priority,
the first rule is applied, consuming as many s as possible, and objects 1 are
transformed into objects 0. If we still have objects s, the second rule removes
a single 0, after which the third rule transforms all 0s into 1s. The number of
objects in the encoding is decreased by the second rule. The last rule converts
the object t into an u which allows the second rule to consume a single s. If the
objects s are not entirely consumed, then this process is repeated.

Decoder MCE2

Time complexity: O(m). The decoder is an multiple-iterations predecessor
which performs n predecessor iterations on the number n. Instead of consuming
objects s, it produces objects d objects. The number of d is n when the system
stops.

0
0

t −> u

n1−k1 1k1 u

1 −> 0(s,in  )1 > 0u −> t(s,in  )1 > 0 −> 1

1
0 1 un2−k2

0s −> 1 > su −> 0t > 1 −> 0 | t > t −> u

k2

Fig. 5. Optimized adder

Optimized adder MCE2
Time complexity: O(m). The optimized adder contains in membrane 0 a
multiple-iteration predecessor, and in membrane 1 a multiple-iterations succes-
sor. Each membrane contains a term of the addition. As opposed to the simple
adder where the predecessor and the successor perform a synchronization af-
ter each iteration, in this optimized adder the predecessor compute in one step
multiple iterations, and sends multiple objects s to the successor. The successor
performs its iterations in an asynchronous manner (without any response to the
predecessor). The evolution stops when the predecessor stops.
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4 Conclusion

The most compact encodings over the multisets represent n in O(mb) where b
is the base of the encoding, and m is the codification length. When we consider
strings instead of multisets, and the position becomes a relevant information,
then the most compact encoding of n is of order O(bm).

Singularity Multiplicity Position
Media set multiset string

Structure atomic composite composite
Encoding length constant b

√
n logbn

number(base, length) - n = O(mb) n = O(bm)

This fact provides some hints about information encoding in general, allowing to
compare the most compactly encoded information over structures as simple sets,
multisets, and strings of elements from a multiset (where position is relevant).
A primary conclusion is that the effect of considering position as relevant over
the elements of a multiset is the reduction of the encoding length from b

√
n

to logbn. On the other hand, the encodings over multisets are much closer to
the computational models inspired by biology, and can help to improve their
computation power.
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Abstract. In this paper we revisit one of the first models of analog
computation, Shannon’s General Purpose Analog Computer (GPAC).
The GPAC has often been argued to be weaker than computable analysis.
As main contribution, we show that if we change the notion of GPAC-
computability in a natural way, we compute exactly all real computable
functions (in the sense of computable analysis). Moreover, since GPACs
are equivalent to systems of polynomial differential equations then we
show that all real computable functions can be defined by such models.

1 Introduction

In the last decades, the general trend for theoretical computer science has been
directed towards discrete computation, with relatively scarce emphasis on analog
computation. One possible reason is the fact that there is no Church-Turing
thesis for analog computation. In other words, among the many analog models
that have been studied, be it the BSS model [2], Moore’s R-recursive functions
[16], neural networks [22], or computable analysis [19, 12, 24], none can be treated
as a “universal” model.

In part, this is due to the fact that few relations between them are known.
Moreover some of these models have been argued not to be equivalent, making
the idea of a Church-Turing thesis for analog models an apparent utopian goal.
For example the BSS model allows discontinuous functions while only continuous
functions can be computed in the framework of computable analysis [24].

However, this objective may not be as unrealistic as it seems. Indeed, we will
prove in this paper the equivalence of two models of analog computation that
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were previously considered non-equivalent: on one side, computable analysis and
on the other side, the General Purpose Analog Computer (GPAC). The GPAC
was introduced in 1941 by Shannon [21] as a mathematical model of an analog
device, the Differential Analyzer [5]. The Differential Analyzer was used from the
30s to the early 60s to solve numerical problems, especially differential equations
for example in ballistics problems. These devices were first built with mechanical
components and later evolved to electronic versions.

A GPAC may be seen as a circuit built of interconnected black boxes, whose
behavior is given by Fig. 1, where inputs are functions of an independent variable
called the time. It will be more precisely described in Subsection 2.2.

Many of the usual real functions are known to be generated by a GPAC, a
notable exception is the Gamma function Γ (x) =

∫∞
0 tx−1e−tdt [21]. Since this

function is known to be computable under the computable analysis framework
[19], it seems and it has often been argued that the GPAC is a weaker model than
computable analysis. However, we believe this is mostly due to a misunderstand-
ing, and that this limitation is more due to the notion of GPAC-computability
rather than the model itself.

In fact, the GPAC usually computes in “real time” - a very restrictive form of
computation. But if we change this notion of computability to the kind of “con-
verging computation” used in recursive analysis, then the Γ function becomes
computable as shown recently in [8]. In this paper, the term GPAC-computable
will refer to this notion. Notice that this “converging computation” with GPACs
corresponds to a particular class of R-recursive functions [16, 17, 3]. As in [3] we
only consider a Turing-computable subclass of R-recursive functions, but here,
in some sense, we restrict our focus to functions that can be defined as limits of
solutions of polynomial differential equations.

In this paper, we extend the result from [8] to obtain the following theorem: A
function defined on a compact domain is computable (in the sense of computable
analysis) if and only if it is computed by a GPAC in a certain framework.

It was already known [9] that Turing machines can be simulated by GPACs.
Since functions computable in the sense of computable analysis are those com-
puted by function-oracle Turing machines [12], this paper shows that the previous
result can be extended to such models. This way, it gives an argument to say
that the Church-Turing thesis may not be as utopian as it was believed: the Γ
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Fig. 1. Different types of units used in a GPAC
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function is not generable by a GPAC but computable by a GPAC, and more
generally, computable analysis is equivalent to GPAC computability.

2 Preliminaries

2.1 Computable Analysis

Recursive analysis or computable analysis, was introduced by Turing [23], Grze-
gorczyk [11], and Lacombe [14].

The idea underlying computable analysis is to extend the classical computabil-
ity theory so that it might deal with real quantities. See [24] for an up-to-date
monograph of computable analysis from the computability point of view, or [12]
for a presentation from a complexity point of view.

Following Ko [12], let νQ : N3 → Q be the following representation of dyadic
rational numbers by integers: νQ(p, q, r) �→ (−1)p q

2r .
Given a sequence (xn, yn)n∈N, where xn, yn ∈ N, we write (xn, yn)  x to

denote the following property: for all n ∈ N, |νQ(xn, yn, n) − x| < 2−n.

Definition 1. (computability)

1. A point x = (x1, ..., xd) ∈ Rd is said computable (denoted by x ∈ Rec(R)) if
for all j ∈ {1, ..., d}, there is a computable sequence (yn, zn)n∈N of integers
such that (yn, zn)  xj.1

2. A function f : X ⊆ Rd → R, where X is compact, is said computable
(denoted by f ∈ Rec(R)), if there is some d-oracle Turing machine M with
the following property: if x = (x1, ..., xd) ∈ X and (αj

n)  xj, where αj
n ∈

N2, then when M takes as oracles the sequences (αj
n)n∈N, it will compute a

sequence (βn)n∈N , where βn ∈ N2, satisfying (βn)  f(x). A function f :
X ⊆ Rd → Rk, where X is compact, is said computable if all its projections
are.

The following result is taken from [12, Corollary 2.14]

Theorem 1. A real function f : [a, b] → R is computable iff there exist two
recursive functions m : N → N and ψ : N4 → N3 such that:

1. m is a modulus of continuity for f , i.e. for all n ∈ N and all x, y ∈ [a, b],
one has

|x− y| ≤ 2−m(n) =⇒ |f(x) − f(y)| ≤ 2−n

2. For all (i, j, k) ∈ N3 such that νQ(i, j, k) ∈ [a, b] and all n ∈ N,∣∣∣∣νQ(ψ(i, j, k, n)) − f

(
(−1)i j

2k

)∣∣∣∣ ≤ 2−n.

1 A computable sequence of integers (xn)n∈N is a sequence such that xn = f(n) for
all n ∈ N where f : N → N is recursive.
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2.2 The GPAC

The GPAC was originally introduced by Shannon in [21], and further refined in
[18, 15, 10, 8]. The model basically consists of families of circuits built with the
basic units presented in Fig. 1. In general, not all kinds of interconnections are
allowed since this may lead to undesirable behavior (e.g. non-unique outputs.
For further details, refer to [10]).

Shannon, in his original paper, already mentions that the GPAC generates
polynomials, the exponential function, the usual trigonometric functions, their
inverses. More generally, Shannon claims that all functions generated by a GPAC
are differentially algebraic, i. e. they satisfy the condition the following definition:

Definition 2. The unary function y is differentially algebraic (d.a.) on the in-
terval I if there exists a nonzero polynomial p with real coefficients such that

p
(
t, y, y′, ..., y(n)

)
= 0, on I. (1)

As a corollary, and noting that the Gamma function Γ (x) =
∫∞
0 tx−1e−tdt is

not d.a. [20], we get that

Proposition 1. The Gamma function cannot be generated by a GPAC .

However, Shannon’s proof relating functions generated by GPACs with d.a. func-
tions was incomplete (as pointed out and partially corrected in [18], [15]). How-
ever, for the more robust class of GPACs defined in [10], the following stronger
property holds:

Proposition 2. A scalar function f : R → R is generated by a GPAC iff it is a
component of the solution of a system

y′ = p(t, y), (2)

where p is a vector of polynomials. A function f : R → Rk is generated by a
GPAC iff all of its components are.

From now on, we will mostly talk about GPACs as being systems of ordinary
differential equations (ODEs) of the type (2). For a concrete example of the
previous proposition, see Fig. 2. GPAC generable functions (in the sense of [10])
are obviously d.a.. Another interesting consequence is the following (recall that
solutions of analytic ODEs are always analytic - cf. [1]):

R R R
-1

�

�

t
y3

y2

y1

8<
:

y′
1 = y3 & y1(0) = 1

y′
2 = y1 & y2(0) = 0

y′
3 = −y1 & y3(0) = 0

Fig. 2. Generating cos and sin via a GPAC: circuit version on the left and ODE version
on the right. One has y1 = cos, y2 = sin, y3 = − sin.
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Corollary 1. If f is a function generated by a GPAC, then it is analytic.

As we have seen in Proposition 1, the Gamma function is not generated by a
GPAC. However, it has been recently proved that it can be computed by a GPAC
if we use the following notion of GPAC computability [8]:

Definition 3. A function f : Rn → Rk is computable by a GPAC via approx-
imations if there exists some polynomial ODE (2) with n components y1, ..., yn

admitting initial conditions x1, ..., xn such that, for some particular components
g and ε of y1, ..., yn, one has limt→∞ ε(x1, ..., xn, t) = 0 and

‖f(x1, ..., xn) − g(x1, ..., xn, t)‖ ≤ ε(x1, ..., xn, t). (3)

More informally, this model of computation consists of a dynamical system
y′ = p(y, t) with initial condition x. For any x, the component g of the sys-
tem approaches f(x), with the approximation error being bounded by the other
component ε which goes to 0 with time.

One point, behind the initial definitions of GPAC from Shannon, is that noth-
ing is assumed on the constants and initial conditions of the ODE (2). In par-
ticular, there can be non-computable reals, and some outputs of a GPAC can a
priori have some unbounded rate of growth.

This kind of GPAC can trivially lead to super-Turing computations. To avoid
this, the model of [8] can actually be reinforced as follows:

Definition 4. We say that f : [a, b] → R is GPAC-computable iff:2

1. There is a φ computed by a GPAC U via approximations, with initial con-
ditions (α1, . . . , αn−1, x) set at t0 = 0, such that f(x) = φ(α1, . . . , αn−1, x)
for all x ∈ [a, b];

2. The initial conditions α1, . . . , αn−1 and the coefficients of p in (3) are com-
putable reals.

3. If y is the solution of the GPAC U , then there exists c,K > 0 such that
‖y‖ ≤ cK |t| for time t ≥ 0.

We remark that α1, . . . , αn−1 are auxiliary parameters needed to compute f .
The result of [8] can be reformulated as:

Proposition 3 ([8]). The Γ function is GPAC-computable.

In this paper, we show that this actually hold for all computable functions (in
the sense of computable analysis). Indeed, we prove that if a real function f is
computable, then it is GPAC-computable. Reciprocally, we prove that if f is
GPAC-computable, then it is computable.
2 Recall that in the paper, the term GPAC-computable refers to this particular no-

tion. The expression “generated by a GPAC” corresponds to Shannon’s notion of
“computability”.



636 O. Bournez et al.

2.3 Simulating TMs with ODEs

To prove the main result of this paper, we need to simulate a TM with differential
equations and, in particular, we need to compute the iterates of a given function.
This can be done with the techniques described in [4] (cf. Fig. 3).

Proposition 4. Let f : N → N be some function. Then it is possible to iterate
f with an ODE, i.e. there is some g : R3 → R2, such that for all x0 ∈ N, any
solution of ODE y′ = g(y, t), with y1(0) = x0 satisfies y1(m) = f [m](x0) for all
m ∈ N.

However Branicky’s construction involves non-differentiable functions. To avoid
this, we follow instead the approach of [6, p. 37] which shows that arbitrarily
smooth functions can be used. In a first approach, we use the function θj : R →
R, j ∈ N − {0, 1} defined by

θj(x) = 0 if x < 0, θj(x) = xj if x ≥ 0.

This function can be seen [7] as a Cj−1 version of Heaviside’s step function θ(x),
where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. This construction can even be
done with analytic functions, as shown in [9].

0.5 1 1.5 2 2.5 3

1

2

3

4

Fig. 3. Simulation of the iteration of the map f(n) = 2n via ODEs

Using the construction presented in [6], it is not difficult to simulate the evolu-
tion of a Turing machine. Indeed, it suffices to code each one of its configurations
into integers and apply Branicky’s trick, i.e. f : Nk → Nk gives the transition
rule of the TM (note that with a similar construction, we can also iterate vec-
torial functions with ODEs). In general, if M has l tapes, we can suppose that
its transition function is defined over N2l+1: each tape is encoded by 2 integers,
plus one integer for the state.

Proposition 5. Let M be some Turing machine with l tapes and let x ∈ N2l+1

be the encoding of the initial configuration of M. Then there is an ODE

z′ = g(z, t), zi(0) = xi for i ∈ {1, ..., 2l+ 1},
zi(0) = 0 otherwise (4)
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that simulates M as follows: (z0(m), ..., z2l+1(m)) = f
[m]
M (x1, ..., x2l+1), where

f
[m]
M (x1, ..., x2l+1) gives the configuration of M after m steps. Moreover each com-

ponent of g can be supposed to be constituted by the composition of polynomials
with θj’s.

3 The Result

In this section we present the main result of this article. This result relates
computable analysis with the GPAC, showing their equivalence in a certain
framework.

Theorem 2 (Main result). A function f : [a, b] → R is computable iff it is
GPAC-computable.

Notice that, by Proposition 2, dynamical systems defined by an ODE of the
form y′ = p(t, y), where p is a vector of polynomials are in correspondence with
GPAC. Then, in a first step, we suppose in the proof that we have access to the
function θj and refer to the systems

y′ = p(t, y, θj(y)) (5)

where θj(y) means that θj is applied componentwise to y, as θj-GPACs [8].
Similarly to Def. 4, we can define a notion of θj-GPAC-computability. Later, we
will see how these functions θj ’s can be suppressed. To prove Theorem 2 we will
need to simulate a cyclic sequence of TM computations.

To be able to describe GPAC constructions in a modular way, it helps to break
down the system into several intermixed systems. For example, the variables of
vector y of ODE y′ = p(t, y) can be arbitrarily split into two blocks y1, y2.
The whole system then rewrites into two sub-systems y′1 = p1(t, y1, y2), and
y′2 = p2(t, y1, y2). This allows to describe each subsystem separately: we will
consider that y2 is an “external input” of the first, and y1 is an “external input”
of the second. By abuse of notation, we will still call such sub-systems GPAC.

Since any Turing machine can be simulated by a θj-GPAC [9], then there is also
a θj-GPAC that can simulate an infinite sequence of computations of a Turing ma-
chine M over successive inputs (k1, 1), (k2, 2), . . . , where kn is some function of n.
Moreover, this θj-GPAC can be designed so that it keeps track of the last value
computed by M and the corresponding index n, and it “ticks” when M starts
a new computation with some input (kn, n). This is done by adding extra com-
ponents in Equation (5), which depend on the variables that encode the current
configuration of M . More precisely, the following lemma can be proved.

Lemma 1. Let M be a Turing machine with two inputs and two outputs, that
halts on all inputs, and let m : N → N be a recursive function. Let L ∈ N − {0}.
If (kn) is a sequence of natural integers3 that satisfies kn ≤ 2m(n)L, then there
is a θj-GPAC

y′ = p(t, y, θj(y), u1, u2), (6)

given u1(0) = y1, u2(0) = 0, with the following properties:
3 Notice that (kn) needs not a priori to be a computable sequence of integers.
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1. The θj-GPAC simulates M with inputs u1(n),u2(n), starting with n = 0.
When this simulation finishes, n is incremented and the simulation restarts
with inputs u1(n+ 1) and u2(n+ 1) = n+ 1, and so on;

2. Three variables of the θj-GPAC act as a “memory”: they keep the value of
the last n where the computation M(kn, n) was carried out, and the corre-
sponding two outputs;

3. There is one variable yclock of the θj-GPAC which takes value 1 each time n
is incremented, such that if tn denotes the nth time yclock = 1, then for all
kn ≤ 2m(n)L, tn+1 − tn ≥ t(kn, n).

3.1 Proof of the “if” Direction for Theorem 2

Let f : [a, b] → R be a GPAC-computable function. We want to show that f
is computable in the sense of computable analysis. By definition, we know that
there is a polynomial ODE

y′ = p(t, y)
y(0) = x

which solution has two components g : R2 → R and ε : R2 → R such that

|f(x) − g(x, t)| ≤ ε(x, t) and lim
t→∞

ε(x, t) = 0

From standard error analysis of Euler’s algorithm, function g and ε can be
computed using Euler’s algorithm on ODE y′ = p(t, y) up to any given precision
2−n, as soon as we have a bound on the derivative of y. This is provided by the
3rd condition on the Definition 4.

So, given any n ∈ N, we can determine t∗ s.t. ε(x, t∗) < 2−(n+1) and compute
g(x, t∗) with precision 2−(n+1). This gives us an approximation of f(x) with
precision 2−n.

3.2 Proof of the “only if” Direction for Theorem 2

Here we only prove the result for θj-GPACs. Indeed, in [9] it was shown how
to implement Branicky’s construction for simulating Turing machines in GPACs
without using θj ’s. The idea is to approximate non-analytic functions with an-
alytic ones, and to control the error committed along the entire simulation.
Applying similar techniques, it is possible to remove the θj ’s of the following
lemma.

Lemma 2. A function f : [a, b] → R computable then it is θj-GPAC-computable.

Proof. By hypothesis, there is an oracle Turing machine M such that for all
oracles (j(n), l(n))n∈N  x ∈ [a, b], the machine outputs a sequence (zn)  f(x),
where zn ∈ N2. From now on we suppose that a > 0 (the other case will be
studied later). We can then assume that j(n) = 0 for any n and, hence, the
sign function j is not needed. Using Theorem 1, it is not difficult to conclude
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that there are computable functions m : N → N, abs, sgn : N2 → N such that
given x ∈ [a, b] and non-negative integers k, n satisfying

∣∣k/2m(n) − x
∣∣ < 2−m(n),

one has ∣∣∣∣(2 × sgn(k, n) − 1)
abs(k, n)

2n
− f(x)

∣∣∣∣ < 1
2n
. (7)

Now, given some real x, we would like to design a θj-GPAC that ideally would
have the following behavior. Given initial conditions n = 1 and x, it would:

1. Obtain from real x and integer n, an integer k satisfying
∣∣k/2m(n) − x

∣∣ <
1/2m(n);

2. Simulate M to compute sgn(k, n) and abs(k, n);
3. When sgn(k, n), abs(k, n) are obtained, compute

(2 × sgn(k, n) − 1)
abs(k, n)

2n
(8)

and memorize the result just till another cycle is completed;
4. Take n = n+ 1 and restart the cycle.

With Lemma 1, we can implement steps 2, 3, and 4 with a θj-GPAC. This
GPAC outputs a signal yclock that says each time the computation should be
restarted and increases the variable n in step 4. But we still have to address the
first step of the algorithm above: given some real x, and some integer n, we need
to compute an integer k satisfying

∣∣2−m(n)k − x
∣∣ < 2−m(n).

There is an obvious choice: take k = !x2m(n)". The problem is that the discrete
function “integer part” !·" cannot be obtained by a GPAC (as a non-continuous
and hence non-analytic function). Our solution is the following: use the integer
part function r : R → R defined by

r(0) = 0, r′(x − 1/4) = cjθj(− sin 2πx), (9)

where cj =
(∫ 1

0 θj(− sin 2πx)dx
)−1

. The function r has the following property:
r(x) = n, whenever x ∈ [n − 1/4, n+ 1/4], for all integer n. Then we cover !·"
over all of its domain by three functions yri(t) = r(t − 1/4 − i/3), for i = 0, 1, 2
and we define (see below) a set of detecting functions ωi such that ωi(t) �= 0
iff yri(t) is an integer and t /∈ 1/2Z + i/3 (cf. Fig. 4). Hence we can get rid of
non-integer values with the products ωiyri .

Remember that the Turing machine M can be simulated by an ODE (5)

y′ = pU (t, y, θj(y), yinput(1), yinput(2)), (10)

denoted by U . This system has two variables corresponding to the two exter-
nal inputs of M yinput(1), yinput(2), and two variables, denoted by ysgn, yabs,
corresponding to the two outputs of M.

Then we construct a system of ODEs as Fig. 5 suggests. More formally, the
GPAC contains three copies, denoted by U0,U1 and U2 of the system (10), each
one with external input yri , n:

Ui : Y ′
i = pU (t, Yi, θj(Yi), yri , n) i = 0, 1, 2.
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Fig. 4. Graphical representations of functions ri and ωi (i = 0, 1, 2)
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ysgn, yabs

Memory
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UClock

2m(n)
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yClock

Fig. 5. Schema of a GPAC that calculates a real computable function f : [a, b] → R.
x is the current argument for f , the two outputs of the “weighted sum unit” give
sgn(k, n) and abs(k, n). The divisor computes (8). The dotted line gives the signal
that orders the memory to store the current value and the other GPACs to restart the
computation with the new inputs associated to n + 1.

In other words, they simulate a Turing machine M with input (k, n) whenever
yri(t) = k. Denote by ysgni and yabsi its two outputs. The problem is that
sometimes yri(t) /∈ N and hence the outputs ysgni and yabsi of Ui may not have
a meaningful value. Thus, we need to have a subsystem of ODEs (the “weighted
sum circuit”) that can select “good outputs”. It will be constructed with the help
of the “detecting functions” defined by ωi(t) = θj(sin 2π(t− i/3)), for i = 0, 1, 2
(cf. Fig. 4).

It is easy to see that for every t ∈ R, ω0(t) + ω1(t) + ω2(t) > 0 and that
ωi(t) > 0 iff yri(t) is an integer and t /∈ 1/2Z + i/3 (i.e. Ui is fed with a “good
input”). Hence, in the weighted sum

yabs =
ω0(nx)yabs0 + ω1(nx)yabs1 + ω2(nx)yabs2

ω0(nx) + ω1(nx) + ω2(nx)
(11)
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only the “good outputs” yabsi are not multiplied by 0 and therefore yabs pro-
vide abs(k, n),4 whatever the value of real variable x is. Replacing absi by sgni

provides in a similar way sgn(k, n).
Then we use an other subsystem of ODEs for the division in equation (8),

which provides an approximation yapprox of f(x), from abs(k, n) and sgn(k, n),
with error bounded by 2−n (this gives the error bound ε). It can be shown that,
using the coding of TMs described in [13, 9], we can make the θj-GPAC satisfy
condition 3 of Definition 4.

Then, to finish the proof of the lemma, we only have to deal with the case
where a ≤ 0. This case can be reduced to the previous one as follows: let k
be an integer greater than |a|. Then consider the function g : [a + k, b + k] →
R such that g(x) = f(x − k). The function g is computable in the sense of
computable analysis, and has only positive arguments. Therefore, by the previous
case, g is θj-GPAC-computable. Then, to compute f , it is only necessary to use
a substitution of variables in the system of ODEs computing g.

We remark that our proof is constructive, in the sense that if we are given a
computable function f and the Turing machine computing it, we can explicitly
build a corresponding GPAC that computes it.

4 Conclusion

In this paper we established some links between computable analysis and Shan-
non’s General Purpose Analog Computer. In particular, we showed that con-
trarily to what was previously suggested, the GPAC and computable analysis
can be made equivalent, from a computability point of view, as long as we take
an adequate and natural notion of computation for the GPAC. In addition to
those results it would be interesting to answer the following questions. Is is pos-
sible to have similar results, but at a complexity level? For instance, using the
framework of [12], is it possible to relate polynomially-time computable func-
tions to a class of GPAC-computable functions where the error ε is given as a
function of a polynomial of t? And if this is true, can this result be generalized
to other classes of complexity? From the computability perspective, our results
suggest that polynomial ODEs and GPACs are very natural continuous-time
counterparts to Turing machines.
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Université d’Orléans, B.P. 6759, F-45067 ORLÉANS Cedex 2
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Abstract. In Abstract geometrical computation for black hole compu-
tation (MCU ’04, LNCS 3354), the author provides a setting based on
rational numbers, abstract geometrical computation, with super-Turing
capability: any recursively enumerable set can be decided in finite time.
To achieve this, a Zeno-like construction is used to provide an accumu-
lation similar in effect to the black holes of the black hole model.

We prove here that forecasting an accumulation is Σ0
2-complete (in the

arithmetical hierarchy) even if only energy conserving signal machines are
addressed (as in the cited paper). The Σ0

2-hardness is achieved by reduc-
ing the problem of deciding whether a recursive function (represented by
a 2-counter automaton) is strictly partial. The Σ0

2 -membership is proved
with a logical characterization.

Keywords: Abstract geometrical computation, Accumulation forecast-
ing, Arithmetical hierarchy, Black hole model, Energy conservation,
Super-Turing computation, Turing universality, Zeno phenomena.

1 Introduction

The foundations of computability are currently being questioned as many super-
Turing models of computation are being unveiled. Some models use analog or hy-
brid settings [AM95, Bou99, Bra95], infinite computations [EN93, Ham02, HL00],
or black holes [EN02, LN04]. To our knowledge, there are only few researches on
the whereabouts of the artifacts providing super-Turing capability. In this ar-
ticle, we are interested in providing an example where the phenomenon used,
albeit being easy to generate, is not easy to forecast. More precisely, we are in-
terested in the black hole embedding in (rational) signal machines as described
in [DL05b]. In this paper, the author shows how to produce and use an accumu-
lation to provide the black hole effect. We prove that it is undecidable to predict
whether an accumulation will even happen, even when restricted to the conser-
vative (ensuring some energy conservation) signal machines: it is Σ0

2 -complete
in the arithmetical hierarchy. On the one hand, this means that it is not even
semi-decidable, but on the other hand it is not so bad considering that it is the
key to decide recursively enumerable problems.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 644–653, 2006.
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Abstract geometrical computation considers Euclidean lines. The support of
space and time is R. Computations are produced by signal machines which are
defined by finite sets of meta-signals and of collision rules. Signals are atomic
information, corresponding to meta-signals, moving at constant speed thus gen-
erating Euclidean line segments on space-time diagrams. Collision rules are pairs
(incoming meta-signals, outgoing meta-signals), that define a mapping over sets
of meta-signals. A configuration is a mapping from R to meta-signals, colli-
sion rules, and two special values: void (i.e. nothing there) and accumulations
(amounting for black holes). The time scale is R+; there is no such thing as a
“next configuration”. The following configurations are defined by the uniform
movement of signals. In the configurations following a collision, incoming signals
are replaced by outgoing signals according to a collision rule.

Zeno like acceleration and accumulation can be constructed as on Fig. 2 of
Sect. 2. This provides the black hole-like artifact for deciding R.E . problems.
But accumulations can lead to an uncontrolled burst of signals producing in-
finitely many signals in finite time (as in the right of Fig. 2). To avoid this,
a conservativeness condition is imposed: a positive energy is defined for every
meta-signal, the sum of these energies must be conserved by each rule. Thus no
energy creation is possible; the number of signals is bounded.

Abstract geometrical computation (AGC) comes from the common use, in the
literature on cellular automata (CA), of Euclidean lines to model discrete lines
in space-time diagrams of CA (i.e. colorings of Z×N with states as on the left of
Fig. 1) to access dynamics or to design. The main characteristics of CA, as well
as abstract geometrical computation, are: parallelism, synchronicity, uniformity
and locality of updating. Discrete lines are often observed and idealized as on
Fig. 1. They can be the keys to understanding the dynamics like in [Ila01, pp.
87–94] or [BNR91, JSS02]. They can also be the tool to design CA for precise
purposes like Turing machine simulation [LN90] or reversible simulation [DL97].
These discrete line systems have also been studied on their own [MT99, DM02].

Space (Z)

T
im

e
(N

)

T
im

e
(R

+
)

Space (R)

Fig. 1. Space-time diagram of a cellular automaton and its signal machine counterpart

To our knowledge, AGC is the only computing model that is a dynamical sys-
tem with continuous time and space but finitely many local values. The closest
model we know of is the Mondrian automata of Jacopini and Sontacchi [JS90].
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Their space-time diagrams are mappings from Rn to a finite set of colors repre-
senting bounded finite polyhedra. Another close model is the piecewise-constant
derivative system [AM95, Bou99]: Rn is partitioned into finitely many polygonal
regions; trajectories are defined by a constant derivative on each region and form
sequences of (Euclidean) line segments.

In this paper, space and time are restricted to rational numbers. This is possi-
ble since all the operations used preserve rationality. All quantifiers and intervals
should be understood over Q, not R. Since rational numbers can be implemented
exactly on a computer (which is impossible for real numbers), decision problems
concerning AGC can be expressed in classical computability.

It was proved in [DL05b] that any 2-counter automaton can be simulated by
a conservative (rational) signal machine. In the same article, a conservativeness
preserving construction to embed this simulation into an accumulation is pro-
vided. We modify this construction so that the accumulation does not take place
when the simulation stops. This provides a reduction of the Halting problem and
Σ0

1 -hardness. We then provide a higher lever structure that tries all possible ini-
tial values, one after the other. This way, if a computation never stops then an
accumulation happens, otherwise no accumulation will even happen. This is a
reduction of the problem of deciding whether a recursive function is total or not,
which is Σ0

2 -complete. Each construction preserves conservativeness.
Signal machines are defined in Sect. 2. The forecasting decision problems,

arithmetical hierarchy and 2-counter automata are presented in Sect. 3. In
Sect. 4 we prove the Σ0

1 -hardness and then its Σ0
2 -hardness of Conservative-

AGC-accumulation-Forecasting. The membership of the general case
(AGC-accumulation-Forecasting) is proved by a logical characterization
in Sect. 5. Conclusion and perspective are gathered in Sect. 6.

2 Abstract geometrical computations

Abstract geometrical computations are defined by the following machines:

Definition 1. A (rational) signal machine is defined by (M,S,R) where M
(meta-signals) is a finite set, S ( speeds) a mapping from M to Q, and R
( collision rules) a partial mapping from the subsets of M of cardinality at least
2 into the subsets of M (speeds must differ in both domain and range).

Each instance of a meta-signal is a signal. The mapping S assigns rational speeds
to meta-signals, which corresponds the slopes of the segments in space-time
diagrams. The collision rules, denoted ρ−→ρ+, define what happens when two
or more signals meet.

The extended value set, V , is the union of M and R plus two symbols: one for
void, %, and one for an accumulation (or black hole) ❊. A configuration, c, is a
total mapping from Q to V such that the set { x ∈ Q | c(x) �= %} is finite.

A signal corresponding to a meta-signal μ at a position x, i.e. c(x) = μ, is
moving uniformly with constant speed S(μ). A signal must start (resp. end)
in the initial (resp. final) configuration or in a collision. This corresponds to
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condition 2 in Def. 2. At a ρ−→ρ+ collision, all, and only, signals corresponding
to the meta-signals in ρ− (resp. ρ+) must end (resp. start); no other signal
should be present (condition 3). A black hole corresponds to an accumulation of
collisions and disappears without a trace (condition 4).

Let Smin and Smax be the minimal and maximal speeds. The causal past,
or light-cone, arriving at position x and time t, J−(x, t), is defined by all the
positions that might influence the information at (x, t) through signals, formally:

J−(x, t) = { (x′, t′) | x− Smax(t−t′) ≤ x′ ≤ x− Smin(t−t′) } .

(x, t)

J−(x, t)

Fig. 2. Light-cone, a simple accumulation and three unwanted phenomena

Definition 2. The space-time diagram issued from an initial configuration c0
and lasting for T , is a mapping c from [0, T ] to configurations (i.e. a mapping
from Q × [0, T ] to V ) such that, ∀(x, t) ∈ Q × [0, T ] :
1. ∀t∈[0, T ], { x ∈ Q | ct(x) �= %} is finite,
2. if ct(x)=μ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:

– ∀t′ ∈ (ti, tf ), ct′(x+ S(μ)(t′ − t)) = μ ,
– ti = 0 or cti(xi) ∈ R and μ ∈ (cti(xi))+ where xi = x+ S(μ)(ti − t) ,
– tf = T or ctf

(xf ) ∈ R and μ ∈ (ctf
(xf ))− where xf = x+S(μ)(tf − t) ;

3. if ct(x) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [t−ε, t+ε] ∩ [0, T ], ∀x′ ∈
[x− ε, x+ ε],
– ct′(x′) ∈ ρ−∪ρ+ ∪ {%},
– ∀μ ∈ M , ct′(x′)=μ ⇒ ∨ {μ ∈ ρ− and t′ < t and x′ = x + S(μ)(t′ − t)) ,

μ ∈ ρ+ and t < t′ and x′ = x + S(μ)(t′ − t)) ;
4. if ct(x) = ❊ then

– ∃ε > 0, ∀(x′, t′) /∈ J−(x, t), ( |x−x′|<ε and |t−t′|<ε ) ⇒ ct′(x) = % ,
– ∀ε > 0, { (x′, t′) ∈ J−(x, t) | t−ε<t′<t ∧ ct′(x′) ∈ R } is infinite.

On the illustrating space-time diagrams, time is always increasing upwards. The
three space-time diagrams of Fig. 2 provide examples un-compatible with Def. 2
at the time of accumulation. In each case, the number of signals is bursting to
infinity and black holes are not isolated. To prevent this, the following restriction
is imposed.

Definition 3. A signal machine is conservative when an atomic positive energy
is defined for all meta-signals (E : M → N∗) such that the total energy of the
system is preserved, i.e. the sum of all the energy of existing signals is a constant
of the system. This is equivalent to have each rule preserving the energy: the sum
of the energy of incoming meta-signals equals the sum of outgoing ones.
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It follows automatically that given a conservative signal machine and an initial
configuration, the number of signals in any following configuration, as well as
the number of accumulations, is bounded (by the total energy divided by the
least atomic energy).

3 Decision Problems, Arithmetical Hierarchy and
2-counter Automata

Instance AGC-accumulation-Forecasting
M: rational signal machine, and
c: (rational) configuration for M.

Question
Is there any accumulation in the space-time generated by M from c?

Since rational numbers can be encoded by natural numbers, this problem is ex-
pressible in classical computability theory. The problem Conservative-AGC-
accumulation-Forecasting is defined similarly but with an extra condition
on M: the machine must be conservative.

Arithmetical hierarchy deals with non recursive sets. It is defined by:

Definition 4. A set S belongs to Σ0
n if it can be defined by a logic formula

consisting of a total recursive predicate preceded by an alternation of n uni-
versal/existential quantifiers over a numerable set starting with an existential
quantifier:

S ∈ Σ0
2k ⇐⇒ S = {x|∃n1, ∀n2, ∃n3 . . .∀n2k, φ(x, n,n2 . . . n2k)} ,

S ∈ Σ0
2k+1 ⇐⇒ S = {x|∃n1, ∀n2, ∃n3 . . .∃n2k+1, φ(x, n,n2 . . . n2k+1)} ,

where φ is a recursive total predicate.

Thus Σ0
0 are Σ0

1 the set of respectively recursive and recursively enumerable
sets. To address a decision problem, the set of positive instances is consid-
ered. A set is said to be complete in a class if and only if it belongs to the
class and any problem of its class can be many-one-reduced to it (i.e., there
is a recursive function mapping positive –resp. negative– instances of the first
problem into the positive –resp. negative– instances of the second one). The
halting problem is Σ0

1 -complete. The following problem is Σ0
2 -complete [Odi99,

p. 621]: given a Turing-machine, is there an entry such that the computation
never stops. This corresponds to deciding whether a recursive function is not
total.

A 2-counter automaton is a finite automaton coupled with two counters, A and
B. The possible actions on any counter are add/subtract 1 and branch if non-
zero. These machines can be described with a six-operations assembly language
with branching labels as on the left part of Fig. 4 (see [Min67] for more on
2-counter automata). Since Turing machines and 2-counter automata compute
exactly the same functions, the following problem is also Σ0

2 -complete:
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Instance Not-Total-2CA
A: 2-counter automaton.

Question
Is there an initial value such that the computation of A never stops?

4 Energy concerving case

4.1 Reduction from the halting problem

It is possible to simulate any 2-counter automaton with a conserving signal
machine [DL05b]. Figure 3 shows how the counters are encoded using two fixed
signals zero and one as a scale. A signal amounting for the current line zigzags
between these signals. Figure 4 presents the code of a simple 2-counter automaton
and some simulations. When a simulation stops, a signal stop appears and is
locked inside the ribbon, bouncing between zero and one.

ze
ro

on
e a

0

a

1

a

2

a

3

a

. . .

b

0

b

1

b

2

b

3

b

. . .

Fig. 3. Encoding positions of counters

A != 0 notZ
A++

glob B != 0 loop
A != 0 fin

loopB--
A++
A != 0 glob

notZ A--
B++

fin stop

�

a=0 b=0

�

a=1 b=0

�

a=0 b=1

�

a=2 b=0

Fig. 4. 2-counter automaton Anext and its simulations for three different initial values

Let us note that the automaton Anext on Fig. 4 computes the following func-
tion: if A is zero then (A′, B′) = (B+1, 0) otherwise (A′, B′) = (A−1, B+1).
Starting from (0, 0) successive applications of it generate all the elements of
N × N. On Fig. 4, each computation yields the counter values for the next. This
is used in Subsect. 4.2 to start one after the previous finishes all the computations
possible by any 2-counter automaton.

Figure 5 sketches the construction of a structure that allows to transform any
spatially-bounded computation into another computation that is also temporally-
bounded. The iterated shrinking structure always brings out an accumulation. On
the example on the right of Fig. 5, a two-counter simulation is embedded inside this
structure. This construction preserves conservativeness. Details can be found in
[DL05b, DL05a].
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sc
ale

Hi

scaleL
o

back

backSlow

borderR
i

backSlow

back

borderR

sc
ale

Hi

scaleL
o

back
backSlow

Meta-Signal Speed E
back −2ν0 1

backSlow −ν0 1
borderRi 0 1
scaleHi ν0 1
scaleLo 4ν0 1

{scaleLo, borderRi}→{back, backSlow}
{scaleHi, back}→{backSlow, borderRi}

{borderRi, backSlow}→{back, borderRi}
{backSlow, back}→{scaleHi, scaleLo}

Fig. 5. Structure, meta-signals and rules for the iterated shrinking

Preventing the accumulation of the structure. To achieve this, the signal ma-
chine is modified so that stop erases and collects the energy of scaleHi, back and
backSlow. The resulting signal stop8l leaves on the left side. Collecting starts
when stop meets scaleHi. Signal stop collects it and all signals until it encounters
backSlow. When it collects backSlow, it turns back to collect all the remaining
signals. This is done by adding the meta-signals and rules given on Fig. 6 (for
clarity, we use the same name for unstrained strained signals).

Meta − signal Speed E
stopir (i ∈ 2..7) ν0 i

stopil (i ∈ 3..8) −ν0 i

{scaleHi, stop} → {stop2r}
{stopir, a} → {stop(i+1)r} (i ∈ 2..7)

{stopir, b} → {stop(i+1)r} (i ∈ 2..7)

{stopir, one} → {stop(i+1)r} (i ∈ 2..7)

{stopir, back} → {stop(i+1)r} (i ∈ 2..7)

{stopir, backSlow} → {stop(i+1)l} (i ∈ 3..8)

{stopil, a} → {stop(i+1)l} (i ∈ 3..8)

{stopil, b} → {stop(i+1)l} (i ∈ 3..8)

{stopil, zero} → {stop(i+1)l} (i ∈ 3..8)

Fig. 6. stop prevents the accumulation: example and modifications

This provides a reduction from the Halting problem; Conservative-AGC-
accumulation-Forecasting is Σ0

1 -hard.
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4.2 Reduction from Not-Total-2CA

Let A be any 2-counter automaton. We provide a higher structure for iterating
the previous construction. It is divided in two parts. On the left side there is a
simulation of Anext (of Fig. 4) that holds and updates the initial values for A.
On the right side A starts with the initial configuration copied from Anext in a
shrinking structure. If the simulation stops, then everything on the right side is
erased and collected as in previous subsection.

At the beginning, the Anext simulation holds (0, 0) and the copy process is
launched. All the signals for simulating A and the shrinking structure are copied
as in Fig. 7. As soon as signals are set in position, they act normally.

Fig. 7. Copying process (vertically stretched for clarity)

If the computation of A on (a0, b0) does not stop then the shrinking structure
is not prevented from producing an accumulation. Otherwise, stop8l collects all
the energy of both the structure and the simulation, preventing any accumula-
tion. When stop8l reaches the left side, it restarts Anext which produces the next
value of the enumeration of N × N. This automaton always stops. The copying
process and a new iteration start.

The copying process is conservative, the energy that has been gathered in
stop8l is released bit by bit. All together, each and every counter initial values
is tested one after the other, there is an accumulation as soon as there is a non
halting A-computation, otherwise all values are tested.

Lemma 5. Conservative-AGC-accumulation-Forecasting is Σ0
2 -hard.

5 Σ0
2 membership of the general case

Lemma 6. AGC-accumulation-Forecasting belongs to Σ0
2 .

This is proved with the following expression of the problem matching Def. 4:

Lemma 7. There is an accumulation in the space-time generated by M from c
if and only if the following formula is true:

∃(x, t) ∈ Z×N, ∀n∈N, {there is at least n collisions in the casual past of (x, y)} .
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Main counters Computations

copy and start

copy and start

Simulate with
given values

Recollect energy

Compute
next values

Layout of the construction

Fig. 8. Layout and first iterations.

The predicate “there is at least n collision. . . ” is total and recursive: compute
the collision in the light-cone until there are at least n or no more collision. This
is a total and recursive predicate quantified by ∃∀ over numerable sets.

6 Conclusion

Theorem 8. Both AGC-accumulation-Forecasting and Conservative-
AGC-accumulation-Forecasting are Σ0

2-complete.

The process does never stop, but we are not interested in the halting problem but
in the apparition of an accumulation. Accumulation is disconnected from infinite
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duration computation. We believe that even restrained to signal machines that
preserve the number signal (each rule has as many in signals as out signals) and
are reversible the problem is still Σ0

2 -complete.
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1 Introduction

In [3, 4] we study the functionals, functions and predicates of the system T−.
Roughly speaking, T− is a version of Gödel’s T (see, for instance [1]) where the
successor function cannot be used to define functionals, and a functional F is
definable in T− iff F is definable in Gödel’s T by a term t where no succesors
occur in t (the numerical constant 1 might occur in t). In [4] we prove that
natural fragments of T− induce the space-time alternating complexity-theoretic
hierarchy

space 2lin
0 ⊆ time 2lin

1 ⊆ space 2lin
1 ⊆ time 2lin

2 ⊆ space 2lin
2 ⊆ time 2lin

3 ⊆ . . .

where space 2lin
n (resp. time 2lin

0 ) is the set of predicates decidedable by de-
terministic Turing machines working in space (resp. time) 2k|x|

n for some fixed
k ∈ N (|x| denote the length of the input, 2y

0 = y and 2y
n+1 = 22y

n). Note that
the three classes at the bottom of the hierarchy are the well-known classes called
respectively linspace, exp and expspace in the literature. Other well-known
complexity classes like e.g. logspace, p and pspace are also captured by frag-
ments of T−. See [4] for more details.

In both [3] and [4] we are dealing with the functionals purely syntactically. In
the present paper we interpret the terms of T− into the domain of Kleene-Kreisel
functionals, and the treatment is mathematical (as opposed to metamathemat-
ical) in that that the theorems deal mostly with the denotations of terms. We
isolate a non-growing subclass of Kleene-Kreisel functionals (which contains the
functionals of T−). The value of a non-growing function (type 1 functional) can
be obtained by a finite functional over a domain whose size is given by the
maximum of the arguments to the function.

The main result of the present paper is an adaption of the well-known trade-off
theorem of Schwichtenberg to the setting of computational complexity (Schwicht-
enberg’s theorem allows to eliminate the detours through higher types by longer
ordinal recursion, see for instance [11]). The proof of our trade-off theorem pro-
ceeds entirely by program transformations without any coding. We believe that

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 654–674, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the proof can be lifted to a proof of Schwichtenberg’s theorem. This should be
of some interest because the theorem has been known for over thirty years, all
published proofs require coding, and they are quite difficult. As a corollary of
our trade-off theorem we achieve a characterization of the alternating space-time
hierarchy shown above. The characterization is similar to the one given in [4],
but the proof based on the trade-off result is very different from the proof given
in [4].

This extended abstract contains all the definitions and statements of theorems
of the full paper. The interested reader can find most of the proofs in [6].

2 T − and Its Fragments T −
n

2.1 Finite Types

0 is a type and σ → τ is a type if σ, τ are. These are all types. We abbreviate

σ → (τ → ρ) to σ → τ → ρ and write σn → τ for
n︷ ︸︸ ︷

σ → · · · → σ → τ . Type levels
are defined to satisfy Lv(0) = 0 and Lv(σ → τ) = max(Lv (σ) + 1,Lv(τ)).

2.2 Syntax

The class T of terms is formed from the variables xσ, yσ, . . . in all types σ,
numerals Sc(0) for any c ∈ N, and from the recursors Rσ in all types σ by
applications t(s) and lambda abstractions λx.t.

Note that the terms for the primitive recursive functionals (Gödel’s T , see for
instance [1]) differ from T in that that the successor S : 0 → 0 can be applied
to any term in the former and only to numerals in the latter class.

We let applications group to the left, i.e. (t(s))(u) can be abbreviated to
t(s)(u) and even to t(s, u). If the typing can be inferred from the context we
will often drop the type superscripts xσ from variables as well as type sub-
scripts from various names, such as Rσ. We write x : σ for the functional x is of
type σ.

We use s, t possibly subscripted as meta-variables ranging over terms.

2.3 Subclasses of T

We will now define the classes of terms Tn with recursors restricted to level n.
For n > 0 we define Tn to consist of all terms of T whose recursors Rσ are such
that Lv (σ) ≤ n. For n = 0 the iterator R0 is apparently too weak and so we
admit, what amounts to simultaneous recursion in type 0. Toward that end we
define T0 as the class of terms whose recursors are R0 and R0→0. The latter are
always applied in a form R0→0(s, (λx, r.t)) where all occurences of the variable
r in t are applied to a numeral, i.e. as r(Sc(0)).

We will need the classes Tn further subdivided according to the numerals
occurring in their terms. For k ≥ 2 we define the class Tk

n to consist of those
terms of Tn whose numerals Sc(0) are such that c < k. We set Tk =

⋃
n∈N Tk

n.
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2.4 Semantics

We interpret the terms of T in the domain of Kleene-Kreisel functionals. We let
the free and bound variables range over such functionals. When we say that the
identity t = s holds in a context where its free variables are assigned Kleene-
Kreisel functionals, we mean that the terms t and s denote the same Kleene-
Kreisel functionals under the assignment to the variables.

Kleene-Kreisel functionals are extensional, i.e. for any x, y : σ → τ we have
x = y iff x(z) = y(z) holds for all z. Moreover, for any terms s, t, u[xσ] ∈ T such
that s = t : σ we have u[s] = u[t].

For a class of terms C we say that the functional F is defined in C if there is
a closed term t ∈ C such that F = t.

We designate by T− the functionals definable in T. Their definitions have the
restriction on the successor S applied only to numerals. It is well-known that
the functionals defined in T are Kleene-Kreisel functionals, and we note that
T− ⊆ T .

We would like to draw attention to a common misunderstanding about T−:
the restrictions on S apply only to definitions. We permit arbitrary terms of T
when reasoning about T−.

The conversion rules (λx.t[x])(s) = t[s] and Rσ(g, h, 0) = g, Rσ(g, h, S(x)) =
h(x,Rσ(g, h, x)) are satisfied in the Kleene-Kreisel functionals.

A functional of type 0n → 0 is called a function. We designate by T−
n the class

of functions definable in T2
n. A function f is non-growing if f(�x) ≤ max(�x, 1) for

all �x ∈ N.
Note that the defining terms for the functions of T−

n may contain at most
the numerals 0 and 1. Actually, the definition of the predecessor function Pr in
Lemma 2.15 will not need the numeral 0 and one can define 0 = Pr (1). We could
have defined the classes T−

n with the numeral 0 instead of 1, but then we would
not be able to define predicates, i.e. characteristic functions yielding 0 or 1, for
all arguments (see Thm. 2.14(1)).

2.5 Finite Functionals

For the complexity analysis of the function classes T−
n we will need to to code

the arithmetic with exponentials into higher types. We thus need to project the
types and functionals into finite domains.

For every k > 0 and σ we define the sets Hk
σ of finite functionals as

Hk
0 = {0, . . . , k − 1}

Hk
σ→τ = Hk

σ → Hk
τ all functions

The functionals in Hk
σ will be approximations of infinite functionals. The cardi-

nality of Hk
σ is designated by σk where 0k = k and (σ → τ)k = τσk

k .
It should be clear that in the absence of any growing functions in T−, every

term t[�z] ∈ Tk of type σ can be interpreted intoHk
σ as a finite functional. The free

variables zτi

i of t range over Hk
τi

. We would like to be able to define projections
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P k
σ (x) taking functionals x : σ to the elements of Hk

σ such that they are are
homomorphisms for the terms t[�z] ∈ Tk:

P k
σ (t[zτ1

1 , . . . , zτn
n ]) = t[P k

τ1
(z1), . . . , P k

τn
(zn)] .

2.6 Arrays

We will characterize the functions of T−
n as certain inductively defined classes

of functions over N. For that reason we will not work directly with the finite
functionals x ∈ Hk

σ but rather with their codes �x�k < σk. The coding functions
satisfy:

�x�k = x if x ∈ Hk
0

�x�k =
∑

y∈Hk
σ

τ�y�k

k ·�x(y)�k if x ∈ Hk
σ→τ

It is not difficult to see that the coding functions are bijections where the code
of x ∈ Hk

σ→τ can be viewed as a number with σk digits presented in the base
τk. We have �x(y)�k = �x�k〈�y�k〉τk

where the indexing function a〈i〉b selects
the i-th digit of the number a presented in the base b if b ≥ 2 and yields 0
otherwise. We use the same abbreviations with indexing as with applications.
Thus, g(x, y)〈u, v〉 abbreviates (((g(x))(y))〈u〉)〈v〉.

We call the codes of finite functionals arrays because they generalize the
eponymous computer programming data structures.

For k > 0 we assign to every term t ∈ T a numeric term tk whose free variables
xσ are intended to range over arrays a < σk:

(xσ)k = xσ

(Sc(0))k = Smin(c,k−1)(0)

(Rσ)k =
∑

a<σk,b<(0→σ→σ)k,c<0k

σ
(a·(0→σ→σ)k+b)·0k+c

k ·p(k, a, b, c)

(t(s))k = tk〈sk〉τk
if t : σ → τ

(λxσ .t[x])k =
∑

a<σk

τa
k ·tk[a] if t : τ

where p is defined by primitive recursion:

p(k, a, b, 0) = a

p(k, a, b, c+ 1) = b〈c, p(k, a, b, c)〉σk
.

2.7 Theorem (Projection and Injection Functionals)

For every k > 0 and σ there is a projection functional P k
σ (x) = a taking a

functional x : σ to an array a < σk and an injection functional Ik
σ(a) taking an

array a < σk to a functional of type σ such that
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P k
0 (x) = min(x, k − 1)

Ik
0 (a) = a

P k
σ→τ (x) =

∑
i<σk

τ i
k·P k

τ (x(Ik
σ(i)))

Ik
σ→τ (a) = λxσ.Ik

τ (a〈P k
σ (x)〉τk

) .

The injection functionals are Kleene-Kreisel functionals.

Proof. The above identities constitute a definition of the functionals by simulta-
neous recursion on σ. The proof that the injection functionals are Kleene-Kreisel
functionals is in [7, 8, 5]. That P k

σ (x) < σk holds is seen by a straightforward in-
duction on σ. ��

2.8 Lemma

If a < σk then P k
σ (Ik

σ(a)) = a.

Proof. By induction σ. In the base case we have

P k
0 (Ik

0 (a)) = P k
0 (a) = a .

In the inductive case it suffices to show the following for any i < σk:

P k
σ→τ (Ik

σ→τ (a))〈i〉τk

df=P k
τ (Ik

σ→τ (a)(Ik
σ(i))) df=

P k
τ (Ik

τ (a〈P k
σ (Ik

σ(i))〉τk
))IH=P k

τ (Ik
τ (a〈i〉τk

))IH=a〈i〉τk
. ��

2.9 Finite Equivalences of Functionals

For every σ and k > 0 we define the class Ngk
σ of (Kleene-Kreisel) functionals

non-growing above k to satisfy:

Ngk
0 = {x0 | x < k} (1)

Ngk
σ→τ = {xσ→τ | ∀i ∈ Ngk

σ(x(i) ∈ Ngk
τ ∧ P k

τ (x(i)) = P k
σ→τ (x)〈P k

σ (i)〉τk
)} .

(2)

The functionals x ∈ Ngk
σ hereditarily preserve applications in projections to k

and so the array P k
ρ (x) can be viewed as the modulus of continuity of x. Moduli

of continuity permit to read off the values of infinite functionals from arrays in
the following sense. If x : σ = σ1 → · · ·σn → 0 is in Ngk

σ then

y1 ∈ Ngk
σ1

∧ · · · ∧ yn ∈ Ngk
σn

→ x(y1, . . . , yn) = P k
σ (x)〈P k

σ1
(y1), . . . , P k

σn
(yn)〉0k

.

We also define the relations of similarity at k:

x ≈k
σ y ↔ x ∈ Ngk

σ ∧ y ∈ Ngk
σ ∧ P k

σ (x) = P k
σ (y) . (3)

It is straightforward to see that the similarity relations are transitive and sym-
metric. They are reflexive on the classes Ngk

σ. Thus from x ≈k
σ y we get x ≈k

σ x
and y ≈k

σ y. That the relations respect applications will be proved in
Lemma 2.10(4).
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2.10 Lemma

a < σk → Ik
σ(a) ∈ Ngk

σ (1)

x ∈ Ngk
σ → x ≈k

σ I
k
σ(P k

σ (x)) (2)

x ≈k
0 y ↔ x = y < k (3)

x ≈k
σ→τ y ↔ ∀i∀j(i ≈k

σ j → x(i) ≈k
τ y(j)) . (4)

Proof. (1): By induction on σ. In the base case from a < 0k we get Ik
0 (a) = a < k.

In the inductive case we assume a < (σ → τ)k, take any i ∈ Ngk
σ, and get

Ik
σ→τ (a)(i) df= Ik

τ (a〈P k
σ (i)〉τk

) ∈ Ngk
τ

by IH because a〈P k
σ (i)〉τk

< τk. Also

P k
τ (Ik

σ→τ(a)(i)) = P k
τ (Ik

τ (a〈P k
σ (i)〉τk )) 2.8= a〈P k

σ (i)〉τk

2.8= P k
σ→τ (Ik

σ→τ (a))〈P k
σ (i)〉τk .

(2): Assume x ∈ Ngk
σ. Since P k

σ (x) < σk, we have Ik
σ(P k

σ (x)) ∈ Ngk
σ by (1) and

also
P k

σ (x) 2.8= P k
σ (Ik

σ(P k
σ (x))) .

(3): In the direction → assume x ≈k
0 y. Thus x, y < k and

x = min(x, k − 1) = P k
0 (x) = P k

0 (y) = min(y, k − 1) = y .

In the direction ← assume x = y < k. Thus x, y ∈ Ngk
0 and also

P k
0 (x) = min(x, k − 1) = x = y = min(y, k − 1) = P k

0 (y) .

(4): In the direction → assume x ≈k
σ→τ y and i ≈k

σ j. Thus x, y ∈ Ngk
σ→τ ,

i, j ∈ Ngk
σ and hence x(i), y(j) ∈ Ngk

τ . Moreover

P k
τ (x(i)) = P k

σ→τ (x)〈P k
σ (i)〉τk

x≈k
σ→τ y,i≈k

σj
= P k

σ→τ (y)〈P k
σ (j)〉τk

= P k
τ (y(j)) .

In the direction ← assume the RHS. We prove x ∈ Ngk
σ→τ by taking any i ∈ Ngk

σ.
Since i ≈k

σ i, we get from the assumption x(i) ≈k
τ y(i). Thus x(i) ∈ Ngk

τ . We
have Ik

σ(P k
σ (i)) ≈k

σ i by (2) and so we get from the assumption again:

P k
τ (x(i))

x(i)≈k
τ y(i)

= P k
τ (y(i))

assump.
= P k

τ (x(Ik
σ (P k

σ (i)))) df= P k
σ→τ (x)〈P k

σ (i)〉τk
.

We prove y ∈ Ngk
σ→τ similarly. It remains to prove P k

σ→τ (x) = P k
σ→τ (y). This

clearly holds when P k
σ→τ (x)〈a〉τk

= P k
σ→τ (y)〈a〉τk

for all a < σk. We thus take
any a < σk. We have Ik

σ(a) ∈ Ngk
σ by (1) and hence Ik

σ(a) ≈k
σ I

k
σ(a). We use the

assumption on this and get

P k
σ→τ (x)〈a〉τk

2.8= P k
σ→τ (x)〈P k

σ (Ik
σ(a))〉τk

x,Ik
σ(a)∈Ng
= P k

τ (x(Ik
σ (a)))

assmp.
=

P k
τ (y(Ik

σ(a)))
y,Ik

σ(a)∈Ng
= P k

σ→τ (y)〈P k
σ (Ik

σ(a))〉τk

2.8=

P k
σ→τ (y)〈a〉τk

. ��
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2.11 Congruence Theorem

For every term t[zρ1
1 , . . . , zρn

n ] ∈ Tk of type σ with the free variables among the
indicated ones we have

v1 ≈k
ρ1
w1 ∧ · · · ∧ vn ≈k

ρn
wn → t[v1, . . . , vn] ≈k

σ t[w1, . . . , wn] .

Proof. For the duration of the proof by induction on t we abbreviate the sequence
v1, . . . , vn to �v and w1, . . . , wn to �w.

Case Sc(0). We have c < k from the assumption and using 2.10(3) we get

(Sc(0))[�v] = Sc(0) ≈k
0 S

c(0) = (Sc(0))[�v] .

Case zi. It must be the case that σ = ρi and we have from the assumption

zi[�v] = vi ≈k
σ wi = zi[�w] .

Case Rτ . We have σ = τ → α → 0 → τ where we abbreviate 0 → τ → τ by
α. We take arbitrary g1 ≈k

τ g2, h1 ≈k
α h2 and suppose that we have managed to

prove

x < k → R(g1, h1, x) ≈k
τ R(g2, h2, x) . (5)

We then take arbitrary x1 ≈k
0 x2. This means x1 = x2 < k and so we have

R(g1, h1, x1) ≈k
τ R(g2, h2, x2) from (5). By a threefold use of 2.10(4) we obtain

Rτ [�v] = R ≈k
τ R = Rτ [�w] .

It remains to prove (5) by induction on x. In the base case we have

R(g1, h1, 0) = g1 ≈k
τ g2 = R(g2, h2, 0)

from the assumption. In the inductive case we assume S(x) < k. Since also x < k,
we get R(g1, h1, x) ≈k

τ R(g2, h2, x) by IH. ¿From the assumption h1 ≈k
α h2 and

from x ≈k
0 x obtained by 2.10(3) we then get

R(g1, h1, S(x)) = h1(x,R(g1, h1, x)) ≈k
τ h2(x,R(g2, h2, x)) = R(g2, h2, S(x))

by a twofold use of 2.10(4).
Case t(s). We have t[�v] ≈k

τ→σ t[�w] and s[�v] ≈k
τ s[�w] for some τ by IH and we

use 2.10(4) to get

(t(s))[�v] = (t[�v])(s[�v]) ≈k
σ (t[�w])(s[�w]) = (t(s))[�w] .

Case λxτ .t[x, �z]. It must be the case that σ = τ → δ for some δ. We take two
new variables iτ , jτ and assign to them arbitrary functionals such that i ≈k

τ j.
By IH we have

((λx.t)[�v])(i) = t[i, �v] ≈k
δ t[j, �w] = ((λx.t)[�w])(j)

and we get (λx.t)[�v] ≈k
σ (λx.t)[�w] by 2.10(4). ��
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2.12 Non-growing Theorem

For every term t[zρ1
1 , . . . , zρn

n ] ∈ Tk of type σ with the free variables among the
indicated ones we have

z1 ∈ Ngk
ρ1

∧ · · · ∧ zn ∈ Ngk
ρn

→ t[z1, . . . , zn] ∈ Ngk
σ .

Proof. We have z1 ≈k
ρ1
z1, . . . , zn ≈k

ρn
zn from the assumptions, hence

t[z1, . . . , zn] ≈τ
σ t[z1, . . . , zn]

by Thm. 2.11, and so t[z1, . . . , zn] ∈ Ngτ
σ. ��

2.13 Theorem (Homomorphism of Projections)

For every t[zρ1
1 , . . . , zρn

n ] ∈ Tk of type σ with the free variables among the indi-
cated ones we have

z1 ∈ Ngk
ρ1

∧ · · · ∧ zn ∈ Ngk
ρn

→ P k
σ (t[z1, . . . , zn]) = tk[P k

ρ1
(z1), . . . , P k

ρn
(zn)] .

Proof. For the duration of the proof we abbreviate the sequence z1, . . . , zn to
�z and P k

ρ1
(z1), . . . , P k

ρn
(zn) to P (�z). We also repeatedly use Thm. 2.12 without

explicitly referring to it. The proof is by induction on t.
Case Sc(0). We have c < k from the assumption and thus

P k
0 (Sc(0)[�z]) = P k

0 (Sc(0)) = min(Sc(0), k − 1) = (Sc(0))k = (Sc(0))k[P (�z)] .

Case zi. P k
σ (zi[�z]) = (zi)k[P (�z)].

Case Rτ . We have σ = τ → α → 0 → τ where we abbreviate 0 → τ → τ by
α. Suppose that we have managed to prove the following:

g ∈ Ngk
τ ∧ h ∈ Ngk

α ∧ x < k → P k
τ (R(g, h, x)) = p(k, P k

τ (g), P k
α (h), x) (1)

a < τk ∧ b < αk ∧ c < 0k → P k
σ (R)〈a, b, c〉τk

= p(k, a, b, c) . (2)

We are then done because (2) expresses the same as P k
σ (Rτ ) = (Rτ )k.

(1): Assume g ∈ Ngk
τ , h ∈ Ngk

α and continue by induction on x. In the base
case we have

P k
τ (R(g, h, 0)) = P k

τ (g) = p(k, P k
τ (g), P k

α (h), 0) .

In the inductive case we assume S(x) < k. Since x < k, we have R(g, h, x) ∈ Ngx
τ

and also

P k
τ (R(g, h, S(x))) = P k

τ (h(x,R(g, h, x)))
h,x,R(g,h,x)∈Ng

= P k
α(h)〈x, P k

τ (R(g, h, x))〉τk

IH=

P k
α(h)〈x, p(k, P k

τ (g), P k
α(h), x)〉τk = p(k,P k

τ (g), P k
α(h), S(x)) .
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(2): Assume the antecedent of the implication. Since then c = Ik
0 (c) < k and

from 2.10(1) we get Ik
τ (a) ∈ Ngk

τ , Ik
α(b) ∈ Ngk

α, we obtain

P k
σ (R)〈a, b, c〉τk

2.8= P k
σ (R)〈P k

τ (Ik
τ (a)), P k

α (Ik
α(b)), P k

0 (Ik
0 (c))〉τk

R,Ik
τ (a),Ik

α(b),c∈Ng
=

P k
τ (R(Ik

τ (a), Ik
α(b), c))

(1)
= p(k, P k

τ (Ik
τ (a)), P k

α (Ik
α(b)), c) 2.8=

p(k, a, b, c) .

Case t(s). We have t[�z] ∈ Ngk
τ→σ and s[�z] ∈ Ngk

τ for some τ . Thus

P k
σ ((t(s))[�z]) = P k

σ (t[�z](s[�z]))
t,s∈Ng

= P k
τ→σ(t[�z])〈P k

τ (s[�z])〉σk

IH=
tk[P (�z)]〈sk[P (�z)]〉σk

= (t(s))k[P (�z)] .

Case λxτ .t[x, �z]. We have σ = τ → δ for some δ. The case will be proved if
we prove P k

σ (λx.t[x, �z])〈a〉δk
= tk[a, P (�z)] for all a < τk. We thus take any such

a, note that Ik
τ (a) ∈ Ngk

τ by 2.10(1), and get

P k
σ (λx.t[x, �z])〈a〉δk

2.8= P k
σ (λx.t[x, �z])〈P k

τ (Ik
τ (a))〉δk

λx.t,Ik
τ (a)∈Ng
=

P k
δ ((λx.t[x, �z])(Ik

τ (a))) = P k
δ (t[Ik

τ (a), �z]) IH=

tk[P k
τ (Ik

τ (a)), P (�z)] 2.8= tk[a, P (�z)] . ��

2.14 Theorem

1. Every function f defined in Tk satisfies f(�x) ≤ max(�x, k − 1),
2. T−

n consists of non-growing functions.

Proof. (1): Let f(x1, . . . , xn) = t[x1, . . . , xn] for a t ∈ Tk. For i = max(�x, k−1)+1
we have t[Sx1(0), . . . , Sxn(0)] ∈ Ti. Thus the denotation of the last term is in
Ngi

0 by Thm. 2.12 and hence f(x1, . . . , xn) = t[Sx1(0), . . . , Sxn(0)] < i.
(2): It is an immediate consequence of (1) because the functions in T−

n are
definable in T2

n. ��

2.15 Lemma

The following functions are in T−
0 : Pr (x) = x .− 1, λx, y.x .− y, λx, y.min(x, y +

1), λx, y.max(x, y), for all n ∈ N the almost everywhere constant functions
Cn(x) = min(x, n), the characteristic function of equality Eq, the discrimination
function D satisfying:

D(0, y, z) = y D(S(x), y, z) = z ,

and for all n ∈ N the tests Eqn such that Eqn(x) = 0 ↔ x = n.

Proof. Will be supplied.
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2.16 Theorem (Elimination of Numerals)

T−
n consists exactly of the non-growing functions definable in Tn.

Proof. The non-trivial inclusion is to show that every non-growing function f
definable in Tn is in T−

n . Thus f(�x) = t[�x] ∈ Tk
n for some t and k. Take a new

variable m. If m ≥ k we have Sc(0) = Cc(m) for every numeral Sc(0) occurring
in t. We replace every such numeral in t by Cc(m) whereby we obtain a term
s[m, �x] such that t = s[m, �x] for all m ≥ k. We construct a term in T2

n whose
lambda closure defines f by a series of tests using the discrimination function D
(if-then-else) and other functions from Lemma 2.15 to satisfy:

f(�x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cf(0,...,0)(max(�x, 1)) if x1 = 0, . . . , xn = 0
...

Cf(i1,...,in)(max(�x, 1)) if x1 = i1, . . . , xn = in
...

Cf(k−1,...,k−1)(max(�x, 1)) if x1 = k − 1, . . . , xn = k − 1
s[max(�x, 1), �x] otherwise, i.e. if �x ≥ k

The reader will note that it is crucial that f be non-growing because if f(�x) ≤
max(�x, 1) then Cf(x)(max(�x, 1)) = f(�x). ��

3 Long Iteration Classes

3.1 Sequence Notation

We could have defined the primitive recursive functionals with cartesian types
as primitive notions. However, the effect of cartesian types in the arguments of
funtions can be achieved by currying, and the effect of cartesian results by using
sequences of types and functionals (see [1, 9, 10]). In the following we extend the
notions of the lambda calculus to sequences.

For two sequences of types σ = σ1, . . . , σn and τ = τ1, . . . , τm where m > 0
we abbreviate to σ → τ the following sequence of types:

(σ1 → · · · → σn → τ1), . . . , (σ1 → · · · → σn → τm) .

When n = 0 then σ → τ abbreviates just τ .
The concatenation of sequences of types σ and τ is designated by σ, τ . For

the above sequence τ we define

Lv (τ) = max(Lv (τ1), . . . ,Lv(τm)) .

For a type σ we designate by σ the (uniquely determined) sequence such that
σ = σ → 0 and for a sequence σ = σ1, . . . , σn we set σ = σ1, . . . , σn.

For the sequence σ = σ1, . . . , σn (n > 0) and for a sequence of functionals
f = f1, . . . , fn we write f : σ as an abbreviation for f1 : σ1, . . . , fn : σn.
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Furthermore, we abbreviate the sequence of variables xσ1
1 , . . . , xσn

n to xσ and we
write f = g as an abbreviation for f1 = g1, . . . , fn = gn where g = g1, . . . , gn : σ.

For two sequences f = f1, . . . , fn : σ → τ (n > 0) and g = g1, . . . gm : σ we
abbreviate the sequence f1(g1, . . . , gm), . . . , fn(g1, . . . , gm) to f(g). When m = 0
then f(g) stands for f . Note that f(g) : τ .

For a sequence of types σ = σ1, . . . , σn and a sequence of terms t = t1, . . . , tm :
τ (m > 0) we abbreviate to λxσ.t : σ → τ the sequence

(λxσ1
1 , . . . , xσn

n .t1), . . . , (λxσ1
1 , . . . , xσn

n .tm) .

When n = 0 then λxσ.t stands for t. Note that λxσ.t : σ → τ .
For any sequence of types σ → τ and sequences f : σ → τ , t[xσ] : τ we have

f = λxσ .t[x] ↔ ∀xσ f(x) = t[x] .

This is an immediate consequence of extensionality and we will often use the
equivalence below for a more readable definition of sequences of functionals f
by the requirement that they satisfy f(x) = t[x].

The concatenation of sequences of functionals f and g is designated by f, g.
For a class of terms C we say that the sequence of functionals F is defined in

C if there is a sequence of closed terms t ∈ C such that F = t.

3.2 The Zero Functionals

For every sequence of types σ = σ1, . . . , σn we define in T0 the sequence of zero
functionals 0σ : σ by 0σ = (λσ1.0), . . . , (λσn.0).

3.3 Theorem (Simultaneous Recursors)

To every sequence of types σ there is a sequence of recursor functionals Rσ :
σ, (0, σ → σ),0 → σ such that

Rσ(g, h, 0) = g Rσ(g, h, S(x)) = h(x,Rσ(g, h, x))

for all x : 0 and all sequences of functionals g : σ and h : 0, σ → σ.
The recursors are definable in TLv(σ).

Proof. We may asssume that σ = σ1, . . . , σn. We set τ = σ → 0 and ρ =
0 → σ. We note that Lv(τ) = Lv(σ). Also that ρ = 0 → 0 if Lv(σ) = 0 and
Lv(ρ) = Lv(σ) otherwise. The type τ acts as a ‘union’ type into which we can
for i = 1, . . . , n inject a value of type σi by the functional Ini and from which we
can project the value back by the functional Out i. The functionals are defined
as follows:

In i(gσi

i , xσ1
1 , . . . , xσn

n ) = gi(xi)

Outi(f τ , xσi

i ) = f(0σ1 , . . . , xi, . . . , 0σn) .

We will now define the sequence Rσ with the help of recursors Rρ. The recursor
will be applied as described in Par. 2.3, i.e. the recursive value of type ρ will be
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applied only to numerals S1(0), . . . , Sn(0), specifically Outi(r(Si(0))) will be the
recursive value of the i-th component of the n-tuple of functionals involved in
the recursion. This setup will guarantee that Rσ ∈ TLv(σ). The desired sequence
of terms Rσ is constructed as follows:

G(c0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
In1(g1) if c = 1

...
Inn(gn) if c = n

0τ otherwise

H(x0, rρ, c0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
In1(h1(x,Out1(r(S1(0))), . . . ,Outn(r(Sn(0))))) if c = 1

...
Inn(hn(x,Out1(r(S1(0))), . . . ,Outn(r(Sn(0))))) if c = n

0τ otherwise

Rσ(g, h, x) = Out1(Rρ(G,H, x, S1(0))), . . . ,Outn(Rρ(G,H, x, Sn(0)))

where the terms G and H are constructed with the help of the if-then-else
function D and the tests for constants Eq i for i = 1, . . . , n. ��

3.4 Exponential Terms

Exponential terms are formed from the numeral 1 an the variables x0, y0, . . . by
addition, multiplication, and exponentiation ee2

1 where the term e1 is not 1 and
e2 is open (contains at least one variable). Note that this is not a restriction as,
for instance, x1+1 denotes the same as x·x.

The level Lv(e) of an exponential term e is defined to satisfy:

Lv (1) = Lv (x) = 0
Lv(e1 + e2) = Lv (e1·e2) = max(Lv (e1),Lv(e2))

Lv(ee2
1 ) = max(Lv(e1),Lv (e2) + 1)

The hyperexponential function 2x
k satisfies 2x

0 = x and 2x
k+1 = 22x

k . For every
k the complexity bound 2Lin

k stands for the set of bounds
⋃
{2c·x

k | c ∈ N}.

3.5 Lemma

For every exponential term e[x]

1. there is a sequence of types α such that e[x] ≤ αmax(x,1)+1 and Lv(α) =
Lv(e),

2. there is a linear combination l[x] such that e[x] ≤ 2l[x]
Lv(e).

3.6 Long Simultaneous Iteration

We say that the sequence of functionals g : 0, σ → σ is a simultaneous iteration
of a sequence of functionals f : σ → σ if g(0, x) = x and g(S(i), x) = f(g(i, x))
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holds. We abbreviate the sequence g(i) to f (i). We thus have f (0)(x) = x and
f (S(i))(x) = f(f (i)(x)).

For every exponential term e and a sequence of types σ we define a sequence
of functionals, called long simultaneous iterators, It[e]

σ : (σ → σ), σ → σ. The
iterators are defined by recursion on the construction of the term e to satisfy:

It[1]
σ (f, x) = f(x)

It[y]
σ (f, x) = Rσ(x, (λi, r.f(r)), y)

It[e1+e2]
σ (f, x) = It[e1]

σ (f, It[e2]
σ (f, x))

It[e1·e2]
σ (f) = It[e1]

σ (It[e2]
σ (f))

It[ee2
1 ]

σ = It[e2]
σ→σ(It[e1]

σ ) .

3.7 Theorem

For every exponential term e and sequence σ we have It[e]
σ = λF σ→σ , xσ.F (e)(x).

The sequence is definable in TLv(e)+Lv(σ).

Proof. This strongly resembles the arithmetic with the well-known Church nu-
merals.

3.8 Long Iteration Classes

We will now define classes of terms involving single terms from the sequences
of long simultaneous iterators It[e]

σ applied as It[e]
σ (s, t) : σ We thus need des-

ignators for the components of the sequence. Assuming that σ = σ1, . . . , σk we
designate for i = 1, . . . , k by (It[e]

σ (s, t)Si(0) the i-th component of the sequence.
For m ≤ n we define Tlimn to be the least class of terms satisfying:

– The variables xσ, function constants Pr , D, and the numerals Sc(0) are in
Tlimn ,

– if the terms s : σ → τ , t : σ are in Tlimn then s(t) ∈ Tlimn ,
– if the term t : τ is in Tlimn then λxσ .t ∈ Tlimn ,
– if for a sequence of types σ of length k, exponential term e, sequences of

terms s, t, and a number i = 1, . . . , k we have Lv(σ) ≤ n, Lv(e) ≤ m,
s : σ → σ, t : σ then (It[e]

σ (s, t))Si(0) ∈ Tlimn .

We designate by Tm
n the class of functions defined in Tlimn . We call the classes

T n
n+i for i = 0, 1 balanced.

3.9 Theorem (Embedding)

T−
n = T 0

n.

Proof. The idea of the proof: In the direction ⊆: take any f(x) = s[x] ∈ Tn

and replace recursions by iterators. The only tricky part is the simultaneous
recursion in type 0.

In the direction ⊇: take any f(x) = s[x] ∈ Tli0n. and replace in s the defined
terms ( .−, D, and iterators) by their definitions.
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3.10 Projections (injections) of Sequences of Functionals (arrays)

We extend the cardinalities σk of Hk
σ to sequences by defining by recursion on

the length of sequences: (σ, τ)k = σk·τk for every type σ and a sequence of types
τ . Arrays for sequences of types σ are the numbers a < σk.

For a type σ and a sequence τ , for x : σ, y : τ , a < σk, and b < τk the projec-
tions (injections) are extended to sequences of functionals (arrays) to satisfy:

P k
σ,τ (x, y) = P k

σ (x)·τk + P k
τ (y)

Ik
σ,τ (a·τk + b) = Ik

σ(a), Ik
τ (b) .

Straightforward induction on the length of sequences proves the extension of
Lemma 2.8:

3.11 Lemma

For all sequences of types σ and arrays a < σk we have:

P k
σ (Ik

σ(a)) = a . ��

3.12 Theorem (Arithmetic in all Types)

For every sequence of types σ there is a functional Eqpσ : 0, σ, σ → 0 and a
sequence of functionals Spσ : 0, σ → σ such that, abbreviating Eqpσ(m) to Eqpm

σ

and Spσ(m) to Spm
σ , we have:

Eqpm
σ (x, y) = 0 ↔ Pm+1

σ (x) = Pm+1
σ (y) (1)

Pm+1
σ (Spm

σ (x)) ≡ Pm+1
σ (x) + 1 (mod σm+1) (2)

i < σm+1 → (Spm
σ )(i)(0σ) = Im+1

σ (i) . (3)

The functionals are definable in Tli
Lv(σ)
Lv(σ).

Proof. First for types σ by induction on their construction:
In the inductive case we find sequences of terms E,C : 0, σ → 0, σ to satisfy:

E(q, z) =

{
0,Spm

σ (z) if q = 0 and Eqpm
τ (x(z), y(z)) = 0

1,Spm
σ (z) otherwise

C(c, z) =

⎧⎪⎨⎪⎩
c, z if c = 0 or Eqpm

σ (z, y) = 0
c,Spm

σ (z) if c = 1, Eqpm
σ (z, y) �= 0, Eqpm

τ (Spm
τ (x(z)), 0τ ) = 0

0, z otherwise

Note that the sequences E and C have the variables x, y,m free. By induction
on i we can prove that if i < σm+1 then we have

E(i)(0, 0σ) = q, v ↔ v = Im+1
σ (i) ∧

(q = 0 ∧ ∀j < i Pm+1
σ→τ (x)〈j〉 = Pm+1

σ→τ (y)〈j〉 ∨
q = 1 ∧ ∃j < i Pm+1

σ→τ (x)〈j〉 �= Pm+1
σ→τ (y)〈j〉) .
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For M = σm+1 − 1 we can show similarly that if i ≤ Pm+1
σ (y) then

i ≤ Pm+1
σ (y) → (C(i)(1, 0σ) = c, v ↔ v = Im+1

σ (i) ∧
(c = 0 ∧ ∃j < i Pm+1

σ→τ (x)〈j〉 < M ∨
c = 1 ∧ ∀j < i Pm+1

σ→τ (x)〈j〉 = M))

Pm+1
σ (y) ≤ i < σm+1 → C(i)(1, 0σ) = C(P m+1

σ (y))(1, 0σ)

For an exponential term e[m] is the variable m such that e = σk we can thus
define:

Eqpm
σ→τ (x, y) = (It

[e[m]]
0,σ (E, 0, 0σ))1

Cr(x, y) = (It
[e[m]]
0,σ (C, 1, 0σ))1

Sm
σ→τ (x, yσ) =

{
Sm

τ (x(y)) if Cr (x, y) = 1
x(y) otherwise

Note that Cr (x, y) is the carry into the digit Pm+1
τ (y) of the number Pm+1

σ→τ (x).
We now extend the arithmetic to sequences.

3.13 Remark

The reader will note that we apparently cannot test for the membership in the
classes Ng but we can test in T− the equality of projections and we can also
define the injection functionals in T−.

3.14 Modification Functionals

For every sequence of types σ → τ of type level k + 1 we define in Tlikk the
modification functional

Mdpσ→τ : 0, (σ → τ), σ, τ → σ → τ

such that:

f [x := z]mσ→τ = λyσ.

{
z if Pm+1

σ (x) = Pm+1
σ (y)

f(y) otherwise

where we abbreviate Mdpσ→τ (m, f, x, z) to f [x := z]mσ→τ .

3.15 Pure and Simple Iterations

We will be mainly concerned with sequences of terms called pure iterations
F (e)(0σ), i.e. the sequences It[e]

σ (F, 0σ), which are such that that for every i > e
we have F (i)(0σ) = F (e)(0σ).

For σ = σ1, . . . , σk we call a sequence of terms F : σ → σ simple if

F (rσ) = (λyσ1
1 .s1), . . . , (λyσk

k .sk) (4)
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and for i = 1, . . . , k the terms si are built up by applications from variables,
numerals, Pr , and D.

The sequence of terms F : σ → σ is supersimple if F (rσ) = s and the terms
of the sequence s are built up by applications from variables, numerals, Pr , D,
Sp, Eqp, and Mdp.

The pure iteration F (e)(0σ) is simple (supersimple) if F is simple (supersim-
ple).

We say that a function f is defined by a simple (supersimple) iteration in Tlimn
if f(�x) = (F (e)(0σ))Si(0) for some i and a simple (supersimple) iteration F (e)(0σ)
whose lambda closure is definable in Tlimn .

3.16 Normal Form Theorem

Functions of Tm
n are definable by simple iterations in Tlimn .

Proof. Will be supplied

4 Characterization of Balanced Iteration Classes

4.1 Lemma (Elimination of Lambda Abstractions)

Functions of balanced classes are definable by supersimple iterations in the same
classes.

Proof. The idea is to eliminate from a simple iteration the lambda abstractions
λxσ.t[x] by iteration starting from vσ := 0σ for i := 0, . . . , σm+1 − 1 of modifi-
cation functionals

v := v[(Spm
σ )i(0σ) := t(Im+1

σ (i))]

4.2 Restricted Primitive Recursive Functions

The class of restricted primitive functions Pr− consists of those primitive recur-
sive functions in whose definitions the successor function S occurs at most as
S(0). The class Pr− has an inductive definition as the functions formed from
the unit function U(x) = 1 and from the projections In

i by composition and
primitive recursion.

We define the class of functions Pr−
n to consist of non-growing functions f

such that f(�x) = g(e[max(�x, 1)], �x) for some g ∈ Pr− and an exponential term
e[y] of level n.

4.3 Theorem

The following classes are identical:

1. T n
n ,

2. Pr−
n ,

3. the non-growing functions computable by Turing machines working in space
2k·|x||

n for some fixed k ∈ N (|x| denotes the length of the input)

Proof. Will be supplied where we prove (1) ⊆ (2) ⊆ (3) ⊆ (1).
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4.4 Restricted Recursion on Notation

The class of restricted notation recursive functions Rn− consists of functions
defined from U(x) = 1, In

i , min(x, 2·y), min(x, 2·y + 1), by composition and
recursion on notation satisfying:

f(0, �y) = g(�y)
f(2·x, �y) = h1(x, �y) provided x > 0

f(2·x+ 1, �y) = h2(x, �y)

We define the class of functions Rn−
n to consist of non-growing functions f

such that f(�x) = g(e[max(�x, 1)], �x) for some g ∈ Rn− and an exponential term
e[y] of level n.

4.5 Theorem

The following classes are identical:

1. T n
n+1,

2. Rn−
n+1,

3. the non-growing functions computable by Turing machines working in time
2k|x|

n+1 for some fixed k ∈ N (|x| denotes the length of the input)

Proof. Will be supplied where we prove (1) ⊆ (2) ⊆ (3) ⊆ (1).

5 Characterization of T −
n by the Trade-Off Theorem

5.1 Lemma (Trading Time for Space)

If the sequence of terms F (e)(0ρ) is in Tlim+1
n then its lambda closure is definable

in Tlimn+1.

Proof. We have e[x] ≤ 2c·
∑

x
m+1 for some c and we abbreviate e′[x] = 2c·

∑
x

m . Since

the iteration of F is pure, we have F ∗ = F (2e′
)(0ρ). We now define a sequence

G : (ρ → ρ) → ρ → ρ to satisfy G(f, z) = f(f(z)). A simple induction on i

proves G(i)(f) = λz.f (2i)(z). Thus G∗ = G(e′)(F, 0ρ) = F (2e′
)(0ρ) = F ∗. Since

Lv(e′) = m and Lv(G∗) = Lv(ρ)+1 ≤ n+1, we have G∗ ∈ Tlimn+1 as desired. ��

5.2 Lemma (Trading Space for Time)

If the sequence of terms F (e)(0ρ) from Tlimn+1 has the free variables of levels at
most n + 1, and if Lv(e) = m < n, then the lambda closure of the iteration is
definable in Tlim+1

n .

Proof. This is a rather detailed (but not yet finished) proof which requires some
work at the end
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We can assume that Lv(ρ) = n + 1 because otherwise there is nothing to
prove. Let F = F ρ→ρ1

1 , . . . , F ρ→ρL

L and rρ = rρ1
1 , . . . , rρL

L . For i = 1, . . . , L we
have Fi(r) = λuσi

i , y
τi
1 .s

0
i with ρi = σi, τi → 0 and the sequence σi shortest such

that either σi is empty or else Lv(σi) = n and in either case Lv(τi) < n.
Note that every occurrence in some si of a recursive variable rj must be

applied at least to the level n as rj(aσj [yi]) and that the sequence a in general
contains the variables yi from y = y1, . . . , yL free.

We will now abstract the variables in y from the arguments a. Toward that end
we take a sequence of new variables vτ = vτ1

1 , . . . , v
τL

L and set for ρ′ = ρ′1, . . . , ρ
′
L

with ρi = (τ → σi), τ, τi → 0. We form a sequence of terms

F ′ρ′→ρ′
= F ′

1
ρ′→ρ′

1 , . . . , F ′
L

ρ′→ρ′
L

by

F ′(r) = (λuτ→σ1
1 , vτ , yτ1

1 .s
′0
1 ), . . . , (λuτ→σL

L , vτ , yτL

L .s′0L )

where the terms in s′ = s′1, . . . , s
′
L are formed from the corresponding terms in

s by generalizing in the inside-out and left-to-right order every recursive appli-
cation rj(a[yi]) which occurs in some si to the application

rj((λv.a[vi]), 0τ1 , . . . , yi, . . . , 0τL) .

Since for i = 1, . . . , L, the type of ui changes from σi to τ → σi, we replace every
occurrence of p from the sequence ui occurring in si by the application p(v) to
occur correspondingly in s′i. The net effect is that the generalization happens
pointwise and we have: F ′(r) = λv.F (r(v)).

We now remove the nested recursions rj(aτ→σj ) from the sequence s′. Prepara-
tory to that we enumerate all such applications (permitting repetitions) in the
inside-out and left to right order as

rj0 (a0), rj1 (a1), . . . , rjJ−1 (aJ−1) . (1)

For i = 0, . . . , J − 1 each element of (1) comes from exactly one term from the
sequence s′. Next, we take J new variables

w = w
τ,τj0→0
0 , w

τ,τj1→0
1 , . . . , w

τ,τjJ−1→0
J−1

whose types correspond to the types of the elements of (1). We form next the
sequence t = t1, . . . , tL from s′ from the corresponding terms of the sequence s′

by replacing in s′ all elements rji(ai) from (1) by wi. The replacements start
with the largest application rjJ−1(aJ−1) all the way down to rj0 (a0). We similarly
form the sequence b = b0, . . . , bJ−1 from the sequence a = a0, . . . , aJ−1. Note
that each variable wi occurs exactly once in one of the terms from the sequence
a, t. We say that wi is associated with the term tk if either wi occurs in tk or
else wi occurs in bj and bj comes from s′k.

Note that if wi is associated with tk then the free variables of bi are among
those in uk or among those of w1, . . . , wi−1 which are associated with tk.
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Find a type α larger than e. Note that the increase of the length of iteration
to αmax(x) − 1 does not change the value of iteration in the normal form.

We now take a sequence of J ·(J + 1) new variables

W =

W0,0, . . . , W0,J ,
...

WJ−1,0, . . . , WJ−1,J

and type them for i < J and k ≤ J as

Wi,k : α, (τ, τj0 → 0), . . . , (τ, τjk−1 → 0) → ρ′ji
.

to which we will assign certain closed terms of TliLv(e)+1
n The idea is that the

functional Wi,0, which we abbreviate to Wi, will satisfy for n the maximum of
constants in F :

Wi(z) = F ′
ρi

(P n
α (z))(0ρ′

ji
)

Wi(Sα(z)) = Wi,0(Sα(z)) = Wi,1(Sα(z),W0(z, a0)) = · · · =
Wi,k(Sα(z),W0(z, a0), . . . ,Wk−1(z, ak−1)) = · · · =
Wi,J (Sα(z),W0(z, a1), . . . ,WJ−1(z, aJ−1)) .

This is achieved by solving the following system of recurrences:

Wi,k(0α, w0, . . . , wk−1, uji) = 0τ,τji
→0 (2)

Wi,k(Sα(z), w0, . . . , wk−1, uji) = Wi,k+1(Sα(z), w0, . . . , wk−1,Wk(z, bi,k), uji)
if k < J (3)

Wi,J (Sα(z), w0, . . . , wJ−1, uji) = λv, yji .tji [uji , w0, . . . , wJ−1] (4)

where

bi,k[uji , w0, . . . , wk−1] =

{
bk[uji , w0, . . . , wk−1] if wk is associated with tji

0τ→σjk
otherwise

Imperative program
variables cα→0; z0,

for i = 0, . . . , J − 1: U
α→τ→σji

i , V
α,τ,τji

→0
i

invariants:
we compute: Vi(z) = Wi(z, Ui(z))
c counts up in (J + 1)-ary base
c(z) = J and ∀vα > z c(v) < J

If c(z + 1) = i < J and c(z) = k ≤ J we are computing:

Vi(z + 1) = Wi,k(z + 1, V1(z, U1(z)), . . . , Vk−1(z, Uk−1(z)), Ui(z + 1))

and have the the result when k = J ,
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Imperative program:

U0(mα) := uj0 ; . . . ; UJ−1(mα) := ujJ−1 ;
V0(0α) := 0τ,τj0→0; . . . ; VJ−1(0α) := 0τ,τjJ−1→0;
c(0) := J ; z = mα − 1;
while z > 0 do

c(z) := 0; U0(z) := b0,0[U0(z + 1)]; z := z − 1;

while z < mα do †
i := c(z + 1); Vi(z + 1) := λv, yji .tji [Ui(z + 1), V0(z), . . . , VJ−1(z)];
i := i+ 1; c(z + 1) := i;
if i < J then

while z > 0 do
c(z) := 0; U0(z) := b0,0[Ui(z + 1)]; i := 0; z := z − 1;

else z := z + 1;

The invariant of the loop marked by †, i.e. the property holding just before the
test z < mα will be performed is c(z) = J , ∀vα(v > z → c(v) < J). Furthermore,
for i = c(z + 1) the program is just about to perform the assignment:

Vi(z + 1) := Wi,J (z + 1, V0(z, U0(z)), . . . , VJ−1(z, UJ−1(z)), Ui(z + 1)) .

where V0(z, U0(z)) = W0(z, U0(z)),. . . , VJ−1(z, UJ−1(z)) = WJ−1(z, UJ−1(z))
are already computed. Finally, for every z < vα < mα with i = c(v + 1) and
k = c(z) we are computing:

Vi(v + 1) := Wi,k(v + 1, V0(v, U0(v)), . . . , Vk−1(v, Uk−1(v)), Ui(v + 1))

where V0(v, U0(v)) = W0(v, U0(v)),. . . , Vk−1(v, Uk−1(v)) = Wk−1(v, Uk−1(v))
are already computed. For all z ≤ vα < mα with i = c(v + 1) and k = c(z)
the values held by U0(v),. . . , Uk−1(v) are the arguments u at the recursion level
v when using the recurrences for W . The arguments are computed from the
initial arguments uj0 , . . . , ujJ−1 used in the computation of W0(mα, uj0), . . . ,
WJ−1(mα, ujJ−1).

It remains to make the imperative program declarative, by modification func-
tionals and case analysis on i.

5.3 Trade-Off Lemma

If m < n then Tm
n+1 = Tm+1

n .

Proof. For the proof of the inclusion ⊆ take any f ∈ Tm
n+1 and so f(x) = t[x]

for some t ∈ Tlimn+1. Since Lv (x) = 0, we have by Thm. 3.16 f = F ∗
i for a simple

iteration F ∗ = F e[x](0ρ) such that Lv (ρ) ≤ n+ 1, Lv(e) ≤ m, and with the free
variables of level 0. By Lemma 5.2 Fi is definable in Tm+1

n .
For the proof of the inclusion ⊇ take any f ∈ Tm+1

n and so f(x) = t[x] for
some t ∈ Tlim+1

n . By Thm. 3.16 again we have f = F ∗
i for a simple iteration

F ∗ = F e[x](0ρ) such that Lv(ρ) ≤ n, Lv(e) ≤ m+ 1. By Lemma 5.1 we have f
definable in Tlimn+1, i.e. f ∈ Tm

n+1. ��
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5.4 Theorem (Complexity Characterization of T −
n )

1. For i = 0, 1 we have T−
2·n+i = T n

n+i,
2. T−

2·n are excatly the non-growing functions computable by Turing machines
working in space 2k|x|

n for some fixed k ∈ N,
3. T−

2·n+1 are excatly the non-growing functions computable by Turing machines
working in time 2k|x|

n+1 for some fixed k ∈ N.

Proof. The part (1) of the theorem follows for k = n from

k + j = n → T−
2·n+i = T k

n+j+i

which is proved by induction on k. The base case follows from Thm. 3.9 and
when (k + 1) + j = n then, since k < n+ j + i, we have

T−
2·n+i

IH= T k
n+(j+1)+i

Lemma 5.3= T k+1
n+j+i .

The part (2) follows from (1) and Thm. 4.3, while (3) follows from from (1) and
Thm. 4.5. ��

It follows easily that the predicates of T−
2·n (resp. T−

2·n+1) are exactly the predi-
cates decidable by Turing machines working in space 2k|x|

n (resp. time 2k|x|
n+1) for

some fixed k ∈ N.
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Abstract. Two sufficient and necessary conditions for the self orthog-
onality of classical non-primitive BCH codes over Fq and Fq2 are given,
respectively. And series of non-binary quantum BCH codes are obtained
by using these two conditions and some construction methods.

1 Introduction

Quantum error-correcting codes (QECCs) play an important role in not only
quantum communication but also quantum computation. A quantum computer
has big advantages over a classical computer for some problems such as
factoring[1] and database searching[2] due to quantum parallelism. But a main
obstacle to realize quantum computation is decoherence of quantum bits (qubits)
caused by inevitable interaction with environments. QECCs provide the most
efficient way to overcome decoherence. In addition, QECCs have many appli-
cations to quantum cryptography. For example, an explicit and simple proof of
the security of quantum BB84 QKD protocol was given by using QECCs [3].
QECCs can also be used in secure share schemes [4]. So it’s significant to study
and construct QECCs.

The theory of QECCs has been developed rapidly in recent years. Many good
non-binary QECCs have been constructed by using classical error-correcting
codes over Fq and Fq2 (q is a power of odd prime number) with special
orthogonal properties. Ashikhmin gave the construction methods of non-binary
QECCs by using classical self orthogonal error-correcting codes [5]. A finite
Gilbert-Varshamov bound for pure stabilizer quantum codes and some non-
binary QECCs were presented by Feng and Ma[6]. Grassl et.al obtained some
optimal non-binary QECCs [7]. And many families of QECCs are given
in [8].

In this paper, we give two sufficient and necessary conditions for the self or-
thogonality of classical non-primitive BCH codes over Fq and Fq2 , respectively.
Then series of non-binary quantum BCH codes are gained by using two condi-
tions and some construction methods. The remainder of this paper is arranged
as below:

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 675–683, 2006.
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Section 2 introduces the concepts of classical BCH codes and quantum sta-
bilizer codes. In section 3, A sufficient and necessary condition for the self or-
thogonality of classical non-primitive BCH codes over Fq is given. And series of
non-binary quantum BCH codes are obtained. Section 4 gives a sufficient and
necessary condition for the self orthogonality of classical non-primitive BCH
codes over Fq2 , and gets series of quantum BCH codes. Conclusions are pre-
sented in section 5.

2 Preliminaries

2.1 Classical BCH Codes

Classical BCH codes are an important class of cyclic codes. They have strong
error-correcting ability, simple construction methods and fast decoding algo-
rithms and are widely used in practice.

Definition 1. A cyclic code C over Fq is called a BCH code with designed dis-
tance δ if its generator polynomial is the least common multiple of the minimal
polynomials of αl, αl+1, · · · , αl+δ−2 over Fq. Where α is an nth primitive root
of unity. This code is called a narrow-sense BCH code if l = 1. Let m be the
multiplicative order of q modulo n, then α ∈ Fqm . If n = qm − 1 which means
F∗

qm =< α >, this code is called a primitive BCH code.

Lemma 1. The minimal distance of a classical BCH code with designed distance
δ is at least δ.

From Lemma 1 we know that BCH codes are very powerful since for any positive
integer δ we can construct BCH codes of minimal distance d ≥ δ.

In this paper, we only consider narrow-sense BCH codes.

2.2 Quantum Stabilizer Codes

Let q be a power of odd prime number p, Cq be a q-dimensional Hilbert space
corresponding to a quantum mechanical system. {|x〉 |x ∈ Fq} represents the set
of bases of Cq. Cqn

= (Cq)⊗n = Cq ⊗ Cq ⊗ · · · ⊗ Cq.
The quantum errors in q-ary quantum system are linear operators acting on

Cq and can be represented by the set of error bases: εn = {T aRb|a, b ∈ Fq},
here T aRb is defined by

T aRb |x〉 = ζ
TrFq/Fp (bx)
p |x+ a〉 ,

ζp is a p-th primitive root of unity.
The quantum error group on Cqn

is defined by

En = {ζl
pT

aRb|0 ≤ l ≤ p− 1, a = (a1, · · · , an), b = (b1, · · · , bn) ∈ Fn
q },

here for any |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 , x = (x1, · · · , xn) ∈ Fn
q ,
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ζl
pT

aRb |x〉 = ζl
pT

a1Rb1 |x1〉 ⊗ · · · ⊗ T anRbn |xn〉 = ζ
l+TrFq/Fp (b·x)
p |x+ a〉 .

For any error e = ζl
pT

aRb, its quantum weight is defined by

wQ(e) = #{1 ≤ i ≤ n|(ai, bi) �= (0, 0)}.

A subspace Q of Cqn

is called a q− ary quantum error-correcting code
(QECC). It has minimal distance d if and only if it can detect all errors in
En of quantum weight less than d, but cannot detect some error of weight d.
A q − ary QECC Q : [[n, k, d]]q is a qk-dimensional subspace of Cqn

with min-
imal quantum distance d and can correct ≤ [d−1

2 ] quantum errors. A quantum
stabilizer code Q is a QECC given by an abelian subgroup S of En:

Q = {|v〉 ∈ Cqn

| e |v〉 = |v〉 for all e ∈ S}.

It can be constructed by using classical error-correcting codes over Fq or Fq2 .
The following three construction methods are effective and typical.

Lemma 2. ([5]) Suppose C is a classical linear code in Fn
q : [n, k, d]q, and

C⊥ ⊆ C, then there exists a q − ary QECC [[n, 2k − n, d]]q.

Lemma 3. Suppose C : [n, k, d]q and C′ : [n, k′, d′]q are two classical linear
codes in Fn

q , C′⊥ ⊆ C⊥ ⊆ C ⊆ C′ (so n− k′ ≤ n− k ≤ k ≤ k′), and k′ ≥ k+ 2,
then there exists a q− ary QECC [[n, k+ k′ −n, min{d, d′2}]]q, where d′2 is the
2-order general Hamming distance of C′, especially d′2 ≥ d′ +  d′

q *.

Lemma 3 has been proved in the literature [9][10] for binary case and can be
easily generalized to non-binary case.

Lemma 4. ([5]) Suppose C is a classical linear code in Fn
q2 : [n, n−k

2 ]q2 , C ⊂
(Cq)⊥, where

Cq = {cq = (cq1, · · · , cqn) ∈ Fn
q2 | c = (c1, · · · , cn) ∈ C}.

Then there exist QECCs [[n, k, d]]q, where d = wH((Cq)⊥\C).

We refer the literatures [5],[10] for basic concepts of QECCs.

3 Non-primitive BCH Codes over Fq and Quantum BCH
Codes

Suppose m ≥ 3, n = qm−1
q−1 , α is a (qm −1)th primitive root. Let β = αq−1, then

β is an nth primitive root. Suppose C is a BCH code with roots β, β2, · · · , βδ−1,
then C has parameters [n, k, δ]q.

let IC be a set of the order of all roots of C:

IC = {0 ≤ i ≤ n− 1 | βi is a root of C}.
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Then some cyclotomic cosets of q modulo n are subsets of IC . Let [i]n represent
the first term of cyclotomic coset including i. If the q − adic expansion of i is

i = i0 + i1q + · · · + im−1q
m−1 (0 ≤ i0, · · · , im−2 ≤ q − 1, 0 ≤ im−1 ≤ 1),

we denote i = (i0, i1, · · · , im−1). Then the cyclotomic coset including i corre-
sponds to a q − ary periodic sequence

c(i) = i0, i1, · · · , im−1, im, im+1, · · · (ij = ij−m, j ≥ m)

and its translational sequences. In c(i), t continuous 0′s is called a 0 − run of
length t. Suppose the period of c(i) is l, then l | m and the cyclotomic coset
including i has l elements:

(iλ, iλ+1, · · · , iλ+m−1) (0 ≤ λ ≤ l − 1).

Since c((i0, i1, · · · , im−1)) = c((im−1, i0, i1, · · · , im−2)), we know that for any
0 ≤ i ≤ n− 1, [i]n can be written in the form

[i]n = (i0, i1, · · · , it−1, 0, · · · , 0︸ ︷︷ ︸
m−t

),

where i0 ≥ 1, m− t ≥ 1, and there is no 0− run with length greater than m− t
in sequence i0, i1, · · · , it−1.

Now we consider IC⊥ . Let {n− IC} = {n− i | i ∈ IC}, then

IC⊥ = {0, 1, · · · , n− 1}\{n− IC}.

So
C⊥ ⊂ C ⇔ IC⊥ ⊇ IC ⇔ IC ∩ {n− IC} = ∅. (1)

Since two cyclotomic cosets are same if and only if they have the same first term,
we define

Δ = min{0 ≤ i ≤ n− 1 | [i]n ≥ [n− i]n}. (2)

Then we have the following theorem.

Theorem 1. Suppose C is a q−ary non-primitive BCH code of length n = qm−1
q−1

and designed distance δ, then

C⊥ ⊂ C ⇔ δ ≤ Δ.

Proof. By (1) we only need to prove

IC ∩ {n− IC} = ∅ ⇔ δ ≤ Δ.

(⇒)It’s obvious that [i]n ≤ δ − 1 for any i ≤ δ − 1. And IC ∩ {n− IC} = ∅. So
[n− i]n > δ− 1 and [i]n < [n− i]n. By (2), we know that δ− 1 < Δ, i.e., δ ≤ Δ.

(⇐)If IC ∩ {n − IC} �= ∅, then there exist i, j ∈ IC such that [i]n = [n − j]n
so that [j]n = [n − i]n. Without loss of generality, we assume [i]n ≥ [j]n. Then
[i]n ≥ [n−i]n, i.e., there exists k ≤ δ−1 such that [k]n = [i]n ≥ [n−i]n = [n−k]n
which is contradict with δ ≤ Δ. Therefore IC ∩ {n − IC} = ∅. This completes
the proof of Theorem 1. �

Now we determine Δ.
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Theorem 2. Let q be a power of odd prime number, m ≥ 3, n = qm−1
q−1 , [i]n

represent the cyclotomic coset of q modulo n including i, Δ = min{0 ≤ i ≤
n− 1 | [i]n ≥ [n− i]n}. Then

Δ =
q�

m+1
2 � − 1
q − 1

.

Proof. (i)Assume m = 2l ≥ 4. Then for each 1 ≤ i < ql−1
q−1 we have

i = (i0, i1, · · · , il−1, 0, · · · , 0︸ ︷︷ ︸
l

),

where 0 ≤ i0, · · · , il−2 ≤ q − 1, 0 ≤ il−1 ≤ 1 and (i0, · · · , il−1) is neither
(0, 0, · · · , 0) nor (1, 1, · · · , 1). So we know that [n− i]n has no 0−run with length
l and

[n− i]n ≥ (∗, · · · , ∗,︸ ︷︷ ︸
l

1, 0, · · · 0︸ ︷︷ ︸
l−1

) > i ≥ [i]n.

On the other hand, for

i =
ql − 1
q − 1

= (1, · · · , 1,︸ ︷︷ ︸
l

0, · · · , 0︸ ︷︷ ︸
l

)

we have [n− i]n = [i]n = i. Therefore Δ = ql−1
q−1 = q	 m+1

2 
−1
q−1 .

(ii)Assume m = 2l + 1 ≥ 3. Then for each 1 ≤ i < ql+1−1
q−1 we have

i = (i0, i1, · · · , il, 0, · · · , 0︸ ︷︷ ︸
l

),

where 0 ≤ i0, · · · , il−1 ≤ q−1, 0 ≤ il ≤ 1, and (i0, · · · , il) is neither (0, 0, · · · , 0)
nor (1, 1, · · · , 1). Let A = max{i0, i1, · · · , il}, then 1 ≤ A ≤ q − 1. And

c(n− i) = c((A− i0, A− i1, · · · , A− il, A, · · · , A)),

where A− i0, A− i1, · · · , A− il contains at least one 0.
If there is no 0 − run with length l in sequence A − i0, A − i1, · · · , A − il,

then [n− i]n > [i]n.
If there is a 0 − run with length ≥ l in sequence A− i0, A− i1, · · · , A− il,

then we concerns two cases.

Case 1: A− i1 = · · · = A− il = 0, and i0 ≤ A.
Since 0 ≤ il ≤ 1, A ≥ 1, we know that il = A = 1, i1 = i2 = · · · = il−1 =
1, i0 = 0 so that
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[n− i]n = [(1 0, · · · , 0,︸ ︷︷ ︸
l

1, · · · , 1︸ ︷︷ ︸
l

)]n

= (1, · · · , 1,︸ ︷︷ ︸
l+1

0, · · · , 0︸ ︷︷ ︸
l

)

> (1, · · · , 1,︸ ︷︷ ︸
l

0, · · · , 0︸ ︷︷ ︸
l+1

)

= [i]n.

Case 2: A− i0 = · · · = A− il−1 = 0.
Then i0 = i1 = · · · = il−1 = A ≥ 1. Since i < ql+1−1

q−1 , we know that il = 0 so
that i = (A, · · · , A, 0, · · · , 0︸ ︷︷ ︸

l+1

). Then we have

[n− i]n = [(0, · · · , 0,︸ ︷︷ ︸
l

A, · · · , A︸ ︷︷ ︸
l+1

)]n

= (A, · · · , A,︸ ︷︷ ︸
l+1

0, · · · , 0︸ ︷︷ ︸
l

)

> (A, · · · , A,︸ ︷︷ ︸
l

0, · · · , 0︸ ︷︷ ︸
l+1

)

= [i]n.

On the other hand, when i = ql+1−1
q−1 = (1, · · · , 1,︸ ︷︷ ︸

l+1

0, · · · , 0︸ ︷︷ ︸
l

), we have

[n− i]n = (1, · · · , 1,︸ ︷︷ ︸
l

0, · · · , 0︸ ︷︷ ︸
l+1

) < [i]n = i.

So Δ = ql+1−1
q−1 . This completes the proof of Theorem 2. �

By Theorem 2, we can get series of non-binary quantum BCH codes.

Theorem 3. Assume q is a power of odd prime number, m ≥ 3, 2 ≤ δ ≤
q	 m+1

2 
−1
q−1 , then there exist QECCs [[ qm−1

q−1 , qm−1
q−1 − 2mδ′, δ]]q, where δ′ = (δ −

1) − ! δ−1
q ".

Proof. We choose a BCH code C of length n = qm−1
q−1 and designed distance δ,

then d(C) ≥ δ.
We first prove k = dimFq C = n−mδ′. In fact, for any root of C, the cyclotomic

coset including its order i(0 ≤ i ≤ δ−1) has unique 0−run with maximal length,
so every cyclotomic coset includes m elements. And the number of cyclotomic
cosets is δ′. Therefore the degree of generating polynomial of C is mδ′ and
k = n−mδ′.

By Theorem 2 we have C⊥ ⊆ C. Then by Lemma 2 we know that there exist
QECCs [[n, 2k − n, d]]q, where 2k − n = n− 2mδ′, d ≥ δ. This completes the
proof of Theorem 3. �
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Theorem 4. Assume q is a power of odd prime number, m ≥ 3, 2 ≤ δ1 < δ2 ≤
q	 m+1

2 
−1
q−1 , ((δ1, δ2) �= (aq, aq + 1)), then there exist QECCs [[ qm−1

q−1 , qm−1
q−1 −

m(δ′1 + δ′2), d]]q, where δ′i = (δi − 1)− ! δi−1
q "(i = 1, 2), d ≥ min{δ2, δ1 +  δ1

q *}.

Proof. We choose two BCH codes Ci(i = 1, 2) with length n = qm−1
q−1 and

designed distance δi, respectively. Then ki = dimFq Ci = n−mδ′i and k1 ≥ k2+2.
By Theorem 1 we have C⊥

1 ⊆ C⊥
2 ⊆ C2 ⊂ C1. So by Lemma 3, there exist QECCs

[[n, k2 +k1−n, d]]q, where k2 +k1−n = n−m(δ′1 +δ′2), d ≥ min{δ2, δ1 + δ1
q *}.

This completes the proof of Theorem 4. �

4 Non-primitive BCH Codes over Fq2 and Quantum BCH
Codes

In this section, we consider non-primitive BCH codes over Fq2 .
Suppose m ≥ 2, n = q2m−1

q2−1 , F∗
q2m =< α >. Let β = αq2−1, then β is an nth

primitive root. Suppose C is a BCH code over Fq2 with roots β, β2, · · · , βδ−1.
Let

IC = {0 ≤ i ≤ n− 1 | βi is a root of C}
qIC = {qi | i ∈ C}
Cq = {(cq1, · · · , cqn) | (c1, · · · , cn) ∈ C},

then
I(Cq)⊥ = {0, 1, · · · , n− 1}\{n− qIC}.

Let c(i) be the q2−cyclotomic coset modulo n including i, [i]n represent the
first term of c(i). Then we have

(Cq)⊥ ⊆ C ⇔ IC ∩ {n− qIC} = ∅. (3)

Now we denote

Δ = min{0 ≤ i ≤ n− 1 | [i]n ≥ [n− qi]n}, (4)

then we have the following theorem.

Theorem 5. Suppose C is a q2-ary non-primitive BCH codes of length n =
q2m−1
q2−1 and designed distance δ, then

(Cq)⊥ ⊂ C ⇔ δ ≤ Δ.

Proof. By(3), we only need to prove

IC ∩ {n− qIC} = ∅ ⇔ δ ≤ Δ.

(⇒) It’s obvious that [i]n ≤ δ − 1 for any i ≤ δ − 1. And IC ∩ {n− qIC} = ∅.
So [n− qi]n > δ − 1 and [i]n < [n− i]n. Therefore δ − 1 < Δ, i.e. δ ≤ Δ.
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(⇐) If IC ∩{n−qIC} �= ∅, then there exist i, j ∈ Ic such that [i]n = [n−qj]n,
so that [n−qi]n = [q2j]n = [j]n. Without loss of generality, we assume [i]n ≥ [j]n,
then [i]n ≥ [n−qi]n, i.e., there exists k ≤ δ−1 such that [k]n = [i]n ≥ [n−qi]n =
[n − qk]n which is contradict with δ ≤ Δ. Therefore IC ∩ {n − qIC} = ∅. This
completes the proof of Theorem 5. �

Theorem 6. Let q be a power of odd prime number, m ≥ 1, n = q2m−1
q2−1 , [i]n

represent the cyclotomic coset of q2 modulo n including i, Δ = min{0 ≤ i ≤
n− 1 | [i]n ≥ [n− qi]n},then

Δ =

{
q · q2l−1

q2−1 = q · qm−1
q2−1 , if m = 2l ≥ 2

q2(l+1)−1
q2−1 = qm+1−1

q2−1 , if m = 2l+ 1 ≥ 3

Proof.The proof of this theorem is complicated and long. We omit the proof
due to space limitation.

Theorem 7. Assume q is a power of odd prime number, m ≥ 2, 2 ≤ δ ≤ Δ,
where Δ is determined by Theorem 6. Then there exist QECCs [[n = q2m−1

q2−1 , k =
n− 2mδ′, δ]]q, where

δ′ = (δ − 1) − !δ − 1
q2

".

Proof. We choose a q2− ary BCH code C1 of length n = q2m−1
q2−1 and designed

distance δ. Let C = (Cq
1 )⊥, then by Theorem 5 we know C = (Cq

1 )⊥ ⊆ C1 =
(Cq)⊥.

Now we prove k1 = dimFq2 C1 = n − mδ′. In fact, for 1 ≤ i ≤ δ − 1, the
cyclotomic coset including i has unique 0 − run with maximal length, so every
cyclotomic coset includes m elements. And the number of cyclotomic cosets
is δ′. Therefore the degree of generating polynomial of C1 is mδ′ and k1 =
n−mδ′.

So we know C is a [n, mδ′]q2 = [n, n−(n−2mδ′)
2 ]q2 code. By Lemma 4 we have

QECCs [[n, n− 2mδ′, δ]]q. This completes the proof of Theorem 7. �

5 Conclusions

we give two sufficient and necessary conditions for the self orthogonality of clas-
sical non-primitive BCH codes over Fq and Fq2 , respectively. Then series of
non-binary quantum BCH codes are gained by using two conditions and some
construction methods. QECCs play an important role in quantum computa-
tion. How to construct good non-binary QECCs and get better quantum codes
bounds using new methods and mathematical technologies is still a hot and
difficult topic.
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Abstract. Generalized symbolic trajectory evaluation (GSTE) is an ex-
tension of symbolic trajectory evaluation (STE). In GSTE, assertion
graphs are used to specify properties in a special form of regular au-
tomata with antecedent and consequent pairs. This paper presents a
new model characterization, called maximal models, for an assertion
graph with important properties. Besides their own theoretical signifi-
cance, maximal models are used to show the implication of two assertion
graphs in GSTE. We show that, contrary to the general belief, an asser-
tion graph may have more than one maximal model. We present a prov-
able algorithm to find all maximal models of a linear assertion graph.
We devise an algorithm for finding a maximal model for an arbitrary
assertion graph.

1 Introduction

Generalized symbolic trajectory evaluation (GSTE) [1, 2] is an extension of sym-
bolic trajectory evaluation (STE) [5]. STE can handle large, industrial design and
has been actively used in HP, IBM, and Motorola [9, 10, 11, 12]. The STE theory
consists of a simple specification language, a simulation-based model checking
algorithm, and a mapping of the algorithm to a coarse abstract domain. The
specification language of STE has the limited expressiveness where only proper-
ties over finite time intervals are allowed. GSTE was originally developed at Intel
and has successfully demonstrated its powerful capacity in formal verification of
digital systems [1, 2, 3, 4, 13, 14].

In GSTE, all Omega-regular properties can be expressed and verified with
the same space efficiency and comparable time efficiency. Assertion graphs are
introduced in GSTE as an extension of STE’s specification language. Assertion
graphs are the specification language in GSTE based on a special form of regular
automata with assertion letters (antecedent and consequent pairs) [2]. GSTE
specifications are expressed in the form of assertion graphs.

Many RTL designs are rather complicated, primarily because they model com-
plex functional behavior while accommodating tight performance constraints. If
we have already proved an assertion graph G1 against the RTL, a desirable us-
age is to use G1 to prove (imply) another assertion graph G2. Having such an
implication mechanism would enable us to achieve higher level abstractions and
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pursue assume-guarantee prove strategies. There is some work on the implication
[3, 4]. In this paper, we present a new concept: maximal model of an assertion
graph. Maximal models are used to show the implication of two assertion graphs
in GSTE.

This paper is organized as follows. In Section 2, we introduce the basic defi-
nitions in GSTE. In Section 3, we introduce some concepts, such as sub-model,
maximal model and related properties. In Section 4, we present a provable algo-
rithm to find all maximal models for a linear assertion graph. The application
of maximal models in the model-based implication is discussed. In Section 5, we
present an algorithm to find a maximal model of an arbitrary assertion graph.
We give a condition to determine if a model is a maximal model. In Section 6,
we conclude the paper.

2 Preliminaries

We introduce some basic definitions on GSTE [1, 2]. We assume a non-empty
set of finite states, denoted by S. A relation T ⊆ S×S is a transition relation if
∀s ∈ S, ∃s′ ∈ S, (s, s′) ∈ T , where S is a non-empty set of finite states. The model
M induced by the transition relation T is the pair (pre, post) where: (1) the pre-
image transformer pre : 2S → 2S is defined as: pre(Q) = {s|s′ ∈ Q, (s, s′) ∈ T }
for all Q ∈ 2S ; and (2) the post-image transformer post : 2S → 2S is defined as:
post(Q) = {s′|s ∈ Q, (s, s′) ∈ T } for all Q ∈ 2S .

In fact, a model M = (pre, post) is a directed graph M = (S, T ). We use pre
and post to represent two functions based on M . Note that pre(s) = pre(s),
post(s) = post(s), for all s ∈ S. If for all s ∈ S, post(s) is defined and nonempty,
then M is well-defined. Namely, if we first define post : S → 2S − {∅}, where ∅
is an empty set, then a transition relation T can be defined as T = {(s, s′)|s ∈
S, s′ ∈ post(s)}. A trace inM = (pre, post) is a state sequence such that σ[i+1] ∈
post(σ[i]), for all 1 ≤ i < |σ|, i.e., (σ[i], σ[i+ 1]) ∈ T .

An assertion graph is a quintuple G = (V, v0, E, ant, cons) where V is a finite
set of vertices, v0 is the initial vertex, E ⊆ V × V is a set of edges, satisfying
∀u ∈ V, ∃v ∈ V , such that (u, v) ∈ E, ant is a mapping: E → 2S, cons is a
mapping: E → 2S . Let G = (V, v0, E, ant, cons) be an assertion graph, and let
M = (pre, post) be a model. We define an edge labeling γ as : E → 2S where γ
is either ant or cons. A trace in M satisfies a path ρ of the same length under γ ,
denoted by (M,σ) |=γ (G, σ), iff σ[i] ∈ γ(ρ[i]), 1 ≤ i ≤ |σ|. A trace satisfies a path,
denoted by (M,σ) |= (G, ρ), iff [(M,σ) |=ant (G, ρ)] ⇒ [(M,σ) |=cons (G, ρ)].

Let ban(e) = ant(e) − cons(e). For a trace σ and a path ρ with length k, if
the trace with the first k − 1 elements of σ ant satisfies the path with the first
k − 1 elements of ρ, then (M,σ) |= (G, ρ) if and only if σ[k] is not in ban(ρ[k]).
A model M strongly satisfies an assertion graph G, denoted by M |= G iff
(M,σ) |= (G, ρ) for all finite initial path ρ in G and all finite trace σ in M of the
same length. Given two assertion graphs G1 = (V, v0, E1, ant1, cons1) and G2 =
(U, u0, E2, ant2, cons2), G1 model-based implies G2, denoted by G1 ⇒model G2
(we simply denoted by G1 ⇒ G2), iff ∀M,M |= G1 ⇒ M |= G2.
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We impose two restrictions on an assertion graph:
Assumption 1: for all initial edge e (i.e., start(e) = v0), ban(e) = ∅, i.e.,

ant(e) = cons(e);
Assumption 2: for all e, ant(e) �= ∅.
First, if there is an initial edge e such that ban(e) �= ∅, then the one-length

trace s (s ∈ ban(e)) does not satisfy the path e, which means no model satisfies
this an assertion graph. Second, if ant(e) = ∅ for some edge e, then all successor
edges of e do not affect models.

3 Maximal Model

In this section, we define some concepts such as submodel and maximal model,
and give some properties on them.

Definition 1 (Submodel or Contained)

i) Given two models: M1 = (S1, T1), M2 = (S2, T2), where S1 ⊆ S, S2 ⊆ S, if
S1 ⊆ S2, and T1 ⊆ T2, then M1 is called a submodel of M2, or M1 is contained
by M2, denoted by M1 ≤ M2.

ii) If S1 ⊆ S2, and T1 ⊂ T2, then M1 is called a proper submodel of M2, or
M1 is properly contained by M2, denoted by M1 < M2.

Theorem 1. If M1 ≤ M2, and M2 |= G, then M1 |= G.

Definition 2 (Maximal Model). A Maximal-Model of an assertion graph G
is a model M = (S, T ) |= G and we can not find another model M1 = (S, T1) |= G
such that T ⊂ T1. Denoting M max G = {M |M is a maximal-model of G}.

S1

S S

S

S S

3 6

4 5

2

S1

S

S

S
S

6

4
5

2

s3

Fig. 1. A model Fig. 1(b). A model

Theorem 2. (G1 ⇒ G2) ⇔ (∀M,M ∈ M max G1 ⇒ M |= G2).

Example 1. Models in Fig.1 and 1(b) are both the maximal models of G in Fig.2.

Theorem 3. For any given model M = (S, T ), there exists an assertion graph
G such that M is the unique maximal model of G.
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{s 1} /{ s1}

v0

v1

v2

S/{ 4s ,S5 }

{S 2 }/{S 2}

S/{S 3,S6}

Fig. 2. An assertion graph

The maximal-model of an assertion graph G is usually not unique (see Exam-
ple 1). Theorem 3 illustrates that only one maximal model of G1 satisfying G2
is not enough to derive G1 ⇒ G2 if G1 has at least two maximal models. From
Example 2 in Section 4, we can see how to use the maximal models to determine
G1 ⇒ G2.

4 Finding all Maximal Models

In this section, we consider the problem of finding all maximal models of a
linear assertion graph G. From Theorem 2, if we find all maximal models of an
assertion graph G1, then we can determine that G1 model-based implicates G2.
We present the following algorithm: Computing All Maximal Models (CAMM)
which can find all maximal models of G.

Definition 3 (Linear assertion graph). G = (V, v0, E, ant, cons): Every edge
has one and only one successor edge. In the following, without special announce-
ment, if an assertion graph G is a linear assertion graph, we always assume that
|E| = m, e[m] = (vm−1, vt), 0 ≤ t ≤ m − 1, e[m + 1] = e[t + 1], namely, from
m+ 1, edges have a periodicity τ = m− t (Fig.3).

Algorithm: CAMM (G)
1. ∀s ∈ S, P1(s) = S,Q1 = S,A1 = ant(e1) ∩Q1 = ant(e1);
2. for i from 1 to t− 1 do
3. If s ∈ Ai, then PPi+1(s) = Pi(s) − ban(ei+1);
4. else, PPi+1(s) = Pi(s);
5. QQi+1 = ∪s∈AiPPi+1(s);

v0 v1 vt
vm-1

e1 e2 et
em

Fig. 3. Linear assertion graph
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6. AAi+1 = ant(ei+1) ∩QQi+1;
7. Ci+1 = subsetAAi+1;
8. If s ∈ AAi, then Pi+1(s) = Pi(s) − ban(ei+1) − Ci+1;
9. Qi+1 = ∪s∈AiPi+1(s);
10. Ai+1 = ant(ei+1) ∩Qi+1;
11. End for;
12. k = t;
13. for j from 1 to τ − 1 do
14. i = k − 1 + j;
15. If s ∈ Ai, then PPi+1(s) = Pi(s) − ban(ei+1);
16. else, PPi+1(s) = Pi(s);
17. QQi+1 = ∪s∈AiPPi+1(s);
18. AAi+1 = ant(ei+1) ∩QQi+1;
19. Ci+1 = subsetAAi+1;
20. If s ∈ AAi, then Pi+1(s) = Pi(s) − ban(ei+1) − Ci+1;
21. Qi+1 = ∪s∈AiPi+1(s);
22. Ai+1 = ant(ei+1) ∩Qi+1;
23. End for;
24. If Pk+τ (s) = Pk(s) for all s ∈ S and Qk+τ = Qk, goto 26;
25. Else k = k + τ , goto 13;
26. Return P ∗(s) = Pk(s) for all s ∈ S.

Starting with a trivial model M0 : post(s) = S, for every state s, the algo-
rithm reduces the set of reachable states Pi(s) for each state s edge by edge
until it finds a fix-point P ∗(s). Let A1 = ant(e1) be the set of initial states
which are constrained by the second edge. For s ∈ A1, the set of reachable
states PP2(s) from s is limited by the second edge e2. Let QQ1 be the union
of PP2(s) for s ∈ A1. Let AA2 be the set of the states that are limited by
the 3rd edge. The set of states ban(e2) are removed from P1(s). Let C2 con-
tain the states that are forced to reduce from PP2(s). C2 is a subset of AA2.
Let P2(s) be the final set of reachable states of s after limitation by the 2nd
edge. Let A2 be the final set of states to be limited by the 3rd edge. Repeating
the same process, we continue the computation of Pi(s) until no states will be
removed from Pi(s). As a result, Pi(s) monotonically decreases to a fix-point
P ∗(s). We obtain a model M such that post(s) = P ∗(s). CAMM is devised
to attain the models including all the maximal models. Example 4.1 shows the
process.

Let M(subsetAA2, subsetAA3, . . . , subsetAAh) be an output model produced
by algorithm CAMM, where Cj = ∅, j > h.

Theorem 4. For any given maximal model M of G, there is a model

M(subsetAA2, subsetAA3, . . . , subsetAAl) = M .

Example 2. Given two assertion graphs G1 and G2, with a same directed graph:
two vertices: v0, v1, and two edges: e1 = (v0, v1), e2 = (v1, v1).
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G1 : ant2(e1) = cons2(e1) = {2}, ant2(e2) = {2, 3, 4, 5}, cons2(e2) = {2, 4, 5},
ban2(e2) = {3},
G2 : ant1(e1) = cons1(e1) = {2}, ant1(e2) = {3, 4, 5, 6, 7}, cons1(e2) =

{5, 6}, ban1(e2) = {3, 4, 7}.
Using CAMM, (S = {1, 2, 3, 4, 5, 6, 7}), we have four models:
M1 : P (2) = P (5) = P (6) = {1, 2, 5, 6}, P (1) = P (3) = P (4) = P (7) = S.
M2 : P (2) = P (5) = {1, 2, 5}, P (1) = P (3) = P (4) = P (6) = P (7) = S.
M3 : P (2) = P (6) = {1, 2, 6}, P (1) = P (3) = P (4) = P (5) = P (7) = S.
M4 : P (2) = {1, 2}, P (1) = P (3) = P (4) = P (5) = P (6) = P (7) = S.

Using SMC in [1, 2], we know that Mi |= G2 for i = 1, 2, 3, 4. There-
fore, G1 ⇒ G2. In fact, these four models are maximal models of G1 accord-
ing to Theorem 8. For the model-based implication, we know in [15] if two
assertion graphs G1 and G2 have the same graph structure and (ant2(e) ⊆
ant1(e)) ∧ (cons1(e) ∩ ant2(e) ⊆ cons2(e)), for all e ∈ E, namely, (ant1(e) ⊇
ant2(e))∧(ban1(e) ⊇ ban2(e)), for all e ∈ E, then we have G1 ⇒ G2. In example
2, ant1(e) ⊇ ant2(e) is not true, but G1 ⇒ G2, which means this sufficient con-
dition for model-based implication is not necessary. For linear assertion graphs,
[15] gave the sufficient and necessary conditions for language-based implication.
But for model-based implication, the problem is more complicated. Example 2
shows that these conditions are not either sufficient or necessary for model-based
implication.

5 Finding a Maximal Model of an Arbitrary Assertion
Graph

Let start(e) and end(e) denote the start and end vertices of a directed edge e,
respectively. Let start(v) and end(v) denote the directed edges in an assertion
graph G with the starting vertex v and the ending vertex v, respectively. We
define the following sets for an assertion graph G = (V, v0, E, ant, cons):
V0 = {v0}, E1 = {e|start(e) = v0},
V1 = {v|e ∈ E1, end(e) = v},
Ei = {e|start(e) ∈ Vi−1}, Vi = {v|e ∈ Ei, end(e) = v}, for i = 2, 3, . . ..

Lemma 1. There exist t and τ > 0 such that Vt = Vt+τ .

Let t and τ be the minimum numbers satisfying Vt = Vt+τ . We present an
algorithm, Computing Satisfied Model (CSM), to find a maximal model of an
arbitrary assertion graph. In the algorithm, we compute the set of reachable
states Pi(s) from state s after the restriction of the ith step for all s ∈ S.

The basic idea of the algorithm CSM is described as follows. We initialize
P1(s) = post M(s), for all s ∈ S. Initially, the set of reachable states from any
state s is the post function of s in an input model M . Along the path of the
assertion graph from the initial edges E1, we reduce the set of the states reach-
able from s. A1(v) = ∪e∈E1ant(e), v ∈ V1, is the initial states which will be
constrained by the edges E2. For s ∈ A1(v), the reachable states P2(s) from
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s will be limited by the edges of start(v). The states of ban(v) will be re-
moved from P1(s). Pi(s) is the set of the ith step reachable states from s via
Ei. Ai(v), v ∈ Vi, is the set of states which will be limited by the (i + 1)th

step edges Ei+1. For s ∈ Ai(v), ban(v) will be removed from Pi(s). We continue
our computation Pi(s) until no states are removable from Pi(s). As a result,
Pi(s) monotonically decreases to a fix-point P ∗(s). Thus, we obtain a model
M r, post M r(s) = P ∗(s).

Algorithm: CSM(M,G)
1. ∀s ∈ S, P1(s) = post M(s), Q1(v0) = S,
2. For i from 1 to t− 1 do
3. for v ∈ Vi,
4. Ai(v) = ∪e∈Ei∩end(v)[ant(e) ∩Qi(start(e))];
5. ban(v) = ∪e∈start(v)ban(e);
6. If s ∈ Ai(v), then Pi+1(s) = Pi(s) − ban(v);
7. Else, Pi+1(s) = Pi(s);
8. Qi+1(v) = ∪s∈Ai(v)Pi+1(s);
9. End For.
10. k = t;
11. For j from 1 to τ − 1 do
12. i = k − 1 + j;
13. for v ∈ Vi,
14. Ai(v) = ∪e∈Ei∩end(v)[ant(e) ∩Qi(start(e))];
15. ban(v) = ∪e∈start(v)ban(e);
16. If s ∈ Ai(v), then Pi+1(s) = Pi(s) − ban(v);
17. Else, Pi+1(s) = Pi(s);
18. Qi+1(v) = ∪s∈Ai(v)Pi+1(s);
19. End For.
20. If Pk+τ (s) = Pk(s) for all s ∈ S and Qk+τ (v) = Qk(v), for v ∈ Vk, goto

22;
21. Else k = k + τ ; goto 11;
22. Return a model M r, where post M r(s) = P ∗(s) = Pk(s) for all s ∈ S.

Lemma 2. The algorithm CSM stops in a finite number of steps.

Theorem 5. M r |= G.

We use CSM to find a maximal model of G. We start from a trivial model
M0 : post M0(s) = S for all s ∈ S. Using CSM, we get a satisfying model
M r = CSM(M0). But in some cases, M r may not be a maximal model. For
instance, when we calculate A2(v) to do the third edge’s limitation, A2(v) =
∪e∈E2∩end(v)[ant(e)∩∪s∈A1(start(e))P2(s)]. Because P2(s) ⊇ P ∗(s), it is possible
that A2(v) ⊃ ∪e∈E2∩end(v)[ant(e) ∩ ∪s∈A1(start(e))P2(s)]. As a result, there are
more states which are taken off from the set of reachable states set during the
third step. To avoid this, we have to start from a refined model M which is
smaller than M0 but no more than a maximal model. The following algorithm,
called Induced Model (IM), is used to find such an initial model.
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Algorithm: IM(M,G)
1. ∀s ∈ S, P1(s) = S,R1(v0) = S,
2. For i from 1 to t− 1 do
3. for v ∈ Vi,
4. Bi(v) = ∪e∈Ei∩end(v)[ant(e) ∩Ri(start(e))];
5. ban(v) = ∪e∈start(v)ban(e);
6. If s ∈ Bi(v), then Pi+1(s) = Pi(s) − ban(v);
7. Else, Pi+1(s) = Pi(s);
8. Ri+1(v) = ∪s∈Bi(v)post M(s);
9. End For.
10. k = t;
11. For j from 1 to τ − 1 do
12. i = k − 1 + j;
13. for v ∈ Vi,
14. Bi(v) = ∪e∈Ei∩end(v)[ant(e) ∩Ri(start(e))];
15. ban(v) = ∪e∈start(v)ban(e);
16. If s ∈ Bi(v), then Pi+1(s) = Pi(s) − ban(v);
17. Else, Pi+1(s) = Pi(s);
18. Ri+1(v) = ∪s∈Ai(v)post M(s);
19. End For.
20. If Rk+τ (v) = Rk(v), for v ∈ Vk, goto 22;
21. Else k = k + τ ; goto 11;
22. Return a model M r, where post M r(s) = P ∗(s) = Pk(s) for all s ∈ S.

Theorem 6. IfM |= G, then the output model in IM IM(M,G) ≥ M .

Theorem 7. If M1 ≥ M2, and M1 |= G, then IM(M2, G) ≥ IM(M1, G) ≥
M1 ≥ M2.

Theorem 8. If M |= G and IM(M,G) = M , then M is a maximal model
of G.

Algorithm: RCSM(G)
1. Flag1 = Flag2 = 0; k = 1;
2. M r[1] = CSM(M0, G);
3. While Flag1 = 0 do
4. Mk = IM(M r[k], G);
5. M r[k + 1] = CRM(Mk, G);
6. If M r[k + 1] > M r[k], then k = k + 1;
7. Else Flag1 = 1; If Mk = M r[k], then Flag2 = 1;
8. Return: M rr = M r[k], F lag2.

Theorem 9. (1) Algorithm RCSM will stop in finite steps.
(2) M rr |= G.
(3) If Flag2 = 1, then M rr is a maximal model of G.

It is still open if M r[k] monotonically increases. Therefore we cannot guar-
antee Mrr be a maximal model of G. But, anyway, even M rr is not a maximal
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model, there is a maximal model M between M rr and IM(M rr,G) according
to Theorem 7. The following example shows an application of RCSM to find a
maximal model of an assertion graph G.

Example 3. Given an assertion graph G as Fig.4.
According to the algorithm RCRM, we get M r[1] (Fig.5) as:

Post(1) = {2, 5, 7},Post(2) = {2, 5, 7},Post(3) = {2, 4, 5, 6, 7}, Post(4) =
{2, 5, 7},Post(5) = {2, 4, 5, 6, 7},Post(6) = {2, 5, 7}, Post(7) = {1, 2, 3, 4, 5, 6, 7}.

M r[2] (Fig.5(b)) is: Post(1) = {2, 5, 7},Post(2) = {2, 5, 7}, Post(3) =
{1, 2, 3, 4, 5, 6, 7},Post(4) = {2, 5, 7},Post(5) = {2, 4, 5, 6, 7}, Post(6) = {2, 5, 7},
Post(7) = {1, 2, 3, 4, 5, 6, 7}. M r[3] = M [2], so stop. M2 = IM(M r[2],G) =
M r[2], so Flag2 = 1, thus M rr = M r[2] is a maximal model of G (Theorem
5.4). M r[2] > M r[1] (There are two more edges: (3,3), (3,1) in M r[2] than in
M r[1]).

6 Conclusions

We presented a new model characterization called maximal models for an asser-
tion graph with important properties. We showed that an assertion graph may
have more than one maximal model. We presented a provable algorithm to find
all maximal models of a linear assertion graph. We devised an algorithm for
finding a maximal model for an arbitrary assertion graph.
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Abstract. We extend Post’s programme to finite levels of the Ershov
hierarchy of Δ2 sets, and characterise, in the spirit of Post [9], the de-
grees of the immune and hyperimmune d.c.e. sets. We also show that
no properly d.c.e. set can be hh-immune, and indicate how to generalise
these results to n-c.e. sets, n > 2.

1 Introduction

In 1944, Post [9] set out to relate computational structure to its underlying
information content. Since then, many computability-theoretic classes have been
captured, in the spirit of Post, via their relationships to the lattice of computably
enumerable (c.e.) sets. In particular, we have Post’s [9] characterisation of the
non-computable c.e. Turing degrees as those of the simple, or hypersimple even,
sets; Martin’s Theorem [6] showing the high c.e. Turing degrees to be those
containing maximal sets; and Shoenfield’s [10] characterisation of the non-low2
c.e. degrees as those of the atomless c.e. sets (that is, of co-infinite c.e. sets
without maximal supersets).

In this article, and in Afshari, Barmpalias and Cooper [1], we initiate the
extension of Post’s programme to computability-theoretic classes of the n-c.e.
sets.

For basic terminology and notation, see Cooper [4], Soare [11], or Odifreddi [7].

2 On the Degrees of Immune and Hyperimmune d.c.e.
Sets

Theorems 1 and 2 below fully characterise the degrees of the immune and hy-
perimmune d.c.e. sets. The techniques needed are somewhat more complicated
— and different — to those applicable in the c.e. cases.

Theorem 1. Every non-computable d.c.e. bT (that is, wtt) degree contains an
immune d.c.e. set.
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Proof. Suppose we are given a non-computable d.c.e. set W . We wish to con-
struct a d.c.e. set A ≡bT W which is immune i.e. for every infinite c.e. set V ,
V �⊆ A. We consider each number enumerated in V as a guess about members of
A. We want to construct A such that it is impossible for such a guessing proce-
dure to guess always correctly. We consider an effective enumeration V0, V1, . . .
of all c.e. sets filtered in the following way: we enumerate n into Vj at stage s if
it currently belongs to both the j-th c.e. set and A, the set we are constructing.
These c.e. sets may not exhaust the class of c.e. sets, but if a c.e. set is subset
of A it will be in that list. So (Vj) is an enumeration of all potential opponents
and it suffices to construct A ≡bT W such that

Ij : ∃i(i ∈ Vj ∧ i �∈ A) or Vj is finite

for all j. An I requirement asks to extract a number which has appeared in A.
Without loss of generality we can assume that W is not immune and that (pkt)
is a double sequence of members of W which is increasing on both arguments
(indeed, every d.c.e. set is bT -equivalent with a non-immune d.c.e. set). Let
P ⊂ W be the set of these terms and

Pj = {pjk | k ∈ N}.

In the d.c.e. approximation of W that we use we assume that numbers in P are
never extracted. For any n, j ∈ N define the j-sequence of n to be (pj,k−j , . . . , pjk)
where k is the largest such that pjk < n. That is, the sequence of the largest
j + 1 numbers in Pj which are smaller than n. Note that for each j almost
all n have a j-sequence. If some Ij acts by extracting some n /∈ P then the
j-sequence of n becomes the Ij-sequence for the rest of the construction. The
idea of the construction is to control the membership of n w.r.t. A according
to its membership w.r.t. W and simultaneously let the I requirements extract
numbers. The problem is that some n may be extracted from W while n has
been previously extracted from A by some Ij . In that case we notify A by
enumerating the largest number of the j-sequence of n into A. This notification
may later be extracted from A by some Ii, i < j but then the previous term of
that j-sequence will enter A. Eventually (since there are only j requirements of
higher priority than Ij) some notification will remain in the j-sequence of n. The
priority ordering of the requirements is the obvious one (Ii has higher priority
than Ij iff i < j). There will be no injury: once a requirement is satisfied it will
remain so. Let U be a c.e. non-computable set such that U ≤bT W . Assume an
effective 1–1 enumeration (us) of U .

Construction. At stage s do the following.

Step 1 (Coding)
• If some n �∈ P enters W then n↘ A.
• If some n is extracted from W and n ∈ A, extract n from A.
• If some n is extracted fromW but n /∈ A then find which Ij has extracted
n from A and enumerate into A the largest term of the Ij sequence.
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Step 2 (Satisfaction of I). We say that Ij requires attention if it has not acted
so far, Vj ⊆ A and one of the following cases holds.

• There is n ∈ Vj such that n /∈ P , us < n and there is a j-sequence of n.
• There is n ∈ Vj such that n ∈ Pi for some i > j and us < n.

Consider the least j such that Ij requires attention and act as follows
(saying that Ij acts on n):

• If n /∈ P extract n from A and define the Ij sequence to be the j-sequence
of n.

• If n ∈ Pi extract n from A and enumerate its predecessor in the Ii

sequence.
Go to the next stage.

Verification

Lemma 1. A is d.c.e.

Proof. We show that in the approximation to A given by the construction no
number n can be extracted from A and later re-enter A. Indeed, if n /∈ P then
it follows from the fact that the approximation of W is d.c.e. If n ∈ P and is
part of the sequence of Ij , once extracted Ij will not act again and only smaller
terms of the sequence can change in the approximation (via the actions of Ii,
i < j).

Lemma 2. If the sequence of some Ij is defined during the construction (i.e. Ij

acts on some m /∈ P ) then the only elements of Pj that may ever be enumerated
into A are the terms of that sequence (the j-sequence of m). In particular, for
each j only finitely many numbers in Pj will ever be enumerated into A.

Proof. The sequence of Ij is defined when Ij acts on (i.e. extracts) a number
m ∈ N − P . This happens at most once and no number Pj can enter A before
that. Once the sequence is defined its terms will be used one by one from the
larger to the smaller ones. If the largest enters A (because of the extraction of
m from W ), it may later be extracted and in this case its predecessor will enter
A, and so on. This progression happens by the action of some Ii, i < j (which
extracts an element of Pj). So it can happen at most j + 1 times (including the
initial enumeration due to W ), the length of the sequence.

Lemma 3. Every Ij acts at most once and is satisfied.

Proof. Suppose that this holds for Ii, i < j. When Ij acts it extracts a number
from A which has already been enumerated in that set. According to the proof
of lemma 1 this will not re-enter A and so Ij will remain satisfied. If it does
not act it means that it never requires attention after a certain stage; then Vj

must be finite (by the usual permitting argument, since U is non-computable
and higher priority requirements act only finitely many times) and so Ij is
satisfied.

Lemma 4. A ≤bT W .

Proof. It suffices to show A ≤bT W ⊕ U . To decide ‘n ∈ A?’ do the following
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– If n /∈ P , find a stage s where U � n has settled; then n ∈ A iff n ∈ W unless
it has been extracted by stage s (in which case n /∈ A). This is because
extraction via the I strategies needs a change in U � n.

– If n ∈ Pj computably find a number t which bounds the (finitely many)
numbers in N−P which have n as a member of their j-sequence. Find a stage
s at which U � t has settled and the approximation to W � t is correct. Then
the approximation of the membership of n to A is also correct: if n ∈ A it
cannot be extracted as there is no U � n permission (only I strategies extract
numbers in P ); if n /∈ A it cannot be enumerated by some I (as this requires
U � t-permission). If it was later enumerated due to the extraction of some m
from W , m would be one of the numbers in N−P whose j-sequence contains
n. That m < t must be in W at s, since Ij cannot act on (i.e. extract) m
after s (there will be no U -permission). But that is a contradiction by the
choice of s.

Lemma 5. W ≤bT A.

Proof. Suppose we want to answer ‘n ∈ W?’ for n �∈ P (otherwise n ∈ W since
P ⊂ W ). Wait until a stage s where the approximation to A � (n+ 1) is correct.
Then the approximation to W (n) is also correct:

– if n ∈ W and n ∈ A at s then n cannot be extracted from A, and so n cannot
be extracted from W ;

– if n ∈ W and n /∈ A at s then the extraction of n from W would imply an
enumeration t ↘ A � n (a member of the sequence of Ij which extracted n).
Of course t may later be extracted but another t1 < t (of the same sequence)
would enter A and so on, eventually guaranteeing that A � n at s is different
than the final limit;

– if n /∈ W at s and it is enumerated later, A � (n + 1) at s will be different
than the final limit: n would enter A and even if it is extracted by some Ij ,
some member of the j-sequence of n (whose members are not in A at s) will
stay in A.

This concludes the proof of the theorem.

For more information on the behaviour of hyperimmunity in the weak truth
table degrees (particularly in the c.e. case) see [2, 3].

Theorem 2. Every non-computable d.c.e. degree contains a hyperimmune d.c.e.
set.

Proof. Suppose we are given a d.c.e. setW . Then there is a non-computable c.e. set
U ≤T W . We wish to construct a d.c.e. set A ≡T W which is hyperimmune i.e. for
every computable sequence D = (Di) of disjoint segments of N there is an i such
thatDi∩A = ∅. We consider each member ofD as a guess about members ofA. We
want to constructA such that it is impossible for such a guessing procedure to guess
always correctly. We consider an effective enumeration D0, D1, . . . of all partial
computable sequences of disjoint segments of N (Dj = (Dj

i )) i.e. an enumeration
of all potential opponents. It suffices to construct A ≡T W such that
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Hj : ∃i(Dj
i ∩A = ∅) or Dj is not total

for all j. There are two main differences with the proof of theorem 1 where we
just have to consider immunity. One is that now it is harder to keep the codes
small, as our opponent can guess with entire segments of N of unbounded length.
The other one, perhaps less apparent, is that the requirements H do not just
ask to extract elements but also not to let numbers enter A in certain segments
(even if they have not appeared yet).

Without loss of generality assume that W is not immune and that (pkt) is a
double sequence of members of W which is increasing on both arguments. Let
P ⊂ W be the set of these terms. At all stages of the construction of A, every
n /∈ P will have a code c(n) which corresponds to A. The default is c(n) = n.
By ensuring

n ∈ W ⇐⇒ c(n) ∈ A

at all times we code W to A. We sometimes think of these codes as c-markers on
N. During the construction the code c(n) of n may change to a larger number for
the sake of the H requirements; but it will eventually reach a limit. These limits
will be computable in A. This suggests some additional coding in A, which will
be made via the positions in P (which initially are free of c-codes). Positions in

Pj = {pjk | k ∈ N}

will be exclusively used by Hj (at the beginning of the construction no number
has been used). Since we also want A ≤T W we need some kind of permitting
and for this reason we use a non-computable c.e. set U ≤T W . Note that this
introduces some non-uniformity in the proof as such a U cannot be found uni-
formly given an index of W . Now we will require any change of a c-code to be
permitted by U .

The H strategies can have one of the following two states during the con-
struction: satisfied and unsatisfied with the latter being the default. Strategy
Hj will find a suitable member of Dj and evacuate all numbers belonging to
that segment in the characteristic sequence of A, thus becoming satisfied. That
member of Dj is now an attack segment of Hj . Higher priority strategies (which
do not take into account Hj) may later put a number into A which belongs to
that segment. Then Hj is set back to unsatisfied (a kind of injury) and it has
to perform a new attack in a new segment. Eventually each strategy will settle
satisfied and having used finitely many attack intervals. The priority ordering of
the requirements is the obvious one (Hi has higher priority than Hj iff i < j).
Assume an effective 1–1 enumeration (us) of U .

Construction. At stage s do the following.

Step 1 (Coding). For all n �∈ P ensure

n ∈ W ⇐⇒ c(n) ∈ A

by enumerating in or extracting c(n) from A (if needed).
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Step 2 (Satisfaction of H). We say that Hj requires attention if it is unsatisfied
and there is some k such that

• Dj
k ↓ and us < minDj

k

• there exists t such that us < pjt < minDj
k and pjt is larger than all

numbers in attack intervals used so far by Hi, i ≤ j and larger than any
number pik that has been used by Hi, i ≤ j.
Consider the highest priority strategy Hj which requires attention and
act as follows:

• Call pjt the base code of this attack and put pjt ↘ A; set all Hi, i > j
to unsatisfied.

• Take all numbers of Dj
k out of A and if any number in this interval is

a code c(n) for some n, redefine c(n) to be a fresh number in Pj (i.e.
greater than s and any number or interval used in the construction so
far).

• Set Hj to satisfied and say that pjt and the numbers in Pj which received
c-markers under the previous step were used by Hj .
Go to the next stage.

Verification. The verification consists of the following lemmas.

Lemma 6. A is d.c.e.

Proof. We show that in the approximation toA given by the construction no num-
ber can enter A, then be extracted from A and later be enumerated into A again.
Indeed, if n ∈ P , say n = pjk, it can only enter A as the base code of some attack
or as a c-code (if it carries a c-marker, c(m) = n for somem). If it is later extracted
from A it must be either because of some attack interval which contains n or (in
the latter case) because m is extracted from W . After this happens, according to
the construction, n will not be the base code of Hj again and it will not carry any
c-marker again. So it will stay permanently out of A.

If n �∈ P it can only enter A as a c-code. But the only c-code it will ever carry
is the default c(n) = n. After the enumeration of n ↘ W it can be extracted
from A either because n is extracted from W (and n is still the c-code of n)
or because an attack interval contains n. In the former case n will not enter W
again and since n will not carry other c-codes (or be a base code) it will stay
out of A. In the latter case n will again stay outside A as it will not be assigned
a new c-code (or a base code).

Lemma 7. All Hj are satisfied and cease requiring attention at some stage.

Proof. Suppose that the lemma holds for Hi, i < j and that these strategies
have been settled at stage s. Any attack intervals or base codes used by these
strategies will be finitely many and so, bounded by some number. Since U is
non-computable, by the usual permitting argument Hj will require attention at
some stage after s (or (Dj) is partial). It will choose an attack interval D and
empty A on this interval thus being satisfied. Moreover, it will stay satisfied as
no strategy can enumerate numbers of D into A from now on (as Hi, i < j have
settled and lower priority strategies cannot do this).
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Lemma 8. Every c-marker reaches a limit (i.e. for all n �∈ P , lims c(n)[s] < ∞).
Moreover, if c(n)[s] changes to a different number c(n)[s+ 1] then (A � c(n))[s]
is never part of the A-approximation of the construction after s (in particular it
is not an initial segment of A).

Proof. Indeed at first c(n) = n (for n �∈ P ). If it is later moved by some Hj it
will sit on some number in Pj . Then it can only be moved by some Hi, i < j
and so on. So it can move at most j + 1 times.

For the second claim, if c(n)[s] changes to a different number c(n)[s + 1] it
must be because of an action of some Hj . By construction, some number t ∈ Pj

(the base code of the attack) which has never appeared in A before will enter
A. If this is never extracted the claim holds. Otherwise another attack will have
taken place which used a base code t1 < t (where t1 has not been enumerated
before) and so on. Eventually one of these base codes must remain in A which
proves the claim.

Lemma 9. W ≤T A

Proof. If n /∈ P (otherwise n ∈ W ) to answer ‘n ∈ W?’ wait until a stage s
where A � c(n) is a correct approximation of (the first c(n) bits of) A. This will
be found since, according to lemma 8 c(n) has a limit. It is enough to show that
c(n) will not change in latter stages since, in that case,

n ∈ W ⇐⇒ c(n) ∈ A.

Now if c(n) changed, according to lemma 8 (A � c(n))[s] will not be part of any
approximation of A at stages larger than s. In particular, it will not be a correct
approximation of A, a contradiction.

Lemma 10. A ≤T W

Proof. It is enough to show A ≤T W ⊕U . To answer ‘n ∈ A?’ find a stage s > n
such that U � n has settled. Then no more attack intervals D with n ∈ D and
no base codes ≤ n will be used after s. If n is not a c-code at s then it will not
become later on (as c-markers are defined at fresh numbers) and it will also not
be chosen as a base code for an attack (since no U -permission will be given). So,
according to the construction n ∈ A iff it is there at stage s.

If on the other hand n has a c-marker on it, i.e. n = c(m) for some m at stage
s, then this marker will not be moved after s (since U will not give permission
for an attack which can do this). So

n ∈ A ⇐⇒ c(m) ∈ A ⇐⇒ m ∈ W.

This concludes the proof of the theorem.

The proof of theorem 2 generalizes to all finite levels of the difference hierarchy
giving the following result.

Theorem 3. If n is even, every nonzero n-c.e. degree contains an n-c.e. hy-
perimmune set. If n is odd, every nonzero n-c.e. degree contains an n-c.e. co-
hyperimmune (in the sense that no strong array intersects its complement) set.
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We sketch the proof of this generalised statement: an important fact that we
used in the proof of theorem 2 is that no H- requirement asks the for extraction
of a number which has reached the maximum number of of membership changes
(which is 2 for the d.c.e. case). This enables us to prove that the set we are
constructing is in the particular level of the difference hierarchy; also this is the
reason why the cases n even and n odd slit. Note that e.g. in the 3-c.e. case
if the H requirements require co-hyperimmunity, i.e. ask for certain segments
of the characteristic sequence of A to be filled with 1s (instead of 0s, as in the
hyperimmunity case), then this condition still holds. In the 4-c.e. case we have
H requiring hyperimmunity and again no requirement asks the for extraction of
a number which has reached the maximum number of of membership changes,
and so on.

After this modification on the content of the requirements H the proof (the
construction and the verification) is entirely similar to that of theorem 2. The
only difference is that step 1 of the construction may force up to n A-membership
changes to the code of a number (which is within our limits in making A n-c.e.).

3 HH-Immunity and D.C.E. Sets

The purpose of this section is to show that hh-immunity in the finite levels of
the difference hierarchy reduces to hh-immunity in the co-c.e. sets. We start with
the following iterated version of Owings’ spitting theorem.

Theorem 4. Suppose that A,D are c.e. sets such that A ∪D is not c.e. Then
there are uniform sequences of c.e. sets (Ee), (Fe) such that

1. Ee ∪D,Fe ∪D are not c.e.
2. for all n, A = (∪i<nEi) ∪ Fn

3. Ei are pairwise disjoint and for all n, i < n, Fn ∩ Ei = ∅.

Proof. The Owings splitting theorem [8] says that given effective enumerations
of A,D we can uniformly define effective enumerations of C0, C1 such that A =
C0 ∪C1, C0 ∩C1 = ∅ and Ci ∪D are not c.e. Our claim follows by iterating this

A

C0 C1

C10 C11

C110 C111

Fig. 1. Iterating the Owings Splitting theorem
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A

DA

PA

Fig. 2. Approximation of a d.c.e. set A

procedure: since C1 ∪ D is not c.e. we can apply the Owings procedure to get
two disjoint c.e. sets C10, C11 such that C1 = C10 ∪ C11 and C10 ∪D, C11 ∪D
are not c.e.; we continue with C11 and so on (see figure 3).

Define F0 = A and for all k ∈ N,

Ek = C1k0

Fk = C1k

It is clear that these c.e. sets have been obtained uniformly and so the sequences
(Ek), (Fk) are uniform sequences of c.e. sets. Moreover they have the properties
(1)–(3) above since they have been obtained via Owings splittings as described
above.

Theorem 5. If A is d.c.e. and hh-immune then A is co-c.e.

Proof. Fix a d.c.e. approximation of A and consider the set PA of the numbers
that have appeared in A at some stage of its approximation. Also, let DA be the
set of numbers in PA which do not belong to A (i.e. those which have entered
and later been removed from A, see figure 3). Note that both PA and DA are c.e.
(the latter because once a number is extracted from A it cannot enter again).
It is enough to show that if A is not co-c.e. then there is a uniform sequence of
finite pairwise disjoint c.e. sets such that each of its members intersects A. If A
is not co-c.e., PA ∪DA cannot be c.e. Now apply theorem 4 and get a uniform
sequence of pairwise disjoint sets (Ei), subsets of PA, such that Ei ∪DA is not
c.e. for any i. In particular, Ei �⊆ DA and so Ei ∩ A �= ∅ for all i. But Ei are
infinite, so define:

Êi[s] =

{
Êi[s− 1], if Êi[s− 1] ∩A[s] �= ∅;
Ei[s], otherwise

where [s] denotes the state of an object at the end of stage s (the enumeration
is based on that of A and (Ei)). Since Ei ∩ A �= ∅, each Êi will be finite and
Êi ∩A �= ∅ for all i.
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Theorem 6. If A is n-c.e. and hh-immune then A is co-c.e.

Proof. Suppose n > 2 and A is n-c.e. and not i-c.e. for any i < n. By induction
(and the previous theorem) we may assume that the claim holds for all i < n. It
is enough to show that A is not hh-immune. Suppose that it is for the sake of a
contradiction. Consider an n-c.e. approximation of A and the set TA of numbers
that enter A  n

2 * times ( x* is the least integer ≥ x). Note that any number
during the approximation can enter A at most  n

2 * times.
Now for n odd we immediately get a contradiction since (as a properly n-

c.e. set) A contains an infinite c.e. set and so it cannot by hh-immune. If n is
even, A ∩ TA is infinite (as A is properly n-c.e.), d.c.e. and hh-immune (as an
infinite subset of a hh-immune set). By induction hypothesis A ∩ TA is co-c.e.
and so A is (n − 2)-c.e. Indeed, for an approximation with at most n− 2 mind
changes run an enumeration of A ∪ TA and the n-c.e. approximation of A with
the following modification: when a number has already n−3 mind changes (and
so it is currently a 1) we only change it to 0 if

– our n-c.e. approximation requires it and
– the number has appeared in A ∪ TA

(and after that this number does not change anymore). This is an (n − 2)-c.e.
approximation and it is not hard to see that the set we get is A. This is a
contradiction since we assumed that A is not (n− 2)-c.e.

Corollary 1. If A is n-c.e. and cohesive then A is co-c.e.
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Abstract. Rogers semilattices of computable numberings for the fami-
lies in the hierarchy of Ershov are compared with those for the families
in the arithmetical hierarchy.

We intend to show that non-monotone uniformly computable procedures are
essentially different from monotone ones. For instance, computations in the hi-
erarchy of Ershov could cause unexpected results such as an existence of non-
discrete finite families with trivial Rogers semilattices.

The study of the phenomenon of computability leads to a number of very
interesting directions in mathematics and applications (cf. [1]–[3]).

In recursive mathematics and computability theory, we encounter various sit-
uations which naturally lead one to the study of classes of constructive ob-
jects. An examination of the algorithmic properties of classes of constructive
objects fares best with the techniques and notions of the theory of computable
numberings.

Arbitrary numbering of a countable class is a mapping which assigns natural
indices to all elements of this class. Goncharov and Sorbi offered a general ap-
proach for studying classes of objects which admit a constructive description in
formal languages with a Gödel numbering for formulas, [4]. According to their
approach, numbering is computable if there exists a computable function which
for every object and each index of this object in numbering produces some Gödel
index of its constructive description. Therefore, an index of the object relative
to any computable numbering can be considered as its constructive description.

A lot of known notions of computability became a special case of this general
approach and simultaneously it have initialized or activated the study of com-
putability at several domains in logic and computer science. Among these areas
of research one can find investigations on computable numberings in the arith-
metical hierarchy and hierarchy of Ershov started at the end of 20th century.
The basis of these investigations is the classical case of computable numberings
of the families of computably enumerable (c.e.) sets. Class of c.e. sets forms level
1 both in Ershov’s and arithmetical hierarchies. We will separate this classical
case from the other cases assuming that only levels above level 1 are considered
if we spoke on the families in Ershov’s hierarchy or in the arithmetical hierarchy.

Computable numberings of a family of c.e. sets are usually considered as uni-
form enumeration procedures for the sets of the family. Monotonicity is the most
significant feature of these computations. This means that every number (treated
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as a piece of information) enumerated in any set via uniform enumeration proce-
dure never leaves this set in future. Thus the information accumulated in every
set of the family is growing more and more, i.e. monotonically. In contrary with
the classical case, any number could enter a set and it could leave the set later,
and again enter it and etc. during computations via computable numbering of
a family in the arithmetical or Ershov’s hierarchies. In the case of the hierarchy
of Ershov, number of these ‘enter-leaves’ is bounded by the level of hierarchy in
which considered family is involved while in the case of the arithmetical hierar-
chy, it is usually required for a number of ‘enter-leaves’ to be finite only. Besides,
in the latter case one can use oracles in the computations.

The notion of computable numbering for a family A from class Σi
n of level

n in Ershov’s hierarchy (i = −1) or in the arithmetical hierarchy (i = 0) may
be deduced from the approach of Goncharov–Sorbi as follows. Numbering α of
family A ⊆ Σi

n is computable if {〈x,m〉 : x ∈ α(m)} ∈ Σi
n. Precise meaning of

the phase above ’uniformly computable procedure’ for enumerating the elements
of the sets of A ⊆ Σ−1

n in numbering α is presented in the following statement.

Proposition 1. Numbering α is computable if and only if there exists com-
putable function f(m,x, t) such that

1. ∀m∀x(λtf(m,x, t) is monotone function);
2. ∀m∀x(f(m,x, 0) = 0);
3. ∀m∀x∀t(f(m,x, t) 	 n);
4. ∀m∀x(x ∈ α(m) ⇔ limt f(m,x, t) is odd number).

Changing values of the function λtf(m,x, t) from odd to even number is treated
as entering number x the set α(m) while its changing from even value to odd
one is treated as leaving x the set α(m).

In the computability theory, the objects are considered modulo some com-
putable equivalence, and the notion of equivalent numberings is the suitable
notion here. If there exists a computable function f which translates indices of
the sets in numbering α : ω �→ A into the indices of the same sets in numbering
β : ω �→ A, i.e. α(x) = β(f(x)) for all x, then the α is said to be reducible to β
(symbolically, α 	 β). Numberings which are reducible to each other are called
equivalent. Rogers semilattice Ri

n(A) of a family A ⊆ Σi
n is a quotient structure

of all computable numberings of the family A modulo equivalence of the num-
berings ordered by the relation induced by reducibility of numberings. Ri

n(A)
allows one to measure computations of a given family A. Rogers semilattices
Ri

n(A) are used also as a tool to classify properties of computable numberings
for different families A.

For the further undefined notions in the theory of numberings we refer to
handbook [5] and papers [6]–[7].

Historically, the first two problems on Rogers semilattices of families of c.e.
sets were raised by Ershov: What is the cardinality of a Rogers semilattice? Can
a Rogers semilattice be a lattice?

In 1971, A.B.Khutoretsky [8] proved that every non-trivial Rogers semilattice
of a family of c.e. sets could not be decomposed into disjoint principal ideal and
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principal filter. As the straightforward consequence he concluded that if Rogers
semilattice contains two elements then it is infinite. The latter result holds also
for the Rogers semilattices of computable numberings of the families in the
arithmetical hierarchy, [4]. Nevertheless, for the families of differences of c.e. sets
S.Badaev and S.Lempp established the converse of the state of Khutoretsky, i.e.
the decomposition theorem holds for some family from class Σ−1

2 (the paper is
in preparation).

Every non-trivial Rogers semilattice is upper semilattice, and in the classical
case it can not be lower one due to the famous result of V.L.Selivanov [9]. The
same holds for the case of arithmetical hierarchy, [4].

Classical computability may seem very close to computability in the hierar-
chy of Ershov since, according to the approach of Goncharov–Sorbi, classical
computability is definable by means of existential formulas of first order arith-
metic while computability in the hierarchy of Ershov is definable via Boolean
combinations of these formulas.

Unfortunately, the methods employed in the theorems of Khutoretsky, Seliv-
anov, and Goncharov–Sorbi are of no use in the case of computability in Ershov’s
hierarchy. Non-monotonicity of computations in the hierarchy of Ershov prevents
anybody to use these methods for resolution the problem of cardinality as well as
many other problems. On the other hand, the decomposition theorem of Badaev
and Lempp does say nothing on a cardinality of Rogers semilattices. Our main
aim is to discuss approaches which could lead to building families in Ershov’s
hierarchy with non-trivial finite Rogers semilattices.
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Abstract. This paper considers when one can invert general recursive
operators which map a class of functions F to F . In this regard, we study
four different notions of inversion. We additionally consider enumeration
of operators which cover all general recursive operators which map F to
F in the sense that for every general recursive operator Ψ mapping F
to F , there is a general recursive operator in the enumerated sequence
which behaves the same way as Ψ on F . Three different possible types
of enumeration are studied.

1 Introduction

In Inductive Inference the main scenario is usually of the form

Input → ? → Output

and the problem is then to find the rules that govern the “Black Box”, repre-
sented by the question mark, from a known input and an observed output. Often
however, we are in a different position. We know the black box and we can see
the result, but we are interested in what caused the result. So, in some sense
this paper starts where Inductive Inference ends — the process is already known
and applied, but we need to reconstruct the input that was used. The diagram

? → Process → Output

represents this situation. The following is an example list of some similar real
life situations.

– Cryptography. Often the encryption algorithms are known, like the widely
used “blowfish” algorithm [8] and we can intercept the encoded message, but
can we get the message that resulted in the code?
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– Chemical analysis. Many chemical processes are known. Assume we have the
result of a chemical reaction. Can we find the ingredients that were used?

– Customer modeling. There are very good models of human motivation; cf. [6]
for example. We can observe customer behaviour. But why did the customer
actually buy or not buy the product? Where did he learn about the product
and what advertisement measures were effective?

As it might be reasonable not to consider all inputs and outputs but only those
which fit into a special context, thus a class F of total functions is fixed. It is
required that input and output are from this class, therefore we consider mainly
F -preserving recursive operators Φ which map every f ∈ F to a total function
in F . In this paper Φ will mostly be general recursive, that is, map every total
function to a total one, but in some special cases we investigate also F -preserving
operators which are not general recursive.

Following the above mentioned scenario, we are interested in studying when
F -preserving general recursive operators Φ can be inverted, that is, given Φ(f)
as input, for f ∈ F , when can we find a g such that Φ(g) = Φ(f), via some
computable mechanism? As the class F might be computationally very difficult
to hit, we do not require that g belongs to F although this property is of course
obtainable in the case of recursively enumerable classes. Furthermore, given Φ(f),
possible methods for finding such a g usually work via trial and error, thus we
would mostly be using limiting recursive functionals as methods for inverting Φ.

In Section 3 we study four different notions of inversion which form a hierarchy.
In the following, let Φ be an F -preserving general recursive operator and Ψ =
lims Ψs be the limiting recursive operator to invert Φ.

– Ψ weakly inverts Φ iff, for all f ∈ F , there exists a g such that Φ(f) = Φ(g)
and for all x, lims Ψs(Φ(f))(x) = g(x);

– Ψ bounded weakly inverts Φ iff Ψ weakly inverts Φ and for all f ∈ F ,
Ψ(Φ(f)) ≤T Φ(f);

– Ψ inverts Φ iff Ψ weakly inverts Φ and there are, for every f ∈ F , only finitely
many pairs (x, s) such that Ψs(Φ(f))(x) �= Ψ(Φ(f))(x);

– Ψ strongly inverts Φ iff Ψ inverts Φ and Ψ0 is a general recursive operator.

Note that in the case of weakly inverting a function, the requirement Ψ(Φ(f)) ≤T

Φ(f) is not automatically guaranteed as Ψ is a limiting process, it is indeed a
restriction. The motivation for the requirement is the following: it is a natural
constraint to say that one can compute the original input-function from the
observed output-function; however one may not be able to perform these com-
putations uniformly for all functions in the range of Φ and therefore may need a
limiting-recursive process to invert the data of the observed output. A class F is
called invertible (weakly invertible, strongly invertible, bounded weakly invert-
ible), if one can invert (weakly invert, strongly invert, bounded weakly invert),
every F -preserving general recursive operator.

In this paper we will show that above notions of invertibility form a strict
hierarchy. Theorem 2 shows that R is not weakly invertible. Theorem 4 shows
the separation of weakly invertible from bounded weakly invertible using the
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class of the binary recursive functions. Example 9 gives a class which is bounded
weakly invertible but not invertible. Example 7 gives a class which is invertible
but not strongly invertible. Examples 5 and 6 show that strong invertibility is
not trivial by giving interesting infinite classes of recursive functions which are
strongly invertible. In Proposition 11 we show that every recursively enumerable
class is strongly invertible.

The question of whether an operator is invertible also depends on the variety
of operators that are available. Therefore one might ask how difficult an enumer-
ation has to be so that all possible restrictions of mappings from F to F , which
can be done by general recursive operators, also occur in this enumeration. We
call this notion coverability and study it in Section 4.

– An enumeration Φ0, Φ1, . . . weakly covers F , if for every F -preserving general
recursive operator Φ, there is an e such that Φe is general recursive and Φe,
restricted to domain F , is the same as Φ.

– An enumeration Φ0, Φ1, . . . covers F , iff it weakly covers F and every Φe is
total on F .

– An enumeration Φ0, Φ1, . . . strongly covers F , iff it weakly covers F , and
every Φe is general recursive.

F is (weakly, strongly) coverable, if some recursive enumeration of operators
(weakly, strongly) covers F . Note that the recursive enumeration of all recursive
operators trivially weakly covers every class F . Example 16 shows that there is a
class which is coverable but not strongly coverable. Coverable classes of recursive
functions are quite restrictive: every coverable class of recursive functions is
contained in a recursively enumerable class of recursive functions. Example 14
gives a class of binary functions which is strongly coverable, but not bounded
weakly invertible. Proposition 15 shows that even the simple class {0e10∞ :
e ∈ N} is not coverable. On the other hand, Example 17 shows that any class
of functions which recursively approximates a 1-generic set below the halting
problem is coverable.

In Section 5 we pay special attention to the class of periodic functions, Fper.
Let Φ0, Φ1, . . . be an acceptable numbering of all recursive operators. Corollary 21
shows that the set {e : Φe is Fper-preserving} is Π3-complete.

In Section 6 we consider variants of the notion of inverting. What happens if
Φ is not general recursive? Furthermore, given an enumeration of operators, is it
possible to invert all of the F -preserving operators in this list on at least some
of the functions in their range?

Due to space limitations, some proofs and results have been omitted. We refer
the reader to [2] for details.

2 Basic Notation

Notation not explained here is standard and follows the textbooks of Odifreddi
[7] and Soare [9]. Let N denote the set {0, 1, 2, . . .} of natural numbers. Let
ϕ0, ϕ1, . . . be an acceptable numbering of all partial-recursive unary functions
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and We be the domain of ϕe. We,s denotes the set of all x < s for which ϕe(x)
halts within s steps. K denotes the halting problem, {e : e ∈ We}. K ′ denotes
the halting problem relative to K, that is {e : e ∈ WK

e }.
Given a function f or a string σ of length at least n, f [n] and σ[n] denote

the first n elements of f and σ, respectively. Furthermore, λ denotes the empty
string which coincides with f [0], for all functions f .

For several examples, an effective version of Ramsey’s Theorem is needed.
In particular the following notion is used. An A-recursive 2-colouring is an A-
recursive function R with the domain {(x, y) : x < y} and range {false, true}.
The members of the range are called the colours. A set E is 2-r-cohesive relative
to A iff, for all A-recursive 2-colourings R, there are an e ∈ E and a colour
u such that for all x, y ∈ E with e < x < y, R(x, y) = u. One can prove by
induction from Ramsey’s Theorem, that for every A and infinite B, B has an
infinite subset which is 2-r-cohesive relative to A, see Jockusch and Hummel [3]
for details.

In the present paper, our goal is to translate total functions into total func-
tions. Thus we consider recursive operators. A recursive operator Φ is an oracle
Turing machine which takes functions as an oracle. So Φ(f)(x) is the value of the
function computed by Φ at x with oracle f . Without loss of generality, Φ asks
f(s) in the s-th step of its computation and nothing else. Therefore Φ(f [s])(x)
is defined and y iff Φ(f)(x) = y, x < s, the computation converges in less than s
steps and the computation queries f only below s. Otherwise Φ(f [s])(x) is unde-
fined. Φ is a general recursive operator iff Φ(f), that is, the function x �→ Φ(f)(x),
is total for every function f .

3 Inverting Operators

In the following let F denote the class of functions under consideration. The
involved agents can be viewed upon as Turing machines which, as they compute
functions as a list of pairs of inputs and outputs, run for infinite time reading one
input tape, using some computation tapes and writing one output tape. Given
a general operator Φ, there are several degrees of inversion.

Definition 1. (a) A general recursive operator Φ is called F -preserving iff it
maps every function from F to F .

(b) Ψ strongly inverts Φ if Ψ is a general recursive operator and for every
f ∈ F , there exists a g such that, g is a finite variant of Ψ(Φ(f)) and Φ(g) = Φ(f).

(c) Ψ inverts Φ if Ψ is a limit-recursive functional such that, for every f ∈ F
and for all x ∈ N, the limit g(x) = lims Ψs(Φ(f))(x) exists, Φ(g) = Φ(f) and
there are only finitely many pairs (x, s) with Ψs(Φ(f))(x) �= g(x).

(d) Ψ weakly inverts Φ if Ψ is a limit-recursive functional such that for every
f ∈ F , for all x, the limit g(x) = lims Ψs(Φ(f))(x) exists and Φ(f) = Φ(g).

(e) Ψ bounded weakly inverts Φ if Ψ is a limit-recursive functional such that
for every f ∈ F the limit g = lims Ψs(Φ(f)) exists, Φ(f) = Φ(g) and g ≤T Φ(f).

(f) The class F is called invertible, strongly invertible, weakly invertible or
bounded weakly invertible iff for every F -preserving general recursive operator
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there is a Ψ such that Ψ inverts, strongly inverts, weakly inverts or bounded
weakly inverts Φ, respectively.

Although part (d) has a certain interest on its own right, it is a limiting process
where it is no longer possible to get g from Φ(f) by any effective means. Somehow,
it might be natural also to consider the case where such a translation of Φ(f) into
g at least exists, although it is not applied by Ψ . This additional requirement
that g ≤T Φ(f) is then considered in (e). Note that (b) implies (c), (c) implies
(e) and (e) implies (d).

Theorem 2. The class R of all recursive functions is not weakly invertible.

Proof. Now define an operator Φ by the equation

Φ(f) =

{
(f(0))∞ if ∀s [|Wf(0),f(s)| ≥ s] or ∀s [|Wf(0),s| ≤ f(1)];
(f(0))s(f(0) + 1)∞ if s is the first positive number

where the first case fails.

For every e there is a recursive f with Φ(f) = e∞. In the case that We is finite,
such an f is e|We|0∞, in the case that We is infinite, such an f can be obtained
by letting f(x) = min({s : |We,s| ≥ x}). On the other hand, one can see that
whenever We is finite then only functions f with f(0) = e ∧ f(1) ≥ |We| are
mapped to e∞, thus if Ψ inverts e∞ in the limit, then the function F (e) =
lims Ψs(e∞)(1) is K-recursive and satisfies F (e) ≥ |We| whenever We is finite.
It follows that {e : We is finite} = {e : |We| ≤ F (e)} where the first set is
Σ0

2 -complete and the second is K-recursive, a contradiction. Therefore R is not
weakly invertible. ��

This result used the fact that the function e �→ |We| restricted to the domain
of all e, where We is finite, is not dominated by any K-recursive function. So
although all involved functions are recursive, their initial growth from f(0) to
f(1) cannot be captured even by a K-recursive function. One might ask what
happens if growth-conditions cannot be exploited because all functions involved
are bounded. The next result implies that every such class is weakly invertible.

Proposition 3 (Based on Kreisel [5]). For every constant c, {0, 1, . . . , c}∞
is weakly invertible.

The proof exploits the fact that the class contains nonrecursive functions. So one
could ask whether there is a class containing only recursive functions which is not
bounded weakly invertible. The following example shows that this is indeed true.

Theorem 4. The class R0,1 consisting of all {0, 1}-valued recursive functions
is a weakly invertible but not bounded weakly invertible class.

Analysing the proof, one can see that one could even use a finitely learnable
subclass of R0,1 to show the above theorem. Thus, even finite learnability re-
quirement does not guarantee weak invertibility.
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This contrasts with Proposition 11 below which says that all recursively enu-
merable classes are strongly invertible. The next section deals with recursively
enumerable classes explicitly, but before that some further examples of invertible
classes are presented. Every class {f} consisting of only one function is strongly
invertible. One might ask whether this comes from the small cardinality of given
class. It does not, as the following example of a similar class with cardinality 2ℵ0

shows.

Example 5. There is a recursive tree T such that the class F of all its infi-
nite branches satisfies that any two distinct members have incomparable Turing
degrees. This class F is strongly invertible.

Note that the same Ψ works for all F -preserving Φ. Furthermore, the given
example forms a Π0

1 class, so Φ and Ψ can even detect eventually whenever their
input is not from F . The next example consists only of recursive functions but
has a similar flavour.

Example 6. Let e0, e1, . . . be an infinite sequence of minimal indices of total
functions such that {e0, e1, . . .} is 2-r-cohesive relative to K ′. Such a set exists
by Ramsey’s Theorem. The class F = {ϕen : n ∈ N} is strongly invertible.

Example 7. Let Φ0, Φ1, . . . be an enumeration of all recursive operators and
let G be the index set of the e where Φe is general recursive. Furthermore, let
F = {2n +

∑
m<n 2m ·G(m)} be a set of numbers coding initial parts of G by its

binary digits. Now let {e0, e1, . . .} be a subset of F which is 2-r-cohesive relative
to K ′. Let F contain for every k the functions 0ek101∞, 0ek10∞ and θek

. For
any e, x, θe(x) is defined as follows:

If x < e+2 then θe(x) = 0e11(x). Otherwise find the a < e with x ≡ a modulo
e. If 2a+1 ≥ e then θe(x) = 0. Otherwise determine the a+ 1-st least significant
bit of e. If this bit is 0 then θe(x) = 0 again. Otherwise

θe(x) =

⎧⎨⎩ 0 if Φa(0e10∞)(x)↓> 0;
1 if Φa(0e10∞)(x)↓= 0;
↑ otherwise.

Note that the function θe might be partial only if e /∈ F . The class F is invertible
but not strongly invertible.

For the separation of bounded weakly invertible from invertible, the following
result of Kaufmann [4, Theorem 5.2.2] is crucial, which is formulated such that
it fits conveniently into the setting of the present work.

Proposition 8 (Kaufmann [4]). Let Ψ0, Ψ1, . . . be a recursive enumeration of
all operators which are approximable in the limit. Let Ψe,s be the s-th recursive
approximation of Ψe such that e, s �→ Ψe,s is effective. Then there is a uniformly
recursive family T0, T1, . . . of trees such that for every e the following holds:

– each Te is a subset of 0e11{0, 1}∗ ∪ {0e11[r] : r ≤ e+ 2};
– for each e, n, |Te ∩ {0, 1}n| ≤ e+ 2, that is, Te has bounded width;
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– for each e and each infinite branch A of Te and each e′ ≤ e, there are
infinitely many x such that either Ψe′,x(0e10∞)(x) is undefined or different
from A(x).

Furthermore, each Te has at least one infinite branch and all its infinite branches
are recursive.

Example 9. Let {e0, e1, . . .} be a set which is uniformly cohesive relative to K ′

that satisfies, for every n and every m ≥ n, ϕK′
n (em) < em+1. Let Ψ0, Ψ1, . . . be

a recursive enumeration of all limit-recursive operators. Now let F contain the
functions 0en10∞, 0en101∞ and the left-most infinite branch θen of Ten for all
n. The class F is bounded weakly invertible but not invertible.

4 Enumerating Operators and Functions

It is quite natural to deal with classes where there is an indexing for all the
functions involved. Such classes are known as “indexed families”, “uniformly
recursive classes” or “recursively enumerable classes” where the enumeration is
now an enumeration of the involved functions and not of the elements of a set.

Definition 10. A class F is recursively enumerable iff there is a total recursive
function e, x �→ fe(x) in two variables such that F equals the set of functions
obtained by fixing the input e: F = {f0, f1, . . .}.

Such classes are easily inverted using a “learning by enumeration” algorithm.

Proposition 11. Every recursively enumerable class of functions is strongly in-
vertible.

The question whether an operator can be inverted also depends on the variety of
operators available. Therefore, one might ask how difficult an enumeration has
to be so that all possible restrictions of mappings from F to F occur. This is
formalized in the following definition.

Definition 12. (a) An enumeration Φ0, Φ1, . . . of operators weakly covers F if
for every F -preserving general recursive operator Ψ there is an e with Φe being
general recursive and ∀f ∈ F [Φe(f) = Ψ(f)].

(b) An enumeration Φ0, Φ1, . . . of operators covers F iff it weakly covers F
and every Φe(f) is total for every f ∈ F . Furthermore, F is coverable iff some
recursive enumeration of operators covers F .

(c) An enumeration Φ0, Φ1, . . . of operators strongly covers F iff it weakly
covers F and every Φe is a general recursive operator. Furthermore, F is strongly
coverable iff some recursive enumeration of operators strongly covers F .

Note that every class is weakly covered by an acceptable numbering of all re-
cursive operators. Clearly, {f} is strongly coverable since an enumeration only
needs to contain the identity operator in order to cover {f}. When consider-
ing inverting classes of recursive functions, coverable classes are restricted to be
contained in enumerable ones.
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Theorem 13. Every coverable class of recursive functions is a subclass of a
recursively enumerable class of recursive functions.

Proof. Let F contain only recursive functions, f ∈ F and Φ0, Φ1, . . . be an
enumeration covering F . Now for every g ∈ F there is an operator Φe which
maps every function to g and thus Φe(f) = g. So F ⊆ {Φe(f) : e ∈ N} and the
function e, x �→ Φe(f)(x) is total and recursive in both inputs. So F is a subclass
of {Φe(f) : e ∈ N}, a recursively enumerable class of recursive functions. ��

As a consequence, one has that every coverable class of recursive functions is also
strongly invertible. One might therefore ask whether every strongly coverable
class is also strongly invertible. This is unfortunately not the case.

Example 14. Let ψ be a partial-recursive {0, 1}-valued function without recur-
sive total extension and f be a (nonrecursive) total extension of ψ. The class
{0∞, 1∞, f} is strongly coverable but not bounded weakly invertible.

A similar result as above can also be obtained for unbounded functions. We now
turn our attention to non-coverable classes.

Proposition 15. Assume that F contains all functions of the form 0e10∞.
Then F is not coverable. In fact, any r.e. class containing an infinite finitely
learnable subclass is not coverable.

Example 16. Let Φ0, Φ1, Φ2, . . . be an acceptable enumeration of recursive op-
erators and let h be a strictly increasing function which grows so fast that
Φe(f [h(n)])(x) is defined whenever e, x ≤ n, f ∈ {0, 1, 2}∞ and Φe is a gen-
eral recursive operator. Let H be the range of h. Then the class

F = {f : ∀x [(x /∈ H ⇒ f(x) = 0) ∧ (x ∈ H ⇒ f(x) ∈ {1, 2})]}

is coverable but not strongly coverable.

Proof. For any function f define hf (n) = max({x : |{y < x : f(y) �= 0}| ≤ n}),
that is, hf (n) is the n + 1-st position x where f(x) is different from 0. The
function hf is partial-recursive relative to the oracle f and total iff f is different
from 0 infinitely often.

For showing that the classF is coverable, one defines an enumeration Ψ0, Ψ1, . . .
covering F from the given enumeration Φ0, Φ1, . . . as follows.

To compute Ψe(f)(x), one searches for the first s for which either Φe(f [s]) is
defined or s = hf (x+ e+ 1) and then defines that

Ψe(f)(x) =

⎧⎨⎩Φe(f [s])(x) if s is found and Φe(f [s])(x) is defined;
0 if s is found and Φe(f [s])(x) is undefined;
↑ if s is not found.

Thus Ψe(f) is total whenever either Φe(f) is total or f(x) �= 0 for infinitely
many x. In particular, Ψe(f) is total for all e ∈ N and f ∈ F .
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If Φe is a general recursive operator then Ψe is also one since Φe(f) is total for
every function f . For f ∈ F , hf (e+ x + 1) = h(e+ x+ 1) and by the choice of
h and Φe(f [h(e+ x+ 1)])(x) is defined. It follows that Ψe(f)(x) = Φe(f)(x). So
the operators Ψe, Φe have the same behaviour on F . Thus Ψ0, Ψ1, . . . covers F .

Given a recursive enumeration of general recursive operators, there is, due to
the Padding Lemma, a recursive set E of indices such that every operator in the
enumeration is equal to some Φe with e ∈ E and every Φe with e ∈ E is general
recursive. Now one defines a function h′(n) to be the least number t such that
for all x ≤ n, for all e ≤ n with e ∈ E and for all f ∈ {0, 1, 2}∞, Φe(f [t])(x) is
defined. As all Φe with e ∈ E are general recursive, h′ is a recursive function.
Furthermore h′(n) ≤ h(n) for all n. Now one defines

Θ(f)(x) =

⎧⎪⎨⎪⎩
0 if x �= hf (n) for all n ≤ x;
1 if x = hf (e) for some e ∈ E

with e ≤ x and Φe(f [h′(x+ e+ 1)])(x)↓ �= 1;
2 otherwise.

First, the operator Θ is general recursive as h′ is a total function and all other
tests apply to bounded search. Second, if e ∈ E and f ∈ F then Θ(f)(h(e)) = 2
if Φe(f)(h(e)) = 1 and Θ(f)(h(e)) = 1 otherwise. Thus Θ(f) �= Φe(f) and Θ
differs on F from every Φe with e ∈ E. Third, Θ is F -preserving since, whenever
f ∈ F , Θ(f)(x) = 0 for x /∈ H and Θ(f)(x) ∈ {1, 2} for x ∈ H . Thus Θ is an
F -preserving general recursive operator different on F from all Φe with e ∈ E.
So F is not strongly coverable. ��

Example 17. Let F be a 1-generic set below K and let f0, f1, . . . be a sequence
of recursive {0, 1}-valued functions approximating the characteristic function of
F . Then {f0, f1, . . .} is strongly coverable.

Proof. Let Φ0, Φ1, . . . be the enumeration of all operators for which there is
an n such that all fm extending F [n] are either mapped to themselves or all
mapped to the same function fk. As almost all fm extend F [n], one can obtain
the enumeration of the Φe by changing, on finitely many input-functions, either
the operator mapping all functions to fk or the identity operator.

It remains to show that this enumeration covers {f0, f1, . . .}. Given an op-
erator Φ, the set A of all binary σ such that Φ(σ) is inconsistent with σ, is
recursively enumerable.

In the case that no prefix of F is contained in A, one can find an n such that
A does not contain any extension of F [n]. If fm extends F [n] then Φ(fm) = fm,
since otherwise there would be a prefix fm[y] for some y such that Φ(fm[y])(x)
is defined and different from fm(x) for some x < y. Then fm[y] would be in A in
contradiction to the choice of n. So in this case, the above enumeration contains
a Φe which behaves same as Φ on {f0, f1, . . .}.

Otherwise there is a σ ∈ A extended by F . There are only finitely many
fm such that fm does not extend σ; thus there is a y such that fm[y] �= fk[y]
whenever fm, fk do not extend σ and are different. Now one takes n so large
that Φ(F [n])(x) is defined for all x < y. Then Φ(F [n]) extends fk[y] for some
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unique function fk and therefore Φ(fm) = fk for all fm extending F [n]. Again,
the above enumeration contains a Φe which behaves in the same way as Φ on
{f0, f1, . . .}. ��

Although not every recursively enumerable class is coverable, the next result
shows that it is at least coverable relative to K ′. This relativized concept uses the
notion of aK ′-recursive enumeration of recursive operators. Here an enumeration
Φ0, Φ1, . . . is K ′-recursive iff there is a K ′-recursive function h and an acceptable
numbering Γ0, Γ1, . . . of operators with Φe = Γh(e) for all e.

Proposition 18. If F is recursively enumerable then some K ′-recursive enu-
meration of operators covers F .

5 Periodic Functions

A class of interest is the class F of all functions which are eventually periodic. Not
so much because of its difficulty or richness, but because of its relation to the sit-
uation described in the introduction: an eventually periodic function could mean
that the user repeats actions over and over again. One of the fundamental princi-
ples in Human-Computer interaction design is that the computer should behave
consistently on user inputs. Hence it might be reasonable to expect that the com-
puter answers the repeated inputs just the way it answered the previous ones.

From now on, “eventually” will be dropped from “eventually periodic” for the
sake of simplicity of the notation.

Definition 19. The class Fper is the union of all Fn with period n; that is, the
union of the classes defined by the condition f ∈ Fn iff ∀∞m [f(m+n) = f(m)].

The class Fper is strongly invertible. Furthermore, it is not coverable as it has
an infinite finitely learnable subclass, namely {0e1∞ : e ∈ N}. Indeed, one can
even code very difficult problems into any K ′-recursive enumeration of operators
covering Fper and the following theorem shows that this class is not coverable.

Theorem 20. Given anyK ′-recursive enumeration Φ0, Φ1, . . . covering Fper, the
set P = {e : Φe is Fper-preserving} is not recursively enumerable relative to K ′.

Proof. In the following, let F (e, x, s) be the first non-element of We,s which
is greater or equal than x. Now define Ψe to be the general recursive operator
which maps every function f extending 0x but not 0x+1 to the function

0e10x10F (e,x,0)10F (e,x,1)10F (e,x,2)1 . . .

and 0∞ to 0e10∞. For every x the function Ψe(0x10∞) is periodic iff there is a
nonelement of We greater or equal than x.

Assume now by way of contradiction that there is a K ′-recursive enumeration
Φ0, Φ1, . . . of operators covering Fper such that the corresponding set P is recur-
sively enumerable relative to K ′. Then one can find given e using oracle K ′ an
x such that one of the following two conditions holds.
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(1) x ∈ P and for all σ and y, if Φx(σ)(y) and Ψe(σ)(y) are both defined
then they are equal;

(2) for all y ≥ x, y ∈ We.

If We is coinfinite then the search terminates with an x satisfying the first condi-
tion since Ψe is Fper-preserving and there is a general recursive operator Φx hav-
ing the same behaviour on all periodic functions as Ψe. In particular, Ψe(σ10∞)
and Φx(σ10∞) must be the same functions and thus the required consistency
condition holds. On the other hand, the search obviously cannot terminate ac-
cording to (2).

If We is cofinite then Ψe maps some periodic function f to nonperiodic ones.
If x ∈ P then Φx(f) is periodic and thus there is an n and a y with Φx(f [n])(y)
and Ψe(f [n])(y) are both defined and different. So the search cannot terminate
by condition (1) although it terminates by condition (2) with x being the least
upper bound of the finitely many nonelements of We.

So one gets that {e : We is coinfinite} is Turing reducible toK ′, a contradiction
to the well-known fact that this set is Π0

3 -complete. ��

The above proof produced the family of Ψe in a uniform manner, so in the case
that Φ0, Φ1, . . . is an acceptable numbering, one has a recursive function h with
Φh(e) = Ψe. Thus one can get Π0

3 -completeness in this case.

Corollary 21. If Φ0, Φ1, . . . is an acceptable numbering of all operators then the
set P = {e : Φe is Fper-preserving} is Π0

3 -complete.

If Ψ strongly inverts Φ then Ψ produces a finite variant but not the correct
output. One might ask whether this is necessary. Indeed there are only very
few classes where one can avoid it. For example, if Ψ is permitted to be partial
then one can invert every general recursive operator on the constant functions
by the Ψ outputting on input x∞ the function y∞ for the first y found such that
Φ(y∞)(0) = x. Somehow, if one wants general recursive operators Ψ with this
property, one has to go to a sufficiently small subclass. In the case of Fper , there
are operators Φ where every (even partial) Ψ inverting Φ makes finitely many
errors.

Example 22. Let ψ be a partial recursive {0, 1}-valued function without recur-
sive extension. Then every recursive operator Ψ inverting the following general
recursive operator Φ makes errors on some inputs:

Φ(f) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0e10∞ if (f extends 0e10 or 0e11) and ψ(e) is undefined;
0e10∞ if f extends 0e1ψ(e) and ψ(e) is defined;
0e10s1∞ if f extends 0e1 but not 0e1ψ(e)

and ψ(e) halts after exactly s steps;
f otherwise.

If some Ψ would strongly invert Φ without errors then the recursive function
e �→ Ψ(0e10∞)(e + 1) would be a total extension of ψ in contradiction to its
choice.
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6 Other Notions of Inverting

It was already shown that there is a single general recursive operator Φ such that
one cannot invert Φ on the class of all recursive functions. As recursive operators
preserve recursiveness, it is not very interesting to deal with arbitrary classes
for negative results. We now turn our attention to the following question: for
every recursive operator Φ and every recursively enumerable class F , is there an
operator Ψ which inverts or at least weakly inverts Φ? The next result shows that
the technique of inverting by enumeration can be kept as long as the operator
to be inverted is total on the whole family F .

Theorem 23. If F is recursively enumerable and Φ F-preserving although not
necessarily general recursive, then there is a general recursive operator Ψ which
strongly inverts Φ.

Proof. Let f0, f1, . . . be a recursively enumerable class and Φ a recursive operator
such that Φ(fn) is total for all n. Then define Ψ as follows: Ψ(f)(x) is fn(x) for
the least n such that Φ(fn[x− n]) is consistent with f . Ψ is general recursive as
it terminates on all inputs to some fn(x) with n ≤ x (as n = x would qualify).
Furthermore, if n is the first index with Φ(fn) = f then for all sufficiently large
x, every expression Φ(fm[x −m]) with m < n is inconsistent with f and thus
Ψ(Φ(f))(x) = fn(x). ��

This property is lost if one considers operators which might be partial on func-
tions from the class.

Another topic is whether given an enumeration Φ0, Φ1, . . . of operators, one
can find an operator Ψ which inverts every F -consistent operator Φe on at least
one function. In the case that all Φe are total on F and F contains at least one
recursive function f , this can be easily achieved: for all functions g, one defines
Ψ(g) = f . Then one uses that every F -preserving Φe satisfies Φe(f) ∈ F and
hence f is the inverse of some function g ∈ F . The next example shows that
this is no longer possible if a class consists of several recursive functions and
operators may be undefined on some functions in F in the sense that these are
mapped to partial functions which are not considered as a valid output.

Example 24. Let R be the class of all recursive functions. There is an enumer-
ation Φ0, Φ1, . . . of recursive operators which map at least one recursive function
to a total one such that no Ψ = lims Ψs weakly inverts the operator Φe on some
total f ∈ Φe(R), given e and f as input.

Proof. To see this, one defines Φe(f)(x) = 0 iff

– either |We,x| ≤ f(0);
– or for all y ≤ x, y ≤ |We,f(y)|.

If these two conditions do not hold then Φe(f)(x) is undefined. Clearly 0∞ is
the only function in Φe(R). Now let F be the index-set of the finite sets. The
functions fe given as
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fe(x) = min({s : (e ∈ F ⇒ |We| ≤ s) ∧ (e /∈ F ⇒ x ≤ |We,s|)})

are all recursive since one needs only to know the cardinality of We in order to
compute fe(x) for every x. It is easy to verify that Φe(fe) = 0∞ for all e.

But if there would be a limit-recursive Ψ = lims Ψs which weakly inverts all
Φe using the parameter e in the limit, then

e ∈ F ⇔ |We| ≤ lim
s→∞

Ψs(e, 0∞)(0)

and F ≤T K in contradiction to the well-known fact that F is a Σ0
2 -complete

set. ��
While partial operators might not be invertible, one can easily get the following
uniform variant of Proposition 11. For this, one should note that for a dense
set F and a general recursive operator Φ it holds that whenever the range of
Φ contains at least k functions so does Φ(F). Here a set F is called dense if it
contains an extension of every initial segment over N.

Proposition 25. Let Φ0, Φ1, . . . be a recursive enumeration of all recursive op-
erators and let F be recursively enumerable and dense. Then there is a recursive
enumeration Ψ0, Ψ1, . . . of recursive operators with the following properties.

If Φe is general recursive then Ψe is general recursive and strongly inverts Φe

on F .
Furthermore, if Φe is general recursive and its range at most countable, then

the cardinality of the functions Φe(f) such that Ψe(Φe(f)) strongly inverts Φe on
Φe(f) is the same as the cardinality of the range of Φe.

Proposition 25 depends on the fact that the index e of the operator is supplied.
If this index is not known, then there is an enumeration Φ0, Φ1, . . . of Fper-
preserving general recursive operators, all having at least two functions in the
range, such that no Ψ inverts every operator Φe on at least two functions.

Example 26. Let Φe(f) = 1∞ if f(0) = e and Φe(f) = 0∞ otherwise. Given
any Ψ , choose e such that e �= Ψ(1∞)(0). Then Ψ does not invert the operator
Φe on the function 1∞ and so Ψ inverts Φe on at most one function although
the range of each Φe contains two functions.

Theorem 27. Let F = {f0, f1, . . .} be a recursively enumerable class. Then
there is a Ψ which inverts every general recursive operator Φ on infinitely many
members of Φ(F) whenever Φ is F-preserving and Φ(F) is infinite.

The next result states that although one can invert infinitely many functions, it
can be impossible to invert uncountably many. Thus only a tiny fraction of the
image of the operator can be inverted to its origin.

Proposition 28. There is a general recursive operator Φ such that the range
of Φ is uncountable but every Ψ weakly inverts at most countable many of the
functions in the range of Φ.
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7 Conclusion

In this paper we considered how and when general recursive operators can be
inverted. The research was motivated by the fact that in many situations in
real life, one is interested in finding what caused a certain result. We also in-
troduced the notion of coverability, which allows us to find and study simpler
representative enumerations of operators which satisfy some desired properties.

The main results of the present paper might be summarised as follows: The
four presented notions of inversion, as well as the three notions of coverability,
form a strict hierarchy. Furthermore, all of the given concepts are shown to
contain non-trivial classes.

From a practical point of view, strong inversion is the most interesting type,
since it allows us to get a finite variant of the original input uniformly from Φ(f).
Getting the exact input is much harder, as shown at the end of Section 5 about
periodic functions. It would be interesting to further explore partial inversion,
that is, we might not be able to invert an operator completely, but on sufficiently
many outputs. Another interesting topic might be the inversion in other special
cases similar to periodicity.

Although we have separated the above notions and given – as we hope –
interesting examples, there is more to learn about these concepts. One goal
will be to find interesting necessary and sufficient conditions for classes to be
invertible or coverable. Again from the practical side, the first candidates to look
at should probably be strongly invertible and strongly coverable.
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1 Introduction

Cupping nonzero computably enumerable (c.e. for short) degrees to 0′ in various
structures has been one of the most important topics in the development of clas-
sical computability theory. An incomplete c.e. degree a is cuppable if there is an
incomplete c.e. degree b such that a∪b = 0′, and noncuppable if there is no such
degree b. Sacks splitting theorem shows the existence of cuppable degrees. How-
ever, Yates(unpublished) and Cooper [3] proved that there are noncomputable
noncuppable degrees. After that, Harrington and Shelah were able to employ
the cupping/noncupping properties to show that the theory of the c.e. degrees
under relation ≤ is undecidable. Cuppable and noncuppable degrees were further
studied later. See Harrington [7], Miller [10], Fejer and Soare [6], Ambos-Spies,
Lachlan and Soare [1], etc..

In [13], Slaman and Steel proved that each nonzero degree below 0′ has a
1-generic complement. Thus, for any nonzero c.e. degree a, there is a 1-generic
degree d cupping a to 0′. In [12], Seetapun and Slaman proved that for any given
nonzero c.e. degree b, there is a minimal degree m cupping b to 0′. Cooper and
Seetapun, and independently Li [9], announced that there is a degree below 0′

cupping every nonzero c.e. degree to 0′. Recently, Lewis [8] proved that there is
a minimal degree cupping every nonzero c.e. degree to 0′.

A natural generalization of computably enumerable sets is the n-c.e. sets. A
set is n-c.e. if A has an effective approximation {As}s∈ω such that A0 = ∅ and
for all x, |{s : As(x) �= As+1(x)}| ≤ n. Obviously, the 1-c.e. sets are just the
c.e. sets and ∪n{A : A is n-c.e.} is just the Boolean algebra generated by the
c.e. sets.

Ershov [4] and [5] extended the hierarchy of n-c.e. sets to transfinite levels.
In particular, the ω-c.e. sets are those having the following characterization:
A ⊆ ω is ω-c.e. if and only if there are two computable functions f(x, s), g(x)
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such that for all x ∈ ω, (a) f(x, 0) = 0, (b) lims f(x, s) ↓= A(x), and (c)
|{s : f(x, s) �= f(x, s+ 1)}| ≤ g(x).

An n-c.e. degree is a degree containing an n-c.e. set, while an ω-c.e. degree is
a degree containing an ω-c.e. set.

In this paper, we study those ω-c.e. degrees cupping nonzero c.e. degrees to
0′. In [2], Arslanov proved that for any n > 1, every nonzero n-c.e. degree is
cuppable to 0′ via an incomplete 2-c.e. degree. This provides an elementary
difference between the structures of c.e. degrees and n-c.e. degrees, where n ≥ 2.
However, for all n, there is no single n-c.e. degree cupping all the c.e. degrees to
0′. In this paper, we show the existence of ω-c.e. degree cupping every nonzero
c.e. degree to 0′.

Theorem 1. There is an ω-c.e. degree d < 0′ such that for any nonzero c.e.
degree w, w ∪ d = 0′.

Theorem 1 is the best possible since d cannot be n-c.e. for any n. We don’t know
whether d in Theorem 1 can be minimal.

Our terminology is quite standard; a reference is Soare [14] or Odifreddi [11].

2 Requirements and Strategies

To prove Theorem 1, we need to construct an ω-c.e. set D and an auxiliary c.e.
set E satisfying the following requirements:

Pe: E �= ΦD
e .

Re: ΓWe,D
e = K or We is computable.

Obviously, the P requirements ensure that D is not complete, and the R require-
ments ensure that D cups each noncomputable c.e. set to K. In the following
we describe how to satisfy these requirements.

2.1 A P-Strategy

A Pe-strategy attempts to find an x such that E(x) �= ΦD
e (x), which is the

Friedberg-Muchnik diagonalization strategy.

2.2 An R-Strategy

An Re strategy attempts to code K into We ⊕ D via a partial computable
functional Γe (constructed by us), if We is noncomputable. That is, given x,
Re defines ΓWe,D

e (x) = K(x) first with the use γe(x) a big number. If later,
K(x) changes (from 0 to 1), then we undefine ΓWe,D

e (x) by a change of We or
a change of D below γe(x). If We is noncomputable, then ΓWe,D

e will be totally
defined and computes K correctly. The use function γe will have the following
properties:
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(1) If γe(x) is defined for the first time at stage s, or γe(x) is requested to be
defined as a big number, then define it as big and γe(x)[s] �∈ We,s ∪ Ds.
Otherwise, redefine γe(x) as γe(x)[s0] where s0 is the last stage at which
γe(x) is defined.

(2) For any x, s, if ΓWe,D
e (x)[s] ↓, then γe(x)[s] �∈ Ds;

(3) For any x, y, if x < y, and γe(y) is defined at stage s, then γe(x) is also
defined at stage s with γe(x)[s] < γe(y)[s];

(4) If ΓWe,D
e (x)[s] ↓= 0 and x enters K at stage s+ 1, then we will ensure that

at stage s+ 1, W or D has changes below γe(x)[s], undefining ΓWe,D
e (x).

(5) ΓWe,D
e (x) is undefined at stage s if We or D has a change below γe(x)[s].

(6) If ΓWe,D
e (x)[s1] ↓, We,s1 � γe(x)[s1] = We,s2 � γe(x)[s1], Ds1 � γe(x)[s1] =

Ds2 � γe(x)[s1], where s1 < s2, then ΓWe,D
e (x)[s2] is also defined, and the

uses γe(x)[s2], γe(x)[s1] are the same.

Obviously, if (1) − (6) are met and ΓWe,D
e is total, then ΓWe,D

e computes K
correctly, satisfying Re.

2.3 A P-Strategy Below an R-Strategy

As pointed out before, a single Pe strategy is exactly a Friedberg-Muchnik di-
agonalization strategy. However, the situation becomes complicated if Pe works
below one R-strategy, Ri say, since Pe may be injured by the enumeration (to
rectify ΓWi,D

i ) of Ri infinitely often. The interaction between the P and R
strategies turns the construction of D into a 0′′′ argument.

We assume the readers are familiar with the tree construction. Let α be an
R strategy, and β be a P strategy with α ⊂ β (i.e. α has higher priority). In
the following we use e(α) and e(β) to denote the indices of the corresponding R
and P requirements, and for the R-strategy α, we write Wα for We(α).

Suppose that β chooses xβ and finds that ΦD
e(β)(xβ)[s] converges at stage s.

β’s action is to put xβ into E, to make a disagreement between E and ΦD
e(β).

However, this disagreement is temporary since it is possible that later, to code
K into Wα ⊕D, α enumerates some number γα(y) into D, with γα(y) less than
ϕe(β)(xβ). If so, the computation ΦD

e(β)(xβ) will be changed or injured, and we
need to choose another xβ for the diagonalization. If such a procedure happens
infinitely often, then β cannot be satisfied because β’s diagonalizations are all
injured by α’s enumerations.

To deal with this, β employs the idea of “capricious destruction” method, to
force Wα to change on small numbers, which will allow us to lift the γα uses to
big numbers. Particularly, γα uses will be lifted above ϕe(β)(xβ). In this case,
we will say that the computation ΦD

e(β)(xβ) is clear of γα uses and ΦD
e(β)(xβ) is

a believable computation relative to α. β now performs the diagonalization only
when β sees that the computation ΦD

e(β)(xβ) is clear of γα uses, since in this
way, α’s further enumerations are all bigger than ϕe(β)(xβ), and will not change
this computation. On the other hand, if Wα does not have such changes, then
ΦD

e(β)(xβ) is not believable, but in this case, we can show that Wα is computable,
and we say that Ri is satisfied at β.
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β works as follows. First define k(β) as a big number, and in the remainder
of the construction, whenever K changes below k(β), reset β by canceling all
the parameters of β, except k(β). k(β) is referred to as the threshold of β. Since
k(β) is a fixed number, we can assume that K does not change below k(β) any
more.

Let s0 be the last stage at which β is reset. Without loss of generality, suppose
that ΦD

e(β)(xβ) converges to 0 at stage s1 ≥ s0. Then instead of enumerating xβ

into E immediately, β puts γα(k(β))[s1] into D, to undefine γα(z) for those z ≥
k(β), and requests that when ΓWα,D

α (z), z ≥ k(β), is redefined later, then γα(z)
will be defined big. Particularly, γα(z) is defined bigger than ϕe(β)(xβ)[s1]. Define
fβ,α(x) = Wα(x)[s1] for all those x ≤ γα(k(β))[s1] if fβ,α(x) is not defined. Wait
for Wα to change below γα(k(β))[s1]. The enumeration of γα(k(β))[s1] into D
prevents β from being injured by α’s further enumerations. However, note that
enumerating γα(k(β))[s1] into D can change the computation ΦD

e(β)(xβ) (this
kind of injuries are called “capricious injuries”).

If Wα changes below γα(k(β))[s1] later, at stage s2 say, then β can take
γα(k(β))[s1] out of D to recover the computation ΦD

e(β)(xβ) to ΦD
e(β)(xβ)[s1],

which is equal to 0. The change of Wα below γα(k(β))[s1] undefines all ΓWα,D
α (z)

with z ≥ k(β), and when ΓWα,D
α (z) is defined again, γα(z) will be defined bigger

than ϕe(β)(xβ)[s1], and the enumeration of γα(z) will not injure ΦD
e(β)(xβ) any-

more, and β succeeds in preserving this computation. Now put xβ into E, and
we will have

E(x) = 0 �= 1 = ΦD
e(β)(xβ)[s1] = ΦD

e(β)(xβ),

and Pe is satisfied permanently.
If Wα has no changes below γα(k(β))[s1], then β’s attempt at stage s1 (to

protect ΦD
e(β)(xβ)) fails. However, in this case, we will have that Wα will not

change below γα(k(β))[s1]. As a consequence, fβ,α computes Wα on arguments
less than γα(k(β))[s1] correctly.

By iterating this process, we have two possibilities.
One possibility is that finally, Wα changes on some z, resulting in fβ,α(z) �=

Wα(z). Then Wα(z)’s change makes the corresponding computation ΦD
e(β)(xβ)

clear of the γα uses, and xβ is enumerated into E, satisfying Pe. Note that in
this case, fα,β is defined only finitely often.

The other possibility is that Wα(z) never changes after fβ,α(z) is defined.
In this case, β cannot find a computation being clear of the γα uses, but if
ΦD

e(β)(xβ) converges to 0 infinitely often, then fβ,α will be defined infinitely
many times, and hence compute Wα correctly. Thus Wα is computable, and as
a consequence α is satisifed at β. To satisfy Pe, we need to set up a back-up
strategy β′ ⊃ β, which knows that Wα is computable, and that the γα(k(β))-
uses are in increasing order. β′ will not be injured by α’s enumerations in the
following sense. β′ believes that a computation ΦD

e(β)(y) is correct, or cannot be
injured by α’s further enumerations, if γα(k(β)) is bigger than ϕe(β)(y). If β′ finds
that ΦD

e(β)(y) converges to 0 via a believable computation, then putting y into E
will make
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E(y) = 1 �= 0 = ΦD
e(β)(y),

and Pe is satisfied at β′. β′ is actually a standard Friedberg-Muchnik diagonal-
ization strategy (modulo finitely many delays).

The idea above can be described in terms of cycles. During the construction,
β runs (maybe infinitely) many cycles for α, all of which define fβ,α jointly,
where we say that cycle α◦m has priority higher than cycle α◦n if m < n. After
β defines k(β) and xβ , β starts cycle α◦0 first. Generally, cycle α◦n works as
follows:

(1) Wait for a stage sn such that ΦD
β (xβ)[sn] converges to 0.

(2) Put γα(k(β))[sn] into D. For any y < γα(k(β))[sn], define fβ,α(y)=Wα,sn(y)
if fβ,α(y) is not defined so far. Start cycle α◦(n+1) and simultaneously, wait
for Wα to change below γα(k(β))[sn].

(3) If Wα changes below γα(k(β))[sn], then take γα(k(β))[sn] out, and the com-
putation ΦD

β (xβ) is clear of γα-uses. Put xβ into E, and declare that β is
satisfied.

β has outcomes: α◦i <L α◦0 <L α◦1 <L α◦2 <L · · · <L α◦n <L · · · <L d.
Here, d denotes the outcome that xβ is enumerated into E eventually (some
cycle reaches (3), and β is satisfied), α◦n denotes the outcome that β waits at
cycle α◦n (1) forever, and α◦i denotes the outcome that all cycles of β stop at
(2), waiting for Wα to change (in this case, β defines fβ,α infinitely often, and
as a consequence, Wα is computable. ).

If β has outcome α◦i, then β cannot satisfy Pe, and ΓWα,D
α (k(β)) diverges.

However, in this case, Wα is computable, and hence α is satisfied at β.

2.4 A P-Strategy Below R-Strategies

Now consider the case when a Pe strategy β works below many R strategies.
First we assume that β works below two R-strategies, α1 and α2, with α1 ⊂ α2

(i.e., α1 has higher priority). As above, β first defines its threshold k(β) as a big
number, and choose xβ as its attack number. β attempts to find a computation
ΦD

β (xβ) ↓= 0, and if this computation is clear of both Γα1 , Γα2 uses, then β puts
xβ into E, satisfying Pe. To make ΦD

β (xβ) clear of the γα1 , γα2 uses, β iterates
the capricious destruction method described above twice, and runs the following
(maybe infinitely many) cycles:

α1
◦0, α1

◦0̂ α2
◦0, α1

◦0̂ α2
◦1, α1

◦0̂ α2
◦2, · · · , α1

◦0̂ α2
◦n, · · · ,

α1
◦1, α1

◦1̂ α2
◦0, α1

◦1̂ α2
◦1, α1

◦1̂ α2
◦2, · · · , α1

◦1̂ α2
◦n, · · · ,

· · · ,
α1

◦m,α1
◦mˆα2

◦0, α1
◦mˆα2

◦1, α1
◦mˆα2

◦2, · · · , α1
◦mˆα2

◦n, · · · ,
· · · ,

with cycle α1
◦0̂ α2

◦0 started first. Here cycle α1
◦m1ˆα2

◦m2 always has priority
higher than cycle α1

◦n1ˆα2
◦n2, if m1 < n1 or m1 = n1 and m2 < n2.

Cycle α◦
1mˆα◦

2n works as follows:
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(1) Wait for a stage s such that ΦD
β (xβ)[s] converges to 0.

(2) Put γα2(k(β))[s] into D. For any y < γα2(k(β))[s], if fβ,α2(y) is not defined,
define fβ,α2(y) = Wα2,s(y). Start cycle α◦

1mˆα◦
2(n + 1) and simultaneously,

wait for Wα2 to change below γα2(k(β))[s].
(3) Let t be the first stage after sα2,n such that Wα2 has changes below

γα2(k(β))[s]. Take γα2(k(β))[s] out, and declare that the computation
ΦD

β (xβ) is clear of the Γα2 uses.
Put γα1(k(β))[t] = γα1(k(β))[s] into D. For any y < γα1(k(β))[t], if fβ,α1(y)
is not defined, define fβ,α1(y) = Wα1,s(y). Start cycle α◦

1(m + 1)̂ α◦
20 and

simultaneously, wait for Wα1 to change below γα1(k(β))[t].
(4) Let t′ be the first stage after t such that Wα1 changes below γα1(k(β))[t].

Take γα1(k(β))[s] out, and declare that the computation ΦD
β (xβ) is clear of

the γα1 uses. Go to (5).
(5) Put x into E, and declare that Pe is satisfied at β.

β has the following outcomes:

α1
◦i,

α1
◦0̂ α2

◦i, α1
◦0̂ α2

◦0, α1
◦0̂ α2

◦1, α1
◦0̂ α2

◦2, · · · , α1
◦0̂ α2

◦n, · · · ,
α1

◦1̂ α2
◦i, α1

◦1̂ α2
◦0, α1

◦1̂ α2
◦1, α1

◦1̂ α2
◦2, · · · , α1

◦1̂ α2
◦n, · · · ,

· · · ,
α1

◦mˆα2
◦i, α1

◦mˆα2
◦0, α1

◦mˆα2
◦2, · · · , α1

◦mˆα2
◦n, · · · ,

· · · ,
d.

If we let i be less than 0, then we can order the outcomes of β linearly:
outcome α1

◦m1ˆα2
◦n1 is on the left of α1

◦m2ˆα2
◦n2, if m1 < m2 or m1 = m2

and n1 < n2. Outcome α1
◦i is on the left of all other outcomes, and d is on the

right of all other outcomes.
If β has outcome α1

◦mˆα2
◦i, then as specified above, Wα2 is computable,

α2 is satisfied at β and we need to arrange a back-up strategy for Pe below
β�〈α1

◦mˆα2
◦i〉, β′ say. Then β′ only need to deal with the coding of the con-

struction of ΓWα1 ,D
α1 , which is the one discussed in Section 2.3.

If β has outcome α1
◦i, then Wα1 is computable, and α1 is satisfied at β.

However, in this case, α2 is injured at β since whenever an α1 cycle is started, α2
cycle stops, making γα2(k(β)) increased. As a consequence, γα2(k(β)) diverges.
Also since fβ,α2 does not agree with Wα2 on infinitely many arguments, we
cannot have that Wα2 is computable. Because of this, we arrange another R2
strategy, a back-up strategy for R2, α′

2 say, below β�〈α1
◦i〉. The P strategies

below α′
2 know that both γα1(k(β)), γα2(k(β)) diverge, they only need to deal

with the construction of Γα′
2
, which is the case discussed in Section 2.3.

Generally, if a Pe strategy β works below R strategies α1 ⊂ α2 ⊂ · · · ⊂
αj ⊂ β, then β attempts to find a computation ΦD

β (xβ) ↓= 0, and after see-
ing that this computation is clear of the Γα1 , Γα2 , · · · , Γαj uses, β puts xβ

into E, satisfying Pe. β may run infinitely many cycles during the construc-
tion, α1

◦m1ˆα2
◦m2ˆ · · ·αi

◦mi with 1 ≤ i ≤ n and cycle α1
◦0̂ α2

◦0̂ · · ·αj
◦0
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started first. Here cycle α1
◦m1ˆα2

◦m2ˆ · · ·ˆαi1
◦mi1 has priority higher than

cycle α1
◦n1ˆα2

◦n2ˆ· · ·ˆαi2
◦ni2 , if α1

◦m1ˆα2
◦m2ˆ· · ·ˆαi1

◦mi1 is an initial seg-
ment of α1

◦n1ˆα2
◦n2ˆ · · ·ˆαi2

◦ni2 or there is a least l < i1, i2 such that for all
i < l, mi = ni, and ml < nl.

Cycle α1
◦n1ˆα2

◦n2ˆ · · ·ˆαj
◦nj works as follows:

(1) Wait for a stage sαj ,nj such that ΦD
β (xβ)[sαj ,nj ] converges to 0.

(2) Put γαj (k(β))[sαj ,nj ] intoD. For any y < γαj (k(β))[sαj ,nj ], define fβ,αj(y) =
Wαj ,sαj,n(y) if fβ,αj (y) is not defined so far. Start cycle

α1
◦n1ˆα2

◦n2ˆ· · ·ˆαj
◦(nj + 1)

and simultaneously, wait for Wαj to change below γαj (k(β))[sαj ,nj ].
(3) Let tαj ,nj be the first stage after sαj ,nj such that Wαj has changes below

γαj (k(β))[sαj ,nj ]. Take γαj (k(β))[sαj ,nj ] out, and declare that the compu-
tation ΦD

β (xβ) is clear of the γαj uses. Start cycle α1
◦n1ˆα2

◦n2ˆ· · ·ˆαj−1
◦

nj−1, and also cancel all αj cycles.

Cycle α1
◦n1ˆα2

◦n2ˆ · · ·ˆαi
◦ni, 1 < i < j, works as follows:

(1) Put γαi(k(β))[tαi+1,ni+1 ] = γαi(k(β))[sαj ,nj ] into D. For any number y <
γαi(k(β))[tαi+1,ni+1 ], define fβ,αi(y) = Wαi,tαi+1,ni+1

(y) if fβ,αi(y) is not
defined so far. Start cycle α1

◦n1ˆα2
◦n2ˆ· · ·αi

◦(ni +1)̂ αi+1
◦0̂ · · ·αj

◦0 and
simultaneously, wait for Wαi to change below γαi(k(β))[tαi+1,ni+1 ].

(2) Let tαi,ni be the first stage after tαi+1,ni+1 such that Wαi changes below
γαi(k(β))[tαi+1,ni+1 ]. Take γαi(k(β))[tαi+1,ni+1 ] out, and declare that the
computation ΦD

β (xβ) is clear of the γαi uses. Start cycle

α1
◦n1ˆα2

◦n2ˆ · · ·αi−1
◦(ni−1 + 1)̂ αi

◦0̂ · · ·αj
◦0.

Cycle α1
◦n1 works as follows:

(1) Put γα1(k(β))[tα2,n2 ] = γαi(k(β))[sαj ,nj ] into D. For any y < γα1(k)[tα2,n2 ],
define fβ,α1(y) = Wα1,tα2,n2

(y) if fβ,α1(y) is not defined so far. Start cycle
α1

◦(n1+1)̂ α2
◦0̂ · · ·αj

◦0 and simultaneously, wait for Wα1 to change below
γα1(k(β))[tα2,n2 ].

(2) Let tα1,n1 be the first stage after tα2,n2 such that Wα1 has changes below
γα1(k(β))[tα2,n2 ]. Take γα1(k(β))[tα2,n2 ] out, and declare that the computa-
tion ΦD

β (xβ) is clear of the γα1 uses. Go to (3).
(3) Put xβ into E and declare that β is satisfied.

β has the following outcomes:

– infinitary (Σ3) outcomes: α1
◦i, α1

◦m1ˆα2
◦i, · · · , α1

◦m1ˆα2
◦m2ˆ · · ·ˆαj

◦i;
– finitary outcomes: α1

◦m1ˆα2
◦m2ˆ· · ·ˆαj

◦mj , where 1 ≤ l ≤ j;
– diagonalization outcome: d.
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Now suppose that two P strategies, β1, β2 are working below the R strate-
gies, Rα1 , · · · ,Rαj . Without loss of generality, we assume that β2 is below β1’s
outcome α1

◦m1ˆ· · ·ˆαl
◦i. Then β2 knows that γαr (k(β1)) with l ≤ r ≤ j are

all defined unboundedly, and β2 can then apply the strategy described above to
those believable computations, where a computation ΦD

β2
(xβ2)[s] is β2-believable

if the corresponding use ϕβ2(xβ2)[s] is less than all γαr (k(β1)), where l ≤ r ≤ j,
uses.

So far, for just one P strategy, numbers can be put into and moved out of D
at most once. It seems that we can make D d.c.e.. However, when we consider
the interactions between more P strategies, we will see that it is necessary to
make D ω-c.e.. We discuss this below.

The simplest case is when only two P strategies β1 and β2 are involved, where
β2 works below an infinitary outcome O of β1, α1

◦m1ˆα2
◦m2ˆ · · ·ˆαl

◦i say, then
it may happen that at stage t, β1 starts an αl−1 cycle and β1 needs to recover
the computation ΦD

β1
(xβ1) to the one at a previous stage s. However, between

stages s and t, β2 may have changed D(z) for its own sake, and z is less than
the use ϕβ1(xβ1)[s]. In this case, at stage t, β1 will change D(z) back to D(z)[s]
(because β1 has higher priority). With this in mind, whenever we switch the
outcome of β from α1

◦m1ˆα2
◦m2ˆ· · ·ˆαl

◦i to α1
◦m1ˆα2

◦m2ˆ · · ·ˆαl−1
◦i, we

change D(z) to Ds(z), where z is a number enumerated into D by some strategy
below α1

◦m1ˆα2
◦m2ˆ · · ·ˆαl

◦i. We refer such an action as returning the status
of D to stage s relative to β�

1 〈O〉. Thus, if at stage s, z is in Ds, then at stage
t, z is put into D again, and the membership D(z) changes three times in the
construction. Generally, if z is associated with a P-strategy β, and there are
n many P-strategies β′ with higher priority than β and β guesses that β′ has
infinitary outcome, then D(z) can change at most n+1 many times. Only these
strategies and β itself can change D(z) in the whole construction. If we choose
z big, then we can ensure that D(z) can change at most z many times. This
ensures that the constructed set D is ω-c.e..

Note that in the above, β2 is injured, but it does not matter, since currently,
at stage t, β2 is initialized.

3 Construction

The construction is a 0′′′-priority argument, which proceeds on a priority tree.
In the construction, the index of a node ξ is always the index of the requirement
on which ξ works. That is, if ξ is an Re or a Pe strategy, then e(ξ) is defined as e.
We also write We(ξ) as Wξ and ΦD

e(ξ) as ΦD
ξ . Furthermore, if ξ is an Re strategy,

then ξ defines a partial computable functional Γξ, and if ξ is a Pe strategy, then
ξ defines xξ, a threshold k(ξ), and also partial computable functions fξ,α for
those R strategies α active at ξ.

Construction

Without loss of generality, suppose that K is enumerated at odd stages and that
exactly one element is enumerated into K at each odd stage.
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Stage 0: Let D and E be empty. Initialize all the strategies on T .

Stage s+ 1
(I) s+ 1 is odd. Let k be the number in Ks+1 −Ks. For any strategy ξ with

k(ξ) ≥ k, reset ξ. Go to the next stage.
(II) s+ 1 is even. There are two steps.

Step 1: We define by substages a partial function σs+1 of length at most s+ 1,
as the current approximation of the true path. Say that a strategy ξ is visited at
stage s+ 1, if ξ is eligible to act at a substage t of stage s + 1. First, let λ, the
root node, be eligible to act at substage 0.

Substage t > 0: Given ξ = σs+1 � t. Initialize all the nodes on the right of ξ. If
t = s + 1, then define σs+1 = ξ and initialize all the nodes with lower priority.
Go to step 2. Otherwise, there are two cases:

Case 1. ξ = α is an R-strategy.
If there are x such that ΓWα,D

α (x)[s] ↓�= Ks+1(x), then let k be the least one
and enumerate γα(k) into D, undefining ΓWα,D

α (x) for all x ≥ k. Otherwise, do
nothing.

Let α�〈1〉 be eligible to act at the next substage.

Case 2. ξ = β is a P-strategy.
If β is not in a cycle (that is, xβ , k(β) are not defined), then define xβ , k(β) as

big numbers. Define σs+1 = ξ and initialize all the strategies with lower priority.
Go to step 2.

Otherwise, suppose that β is in cycle α1
◦m1ˆα2

◦m2ˆ· · ·ˆαj
◦mj . For each

l ≤ j, let sl be the last stage at which γαl
(k(β))[sl] is enumerated into D to lift

the Γ
Wαl

,D
αl -uses, and check whether Wαl

has changes below γαl
(k(β))[sl].

If ‘yes’, then let αl0 be the one with the highest priority and acts as follows:

– Take γαl0
(k(β))[sl0 ] out of D, and request that γαl0

(x), x ≥ k(β), be defined
as big when defined later.

– Return the status ofD to stage sl0 relative to β�〈α1
◦m1ˆα2

◦m2ˆ · · ·ˆαl0
◦i〉.

– If l0 > 1, then put γαl0−1(k(β))[s + 1] into D, and start cycle

α1
◦m1ˆα2

◦m2ˆ · · ·ˆαl0−1
◦(ml0−1 + 1)̂ αl0

◦0̂ · · ·ˆαj
◦0.

Extend the definition of fβ,αl0−1 up to γαl0−1(k(β))[s + 1] such that for all
y < γαl0−1(k(β))[s + 1], fβ,αl0−1(y) = Wαl0−1,s+1(y).
Let β�〈α1

◦m1ˆα2
◦m2ˆ · · ·ˆαl0−1

◦i〉 be eligible to act at the next substage.
– If l0 = 1, then put xβ into E, and declare that β is satisfied at stage s+ 1.

Define σs+1 = ξ and initialize all the strategies with lower priority. Go to
step 2.

If ‘no’, then check whether ΦD
β (xβ)[s + 1] converges to 0. If ‘yes’, then put

γαj (k(β))[s+1] into D, and start cycle α1
◦m1ˆα2

◦m2ˆ · · ·ˆαj
◦(mj +1). Extend



730 A. Li, Y. Song, and G. Wu

the definition of fβ,αj up to γαj (k(β))[s+1] such that for all y < γαj (k(β))[s+1],
fβ,αj(y) = Wαj ,s+1(y). Let β�〈α1

◦m1ˆα2
◦m2ˆ· · ·ˆαj

◦i〉 be eligible to act at the
next substage. Otherwise, Let β�〈α1

◦m1ˆα2
◦m2ˆ· · ·ˆαj

◦mj〉 be eligible to act
at the next substage.

Step 2: For all R strategies α with α ⊆ σs+1, let x be the least number such that
ΓWα,D

α (x) is not defined, if ΓWα,D
α (x) is not defined before stage s+ 1 or some

P strategy requests that ΓWα,D
α (x) be defined as big number, then define it big.

Otherwise, suppose that ΓWα,D
α (x) is defined at stage s0 < s+1 and between s0

and s+ 1, no P strategy requests the lifting of γα(x). In this case, ΓWα,D
α (x) is

undefined because of Wα’s changes below γα(x)[s0]. Define ΓWα,D
α (x)[s + 1] the

same as ΓWα,D
α (x)[s0] with use γα(x)[s+ 1] the same as γα(x)[s0].

Go to the next stage.
This completes the construction of D. We can verify that the constructed D

satisfies all the requirements, which completes the proof of Theorem 1.
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On the Quotient Structure of Computably
Enumerable Degrees Modulo

the Noncuppable Ideal�

Angsheng Li, Guohua Wu, and Yue Yang

Abstract. We show that minimal pairs exist in the quotient structure
of R modulo the ideal of noncuppable degrees.

In the study of mathematical structures it is very common to form quotient
structures by identifying elements in some equivalence classes. By varying the
equivalence relations, the corresponding quotient structures often reveal certain
hidden features of the original structure. In this paper, we focus on the upper
semi-lattice of computably enumerable degrees and the equivalence relations are
induced by definable ideals.

We begin with introducing some notations and terminologies. Let R be the
class of computably enumerable degrees or simply c.e. degrees.

Definition 1. We say that a nonempty subset I of R is an ideal of R if I is
downward closed and closed under join. In other words, the following conditions
are satisfied.

(a) If a is in I and b ≤ a then b is in I;
(b) If a and b are in I, then their least upper bound, denoted by a ∨ b, is in I.

We say that an ideal I is definable if there is a first-order formula ϕ(x) over
the partial order language L = {≤} such that a c.e. degree a ∈ I if and only if
R |= ϕ(a).

Each ideal I of R naturally induced an equivalence relation ≡I as follows. For
any two c.e. degrees a and b, define

a ≤I b if and only if ∃x ∈ I(a ≤T b ∨ x),
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and
a ≡I b if and only if a ≤I b and b ≤I a.

It is easy to see that ≡I is an equivalence relation. We use [a] to denote the
equivalence class containing the c.e. degree a. The quotient structure R/I then
consists of all equivalence classes [a]. Clearly, the least element [0] is the ideal
I and the greatest element is {0′}. Furthermore, with respect to the induced
join relation, R/I is also an upper-semi lattice. We now look at some quotient
structures of R modulo some definable ideals.

The topic of definable ideals in R is beyond the scope of this paper. Some
recent developments can be found in Nies [4], Yu and Yang [7] and Jockusch,
Li and Yang [2]. All newly discovered ideals are defined by formulas involving
coding techniques, hence very complicated. Until now, there are only two proper
ideals which can be defined by relatively simple formulas: One consists of the
cappable degrees, the other of noncuppable ones. Recall:

Definition 2. 1. A c.e. degree a is called cappable if it is a half of a minimal
pair, that is, there exists a nonzero b ∈ R such that the infimum of a and b
exists and equal to 0.

2. A c.e. degree a is called noncuppable if for all incomplete degrees b ∈ R,
the join of a and b remains incomplete.

It is easy to verify from definition that the noncuppable degrees form an ideal;
and the existence of nonzero noncuppable c.e. degrees was first proved by Cooper
and Yates and later generalized by Harrington (see Miller [3]). However, it is
highly nontrivial that the cappable degrees are closed under join, in fact, it
follows from a deep result by Ambos-Spies, Jockusch, Shore and Soare [1]. We
use M to denote the ideal of cappable degrees.

In the 1980’s, partially motivated by Shoenfield conjecture (see Schwarz [5]),
people started to investigate the quotient structure R/M , for example, Ambos-
Spies and Schwarz showed that R/M satisfies the splitting property (see
Yi [6]).

Theorem 1. For any nonzero [a] in R/M , there are [a1], [a2] < [a] such that
[a1] ∨ [a2] = [a].

Later, Yi proved that R/M does not satisfy Shoenfield conjecture by showing
the following theorem:

Theorem 2 (Yi [6]). The following property holds in R/M : there are c.e. de-
grees a,b and c such that c ≤ a ≤ b, [c] < [a] and for all c.e. degrees w ≥ c,
either b ≤ w or b �≤ a ∨ w.

Until now, little is known about the quotient structure R modulo the noncup-
pable ideal. For notational simplicity let us use I to denote the ideal of non-
cuppable c.e. degrees. The main result of this paper is to show that there is a
minimal pair in the quotient structure R/I. Thus we are able to separate R/I
from R/M by an elementary property, since there is no minimal pair in the
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quotient structure R/M . Clearly R is not elementarily equivalent to R/I, as
the former has nonzero noncuppable degrees and the latter not.

We will not present the full proof in this paper, instead, we will outline the
plan of the proof. We hope that we provide enough intuition so that the interested
readers are able to complete the proof themselves.

In the structure R/I, two elements [a] and [b] form a minimal pair if and only
if [a] �= 0, [b] �= 0 and if [e] ≤I [a], [b] then [e] = 0. Thus, to build a minimal
pair in R/I, it suffices to build c.e. degrees a and b such that

a �∈ I and b �∈ I and ∀e(e ≤I a and e ≤I b ⇒ e ∈ I).

In terms of sets, it suffices to build c.e. sets A and B, whose corresponding
degrees satisfy the above conditions. Fix a complete c.e. set K. The first two
conjuncts say that A and B are cuppable, which are equivalent to

∃C[C �≡T K and A⊕ C ≡T K]
and

∃D[D �≡T K and B ⊕D ≡T K].

Proposition 1. The statement

∀w[(w ∨ a = 0′ and w ∨ b = 0′) ⇒ w = 0′]

implies the last conjunct in the minimal pair definition.

Proof. Suppose e ≤I a and e ≤I b. Then there is an x ∈ I such that e ≤ a ∨ x
and e ≤ b∨ x. We show that e ∈ I. If w ∨ e = 0′, then a∨w ∨ x ≥ e∨w = 0′.
As x is noncuppable, a∨w = 0′. Similarly b∨w = 0′. By assumption, w = 0′,
which shows that e ∈ I.

Theorem 3. There exist c.e. degrees a and b such that [a] and [b] form a
minimal pair in R/I.
We construct c.e. sets A and B together with their companion c.e. sets C and
D respectively such that they form two splitting pairs of K, i.e., C and D are
incomplete and

A⊕ C ≡T K and B ⊕D ≡T K,

and A and B share no incomplete cupping witnesses.
More precisely, we need to satisfy the following requirements:

– P : (Splitting requirement) We build Turing functionals Γ and Δ such that
ΓAC = K and ΔBD = K.

Fix recursive enumerations of Turing functionals {Θe}e∈ω, {Φe}e∈ω and
{Ψe}e∈ω.

– N2e: ΘC
e �= E; and

– N2e+1: ΘD
e �= E, where E is an auxiliary set built by us.

– Re: If ΦAWe0
e1 = Ψ

BWe0
e2 = F then there is a Turing functional Ωe such

that ΩWe0
e = K, where e = 〈e0, e1, e2〉 under standard coding and F is an

auxiliary c.e. set built by us.
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Note that the requirements Ne and Re together imply that A and B are
incomplete: IfA ≡T K then there exists some Φ such that ΦAD = K; on the other
hand,ΔBD = K; by R-requirements,D ≡T K, contradicting toN -requirements.

First Approximation of Strategies. We give the splitting requirement P the
highest priority. The construction will be divided into even and odd stages. The
even stages are devoted to the definition and correction of Γ and Δ, which will
be done outside the priority tree; whereas the odd stages are devoted to the
satisfactions of N and R, which will be done on the priority tree.

At even stages, we satisfy the P -requirements as follows: Choose the least k
such that either ΓAC(k) = 0 �= K(k) or ΔBD(k) = 0 �= K(k) or ΓAC(k) is
undefined or ΔBD(k) is undefined. If it is the first case, that is, ΓAC(k) = 0 �=
K(k), then enumerate the use γ(k) into C, redefine ΓAC(k) = 1 with use −1. If it
is the third case, that is, ΓAC(k) is undefined, then define ΓAC(k) = K(k) with
fresh use γ(k). We do it symmetrically for functional Δ. These off-tree activities
have conflicts with the N -requirements, which we will solve in a moment.

We now look at the activities on the tree, which happen during odd stages.
The strategy to satisfy an N -requirement, say N2e, is as follows: Pick a fresh

witness x targeting E, wait until ΘC
e (x) ↓= 0, put x into E and preserve C

up to the use θ(x). The requirement has two outcomes: 1 for waiting and 0
for success. Naturally we order 0 to the left of 1 on the priority tree. The net
effect is a finitary restraint on C. Again, we delay the discussion of the conflict
with P . The strategy for N2e+1 is done by replacing C by D and Γ by Δ. To
avoid confusion, each strategy will choose its witness x from its own infinite
computable set. This will be done by letting α choose its witnesses from ω[α].

The strategy to satisfy the R-requirementRe is as follows: We will have a main
R-strategy Re and infinitely many substrategies Se,i. The job for the mother
node α is to measure the length of agreement function l(α, s) defined by

l(α, s) = μy[ΦAWe0
e1 (y)↑ or ΨBWe0

e2 (y)↑ or ΦAWe0
e1 (y)↓�= Ψ

BWe0
e2 (y)↓

or (ΦAWe0
e1 (y)↓= Ψ

BWe0
e2 (y)↓= z but z �= F (y))].

We say that the stage s is α-expansionary, if s = 0 or l(α, t) < l(α, s) for all
t < s. The outcome of R at node α is either ∞, indicating s is an α-expansionary
stage, or 0 when s is not.

Extending the outcome αˆ0, there will be no substrategies working for Se,i.
Let β be a node extending αˆ∞ and working for the subrequirement Se,i. β is
responsible for defining ΩW (i) and keeping the use ω(i) > max{ϕ(zi), ψ(zi)} for
some number zi. β acts (naively) as follows:

– β first chooses a fresh number zi, in particular, zi �∈ F at this moment.
– Wait until l(α, s) > zi.
– Select ω(i) > max{ϕ(zi), ψ(zi)}, define ΩW (i) = K(i) with use ω(i) and set

a restraint on A and B of amount ω(i).
– If either the uses ϕ(zi)[s] �= ϕ(zi)[s−] or ψ(zi)[s] �= ψ(zi)[s−], where s− is

the previous stage at which β was accessible, let ∞ be the outcome.
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– When i enters K at some later stage t, we enumerate zi into F , this zi will
be discarded forever (of course, some other fresh zi might be chosen later).
At the next α-expansionary stage, W must have changed below ω(i), since
we have kept A- or B-side (in fact, we did more than enough, we have kept
both), thus we are able to redefine ΩW (i).

β will have two outcomes: ∞ for divergence of ϕ(zi) or ψ(zi) and 0 for the
successful definition and correctness of ΩW (i) = K(i).

However, this naive version of β has problems about the consistency of Ω:
Once ΩW (i) is defined on the tree by a node β, any other node must respect
β’s restraint. This would bring conflicts to the nodes to the left of β. To address
this issue, we modify the strategy as follows: Before a node σ (not necessarily
β) is visited, we must make sure that all ΩW

e (i), which were defined by some
nodes to its right, are undefined (we will refer to it as “Clearing Ω-use”) . More
precisely, suppose that we are at a node σ− on the priority tree, all Ω-uses to
its right have been cleared and we want to visit σ. Before visiting σ, we check
whether there is ΩW (i) which is defined by some node β extending σ− and to
the right of σ. If no, we can visit σ. If yes, we must put all zβ(i) into F and put
a restraint on either A or B side. When σ− is visited again for the next time,
W must have changed below Ω(i), hence all Ω-uses are cleared. We then can
visit σ.

By making this modification, we may select a complete c.e. set K0 which is a
subset of even numbers; and use F which is a subset of odd number solely for
clearing Ω-uses. The revised Re requirement looks like:

– Re: If ΦAWe0
e1 = Ψ

BWe0
e2 = K0 ∪ F then there is a Turing functional Ωe such

that ΩWe0
e = K0, where e = 〈e0, e1, e2〉 under standard coding and F is an

auxiliary c.e. set built by us.

The difference now is that we do not act to correct ΩW , which becomes auto-
matic. Instead, we must clear ΩW -uses.

Revised Strategies. We now discuss the conflicts among the strategies.
The actions done off the tree have no direct conflicts with the R- and S-

strategies, as the numbers are put into the “buffer” sets C and D. However these
actions would make C and D complete, a direct threat to the N -strategies. For
this reason N -strategies must divert some of the γ-uses into A. (We state the
strategies only for N2e, as it is symmetric forN2e+1.) We modify the N -strategies
as follows.

– Besides doing the Friedberg-Muchnik diagonalization, N -strategy picks a
threshold j. (This j will be larger than all γ-uses mentions by any S-strategy
β ≤ N , where ≤ is the tree order.)

– Once the threshold is chosen, N will lift all γ(v) for v ≥ j over the use θ(x).
More precisely:
• For all v ≥ j, if γ(v) is defined and γ(v) < θ(x), then put γ(j) (need to

add conventions for uses in the introduction part) into A, and declare
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all ΓAC(v) for v ≥ j undefined. Stop the construction and initialize all
nodes extending and to the right of N . We stop the construction because
we want to put elements into either A or B but not both. It is worth
mentioning that being able to put elements into one side makes our
strategy different from the usual noncuppable strategy.

• If w enters K for some w < j, then we initialize the N -strategy.

A crude analysis of the impact of the revised N -strategy goes as follows: If it
is on the true path, then its threshold j will be fixed and it is so big that γ(j)
will not injure any S-node ≤ N . Furthermore, after the stage at which K � j is
fixed, say t, N will never be initialized by the off-tree activities. After stage t,
N will act at most once. Thus the initialization of S-node due to the action of
N happens only finitely often. Eventually, S-strategy will be successful.
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Abstract. Let f : ω → ω be a total function and f̂ = {〈x, y〉 : x ∈
ω & y ≤ f(x)}. A set A ⊆ ω is called bounded total if A = f̂ for
some total function f . In this paper we study enumeration degrees of the
bounded total sets.

We use notations and terminology similar to those of the monograph [11]. We
recall those which will be used in this article. Let ω denote the set of positive
integers, A,B, . . . , X, Y (with or without indices) will be used to denote subsets
of ω; A = ω−A; cA(x) = {(x, 1) : x ∈ A}∪{(x, 0) : x /∈ A} be the characteristic
function of A. Let as usual Du be the finite set with canonical index u, 〈x, y〉
be the Cantor number of an ordered pair (x, y). If z is the Cantor number of
(x, y) then let 〈z〉1 = x and 〈z〉2 = y. Let also 〈A〉1 = {x : ∃y(〈x, y〉 ∈ A)} and
〈A〉2 = {y : ∃x(〈x, y〉 ∈ A)}. Let Wt be the computably enumerable (c.e.) set
with c.e. index t, K = {t : x ∈ Wt} and K0 = {〈x, t〉 : x ∈ Wt}.

Given a partial function α : ω → ω let dom(α), rang(α) and graph(α) =
{〈x, α(x)〉 : x ∈ dom(α)} be the domain, the range and the graph, respectively,
of α. We restrict the use of the symbols f, g, h only to denote total functions, i.e.
dom(f) = dom(g) = ω. If graph(α) ⊆ graph(β) then we shall write α ⊆ β for
brevity. A set A is said to be single-valued, if A = τα for some partial function
α. Let α̂ = {〈x, y〉 : x ∈ dom(α) & y ≤ α(x)}. We shall write α|a = β if
dom(β) ⊆ {0, . . . , a} & ∀x[x ≤ a ⇒ [x ∈ dom(β) ⇐⇒ x ∈ dom(α)]] & ∀x[x ∈
dom(β) ⇒ α(x) = β(x)].

We recall, [3], that A ≤e B (A is enumeration reducible to B orA is e-reducible
to B), if there is a uniform algorithm for enumerating A given any enumeration
of B. Formally,

A ≤e B ⇐⇒ (∃t)(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wt & Du ⊆ B]].

Let Φt : 2ω → 2ω : Φt(X) = {x : (∃u)[〈x, u〉 ∈ Wt & Du ⊆ X ]}. Then A ≤e

B ⇐⇒ (∃t)[A = Φt(B)]. Φt is called the enumeration operator or e-operator with
c.e. index t. Let as usualA ≡e B ⇐⇒ A ≤e B &B ≤e A, let de(A) = {B : B ≡e

A} be the e-degree of A and finally let de(A) ≤ de(B) ⇐⇒ A ≤e B. It is easy to
see that this defines a partial ordering relation on the e-degrees. Bold Latin letters
range over e-degrees and the corresponding light capital letters automatically
denotes a representative set of the same degree. We will write for partial function
α, β α ≤e A or α ≤e β if graph(α) ≤e A or graph(α) ≤e graph(β), respectively
and dege(α) in place of dege(graph(α)). Denote by De the set of the e-degrees

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 737–745, 2006.
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partially ordered by ≤. It is well known that De forms an upper semilattice with
least element 0e = {Wt : t ∈ ω} in which the least upper bound of the e-degrees
a and b is a∪b = dege(A⊕B) where A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Following K. McEvoy [5] we define a jump operator ′ on De. Let KA = {x :
x ∈ Φx(A)} and J(A) = KA ⊕ K̄A. It is clear that J(A) ≡e A ⊕ K̄A. Let
a′ = (de(A))′ = de(J(A)).

An e-degree is said to be total if it contain the graph of some total function. It
is clearly that an e-degree a is total iff it contain the set A such that A ≡e A⊕A.
We denote by T the partial ordering set of all total e-degrees. As for any A and
B

A ≤T B ⇐⇒ A⊕A ≤e B ⊕B,

then there is the isomorphism between DT and T.
Yu. Medvedev announced in [6] that there is a non-c.e. set A such that

(∀f)[f ≤e A ⇒ f is computable].

In Rogers’s monograph [8,p.280] this result was proved in the following way:

(∃α)[α is not partial computable & (∀f)[f ≤e α → f is computable]].

It is clear that dege(α) is not total, i.e. it is non-total. Thus De − T �= ∅. J.
Case [2] called Medvedev’s sets quasi-minimal and their degrees quasi-minimal
e-degrees.

One of a relativizations of the notion of quasi-minimality is known as c-quasi-
minimality. A set A is called C-quasi-minimal (and the e-degree a is called c
-quasi-minimal) if C <e A and (∀f)[f ≤e A → f ≤e C]. The existence of
c-quasi-minimal e-degrees for any c ∈ De can be received from the proof of
Medvedev’s theorem in [8].

In [9] L. Sasso studies three reducibilities on partial functions which are near
to e-reducibility (and agree with e-reducibility on total functions). For these
reducibilities he introduced the notion of quasi-minimal cover for an ideal. We
give this notion for e-degrees:

Definition 1 [Sasso]. Let A be an ideal in De, e-degree a is called a quasi-
minimal cover for A if (∀x)[x ∈ A ⇒ x ≤ a] and for all f ∈ T

f ≤ a ⇒ (∃x)[x ∈ A & f ≤ x].

It is obvious that c-quasi-minimality is a special case of the quasi-minimality
in the sense of Sasso, i.e. e-degree a is c-quasi-minimal iff a is a quasi-minimal
cover for (c) = {x : x ≤ c}.
Definition 2. An e-degree dege(A) is said to be co-total if dege(A) ∈ T.

Denote by CT the set of all co-total e-degrees. As every total e-degree a contains
a set A such that A ≡e A ⊕ A and A ⊕ A ≡e A⊕A so every total e-degree is
co-total, i.e. T ⊆ CT. It is easy to see that Π0

1 ⊆ CT and CT
⋂
Π0

2 ⊆ Δ0
2.

L. Gutteridge showed in [4] that there are quasi-minimal co-total e-degrees, i.e.
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T ⊂ CT. In [1] was showed that under every non-zero total e-degree there are
quasi-minimal incomparable e-degrees dege(A) and dege(A) so Δ0

2 − CT �= ∅.
In particular, no every non-total e-degree is co-total. In [7] was announced that
there is non-zero co-total e-degree a ≤ 0′

e which forms a minimal pair with every
e-degree belonging to Π0

1 . In particular, from here follows that there are co-total
e-degree below 0′

e not belonging to Π0
1 .

Definition 3. A set A is said to be bounded total if A = f̂ for some total
function f .

Proposition. (i) A ≡e ĉA for every A;
(ii) f̂ ≤ f for every f ;
(iii) f ≤e f̂ ⇐⇒ f̂ ≡e cgraph(f).

Proof. (i) x ∈ A ⇐⇒ 〈x, 1〉 ∈ ĉA so A ≤e ĉA and ĉA = {〈x, o〉 : x ∈
ω} ∪ {〈x, 1〉 : x ∈ A} so ĉA ≤e A.

(ii) f̂ = {〈x, y〉 : y ≤ f(x)} so f̂ ≤e f . In fact, α̂ ≤e α for every α.
(iii) ⇒: f ≤e f̂ ⇒ cgraph(f) ≤e f ≤e f̂ . From (ii) follows f̂ ≤e f ≤e cgraph(f)

so f̂ ≡e cgraph(f).
⇐: f ≤e cgraph(f) ≤e f̂ .
From 1(i) follows that every e-degree is the bounded total. In this case a

properties of dege(ĉA) are the same as dege(A). If to consider total functions f
for which |rang(f)| > 2 then more complex situation arises for dege(f̂). From
1(iii) follows that if f ≤e f̂ then dege(f̂) ∈ T. Theorem 2 shows that there are
f for which dege(f̂) /∈ T.

In following theorem we shall show that always it is possible ”to cut off” a part
of f̂ with the help of an effective uniform procedure relatively any enumeration
of f to receive a set belonging to a non-total e-degree.

Theorem 1. For every total incomputable function f such that ω−{x : 〈x, i〉 ∈
graph(f) & i ≤ 1} is infinite set there is a total function h such that ĥ ⊆ f̂ ,
h ≤e f and A = f̂ − ĥ is a f̂ -quasi-minimal set.

Proof. Let f satisfy the conditions of the theorem. In this case it possible ef-
fectively to receive the enumeration of graph(f) in the standard order 〈0, f(0)
〉, 〈1, f(1)〉, . . . from any enumeration of graph(f) because of the property of
being total of f . We construct step by step a function h with help of the con-
struction which is computable in graph(f) such that ĥ ⊆ f̂ and

∀x[f(x) = 0 ⇐⇒ f(x) = h(x)].

It is clear that in this case f̂ ≤e f̂ − ĥ. On a course of our construction we shall
aspire to satisfy the following requirements for all s ∈ ω:

(Ns): Φs(f̂) �= f̂ − ĥ;
(Qs): Φs(f̂ − ĥ) = graph(g) ⇒ g ≤e f̂ .
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At the step t + 1 we denote by ht the finite initial segments of h which was
constructed at the end of the step t i.e. dom(ht) = {0, 1, . . . , xt}. In the following
the symbol F is used as a variable which ranges over the set of all finite sets.

The start of the construction.
Step 0. Set h0 = ∅, ĥ0 = ∅.
Step 2s+1. Let t = 2s and xt+1 = μx[x > xt & f(x) > 1]. See whether

〈xt+1, 1〉 ∈ Φs(f̂). (1)

If (1) is true then set ht+1(xt+1) = 1 and ht+1(x) = 0 for all x such that
xt < x < xt+1. If (1) is not true then set ht+1(x) = 0 for all x such that
xt < x ≤ xt+1.

Step 2s+2. Let t = 2s+ 1. See whether

∃F [0 /∈ 〈F 〉2 & F ⊆ f̂ − ĥt & Φs(F ) is not single-valued]. (2)

If (2) is true then let xt+1 = max{xt,max〈F ∗〉1} where F ∗ satisfies (2) and has
the least canonical index among F . Let σ∗ be σ such that its graph has the least
canonical index and it satisfies the following conditions:

(i) dom(σ) = {0, 1, . . . , xt+1};
(ii) σ|xt = ht;
(iii) F ∗ ⊆ f̂ − σ̂.

Set ft+1 = σ∗.
If (2) is not true then set ht+1 = ht.
The end of the construction.
It is clear that graph(h0) ⊆ graph(h1) ⊆ . . . so let h =

⋃
t∈ω ht. We shall prove

that the function h resulting from the construction satisfies the requirements
(Ns) and (Qs) for all s ∈ ω.

As step 2s+ 1 provides that

〈xt+1, 1〉 ∈ Φs(f̂) ⇐⇒ 〈xt+1, 1〉 /∈ f̂ − ĥt+1 ⇐⇒ 〈xt+1, 1〉 /∈ f̂ − ĥ

so Φs(f̂) �= f̂ − ĥ and the requirement (Ns) is satisfied. Note that in addition
f̂ <e f̂ − ĥ.

Let a total function g ≤e f̂ − ĥ and graph(g) = Φs(f̂ − ĥ) for some s. We shall
consider the step 2s+ 2, let t = 2s+ 1. As at this step the condition (2) is not
true then so we have

∀F [0 /∈ 〈F 〉2 & F ⊂ f̂ − ĥt ⇒ Φs(F ) is single-valued]. (3)

Easily to see that in this case the set Φs(f̂ − Ĥt) is single-valued where Ht(x) =
ht(x) for all x ≤ xt and Ht(x) = 0 for all x > xt. Thus we have graph(g) =
Φs(f̂ − ĥ) ⊆ Φs(f̂ − Ĥt) and graph(g) = Φs(f̂ − Ĥt) by the totality of g and
the single-valuedness of Φs(f̂ − Ĥt). From this follows g ≤e f̂ − Ĥt ≤ f̂ and the
requirement (Qs) is satisfied.
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Theorem 2. Every total e-degree a ≥ 0′
e contains a total function f such that

dege(f̂) is the quasi-minimal e-degree.

Proof. Let a ≥ 0′
e and A be a retraceable set. It means that there is a c.e.

function λxψ such that A ⊆ dom(ψ), ψ(a0) = a0 and ψ(an+1) = ψ(an) for
all n ∈ ω where a0 < a1 < · · · < an < . . . is the direct enumeration of A.
We construct step by step a function f with help of the construction which is
computable in A such that rang f = A and dege(f̂) is the quasi-minimal e-degree.
At the step t+1 we denote by ft the finite initial segments which was constructed
at the end of the step t. Let xt = maxdom(ft) and Xt = {x : x > xt}. In the
following the symbol σ is used as a variable which ranges over the set of all finite
initial A-segments (i.e. such that rang(σ) ⊂ A).

On a course of our construction we shall aspire to satisfy the following re-
quirements for all s ∈ ω:

(Ns): f̂ �= Ws;
(A): rang(f) = A;
(Qs): Φs(f̂) = graph(g) ⇒ g is c.f.
The start of the construction.
Step 0. Set f0 = ∅ and x0 = 0.
Step 3s+1. Let t = 3s. See whether

∃y[y ∈ A− {a0} & 〈xt + 1, y〉 ∈ Ws]. (1)

If (1) is true then set ft+1 = ft ∪ {(xt + 1, a0)} and if (1) is not true then set
ft+1 = ft ∪ {(xt + 1, a1)}.

Step 3s+2. Let t = 3s+ 1. Set ft+1 = ft ∪ {(xt + 1, as)}.
Step 3s+3. Let t = 3s+ 2. See whether

∃F [F ⊂ f̂t ∪Xt × ω & Φs(F ) is not single-valued]. (2)

If (2) is true then let F ∗ be F which satisfies (2) and has the least canonical
index. Let σ∗ be σ such that its graph has the least canonical index and it
satisfies the following conditions:

(i) dom(σ) = {0, 1, . . . , xt+1};
(ii) σ|xt = ft;
(iii) F ∗ ⊆ σ̂.

Set ft+1 = σ∗.
If (2) is not true then set ft+1 = ft.
The end of the construction.
It is clear that graph(f0) ⊆ graph(f1) ⊆ . . . so let f =

⋃
t∈ω ft. We shall prove

that the function f resulting from the construction satisfies the theorem. The
construction is such that all steps 3s+ 1 and 3s+ 3 are computable in K0 ⊕A,
and all steps 3s + 2, s ∈ ω, are computable in A. By the condition A is the
retraceable set, therefore from any enumeration of A it is possible effectively to
make direct enumeration {as}s∈ω. As a ≥ 0′

e then our construction as a whole is
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computable in A, hence f ≤e A. From the construction we see that rang(f) = A,
hence A ≤e f and A ≡e f .

Steps 3s+1, s ∈ ω provide f̂ �= Ws as from (1) follows 〈xt+1, y〉 ∈ Ws for some
y > a0 and 〈xt + 1, y〉 /∈ f̂ and from the negation of (1) follows 〈xt + 1, a1〉 ∈ f̂
and 〈xt + 1, a1〉 /∈ Ws. Hence the requirements (Ns) are satisfied.

As f is constructed only with the help of A-valued segments and steps 3s+
2, s ∈ ω provide A ⊆ rang(f) so rang(f) = A. Hence the requirement (A) is
satisfied.

Finally let a total function g ≤e f̂ and graph(g) = Φs(f̂) for some s. We shall
consider the step 3s+ 3, let t = 3s+ 2. As at this step the condition (2) is not
true then we have

∀F [F ⊂ f̂t ∪Xt × ω ⇒ Φs(F ) is single-valued],

then Φs(f̂t ∪Xt × ω) is a single-valued set. It is clear that graph(g) = Φs(f̂) ⊆
Φs(f̂t ∪ Xt × ω) and graph(g) = Φs(f̂t ∪ Xt × ω) by the totality of g and the
single-valuedness of Φs(f̂t ∪Xt × ω). From this follows g ≤e f̂t ∪Xt × ω. As the
set f̂t ∪Xt ×ω is computable so g is a c.f. and the requirement (Qs) is satisfied.

The following theorem is stronger analogue of McEvoy’s theorem [5]:

Theorem 3. For every total e-degree b ≥ 0′
e there is f such that b = dege(f̂)

is a quasi-minimal e-degree and a = b′.

Proof. Let A ∈ a such that A ≡e cA. We construct step by step a function f
which satisfies the requirements:

(Ns): f̂ �= Ws;
(Qs): Φs(f̂) = graph(g) ⇒ g is computable;
(J): J(f̂) ≡e A.

At the step t+ 1 we denote by ft the finite initial segments of f which was con-
structed at the end of the step t. Let lt = 1 + max dom(ft), Xt = {x : x ≥ lt}.
In the following the symbol σ is used as a variable which ranges over the set of all
finite initial segments andF as a variable which ranges over the set of all finite sets.

The start of the construction.
Step 0. Set f0 = ∅ and l0 = 0.
Step 4s+1. Let t = 4s. See whether

∃y[y > 0 & 〈lt, y〉 ∈ Ws]. (1)

If (1) is true then set ft+1 = ft ∪ {(lt, 0)}. If (1) is not true then set ft+1 =
ft ∪ {(lt, 1)}.

Step 4s+2. Let t = 4s+ 1. See whether

∃F [F ⊂ f̂t∪Xt×ω & Φs(F ) is not single-valued]. (2)

If (2) is true then let F ∗ be F which satisfies (2) and has the least canonical
index. Let σ∗ be σ such that its graph has the least canonical index and it
satisfies the following conditions:
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(i) dom(σ) = {0, 1, . . . , xt+1} for some xt+1 > xt;
(ii) σ|xt = ft;
(iii) F ∗ ⊆ σ̂.

Set ft+1 = σ∗.
If (2) is not true then set ft+1 = ft.
Step 4s+3. Let t = 4s+ 2. See whether

∃σ[ft ⊂ σ & s ∈ Φs(σ̂)]. (3)

If (3) is true then set ft+1 = σ∗ where graph(σ∗) has the least canonical index
among σ which satisfies the condition (3). If (3) is not true then set ft+1 = ft.

Step 4s+4. Let t = 4s+ 3, set

ft+1 = ft ∪ {(lt, 1 − cA(s))}
.

The end of the construction.
It is clear that graph(f0) ⊆ graph(f1) ⊆ . . . so let f =

⋃
t∈ω ft. We shall prove

that the function f resulting from the construction satisfies the requirements
(Ns), Qs) and (J).

Steps 4s + 1 provide the satisfaction of (Ns) and steps 4s + 2 provide the
satisfaction of (Qs).

Prove that the requirement (J) is satisfied. Our construction provides that all
steps 4s+1, 4s+ 2, 4s+3, s ∈ ω are computable in K0 and the action at steps
4s+ 4, s ∈ ω is computable in A ≡e cA. As 0′

e ≤ a then our construction as a
whole is computable in A, hence f ≤e A. Checking at steps 4x + 3, x ∈ ω the
condition (3) is satisfied whether we have as a result of our construction

x ∈ Φx(f̂) ⇐⇒ graph(f4x+3) �= graph(f4x+2),

from which J(f̂) ≤e A.
To checkA ≤e J(f̂) we shall show that the sequence of initial segments {ft}t∈ω

and hence the sequence of computable sets {f̂t}t∈ω is computable in J(f̂). Then
λx.cA(x) = 1 − f4x+4(lx), therefore A ≤e J(f̂). It is clear that f̂ ≤e J(f̂). All
steps except for 4s+ 4, s ∈ ω are computable in K0, and at steps 4s+ 4, s ∈ ω
we made the action

f4s+4 = f4s+3 ∪ {(l4s+3, 1 − cf̂ (l4s+3)},

which is computable in f̂ . Hence J(f̂) ≡e A and the requirement (J) is satisfied.
Let b = dege(f̂). Our construction provides that b is the quasi-minimal e-

degree and a = b′.
The following theorem is a generalization of Gutteridge’s theorem [4].

Theorem 4. For every total e-degree b there is a b-quasi-minimal co-total e-
degree a.

Proof. Let B ∈ b such that B ≡e cB. We construct step by step a function f
which satisfies the requirement:
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(Ns): graph(f) �= Φs(B);
(BQs): Φs(graph(f)) = graph(g) ⇒ g ≤e B.

We note that f for which graph(f) belongs to a quasi-minimal e-degree was
constructed in [4] with help of the enough complex priority construction. Here
we offer a simple interval construction with help of which we shall construct a
total function satisfying the requirements (Ns) and (BQs).

At the step t + 1 we denote by ft the finite initial segment of f which was
constructed at the end of the step t where graph(f0) ⊆ graph(f1) ⊆ . . . and ft

has a form cB ⊕ σt where σt is an initial segment which we choose at the step
t. Let lt = 1 + maxdom(σt). In the following the symbol σ is used as a variable
which ranges over the set of all finite initial segments and F as a variable which
ranges over the set of all finite sets. Thus f =

⋃
t∈ω ft = cB ⊕

⋃
t∈ω σt = cB ⊕α.

The start of the construction.
Step 0. Set f0 = cB ⊕ ∅ and l0 = 0.
Step 2s+1. Let t = 2s. See whether

∃y[〈2lt + 1, y〉 ∈ Φs(B)]. (1)

If (1) is true then set ft+1 = ft ∪{(2lt +1, y∗)} where y∗ is the least y satisfying
(1). If (1) is not true then set ft+1 = ft ∪ {(2lt + 1, 0)}.

Step 2s+2. Let t = 2s+ 1. See whether

∃F [Φs(F ) is not single-valued]. (2)

If (2) is true then let F ∗ be F which satisfies (2) and has the least canonical
index. In this case we have two subcases:

∃σ[ft ⊂ σ & 〈F ∗〉1 ⊆ dom(cB⊕σ) & Φs(graph(cB ⊕ σ)) is single-valued]. (2.1)

If (2.1) is true then let σt+1 be σ such that it satisfies (2.1) and its graph has
the least canonical index. Set ft+1 = cB ⊕ σt+1.

If (2.1) is not true then we have

∀σ[ft ⊂ σ & 〈F ∗〉1 ⊆ dom(cB⊕σ) ⇒ Φs(graph(cB ⊕ σ)) is not single-valued].(2.2)

Let σt+1 by σ such that its graph has the least canonical index and it satisfies
the following condition

ft ⊂ σ & 〈F ∗〉1 ⊆ dom(cB ⊕ σ) & F ∗ ⊆ (dom(cB ⊕ σ) × ω) − graph(cB ⊕ σ).

Set ft+1 = cB ⊕ σt+1.
If (2) is not true then set ft+1 = ft.
The end of the construction.
First we shall prove that the requirement (BQs) is satisfied. Let a total func-

tion g ≤e graph(f) and graph(g) = Φs(graph(f)) for some s. We shall consider
the step 2s+ 2, let t = 2s+ 1. If at this step the condition (2) is not true then
we have

∀F [Φs(F ) is single-valued],
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then Φs(ω) is a single-valued set. As graph(f) ⊆ ω so graph(g) = Φs(graph(f)) ⊆
Φs(ω) and so graph(g) = Φs(ω). Hence g is a computable function.

If the condition (2) is true then for the subcase (2.1) we have that

Φs(graph(ft+1)) = Φs(graph(cB ⊕ σt+1))

and both are single-valued. As graph(f) ⊆ graph(ft+1) then

graph(g) = Φs(graph(f)) = Φs(graph(cB ⊕ σt+1)).

Hence g ≤e B.
Assume that the subcase (2.2) holds. Then we obtained that Φs(F ∗) is not

single-valued where F ∗ ⊆ graph(ft+1) and 〈D∗〉1 ⊆ dom(ft+1). Then graph(g) =
Φs(graph(f)) is not single-valued what contradicts the premise. Thus the require-
ment (BQ) is satisfied.

Finally let a = dege(graph(f)) where f is the result of our construction. The
construction and the steps 2s+ 1, s ∈ ω guarantee b < a. The satisfiability of
(NS) and (BQs) guarantees that a is b-quasi-minimal e-degree. The theorem is
proved completely.
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A Generic Set That Does Not Bound
a Minimal Pair

Mariya Ivanova Soskova�

University of Leeds

Abstract. The structure of the semi lattice of enumeration degrees has
been investigated from many aspects. One aspect is the bounding and
nonbounding properties of generic degrees. Copestake proved that every
2-generic enumeration degree bounds a minimal pair and conjectured
that there exists a 1-generic set that does not bound a minimal pair. In
this paper we verify this longstanding conjecture by constructing such
a set using an infinite injury priority argument. The construction is ex-
plained in detail. It makes use of a priority tree of strategies.

1 Introduction

In contrast to the Turing case where every 1-generic degree bounds a minimal
pair as proved in [5] we construct a 1-generic set, whose e-degree does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

In her paper [1] Copestake examines the n-generic sets for every n < ω. She
proves that every 2-generic set bounds a minimal pair and states that there is
a 1-generic set that does not bound a minimal pair. Her proof of the statement
does not appear in the academic press. In their paper [2] Cooper, Sorbi, Lee and
Yang show that every Δ0

2 set bounds a minimal pair, and construct a Σ0
2 set

that does not bound a minimal pair. In the same paper the authors state that
their construction can be used to build a 1-generic set that does not bound a
minimal pair. Initially the goal of this paper was to build a 1-generic set with the
needed properties by following the construction from [2]. In the working process
it turned out that significant modifications of the construction had to be made
in order to get the desired 1-generic set. The 1-generic set that is constructed is
also Σ0

2 , and generalizes the result from [2].

2 Constructing a 1-generic Set That Does Not Bound a
Minimal Pair

Definition 1. A set A is 1-generic if for every c.e. set X of strings

∃τ ⊂ A(τ ∈ X ∨ ∀ρ ⊇ τ(ρ /∈ X))

An enumeration degree is 1-generic, if it contains a 1-generic set.
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Definition 2. Let a and b be two enumeration degrees. We say that a and b
form a minimal pair in the semi-lattice of the enumeration degrees if:

1. a > 0 and b > 0.
2. For every enumeration degree c (c ≤ a ∧ c ≤ b → c = 0).

Theorem 1. There exists a 1-generic enumeration degree a, that does not bound
a minimal pair in the semi-lattice of the enumeration degrees.

We will use the priority method with infinite injury to build a set A, whose
degree will have the intended properties. The construction involves a priority
tree of strategies. For further definitions of both computability theoretic and
tree notations and terminologies see [3] and [4].

2.1 Requirements

We will construct a set A, satisfying the following requirements:

1. A is generic, therefore for all c.e. sets W we have a requirement:

GW : ∃τ ⊆ χA(τ ∈ W ∨ ∀μ ⊇ τ(μ /∈ W )),

where τ and μ are finite parts.
Let ReqG be the set of all GW requirements.

2. A does not bound a minimal pair, therefore for each pair of c.e. sets Θ0 and
Θ1 we will have a requirement:

RΘ0Θ1 : Θ0(A) = X − c.e. ∨Θ1(A) = Y − c.e.∨

∨∃Φ0 − c.e.Φ1 − c.e.((Φ0(X) = Φ1(Y ) = D) ∧ ∀W − c.e.(W �= D))

Let ReqR be the set of all RΘ0Θ1 requirements.
For each requirement RΘ0Θ1 let X = Θ0(A), Y = Θ1(A) and let Φ0 and Φ1
be the c.e. sets defined above. In order for RΘ0Θ1 to be satisfied we will make
sure that the following subrequirements SW for each c.e. set W are satisfied:

SW : (X − c.e. ∨ Y − c.e. ∨ (Φ0(X) = Φ1(Y ) = D ∧ ∃d(W (d) �= D(d))))

Let ReqS
RΘ0Θ1 be the set of all SW subrequirements of RΘ0Θ1 .

2.2 Priority Tree of Strategies

For every requirement we will have a different strategy. The strategy aims to ful-
fill the requirement according to the current situation, giving different outcomes.
Let O be the set of all possible outcomes. We define a tree of strategies - a subset
of O∗, closed under extensions. Each node α is labelled with a requirement Req,
we say that α is a Req-strategy.

1. Let γ be a GW -strategy. The actions that γ makes are the following:

(a) γ chooses a finite part λγ , according to rules that insure compatibility
with strategies of higher priority.
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(b) If there is a finite part μ, such that λγ μ̂ ∈ W , then γ remembers the
shortest one – μγ , and has outcome 0. If not, then μγ = ∅, the outcome
is 1. The order between the two outcomes is 0 < 1. The strategy is
successful if we insure that λγˆμγ ⊆ A. γ will restrain some elements out
of and in A to ensure this.

2. Let α be a RΘ0Θ1 - strategy. It is like a mother strategy to all its substrate-
gies. It insures that they work correctly. We assume that on this level the
two sets Φ0 Φ1 are built. They are common to all substrategies of α. This
type of strategy has one outcome: 0.

3. Let β be a SW - strategy. It is a substrategy of one fixed RΘ0Θ1 - strategy -
α, for which α ⊂ β holds. The actions that β makes are the following:
(a) First it tries to make the set X c.e. In order to accomplish this β builds a

set U , which should turn out equal to X . On each step it adds elements
to U and then looks if any errors have occurred in the set. While there
are no errors the outcome is ∞X .

(b) If an error occurs, then some element, that was assumed to be in the
set X has come out of the set. The strategy can not fix the error in U
because we want U to be c.e. In this case it gives up on our desire to
make X c.e., it finds the smallest error k ∈ U\X and forms a set Ek,
which is called an agitator for k. The agitator has the following property:
k ∈ X ⇔ Ek ⊆ A. The strategy now turns its attention to Y , trying
to make it c.e., constructing a similar set Vk, that would turn out equal
to Y . It makes similar actions, checking at the same time if the agitator
for k preserves the desired property. While there is no mistake in Vk the
outcome is 〈∞Y , k〉.

(c) If an error is found in Vk, the strategy chooses the smallest error l ∈ Vk\Y
and forms an agitator F k

l for l with the following property: l ∈ Y ⇔ F k
l ⊆

A. Now β has control over the sets X and Y . It adds axioms 〈d, {k}〉 ∈ Φ0
and 〈d, {l}〉 ∈ Φ1, for some witness d, constructing a difference between
D and W . If d ∈ W\D, the outcome is 〈l, k〉. Otherwise: d ∈ D\W , the
outcome is d0.

And so the possible outcomes of a SW - strategy are:

∞X < T0 < T1 < . . . < Tk < . . . < d0,

where Tk is the following group of outcomes:

〈∞Y , k〉 < 〈0, k〉 < 〈1, k〉 < . . . < 〈l, k〉 < . . .

The priority tree of strategies is a computable function T with Dom(T ) ⊆
{0, 1,∞X , 〈∞Y , k〉, 〈l, k〉, d0|k, l ∈ N}∗ and Range(T ) = ReqG∪ReqR∪(

⋃
R∈ReqR

ReqS
R), for which the following properties hold:

1. For every infinite path f in T Range(T � f) = Range(T ).
2. If α ∈ Dom(T ) and T (α) ∈ ReqR , then α 0̂ ∈ Dom(T ).
3. If γ ∈ Dom(T ) and T (γ) ∈ ReqG, then γ ô ∈ Dom(T ), where o ∈ {0, 1}.
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4. If β ∈ Dom(T ) and T (β) ∈ ReqS
R, then β ô ∈ Dom(T ), where

o ∈ {∞X , 〈∞Y , k〉, 〈k, l〉, d0|k, l ∈ N}.
5. If α ∈ Dom(T ) is a R-strategy, then for each subrequirement SW there is a

SW -strategy β ∈ Dom(T ), a substrategy of α, such that α ⊂ β.
6. If β is a SW -strategy, substrategy of α, then α ⊆ β and under βˆ∞X and

β 〈̂∞Y , k〉 there aren’t any other substrategies of α.

The construction is on stages - on each stage we construct a set As – approxi-
mating A and a string δs ∈ dom(T ) of length s. For every visited node δ ⊆ δs of
length n ≤ s we will build a corresponding set An

s , and then As = As
s. Ultimately

the set A will be the set of all natural numbers a, for which there exists a step
ta, such that ∀t > ta(a ∈ At). At the end of step s we initialize all strategies
δ > δs.

2.3 Interaction Between Strategies

In order to have any organization whatsoever we make use of a global parameter
– a counter b, whose value will be an upper bound of the numbers, that have
appeared in the construction up to the current moment.

1. First we will examine the interaction between a SW -strategy β and a GW -
strategy γ. The interesting cases are when γ ⊇ βˆ∞X and its similar one –
when γ ⊇ β 〈̂∞Y , k〉.

Let γ ⊇ βˆ∞X . When we visit β we add an element k to the set U . For
it there is an axiom 〈k,E′〉, recorded in a corresponding set U, and E′ ⊆ A
holds. It is possible that even on the same stage γ chooses a string μγ which
takes out of A an element from E′. If there aren’t any other axioms for k in
the corresponding approximation of Θ0, we we have an error in U . On the
next stage when we visit β we will find this error, choose an agitator for k
and move on to the right with outcome 〈∞Y , k〉. It is possible that later a
new axiom for k is enumerated in the corresponding approximation of Θ0
and thus the error in U is corrected. We return to our desire to make X-
c.e. But then another GW -strategy γ1 ⊇ γ chooses a string μγ1 and again
takes k out of U . If this process continues infinitely many times, ultimately
we will claim to have X = U , but k will be taken out of X infinitely many
times and thus our claim would be wrong. Then this SW requirement will
not be satisfied. This is why we will have to ensure some sort of stability for
the elements, that we put in U . This is how the idea for applying an axiom
arises. When we apply an axiom 〈k,E′〉 – we change the value of the global
parameter b, so that it is larger than the elements of the axiom. Then we
initialize those strategies, that might take k out of X .

The first thing that we can think of is to initialize all strategies δ ⊇ βˆ∞X .
This way we would avoid errors at all. If the setX is infinite though, we would
never give a chance to strategies δ ⊇ βˆ∞X to get satisfied. This problem
is solved with a new idea - local priority. Every GW - strategy γ ⊇ βˆ∞X

will have a fixed local priority regarding β, given by a computable bijection
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σ : Γ → N,where Γ =
{
γ −GW strategy|γ ⊇ βˆ∞X

}
such that if γ ⊂ γ1,

then σ(γ) < σ(γ1). γ ⊇ βˆ∞X has local priority σ(γ) in relation to β.
When we apply the axiom 〈k,E′〉, only strategies γ of local priority lower
than k will be initialized. Then as the value of the stage increases, so do
the elements that we put into U , and with them grows the number of GW -
strategies, that we do not initialize. Ultimately all strategies will get a chance
to satisfy their requirements.

2. Now let us examine the interactions between two SW - strategies β β1. An
interesting cases is again β1 ⊇ βˆ∞X . Therefore let β1 ⊇ βˆ∞X ,let β1 be a
substrategy of α1 and α1 ⊂ β. It is possible that β1 chooses agitatorsEk1 and
F k1

l1
and takes them out of A. The next stage on which β is visited, β might

like to build its own agitators that may include elements from Ek1 or F k1
l1

,
causing an error in the sets Φα1

0 and Φα1
1 . If β1 is visited again then it would

fix this mistake, by discarding the false witness. If not, the error would stay
unfixed - and the R- strategy α1 will not satisfy its requirement. In order to
avoid this situation we do two things. First we choose our agitators carefully:
along with the elements, needed two form the agitator with the requested
property, we will add also all elements of all agitators that were chosen and
out of A on the previous β - true stage. Thus the two agitators of β1 will not
be separated and will not cause an error like d1 /∈ Φα1

0 (X) and d1 ∈ Φα1
1 (Y )

in the corresponding sets. It is possible that on a later stage a new axiom for
k or l in the corresponding approximations of Θα1

0 or Θα1
1 appears, causing

one of the agitators to loose its control. If this happens - we might again
have the same error in Φα1

0 (X) and Φα1
1 (Y ). Therefore we will connect a

structure with α1 - a list Watchedα1 in which we will keep track of all SW -
substrategies of α1 that do not have control over their agitator sets. Through
this list α1 can avoid any errors.

If a strategy δ is visited on a stage s, we connect to δ the set Eδ
s , that contains

all elements restrained out of A on this stage s by strategies δ′ ⊂ δ.

2.4 The Construction

At the beginning all nodes of the tree are initialized, b0 = 0, δ0 = ∅, A0 = N.
On each stage s > 0 we will have A0

s = N, δ0s = ∅ and b0s = bs−1
s−1.

Lets assume that we have already built δn
s , An

s and bns .
The strategy δn

s makes some actions and has an outcome o. Then δn+1
s = δn

s ô.

I. δn
s is a GW strategy γ.
bn+1
s = bns .

(a) If γ has been initialized on some stage after its last visit λγ = ∅. Then
define λγ so: λγ is a string of length bns + 1 and
λγ(a) 0 0, iff a ∈ Eγ

s

bn+1
s = bn+1

s + 1
(b) Ask if: ∃μ( λγ μ̂ ∈ W ). If the answer is ”No” then: χγ = λγ , An+1

s =
An

s , all elements for which χγ(a) = 1 are restrained from γ in A, the
outcome is o = 1.
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If the answer is ”Yes”, then μγ = the least μ, such that λγˆμ ∈ W .
χγ = λγ μ̂γ . bn+1

s = max(bn+1
s , lh(χγ + 1)). All a ∈ Dom(χγ) and such

that χγ(a) = 1 are restrained in A from γ. All a ∈ Dom(χγ) such
that a ≥ lh(λγ) and χγ(a) = 0 are restrained out of A from γ. An

s =
An+1

s \ {a| is restrained out of A from γ}, the outcome is o = 0.
II. δn

s is a R strategy α.
Then scan all substrategies β ,for which there is an element in the list
Watchedα.
Let 〈β,E,Ek, F

k
l , d〉 ∈ Watchedα. Check if there is an axiom 〈k,E′〉 ∈ Θ0,

such that E′∩(E∪Ek) = ∅ or 〈l, F ′〉 ∈ Θ1, such that F ′∩(E∪Ek∪F k
l ) = ∅. if

there is such an axiom then cancel d : Φ0 = Φ0∪{〈d, ∅〉}, Φ1 = Φ0∪{〈d, ∅〉}.
An+1

s = An
s , o = 0.

III. δn
s is a SW strategy β, substrategy of α .

First check if β is watched by α and delete the corresponding element from
Watchedα if there is one.
bn+1
s = bns

The outcome β depends on what the previous outcome o− was on the pre-
vious β- true stage s−.
(1) The outcome − is ∞X

a. Let k0 be the least k ∈ X\U . Here X = Θs
0(An

s ). If there is such an
element, then there is an axiom 〈k0, E

′〉 ∈ Θs
0 with E′ ⊆ An

s . Then
U = U ∪ {k0} and U = U ∪ {〈k0, E

′〉}.
b. Proceed through the elements of U , until an elements that draws

attention, or until all elements are scanned.

Definition 3. An axiom 〈k,E′〉 ∈ Θ0 is applicable, if:
1. E′ ∩Eβ

s = ∅
2. Let Γ be the set of these elements a, that are restrained out of A
from GW strategies γ ⊇ βˆ∞X of higher local priority than k. Let
Out1β

s = Γ\As−. Then E′ ∩Out1s = ∅.

An element k ∈ U draws attention, if there isn’t an applicable axiom
for it.
For each element k ∈ U act as follows:
A. If k doesn’t draw attention, find an applicable axiom for k -

〈k,E′〉, that has a minimal code. If the element for k in U is
different, replace it with 〈k,E′〉. If the axiom 〈k,E′〉 is not yet
applied, apply it.
If there aren’t any elements k that draw attention, then: An+1

s =
An

s , o = ∞X .
B. If k draws attention:

1.Examine all strategies
β′ ∈ O1 = {β′|β′ ⊇ βˆ∞X ∧ β ′̂ 〈∞Y , k

′〉 ⊆ δs−}
β′ is visited on stage s− and an agitator Ek′ is defined for it.
Let Eβ′ = Eβ

β′ ∪ E′
k, where Eβ

β′ = β′
s−\Eβ

s− - the elements,that
are restrained out of A from strategies below β, but above β′.
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2. Examine all strategies
β′ ∈ O2 = {β′|β′ ⊇ βˆ∞X ∧ β ′̂ 〈l′, k′〉 ⊆ δs−}
β′ is visited on stage s− and both agitators Ek′ and F k′

l′ and a
witness d′ are defined. Then let Eβ′ = Eβ

β′ ∪ Ek′ ∪ F k′
l′ , where

Eβ
β′ = β′

s−\Eβ
s−.

Add to the list Watchedα′ , where α′ is the superstrategy of β′

an element of the following structure:
< β′ : 〈β

′
s−, Ek′ , F k′

l′ 〉, d′ >
The agitator for k is defined as follows:
Ek = (Out1β

s ∪
⋃

β′∈O1∪O2
Eβ′)\Eβ

s

All elements a ∈ Ek are restrained out of A from β. An+1
s =

An
s \Ek and o = 〈∞Y , k〉

(2) The outcome − is 〈∞Y , k〉.
a. Check if there is an axiom 〈k,E′〉 ∈ Θ0, such that ′ ∩ (Eβ

s ∪Ek) = ∅.
If so then act as in 4.a.

b. Let l0 be the least l ∈ Y \Vk. If there is such an element, then there is
〈l0, F ′〉 ∈ Θs

1 with F ′ ⊆ An
s \Ek. Vk = Vk ∪{l0}, Vk = Vk ∪{〈l0, F ′〉}.

c. Proceed throuhg the elements of Vk, until all are scanned, or until
an element that draws attention.
An axiom 〈l, F ′〉 ∈ Θ1 is defined to be applicable similarly to case
2.b with the additional requirement that F ′ ∩ Ek = ∅.
For each element l ∈ Vk:
A. If it doesn’t draw attention, find an applicable axiom with mini-

mal code 〈l, F ′〉. If the element for l in Vk is different, replace it
with 〈l, F ′〉. If the axiom 〈l, F ′〉 is not yet applied, apply it.
If none of the elements draw attention, then: An+1

s = An
s \Ek

o = 〈∞Y , k〉
B. If l draws attention:

1.Examine all strategies
β′ ∈ O1 = {β′|β′ ⊇ β 〈̂∞Y , k〉 ∧ β′ 〈̂∞Y , k

′〉 ⊆ δs−}
β′ is visited on stage s− and an agitator Ek′ is defined for it. Let
Eβ′ = Eβ

β′ ∪ E′
k, where Eβ

β′ = β′
s−\Eβ

s− - the elements, that are
restrained out of A from strategies below β,but above β′.
2. Examine all strategies
β′ ∈ O2 = {β′|β′ ⊇ β 〈̂∞Y , k〉 ∧ β′ 〈̂l′, k′〉 ⊆ δs−}
β′ is visited on stage s− and both agitators Ek′ and F k′

l′ and a
witness d′ are defined. Then let Eβ′ = Eβ

β′ ∪ Ek′ ∪ F k′
l′ , where

Eβ
β′ = β′

s−\Eβ
s−.

Add to the list Watchedα′ , where α′ is the superstrategy of β′

an element of the following structure:
< β′ : 〈β

′
s−, Ek′ , F k′

l′ 〉, d′ >
The agitator for l is:
F k

l = (Out2β
s ∪
⋃

β′∈O1∪O2
Eβ′)\(Eβ

s ∪ Ek)
All elements a ∈ (Ek ∪ F k

l ) are restrained in A from β.
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Find the least d /∈ L(Φ0). This will be a witness for the strategy.
Φ0 = Φ0 ∪ {〈d, {k}〉}, Φ1 = Φ1 ∪ {〈d, {l}〉}.
An+1

s = An
s , o = d0.

(3) The outcome o− is d0. Check if the witness d has been enumerated in
the c.e. set W .
If the answer is ”YES”, β restrains all elements a ∈ (Ek ∪ F k

l ) out of .
An+1

s = An
s \(Ek ∪ F k

l ), o = 〈l, k〉.
If the answer is ”NO” then:
An+1

s = An
s , o = d0.

(4) The outcome o− is 〈l, k〉. Then there are agitators Ek and F k
l and a

witness d.
a. Check for an axiom 〈k,E′〉 ∈ Θ0, such that E′ ∩ (Eβ

s ∪ Ek) = ∅.
If there is: cancel d, Vk = ∅. Replace the element for k in U with
〈k,E′〉. Apply the axiom 〈k,E′〉. All elements a ∈ Ek ∪ F k

l are not
restrained from β anymore. An+1

s = An
s , o = βˆ∞X . Proceed to the

next step.
b. Check for an axiom 〈l, F ′〉 ∈ Θ1, such that F ′∩(Eβ

s ∪Ek∪F k
l ) = ∅. If

there is: cancel d. Replace the element for l in Vk with 〈l, F ′〉. Apply
the axiom 〈l, F ′〉. β stops restraining elements a ∈ F k

l . An+1
s =

An
s \Ek, o = β 〈̂∞Y , k〉. Proceed to the next step.

c. If not, then the agitators are still valid: An+1
s = An

s \(Ek ∪ F k
l ) ,

o = 〈l, k〉

2.5 Proof

The proof of the theorem is divided into a number of groups of lemmas. The
first group concerns the construction. The lemmas from this group are more like
facts, that help the reader to get a more clear picture of the construction. The
second group of lemmas is about the restrictions – it gives a clear idea about
which elements are restrained and how this changes on the different stages.
The third group of lemmas is about the agitator sets. Its purpose is to prove
that the agitators have indeed the properties that we claim. Then follows the
group of lemmas about the true path. Finally come the lemmas that prove, that
the requirements are indeed satisfied. Here the final part of the proof will be
summarized.

The true path f is defined inductively as the most left infinite path in the tree
of strategies, for which

∀n
∞
∃ t(f � n ⊆ δt)

As usual a second property of the true path is:

Lemma 1 (Most Left Lemma). ∀n∃tn∀t > tn(f � n ≮L δt)

Unfortunately these two properties are not sufficient for the proof. The problem
comes from the application of axioms. Even when a stage comes, at which we
are sure that for a certain n, f � n can not be initialized from a strategy to the
left, strategies that are above it can still initialize it at a later stage. Therefore
another lemma is proved:
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Lemma 2 (Stability Lemma). For every SW strategy β the following state-
ment is true:

1.If βˆ∞X ⊆ f , then for every k ∈ U there exists an axiom 〈k,E′〉 ∈ Θ0
and a stage tk, such that if t > tk and β is accessible on t with o− = ∞X ,
then 〈k,E′〉 is applicable for k and therefore k does not draw attention. For this
axiom 〈k,E′〉: E′ ⊆ A.

2.If β 〈̂∞Y , k〉 ⊆ f , then for every l ∈ Vk there exists an axiom 〈l, F ′〉 ∈ Θ1
and a stage tl, such that if t > tl and β is accessible on t with o− = 〈∞Y , k〉,
then 〈l, F ′〉 is applicable for l and therefor l does not draw attention. For this
axiom 〈l, F ′〉: F ′ ⊆ A.

Corollary 1

∀n∃t∗n(f � n is accessible on stage t∗n ∧ ∀t > t∗n(f � n is not initialized on stage t))

Finally we are ready to prove the most important result.

Lemma 3. Every R requirement is satisfied.

Proof. Let us look at one R requirement. Let α is the corresponding R - strategy
on the true path. The proof of the lemma is divided into the following three cases:

1. For all SW strategies β,that are substrategies of α

β ⊂ f ⇒ (∃k∃l(β 〈̂l, k〉 ⊂ f) ∨ β d̂0 ⊂ f)

In this case we prove Φα
0 (X) = Φα

0 (Y ) = D and for each c.e. set W we have
a witness d such that with W (d) �= D(d).

2. There is a SW strategy β, that is a substrategy of α for which:

β ⊂ f ∧ βˆ∞X ⊂ f

In this case we prove that X = U , end hence X is c.e.
3. There is a SW strategy β, which is a substrategy of α for which:

β ⊂ f ∧ ∃k(β 〈̂∞Y , k〉 ⊂ f)

In this case we prove that Y = Vk and hance Y is c.e.

Lemma 4. Every GW requirement is satisfied.

Proof. Let us look at a fixed GW requirement and let γ be the corresponding
GW strategy on the true path. On each stage t > t∗lh(γ), γ in not initialized and
has a constant string χγ . It can be proved that χγ ⊂ A. Then

1. If γ 1̂ ⊆ f , then χγ = λγ ⊆ χA and there is no extension χγ , that is in W .
2. If γ 0̂ ⊆ f , then χγ ∈ W .

Acknowledgements. Thanks are due to Prof. S. B. Cooper for his advice and
the discussions on the preliminary version of this paper.
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Abstract. It is shown that a set is low for weakly 1-generic iff it has nei-
ther dnr nor hyperimmune Turing degree. As this notion is more general
than being recursively traceable, this answers negatively a recent ques-
tion on the characterization of these sets. Furthermore, it is shown that
every set which is low for weakly 1-generic is also low for Kurtz-random.

1 Introduction

Post [12] asked whether there is an r.e. set which lies strictly between the recur-
sive and the complete r.e. sets. One of the several ways to settle this question is
to build an r.e. set x = {a0, a1, a2, . . .} satisfying the following two requirements:

– e is in W
{a0,a1,...,as}
s for infinitely many s iff e ∈ W x

e ;
– if We is infinite then We intersects x.

The first requirement induces a property called “lowness”: One can compute the
diagonal halting set {e : e ∈ W x

e } relative to the r.e. set x in the limit and thus
the halting problem relative to x is not more complecated than the unrelativized
halting problem. The second requirement is the well-known property of a set to
be simple, that is, whenever the e-th r.e. set is infinite, then it intersects x. It
turned out that lowness plays an important role in the theory of the recursively
enumerable sets and degrees; thus a lot of work addresses questions with re-
spect to lowness. Being such a useful tool in degree theory, it was natural that
the notion of lowness was transferred to other areas like that of Algorithmic
Randomness. For most notations, lowness is defined as follows.

Definition 1. Given a notation G and its relativized notation Gx. A real z is
called low for G if for all reals y, y satisfies Gz ⇔ y satisfies G.
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As an example, one can formalize the standard definition of low (for the jump)
as follows: let r satisfy G and Gz, respectively, iff the standard halting problem
and the halting problem relative to z, respectively, is r-recursive. Then one can
see that z is low iff the halting problem relative to z has the same Turing degree
as the unrelativized one. For example, a real z is low (for the jump) if for all
reals r, r is above the halting problem of z iff r is above the unrelativized halting
problem.

André Nies obtained one of the central results in Algorithmic Randomness
by showing that the notion of H-trivial coincides with several lowness notions.
The Kolmogorov complexity of a string σ is the shortest input (“program”) of a
fixed universal machine generating it. Changing from one universal machine to
another one changes this notion only by up to a constant, therefore the choice
of the universal machine itself does not matter too much. Nevertheless, one
distinguishes two quite different versions of Kolmogorov complexity, the version
H where the considered machines have to be prefix-free and the plain version
C where no requirement on the machines are given. Here U is prefix-free if
whenever U(σ) is defined then U(τ) is undefined for all proper prefixes of σ. H-
trivial reals x are now those where H(x � n) ≤ H(n)+ c for some constant c and
all length n where x � n denotes the first n bits of the real x ∈ {0, 1}ω. One of
the applications of Kolmogorov complexity is the characterization of Martin-Löf
randomness without using the tests: x is Martin-Löf random iff H(x � n) ≥ n for
almost all n, which, for this paper, will now serve as an alternative definition.
The characterization of Nies obtained for the H-trivial sets is now the following.

Theorem 2. (Nies [10]) Let x be any set. Then the following statements are
equivalent:

– x is H-trivial;
– x is low for H, that is, there is a constant c with ∀σ [H(σ) ≤ Hx(σ) + c];
– x is low for Martin-Löf random, that is, every Martin-Löf random set is also

Martin-Löf random relative to x;
– x is a limit-recursive real which is low for Ω – here “x is low for Ω” means

that the real given by the halting probability
∑

p: U(p)↓ 2−|p| is Martin-Löf
random relative to x.

Nies’ Theorem showed that many lowness properties connected with randomness
have interesting connection with each other and also with not so related notions
like H-triviality. So related notions were studied and the next theorem gives an
overview of the there obtained results.

Theorem 3. Let x be a set of natural numbers.

1. (Nies [10]) x is low for recursively random iff x is recursive.
2. (Terwijn and Zambella [14]; Kjos-Hanssen, Nies and Stephan [6]) x is low

for Schnorr-random iff x is recursively traceable.
3. (Greenberg, Miller and Yu [15]) x is low for 1-generic iff x is recursive.
4. (Downey, Griffiths and Reid [3]) If x is recursively traceable than x is low for

Kurtz-random; if x is low for Kurtz-random then x has hyperimmune-free
Turing degree.
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Due to the last incomplete result and the fact that every weakly 1-generic set is
Kurtz-random, the following two questions were asked.

Question 4 (Downey, Griffiths and Reid [3], Miller and Nies [9],
Yu [15]). Is a set x low for weakly 1-generic iff x is recursively traceable?
Is x low for Kurtz-random iff x is recursively traceable?

In the following, these two questions are refuted. Before going into the details,
some background, definitions and notation will be provided.

Notation 5. The standard notation mainly follows the books of Downey and
Hirschfeldt [1], Li and Vitanyi [8], Odifreddi [11] and Soare [13].

In this paper, a real means an element in Cantor space {0, 1}ω. Thus subserts
of the natural numbers are identified with their characteristic function, that is,
reals and subsets of natural numbers are considered to be the same. The basic
open classes in Cantor space are of the form σ · {0, 1}ω and have the measure
2−|σ| where |σ| is the length of σ. The measure of a class S ⊆ {0, 1}ω is denoted
as μ(S).

Furthermore, x, y, z are used for reals, S, T, V for classes of reals, f, g, h for
functions and all other lower case letters for natural numbers. As already said,
C denotes the plain Kolmogorov complexity and H the prefix free Kolmogorov
complexity. Strings are denoted by Greek letters σ, τ . The string x(0)x(1) . . . x(n)
is denoted by x � n+ 1.

The two notions considered can be viewed as notions between genericity and
randomness. A weakly 1-generic set is contained in every dense Σ0

1 -class and a
Kurtz-random set is contained in every Σ0

1 -class of measure 1. Since such a class
is always dense, it follows that every weakly 1-generic set is also Kurtz-random;
but the converse does not hold as every Martin-Löf random set is Kurtz-random
but many Martin-Löf random sets like Ω are not weakly 1-generic. Now the
formal definition of 1-generic sets and their variants relative to a degree y is
given.

Definition 6. Given reals x, y,

1. x is 1-y-generic if for every Σ0
1(y) class Sy ⊆ {0, 1}ω either x ∈ Sy or there

is an n such that (x � n) · {0, 1}ω is disjoint to Sy.
2. x is weakly y-generic if x ∈ Sy for every dense Σ0

1(y) class S ⊆ {0, 1}ω.
3. x is said to be Kurtz-random relative to y if x ∈ Sy for each Σ0

1(y) class Sy

with μ(Sy) = 1.

Note that Kurtz-random relative to the halting problem K is not the same as
what Downey calls “Kurtz-2-random” as the there are Σ0

2 classes of measure 1
which are not a Σ0

1(K) class.

2 Recursively Traceable and Diagonally Non-recursive
Reals

The notion of hyperimmune and hyperimmune-free sets and degrees plays from
its beginning an important role in recursion theory, for the definition, see be-
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low. Already Post observed that hyperimmune sets are not hard for the halting
problem with respect to truth-table reducibility [12]. On the other hand, every
nonrecursive but r.e. set permits to compute a hyperimmune set. Thus they are
above hyperimmune sets. From this point of view, sets which are not above hy-
perimmune sets are weak. Nevertheless, these sets still form a rich structure and
they are well studied. The next definition summarizes the main notions. The last
notion gives something like the opposite of having hyperimmune-free degree.

Definition 7. 1. Given an infinite set x = {n0 < n1 < n2 < ...}, its principal
function px is defined by px(m) = nm. The principal functions of finite sets
are partial and have a finite domain.

2. A function f majorizes an infinite set x if ∀n(f(n) > px(n)).
3. Given a real y, an infinite set x is y-hyperimmune if no y-computable func-

tion f majorizes x. Particularly, a set x is called hyperimmune if it is ∅-
hyperimmune.

4. Given a real y, x is said to have y-hyperimmune degree if there is an in-
finite z ≤T x which is y-hyperimmune. Otherwise it is said that x has y-
hyperimmune-free degree. In particular, x has hyperimmune-free degree if it
has ∅-hyperimmune-free degree.

5. A real x is high iff there is a function f ≤T x which majorizes all infinite
recursive sets y. Otherwise x is called non-high.

Given a real x of hyperimmune-free degree and a function f computable relative
to x, there exists a recursive function g majorizing f . One can ask whether one
can even get more information about the values computed by some function
relative to x. This is not possible for all but for some reals of hyperimmune-free
degree. These reals are called recursively traceable.

Definition 8. A real x is recursively traceable iff there is a recursive function
h, called a bound, such that for all f ≤T x there is a recursive function g such
that the g(n)-th canonical finite set Dg(n) satisfies the following two properties:

– |Dg(n)| ≤ h(n);
– f(n) ∈ Dg(n).

Furthermore, x is r.e. traceable if the g(n)-th r.e. set Wg(n) is used instead of
Dg(n) in the definition above.

An important notion is the ability to avoid the diagonal function. As this function
is partial-recursive and not total, this cannot be done with a total-recursive
function. Indeed, if x has r.e. degree and avoids the diagonal function, then the
degree of x is already the complete one, that is, the degree of the halting problem.

Definition 9. A real x is diagonally nonrecursive (dnr) iff there is a total func-
tion f ≤T x such that for all n either ϕn(n) is undefined or different from f(n).

Clearly, every recursively traceable x is also r.e. traceable. Indeed x is recursively
traceable iff it is r.e. traceable and has hyperimmune-free degree. Note that
every x of hyperimmune-free degree is non-high. One can combine results of
Kjos-Hanssen and Merkle to obtain the following theorem.
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Theorem 10 (Kjos-Hanssen; Kjos-Hanssen, Merkle and Stephan [5]).
Let x be not high. Then the following are equivalent:

1. x is not dnr;
2. x is not autocomplex, that is, there is no f ≤T x such that C(x � m) ≥ n

whenever m ≥ f(n);
3. for every g ≤T x there is a recursive function h such that g(n) = h(n)

infinitely often;
4. x is infinitely often traceable in the sense that there is a recursive function

h such that for all f ≤T x there is a recursive function g with ∀n (|Dg(n)| ≤
h(n)) and ∃∞n (f(n) ∈ Dg(n));

5. for every unbounded and nondecreasing recursive function h and every func-
tion g ≤T x there are infinitely many n with C(g(n)) < h(n).

Furthermore, if the Turing degree of x is neither hyperimmune nor dnr, then one
can strengthen the third point as follows: for every g ≤T x there are recursive
functions h̃, h such that

∀n∃m ∈ {n, n+ 1, . . . , h̃(n)} (h(m) = g(m)).

Autocomplex sets are not r.e. traceable and vice versa. But these notions do also
not partition the class of all reals; the next result shows that there is a whole
Π0

1 class containing reals which are neither r.e. traceable nor autocomplex. This
result covers the well-known examples of reals which are neither r.e. traceable
nor autocomplex: (a) as the r.e. Turing degrees form a basis for Π0

1 -classes
[11, Exercise V.5.33, volume 1, pages 508 and 509], there is an x of r.e. degree
which is neither r.e. traceable nor autocomplex; (b) by Jockusch and Soare’s
Hyperimmune-Free Basis Theorem [11, Proposition V.5.34, volume 1, page 509],
there is an x of hyperimmune-free degree which is neither r.e. traceable nor
autocomplex. Result (a) is quite direct as every r.e. set which is neither Turing
complete nor low2 has this property. Result (b) can be obtained by considering
sets which are generic for “very strong array forcing” as considered by Downey,
Jockusch and Stob [2, 6]; Kjos-Hanssen pointed out to the authors that those
sets are neither autocomplex nor r.e. traceable nor do they have hyperimmune
Turing degree. An application of the following result would be that there are reals
which are low for Ω but neither recursively traceable nor dnr. This application
can be obtained via a theorem of Downey, Hirschfeldt, Miller and Nies [4] which
says that every nonempty Π0

1 -class has a member which is low for Ω.

Proposition 11. There is a partial-recursive {0, 1}-valued function ψ with coin-
finite domain such that every x extending ψ is neither autocomplex nor r.e.
traceable.

Proof. The function ψ is constructed such that

1. ψ(2n) is undefined for infinitely many n;
2. if ψ(2n) is undefined and x is a total extension of ψ and m ≥ 2n+1 then

C(x � m) ≥ n− 1;
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3. if ψ(2n) is undefined, x is a total extension of ψ and ϕx
e (3n) terminates such

that the maximum of its computation-time, largest query and computation-
result is s for some e ≤ n and s ≥ 2n then ψ(m) is defined for m = 2n, 2n+1,
. . . , 2s − 1.

Now these three conditions are used to show that a given total extension x of ψ
is neither r.e. traceable nor autocomplex.

Assume a recursive bound h is given. Let f(m) = C(x � 2h(m+1)+m+4). Choose
m,n such that h(m) + m + 3 ≤ n < h(m + 1) + m + 4 and ψ(n) is undefined.
There are infinitely many m for which there is such an n by the first condition
above. Now C(f(m)) > n and C(f(m) | m) > h(m), for infinitely many m, thus
x is not r.e. traceable with bound h. So x is not r.e. traceable at all.

Furthermore, if ϕx
e is total and n > e then ϕx

e (3n) queries x at places m where
either ψ(m) is defined or m < 2n+1. Therefore, one can compute ϕx

e (3n) and
x � ϕx

e (3n) from n and x � 2n+1, thus C(x � ϕx
e (3n)) < 3n and ϕx

e does not
witness that x is autocomplex. So x is neither autocomplex nor dnr.

It remains to show that the considered ψ really exists. Let U be a universal
machine for the complexity C and for a string τ in the domain of U , let bv(τ)
be the value of binary number 1τ . Now one constructs ψ in stages as follows. ψ0
is everywhere undefined and in stage s+ 1 the following is done.

1. Begin Stage s+ 1.
2. Find the smallest n for which there are e,m, x, t such that e ≤ n, 2n+1 ≤

m ≤ t ≤ s, x extends ψs, ψs(2n) ↑, ψs(m) ↑ and ϕx
e (3n) terminates such that

the maximum of its computation-time, largest query and computation-result
is exactly t.

3. If n with e,m, x, t are found in Step 2 then let, for all k ∈ {2n, 2n + 1,
. . . , 2s+1 − 1} where ψs(k) is undefined, ψs+1(k) = x(k).

4. For all τ ∈ {0, 1}∗ and i, j such that bv(τ) < 2i < 2s, Us(τ) ↓, j = 2i +
bv(τ) < |Us(τ)| and ψs(j) ↑, let ψs+1(j) = 1 − Us(τ)(j).

5. End Stage s+ 1.

Note that ψ(2n) can only become defined by activities in Step 3 of some stage.
One can show by the usual finite injury arguments that there are infinitely many
n for which ψ(2n) remains undefined. Furthermore, whenever ψ(2n) is undefined
and |τ | < n − 1 then j = 2n + bv(τ) satisfies that either U(τ) is undefined or
U(τ)(j), ψ(j) are both undefined or U(τ)(j), ψ(j) are both defined and different
where, for the string U(τ), U(τ)(j) is the bit at position j+ 1 if the length is at
least j+1 and is undefined if the length is at most j. As the mapping τ, n → 2n+
bv(τ) is one-one on the domain of all τ, n with bv(τ) < 2n and as Step 3, for every
n, makes either ψ either on a whole interval {2n, 2n + 1, . . . , 2n+1 − 1} or does
not change ψ on the interval at all, it follows that if ψ(2n) is undefined then Step
4 guarantees that C(x � m) ≥ n−1 for all m ≥ 2n+1. Furthermore, compactness
ensures that after finitely many stages, Step 3 of the construction has ensured
that the third condition on ψ is also satisfied. This completes the verification of
the construction ofψ. �
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3 Lowness for Weakly 1-Generic

The next result characterizes when a set is low for weakly 1-generic.

Theorem 12. The following statements are equivalent for every real x,

1. Every dense Σ0
1(x) class Sx ⊆ {0, 1}ω has a dense Σ0

1 subclass.
2. x is low for weakly 1-generic.
3. The degree of x is hyperimmune-free and each 1-generic real is weakly 1-x-

generic.
4. The degree of x is hyperimmune-free and not dnr.

Proof. Obviously, the first statement implies the second. Kurtz [7] showed that
every hyperimmune degree contains a weakly 1-generic real and thus the second
statement implies the third. Proposition 13 below proves that the third statement
implies the fourth. The implication from the fourth to the first condition follows
from Theorem 14 below. �
Proposition 13. If each 1-generic real is weakly 1-x-generic, then x is not dnr.

Proof. Assume by way of contradiction that x is dnr and every 1-generic set
y is also weakly 1-x-generic. Nies [10] showed that there exists a 1-generic and
H-trivial real y. Furthermore, as x is dnr, x is autocomplex [5]. So there is an
x-recursive function f such that H(x � m) ≥ n for all m ≥ f(n). Without loss of
generality, f(n) queries x only below f(n) when computing this value; otherwise
one could replace f(n) by the maximum of f(n) and all places queried during
the computation. Now one defines S as

S = {σ(x � f(|σ|)) : σ ∈ {0, 1}∗}

and observes that S is dense. By assumption, y is weakly x-generic. So there
are infinitely many n such that (y � n)(x � f(n)) � y. Given such an n, one
can compute f(n) relative to y by querying y(m + n) whenever the original
computation of f queries x(m), the reason is that whenever x(m) is queried in
this computation, then m < f(n) and y(m+n) = x(m). Using the property that
Hy and H differ by up to a constant for y as y is H-trivial [10] as well as the
fact that H is autocomplex, one has that

Hy(x � f(n)) ≤ Hy(n, y � n+ f(n)) + c1 ≤ Hy(n, f(n)) + c2

≤ Hy(n) + c3 ≤ H(n) + c4

for some constants c1, c2, c3, c4 and the infinitely many n with (y � n)(x � f(n)) �
y. It follows that H(n) ≥ n− c4 for infinitely many n, a contradiction. �

4 Low for Kurtz-Random

Downey, Griffiths and Reid [3] conjectured that every low for Kurtz-random real
is recursively traceable. The following theorem refutes the conjecture.

Theorem 14. Let x have neither hyperimmune nor dnr Turing degree. Then
the following two statements hold.
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1. Every Σ0
1(x) class Sx of measure 1 has a Σ0

1 subclass T of measure 1.
2. Every dense Σ0

1(x) class has a dense Σ0
1 subclass.

In particular, x is low for Kurtz-random and low for weakly 1-generic.

Proof. If Sx has measure 1 then Sx is dense: otherwise there would be a σ such
that σ · {0, 1}ω is disjoint to Sx and μ(Sx) ≤ 1 − 2−|σ|. The proof is now given
for the first statement where Sx has measure 1 and is dense. The proof for the
second statement where Sx is only dense can be obtained from this proof by just
omitting all conditions and constraints dealing with the measure of classes.

The argument in the proof is somewhat similar to the one in [15]. But the
proof is greatly simplified due to Theorem 10. Fix x such that the Turing degree
of x is neither hyperimmune nor dnr and consider any dense Σ0

1 class Sx. For
Sx, there is a function f̂ ≤T x such that, for all n,

– f̂(n) > n;
– ∀σ ∈ {0, 1}n∃τ ∈ {0, 1}f̂(n) (σ � τ ∧ τ · {0, 1}ω ⊆ Sx);
– μ({y ∈ Sx : (y � f̂(n)) · {0, 1}ω ⊆ Sx}) ≥ 1 − 2−n.

Since x has hyperimmune-free Turing degree, there is a recursive function f such
that, for all n, f(n+ 1) > f̂(f(n)). Then there is an x-recursive function g such
that, for all n,

– g(n) ⊆ {0, 1}f(n+1);
– ∀σ ∈ {0, 1}f(n)∃τ ∈ g(n) (σ � τ);
– μ(g(n) · {0, 1}ω) ≥ 1 − 2−n;
– g(n) · {0, 1}ω ⊆ Sx.

As the Turing degree of x is neither dnr nor hyperimmune, there are recursive
functions h, h̃ such that, for all n,

– h(n) ⊆ {0, 1}f(n+1);
– ∀σ ∈ {0, 1}f(n)∃τ ∈ h(n) (σ � τ);
– μ(h(n) · {0, 1}ω) ≥ 1 − 2−n;
– ∃m ∈ {n, n+ 1, . . . , h̃(n)} (h(m) = g(m)).

Now one can define the Σ0
1 class T as

T = {x : ∃n∀m ∈ {n, n+ 1, . . . , h̃(n)} (x � f(m+ 1) ∈ h(m))}.

The class T is dense because for every σ ∈ {0, 1}n there is a τn−1 ∈ {0, 1}f(n)

extending σ as f(n) > n and a sequence of τm ∈ h(m) each extending τm−1 for
m = n, n+ 1, . . . , h̃(n). Then τh̃(n) · {0, 1}ω ⊆ T . The measure of T is 1 as

μ({x : ∀m ∈ {n, n+ 1, . . . , h̃(n)} (x � m ∈ h(m))}) ≥ 1 − 2−n−1

for all n. Furthermore, for every x ∈ T there is an n and m ∈ {n, n+1, . . . , h̃(n)}
such that h(m) = g(m) and x ∈ uh(m). Thus x ∈ g(m) · {0, 1}ω and T ⊆ Sx. �
It is open whether lowness for Kurtz-random is equivalent to lowness for weakly
1-generic.
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Abstract. We study the differences among elementary theories of finite
levels of Ershov hierarchies. We also give a brief survey on the current
state of this area. Some questions are raised.

1 Preliminary

Putnam [9] is the first one who introduced the n-r.e. sets.

Definition 1. (i) A set A is n-r.e. if there is a recursive function f : ω×ω → ω
so that for each m,
• f(0,m) = 0.
• A(m) = lims f(s,m).
• |{s|f(s+ 1,m) �= f(s,m)}| ≤ n.

– A Turing degree is n-r.e. if it contains an n-r.e. set.

We use Dn to denote the collection of n-r.e. degrees.
For other recursion notations, please refer to Soare [13].
In this paper, we work in the partially ordered language, L(≤), through out.

L(≤) includes variables a, b, c, x, y, z, ... and a binary relation ≤ intended to
denote a partial order. Atomic formulas are x = y, x ≤ y. Σ0 formulas are built
by the following induction definition.

– Each atomic formula is Σ0.
– ¬ψ for some Σ0 formula ψ.
– ψ1 ∨ ψ2 for two Σ0 formula ψ1, ψ2.
– ψ1 ∧ ψ2 for two Σ0 formula ψ1, ψ2
– ψ1 =⇒ ψ2 for two Σ0 formula ψ1, ψ2.

A formula ϕ is Σ1 if it is of the form ∃x1∃x2...∃xnψ(x1, x2, ..., xn) for some
Σ0 formula ψ.

For each n ≥ 1, a formula ϕ is Πn if it is the form ¬ψ for some Σn formula ψ
and a formula ϕ is Σn+1 if it is the form ∃x1∃x2...∃xmψ(x1, x2, ..., xm) for some
Πn formula ψ .
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A sentence is a formula without free variables.
Given two structures A(A,≤A) and B(B,≤B) for L(≤), we say that A(A,≤A)

is a substructure of B(B,≤B), write A(A,≤A) ⊆ B(B,≤B), if A ⊆ B and the
interpretation ≤A is a restriction to A of ≤B.

Definition 2. For n ≥ 0. Given structures A(A,≤A) and B(B,≤B) for L(≤).

(i) We say that A(A,≤A) is a Σn substructure of B(B,≤B), write A(A,≤A

) �Σn B(B,≤B), if A(A,≤A) ⊆ B(B,≤B) and for all Σn formulas
ϕ(x1, x2, ..., xn) and any a1, a2, ..., an ∈ A,

A(A,≤A) |= ϕ(a1, a2, ..., an) if and only if B(B,≤B) |= ϕ(a1, a2, ..., an).

(ii) We say that A(A,≤A) is Σn-elementary-equivalent to B(B,≤B), write
A(A,≤A) ≡Σn B(B,≤B), if for all Σn sentences ϕ,

A(A,≤A) |= ϕ if and only if B(B,≤B) |= ϕ.

In this paper, we study the model theoretical properties of Δ0
2 Turing degrees

as the structure D(≤ 0′) = (D(≤ 0′),≤) of L(≤). We are interested in various
substructure of D(≤ 0′), particularly, the structures of n-r.e. degrees Dn =
(Dn,≤). 1 For two degrees a and b in Dn (or D(≤ 0′)), we use a ∪ b and a ∩ b
to denote their least upper bound and the largest lower bound (if exists) in Dn

(or D(≤ 0′)) respectively.
For more model theoretic facts, please refer to [7].

2 Elementary Difference Among Ershov Hierarchies

Comparing the structure difference between Ershov hierarchies has a long history
beginning with Cooper(1970’s) and Lachlan’s (1968) unpublished work. They
proved the following theorem.

Theorem 1 (Lachlan, Cooper)

(i) For each n ≥ 1, Dn ⊂ Dn+1.
(ii) For each non-recursive n + 1-r.e. degree a, there is a non-recursive n-r.e.

degree b ≤ a.

For any Σ1-sentence ϕ, Dn or D(≤ 0′) satisfies ϕ if and only if ϕ is consistent
with the theory of partial orderings (see, for example, some exercises in Soare
[13]). Therefore,

Theorem 2 (Folklore). For all n ∈ ω, Dn ≡Σ1 D(≤ 0′).

Thus elementary differences would not occur at the Σ1-level.
By improving a technique due to Spector, Sacks proved the following result.

Theorem 3 (Sacks [10]). There is a Δ0
2 minimal degree.

1 We use “1-r.e.” to denote “r.e.”
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Comparing with Theorem 1, the elementary difference between Dn and D(≤
0′) shows up at Σ2-level.

The elementary difference between D1 and Dn(n > 1) was first revealed at
Σ3-level by Arslanov [2] who showed that for every element a in Dn, there is
an element b ∈ Dn of which the supreme is 0′, whereas in D1 this is not true
due to Cooper and Yates. Later many differences at Σ2-level were discovered,
for example, the following pair of theorems offers perhaps the clearest order-
theoretic difference:

Theorem 4 (Sacks[11]). D1 is dense.

Theorem 5 (Cooper, Harrington, Lachlan, Lempp, Soare[5]). For each
natural number n > 1, there is a maximal element in Dn.

So the following results can be obtained.

Corollary 1. For each natural number n > 1, D1 �≡Σ2 Dn.

A further question is how difference between Dn and Dn+m for n > 1. Downey
formulated the following ambitious question which is now known as Downey
Conjecture.

Conjecture 1 (Downey [6]). For each n > 1 and k ≥ 0, Dn ≡Σk
Dn+m.

Though Downey Conjecture looks too optimal to be true, it remained open more
than fifteen years. The difficulty of Conjecture 1 lies in the technique used in
the local theory of Dn. Usually one can generalize a (local) result in D2 to Dn

without any difficult.
Recently, Arslanov, Kalimullin and Lempp announced a negative solution to

Conjecture 1. They proved the following result.

Theorem 6 (Arslanov, Kalimullin, Lempp [3]). D2 �≡Σ2 D3.

But the question whether Dn �≡Σ2 Dn+m is true for some very large numbers
n,m still remains open.

3 Σ1-substructures of D(≤ 0′)

As we have seen that Dn ≡Σ1 D(≤ 0′)(Theorem 2), it is natural to ask whether
Dn �Σ1 D(≤ 0′). This was eventually negatively answered by Slaman in 1983.

Theorem 7 (Slaman)

(i) There are r.e. sets A,B and C and a Δ0
2 set E such that

• ∅ <T E ≤T A;
• C �≤T B ⊕ E;
• For all r.e. sets W (∅ <T W ≤T A ⇒ C ≤T W ⊕B).

(ii) For each natural number n ≥ 1, Dn ��Σ1 D(≤ 0′).
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Proof. We just show how to deduce (ii) from (i). Take a Σ1 formula

ϕ(x1, x2, x3) ≡ ∃e∃y∃z(e ≤ x1 ∧ e ≥ y ∧ e �= y ∧ z ≥ x2 ∧ z ≥ e ∧ z �≥ x3).

Take the r.e. degrees a,b, c and a Δ0
2 degree e as in (i). Fix Z = B ⊕ E.

Then D(0′) |= ϕ(a,b, c) since e ≤ a ∧ e > 0 ∧ z �≥ c.
Then for each n ≥ 1, Dn �|= ϕ(a,b, c). If not, then there is an n-r.e. degree

f > 0 so that f ≤ a and f ∪ b �≥ c. But, by Theorem 1, there is a non-recursive
r.e. degree w ≤ f . So g ∪ b �≥ c. This is impossible by (i).

Having proved Theorem 7, Slaman raised the following conjecture which re-
mained open more than twenty years.

Conjecture 2 (Slaman [5]). For each n > 1, D1 �Σ1 Dn?

Furthermore, Lempp raised the following conjecture.

Conjecture 3 (Lempp). For all n > m, Dm �Σ1 Dn?

To solve conjecture 2, one possible argument is to build a finite array just as
Slaman did in Theorem 7. However, by the Cooper and Lachlan observation that
every nonrecursive n-r.e. degree bounds a nonrecursive r.e. degree, we cannot
hope that any n-r.e. degree D plays the role of E as in Slaman Theorem.

We first explain that it is necessary to build a complicated formula to refute
Slaman’s conjecture.

A formula is called positive if it is built by the following induction definition.

– Each atomic formula is positive.
– ψ1 ∨ ψ2 for two positive formula ψ1, ψ2.
– ψ1 ∧ ψ2 for two positive formula ψ1, ψ2.

A formula is called p-Σ1 if it is the form ∃x1∃x2...∃xnϕ(x1, x2, ..., xn) for some
positive formula ϕ.

We say that A(A,≤A) is a p-Σ1 substructure of B(B,≤B), write A(A,≤A)
�p-Σ1 B(B,≤B), if A(A,≤A) ⊆ B(B,≤B) and for all p-Σ1 formulas
ϕ(x1, x2, ..., xn) and any a1, a2, ..., an ∈ A,

A(A,≤A) |= ϕ(a1, a2, ..., an) if and only if B(B,≤B) |= ϕ(a1, a2, ..., an).

We have the following proposition

Proposition 1. Dn �p-Σ1 Dm for all n ≤ m. Furthermore, (D1,≤,∪,∩) �p-Σ1

(Dn,≤,∪,∩) for all n > 1.

Thus to refute Slaman Conjecture, it is necessary to consider some negative
statement.

Eventually we obtained the following formula.

ϕ(x1, x2, x3, x4) ≡ ∃d∃g(d ≤ x1 ∧ d �≤ x4 ∧ g ≥ x2 ∧ g ≥ d ∧ x3 �≤ g).
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The solution to Conjecture 2 follows from the following technical result:

Theorem 8 (Yang and Yu [15]). There are r.e. sets A,B,C and E and a
d.r.e. set D such that

1. D ≤T A and D �≤T E;
2. C �≤T B ⊕D;
3. For all r.e. set W (W ≤T A ⇒ either C ≤T W ⊕B or W ≤T E).

Assuming Theorem 8, we can obtain the following result to refute Slaman
conjecture:

Theorem 9 (Yang and Yu [15]). For all n > 1, D1 ��Σ1 Dn.

Proof. Assume n > 1.Let a,b, c,d, e be the degrees of their corresponding sets
as in Theorem 8. Note that all of them except d belong to D1 and d belongs to
Dn. By Theorem 8, just take g = b ∪ d ∈ Dn,

Dn |= ϕ(a,b, c, e).

However, by Theorem 8 again,

D1 |= ∀w∀g((w ≤ a ∧ g ≥ w ∧ g ≥ b ∧ w �≤ e) =⇒ c ≤ g).

In other words,
D1 |= ¬ϕ(a,b, c, e).

Although Slaman Conjecture is not true, we can ask where the abnormal
parameters refuting the conjecture exist. Inspired by Shore and Slaman [12], we
conjecture that each high r.e. degree bounds the four parameters as in Theorem
8 so that Slaman conjecture fails. But is there a fragment E ⊂ D1 so that
E �Σ1 D2? A critical part of the argument used in the proof of Theorem 8 is
a modification of the construction of Slaman triple. A triple (a,b, c) in Dn is
called Slaman triple if 0 < a, c �≤ b and for all non-recursive x ∈ Dn below a,
c ≤ b ∪ x. Shore and Slaman [12] showed that a Slaman-triple can be found
below each high r.e. degree in D1. However, Harrington, and Bickford and Mills,
showed independently that no low2 r.e. degree bounds a Slaman triple in D1.
Thus it sounds reasonable to conjecture that there is fragment E ⊂ D1 in which
all of elements are low2 so that E �Σ1 D2. A non-recursive degree a ∈ Dn is
said to be almost deep if for each low b ∈ Dn, a ∪ b is low. Cholak et al [4]
proved that almost deep degrees exist in D1. Hence it is natural to ask whether
the almost deep degrees in D1 form a Σ1-substructure of D2.

The last question in this section was raised by Khoussainov.

Question 1 (Khoussainov). For n > 1, is there a function f : D1 → Dn so that
for any Σ1-formula ϕ(x1, ..., xm),

D1 |= ϕ(x1,x2, ...,xm) iff Dn |= ϕ(f(x1), f(x2), ..., f(xm)),

where x1,x2, ...,xm range over D1?
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4 Definable Ideals and Filters

Recently, Wang and Yu [14] proved that each non-principal ideal in D1 is a Σ1-
substructure of D1. But the question whether any non-principal ideal in D2 is
a Σ1-substructure of D2 is unknown. A set A ⊆ Dn is said to be definable in
Dn if there is a formula ψ so that a ∈ A if and only if Dn |= ψ(a). For D1,
by the recent work due to Nies [8], Yang and Yu [16], there are many definable
non-principal ideals in D1. A natural question is what about D2? To construct
a non-principal ideal in Dn, we just need to take a non-principal ideal I in D1
and then build a non-principal ideal J = {b|∃a ∈ I(b ≤ a)}. The problem is
whether it is definable in Dn. We formulate the following questions which we are
very interested in.

Question 2. For n > 1, is there a non-trivial definable Σ1-substructure of Dn?

From the discussion above, we have seen that the definable ideals play a critical
role in the study of global theory. Although there are some non-trivial definable
ideals in D1. It is unknown whether there are infinitely many definable ones in
D1. For D2, we don’t even know whether there is a non-trivial definable ideal
in it.

Wang also recently studied definable filters in D1. It is unknown whether there
is a non-trivial definable filter in D2. We say that an non-zero degree a ∈ Dn is
cappable if there is an incomplete degree b ∈ Dn so that the infimum of them
is the recursive degree 0. Otherwise, a is said to be non-cappable. A possible
candidate of definable filters is the collection of non-cappable degrees in D2.
Ambos-Spies et al [1] proved that the collection of non-cappable degrees form
a filter in D1. Thus, to construct a definable filter in D2, it suffices to prove
that each non-cappable 2-r.e. degree bounds a non-cappable r.e. degree. So the
following technical question is raised.

Question 3. Can each 2-r.e. non-cappable degree compute an r.e. non-cappable
degree?
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Abstract. We consider the notion of mass problem of presentability for
countable structures, and study the relationship between Medvedev and
Muchnik reducibilities on such problems and possible ways of syntac-
tically characterizing these reducibilities. Also, we consider the notions
of strong and weak presentability dimension and characterize classes of
structures with presentability dimensions 1.

1 Basic Notions and Facts

The main problem we consider in this paper is the relationship between pre-
sentations of countable structures on natural numbers and on admissible sets.
Most of notations and terminology we use here are standard and corresponds
to [4, 1, 13]. We denote the domains of a structures M,N, . . . by M,N. . . .. For
any arbitrary structure M the hereditary finite superstructure HF(M), which
is the least admissible set containing the domain of M as a subset, enables us
to study effective (computable) properties of M by means of computability the-
ory for admissible sets. The exact definition is as follows: the hereditary finite
superstructure HF(M) over a structure M of signature σ is a structure of sig-
nature σ′ = σ ∪ {U1,∈2}, whose universe is HF (M) =

⋃
n∈ω Hn(M), where

H0(M) = M , Hn+1(M) = Hn(M)∪{a|a ⊆ Hn(M), card(a) < ω}, the predicate
U distinguish the set of the elements of the structure M (regarded as urelements),
while the relation ∈ has the usual set theoretic meaning.

In the class of all formulas of signature σ′ we define the subclass ofΔ0-formulas
as the closure of the class of atomic formulas under ∧,∨,¬,→, ∃x ∈ y, ∀x ∈ y;
the class of Σ-formulas is the closure of the class of Δ0-formulas under ∧,∨,¬,→
, ∃x ∈ y, ∀x ∈ y, and the quantifier ∃x; the class of Π-formulas is defined in the
same way, allowing the quantifier ∀x instead of ∃x. A relation on HF(M) is called
Σ-definable (Π-definable) if it is defined by a corresponding formula, possibly
with parameters; it is called Δ-definable if it is Σ- and Π-definable at the same
time.
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In all that follows, we consider only countable structures of finite signatures.
For a countable structure M, a presentation of M on the natural numbers, or
simply a presentation of M, is any structure C such that C ∼= M and the domain
of C is a subset of ω (the relation = is assumed to be a congruence relation on
C and may differ form the normal equality relation on C). We can also treat the
atomic diagram of a presentation as a subset of ω, using some Gödel numbering
of the atomic formulas of the signature of M. So any presentation, identified
with its atomic diagram, can be considered as a subset of ω.

A mass problem, as introduced by Yu.T. Medvedev [7], is any set of total
functions from ω to ω. Intuitively, a mass problem can be considered as a set
of ”solutions” (in form of functions from ω to ω) of some ”informal problem”.
Below we list some examples of mass problems which correspond to well-known
informal problems from computability theory:

1) the problem of solvability of a set A ⊆ ω is the mass problem SA = {χA},
where χA is the characteristic function of A;

2) the problem of enumerability of a set A ⊆ ω is the mass problem
EA = {f : ω → ω | rng(f) = A};

3) the problem of separability of a pair of sets A,B ⊆ ω is the mass problem
PA,B = {f : ω → 2 | f−1(0) ⊇ A, f−1(1) ⊇ B}.

In this paper we consider another class of mass problems – problems of
presentability, which corresponds to the main informal problem in computable
model theory, the problem of presentability of structures on natural numbers.
For a structure M, we consider the set of all possible presentations of M. The set
of characteristic functions of the atomic diagrams of such presentations forms
the mass problem

M = { χD(C) | C is a presentation of M }.

We call this mass problem the problem of presentability of M.
Note that for any presentation C ∈ M its domain C is effectively recognizable

from (more precisely, Turing reducible to) the function χD(C), since c ∈ C iff
(c = c) ∈ D(C). It is also clear that if C,D are presentations (maybe of different
structures) then χD(C) 	T χD(D) if and only if χD(C) 	e χD(D).

For a structure M, one could also study the set

M
−−

= { χ∗
D(C) | C is a presentation of M }

of partial characteristic functions of the atomic diagrams of all presentations of
M (recall that, for a set A ⊆ ω, χA(n) = 0 if n ∈ A, and χA(n) is undefined
otherwise). Any such set is a partial mass problem in the sense of E.Z. Dyment
[3], and we will call them partial problems of presentability. Such problems, in a
different terminology, were considered with respect to classes of finite structures
in [2]. In this case enumeration reducibility, the main object of study in [2], is
no longer equivalent to Turing reducibility.



774 A. Stukachev

In [7] it was introduced a notion of reducibility between mass problems. If
A and B are mass problems, then A is said to be reducible to B (denoted by
A 	 B), if there exists a recursive operator Ψ such that Ψ(B) ⊆ A. Informally,
A is reducible to B if there exists an uniform effective procedure, which, given
any ”solution” from B, transforms it to some ”solution” from A.

The equivalence relation ≡ on mass problem is defined from 	 in the usual
way: A ≡ B if A 	 B and B 	 A. Equivalence classes of mass problems under ≡
(which are called degrees of difficulty), together with the relation of reducibility
	, form a distributive lattice known as the Medvedev lattice [7].

There is another important notion of reducibility between mass problems,
which was introduced by A.A. Muchnik [9]. Namely, if A and B are mass prob-
lems, then A is said to be weakly reducible to B (denoted by A 	w B), if, for any
f ∈ B, there is some recursive operator Ψ such that Ψ(f) ∈ A. So the weak (we
will also call it Muchnik) reducibility is obtained from the strong (Medvedev)
reducibility by dropping the uniformity requirement. The equivalence relation
≡w on mass problem is defined from 	w in the usual way; equivalence classes
of mass problems under ≡w with the relation of reducibility 	w also form a
distributive lattice known as the Muchnik lattice [9].

There is also another important notion – that of the Dyment lattice [3] –
which we recall now. If A and B are partial mass problems, A is said to be
enumeration reducible (or Dyment reducible) to B (denoted by A 	e B) if
for some partial recursive operator Ψ we have B ⊆ dom(Ψ) and Ψ(B) ⊆ A. The
Dyment lattice consists of the equivalence classes of partial mass problems under
the enumeration reducibility. In the same way as for the Medvedev lattice, we
introduce the nonuniform version 	ew of the Dyment reducibility.

In this paper we will consider the reducibilities 	 and 	w for the class of
problems of presentability and 	e and 	ew for the class of partial problems of
presentability. There is a syntactical characterization of these reducibilities in
the case of problems of enumerability, which follows from a result obtained by
A. Selman [11] and rediscovered by M. Rozinas [10]: for any A,B ⊆ ω, A 	e B
if and only if, for any X ⊆ ω, the fact that B is X-c.e. implies that A is X-c.e..
From this theorem we directly obtain that, for any A,B ⊆ ω,

EA 	w EB ⇐⇒ EA 	 EB ⇐⇒ A 	e B.

Besides the syntactical characterization, it implies the fact (observed also in [8])
that Medvedev and Muchnik reducibilities coincide on the class of problems of
enumerability.

It is clear that (strong) Medvedev reducibility always implies (weak) Much-
nik reducibility: for any mass problems A,B, A 	 B ⇒ A 	w B. In [9] was
established a sufficient condition under which these reducibilities are equivalent.
In this paper we will consider the problem of describing the relationship be-
tween uniform and nonuniform reducibilities in the case of mass problems of
presentability.

We recall a sufficient condition from [9]. By a finite function we will mean a
function f̃ : n → ω, where n < ω. An open interval is a mass problem of the form



On Mass Problems of Presentability 775

If̃ = {f : ω → ω | f̃ ⊆ f} for some finite function f̃ . The Baire topology on ωω

is generated by open intervals as a basis for the class of the open sets. A mass
problem is called closed if it is a closed subset of ωω in the Baire topology. A mass
problem A is called uniform if, for any open interval If̃ such that A ∩ If̃ �= ∅,
we have A∩ If̃ 	 A.

Let A be a mass problem. We define a game of two players on A as follows. At
the first step, the first player chooses an open interval If̃1

such that A∩If̃1
�= ∅.

At the second step, the second player chooses an open interval If̃2
such that

A ∩ If̃1
∩ If̃2

�= ∅. At the third step the first player chooses an open interval
If̃3

such that A∩ If̃1
∩ If̃2

∩ If̃3
�= ∅, and so on. The second player wins if the

intersection of If̃1
, If̃2

, If̃3
, . . . is a single function from A. A mass problem A

is called winning if the second player always has a winning strategy. Now the
sufficient condition from [9] can be stated in the following

Theorem 1 (A.A. Muchnik [9]). Let A and B be mass problems. If A is
closed and B is uniform and winning, then

A 	 B ⇐⇒ A 	w B.

Of course these requirements are rather strong, because of the generality of the
situation. In fact, most restricting is the requirement of closeness, which makes
it difficult to use this criterion in some special cases. For example, in the case of
problems of enumerability it was shown in [9] that, for any A ⊆ ω, EA is uniform
and winning, but closed if and only if card(A) 	 1. So the above sufficient
condition can not be applied to problems of enumerability. In spite of this, we
have seen that in this case these reducibilities coincide. The condition from [9] is
of no use also in the case of problems of presentability. One of the requirements
hold for free – we have

Lemma 1. Any mass problem of presentability is uniform.

Proof. For a structure M, let f̃ be a finite function such that If̃ ∩ M �= ∅.
It means that f̃ represents some finite part of the atomic diagram of M. We
describe an effective procedure which transforms any C ∈ M to the presentation
in M ∩ If̃ . We effectively enumerate all finite pieces of the atomic diagram of C
until we find the piece isomorphic to one represented by f̃ , and then apply to
the domain of C a finite permutation witnessing this isomorphism.

Consider now the property of closeness. It is easy to prove the following

Lemma 2. Let M be a structure of relational signature. If M is closed then, for
any countable structure N of the same signature as M, such that N �∼= M, there
exists an ∃-sentence ϕ with the following properties:

1) N |= ϕ;
2) for any structure N′ (of the same signature as M), N′ |= ϕ implies that

N′ �∼= M.

From this lemma we get
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Theorem 2. Let M be a structure of relational signature. M is a closed mass
problem if and only if card(M) = 1.

Proof. It is enough to prove that M is not closed in the case then card(M) � 2.
So let M′ � M be a proper finite substructure (it exists because there are no
functional symbols in the signature). Of course we have M′ � M, but any ∃-
sentence which is true on M′ is also true on M. From Lemma 2 it follows that
M is not closed.

2 Medvedev and Muchnik Reducibilities in the Case of
Problems of Presentability

We now look at the relationship between problems of presentability and some
other mass problems. Considering the problems of enumerability, in [15] we ob-
tain, by applying results and techniques due to J.F. Knight [5], the following
result, which is in some way analogous to Selman-Rozinas Theorem.

Theorem 3. Let M be a structure, and A ⊆ ω, A �= ∅. Then the following are
equivalent:

1) EA 	w M;
2) EA 	 (M, m̄) for some m̄ ∈ M<ω;
3) A is Σ-definable in HF(M).

As an immediate consequence of Theorem 3 we get

Theorem 4. Let M be a structure, and A ⊆ ω. Then the following are
equivalent:

1) SA 	w M;
2) SA 	 (M, m̄) for some m̄ ∈ M<ω;
3) A is Δ-definable in HF(M).

Proof. Follows from Theorem 3, because, for any mass problem B, SA 	w B if
and only if EA 	w B and EA 	w B (the same hold also for 	).

Consider now the relations of Medvedev and Muchnik reducibility for the class
of mass problems of presentability. Let M be a structure of relational signature
〈Pn0

0 , . . . , P
nk−1
k 〉 (the restriction to predicative signature is not essential and

stands only for simplicity) and let A be an admissible set (see [4, 1] for definition).

Definition 1 (Yu.L. Ershov [4]). M is said to be Σ-definable in A if there
exist Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗
0(x0, . . . , xn0−1, y), . . . , Φk−1(x0, . . . , xnk−1−1, y), Φ∗

k−1(x0, . . . , xnk−1−1, y)
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such that for some parameter a ∈ A, and letting M0 � ΦA(x0, a), η �
ΨA(x0, x1, a) ∩ M2

0 , one has that M0 �= ∅ and η is a congruence relation on
the structure

M0 � 〈M0;PM0
0 , . . . , PM0

k−1〉,

where PM0
i � ΦA

i (x0, . . . , xni−1) ∩ Mni
0 for all i < k, Ψ∗A(x0, x1, a) ∩ M2

0 =
M2

0 \ ΨA(x0, x1, a), Φ∗A
i (x0, . . . , xni−1, a) ∩Mni

0 = Mni
0 \ ΦA

i (x0, . . . , xni−1) for
all i < k, and the structure M is isomorphic to the quotient structure M0	η.

If, in addition, there exists a Σ-formula Φ∗(x0, y) such that A |= ∀x0(Φ∗(x0, a)
↔ ¬Φ(x0, a)), then M is said to be Δ-definable in A. We say that M is Δ-
definable in A with no parameters if the above hold for a = ∅.

It is easy to show that, if we allow parameters, M is Σ-definable in A if and
only if M is Δ-definable in A. However, this is not so if we restrict ourselves to
definitions with no parameters.

Given arbitrary structures M and N, consider the following properties:

1) M 	w N;
2) M 	 (N, n̄) for some n̄ ∈ N<ω;
3) M is Δ-definable in HF(N).

It is easy to see that, for any M and N, 3 implies 2 and 2 implies 3. To
prove that 3 ⇒ 2, suppose that M is Δ-definable in HF(N) by means of some
sequence Γ of Σ-formulas with parameters n̄ ∈ N<ω (without loss of generality
we may assume that all parameters are elements ofN). Then a recursive operator
witnessing that M 	 (N, n̄) can be defined from Γ , using the fact that for
witnessing the truth of a Σ-formula in HF(N, n̄) it is enough to provide a finite
subset of the atomic diagram of (N, n̄) together with some natural number. To
prove that 2 ⇒ 1, note that, for any presentation of N, distinguishing in it any
tuple of representatives of n̄ and applying the s-m-n Theorem to an operator
witnessing that M 	 (N, n̄), we get an operator which maps this presentation
into some presentation of M.

We now distinguish the class of structures N for which the conditions 1, 2 and
3 are equivalent for any structure M. The next important notion was introduced
by L. Richter in [16]. A structure M is said to have degree d if

d = min{degT (C) | C is a presentation of M}.

The original definition from [16] was formulated with respect to presentations
with domains ω only, but it is easy to see that, for any M and any its presentation
C, there is a presentation C′ of M, with ω as the domain, such that C′ 	T C. So
our definition coincides with that of Richter. There are examples of structures
which have or fail to have a degree (see [16]). Below we show that the class of the
structures having a degree is naturally described in terms of effective definability
in admissible superstructures.

Theorem 5. Let M and N be a structures, and let N has a degree. Then the
following are equivalent:
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1) M 	w N;
2) M 	 (N, n̄) for some n̄ ∈ N<ω;
3) M is Δ-definable in HF(N).

The only thing we need to prove is the implication 1 ⇒ 3. For this we will use the
following result, which characterizes the class of structures having a degree by
means of definability in hereditary finite superstructures. For arbitrary countable
structure M of a signature σ, we consider its expansion M′ as a structure of the
signature σ ∪ {s1; 0}, where s is the symbol of an unary function and 0 is a
constant symbol, such that

〈M, sM′
, 0M′〉 ∼= 〈ω, s, 0〉.

Any such structure M′ is called an s-expansion of M.

Theorem 6. For a structure M the following are equivalent:

1) M has a degree;
2) some presentation of M is Δ-definable in HF(M) (as a subset of ω);
3) some s-expansion of M is Δ-definable in HF(M).

Proof. 2 ⇒ 3. Let C ∈ M be such that C is Δ-definable in HF(M). It is easy
to define by C the corresponding s-expansion of M, which therefore would be
Δ-definable in HF(M).

3 ⇒ 2. Suppose M′ is Δ-definable in HF(M). We will show that in this case
some C ∈ M is Δ-definable in HF(M), with domain of C equal to ω. We estimate
an isomorphism f from M′ (more precisely, from its presentation in HF(M)) to C,
which will be Δ-defanable in HF(M), in the following way: for any a ∈ HF (M)
and any n ∈ ω, let f(a) = n if and only if there are a0, . . . , an ∈ HF (M) such
that, accordingly to the given presentation of M′, a0 = 0M′

, a1 = sM′
(a0), . . . ,

a = an = sM′
(an−1).

2 ⇒ 1. Suppose that, for some C ∈ M, the atomic diagram of C is Δ-definable
in HF(N) with parameters n̄ ∈ N<ω (again, we may assume that all of the
parameters are from N). But from this we immediately obtain that C 	T C′ for
any C′ ∈ M. Indeed, the recursive operators witnessing this are derived from the
Σ-formulas defining C.

1 ⇒ 2. Suppose that there is some C ∈ M such that C 	T C′ for any C′ ∈ M.
This is equivalent to saying that, in terms of the mass problems, SC 	w M. So,
by the Theorem 4, C is Δ-definable in HF(M) (as a subset of ω).

Finally, let us prove the implication 1 ⇒ 3 of the Theorem 5. So suppose M
is such that M 	w N. Let also fix some C0 ∈ N such that C0 is Δ-definable in
HF(N). Then from M 	w N it follows that there is a presentation C ∈ M such
that C 	T C0. Since C0 is Δ-definable in HF(N), the same is true for C, hence it
follows that M is Δ-definable in HF(M) via the presentation C.

In [15] we show that the requirement that a structure N have a degree in
the Theorem 5 is essential and can not be dropped. For this we use the fact
( obtained independently by S. Wehner [17] and T. Slaman [12]) that there exist
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structures which mass problems of presentability belongs to the least non-zero
degree of difficulty in the Medvedev lattice.

Now we introduce some class of structures for which, considering their prob-
lems of presentability, Medvedev and Muchnik reducibilities are equivalent. In
fact, we adjust the notion of uniformity to our model theoretical setting.

Definition 2. A structure M is called ∗-uniform if (M, m̄) 	 M for any
m̄ ∈ M<ω.

From Theorem 5 we immediately obtain

Corollary 1. If N is ∗-uniform and has a degree then, for any structure M,

M 	 N ⇐⇒ M 	w N.

We remind the following definition from the model theory: a structure M is called
ultrahomogeneous if any isomorphism between finitely generated substructures
of M can be extended to an automorphism of M. It is clear that, if M is ho-
mogeneous structure of relational signature, then M is ∗-uniform. Also clear
that, if M is constructivizable (i.e. have a computable presentation), then M is
∗-uniform. We establish now an example of nonhomogeneous and nonconstruc-
tivizable structure which is ∗-uniform.

Lemma 3. If α1, . . . , αn are constructive ordinals, then 〈ωCK
1 ; 	, α1, . . . , αn〉 is

Δ-definable in HF(〈ωCK
1 ,	〉) with no parameters.

Proof. We use the fact that α + ωCK
1 = ωCK

1 for any constructive ordinal α.
Indeed, if α is constructive, then so is α·ω, hence α·ω < ωCK

1 . But α+α·ω = α·ω,
so α+ ωCK

1 = ωCK
1 .

Let us suppose that α1 < . . . < αn, for simplicity. Since all of these ordinals
are constructive, the structure 〈αn; 	, α1, . . . , αn−1〉 is Δ-definable in HF(∅)
(with no parameters, of course). So the sum 〈αn + ωCK

1 ; 	, α1, . . . , αn〉 is Δ-
definable in HF(〈ωCK

1 ; 	〉) with no parameters. By the fact mentioned above,
the lemma is proved.

Corollary 2. Suppose α1, . . . , αn ∈ ωCK
1 are constructive ordinals.

Then 〈ωCK
1 ; 	, ᾱ〉 	 〈ωCK

1 ,	〉. As a consequence, 〈ωCK
1 ; 	〉 is ∗-uniform.

In [15] we prove that 〈ωCK
1 + 1; 	〉 is not ∗-uniform. More exactly, there is

Theorem 7. 〈ωCK
1 + 1; 	, ωCK

1 〉 �	 〈ωCK
1 + 1; 	〉.

Since, obviously, 〈ωCK
1 + 1; 	, ωCK

1 〉 	w 〈ωCK
1 + 1; 	〉, we get

Corollary 3. There are structures M and N such that M 	w N, but M �	 N.
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3 Partial Mass Problems of Presentability and
e-Reducibility

We will say that a structure M has e-degree d if

d = min{dege(C) | C is a presentation of M}.
The following theorem gives the syntactical characterization for structures

with an e-degree.

Theorem 8. For a structure M the following are equivalent:

1) M has an e-degree;
2) some presentation of M is Σ-definable in HF(M) (as a subset of ω).

Proof. Analogous to the proof of Theorem 6.

As an immediate consequence of this theorem and Theorem 6 we get

Proposition 1. If M has a degree then M has an e-degree.

There are examples (implicitly presented in [16]) of structures which have an
e-degree but does not have a degree. The analog of Theorem 5 for the partial
mass problems of presentability is the following

Theorem 9. Let M and N be a structures, and let N has an e-degree. The
following are equivalent:

1) M
−−

	ew N
−−

;

2) M
−−

	e (N, n̄)
−−−

for some n̄ ∈ N<ω;

3) M is Σ-definable in HF(N).

Proof. Analogous to the proof of Theorem 5.

Theorem 10. For any structures M,N,

M
−−

	e N
−−

implies M 	 N, and M
−−

	ew N
−−

implies M 	w N,

Proof. Analogous to the proof of Lemma 1. Suppose, for example, that M
−−

	e

N
−−

by means of the partial recursive operator Ψ . It is easy to build from Ψ a

partial recursive operator Ψ ′, defined on N, such that for any f ∈ N we have
Ψ ′(f) = Ψ(f ′), where f ′ ∈ N

−−
corresponds to f . So Ψ ′(N) ⊆ M

−−
. We describe an

effective procedure which transforms any characteristic function f ∈ N to the
characteristic function of some presentation C(f) of M. We define the domain
of C(f) together with the bijection π which maps it onto the domain of the
presentation defined by f . Namely, at the step s we define the subset Cs ⊇ Cs−1
of the domain C(f) as follows: consider all numbers from 0 to s which are not
in π(Cs−1); add the number s to Cs and the pair 〈s, c〉 to π if and only if
c 	 s, c /∈ π(Cs−1) is the least for which there exist a finite set Dk ⊆ f with the
number k 	 s in some fixed enumeration, for which 〈(c = c), 1〉 ∈ Ψ ′(Dk). The
construction defined above gives the domain Cf and bijection π which define the
characteristic function of desired presentation.
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4 Presentability Dimensions

It is reasonable, having a problem of presentability, which consists of all possible
presentations of some structure, to try to find a subset of it, with the same
properties with respect to Medvedev (Muchnik) reducibility, which is as small
as possible.

Definition 3. A countable structure M is said to have (strong) presentability
dimension α (denote Pr-dim(M) = α), where α is a cardinal, if M ≡ B for some
B ⊆ M, card(B) = α, and α is the least cardinal satisfying these conditions.

In the same way we can introduce the notion of weak presentability dimension
Pr-dimw(M), changing in the above definition ≡ to ≡w. It is clear that for any
(countable) structure M we have

1 	 Pr-dimw(M) 	 Pr-dim(M) 	 2ω.

It is also easy to see that, for any structure M, Pr-dimw(M) = 1 if and only if
M has a degree. Next, there is the following

Theorem 11. For a structure M the following are equivalent:

1) Pr-dimw(M) = 1;
2) Pr-dim(M, m̄) = 1 for some m̄ ∈ M<ω.

Proof. Immediately follows from Theorem 6.

So, a structure has a degree if and only if some of its constant expansions has a
strong degree.

Corollary 4. If M is ∗-uniform then

Pr-dim(M) = 1 ⇐⇒ Pr-dimw(M) = 1.

Let M be a structure, and suppose that some presentation of M is Δ-definable
in HF(M) with no parameters. Then Pr-dim(M) = 1. The author does not know
whether this sufficient condition is also necessary or not.

The following question also seems reasonable: are there structures of finite or
countable strong presentability dimension, i.e. is there M such that

1 < Pr-dim(M) 	 ω?

For such M we necessarily must have Pr-dimw(M) = 1. Indeed, this follows from
the inequality Pr-dimw(M) 	 Pr-dim(M) and the next result observed indepen-
dently by J.F. Knight [6] and I.N. Soskov [14]: for any M, Pr-dimw(M) is either
1 or uncountable. From this we immediately obtain that, for any M, Pr-dim(M)
is either 1 or infinite. Recently I. Kalimullin (personal communication) showed
that there are structures with strong presentability dimension ω.
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Abstract. We study computabilty of the abstract linear Cauchy problem

du(t)/dt = Au(t), t > 0, u(0) = x ∈ X,

where A is a linear operator on a Banach space X. We give necessary
and sufficient conditions for A such that the operator K : x �→ u is com-
putable. We consider continuous operators and more generally closed
operators A. For studying computability we use the representation ap-
proach to Computable Analysis (TTE) [7, 1] which is consistent with the
model used in [6].

1 Introduction

In this note we continue the study of aspects of computability in the theory of
differential equations [6, 5, 2, 8, 9, 10]. The analytical basis of this work can be
found in [4]. Let X be a Banach space and A : X → X be a linear operator.
Consider the following abstract linear Cauchy problem:

du(t)/dt = Au(t), u(0) = x, t > 0 (1)

where the initial-value x ∈ X is given. So if A = 1 =
∑3

j=1 ∂
2/∂x2

j is the
Laplace operator and X = L2(R3), then the problem (1) is the Cauchy problem
of the linear heat equation

ut = 1u, x ∈ R3, t > 0, u(0) = f ∈ X.

The solution operator of this linear Cauchy problem is computable [6]. In general,
if A is the infinitesimal generator of a C0 semigroup W (t) of bounded linear
operators, then for every x ∈ X , (1) admits a unique (mild) solution, which is
given by

u(t) = W (t)x. (2)
� The author has been supported in part by the University of Cincinnati’s Summer

Faculty Research Fellowship.

J.-Y. Cai, S.B. Cooper, and A. Li (Eds.): TAMC 2006, LNCS 3959, pp. 783–792, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



784 K. Weihrauch and N. Zhong

Thus, for any given T > 0, (1) defines a solution operator K from X to the space
C([0, T ];X): K(x) := u(·)x = W (·)x. This solution operator is a linear bounded
operator from X to C([0, T ];X). In computable analysis, a question of interest
is whether it is possible to compute the solution operator K.

There is a well-known general theorem concerning computability of linear
maps defined on Banach spaces, namely, Pour-El/Richards’ first main theo-
rem [6]. This theorem states that a densely defined closed linear map
between Banach spaces is computable if and only if it is bounded and it maps
an “effective generating sequence” to a computable sequence. According to the
First Main Theorem, in order to prove that K is computable, it suffices to
show that the sequence yn = K(en) is computable in the space C([0, T ];X),
where {en} is an effective generating sequence in X . If there is an explicit so-
lution formula, one may verify whether K(en) is computable accordingly. In
general, however, the verification may be very difficult, if not impossible, be-
cause in many applications, the solution operator K does not have any ex-
plicit formula. In such circumstances, the First Main Theorem is inadequate
for studying computability of K, despite its generality and success in dealing
with computability of many linear operators from analysis. In this note, we
present a new alternative method for studying computability of linear PDE
problems. The underlying idea of this method is to look into the given operator
A rather than the solution operator K. This leads to the following main ques-
tion of this note: Under what conditions on A, is the solution operator K of (1)
computable?

Since A is assumed to be the infinitesimal generator of a C0 semigroup
of bounded linear operators, it must be a densely defined closed linear oper-
ator. In addition, for any C0 semigroup W (t), there exist constants θ ≥ 0
and M ≥ 1 such that ||W (t)||L(X) ≤ Meθt. If A is an unbounded operator,
A itself is not computable by the First Main Theorem. However, the corre-
sponding solution operator K of (1) is bounded and is therefore possible to
be computed. The following main theorem of this note presents a necessary
and sufficient condition on A to ensure computability of K. The criterion is
general and it does not depend on whether there is a representation formula
for K.

Theorem 1. Let T > 0 be a given rational number. Assume that {ei}i∈N, con-
tained in the domain of A, is an effective generating set of X and A maps
{ei}i∈N to a computable sequence {A(ei)}i∈N. Then the solution operator K :
X → C([0, T ];X) associated to the problem (1) is computable if and only if
there exists a rational number λ0 > θ such that the resolvent operator R(λ0, A)
of A, R(λ0, A) : X → X, is computable.

This note is organized as follows. In Section 2, some preliminary materials on C0
semigroups and the model of computation are presented for the convenience
of the reader. The main theorems are proved in section 3. Section 4 is de-
voted to applications. Due to the page limit the proofs are either sketchy or
omitted.
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2 Preliminaries

Semigroup of bounded linear operators on a Banach space. Let (X, || ·
||X) be a Banach space. Let L(X) denote the set of all bounded linear operators
from X to X and || ||L(X) the operator norm on L(X). A one parameter family
{W (t)}t≥0 of bounded linear operators from X to X is called a semigroup of
bounded linear operators on X if

(i) W (0) = I (I is the identity operator on X),
(ii) W (t+ s) = W (t)W (s) for every t, s ≥ 0 (the semigroup property).

The linear operator A defined by

dom(A) = {x ∈ X : lim
t→0+

(W (t)x − x)/t exists} and

Ax = lim
t→0+

W (t)x− x

t
=

d+

dt
W (t)x

∣∣∣∣
t=0

for x ∈ dom(A) is called the infinitesimal generator of the semigroup W (t).
A semigroup {W (t)}t≥0 of bounded linear operators on X is called uniformly
continuous if limt→0+ ‖W (t) − I‖L(X) = 0. The following theorem reveals the
relationship between a uniformly continuous semigroup {W (t)}t≥0 and its in-
finitesimal generator A.

Theorem 2. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup {W (t)}t≥0 if and only if A is a bounded linear operator.
In this case W (t) = eAt.

A semigroup {W (t)}t≥0 of bounded linear operators on X is called strongly con-
tinuous if limt→0+ W (t)x = x for every x ∈ X . A strongly continuous semigroup
is also called a semigroup of class C0 or simply a C0 semigroup.

Theorem 3. A linear operator A is the infinitesimal generator of a C0 semi-
group {W (t)}t≥0 if and only if

(i) A is a closed map and dom(A) is dense in X
(ii) there exist a real number θ and a positive number M such that the resolvent

set ρ(A) of A contains the interval (θ,∞) and

‖R(λ,A)n‖X ≤ M/(λ− θ)n for λ > θ, n = 1, 2 · · ·

where the resolvent set ρ(A) of A is the set of all complex numbers β for which
(βI −A)−1 = R(β,A) is a bounded linear operator from X into X.

Theorem 4. Let {W (t)}t≥0 be a C0 semigroup of bounded linear operators with
the infinitesimal generator A. Then there exist constants θ > 0 and M ≥ 1 such
that ||W (t)||X ≤ Meθt for 0 ≤ t < ∞.

The following theorem demonstrates how a C0 semigroup can be constructed
from its infinitesimal generator A.
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Theorem 5. Let A be the infinitesimal generator of a C0 semigroup {W (t)}t≥0.
If Aλ is the Yosida approximation of A, i.e. Aλ = λAR(λ,A), then

W (t)x = lim
λ→∞

etAλx for every x ∈ X.

Banach spaces with computability structure. For studying computability
we use the representation approach to Computable Analysis (TTE) [7]. This
approach is consistent with the model used in [6].

Let Σ be a finite alphabet containing at least the symbols 0 and 1, and let Σω

denote the set of infinite sequences over Σ. In TTE, the notion of computabil-
ity on Σω is explicitly defined by means of Turing machines [7]. Computability
on other abstract set X is introduced by representations δX : Σω → X , where
δX is a surjective map. In a represented space (X, δX), if x = δX(p), then
p ∈ Σω is called a δX -name of x. An element x ∈ X is called δX -computable
if it has a computable δX -name. A map F : X → Y between two represented
spaces, (X, δX) and (Y, δY ), is called (δX , δY )-computable if there exists a Tur-
ing machine that translates every δX -name of x ∈ dom(F ) into a δY -name
of F (x).

Next we introduce definitions for computable metric spaces and computable
Banach spaces as well as Cauchy representations of these spaces. Let ρ : Σω → R
be the standard representation of the real numbers, that is, q ∈ Σω is a ρ-
name of x ∈ R if q encodes a sequence {rk} of rational numbers satisfying
|x− rk| < 2−k.

Definition 1. (Computable metric space) A triple (X, d, α) is called a com-
putable metric space if

(1) d : X ×X → R is a metric on X,
(2) α : N → X is a sequence that is dense in X (N is the set of nonnegative

integers),
(3) d ◦ (α× α) : N2 → R is a computable (double) sequence in R.

The Cauchy representation δX : Σω → X of a computable metric space (X, d, α)
is defined as follows:

δX(01n001n101n2 . . .) = lim
i→∞

α(ni)

for all ni such that (α(ni))i∈N converges and d(α(ni), α(nj)) ≤ 2−i for all j > i
(and undefined for all other input sequences). Thus, if p ∈ Σω is a δX -name of
an x ∈ X , then it encodes a sequence in the dense set α(N) that converges to x
rapidly.

Definition 2. (Computable Banach space) A triple (X, || ||, e) is called a com-
putable Banach space if

(1) || || : X → R is a norm on X and (X, || ||) is a Banach space,
(2) e : N → X, e(n) = en, is an effective generating sequence in X, i.e. its linear

span is dense in X,
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(3) (X, d, αe) is a computable metric space, where d(x, y) = ||x−y|| and αe : N →
X is defined by αe(〈k, 〈n0, n1, . . . , nk〉〉) =

∑k
i=0 αQ(ni)ei with αQ : N → Q a

standard numbering of the set Q of rational numbers. (For example, αQ may
be chosen as αQ(〈i, j, k〉) = (i−j)/(k+1) with 〈i, j〉 = 1/2(i+j)(i+j+1)+j
and 〈i, j, k〉 = 〈〈i, j〉, k〉.)

(4) 0 ∈ X is a computable point, and both addition (x, y) → x + y and scalar
multiplication (a, x) → ax are computable operations.

For two computable Banach spaces (X, δX) and (Y, δY ), there is a canonical
representation of the set C(X ;Y ) of all continuous functions from X to Y ,
denoted as [δX → δY ]. This representation is characterized by the fact that it
admits evaluation and type conversion as follows:

(1) (Evaluation) ev: C(X ;Y ) ×X → Y , (f, x) �→ f(x), is ([δx → δY ], δX , δY )-
computable,

(2) (Type conversion) f : Z × X → Y is (δZ , δX , δY )-computable if and only
if the function f̃ : Z → C(X ;Y ), f̃(z)(x) = f(z, x), is (δZ , [δX → δY ])-
computable.

3 When Is the Solution of a Linear Cauchy Problem
Computable?

Throughout this section, assume that (X, || ||, e) is a computable Banach space
and A : X → X is the infinitesimal generator of a C0 semigroup {W (t)}t≥0
of bounded linear operators. Then A is a densely defined closed linear operator
from X to X . In addition, assume that T > 0 is a given rational number and
there is an effective generating sequence {ei}i∈N ⊂ X that is contained in the
domain dom(A) of A. Note that since A is linear, the linear span of {ei}i∈N is
also contained in dom(A).

For the following abstract linear Cauchy problem:

du(t)/dt = Au(t), t > 0, u(0) = x ∈ X, (1)

its unique solution may be written in the form of u(t) = W (t)x. Thus, the
problem (1) defines a solution operator K from X to C([0, T ];X):

K(x) := W (·)x ∈ C([0, T ];X) for every x ∈ X.

Our main concern is whether the solution operatorK is computable, i.e, whether
it is possible to compute W (t)x from input data (x, t). Recall that for any C0
semigroupW (t), there exist constants θ ≥ 0 and M ≥ 1 such that ||W (t)||L(X) ≤
Meθt. A linear operator A is the infinitesimal generator of this semigroup if and
only if, by Theorem 3, ||R(λ,A)n||L(X) ≤ M/(λ − θ)n for λ > θ and n ≥
1. In the following, we assume that θ and M are two fixed computable real
numbers.

In the case that A is a bounded linear operator, we have the following theorem.
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Theorem 6. Assume that A : X → X is a bounded linear operator. Then
the solution operator K : X → C([0, T ];X) associated to the problem (1) is
(δX , [ρ → δX ])-computable if and only if A is (δX , δX)-computable.

Proof. The proof is omitted. �

When the operator A is unbounded, we have the following theorem.

Theorem 7. Let T > 0 be a given rational number. Assume that {ei}i∈N is an
effective generating set of X and its linear span is contained in the domain of
A, and A maps {ei}i∈N to a computable sequence {A(ei)}i∈N. Then the solution
operator K : X → C([0, T ];X) associated to the problem (1) is (δX , [ρ → δX ])-
computable if and only if there exists a rational number λ0 ∈ ρ(A) such that
λ0 > θ and the resolvent operator R(λ0, A) : X → X is (δX , δX)-computable.

The following lemmas are needed for the proof of Theorem 7. The proofs for the
lemmas are omitted.

Lemma 1. If there exists a rational number λ0 > θ in the resolvent set ρ(A)
of A such that R(λ0, A) : X → X is (δX , δX)-computable, then the map R :
[λ0,∞) ×X → X, (λ, x) �→ R(λ,A)x, is (ρ, δX , δX)-computable.

Lemma 2. Let T > 0 be a given rational number. Assume that A maps {ei}i∈N

to a computable sequence {Aei}i∈N. Then the multi-valued function ML : X ⇒
NN, x �→ d(x), is (δX , δN)-computable, where d(x) : N → N is a modulus of
continuity for the function t → W (t)x from [0, T ] into X and δN : Σω → NN is
some standard representation of the product space NN.

Lemma 3. Assume that A maps {ei}i∈N to a computable sequence {Aei}i∈N.
Then the multi-valued function F : X ⇒ NN is (δX , δN)-computable, where F (x) :
N → N is a modulus of convergence satisfying ||λR(λ,A)x−x|| ≤ 2−m whenever
λ ≥ 2−F (x)(m).

Corollary 1. Let L denote the linear span of the effective generating set {ei}i∈N

of X. Under the same assumption as that of Lemma 3, the multi-valued function
FY : L ⇒ NN is (δX , δN)-computable, where FY (x) is a modulus of convergence
satisfying ||Aλx − Ax|| ≤ 2−m whenever λ ≥ FY (x)(m), and for any λ ∈ ρ(A),
Aλ = λAR(λ,A) = λ2R(λ,A) − λI is the Yosida approximation of A.

Lemma 4. The limit function L : (C([0, T ];X))N × (N)N → C([0, T ];X),
((f0, f1, f2, . . .), e) �→ limi→∞ fi, is ([ρ → δX ]N, δN, [ρ → δX ])-computable, where
((f0, f1, f2, . . .), e) ∈ dom(L) if and only if for any j > i > e(n),
||fj − fi||C([0,T ];X) ≤ 2−n.

Proof of Theorem 7. (i) For necessity: for every λ > θ and every x ∈ X , define

T (λ)x =
∫ T

0
e−λtW (t)xdt

Since ||W (t)||L(X) ≤ Meθt, the integral is well-defined. Furthermore, a direct
computation shows that T (λ) is the inverse of λI−A, that is, T (λ)x = R(λ,A)x
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for every x ∈ X . Thus if K : x �→ W (·)x is (δX , [ρ → δX ])-computable, then the
integral

∫ T

0 e−λ0tW (t)xdt is ([ρ → δX ], δX)-computable for any rational number
λ0 > θ, which implies that R(λ0, A) is (δX , δX)-computable.

(ii) For sufficiency: we consider three cases. (1) Case 1: assume that M = 1
and θ = 0. Without loss of generality we also assume that λ0 = 1. Then
||W (t)||L(X) ≤ 1, i.e. W (t) is a semigroup of contractions. In this case, for
any λ > 0, ‖R(λ,A)‖L(X) ≤ 1/λ. For every λ > 0, since the Yosida approxima-
tion Aλ = λAR(λ,A) = λ2R(λ,A) − λI of the operator A is a linear bounded
operator, it generates a uniformly continuous semigroup {etAλ}t≥0. By the as-
sumption, we have that

‖etAλ‖L(X) = e−tλ‖etλ2R(λ,A)‖L(X) ≤ e−tλetλ2‖R(λ,A)‖L(X) ≤ 1

For any λ > 0 and μ > 0, it is clear from the definitions that etAλ , etAμ , Aλ and
Aμ commute with each other and consequently, for any x ∈ dom(A),

‖etAλx− etAμx‖ =
∥∥∥∥∫ 1

0

d

ds
(etsAλet(1−s)Aμx)ds

∥∥∥∥ ≤ t‖Aλx−Aμx‖ (2)

Now for every x ∈ X and any δX -name p = (01n̄0+101n̄1+101n̄2+10 . . .) of x,
denote αe(n̄k) as xk, and observe that

||etAix− etAjx||
≤ ||etAi ||L(X)||x− xk|| + ||etAj ||L(X)||xk − x|| + T ||Aixk −Ajxk||
≤ 2||x− xk|| + T ||Aixk −Ajxk|| (3)

Since T is a rational number, an integer mT > 0 can be computed from T
such that 2mT ≥ T . Let fi(t) = etAix, i ≥ 1. Then the sequence {fi}i≥1 is
a convergent sequence and FY (xn+mT +3) is a modulus of convergence by (3)
and Corollary 1. It is known classically that the limit of this sequence is the C0
semigroup generated by A, i.e. the semigroup {W (t)}t≥0. We now can conclude
by Lemma 1 and Lemma 4 that the solution operator K : (x, t) �→ W (t)x is
(δX , ρ, δX)-computable. By the type conversion theorem, K : X → C([0, T ];X)
is (δX , [ρ → δX ])-computable.

(2) Case 2: next we let go of the assumption that M = 1 and assume only
that ω = 0. In this case, we introduce a new norm on the space X . This new
norm is equivalent to the original norm but it rescales M back to 1. Thus, Case
2 is reduced to Case 1 in this new norm.

(3) Case 3: It remains to prove the result for θ > 0. In this case, we define
U(t) = e−θtW (t). Then U(t) is a C0 semigroup whose infinitesimal generator is
A−θI and ||U(t)||L(X) = ||e−θtW (t)||L(X) = e−θt||W (t)||L(X) ≤ e−θtMeθt = M .
Thus the semigroup {U(t)}t≥0 satisfies the assumption of case 2, and conse-
quently, from the previous proof, we come to conclude that the map (x, t) �→
U(t)x is (δX , ρ, δX)-computable. Moreover, since θ is a computable real num-
ber, the map f ∈ C([0, T ];X) �→ eθtf ∈ C([0, T ];X) is ([ρ → δX ], [ρ → δX ])-
computable, and consequently the solution map K : (x, t) �→ W (t)x = eθtU(t)x
is (δX , [ρ → δX ])-computable. The proof is complete. �
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Next we consider the initial value problem of the abstract evolution equation
of the following form

du(t)/dt = Au(t) +Bu(t), t > 0, u(0) = x, (4)

where B is a linear operator from X to X . The operator B : X → X is called
an A-bounded closed linear operator if dom(B) ⊇ dom(A) and there exist two
constants a > 0 and b > 0 such that for every x ∈ dom(A),

||Bx|| ≤ a||Ax|| + b||x|| (5)

Theorem 8. Assume that the operator A is the infinitesimal generator of an an-
alytic semigroup and A satisfies the conditions set in Theorem 7. Assume that B
is an A-bounded closed linear operator satisfying (5) with 0 ≤ a ≤ 1

2 (2M +1)−1.
Then the solution operator KB associated to (4) is (δX , [ρ → δX ])-computable
if and only if there exists a rational number λ0 satisfying λ0 > 2(θ + bM) such
that both R(λ0, A) and BR(λ0, A) are (δX , δX)-computable.

Proof. The proof is omitted. �

4 Applications

The results obtained in section 3 can be applied to conduct computable analysis
for several classes of differential-integral equations and partial differential equa-
tions, including parabolic equations, hyperbolic equations and the Schrödinger
equations. Due to page limit, we only consider the parabolic equations.

Consider the differential operator of order 2m,

A(x,D) =
∑

|α|≤2m

aα(x)Dα

where the coefficients aα(x) are sufficiently smooth complex-valued functions of
x in Rn. The operator A′(D) =

∑
|α|=2m aα(x)Dα is called the principal part of

A(x,D). The operator A(x,D) is called strongly elliptic if there exists a constant
c > 0 such that Re (−1)mA′(ξ) ≥ c|ξ|2m for all ξ ∈ Rn, where Re(z) denotes the
real part of the complex number z. The initial-value problem

∂tu+ A(x,D)u = 0, u(x, 0) = φ(x) ∈ L2(Rn), x ∈ Rn, t > 0 (1)

is called an initial-value problem of a parabolic equation if A is a strongly elliptic
operator.

Define the operators A and B as follows: A : H2m(Rn) ⊂ L2(Rn) → L2(Rn),
Au = −A′(D)u, for every u ∈ dom(A) = H2m(Rn) and B : H2m−1(Rn) ⊂
L2(Rn) → L2(Rn), Bu = −(A(x,D) − A′(D)u) = −

∑
|α|<2m aα(x)Dαu, for

every u ∈ dom(B) = H2m−1(Rn).
For simplicity, let us assume that the coefficients aα, |α| = 2m, are constants

and the coefficients aα ∈ C∞
0 (Rn) for all |α| ≤ 2m − 1, where C∞

0 (Rn) is the set
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of all infinitely differentiable functions on Rn having compact supports. Then, by
interpolation inequalities for intermediate derivatives, it can be proved that B is
A-bounded satisfying (5) with arbitrarily small a. The initial value problem (1) can
now be written in the form of the following abstract Cauchy problem in L2(Rn):

d

dt
u = Au+Bu, t > 0, u(0) = φ (2)

By the standard semigroup theory, the operator A is the infinitesimal generator
of an analytic semigroup in L2(Rn). Since the operatorB is A-bounded satisfying
(5), so the operator A+B is the infinitesimal generator of an analytic semigroup
in L2(Rn). Thus for a given T > 0, (1) (or (2)) defines a solution operator
K : L2(Rn) → C([0, T ];L2(Rn)). The following theorem shows that if T > 0
is a rational number, then this solution operator K is (δL2(Rn), [ρ → δL2(Rn)])-
computable.

Theorem 9. Assume that A(x,D) is a strongly elliptic operator and its coef-
ficients aα are computable complex numbers if |α| = 2m and computable func-
tions in the space C∞

0 (Rn) if |α| ≤ 2m− 1. Then, for any given rational number
T > 0, the solution operator K associated with (2) is (δL2(Rn), [ρ → δL2(Rn)])-
computable.

Proof. According to Theorem 8, it suffices to show that (a) A maps an effective
generating set ofL2(Rn) to a computable sequence inL2(Rn), (b) there exists a ra-
tional number λ ∈ ρ(A) such that λ > 2(θ+bM) andR(λ,A) is (δL2(Rn), δL2(Rn))-
computable, and (c) BR(λ,A) is (δL2(Rn), δL2(Rn))-computable.

For (a), since the set of “rationally smoothly truncated” monomials is an ef-
fective generating set of L2(Rn) and obviously A maps this set into a computable
sequence in L2(Rn). For (b), for any computable real number λ ≥ 1, consider
the equation (λI − A)u = f, f ∈ L2(Rn). Applying the Fourier transform to
both sides of the equation yields that (λ+ (−1)mA′(ξ))û(ξ) = f̂(ξ), from which
we obtain that

û(ξ) = f̂(ξ)/[λ+ (−1)mA′(ξ)] (3)

Since A′(ξ) is a polynomial in ξ with computable coefficients and A is strongly
elliptic, the map f̂ �→ û is (δL2(Rn), δL2(Rn))-computable. Since the Fourier trans-
form and its inverse are both (δL2(Rn), δL2(Rn))-computable (see, for example,
[3]), the map f �→ f̂ �→ û �→ u = (λI − A)−1f = R(λ,A)f is (δL2(Rn), δL2(Rn))-
computable. Thus condition (b) is satisfied.

Finally for (c), for any k ≤ 2m it is easy to see that |ξ|k
λ+(−1)mA′(ξ) f̂(ξ) ∈ L2(Rn)

and therefore R(λ,A)f ∈ H2m for any f ∈ L2(Rn), which implies that the map
BR(λ,A) : L2(Rn) → L2(Rn) is well-defined. Define Bα : H2m(Rn) → L2(Rn),
f �→ aαD

αf . Then Bα is (δH2m(Rn), δL2(Rn))-computable for every |α| ≤ 2m−1.
(We recall that multiplication φ, f �→ φ · f , where φ ∈ C∞

0 (Rn) and f ∈ L2(Rn),
is (δC∞

0 (Rn), δL2(Rn), δL2(Rn))-computable, see, for example, [WZ05].) Since B =
−
∑

|α|<2mBα, B is (δH2m(Rn), δL2(Rn))-computable as well. It then follows that
the map BR(λ,A) is (δL2(Rn), δL2(Rn))-computable for any computable real num-
ber λ ≥ 1. �
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Corollary 2. Let T > 0 be a computable real number. Then the solution oper-
ator KH : L2(R3) → C([0, T ];L2(R3)) of the initial-value problem of the heat
equation

ut = 1u, u(0) = f,

is (δL2(R3), [ρ→ δL2(R3)])-computable.
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