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Abstract. In this paper we present a system for assessing muscle activ-
ity by using wearable force sensors placed on the muscle surface. Such
sensors are very thin, power efficient and have also been demonstrated
as pure textile devices, so that they can be easily integrated in such gar-
ments as elastic underwear or tight shorts/shirt. On the example upper-
leg muscle we show how good signal quality can be reliably acquired
under realistic conditions. We then show how information about general
user context can be derived from the muscle activity signal. We first look
at the modes of locomotion problem which is a well studied, benchmark-
like problem in the community. We then demonstrate the correlation
between the signals from our system and user fatigue. We conclude with
a discussion of other types of information that can be derived from the
muscle activity based on physiological considerations and example data
form our experiments.

1 Introduction

Motion monitoring is an important aspect of many pervasive computing appli-
cations. For one, user motion is indicative of the general user activity. The most
obvious case are the modes of locomotion (sitting, standing, walking, running
etc.). In other applications hands motions were analyzed to recognize steps of
an assembly procedure [1], interaction with objects, or general gestures. Be-
yond activity recognition motion analysis plays an important role in a variety
of pervasive computing applications related to rehabilitation, nursing, lifestyle
monitoring, sports and wellness [2]. As an example, our group is involved in a
project devoted to a wearable nordic walking trainer. The aim of the project is to
monitor user motions and ensure that the user gets the maximum benefit of the
exercise while minimizing risk factors such as joint damage or overextension. In
another project we look at assistive system for the elderly where motion patterns
are important to understand the users general condition including, for example,
assessing the risk of serious falls.

Today the main approaches to motion analysis are visual tracking and body-
worn inertial sensors (acceleration, gyroscopes). In the paper we propose a novel

K.P. Fishkin et al. (Eds.): PERVASIVE 2006, LNCS 3968, pp. 101–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.umit.at


102 P. Lukowicz et al.

method for unobtrusive motion monitoring: the use of wearable force sensors to
assess muscle activity. This approach is based on the following ideas:

– Muscle activity is associated with changes of muscle shape. In particular in
the limbs, these changes are noticeable on the surface as certain parts of the
muscle ’inflate’ or ’deflate’.

– Force sensors that react to surface pressure can be manufactured as ultra
thin foils or even in textiles using capacitance change between two conductive
layers. If integrated in tight garment or elastic bands such sensors can be
used to detect muscle shape changes.

– The relationship between muscle activity and different limb motions is well
understood. Thus, general activity information can be inferred from muscle
shape changes.

– Muscle activity contains information that goes beyond mere motion type.
This includes physical effort and fatigue as well as subtle motion character-
istics that are of interest to many medical, nursing and sports applications.

1.1 Related Work

Monitoring muscle activity is widely practiced in medicine and sports. The sci-
entific standard technique is called electromyography (EMG, e.g. [3]). It relies
on a pair of electrodes placed at specific locations on the surface of the mus-
cle belly (International standards written by Merletti [4]). EMG is a rich and
reliable source of information about muscle activity by detecting the electrome-
chanical properties of muscle fibres. However, since the electrical potentials that
it measures are very faint, it requires careful electrode placement and excellent
contact with the skin. In general, EMG electrodes require glue in order to at-
tach to the skin. In some cases even small needles are used. In addition, complex
signal processing is needed to make sense of the signals, so that EMG devices
are bulky and expensive. In summary they are not suitable for typical pervasive
applications.

The second tool for monitoring muscle activity is the mechanomyographic
(MMG) technique. While EMG comprises the sum of the electrical contribu-
tions, the MMG signals (using vibration transducer, such as accelerometer or
piezoelectric crystal contact sensors) present the mechanical oscillation that is
detectable over a contracting muscle by attaching electrodes on the skin overly-
ing the target muscle [5].

Force sensors have been used in pervasive computing for event detection. Ex-
amples include force sensors placed in shoes to detect heel strikes [6, 7] and in
furniture components to automatically verify the correctness of assembly proce-
dures [8].

Motion monitoring using body-worn sensors is a vast research field. The main
two directions are activity recognition oriented work (e.g. [9, 10, 11, 12, 13] and
many more) in the classical pervasive computing field and motion characterisa-
tion oriented work (e.g. [14, 15, 16, 17, 18] and many more). The latter has its
roots in the biomechanics/sports community, however, is increasingly gaining
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importance in pervasive computing with the advance of applications related to
sports, wellness and health.

The approach presented in this paper can benefit activity recognition as well
as motion characterisation. In both areas it will do so by enhancing existing
systems in two ways:

1. It will provide an additional source of information about user motion. Such
additional information can be combined with existing approaches to improve
system accuracy through sensor fusion. It can also be used as an alterna-
tive, wherever existing approaches are inappropriate. Thus, for example, ac-
celerometers and gyroscopes mounted on the leg will register not only leg
motion, but also the overall motion of the user system of reference. By con-
trast, our muscle-activity-based method will only provide information about
leg motion.

2. It will provide an additional type of information about user motion. This in-
cludes such things as physical effort associated with the motion, user fatigue
or subtle motion characteristics related to the way the motion is generated
by the musculo-skeletal system of the user.

1.2 Paper Contributions

In this paper we focus on showing that

1. under realistic assumptions it is possible to acquire good muscle activity
signal with our approach, and

2. information relevant for a range of pervasive applications can be extracted
from this signal.

To this end we begin in section 2 by describing the general idea of muscle activity
measurement using force sensors. Section 2 also contains the characterisation of
our sensors and a description of our system. We then proceed in section 3 to a
quantitative experimental evaluation of the influence of sensor attachment and
position on signal quality. In doing so we prove that reasonable signal quality
can be reliably achieved with a simple, practical attachment scheme such as an
adjustable elastic band. In section 4 we give two specific examples how activ-
ity information can be derived from such signals. The first example is the well
known modes of locomotion problem (walking, fast walking, going downstairs,
going upstairs). It demonstrates that our system provides an additional source
of information for standard context recognition tasks. In the second example we
show the correlation between the signals from our sensors and user leg muscle
fatigue. This demonstrates how our sensors can provide information that goes
beyond what can be derived from inertial motion sensors. For both examples
we provide a physiological explanation of how the information is extracted and
quantitative experimental data. We conclude in section 5 with a qualitative dis-
cussion of further examples of information that can be derived from muscles
signals.
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2 The Idea

2.1 Muscles and Muscle Inflation

It is a well known phenomenon that the muscle tends to ’inflate’ when put under
strain. This phenomenon is used by body builders when ’showing off’. When
using inertial sensors to monitor limbs motion it is often a source of errors as
sensor mounted on the limbs register muscle shape changes instead or together
with the actual limbs motions. Dealing with such errors has been the inspiration
for the work presented in this paper. Rather than filter them out as noise we
propose to use muscle shape changes as source of information.

Physiological Background. To understand what type of information can be ex-
tracted from muscle shape changes some physiological background is needed.
From a physiological point of view the muscle inflation can be explained as fol-
lows: Muscle is a contractile form of tissue and it consists of a large number
of muscle fibres. A muscle contraction occurs when the muscle fibre shorten.
The higher the force production during short-term muscle exercises the more
fibres are activated and extended which contributes to larger physiological cross
sectional area and this means an increased muscle volume during a muscle con-
traction. When muscles contract during long-term exercises, blood vessels within
the muscle become wider (vasodilation) and blood flow is increased more than
20-fold. Repetitive mechanical muscle contractions consume large amounts of
energy and therefore require delivery of considerable amounts of oxygen and
substrates, as well as the efficient removal of metabolic waste products (e.g.,
lactate, CO2, H+). Long-term physical activities with higher intensities or mo-
tion velocities result in accumulation of lactate and other metabolites within
the muscle and reduced muscle blood circulation in small arteries and arteri-
oles. This resistance in arteries yields a blocked muscle blood circulation, an
increased blood volume within the muscle, and an inflation of muscle volume
during sustained and intensive exercises.

2.2 Measurement Idea

From the above physiological considerations the following sources of muscle
shape change and the associated interesting information can be identified:

1. Shape change associated with each muscles contraction, with the amount of
volume increase given by the load on the muscle, as can be seen in Fig. 1
(left). Since muscle contraction is the driving force behind limbs motion, de-
tecting contractions will provide us with information about limbs movement.
Since, in general, each limb is moved by a combination of muscles looking
at the activity pattern of the relevant muscles should provide detailed infor-
mation on the type of motion.

2. Shape change associated with long term exercise as the blood flow in the
muscle is increased to provide more oxygen. This can provide information
about the intensity of physical activity, as can be seen in Fig. 1 (right).
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Fig. 1. Left: single-leg press with weight increasing in 10kg steps beginning with 20kg
(left). The final weight which could be lifted was 230kg. Right: Muscle fatigue test
using a step mill. Intensity was increased every minute till a maximum point and then
decreased again.

Fig. 2. Left: The force sensor and the elastic band used in our experiments. Right: One
of the subjects with the band on the leg doing squats.

3. Shape change associated with muscle fatigue. Such fatigue is an important
information on its own.

We propose to detect the shape changes by attaching force sensors integrated
in tight fitting garments or elastic bands to the surface of the relevant muscles.
The actually employed setup is depicted in Fig. 2.

2.3 Measurement System

The force sensors used in our experiments are so-called force sensitive resistors
(FSR). Such sensors consist of thin (<< 1 mm) electrodes that change their
electrical resistance when subjected to pressure. Specifically, we have used the
FSR-153NS device from Conrad Electronics. It is 0.09 mm thick and has an
area of 13 × 13 mm2. The measurement range is between 0.1 and 100 N with
a corresponding resistance between 2 kΩ and 2 MΩ. The maximum achievable
sampling rate is between 100 and 1000 Hz.
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For signal acquisition a module from a standard platform developed at ETH
Zürich (PadNET [19]) is used. Its main components are a TI MSP 430 mixed
signal processor with a built-in analogue digital converter, some analogue signal
processing circuits, a voltage regulator and a serial interface. The force sensors
are connected to the analogue input of the MSP in a voltage divider configuration
with a 47 kΩ resistor. The sensors are sampled with 100 Hz and 12-Bit resolution.

3 Measuring Muscle Activity

For our approach to be viable for a widespread use in pervasive applications we
must ensure that acceptable signal quality can be achieved without excessively
complex attachment and adjustment procedures. We envision the sensors to be
integrated in garment such as pants or in an elastic band that is put on top of
clothing. In both cases two issues are critical for signal acquisition:

1. The baseline pressure between the sensor and the muscle. As described in
the previous section our system detects muscle activity through variation
on mechanical pressure that the muscle surface exerts on the sensor. Thus,
obviously, the signal that we will get depends on how tight the garment or
the band is put on the muscle.

2. The sensor position; The sensor must be placed on a part of the muscle
where a detectable inflation occurs. For each muscle it is well known from
human physiology where such a spot is. It can also easily be felt when flexing
the muscle. For practical applications the key question is how sensitive the
signal quality is to small displacements.

Below we describe the results of a systematic experimental evaluation of the
above issues on the example of upper-leg muscles.

3.1 Sensor Attachment

Due to the complexity of garment integration in our initial work we consider the
elastic band variant as shown in Fig. 2.

1. The band is wrapped around the upper-leg in such a way that it exerts no
perceivable pressure.

2. The band is tightened in increments of two centimeters. After each increment
the user bends his knees about 90 degree in a partial squat and the maximum
of the signal is noted.

3. Point two is repeated after the signal with bent knees reaches between 15%
and 20% of the maximum (as given by sensor range).

The above procedure was performed on 10 subjects, each repeating it three times.
We used a commercial elastic bandage which was folded in half wrapped around
the upper-leg between two and three times. On all subjects signal in the desired
range was achieved by tightening the band between a minimum of 4 cm and a
maximum of 16 cm. For all subjects the required amount of tightening was the
same in all three attempts.
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The results of this experiment mean that an individual value has been estab-
lished for tightening the band and that it can be put on in a single deterministic
step. The search for the right value is matter of a view simple steps not much
different from fitting a shoe.

3.2 Sensor Placement

The placement of the sensor on the muscle is performed according to interna-
tional standards for EMG written by Merletti [4]. To evaluate the effect of sensor
displacement on the signal quality we systematically displaced the sensor from
the above position in increments of 1 cm and then looked at the signal produced
during squats. An example result is shown in Fig. 3. The measurements have
revealed two things:

1. The optimal EMG placement spot does not correspond with the best place-
ment for our sensors, although it does produce good signals.

2. Depending on the direction of sensor displacement even a 1 cm move from the
original position can lead to a loss of signal. However, within a 4 cm × 4 cm
square around the optimal position there are many points with good signal
quality.

The above means that for practical applications one would have to work with a
sensor array rather then with a single sensors. Since the force sensors are thin
and easily integrable this is not a problem. Such 4 × 4 arrays with about the
right area have even been demonstrated as purely textile devices. In summary,
it can be said that, as long as we can work with an array, sensor placement is
not a serious obstacle to achieving good signal quality with realistic setups.
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Fig. 3. The effect of sensor displacement on signal quality
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4 Interpreting Muscle Activity

The previous section showed that reliable acquisition of muscle activity signals is
possible under realistic conditions. Staying with the example of upper-leg mus-
cles this section leverages physiological knowledge to extract from those signals
information relevant to a wide range of pervasive applications.

4.1 Modes of Locomotion

The recognition of different modes of locomotion is a standard context problem
that has become sort of a benchmark for new approaches. In the following we
investigate the problem of distinguishing between level walking with normal
stride, level walking with extra long stride, walking downstairs, and walking
upstairs.

Physiological Foundations. To monitor motion patterns in level walking, going
upstairs and downstairs by using force sensors, muscle activity of the front-
leg muscles (m. vastus lateralis) and back-leg muscles (m. biceps femoris) were
selected. For the purpose of analysis, steps are usually divided into the swing
phase and the stance phase. In the swing phase the leg is brought forward without
ground contact. The stance phase begins with the leg being put down and ends
with the leg pushing off the ground.

While walking styles differ between people, there are some general considera-
tions valid for the majority of people. Also wherever variations are present they
are consistent in the sense that a given person will always display certain muscle
activation patterns for a particular mode of locomotion.

1. For all types of walking there can be expected to be little to no muscle signal
during the swing phase.

2. Typically, during level walking the stance phase contains two distinct mus-
cle activities: (1) cushioning the impact when the leg is put down and (2)
pushing off the ground. In general, the front muscle is more active during
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Fig. 4. Example of level walking signals from the front-leg and the back-leg muscle
with normal step size (left) and long step size (right)
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Fig. 5. Example of signals from the front-leg and the back-leg muscle for walking
downstairs (left) and upstairs (right)

impact, whereas the back muscle tends to dominate the push-off. While the
activity between the impact and the push-off as well as signal ratios will vary
between people the presence of a front muscle dominated peak in the begin-
ning and a back muscle dominated one at the end is a very strong indication
of level walking, as can be seen in Fig. 4 (left).

3. For faster walking and longer strides we will see a decrease in the delay
between the peaks and an increase in the muscle activity amplitudes. This
illustrates Fig. 4 (right).

4. The main activity when going downstairs is the cushioning of impact. Except
for very wide steps there is nearly no push-off observed. The cushioning
involves both front-leg and back-leg muscles working synchronously. While
the exact ratio differs from person to person, the front muscle plays a clearly
dominant role. This can be seen in Fig. 5 (left).

5. When going upstairs, front-leg muscles are dominantly used at the begin-
ning of the stance phase to lift the body up. There is no similar synchro-
nized front and back muscle activity as considered in going downstairs. This
trend was already presented in elderly by using electromyographic measuring
method [20]. An example of walking upstairs, can be seen in Fig. 5 (right).

From the above considerations the ratio of front-leg to back-leg muscle activity
and the delay between the two (both during the stance phase) can be derived as
appropriate features to separate the four modes of locomotion under considera-
tion. The swing phase with a null or near null activity level from both muscles
provides an excellent way to segment the signal into individual steps.

Experiment. To verify the above hypothesis 4 subjects were asked to walk around
the hall. Part of the distance was to be covered with normal steps and with
particularly long steps. At the end of the hall the subject were to walk down
and then back up a flight of stairs. For each subject the data was segmented
into steps using the swing phases and the two features suggested above were
computed for each step segment. The result is shown in Fig. 6. It indicates
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Fig. 6. The separation between the four investigated modes of locomotion using the
features described in the text. Asterisk indicates the accumulation of downstairs steps
with identical feature values.

excellent separation, even though we have combined data from all four persons
in a single plot (8 user independent case).

4.2 Muscle Fatigue

The level of user muscle fatigue is an important piece of information for a variety
of applications. Straining the muscles to the point of volitional fatigue may lead
to loss of muscular reflexes and may increase the risk for injury as a consequence
of proprioceptive deficit in muscle receptors and joint proprioception. Thus de-
tecting fatigue can prevent accidents in areas such as sports, emergency response
teams and in elderly, frail persons. In addition, the level of fatigue is also relevant
for many classical pervasive applications such as for a context sensitive-tourist
guide. A tired user is more interested in the next restaurant then in the nearby
hiking trail.

General Considerations. Fatigue is a vague term that can describe a wide range
of condition and is often difficult to quantify. In our work we focus on muscle
fatigue. As described in section 2.2 sustained, strenuous muscle activity leads to
increased production of lactate and other metabolites. This, in turn, leads to an
increased blood circulation and with it to an inflation of the muscle. In general
terms, it can be said that in medicine the level of production of such metabolites
is taken as a measure of muscle fatigue, as it causes the muscle performance to
deteriorate.

From the above we can conclude that the amount of muscle inflation can be
seen as an objective fatigue indicator. Obviously, with our setup and without
detailed large-scale experimental calibrations we can not hope to have any sort
of medically accurate fatigue measurement. However, for the majority of appli-
cations mentioned above this is not needed. Instead, a rough scale with a small
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Fig. 7. Two examples of signals acquired from the front-leg muscle during the squats
fatigue experiments

number of discrete states between ’fresh’, and ’totaly exhausted’ is sufficient. To
this end the following is required:

1. A definition of ’totally exhausted’ must be found that can be applied to all
subjects.

2. Between the ’fresh’ and the ’totally exhausted’ states there must be enough
difference in signal intensity to allow reliable, repeatable discrimination be-
tween states.

3. The signal must follow a deterministic, repeatable trajectory that agrees
with established facts about fatigue. In general terms the relation between
the duration of a strenuous activity and the level of fatigue should be vaguely
linear with a saturation towards the top as an equilibrium is reached. The
slope, level of saturation, and level of linearity are obviously likely to vary
between subjects depending on physical condition and individual anatomy.

Experiment. To evaluate the feasibility of assessing fatigue with our system 12
subjects were asked to perform squats for as long as possible with a force sensor
attached to the front-leg muscle surface as described in section 3. An example
of the resulting signal for two subjects is shown in Fig. 7. An overview of the
results for all 12 subjects is given in Table 1. The key results of the experiment
are:

1. Only two subjects have managed to reached saturation (steady state). All
others gave up before coming that far. This is not surprising since it is well
known that only well trained persons can get into the equilibrium state and
continue exercise. As a consequence ’totally exhausted’ must be defined as
either a value corresponding to the steady state or a value at which the user
is unable to continue putting strain on the muscle.

2. For all subjects a significant signal difference was registered between fresh
and exhausted (between 25 and 85% of the overall sensor range).

3. For all subject the increase of the signal intensity (filtered with a moving
average) was close to linear.
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Table 1. Muscle fatigue data summary; Increase depicted in percent of the total sensor
range

Subject 1 2 3 4 5 6 7 8 9 10 11 12

Period [s] 113 530 600 150 211 80 144 550 441 125 203 188

Increase [%] 85 56 37 61 61 46 51 61 88 53 66 25

Steady state [s] — — 400 — — — — 372 — — — —

In conclusion it can be said that the muscle activity signals acquired with
our system fullfill the requirements for the envisioned, rough, discrete fatigue
detection.

5 Outlook: Further Information

This section presents several additional observations that we made during our
experiments. In each case we provide example data and a quantitative physi-
ological explanation. The data presented below is meant as an illustration of
the richness of information available from the muscle signals and motivation for
further study. Using the respective phenomena in an application would require
a detailed experimental study amounting to a publication on its own.

Physical Effort. As described in section 4 without fatigue the amount by which
a muscle inflates during action is determined by the load which it has to bear.
This is illustrated in Fig. 1. Whereas fatigue is a trend that develops over a
longer period of time load-related inflation is a short-term phenomenon directly
associated with a certain action. Thus short-term variations in the signal can be
interpreted as an indication of the effort that the user puts into a given activity.
This could be the weight of an object that the user is lifting, the amount of force
put into operating a tool or the load that the user is carrying. Clearly, this is an
information that is relevant for a variety of context recognition tasks and can
not be extracted from inertial sensors.

Personal Walking Style. It is well known that people have different walking
styles. While humans are good at spotting such individual patterns, the actual
difference in terms of physical motion is often small and difficult to capture with
inertial sensors (although gait-based person recognition has been demonstrated
[21]). On the other hand, as shown in Fig. 8, the different styles show very
clearly in the muscle activation pattern. Interesting application of walking style
evaluation emerge in monitoring rehabilitation progress and in assissitive systems
for elderly care. In the latter case changes in the walking pattern might indicate
a deterioration of the physical state and an increased risk of falls.

Joint Stress Reduction. An important feature of a personal walking style is il-
lustrated in Fig. 9. It shows the signals from the front-leg and back-leg muscles
during walking downstairs. When compared with the signals in Fig. 5 an addi-
tional, large peak in the front-leg muscle activity can be seen for each step. This
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Fig. 8. Example of signals from the front-leg and the back-leg muscle for level walking
with long strides
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Fig. 9. Example of signals from the front-leg and the back-leg muscle for walking
downstairs in a joint friendly way that manifests itself through the initial peak in the
front muscle signal

peak is an artifact of a downward walking style that cushions step impact in a
particularly joint-friendly way [22, 23]. Joint damage is one of the key concerns
of many popular recreational sports such as hiking or nordic walking, in par-
ticular for overweight people. Thus, the ability to detect joint-friendly walking
styles with an unobtrusive setup opens up interesting applications in terms of
’wearable electronic trainer’ systems.

Correctness of Exercise Patterns. Like with walking styles in many other physi-
cal activities differences that look very subtle when looking at a motion ’from the
outside’ can have very different muscle ’signatures’. Examples encountered dur-
ing our fatigue experiments are shown in Fig. 10. In those specific experiments
two front-leg muscles (vas. lat. and rec. fem. muscle) were monitored. In the
first upper graph on the left the signal amplitude is similar for both muscles and
steadily increases for both muscles with the level of fatigue. This indicates user
doing the squats in the ’correct way’. In the lower graph on the left we see the
data from a user that starts the exercise with a stance and weight distribution
that puts all the load of the squats on vas. lat. muscle. It is only after a certain
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Fig. 10. Example of different muscle fatigue condition for two muscles (vas. lat. and
rec. fem. muscle) when doing the squats experiment with different weight distributions
and stances. The right picture shows a ’cheating’ person.

level of muscle fatigue had been reached that the subject changed his technique
to activate the rec. fem. muscle. We then see a decrease in the vas. lat. muscle
signal that is nearly perfectly matched by an increase in the signal from the
rec. fem. muscle until the muscles share the load almost equally. Finally, the
figure on the right shows a person ’cheating’. We see only sporadic signal from
the rec. fem. muscle with little sign of fatigue. In this case the user takes the
gross of the load from the legs by ’swinging’ the squats from the hips and the
upper body.

The above is another example of our system providing information that is
hard or impossible to get from inertial sensors which currently dominate context
recognition and motion analysis. It again underscores the value of our system for
sports, recreation- and rehabilitation-based pervasive computing applications.

6 Conclusion

We demonstrated that muscle activity signals can be detected through force
sensors attached to the muscle surfaces. We showed that using an array of thin
sensors and a conventional elastic band good quality signals can be acquired
with an easily usable setup suitable for real world applications. From a physio-
logical understanding of muscle role in walking behavior we proved that modes
of locomotion recognition can be implemented by looking at the relation be-
tween signals from the front-leg and the back-leg muscles. Furthermore, we have
established that long-term muscle inflation detected by our system is suitable
as a simple muscle fatigue indicator. Finally, a qualitative discussion of selected
interesting data collected during our experiments indicates that our concept can
provide a wide range of relevant activity information.

In summary we showed that what others consider a source of noise when
working with inertial sensors can be turned into a source of valuable informa-
tion. Clearly, the results presented in this paper are no more then a starting
point towards real life use of force-sensor-based motion analysis and activity
recognition. Our group is currently working on more detailed investigation of
recognition performance for different tasks. We are also looking into sports
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applications in which muscle activity information is combined with signals from
inertial sensors to produce an even more complete picture of user motion.
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