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Abstract. Activity inference based on object use has received considerable re-
cent attention. Such inference requires statistical models that map activities to 
the objects used in performing them. Proposed techniques for constructing these 
models (hand definition, learning from data, and web extraction) all share the 
problem of model incompleteness: it is difficult to either manually or automati-
cally identify all the possible objects that may be used to perform an activity, or 
to accurately calculate the probability with which they will be used. In this pa-
per, we show how to use auxiliary information, called an ontology, about the 
functional similarities between objects to mitigate the problem of model incom-
pleteness.  We show how to extract a large, relevant ontology automatically 
from WordNet, an online lexical reference system for the English language. We 
adapt a statistical smoothing technique, called shrinkage, to apply this similarity 
information to counter the incompleteness of our models. Our results highlight 
two advantages of performing shrinkage. First, overall activity recognition ac-
curacy improves by 15.11% by including the ontology to re-estimate the pa-
rameters of models that are automatically mined from the web. Shrinkage can 
therefore serve as a technique for making web-mined activity models more  
attractive. Second, smoothing yields an increased recognition accuracy when 
objects not present in the incomplete models are used while performing an ac-
tivity. When we replace 100% of the objects with other objects that are func-
tionally similar, we get an accuracy drop of only 33% when using shrinkage as 
opposed to 91.66% (equivalent to random guessing) without shrinkage. If train-
ing data is available, shrinkage further improves classification accuracy. 

1   Introduction 

Automated reasoning about human activity is central to a variety of pervasive com-
puting usage models and applications. Usage models include activity-aware actuation, 
proactive reminding, automated activities-of-daily-living (ADL) monitoring and 
prompting, embedded health assessment, computer supported coordinated care giving, 
and task monitoring and prompting in the workplace. Specific applications that have 
been proposed include the automated control of HVAC and home entertainment  
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systems based on current user activity, automated filling of medical forms about ac-
tivities of elderly users, delivery of information about care recipients’ behavior via 
shared scheduling tools, and the semi-automated evaluation of student performances 
of standard medical procedures. For these applications to be practical, the underlying 
activity recognition module often needs to detect a wide variety of activities (people 
may routinely perform dozens to hundreds of relevant activities a day, for instance) 
performed in many different ways, under many different environmental conditions; 
the particular aspects of the activity that are of interest (e.g. user motion, task pro-
gress, object usage or space usage) also vary widely across applications.  Such robust 
recognition across a variety of activities and their variations has proved to be difficult 
to engineer. 

A central challenge underlying activity recognition is that of bridging the gap be-
tween conventional sensors and informative high-level features such as objects used, 
body motion and words spoken. The most common approach is to use a few (typically 
one per room or user) very rich sensors such as cameras and microphones which can 
record very large quantities of data about the user and their environment.  Although in 
principle the data captured by these sensors should be as useful as that captured by the 
key human senses of sight and hearing, in practice the task of extracting features from 
rich low-level representations such as images has proved to be challenging in unstruc-
tured environments. A popular alternate approach is to use specialized sensors (of the 
order of one per user) such as accelerometers and location beacons to get precise 
information about a particular small set of features related to the user, such as limb-
movement and user location. The simplicity, however, comes at a price: by ignoring 
the environment of the user, these sensors limit the number of activities they can dis-
criminate between. The inability to distinguish between opening a dishwasher and 
opening a washing machine can be a deciding factor in discriminating between the 
corresponding activities. 

Recent years have seen the emergence of a third approach to sensing that may be 
termed dense sensing. Exploiting advances in miniaturization and wireless communi-
cation, this approach attaches sensors directly to many objects of interest. The sensors 
are either battery-free wireless stickers called Radio Frequency Identification (RFID) 
tags[1-3] or small wireless sensor nodes powered by batteries[4, 5]. The sensors trans-
mit to ambient readers the usage of the objects they are attached to by detecting either 
motion or hand-proximity to the object. Further, since each sensor has a unique identi-
fier, information about the object that does not change (such as its color, weight or 
even ownership), which would conventionally have to be discerned by sensors, can be 
associated in a directly machine readable way with the object. The reliable sensing of 
detailed object use enabled by dense sensing has a few advantages. First, for very 
many day-to-day activities, the objects used serve as a good indicator as to which 
activity is being performed. Second, the objects used remain fairly invariant across 
different ways of performing these activities. Third, since the sensors detect the fea-
tures quite well regardless of most environmental conditions, activity recognition can 
be robust to changes in these conditions. Finally, objects used can serve as a powerful 
cue as to other aspects of interest: if a hammer or a knife is known to be in use, the 
space of possible user motions is highly constrained. 

Systems based on dense sensors model activities in terms of the sequence of ob-
jects used, typically using generative Bayesian representations such as Hidden 
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Markov Models (HMM’s)[6-8] or Naïve Bayesian models[9]. Models for individual 
activities in these representations are generated in one of three ways. The simplest, 
and least scalable, approach is to construct the model by hand: an application de-
signer can simply list the objects expected to be used in an activity of interest, along 
with the probability of use. A conventional alternative is to learn the model by per-
forming the activity in a variety of exemplary ways, labeling traces of objects used 
during the performances with the corresponding activities, and using supervised 
machine learning techniques to learn the corresponding model. A final approach is 
to note that the model is essentially a probabilistic translation between the activity 
name and the names of objects used, and to mine large text corpora such as the web 
to obtain these translations. The approaches are not mutually exclusive. For in-
stance, both hand-made and web-mined models can be used as priors which are 
further customized using observed data. 

All three approaches to constructing models suffer from what may be termed the 
model incompleteness problem: the models they produce have objects that are either 
missing or that have inappropriate probabilities. Incomplete models can, of course, 
result in faulty inference. Humans who hand-write models typically do not have the 
patience (and often the judgment) to list all objects that may be used in an activity, 
especially when alternate or obscure objects need to be considered: the model for 
“making tea” may mention neither “coffee cup” nor “honey”.  Further, the probability 
of use ascribed to unfamiliar objects may be quite skewed.  Similarly, given the in-
convenience of generating labeled examples of all (or most) possible ways to execute 
an activity, it is likely that uncommon objects will be missing or under-represented. 
Finally, when models are mined from the web, the vagaries of the web may result in 
certain objects (e.g. “cup”) being ascribed vastly higher probabilities than others (e.g. 
“teacup”).  

The use of objects as the underlying features being modeled suggests a simple 
approach to countering incompleteness. Intuitively, we can exploit common sense 
information on which objects are functionally similar. If the model ascribes very 
different probabilities to two very similar objects, we can “smooth” these probabili-
ties into more similar values. As a degenerate case, if the model omits an object 
while incorporating very similar ones, we can postulate that the omitted object is 
likely to be observed in the model. We show below how to realize this idea in a 
completely unsupervised way and provide evidence that the idea is quite effective. 
Earlier work [7, 10] has used manually extracted hierarchy to incorporate the notion 
of object similarity into activity models. In this paper, we show how to extract rele-
vant information on the functional similarity of objects automatically from Word-
Net, an online lexical reference system for the English language. The similarity 
information is represented in a hierarchical form known as an ontology. Given the 
similarity measure provided by the ontology, we formalize the above intuitive no-
tion of smoothing by adapting from statistics a technique called shrinkage. Shrink-
age is a well established technique for estimating parameters in the presence of 
limited or missing training data and has been successfully used in classifying text 
documents [11, 12], in modeling the behavior of web site users [13], and in service-
oriented context-aware middleware applications [14]. We use a mixture of real-
world data and synthetic data to evaluate our system. Our results show that our 
techniques have three benefits. First, mined models that are smoothed recognize 
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activities with significantly higher accuracy than those that are not. Second, models 
that are learned from data can make do with significantly less training data when 
smoothing is applied versus when it is not. Third, when faced with test data that con-
tains objects not seen in training data, but that are similar to those in the model, 
smoothing yields substantially better recognition rates. 

This paper begins by describing the procedure for automatically extracting the on-
tology of objects from WordNet in Section 2. Then, Section 3 covers the algorithm 
used for performing shrinkage over the ontology of objects. Section 4 shows the re-
sults of running simulated experiments over a large ontology of objects, and Section 5 
of experiments ran over real sensor data. Finally, Section 6 summarizes the main 
results and conclusions drawn from this work.  

2   Automatic Ontology Extraction from WordNet 

WordNet [15] is a hierarchically organized lexical system motivated by current psy-
cholinguistic theories of human lexical memory. WordNet resembles a thesaurus 
more than a dictionary since it organizes lexical information in terms of word mean-
ings (or senses), rather than word forms. In WordNet, nouns, verbs, adjectives and 
adverbs are organized into synonym sets called synsets, each representing one under-
lying lexical concept.  For example the noun couch in WordNet has three senses or 
word meanings, and the synset corresponding to the first sense {couch#1} defined as 
‘an upholstered seat for more than one person’ is {sofa, couch, lounge}.  The sense 
number in WordNet indicates the frequency of use, where 1 corresponds to the most 
commonly used.  
    The real power and value of WordNet relies on the way different semantic relations 
link the synonym sets (or word senses). Currently, WordNet comprises the following 
kinds of semantic relations between word meanings: (1) hypernyms, (2) hyponyms, 
(3) meronyms, and (4) holonyms. Two of these semantic relations are especially im-
portant for their usefulness in extracting a semantic hierarchy or an ontology of ob-
jects: hyponyms, and hypernyms. Hypernyms are is-a relationships were the meaning 
of a word is a superset of another. For example, {cooking utensil#1} is a superset or 
hypernym of {pan#1}. On the contrary, hyponyms are inverse-is-a relationships were 
the meaning of a word is a subset of the meaning of another.  Figure 1 shows exam-
ples of the hypernyms tree for three everyday objects.  

 

Fig. 1. Hypernyms tree for three objects: Coffeepot, eyeliner, and cheese  
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    WordNet organizes nouns into a set of 25 semantic primes or unique beginners of 
separate hierarchies. Five of these unique beginners are particularly important because 
they encompass all possible natural and man made objects {non-living things, ob-
jects}, and living organisms commonly used in meal preparation {living thing, organ-
ism}. These five semantic primes are: {natural object}, {artifact}, {substance}, {food}, 
and {plant, flora}.  All these unique beginners are hyponyms or subsets of the more 
abstract concept {entity}. 

Since all the physical objects of interest found in everyday environments are sub-
sets or hyponyms of {entity}, a tree-like ontology of objects can be automatically 
extracted. This follows from the lexical tree (free of circular loops) design imposed 
over the nouns by the creators of WordNet.  

As of September 2005, WordNet 2.1 contains approximately 117,097 noun word 
forms organized into approximately 81,426 word meanings (synsets) that make 
WordNet a unique and rich semantic database for recovering complete ontology of 
objects automatically. 

2.2   Ontology Extraction Algorithm 

The generation of the ontology or hierarchy of objects can be divided in two steps (1) 
the generation of the ontology skeleton, and (2) the expansion of the ontology. In 
order to generate the ontology skeleton, an initial list of objects of interest is required. 
In the context of our work, this initial list of objects is the list of all objects that appear 
in the mined activity models (or activity recipes) plus all the objects (RFIDs object 
labels) found in the sensor traces. The ontology skeleton generation algorithm pro-
ceeds as follows: (i) since everyday tangible objects correspond to nouns in natural 
language, we proceed to search the objects or words of interest in the noun files of 
WordNet, and (ii) once the noun has been found, we proceed to automatically select 
the sense of the word by looping through all the senses of the word until finding the 
first sense that is a hypernym or subset of {entity}. As discussed in the previous sec-
tion, the node {entity} includes as subsets all possible natural and man made objects 
and living organisms commonly used in meal preparation. This guarantees that the 
selected sense will be the most commonly used sense that is also a physical object. 
    After the appropriate word sense has been selected, we proceed to find the hy-
pernym tree or superset (parent) nodes of the selected sense of the word (or object). It 
is important to notice that some words may have multiple parents (who are descen-
dants of entity) at the same level of the hypernyms tree, since in the previous step, we 
only ensured that the leaf node has a unique sense that is a descendant of the {entity} 
node. Figure 1 shows an example of such case for the object cheese. In situations 
when multiple parents are found at the same level in the hypernyms tree, only the first 
one is considered for being the most common, and the other ones are discarded. In 
practice we have found that this does not represent a major problem in extracting the 
hierarchy of objects.  When the ontology is generated, a synonyms file is also gener-
ated so that any synonym of a word can be used while performing search operations 
in the ontology. For example, the synset for the object cleaner is {cleansing_agent, 
cleanser, cleaner}. 
    It is important to note that in order to perform shrinkage, the ontology must not 
have any loops. Our algorithm generates a tree structured ontology by only selecting 
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  //GENERATION OF ONTOLOGY SKELETON 
   For i:=1 to objectList.length(){ 
       object = objectList(i); 
       word = find_word_in_wordnet_noun_file(object); 
       If(!empty(word)){ 
       For j:=1 to word.getSenses.length(){ 
            wordsense = word.getSense(j);  
            If(wordsense.ishypernym(“entity”)) break; 
       } 
       hypernyms = getHypernymsTree(wordsense); 
       ontologytree.addNodes(hypernyms); 
   } 

   //ONTOLOGY EXPANSION 
   For i:=1 to ontologytree.getLeafNodes().length(){ 
       Node = ontologytree.getLeafNode(i); 
       ancestors = getHypernymsTree(Node, MaxParentLevel); 
       For j:=1 to ancestors.length{ 
           Hyponyms = getHyponymsTree(ancestors(j), MaxChildLevel); 
           ontologytree.addNodes(hyponyms); 
       } 
   }  

Fig. 2. Simplified version of the pseudo-code for automatically extracting the ontology of 
objects from WordNet 

word senses that are hyponyms or subsets of the concept node {entity} and by ensur-
ing each node has a unique parent. Thus, the node {entity} having the single sense: 
‘that which is perceived or known or inferred to have its own distinct existence (living 
or nonliving)’ correspond to the root node, and the highest abstraction level of the 
ontology. Also note that the leaf nodes or most specific terms in the ontology will 
correspond to the objects provided in the original list.  

Once the ontology skeleton has been generated, it is useful to expand the ontology 
to accommodate for possible objects that might be used while performing an activity, 
but were not provided in the original list of objects. The expansion of the ontology 
consists of finding all the ancestor (parents) nodes for all the ontology leaf nodes up 
to a specified level MaxParentLevel. Then, we proceed to find all the hyponyms (chil-
dren nodes) of those ancestor nodes up to a maximum depth level MaxChildLevel.  By 
performing this procedure, we create sibling nodes for the leaf nodes of our original 
ontology that might appear in sensor traces in the future. Figure 2 shows a simplified 
version of the pseudo-code for extracting the ontology from WordNet. 

3   Shrinkage over the Hierarchy of Objects 

Shrinkage [16] is a well established statistical technique for improving parameters 
values estimated for a given model, when they can not be computed reliably from 
training data alone. By exploiting the similarity between nodes in a hierarchy, shrink-
age estimates new parameter values for child nodes by linearly interpolating the val-
ues from the child node to the root node [11]. This represents a trade-off between 
specificity and reliability. The child node estimate is the most specific (low bias), but 
high variance (less reliable), and the root node is the most reliable (low variance), but 
general (high bias). By combining these estimates we can end up with a better and 
more reliable model.  
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    In this work, we use shrinkage to create improved probability estimates of the leaf 
nodes of the ontology. Our assumption is that the leaf nodes in our ontology represent 

)|( ji aoP , the probability estimates of observing an object Ooi ∈ during the perform-
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where ),( aoN i  is the number of times object io occurs in activity a , and O denotes 
the set of all possible objects. 

3.1 Determining Mixture Weights 

The weights { }kλλλ ,..., 21  used during shrinkage balances the influence of the nodes 
containing specific information but little training data, with those nodes containing 
more generic information but larger amounts of training data. The mixture of weights 
can be computed in one of the following ways: (1) uniformly where all the weights 
are equal (2) by applying the Expectation-Maximization algorithm (EM) as in [11] to 
find the weights that maximize the likelihood of the data or (3) using heuristics 
schemes that are a function of the rank (level) of the node in the ontology [13].   
    Since the goal of this work is to have a completely unsupervised approach to activ-
ity recognition where no sensor traces are available, we decided to estimate the 
weights using the following heuristics: (1) levellevel c/1=λ , and (2) levelclevel e ⋅−=λ , where 
c is a constant. These heuristics correspond to exponentially decaying functions that 
will assign large weights to nodes in the neighborhood of the leaf node, and low 
weights to the generic nodes found in the upper levels of the ontology. 
     The use of shrinkage over the ontology of objects in our unsupervised approach 
provides two main benefits: (1) it improves the probability estimates in the leaf nodes 
by taking advantage of the functional relationship of objects represented by the ontol-
ogy. The effect of this improvement is a reduction in the number of training examples 
required to achieve a desired accuracy. If the number of training examples is kept 
constant, an increased accuracy will be observed by performing shrinkage; (2) shrink-
age provides robustness when objects not present in the activity models are used 
while performing an activity. This effect is achieved by creating object observation 
probability estimates for those objects not present in the models by shrinking them 
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//ASSIGNING COUNTS TO LEAF NODE IN ONTOLOGY  
ontology.setLeafNodeCounts(modelsObjectProbs*Factor); 
//COMPUTE MAXIMUM LIKELIHOOD COUNTS FOR INTERNAL NODES 
 internalNodes = ontology.getInternalNodes(); 
For node:=1 to internalNodes.length(){

    inode = internalNodes(node); 
    childrenLeaves = getChildrenLeafNodes(inode); 
    inode.setMLCount(getCountsSum(childrenLeaves));  
 } 

 //OBTAIN LEAF NODES SMOOTHED COUNTS BY SHRINKAGE 
 leaves = ontology.getLeafNodes();  
For leaf:=1 to leaves.length(){

    lnode = leaves(leaf); 
    nodes = getNodes2RootNode(lnode); 
    For l:=0 to nodesPath.length()-1{ 
        lambda = ComputeHeuristics(level); 
        If(level==0) //if leaf node 
           SmoothCount = lambda*lnode.getCounts(); 
        Else{ //if internal node 
           //substract node counts to reduce dependency 
           counts = nodes(l).getCounts()-nodes(l-1).getCounts(); 
           smoothCount = smoothCount + lambda*counts; 
        } 
    } 
    lnode.setCounts(smoothCounts);     
  } 
    

Fig. 3. Pseudo-code for performing shrinkage over the ontology of objects 

towards the objects present in the models using the ontology. This means that we are 
able to compute educated probability estimates for unseen objects when it was not 
previously possible.  
     The pseudo-code for performing shrinkage over the ontology of objects is shown 
in Figure 3, and consists on the following steps: (1) set the object observations 
(counts) for each leaf node by converting object probabilities to counts by multiplying 
them by a factor (2) compute the maximum likelihood counts for all the internal (non-
leaf) nodes and (3) compute the smoothed count (shrinkage) for all the leaf nodes 
using equation 1. The counts are converted back to probabilities by normalizing them. 

4     Experimental Results: Effect of Limited or Missing Data 

In this experiment, we test the effectiveness of shrinkage over a large ontology of 
objects when we have limited training data or missing objects. We use Hidden 
Markov Models (HMMs) to parameterize the activities and assume that the objects 
used during an activity appear on the leaf nodes of the ontology. This assumption is 
plausible since usually one interacts with a specific instance of an object during an 
activity and not the broader abstract category. HMMs are a particular type of dynamic 
Bayesian Networks (DBNs) consisting of three parameters: (1) prior probabilities for 
each state π , (2) a state transition probability matrix T , and (3) the observation prob-
abilities for each state B . The observation matrix represents the object observation 
probabilities for a given activity. Our experimental results show that shrinkage over 
the HMM object emission probabilities helps not only in reducing the number of 
training examples required to achieve a given accuracy, but also in providing robust-
ness when objects not present in the activity models are used.  
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    The ontology used in this experiment was generated from a list of 815 objects used 
in performing household activities. The list was obtained from objects appearing in 
the mined activity models, and sensor traces used in [1]. The ontology consists of 
4188 nodes, 815 leaf nodes, and has a maximum depth of 14. The results presented in 
this section are based on simulated sensor traces (i.e. sampled from a true model that 
we create and not from actual observations from people). However, the ontology 
contains representative information about objects used during performing everyday 
activities. In the next section we will present results on using shrinkage in real sensor 
traces obtained from multiple individuals.  
    The experiment proceeds as follows:  We first create a true activity model model#0 
represented by a 3 state HMM (3 subtasks in activity) with random prior, transition, 
and observation matrices. Next, we generate training data by sampling n  number of 
sequences from model#0. We learn the model parameters from the training data in 
two ways: (i) by computing the maximum likelihood estimate of the prior )(π , transi-
tion )(T , and observation )(B  matrices (model#1) and (ii) by re-estimating the obser-
vation matrix )(B using shrinkage (model#2) and ll e ⋅−= 5.3λ . We measure the closeness 
of the learned models (model#1, model#2) to the true model model#0 by computing 
the Kullback-Leibler (KL) divergence between the observation matrices of model#0, 
and model#1, and model#2, respectively. The KL divergence q)||D(p is a measure of 
the similarity between two probability distributions p and q . The smaller the KL 
divergence, the more similar the compared distributions are. Finally, we compute the 
log-likelihood for models #1 and #2 on a test dataset sampled from the true model #0. 

4.1   Reducing the Number of Training Examples by Shrinkage 

The plots in Figure 4 were generated by iteratively increasing n , the number of  
training sequences, to learn parameters for models #1and #2. Figure 4a shows the log-
likelihood computed over the test sequences (50 of length 13) using the learned mod-
els. The higher the log-likelihood, the better the model explains the test dataset, which 
in turn leads to higher accuracy. By inspection of Figure 4a, we note that 70 training 
examples are required by model#1 to achieve the same log-likelihood that model#2  
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Fig. 4. (a) Log-likelihood, and (b) KL-Divergence between the baseline HMM model, learned 
model, and learned model using shrinkage over the ontology 
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achieves using a single training sequence. This is an important result because it shows 
that shrinkage can dramatically reduced the number of training examples required to 
achieve a specific log-likelihood. When n is greater than 100, the log-likelihood of 
model#1 is higher than model#2 for the specific test dataset. However, Figure 4b 
shows that the KL divergence is lower for model#2 up to when 675=n . This signifies 
that shrinkage model#2 is a closer match to the true model#0 and will explain new test 
data more often, when trained on less than 675 example sequences. When we have 
enough representatives training examples the maximum likelihood (ML) solution will 
converge to the true model and shrinkage will not improve the parameter estimates 
anymore. Although, depending on the complexity of the model the number of training 
data required to have a reliable ML solution may be huge.  

4.2   Robustness to Unseen Objects by Shrinkage 

Often it might be the case that the initial model specifies the use of an object during 
an activity (e.g. use of teacup while making tea) which is later substituted by a func-
tionally similar object (e.g. mug). If the activity model does not incorporate the simi-
larity between a teacup and a mug then the model won’t be able to correctly identify 
the activity making tea when a mug is used. In this experiment, we simulate the use of 
objects not present in the activity models by modifying the observations in the se-
quences sampled from model#0 in the previous experiment. The modification consists 
of replacing %m  of observations by observations of one of their randomly selected 
sibling nodes in the ontology.  
    This simulates the effect of having observed the sibling nodes (objects) in the se-
quences rather than the original leaf nodes. Once the replacements have been per-
formed, we proceed to learn the transition, and observation matrices from the training 
sequences for models #1 and #2. Figure 5 shows the resulting plots for the likelihood 
over the test sequences and the KL divergence when the percentage of replaced ob-
servations is modified from 0% to 100%. The fact that the likelihood is always 
greater, and the KL divergence smaller for model#2 than for model#1 corroborates the 
usefulness of shrinkage when unseen objects in our models are used.  
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Fig. 5. (a) Log-likelihood, and (b) KL-Divergence between the baseline HMM model, learned 
model, and learned model using shrinkage over the ontology 
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5   Experimental Results: Performance on Data Collected from 
Multiple Individuals 

In this section, we show the benefit of incorporating high level information into activ-
ity models using shrinkage over an ontology and measure the performance in real 
sensor traces. To get the initial models, we adopt the procedure followed in [6] to 
mine activity models from the web, compute object observation probabilities, and to 
perform inference using hidden Markov models. We extend the work done in [6] by 
showing how to improve the quality of the mined models without requiring additional 
training data and how to deal with novel unseen objects. 

5.1   Data Collection 

The sensor data used in this experiment has already been used in [1, 6], thus,  allow-
ing us to compare our results against this work. In this data collection, over one hun-
dred everyday objects in a real home were instrumented with passive RFID tags. 
Objects tagged include silverware, cooking utensils, hygienic products, and furniture 
among others. Over a period of six weeks, nine non-researcher subjects spent a single 
20-40 min session to collect data by carrying out 14 activities of their choice out of a 
provided list of 65 activities of daily living (ADLs) while wearing a glove equipped 
with an RFID reader. In practice, the subjects selected to perform only the 26 activi-
ties shown in Figure 7. 

5.2   Mining Activity Models from the Web 

Given a set of activities A , the authors of [4] mine the list of objects O used for each 
activity a , and their corresponding usage probabilities )|( AaOoP ∈∈  from the web. 
The primary assumption underlying the mining process is that textual description of 
activities on the web reflects the performance of activities in everyday life. The mining 
process mainly consists in the following steps: (1) First, find instructional or “how to” 
web pages P

~
that contain a detailed description on how to perform each activity in A . 

(2) Second, extract the set of objects mentioned in each page by identifying nouns 
phrases (using a part of speech tagger), these nouns will be hypernyms or subsets of 
{object} or {substance} in WordNet. For each extracted object, the probability that the 
extraction denotes a physical object is computed as )()|(, nounpnounobjectpw pi = . In 
this equation, )(nounp  is the probability that the last word of the noun phrase is a noun 
as assigned by the POS tagger, and )|( nounobjectp is computed by dividing number of 
occurrences of noun senses that are hypernyms of {object} or {substance} by the total 
number of occurrences of all noun senses. It is possible for a single object to have mul-
tiple weights by appearing several times in a single page, the final weight used is the 
average weight piw ,ˆ . Finally, the object probabilities )|( aiop are computed as the frac-
tion of pages in which the object io  appeared weighted by its average extraction score 
on each page, i.e.:  

∑=
p piw

P
aiop ,ˆ~

1
)|(  
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    The common sense information mined (activity recipes, and object observation 
probabilities) is compiled into an HMM for the task of activity inference. Each activ-
ity A is represented as one internal state in the HMM, and the object usage probabili-
ties mined are used as the set of observations for each state )|( jiji aoPB = . For the 

transition matrixT , an expected activity duration 5=γ is assumed, thus, all self-

transition probabilities are set to γ11−=jjT . The remaining probability mass is  

uniformly distributed over the transitions to all other states. Finally, the prior state 
probabilities π are set to the uniform distribution over all activities. Using this repre-
sentation, the classification task simply consists of inferring the most likely sequence 
of internal states by running the Viterbi algorithm over the sequences of observations. 
For more details about mining models from the web please see [4]. 

5.3   Improving Object Probabilities by Shrinkage 

This experiment demonstrates the usefulness of shrinkage in improving the classifica-
tion accuracy. First, we proceeded to generate the ontology from the list of 68 objects 
in the mined models and the sensor traces in [6]. Then, we construct two HMM mod-
els, model#1 as described in Section 5.2, and model#2 by performing shrinkage over 
the observation matrix of model#1. Finally, we search over the values of c  to find the 
optimal value for the two heuristic functions (H1) levelclevel e ⋅−=λ , and (H2) levellevel c/1=λ .   
    The plots in Figure 6a show the results for various values of c . In these plots, we 
observe that the maximum accuracy obtained is 48.35%, located at [ ]18,16=c for heu-

ristics (H2). This accuracy represents an improvement of 15.11% over the accuracy 
obtained using model#1 (42%). This is an important result, because in [6] the authors 
also describe a procedure to learn from the sensor traces. Based on the segmentation 
obtained using mined models, new model parameters are learned using 126 sensor 
traces, which improve the accuracy of model#1 by 19.2%. Here we have shown that 
just performing shrinkage and without using sensor data whatsoever, we achieve an 
improved accuracy of 15.11%.  Consequently, we believe learning for sensor traces  
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Fig. 6. (a) Accuracy results after performing shrinkage using different constant values c in the 

heuristics, (H1) levelclevel e ⋅−=λ , and (H2) levellevel c/1=λ  and (b) Accuracy vs. percentage of 
replaced observations using model#1 and model#2 
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D
E
F
G
H
I
J
K
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adjust thermostat 
boil water in microwave 
brew a pot of tea 
brush your hair 
brush your teeth 
change a baby’s diaper 
clean a toilet 
clean the bathroom 
clean the kitchen 
do laundry 
dress a baby 
drink water 
load and run a dish-
washer 

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

make peanutbutter jelly sand-
wich 
make a snack 
play solitaire 
put on make up 
read a magazine 
shave your face 
take vitamins 
use microwave 
use the telephone 
use toilet 
vacuum carpets and floors 
wash your hands 
watch tv 

 

Fig. 7. List of the 26 ADLs activities collected and accuracy per activity results before and after 
performing shrinkage using the best heuristic and c  value found 

Table 1. Confusion matrix for the classification of the 26 ADLs using the  shrinkage model 
(model#2). The letters are the same as the ones used in Figure 7. Rows indicate the hand-
labeled class and columns indicate the predicted class label. 

 

will further improve the accuracy. Figure 7 presents the accuracy per class results 
before and after performing shrinkage. Table 1 presents the confusion matrix as com-
puted over the 65 segmented examples of the 26 ADLs. 

5.4 Robustness to Unseen Observations by Shrinkage 

In this section, we provide experimental results showing that shrinkage improves 
model robustness when objects not found in the activity models are present in the 
sensor traces.  
    The experiment is performed as follows: first, the ontology generated in the previ-
ous experiment was expanded to MaxParentLevel=1, and MaxChildLevel =1 as de-
scribed in Section 2.1. This guarantees that sibling nodes will exist for each leaf node 
in the ontology tree. Secondly, the observation matrix is extended to include all the 
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new leaf nodes in the ontology that were not originally present. Thirdly, two HMM 
models were generated, model#1 as described in Section 5.2, and model#2 by per-
forming shrinkage over the observation matrix of model#1. Then we proceed to re-
place m% of the observations in each sensor trace for a randomly selected sibling of 
the original observation in the ontology. Figure 8 shows three examples of the origi-
nal, and modified ADLs sensor traces. The modified sequences are then concatenated 
into a single sequence, and the hidden sequence of states is computed running  
the Viterbi algorithm using models #1, and #2. The overall accuracy is computed as 
the number of observations whose inferred label matched ground truth divided by the 
total number of observations. Similarly the accuracy per activity is calculated by di-
viding the number of observations inferred correctly for each activity divided by the 
total number of observations for each activity. 

Activity Original and Replaced Traces 
Brushing teeth Original:  light  toothpaste floss light 

Replaced: light tooth_powder floss lamp 
Watching TV Original:  remote  magazine remote magazine 

Replaced: remote  newspaper remote newspaper 
Watching TV 
BAD EXAMPLE 

Original:  television couch remote couch 
Replaced: television sofa water_cooler lawn_chair 

Fig. 8. Example sequences where 50% of the observations were replaced 

Figure 6b shows a plot comparing the overall accuracy versus the percentage of re-
placed observations for the two models. From this plot we can observe that (1) the 
accuracy of model#2 is always greater than that of model#1, and (2) when 100% of 
the observations are replaced, the accuracy of model#2 drops only 33% (from 48% to 
32%) when the accuracy for model#1 drops 91.66% (from 42% to 3.8%, which is 
equivalent to random guessing).     

6   Conclusions 

In this paper, we have presented a completely unsupervised approach to activity rec-
ognition that uses activity models automatically mined from the web in combination 
with shrinkage over an object ontology extracted from WordNet. The novelty of this 
approach relies on the fact that high level information is incorporated using shrinkage 
which provides the following benefits: (1) an improved accuracy by re-estimating the 
object observation probabilities of the mined models. We achieve an improvement of 
15.11% in the overall accuracy in Section 5.3. (2) An approach to activity classifica-
tion that requires no real sensor traces or training data, however, if training sequences 
are available, shrinkage can further improve accuracy. This is shown in Section 4.1 by 
simulation, where shrinkage reduces the number of training examples required to 
achieve a particular log-likelihood value from 70 to 1. Model parameters learned 
using shrinkage are closer to the true model as measured by the KL divergence be-
tween the true model, and the learned model. (3) And finally, the ability to reason 
about objects that are not present in the mined activity models but are used while 
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performing an activity. This is achieved by estimating observation probability for 
theobjects not present in the models by shrinking them towards the objects found in 
the models using the ontology. This is exemplified by showing that when 100% of the 
observations in real sensor traces are replaced, accuracy drops 91.66% for a model not 
using shrinkage, and only 33%, when shrinkage is used.  
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