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Abstract. This work investigates the feasibility of a personal verifica-
tion system using gestures as biometric signatures. Gestures are cap-
tured by low-power, low-cost tri-axial accelerometers integrated into an
expansion pack for palmtop computers. The objective of our study is to
understand whether the mobile system can recognize its owner by how
she/he performs a particular gesture, acting as a gesture signature. The
signature can be used for obtaining access to the mobile device, but the
handheld device can also act as an intelligent key to provide access to
services in an ambient intelligence scenario. Sample gestures are analyzed
and classified using supervised and unsupervised dimensionality reduc-
tion techniques. Results on a set of benchmark gestures performed by
several individuals are encouraging.

1 Introduction

Is it possible to use gesture as an integral part of a personal identification -
authentication system? Is there something in how we perform movements which
is unique and personal? If we think about handwriting, it is evident that each
of us has a different calligraphic identity. Is it possible that there also exists for
each of us a calligraphy of gestures? The present work investigates the feasibility
of a personal verification system using gestures as biometric signatures, given
a constrained scenario. We imagine a user holding her/his Personal Digital As-
sistant (PDA) or her/his mobile phone and unlocking or locking it through a
simple gesture, a kind of gesture signature, which gives the device the ability
to recognize its owner. In this example the mobile device is the target: the user
wants to interact with the mobile device and access private data, such as their
address book, personal notes, files and programs. The PDA can also act as a
bridge to allow an individual to be identified in a more general ambient intelli-
gence scenario. Imagine arriving home and being recognized by your house using
a personal gesture signature. By performing a simple gesture, all the services you
pre-programmed in your house are delivered to you, e.g. your personal mail is
read to you or your favourite music is turned on.

Having selected as our target a mobile scenario, some constraints are im-
mediately apparent [1]. Vision and optical systems for motion tracking are not
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suitable in this context because such systems are either fixed and thereby cum-
bersome or they require the user to stop moving in order for an entire gesture to
be captured. However inertial sensors, due to their small form factor, low-cost
and power consumption characteristics appear to provide a viable alternative so-
lution since they are suitable for integration into mobile systems such as PDAs
and mobile phones [2]. Moreover gestures enable interactions with a device that
do not necessarily require visual support or support from other input devices
such as pens, keyboards and joysticks. The use of gesture as an input modality
for mobile systems has been considered in many studies [5][15] as a suitable al-
ternative solution to the mentioned usual interfaces. This current work takes a
step forward, by exploring the challenge of exploiting inertial sensors embedded
in mobile devices for personal identification and authentication. The recognition
of a gesture signature is targeted, focusing only on the gesture chosen by the
user as her/his personal gesture to authenticate her/himself in the system.

Our analysis was carried out using a prototype of the Mesh platform [1],
an expansion pack for palmtop computers integrating 3-axes accelerometers.
The prototype is a handheld box equipped with inertial sensors, able to collect
accelerations along three orthogonal axes. Results and observations from analysis
based on gestures collected from a sample of individuals are presented. Feature
extraction from data is implemented using two well known reduction techniques,
namely Principal Component Analysis [18] and Locally Linear Embeddings [19].
We demonstrate that results are sufficiently robust to proceed with this line of
investigation (e.g. with refining the analysis, increasing the data set and using
additional sensors).

Gestures collected in the form of accelerations through low-power, low-cost
inertial sensors can be used to authenticate people within a small group, such
as to distinguish among members of a family or colleagues who are members
of the same group at a workplace. In the following sections we describe prior
related work in this area and position our work in the context of biometrics
and interaction techniques for mobile devices. Moreover, we describe the chosen
dimensionality reduction techniques applied to the data collected from a sample
of users. Finally, the results of the feasibility experiments will be presented and
discussed.

2 Background

2.1 Interaction Techniques for Mobile Devices

Mobile devices (PDAs, mobile phones, etc.) present unique and specific chal-
lenges in terms of interaction design and usability [1]. Designing interfaces for
mobile computers is complicated in a mobile setting where the users attention is
not fixed on the computer, but on real-world tasks. A limited amount of screen
area is available in such devices and the users visual attention is often focused
on negotiating their surroundings rather than on the interface [3]. Alternative
interaction techniques for mobile devices, which do not use standard pens and
touch panels, are based on use of embedded sensors [5]. In particular, inertial
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sensors are used to exploit changes in position and orientation of the PDA or the
mobile phone as input [4]. Tilt and motion based interfaces enable single-handed
operation. Interaction is thus minimally disruptive and demanding of cognitive
and visual attention. Over the course of a day, a mobile device is picked up many
times and typical natural gestures, which regularly occur when using a mobile
phone or MP3 player can become an integral part of interaction with the device.

2.2 Gesture-Based Biometrics

The use of inertial sensors in building alternative gestural interfaces has been
extensively explored. Because of their reduced size and weight, however, they are
also suitable for applications such as signature capture [26] and gesture recogni-
tion [14] [6], where detecting movements can be of great help. More innovative is
the suggestion that movements collected through inertial sensors can be used for
biometric purposes. A biometric is a physiological or behavioural feature that
can be used to identify people [16]. In physical biometrics, biological features
(e.g. fingerprints, hand geometry, retina or facial characteristics) are examined
in order to identify an individual. Behavioural recognition examines the man-
nerisms of an individual, including signatures, handwriting, voice and keystroke
patterns and so on (references can be found in [27]). More generally, techniques
for authentication can be based on one of several possible attributes:

– Something you are (a biometric)
– Something you know (a password or PIN)
– Something you have (a key, token card, etc)

Gestures have been used as authentication techniques based on “something you
know”, that is the gestures or the sequence of movements performed is chosen
by the user as he/she might choose a password or a code number. In [7] per-
sonal identification is proposed using hand gesture patterns expressing a code
number, captured by a CCD camera. A sensor-based authentication mechanism
for mobile devices has been presented in [8]. This work explores the problem of
verifying a user identity when accessing the public infrastructure, e.g. when he
wants to annex his device to I/O resources encountered in the local environment.
The recognition mechanism is based on a sequence of shake and pause actions
detected by inertial sensors integrated into the mobile device. The sequence is
sent to the public infrastructure by the user’s mobile device after a discovery
procedure has identified the presence of the device.

The aim of our work is somewhat different: using gestures and arm move-
ments as biometrics. In fact, we do not simply want to distinguish among ges-
tures, but to investigate the feasibility of a system, appropriately trained, to
distinguish/identify the gesturer from the gesture made. As a consequence, ges-
tures are treated as a behavioural biometric (“something you are”). Thus, the
question we pose is whether people can be identified by the way they move. In
this area literature is scarce. In [9], simple filters are used to extract features
from a gesture captured in the form of still frames, with the purpose of intro-
ducing a biometric measure based on hand gestures. Unfortunately, a complete
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description of this work is not publicly available. In work by Gupta [10] the same
work is cited and the authors further state that the algorithm applied could not
perform recognition accurately enough to use gestures as biometrics.

Encouraging results come from gait recognition, a relatively new area of study,
receiving growing interest, within the realms of computer vision [11]. Gait recog-
nition is the process of identifying an individual by the way in which she/he
walks. Early psychological studies into gait by Murray [12], suggested that gait
was a unique personal characteristic, with clear cadence and was cyclic in nature.
Johansson [13] carried out studies by attaching moving lights onto the principal
joints of a group of participants who were than asked to walk across a darkened
room. He then showed movies of these “light-point walkers” to a second group
of observers. The observers could recognize the biological patterns of gait from
the moving light displays, even when some of the markers were removed, once
again indicating gait as a potential biometric. Even if conducted in the field of
computer vision, these studies suggest that the way we move is personal. Thus
it is worth investigating whether it is possible to use data collected with sensors
other than cameras.

3 Apparatus and Analysis

Biometric systems typically involve several stages of processing. Data derived
from behavioural or physiological characteristics are converted into templates,
which are used for subsequent matching and decision-making processes. The
work flow in our case is described in Figure 1.

The first decision was the choice of the data acquisition device and con-
sequently the nature of data was determined. We chose the Mesh platform
(described later) equipped with inertial sensors. Thus, data collected are accel-
erations along three orthogonal axes. As a second step, data must be collected
from the user and submitted to the system. As it is impossible to collect all
the possible samples, a selection of a given amount and kind of sample, consid-
ered meaningful and representative for the purposes of the investigation, must be
made. A set of four different gestures was selected. For each gesture, a number of
examples were collected for each person in the sample group. Data collected were
then windowed and grouped in matrices. Rescaling was applied to prepare data
for dimensionality reduction. Two different unsupervised dimensionality reduc-
tion techniques were applied (PCA and LLE), as described in section 3.4. Being
an exploratory study we performed two kinds of analysis. A first qualitative anal-
ysis consisted in using data from the initial dimensionality reduction phase to
obtain a graphical representation of relationships among gestures performed by
different people. Original data are variable, high-dimensional and complex to an-
alyze. As will be described later, PCA and LLE are feature extraction techniques
that can be used for dimensionality reduction, to eliminate data redundancy
and extract representative vectors from a large amount of data. Reducing data
to the first two or three feature vectors, it is possible to plot them and qualita-
tively identify data clusters, evaluate distances among data representing the same
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Fig. 1. Steps of the feasibility analysis

gesture performed by different people plotted in a bi-dimensional graphical space.
A plot provides a fast but only a qualitative idea with respect to the separation
of gestures performed by different individuals. Therefore, a second quantitative
evaluation phase was necessary to validate the analysis. For the purpose, we
applied a k-Nearest Neighbor method to obtain scores indicating how much a
given gesture was distant from another gesture of the same type performed by
the same person.

3.1 Acquisition Device

A prototype of the Mesh platform (Figure 2.a) was used to acquire gesture
samples. Mesh [24] is an expansion pack for IPAQ handheld computers featuring
vibrotactile output and input in the form of motion sensing. The prototype is
equipped with a 3-axes accelerometer and can be connected to other devices
through the serial port. The accelerometers are two biaxial sensors (ADXL202E),
each mounted along and in line with the principal axes of the box prototype,
i.e. orthogonally to each other. Thus, gestures are collected as three arrays of
samples representing the accelerations referred to axes x, y, z of the box (see
Figure 2.a).

The frequency response of the device extends to DC, allowing the acceleration
due to gravity to be monitored. Their bandwidth stretches to 100 Hz, yielding
sufficient temporal resolution to capture data to drive gesture recognition al-
gorithms. For the work described here, the data is gathered from the sensors
at 100Hz, and transmitted over an RS232 serial link to the Personal Computer
(PC), where data analysis was performed using Matlab software. The data rate
is sufficient for the purpose of this work because human movement frequency is
predominantly in the range from 0 to 30Hz.
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a. b.

Fig. 2. a. Acquisition device (Mesh platform) and b. The four gestures chosen

3.2 Data Collection

Two groups of tests were performed, using the apparatus already described. The
first was under more controlled conditions than the second. Indeed, the first test
involved collecting gestures from a participant who was imitating the gesture
performed by a second person. The aim was to obtain intra-personal consistent
data, reducing the variability in gesture duration and shape. For the second test
no guidance was provided, thus the gestures which resulted were more realistic
and hence affected by more variability.

First group of tests. This set of tests involved collecting four different gestures
of the type described in figure 2.b from a small group of people. In particular we
collected the right arm opening and closing horizontally (gesture 1), the rotation
of the wrist (gesture 2), a gesture similar to answering a phone (gesture 3) and
a gesture consisting of touching the left shoulder (gesture 4).

Each of the 4 gestures was collected 20 times. The first ten times people
were asked to repeat the gesture as consistently as possible, especially with
respect to the duration of the gesture. Visual feedback about gesture duration
was provided by a clock visible on the PC desktop. People were also asked to pay
attention to the inclination of the box during the movement, especially when the
direction of movement changed. We obtained a relatively high degree of intra-
personal consistency and repeatability among gestures. For the second part of
this test we modified the procedure slightly, asking people to imitate a gesture
performed by a second person, hereafter called the “target”. In practice, the
target is performing the role of the device owner, and the other participants are
trying to imitate his gestures in order to access his personal device. The target
performed the gesture in synchrony with the people trying to imitate it. In this
way the duration of the gestures was the same and each person had immediate
visual feedback about the gesture while performing it.

The second group of tests. The second group of tests focused only on gestures
1 and 2 from the initial group of four gestures. A group of 10 people, none of
whom had participated in the first test, were asked to perform the gestures and
less help was provided to guarantee intra-repeatability of the gesture. This time
the gesture was shown only once and the person proposing the gesture did not
perform it in synchrony with the participants. Thus, each gesture was repeated
by each participant only ten times. We expected that the gestures collected in
this second tests would result in less intra-repeatable, but also more personal.
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Qualitative results. A major problem in conducting experiments is support-
ing users for gesture repeatability. In our case we distinguish between performing
recognition of a person by the way she/he generally moves and targeting a spe-
cific gesture chosen and performed by that person as her/his “gesture signature”.
From this perspective the same problem can be encountered in other behavioural
biometric studies, such as signature recognition. Signature recognition is different
from handwriting recognition, mainly for repeatability of data [25]. Handwriting
has more intra-personal variability than signatures do. While performing signa-
tures people try to be more consistent with some prototype. They have a real
or mental image to imitate each time. Handwriting is generally more variable
in time. In this sense our work is aimed at finding a “gesture signature”, not a
“gesture-writing style”. Unfortunately a gesture does not have the same feed-
back as a signature, which is still visible while and after being performed. This
suggests that a way of providing feedback must be found also for gestures: the
gesture signature must be experienced while and after it has been performed.
Further, it must be easy to remember in order to increase its repeatability.

Instructions given to users about how to perform the gestures were both ver-
bal and visual: in the first test the gesture was explained and simultaneously
demonstrated. In the second test, less external support was provided. The ges-
tures were performed only once by the target. Despite the invitation to carefully
observe and imitate him, people performed the gestures clearly in their own way,
especially in the second group of tests, as evidenced by their different physical
characteristics and postures and by the different speed of gestures and orienta-
tion of the box during the trajectory path (e.g. uncertainty in the initial position
of the device). Moreover people did not pay attention to the instruction to repeat
each gesture with the same duration. This affected especially gesture 1, which
is wider and which therefore takes longer to perform. Moreover since it is wider
it is more difficult to control and repeat in the same way. We can also observe
that the gestures chosen have different characteristics. The first one is more de-
pendent on physical characteristics, such as the length of the arm of the person
performing the gesture. Moreover, this gesture was also reported to be uncom-
fortable to perform, because it draws attention to the user from passers-by. The

Fig. 3. Accelerations vs time collected along the 3 axes of right-wrist rotation for one
person
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second gesture is smaller, easy to repeat and was performed with approximately
the same duration by many users. The waveform resulting from the acquisition of
the three acceleration data streams over time is thus a periodic wave (Figure 3).
This gesture is more intra-personally consistent but at the same time we ex-
pected more extra-personal similarities, because it is less dependent on individ-
ual body characteristics. The last two gestures can be said to provide physical
reference to the body. It is expected that allowing the body to act as a frame
of reference in this way will improve repeatability, because the gesture is spa-
tially defined having a starting and final position on two precise points of the
body.

3.3 Data Pre-processing: Creation of a Biometric Sample

The data collected from a single participant were arranged into a 10 column
matrix by gesture. Since people did not perform each of the ten gestures at the
same speed, the resulting columns were of different lengths. Variability in data
duration was greater in the second group of tests. Thus, to process data with
Matlab functions some columns were truncated and others padded. This was
done by finding an average duration value (ADV) for each participant and then
padding data where a column length did not reach the ADV or cutting extra-
samples where a columns length exceeded it. In our opinion this operation is
not critical since the differences between columns belonging to the same person
and their ADV is in general not significant (e.g. 20-40 samples for a whole
duration of 300-400 samples at a sampling rate of 100Hz). A single column
vector ḡ is shown in Figure 4. The number of samples is averaged to a given
ADV’ related to the participant and to the length of the gesture performed.
Samples si (i = 1 . . . ADV ′) are related to the temporal window WINj with
j = 1 . . . 10. Accelerations ax, ay, az along the three axes are consecutively filled
in the column vector. The matrix containing 10 gestures from a single participant
is matrix Γ Pϕ, where Pϕ is an identifier for a given participant (ϕ = 1 . . .N ,
where N=number of participants) represented in Figure 4.

The differences between individuals, as represented by their ADV, are far
more significant (e.g. 100-200 samples), especially for the second group of tests.
Thus many possible solutions can be found to adjust data in preparation for
applying dimensionality reduction techniques. One strategy could be to com-
pare only people whose gestures have the same ADV or an ADV that is not
significantly different. Otherwise a duration value corresponding to the maxi-
mum, the minimum or an average duration value among different users could
be fixed and user’s data padded. In this case, different choices can be made for
the value to use for filling the columns. In our case the value chosen to complete
the columns was the data value corresponding to the rest position. This choice
was verified as the option that would minimally influence the data processing
and thus have less impact on the analysis. In conclusion, we identified subgroups
of P participants having for a given gesture similar ADVs, (i.e. a difference in
length smaller then 10%). In Figure 4 we identified as ADV” the average of the
ADVs related to the group of participants selected. Each column vector Γ ′Pϕ
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Fig. 4. General structure of the column vector ḡ for a single gesture, of the matrix
Γ Pϕ and of the biometric dataset G

corresponds to Γ Pϕ padded to ADV” instead of ADV’ (with ϕ = 1 . . . P ). The
biometric dataset created is G, which consists of a [3× ADV ′′, P × 10] matrix
where ten consecutive columns correspond to a single user.

3.4 Dimensionality Reduction: PCA and LLE

Because this is an early stage of this investigation it may be valuable to perform
exploratory data analysis to gain insight into the nature or structure of the data.
Unsupervised methods are good for this purpose, because they provide a form
of data-dependent “smart pre-processing” or “smart feature extraction”. The
discovery of distinct subclasses - clusters or groups of patterns whose members
are more similar to each other than they are to other patterns - or of major
departures from expected characteristics is an important input when designing
the classifier. Dimensionality reduction is a useful operation for data clustering
and pattern recognition. High-dimensional data can contain a lot of redundancies
and correlations hiding important relationships among data. The purpose of
dimensionality reduction techniques, which can be based on both linear and
nonlinear methods, is to ease the analysis of data, eliminating redundancies and
reducing the amount of data to be processed.

Here, we will briefly describe Principal Component Analysis (PCA) [18] and
Locally Linear Embedding (LLE) [19] [23]. In this work, we apply both methods
to the exploratory analysis and visualization of data sets. Both methods are un-
supervised procedures for mapping high-dimensional data to a lower-dimensional
space. We chose PCA because it is a powerful linear method, widely and tradi-
tionally used in many different application fields. LLE is an example of a non-
linear approach that, even if perhaps less tried, has demonstrated robustness and
has produced a number of interesting results as shown in other fields [23] [21].
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Principal Component Analysis. Principal Component Analysis [18] is a lin-
ear method for dimensionality reduction that projects the data into the subspace
with a minimum reconstruction error. PCA is a useful statistical technique that
has found application in fields such as face recognition and image compression,
and it is a common technique for finding patterns in data of high dimensionality.
Data processed with the PCA technique are expressed in such a way that their
similarities and differences are highlighted. Since patterns can be hard to find in
data of high dimensionality, where the luxury of graphical representation is not
available, PCA is a powerful tool for analyzing such data. PCA is often used also
for compressing data, since it helps to reduce the number of dimensions, without
much loss of information. Basically PCA transforms input data so that they are
expressed in terms of the patterns between them, where the patterns are the
lines that most closely describe the relationships between the data. The result of
this simple algebraic technique may be seen from several points of view, either as
a variance preserving projection, or a minimal reconstruction error projection,
or as a distance preserving projection.

Locally Linear Embedding. Though widely used for its simplicity, PCA is
limited by its underlying assumption that the data lies in a linear subspace. Re-
cently, several algorithms for nonlinear dimensionality reduction (i.e. [17]) have
been proposed that overcome this limitation of PCA. Like PCA, these algorithms
are simple to implement, but they compute nonlinear embeddings of high dimen-
sional data. So far, these algorithms have mainly been applied to data sets of im-
ages and video, where they have revealed low dimensional manifolds not detected
by purely linear methods. One of these algorithms is Locally Linear Embedding.

LLE is a recent method for data analysis, an unsupervised learning algorithm
that computes low dimensionality, neighborhoods preserving embeddings of high
dimensional data [23] [21]. LLE attempts to discover nonlinear structure in high
dimensional data by exploiting the local symmetries of linear reconstructions.
Notably, LLE maps its inputs into a single global coordinate system of lower
dimensionality, and its optimizations, though capable of generating highly non-
linear embeddings, do not involve local minima. Because LLE is a new method,
it is not yet well known. Thus, it is worth describing it briefly.

As an input, the LLE algorithm requires N points, for example corresponding
to N samples of gestures from the same person. We define D as the dimension-
ality of the original sample and d the embedding dimensionality after applying
LLE. In our case for example D is 3 × ADV , while d is 2. Each point is a Xi,
where i∈ [1, N ], Xi ∈ RD. As an output, it gives N points, again the N gestures,
re-mapped in a new vector space with lower dimensionality. Thus, each output
point is an Yi, Yi ∈ Rd, where i∈ [1, N ], and d ≺≺ D. The output is such that
geometrical proprieties of the input set of points are locally best preserved. The
algorithm consists of three steps:

– Step 1. For each Xi find its K nearest neighbors Xi1...XiK .
– Step 2. Measure the reconstruction error resulting from the approximation

of each Xi by its nearest neighbors and compute reconstruction weights Wij

minimizing this error.
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– Step 3. Compute low-dimensional embeddings best preserving the local ge-
ometry represented by the reconstruction weights.

In Step 1 the Euclidean distances are used to determine a neighborhood
around each Xi, though other definitions of “closeness” are possible as well.
Step 2 assumes that the manifold is well-sampled, i.e., there are enough data,
each data point and its nearest neighbors lie on or close to a locally linear patch
of the manifold. Hence, we can approximate each sample Xi by a linear combina-
tion of its neighbors. This is equivalent to approximating the nonlinear manifold
in the vicinity of Xi by the linear hyperplane passing through Xi1...XiK . To do
so, we need to minimize the reconstruction error. In Step 3 the low-dimensional
embeddings are found which best preserve the high-dimensional neighborhood
geometry represented by the weights Wij .

Unsupervised clustering techniques provide a first step analysis in order to
evaluate separation of data. Afterward, we applied to the processed data a ba-
sic classification algorithm, the k-nearest neighbor classifier, described below.
This additional investigation is carried out in order to provide a quantified eval-
uation of the results coming from PCA and LLE dimensionality reduction. Their
application to gesture data will be described in detail in Section 4.

4 Analysis of Results After Feature Extraction

To summarize, tasks accomplished to this point are shown in the upper part of
the Figure 1. As already stated, for each kind of gesture and for each person, data
are acquired, segmented and re-scaled. Data are then grouped into a matrix, re-
ferred to in the following paragraph as X , where each column vector is 3× ADV
in length, since each column contains time samples of the acceleration along three
orthogonal axes. Subgroups of ten consecutive columns represents a given ges-
ture performed by the same person. The PCA script receives as input the matrix
A and the parameter d, which is the number of principal components requested
(Figure 6 left side). In practice we reduced data dimensionality to d = 2 (or 3).
Thus, as output, we obtain a matrix B still containing P × 10 columns, but
each column is only d samples in length (in our case two or three). In B data are
still organized so that subgroups of ten consecutive columns represents a gesture
belonging to a given user, with a reduced dimensionality w.r.t. the original input
matrix A. Thus, associating a different symbol with each ten columns, it is pos-
sible to plot data belonging to the same user with the same symbol. Each point
in the plot represents a gesture mapped in the space defined by the first two
principal components (d = 2). Results are satisfying, as can be seen in Figure 5
a and b. Here clusters are easily distinguished. In the plots we outlined the sep-
aration in clusters of data belonging to different people dividing the plane with
approximate lines. The plot represents only gestures 1 and 2, but similar results
were also observed for gestures 3 and 4 when a similar process was used for
the LLE method (Figure 6 right side). Again, the LLE script used [19] receives
as input matrix A. Moreover, two parameters are requested: d the embedding
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Fig. 5. a) and b) PCA applied to gesture 1 and 2 respectively. In a data are collected
from 4 different people; the input matrix is 750x40. In b data are collected from a
further 5 different people. The input matrix is 540x50. In c and d LLE is applied to
gesture 1 (with the same input data as plot a; K = 12) and 2 (the same input data as
plot b; K = 13) respectively.

dimensionality and K the number of nearest neighbors. While d was fixed at
2, we tested different values of nearest neighbors K. In [22] it is observed that
the results of LLE do not depend considerably on the choice of the number of
nearest neighbors. However several criteria are indicated to help the choice of
K. One of them is based on the fact that the algorithm can only be expected
to recover embeddings whose dimensionality, d, is strictly less than the number
of neighbors, K, and some margin between d and K is desirable to improve the
algorithm’s robustness. For us the choice of a value for K around 5 or lower means
that we are using as neighbors almost always gestures from the same person, with
the result that data would seem falsely divided. In fact our matrices have ten
by ten gestures from different people. If we chose a too large value for K (e.g
around 20) we thereby loose the advantage of the algorithm in terms of showing
local properties and thus enhancing differences among data. The algorithm, in
fact, is based on the assumption that a data point and its nearest neighbors can
be modeled as locally linear; the more the manifold is curved, the more choosing
K too large will violate this assumption. That is why we preferred a value for K
between 11 and 15. Low variability of results is experienced while choosing one
of the value in this range. We can conclude that results are stable over a middle



300 E. Farella et al.

Fig. 6. Data processed by PCA (leftside) and LLE (rightside) scripts

range of values but do break down as K becomes too small or large (i.e. out of
the proposed range).

The LLE script provides as output a matrix C, which has P × 10 columns
and d rows. The same technique used for PCA is applied to C, therefore different
symbols are associated with different people. The LLE plots shown in Figure 5 c
and d are again examples relating to gestures 1 and 2. Each symbol represents a
gesture mapped in the 2-dimensional space (d = 2) obtained after dimensionality
reduction performed by LLE.

As already mentioned, the analysis was limited by the different duration of
gestures among people, so that it was impossible to compare all the people
with a unique matrix without affecting the original data (either truncating or
padding the columns of the matrix. The second gesture was more difficult to
cluster, again, with both techniques. But the general result is satisfying, since
this gesture is really simple and easily repeatable, thus easy to fake. Gesture 3
obtained very good separation. Gesture 4 has lower scores because during the
sample acquisition process, we observed that people often performed the gesture
incorrectly, thereby explaining the high variability in the intra-personal data
collected. To reduce variability in such cases a possible solution is to augment
the number of training samples.

An attempt was made to relate physical attributes of the participants (height,
length of limb, etc.) to the results obtained from PCA and LLE. We tried to
understand whether physical similarities could explain the overlapping clusters,
but without success. People corresponding to overlapped results are different in
weight, height and gender. This fact probably confirms that physical character-
istics cannot explain the way we move, if they are not integrated with behavioral
information.

4.1 Classification: KNN

In order to provide a quantitative evaluation of the qualitative results from PCA
and LLE presented in the previous section, we applied a supervised technique
called k-nearest neighbor, briefly described below. To allow for direct comparison
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of the following analysis with the preceding graphical qualitative analysis, we
further decided to evaluate data in a bi or tri dimensional space. In future work
we will explore the possibility of using higher dimensions to obtain better scores.

Evaluation through k-nearest-neighbor classifier. The k-nearest neighbor
classifier (kNN) labels an unknown object or point (e.g. a gesture sample) with
the label of the majority of the k nearest neighbors [20]. A neighbor is deemed
nearest if it has the smallest distance, in the Euclidean sense, in feature space,
which is in our case the space obtained after applying PCA or LLE. For k = 1,
this is the label of its closest neighbor in the learning set. Thus, using a training
matrix containing a set of samples for which the label is known, it is possible to
classify each new sample, with an unknown label, into one of the groups in the
training matrix, calculating its distance in the training space.

The discrimination function implemented by this classifier will in general be an
irregular, piece-wise linear function since it is influenced by each object available
in the learning set. A disadvantage of this method is its large computing power
requirement, since for classifying an object its distance w.r.t. all the objects in
the learning set has to be calculated.

Workflow. We applied the k-nearest neighbor classifier with k = 1 both on
the results coming from the PCA analysis and the LLE technique with different
values of K. The following are the steps in both cases:
1. Load a matrix having gestures as columns (subgroup of ten column for each

participant).
2. Perform dimensionality reduction with PCA or LLE. In the case where PCA

is used, the output matrix is the set of gestures projected in the plane defined
by the first three Principal Components. In the case of LLE the output
matrix is the set of gestures projected in a two-dimensional space after having
been processed with the LLE algorithm with a given value of K (ranging
between 5 and 30).

3. Apply the kNN classifier. The algorithm requires as input a reference matrix,
containing the training samples for which the classification is known, and one
or more samples for which the classification is unknown. Each unclassified
sample is assigned to a given group using the nearest neighbor method. In
our case the different groups correspond to the different participants in the
study. The training matrix is derived from the matrix obtained after feature
extraction at step 2 extracting one column. This column, corresponding to
a gesture, becomes the sample to be classified with the kNN method. If the
gesture is ’near’, in the meaning of kNN, to the other nine gestures performed
by the same person, it will be classified as belonging to the right group. One
by one, all columns are extracted from the matrix obtained at step 2, each
becoming the sample to classify.

4. The result of the processing is registered in a vector, which is compared with
another vector containing the expected results to obtain the percentage of
matching. Thus the percentage says how well samples, processed with PCA
or LLE, are grouped in clusters and therefore how well gestures performed by
a given person are separated from the same gestures performed by another.
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Table 1. kNN scores for first and second set of experiments

NofPeople % PCA Best % LLE gest

3 0.8333 1 1

3 0.8667 0.9333 1

4 1 0.95 1

3 0.9667 0.8 2

3 0.9667 1 2

4 0.8 0.7 2

3 1 0.8 3

3 0.9333 0.9667 3

4 0.8667 0.875 3

3 1 1 4

3 0.7333 0.7333 4

4 0.6333 0.675 4

NofPeople % PCA Best % LLE gesture

5 0.84 0.74 2

5 0.8 0.88 2

5 0.98 0.96 2

3 0.9667 0.9667 1

4 0.9750 0.975 1

2 1 1 1

3 0.9667 0.9667 1

5 0.98 0.96 2

5 0.98 ... 2

4 0.9750 0.975 2

a) I set of tests b) II set of tests

Score and comments. Tables 1.a and 1.b summarize the results coming from
the application of KNN. The first column indicates the number of users which is
related to the number of gestures stored in the matrix processed (10 multiplied
by the number of users). The percentage of matching indicated in the second
column of the table refers to the data described in three-dimensional vectors,
that is gestures re-mapped along the first three principal components. The third
column refers to the best score for data processed with LLE, using different
values for K ranging from 10 to 30. The last column indicates the gesture to
which analysis is referred. The percentages both for LLE and PCA are in the
majority of cases satisfying, but the number of people in each group is low.

The Table 1.a is also organized in groups of three rows. The information is
organized as in Table 1.b. Each row describes the percentage of correct classi-
fications after applying LLE or PCA and kNN techniques. The groups of three
rows are dedicated to each kind of gesture; the difference among them is related
to the data processed. The first row refers to the first ten gestures collected
from people, the second row refers to the second ten gestures collected asking
people to imitate a target gesture, the third row refers to the same data as in
the second row but adding also the ten gestures from the person being copied.
It can be seen that the PCA technique provides better scores compared to LLE.
In general very good results are obtained except for gesture 4. Note that the
plot shown in Figures 5 a and b refers to a 2D space (defined by the first two
principal components), while the vectors to which the kNN has been applied are
mapped in the 3D space defined by the first three principal components. This
improves in some cases the separation of data.

5 Conclusion

The present work investigated the feasibility of using gestures as biometrics,
asking whether it is possible to distinguish someone by the way she/he performs
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gestures. The study was restricted to four hand gestures performed by holding a
box with motion sensors embedded in it and collecting acceleration data along
three orthogonal axes. Gestures can be considered as behavioral biometrics, and
we therefore expected a less defined separation of data between individuals than
is found in the case of physical biometrics. In this respect our results shows
that percentage of matching is high even with a simple linear cluster method
like PCA. Use of a non linear method does not yield significantly better results
and has the additional shortcoming of adding the value of a tuning parameter.
However, both PCA and LLE lead to a high percentage of matches, around
95% or higher in the majority of cases, thus both techniques can be considered
valuable for our purpose. Nevertheless, many improvements to these procedures
are possible, e.g. integrating in the acquisition device other kinds of sensors
(gyroscopes, bend sensors) into the data acquisition apparatus, analyzing data
in higher dimensional spaces and applying more powerful techniques for data
pre-processing and feature extraction.

In conclusion, this study shows that for small groups of people (e.g in families
or members of small work groups), it is possible to distinguish one person from
another by the way gestures are performed. Thus, a system using this result
can potentially be useful in Ambient Intelligence applications for context-aware
services and application profiling. Moreover, this biometric technique in combina-
tion with other biometrics can enforce security policy to log-in to distributed sys-
tems or to control access to restricted areas and protected physical environments.
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