
Scalability in a Secure Distributed Proof System

Kazuhiro Minami and David Kotz

Department of Computer Science, Dartmouth College,
Hanover, NH, USA 03755

{minami, dfk}@cs.dartmouth.edu

Abstract. A logic-based language is often adopted in systems for pervasive com-
puting, because it provides a convenient way to define rules that change the be-
havior of the systems dynamically. Those systems might define rules that refer to
the users’ context information to provide context-aware services. For example, a
smart-home application could define rules referring to the location of a user to
control the light of a house automatically. In general, the context information is
maintained in different administrative domains, and it is, therefore, desirable to
construct a proof in a distributed way while preserving each domain’s confiden-
tiality policies. In this paper, we introduce such a system, a secure distributed
proof system for context-sensitive authorization and show that our novel caching
and revocation mechanism improves the performance of the system, which de-
pends on public key cryptographic operations to protect confidential information
in rules and facts. Our revocation mechanism maintains dependencies among
facts and recursively revokes across multiple hosts all the cached facts that de-
pend on a fact that has become invalid. Our initial experimental results show that
our caching mechanism, which maintains both positive and negative facts, signif-
icantly reduces the latency for handling a logical query.

1 Introduction

One of the major goals of pervasive computing is to meet a user’s continuously changing
requirements without taking explicit input from the users. Therefore, a system in per-
vasive computing needs to consider the user’s context and change its behavior dynami-
cally based on a set of rules. Many systems [7, 10, 19, 22] in pervasive computing apply
a logic-based language to express those rules, since it also makes it possible to define
a context model where a contextual fact is expressed with a boolean predicate. Besides
defining triggering actions [22] of pervasive applications (e.g., a smart meeting room),
a logical language provides a way to infer high-level context information [13, 19], such
as a user’s activity, from raw sensor data. One promising application of the logic-based
approach is a context-sensitive authorization system [1, 2, 6, 8, 11, 18, 24] that considers
a requester’s context as well as his identity to make a granting decision; the system de-
rives the granting decision (true or false) with a set of rules encoding policies and facts
encoding context information.

Those logic-based systems assume a central server that maintains global knowledge
of all the context information. However, in many realistic applications of pervasive
computing, sources of context information are inherently distributed among many ad-
ministrative domains that have different security policies. For example, imagine a large

K.P. Fishkin et al. (Eds.): PERVASIVE 2006, LNCS 3968, pp. 220–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scalability in a Secure Distributed Proof System 221

office building where there are sensors managed by the city, the building owner, the
companies leasing space, and the individual employees. An active-map application that
displays the current location of an employee in that building might need to access mul-
tiple indoor location tracking systems in different organizations.

To achieve such information sharing among organizations, we must address two trust
issues. First, each administrative domain (organization) defines confidentiality policies
to protect information in that domain. It is necessary for an administrator of a location
tracking system to protect users’ location privacy [5, 18], for example. Therefore, a re-
quester must satisfy the confidentiality policies of an information provider to access the
requested information. Second, each administrative domain defines integrity policies
that specify whether to trust information from other domains in terms of the integrity
(correctness) of that information. Because context information is computed from raw
sensor data, it inherently involves uncertainty. It is, therefore, important for each do-
main to choose reliable sources of information to derive correct context information.
We assume that these trust relationships are defined by principals, each of which repre-
sents a specific user or organization, and that each host is associated with one principal
(e.g., the owner of a PDA, or the manager of a server).

Our previous work on a secure context-sensitive authorization system [16, 17] en-
ables mutually untrusted principals, which have partial knowledge about rules and con-
text information, to evaluate a logical query without a universally trusted principal or
a centralized knowledge base. The core of the approach is to decompose a proof for
making an authorization decision into a set of sub-proofs produced on multiple differ-
ent hosts, while preserving the confidentiality and integrity policies of the principals
operating those hosts. Our scheme relies on public-key operations to enforce security
policies of the principals, and those public-key operations might cause long latency dur-
ing the process of making an authorization decision. However, we had not previously
reported the performance of the system.

In this paper, we present the design and implementation of a novel caching and re-
vocation scheme that significantly improves the performance of the original system.
Our current target application is an emergency-response system [12] that provides an
information dissemination infrastructure for responders in a disastrous incident. Since
the responders who belong to different state or local agencies share information across
the agencies on a need-to-know basis, we adopt context-sensitive authorization policies
that consider a responder’s location and medical condition to grant access to informa-
tion about the incident. Our system should, therefore, scale to support tens of different
administrative domains, meeting three key goals:

Speed: the average latency for handling a query should be comparable to that of a
local query in a centralized system; we, therefore, aggressively cache query results
from remote hosts to avoid issuing remote queries.

Freshness: a query result must be derived only from context information that satisfies
a timeliness condition; all the context information in the proof must be generated
within a given interval between the current time and a recent past time.

Fault tolerance: a query result, if produced, must be guaranteed to be correct under
the presence of host failures or adversaries that intercept messages between hosts.

222 K. Minami and D. Kotz

To achieve those goals, our caching mechanism enables each host to maintain both
positive and negative query results to avoid issuing remote queries. To ensure the fresh-
ness of cached results, we develop an efficient capability-based technique for revoking
cached query results. Unlike existing revocation methods [26] in which only an is-
suer of a certificate can revoke it, our scheme must allow multiple hosts to revoke a
given cached result because the result might depend on (contextual) facts maintained
by different hosts. Every principal that handles a query returns a query result with a
randomly generated capability so that it can revoke the result by sending that capability
to the receiver of the result. Each host maintains dependencies among cached facts, and
the revocation process is recursively iterated across multiple hosts until all the cached
facts that depend on the fact that has initially become invalid are revoked. Each host
maintains the freshness of each cached result by exchanging messages that update the
timestamp associated with the result and discards obsolete results periodically.

To demonstrate the effectiveness of our caching scheme, we measured the perfor-
mance of our system with and without our caching mechanism. The results show that
our caching mechanism significantly improved the amortized cost for handling queries,
and the performance with the caching mechanism was comparable to that of a central-
ized system where all the rules and facts are stored in its local knowledge base. We also
measured the latency for revoking a query result to show how our scheme can meet the
timeliness condition on cached results.

The rest of the paper is organized as follows. We introduce our secure context-
sensitive authorization system in Section 2, and cover the design of our caching and
revocation mechanism in Section 3. Next, we describe a mechanism for keeping cached
information updated in Section 4. We show the results of our experiments in Section 5
and discuss some limitations of our scheme in Section 6. We cover related work in
Section 7 and conclude in Section 8.

2 Overview of a Secure Context-Sensitive Authorization System

In this section, we provide an overview of our secure context-sensitive authorization
system [16, 17]. The system consists of multiple identical servers, which collaborate
peer-to-peer to construct a proof for an authorization query in a distributed way. We
first describe the structure of each host and then show how a set of servers, each of
which only maintains partial knowledge about policies and (contextual) facts, make an
authorization decision in a distributed environment.

2.1 Structure of the Authorization Server

Figure 1 shows the structure of an authorization server that consists of a knowledge
base and an inference engine. The knowledge base stores both authorization policies
and facts including context information. The context server publishes context events
and updates facts in the knowledge base dynamically. The inference engine receives an
authorization (or a logical) query from a remote server, such as a resource server, that
receives a user’s request and returns a proof that derives the fact in the query by retriev-
ing information in the knowledge base. If the engine cannot construct a proof, it returns

Scalability in a Secure Distributed Proof System 223

Knowledge base

Inference Engine

Context
 server

Proof

Logical query

Authorization server

User

Resource

Context event

Request

Fig. 1. Structure of an authorization server

grant(Bob):- role(Bob, doctor), location(Bob, hospital)

role(Bob, doctor) location(Bob, hospital)

Fig. 2. Sample proof tree

a proof that contains a false value. In an open environment of pervasive computing,
each server could belong to a different administrative domain.

Rules and facts in a knowledge base are represented as a set of Horn clauses in Pro-
log. For example, a medical database may define an authorization policy that requires
a requester P to hold a role membership “doctor” and to be physically located at the
“hospital” as follows.

grant(P) :- role(P, doctor), location(P, hospital)

The atoms role(P, doctor) and location(P, hospital) on the right side of the clause are
the conditions that must be satisfied to derive the granting decision grant(P) on the
left. If a user Bob issues a request to read a medical database, the proof tree in Figure 2
could be constructed based on the above rule. The root node in the tree represents the
rule and the two leaf nodes represent the facts respectively. Notice that variable P in
the rule is replaced with a constant Bob. A user’s location, which is expressed with the
location predicate, is a dynamic fact; i.e., the second variable of the predicate location
should be updated dynamically as Bob changes his location.

2.2 Proof Decomposition in Distributed Query Processing

Multiple servers in different administrative domains handle an authorization query in a
peer-to-peer way, since there need not be any single server that maintains all the rules
and context information; a server must issue a remote query to another server when it
does not have necessary information in its local knowledge base. However, the princi-
pals running those servers must preserve their confidentiality and integrity policies. The
key idea for this goal is that when a principal who issues a query trusts a principal who
handles a query in terms of the integrity of the query result, the handler principal does
not disclose all the information in the proof. It might be sufficient to return a proof that
simply states the fact in the query is true, and a proof thus is decomposed into multiple
sub-proofs produced by different hosts.

Figure 3 describes such collaboration between a querier and a handler hosts. Sup-
pose that host A run by principal Alice, who owns a projector, receives an authorization
query ?grant(Dave, projector) that asks whether Dave is granted access to that pro-
jector. Since Alice’s authorization policy in her knowledge base refers to a requester’s
location (i.e., location(P, room112)), Alice issues a query ?location(Dave, room112)

224 K. Minami and D. Kotz

Host B (Bob)

Engine

Confidentiality policies

Knowledge base
Host A (Alice)

Engine

Knowledge base

Integrity policies

grant(P, projector):- location(P, room112)

location(P,L):- owner(P,D), location(D,L)

trust(location(P,L)) = {Bob} acl(location(P,L)) = {Alice}

location(pda15, room112)

owner(Dave, pda15)

?grant(Dave, projector)

?location(Dave, room112)

(location(Dave, room112),TRUE)

Fig. 3. Remote query between two principals. Alice is a principal who owns a projector, and Bob
is a principal who runs a location server.

to host B run by Bob. Alice chooses Bob, because Bob satisfies Alice’s integrity poli-
cies for queries of the type location(P, L) (i.e., trust(location(P, L)) = {Bob}).
Each principal decides to which principal a query should be sent by looking up his
integrity policies. Bob processes the query from Alice, because Alice satisfies Bob’s
confidentiality policies for queries of the type location(P, L) as defined in Bob’s policy
acl(location(P, L)) = {Alice}. Bob derives that Dave is in room112 from the loca-
tion of his device using the facts location(pda15 , room112) and owner(Bob, pda15).
However, he only needs to return a proof that contains a single root node that states that
location(Dave, room112) is true, because Alice believes Bob’s statement about peo-
ple’s location (i.e., location(P, L)) according to her integrity policies. The proof of the
query is thus decomposed into two subproofs maintained by Alice and Bob. In general,
Bob could return a proof tree that contains multiple nodes. If Alice only trusts Bob’s
rule that derives Bob’s location instead of Bob’s fact, he would need to submit a larger
proof tree to satisfy Alice’s integrity policies.

2.3 Enforcement of Confidentiality Policies

Each principal who participates in constructing a proof enforces his confidentiality poli-
cies by encrypting a query result with a receiver principal’s public key. A principal who
returns a query result is allowed to choose a receiver principal from a list of upstream
principals in a proof tree; a query is appended with a list of upstream principals that
could receive the query result. Therefore, it is possible to obtain an answer for a query
even when a querier principal does not satisfy the handler principal’s confidentiality
policies. Figure 4 shows the collaboration among principals p0, p1, p2, and p3. When
principal p0 issues an authorization query q0 to principal p1, p1 issues a subsequent
query q1, which causes principal p2’s queries q2 and q3. Since a receiver principal of
a proof might not be a principal who issues a query, a reply for a query is a tuple
(pi, (pf)Ki) where pi is an identity of a receiver principal and (pf)Ki is an encrypted
proof with the receiver’s public key. We assume that, in this example, each principal

Scalability in a Secure Distributed Proof System 225

p0 p1 p2

p3

p4

q0 q1

q2

q3

pf1 ≡ (p0, pf3) pf2 ≡ (p1, ((pf3)(pf4))K1)

pf3 ≡ (p0, (q2, TRUE)K0)

pf4 ≡ (p1, (q3, TRUE)K1)

Fig. 4. Enforcement of confidentiality policies. The first item in a proof tuple is a receiver princi-
pal, and the second item is a proof tree encrypted with the receiver’s public key.

who issues a query trusts the integrity of the principal who receives that query in terms
of the correctness of whether the fact in the query is true or not. For example, p0’s
integrity policies contains a policy trust(q0) = {p1}.

Suppose that query q1’s result (i.e., true or false) depends on the results of queries
q2 and q3, which are handled by principals p3 and p4 respectively and that p3 and p4

choose principal p0 and p1 as a receiver respectively since p2 does not satisfy their
confidentiality policies. Because principal p2 cannot decrypt the results from principals
p3 and p4, p2 encrypts those results with the public key of principal p1

1 , which p2 chose
as a receiver. A principal p2 forwards the encrypted results from p3 and p4 because the
query result of q1 is the conjunction of those results. Principal p1 decrypts the encrypted
result from p2 and obtains the encrypted results originally sent from principals p3 and
p4. Since p1 is a receiver of the proof from p4, p1 decrypts the proof that contains a true
value. Since a query result for q0 depends on the encrypted proof from p3, principal p1

forwards it in the same way. The principal p0 finally decrypts it and obtains an answer
for query q0. Notice that principal p0 is not aware of the fact that the query result is
originally produced by principal p3.

Each proof must be signed with a sender principal’s public key so that a principal
who receives a proof that contains sub-proofs produced multiple principals can check its
integrity. Our system applies public-key operations only to a randomly generated sym-
metric key to reduce the performance overhead and use the symmetric key to encrypt
and decrypt a proof; that is, a proof consists of a new symmetric key encrypted with a
receiver’s public key and a proof encrypted with that symmetric key. In addition to the
public-key encryption, the querier and handler principals use another shared symmetric
key to protect other data fields (e.g., a receiver identity) in a proof and a query from
eavesdroppers. We assume that the two principals share the symmetric key via a pro-
tocol using public-key operations when the querier and handler principal authenticate
with each other for the first time.

3 Caching and Revocation Mechanism

In this section, we describe a caching and revocation mechanism that improves the
performance of our system. Our caching mechanism supports both positive and negative

1 This recursive encryption is necessary to prevent an attack by malicious upstream principals
of the message flow. The malicious colluding principals could read principal p2’s query result
illegally by modifying the list of upstream principals given to p2 along with a query q1.

226 K. Minami and D. Kotz

query results and avoids issuing remote queries, which otherwise cause long latency due
to cryptographic operations and the transmission of data over a network. Our capability-
based revocation mechanism allows any principal who contributes to producing a proof
to revoke the cached result derived from that proof.

3.1 Capability-Based Revocation

A proof for a query contains (context) information provided by multiple different prin-
cipals, and the derived fact from the proof must be revoked if any information in the
proof becomes invalid; that is, there might be multiple principals that are eligible to
revoke a given cached fact. We, therefore, developed a revocation mechanism based on
capabilities [23] so that all the principals involved in constructing a proof may revoke
the derived result from the proof.

Each node in a proof tree is associated with a capability (a large random number).
The capability is created by a principal who provides the information (i.e., a fact or
a rule) in the node. Since a principal who publishes a proof encrypts the query result
and capability together with a receiver principal’s public key, the capability is a shared
secret between the publisher and the receiver of the proof node. Therefore, the principal
who sent the proof can later revoke the fact or rule in the proof by sending the capability
to the receiver principal. The sender principal of the revocation message does not need
to authenticate itself to the receiver principal who maintains the cached information.

Figure 5 describes our revocation scheme in a distributed environment. A princi-
pal p0 issues a query ?location(Bob, hospital), and a principal p1 returns a proof that
consists of a rule node produced by p1 and two leaf nodes produced by p2 and p3

respectively. A principal p0 caches the fact location(Bob, hospital) derived from the
received proof. Since principals p1, p2, and p3 contribute to constructing the proof tree,
they all should be eligible to revoke p0’s cached fact. Therefore, each principal pi for
i = 1, 2, 3 includes a capability ci into his produced node so that pi can revoke the
proof later. A principal p0 who caches the fact location(Bob, hospital) associates it
with the capabilities c1, c2, and c3 obtained from the proof. Since principal p3 chose
p0, not p1, as a receiver of his proof pf3, p3 revokes his proof by sending a capability

c3

p0 p1

p2

p3

?location(Bob, hospital)

?owner(Bob, pda11)

?location(pda11, hospital)

(p0, (TRUE, c1, (pf2)(pf3))K0)

pf2 ≡ (p0, (TRUE, c2)K0)

pf3 ≡ (p0, (TRUE, c3)K0)

Fig. 5. Capability-based revocation. The dashed line represents a revocation message sent by
principal p3.

Scalability in a Secure Distributed Proof System 227

c3 directly to principal p0. Receiving that revocation message, a principal p0 removes
the cached fact associated with the capability c3. Principals p1 and p2 could revoke the
same cached fact in the same way. Our capability-based revocation does not involve
any public-key operations, which are computationally expensive, because a revocation
message can be directly sent to a principal who maintains a cached fact. When our sys-
tem constructs a proof tree responding to an authorization query, public-key encryptions
are necessary to prevent intermediate principals between a sender and a receiver prin-
cipal from reading the sender’s query result. Furthermore, a revocation message does
not need to be signed by a sender principal, because it is not necessary for a sender to
authenticate himself to a receiver principal of the revocation message. When we extend
the revocation scheme to support negative caching, however, we do require encryption
(see Section 3.4).

3.2 Structural Overview

Our revocation mechanism is based on a publisher-subscriber model; that is, a querier
principal subscribes to a handler principal who handles his query, and the handler prin-
cipal sends a revocation message when the query result becomes invalid. This process
might occur recursively until all the cached facts that depend on the invalidated fact
are revoked across the network. Figure 6 shows the structure of our caching and revo-
cation mechanism and the message flow among the components when a cached fact is
revoked. Each server consists of two components (an inference engine and a revocation
handler) and four data structures (a subscribers list, a dependencies list, a subscription
list, and a knowledge base). The inference engine is responsible for constructing a proof
and caching query results obtained from other principals with the knowledge base and
the subscription list. The engine also maintains information on other principals who
issue a query to the engine with the subscribers and dependencies list so that the engine
can revoke cached results in remote hosts. When principal p1 receives a query q0 from

Inference engine

Revocation handler

listlistlist base

Inference

 engine
Inference

 engine

Revocation
 handler

SubscriptionDependenciesSubscribers Knowledge

 handler

Revocation

1. q0 2. q1

3. (f1, (TRUE, c2))

4. add(f1)5. put(c2, f1)6. put(f1, f0)7. put(f0, (p0, c1))

8. (f0, (TRUE, c1))

9. c2

10. get(c2)

f1

11. remove(f1)
12. get(f1)

f0

13. get(f0)

(p0, c1)

14. c1

p0 p1
p2

Fig. 6. Structure of a caching and revocation mechanism. We omit the data structures from the
servers of p0 and p2 for brevity. The number at the beginning of each message represents the
sequence of the entire revocation process. The return value of a message is shown under a dotted
line in the messages 10, 12, and 13.

228 K. Minami and D. Kotz

principal p0, p1’s inference engine constructs a proof tree for a fact f0, which is unified
with q0, and issues a subsequent query q1 to principal p2, and p2 returns a proof tree
whose root node contains the unified fact f1 and the pair of a query result TRUE and
a capability c2. Note that facts f0 and f1 are identical to queries q0 and q1 respectively
if those queries do not contain any variables. Principal p1 stores f1 as a fact into its
knowledge base and also puts a key-value pair (c2, f1) into the subscription list (a hash
table). Notice that we use the same knowledge base to store cached results as well as
local rules and facts. After constructing a proof tree for f0, the engine stores the pair
(f1, f0), which represents f0’s dependency on f1, and a nested tuple (f0, (p0, c1)) into
the dependencies and subscribers list respectively. The nested tuple (f0, (p0, c1)) ex-
presses an if-then rule stating that a capability c1 must be sent to principal p0 if fact
f0 becomes invalid. The inference engine finishes handling query q0 by returning a
proof tree whose root node contains fact f0 and the pair of a query result TRUE and a
capability c1.

The revocation process occurs when principal p2 sends a revocation message that
contains a capability c2. Principal p1’s revocation handler receives the message, obtains
a fact to be revoked with capability c2 from the subscription list, and removes fact f1

from the knowledge base. Next, the revocation handler obtains fact f0, which depends
on f1, from the dependencies list and then accesses the subscribers list to obtain a ca-
pability c1 for revoking principal p0’s cached fact f0, and sends c1 to p0’s revocation
handler. The same process is repeated on p0’s server.

If a capability is a shared secret that is only used once, a capability does not need to
be encrypted as we explain in this section. In Section 3.4 below, though, we add support
for caching negative results and in that case we do need an encrypted channel for this
message.

3.3 Synchronization Mechanism

There is a race condition to be resolved between the inference engine and the revocation
handler, because both modules access the four data structures in Figure 6. For example,
it is possible that the revocation handler accesses the subscription list with a capability
c that revokes a fact f before the inference engine writes the subscription information
(i.e., (c, f)) to that list.

However, we cannot use a coarse mutual exclusion mechanism that allows the thread
of the inference engine to block other threads’ access to the data structure while process-
ing a query, since a deadlock occurs when the engine issues a remote query that causes
a closed cycle of subsequent queries by remote servers. For example, if a downstream
server that receives a subsequent query issues a remote query back to the server of
the inference engine, a new thread that is created to handle that query blocks because
the inference engine on that server already obtains a lock on the data structures, which
the new thread needs to access. Thus, the inference engine would wait for a reply for the
remote query forever. We, therefore, built a fine-grained synchronization mechanism
that ensures that the engine that receives a proof-tree node with capability c updates
the data structures before the revocation handler that receives a capability c accesses
them.

Scalability in a Secure Distributed Proof System 229

3.4 Negative Caching

Our system also supports caching negative facts (i.e., facts that are false), because a
principal cannot return a negative result when he does not find any matched fact for
the query in the local knowledge base; another principal might have a fact that matches
with the query. To make a negative decision locally, a principal must cache a negative
result after the attempt to obtain the queried fact from remote principals fails.

To support negative caching, each principal maintains the same set of data structures
in Figure 6; that is, each server maintains another knowledge base that stores negative
facts. The semantics of a negative revocation is different from that of positive caching;
that is, when a cached negative fact is revoked, that fact can be cached as a positive fact.
(On the other hand, to revoke a positive fact does not necessary mean that the revoked
fact is no longer true; there might be another proof that derives the fact. Note that if a
host that maintains a positive fact has first-hand knowledge about the validity of that
fact without checking with other hosts, that host could convert the revoked positive fact
into a negative cached fact.)

When a negative fact is revoked, we must find an entry (c, f) in the negative sub-
scription list, where c is a capability and f is the revoked fact, and move it to the
subscription list for positive cached facts. However, we cannot use the same capability
c for the entry in the positive list, because it might cause inconsistency about the sub-
scription information between the sender and receiver of a revocation message in the
case where the revocation message is lost. For example, suppose that we use the same
capability for a switched positive cached fact. When a principal who sends another
principal a revocation message for a negative cached fact, the sender principal moves
the corresponding subscription information from the subscribers list of negative facts
to that of positive facts. However, if the receiver principal does not receive the message
because of a network failure, the receiver principal continues to maintain the negative
cached fact, which is supposed to be revoked. When the sender principal later sends a
revocation message that revokes the switched positive cached fact, the receiver princi-
pal revokes the negative cached fact instead. Thus, the inconsistency about the cached
information occurs.

Therefore, a revocation message for a negative cached result needs to contain a new
capability to revoke the switched positive cached result. Since the new capability must
be a shared secret between a sender and a receiver of the revocation message, we need to
encrypt the message with a shared key between those two parties. However, to establish
a symmetric secure channel for all the pairs of two principals that participate in our
system requires n2 symmetric keys, where n is the number of participating principals.
To avoid this key-management problem, our system encrypts a revocation message with
the same randomly generated symmetric key that is used to encrypt the proof node that
contains the cached result as we describe in Section 2.3; that is, each server records
the capabilities in a received proof with a symmetric key that is used to decrypt that
proof. Suppose that the proof contains a node with a capability cn and was encrypted
with a symmetric key K when the server receives it. A server stores a (cn, K) pair in a
hash table to handle a revocation message (cn, (cn, cp)K) where cn is a capability that
revokes a current negative result, cp is a capability that revokes the switched positive
result in the future, and K is the symmetric key associated with cn. When a server

230 K. Minami and D. Kotz

receives this message, it first obtains a symmetric key K corresponding to the capability
cn in the message from the hash table, and decrypts (cn, cp)K with that key. If the
first element of the decrypted tuple is same as the capability in the first field of the
revocation message, the server considers that revocation message valid and revokes
the corresponding fact. We continue to use the key K if we later revoke the fact that
corresponds to the capability cp. In a way, the symmetric key K is a real capability and
the capability cn is an indirect reference to K .

4 Timeliness of Cached Information

Our system must ensure that all the cached facts meet a given timeliness condition; all
the timestamps associated with cached facts must be within a given interval between
the current time and a recent past time. To simply keep the latest messages does not
guarantee the freshness of the cached facts because some hosts might crash or an adver-
sary might intercept revocation messages so a server would make an incorrect decision
based on obsolete cached information.

We, therefore, develop a mechanism that ensures the freshness of cached positive and
negative facts obtained from remote servers. The updater thread on each server period-
ically sends each subscriber in a subscribers list a message that updates the timestamp
of a cached fact by sending the capability with a new timestamp. We assume that all the
server clocks are approximately synchronized. Since the server sends the same capabil-
ity to refresh the same cached fact repeatedly, the updater thread encrypts the message
with the same symmetric key that would be used to send a revocation message for re-
voking that cached fact. The watcher thread on another server receives that message and
updates the timestamp of the fact in a subscription list. The watcher thread must syn-
chronize with the inference engine using the same synchronization method we describe
in Section 3.3. If the watcher thread finds any subscription with an old timestamp (pos-
sibly because an adversary intercepts revocation messages), it discards that subscription
and initiates the revocation process described in Section 3.2.

5 Experiments and Evaluation

We set out to measure the performance of our system. Since many context-aware ap-
plications, such as an emergency-response system in which responders continuously
access information on an incident over a duration of a few hours to several days, need
to keep track of a user’s privileges continuously, our focus is to show that our caching
mechanism significantly improves amortized performance of our system.

We used a 27 node cluster connected with a Gigabit Ethernet. Each node had two
2.8GHz Intel XEONs and 4GB RAM, and runs RedHat Linux 9 and Sun Microsys-
tem’s Java runtime (v1.5.0-hotspot). Our system has approximately 12,000 lines of
Java code, extending a Prolog engine XProlog [25]. We used the Java Cryptographic
Extension (JCE) framework to implement RSA and Triple-DES (TDES) cryptographic
operations. We used a 1024-bit public key whose public exponent is fixed to 65537 in
our experiments. The RSA signing operation uses MD5 [21] to compute the hash value
of a message. We used Outer-CBC TDES in EDE mode [9] to perform symmetric key

Scalability in a Secure Distributed Proof System 231

operations. The length of our DES keys was 192 bits, and the padding operation in
TDES operations conforms to RFC 1423 [20].

5.1 Analysis of Performance Overhead

We first show the latency of the system with two hosts that did not use the caching
mechanism. One host maintains a rule a0(P) ← a00(P), and the other host maintains a
fact a00(bob). When the former host receives a query ?a0(bob), it issues a remote query
?a00(bob) to the other host. We measured the wall-clock latency for handling a query
and also the latency of each cryptographic operation in that process. The measurement
is iterated one hundred times, and we report the average of the measurements. Table 1
shows the results.

As we see in Table 1, public-key operations consumed most of the processing time.
On host 0, RSA decryption on DES keys from host 1 takes 53% of the local process-
ing time. TDES decryption on a proof also takes another 22% of the time. On host 1,
RSA encryption on DES keys takes 22% of the local processing time, and signing the
proof with a RSA public key takes another 17%. These results indicate that our caching
scheme should improve the performance because a successful cache hit avoids all of
these public key operations.

Table 1. Average latency of processing a query with two hosts without caching capability. The
latency is measured in milliseconds. The ratio columns shows the ratio of the latency of each
primitive operations compared with the total local processing time.

host 0 host 1
latency ratio latency ratio

Total latency 138.1 85.2
Issue remote queries 87.9 0.0
Local computation 50.2 1.00 85.2 1.00
TDES decryption on a received query 0.0 0.00 2.2 0.03
TDES encryption on a returning proof 0.0 0.00 10.9 0.12
TDES decryption on a received proof 10.9 0.22 0.0 0.00
TDES encryption on an issued query 1.2 0.02 0.0 0.00
RSA decryption on DES keys 26.6 0.53 0.0 0.00
RSA encryption on DES keys 0.0 0.00 18.7 0.22
Create a RSA signature for a proof 0.0 0.00 14.4 0.17
Verify a RSA signature for a proof 2.2 0.04 0.0 0.00

5.2 Latency for Handling Queries

We next measured the latency of handling a query with different size proof trees to
evaluate the scalability of our caching scheme. We performed our experiments with
27 servers run by different principals; those servers could correspond to 27 different
agencies in the emergency-response system. Our test program generated authorization,
confidentiality, and integrity policies of those principals such that our system constructs
a proof tree of a given size (i.e., the number of nodes in the proof tree) for the given
query. Each query takes the form of ?grant(P, R) where P is a principal and R is a

232 K. Minami and D. Kotz

resource. The body of each rule takes the form of a0(c0), . . . , an−1(cn−1) where ai for
i = 0 to n − 1 is a predicate symbol and ci for i = 0 to n − 1 is a constant. The size
of the domain of predicate symbols is 1,000, and the size of the domain of constants
is 20. There are possibly 20,000 different atoms in authorization policies that our test
program generates, and it is, therefore, unlikely that a cache hit occurs when a query is
evaluated for the first time. Those policies are independent of any particular application
in a sense that the test program chose the topology of a proof tree randomly. However,
we conducted our experiment up to a proof tree with 50 nodes, which we believe is
significantly larger than that in most applications, and, therefore, our results should
provide guidelines about the worst-case latency of those applications. We prepared the
facts and rules to allow ten different proof trees of the same size, and in the experiment
a given host issued a sequence of ten different queries of that size.

Our latency measurements also include the performance overhead for handling re-
vocation messages. While measuring latency for handling queries 100 times, our test
driver program updates all the facts in the knowledge bases dynamically. We assumed
the extreme case that all the facts in each proof tree are dynamic contextual facts, and
updated every fact 20 times per second during the experiments. We believe that this
update frequency is much faster than most context-aware applications need.

Figure 7(a) compares query-handling latency under five different conditions; each
data point is an average of 100 runs. In the No caching, with RSA case, each server
did not cache any results obtained from other servers and used public-key operations
for encrypting DES keys and signing proof trees. No caching, with TDES is same as
the first case, except that every pair of the principals shared a secret DES key and used
it to attach a message authentication code (MAC) using Keyed-Hashing for Message
Authentication (HMAC-MD5) hashing algorithm [4, 14] to authenticate an encrypted
proof. We included this case to show that to use symmetric key operations instead of
public-key operations (assuming that all the pair of the principals share a secret key)
does not solve the problem of the long latency for handling a query. In the Cold caching
case, every server cached results from other servers and all the latency data including
that of the initial round of queries were used to compute average latency. In the Warm
caching case, every server cached results from other servers and we used only the la-
tency data after the first round of ten different queries to compute average latency. In the
Local processing case, all the rules and facts were stored in a single server. Therefore,
there was no remote query involved, and no encryption.

The two cases without caching show significantly longer latency than the other three
cases, although using MD5 and DES operations rather than RSA reduced the latency
15 – 50%. The latency grew longer than 500 ms when a proof tree contained more than
ten nodes. Figure 7(b) shows the same latency results for the other three cases, omitting
the case of no caching. The latency of the cold caching case is 5 to 20 times longer
than that of the warm caching, because the initial queries require the whole process of
constructing a proof tree as in the case of no caching. The latency of the warm caching
case were 2 to 15 times higher than that of the local processing case. The reason for the
longer latency is a cache miss due to a revocation of a positive cached fact. However,
the latency of the warm caching case was 3 to 23 times faster than the cold caching case,
and thus we could improve the performance by prefetching query results in advance.

Scalability in a Secure Distributed Proof System 233

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

La
te

nc
y

(m
s)

Number of nodes in a proof tree

No caching with RSA
No caching with TDES

Cold caching
Warm caching

Local processing

(a) Five cases including no-caching cases.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

La
te

nc
y

(m
s)

Number of nodes in a proof tree

Cold caching
Warm caching

Local processing

(b) Three cases without no-caching cases.

Fig. 7. Latency for handling queries

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Depth of a proof tree

10 ms
50 ms

100 ms
300 ms

Fig. 8. Latency for revoking cached facts. Each curve represents a different period between fact
updates in the knowledge bases, in milliseconds.

5.3 Latency for Revoking Cached Facts

We measured the latency for revoking cached facts with another experiment. We used
linear proof trees of various depths to measure the latency between the moment the test
driver sent an event that updates a fact in the knowledge base and the moment that the
test driver received the notification of a revoked cached fact from the root server that
handles queries from the test driver. We conducted the same experiment 100 times and
report the average of the measurements. Figure 8 shows the latency for revoking cached
facts with four different frequencies for updating the knowledge bases. The results show
that the latency increased linearly as the depth of a proof tree grows. The latency slightly
increased as the period for publishing an event decreases. The system handled 100
events per second with the latency less than 600 ms and a proof tree of depth 10.

6 Discussion

Although, in Section 5, we conducted the experiments in a cluster with low-latency
connections, our implementation, to some extent, simulates a low-latency network by

234 K. Minami and D. Kotz

encoding a proof as a set of Java objects, which is much larger than the correspond-
ing string representation. For example, in the experiment in Section 5.1, the sizes of a
query object and a proof object were 723 bytes and 34184 bytes respectively, and the
corresponding strings for the query and the proof were less than 124 bytes. Also, our
caching mechanism could improve the performance of the system even more drasti-
cally in a wireless environment with low bandwidth and high data-loss ratio, because
to handle a query with local cache is a common case for a long-running continuous
query. The mechanism in Section 4 refreshes cached information periodically, and thus
prevents false positive decisions due to a disconnected wireless network.

To process an authorization query involves latency for constructing a proof, and the
authorization decision is thus derived from the proof that might contain dynamic facts
previously published at different times. Since an authorization decision is made based
on information collected in the past, our system might grant a request that should have
been denied if the current information was available to the system. This limitation in
our system might allow a malicious user to gain access to a resource illegally by chang-
ing his context from a legitimate state (that grants his access) to an illegitimate state
before the system detects the change of the the user’s context. Therefore, our system
should provide a policy maker with a way to define explicit timeliness constraints on
authorization decisions; that is, a policy maker should be able to specify a time T such
that all the information in a proof was published within time T prior to the current time.
Although our system does not explicitly support this mechanism, the experimental re-
sults in Section 5.3 imply that our system would work even if T were as small as six
hundreds milliseconds for a large proof of depth 10.

7 Related Work

In this section,wecover systems thatsupport cachingmechanismsforan inferenceengine.
See our technical report [15] for a comprehensive survey on distributed authorization.

We developed our caching and revocation mechanisms based on our previous re-
search on the secure context-sensitive authorization system [17]. We measured the per-
formance of our original scheme in detail, which is not included in our previous paper.

Ranganathan [19] proposes to use a first-order logic to model a user’s context and
reason about it. To reason with context information stored in multiple hosts, each con-
text provider on those hosts provides an interface that handles a query from a remote
host. However, their scheme does not support any caching mechanism across the hosts.
Bauer [3] developed a distributed proving system that constructs a proof that grants
access to a resource in a distributed way; a principal who constructs a proof could del-
egate a task of building a sub-proof to another principal rather than collecting all the
certificates that are necessary to construct a whole proof. Bauer’s scheme is similar to
ours in a sense that a proof is produced by multiple principals in a distributed envi-
ronment. However, the algorithm does not address the issue of protecting confidential
information in certificates, which are used to construct a proof. Although their system
caches both positive and negative facts, there is no detail about mechanisms for revok-
ing cached information. Katsiri [13] built a prototype of a dual-layer knowledge base
based on a first-order logic. The higher Deductive Abstract layer caches abstract context

Scalability in a Secure Distributed Proof System 235

information derived from low-level knowledge in the lower to make the system scalable.
The system consists of a single server and does not support a revocation mechanism in
a distributed environment.

8 Summary

We describe a novel caching and revocation mechanism that improves the performance
of a secure context-sensitive authorization system. Our major contribution is to show that
we could build a secure distributed proof system whose amortized performance scales to a
large proof that spans across tens of servers. Our capability-based revocation mechanism
combines an event-based push mechanism with a query-based pull mechanism where
each server publishes a revocation message over a network recursively by maintaining
dependencies among local and remote cached facts. Our revocation mechanism supports
both positive and negative caching and is capable of converting a revoked negative fact
into a valid positive cached fact to reduce the number of cache misses, while ensuring
the secrecy of a new capability without having n2 secret keys among n principals. We
also incorporate a mechanism that ensures the freshness of cached information under the
presence of an adversary that is capable of intercepting revocation messages.

Our experimental results show that the performance overhead of public-key opera-
tions involved in the process of a remote query were large and that our caching mech-
anism significantly reduced the amortized latency for handling a query. Therefore, our
system is suitable to a context-aware application in which a user’s privileges must be
continuously monitored. Since our experiments were conducted with a wide range of
parameters, the results should serve as guidelines about the worse-case performance of
many systems in pervasive computing.

Although we describe our system in the context of a logic-based authorization sys-
tem, we believe our scheme is general enough to support various kinds of rule-based
policies in pervasive computing.

Acknowledgments

This research program is a part of the Institute for Security Technology Studies, sup-
ported under Award number 2000-DT-CX-K001 from the U.S. Department of Home-
land Security, Science and Technology Directorate. This work is also part of the Center
for Mobile Computing at Dartmouth College, and has been supported by IBM, Cisco
Systems, NSF grant EIA-98-02068, and DARPA Award number F30602-98-2-0107.
Points of view in this document are those of the authors and do not necessarily repre-
sent the official position of the U.S. Department of Homeland Security or its Science
and Technology Directorate, or any of the other sponsors.

References

1. Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, and Dennis Mickunas. Cerberus: a
context-aware security scheme for smart spaces. In Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communications, pages 489–496. IEEE
Computer Society, March 2003.

236 K. Minami and D. Kotz

2. Jean Bacon, Ken Moody, and Walt Yao. A model of OASIS role-based access control and
its support for active security. Proceedings of the Sixth ACM Symposium on Access Control
Models and Technologies, 5(4):492–540, 2002.

3. Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-control
systems. In Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 81–95,
Washington, DC, USA, 2005. IEEE Computer Society.

4. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Proceedings of the 16th Annual International Cryptology Conference on
Advances in Cryptology, pages 1–15, London, UK, 1996. Springer-Verlag.

5. Alastair R. Beresford and Frank Stajano. Location Privacy in Pervasive Computing. IEEE
Pervasive Computing, 2(1):46–55, January-March 2003.

6. Patrick Brezillon. Context-based security policies: A new modeling approach. In Second
IEEE Annual Conference on Pervasive Computing and Communications Workshops, pages
154–158. IEEE Computer Society, March 2004.

7. Harry Chen, Tim Finin, and Anupam Joshi. An Ontology for Context-Aware Pervasive Com-
puting Environments. Special Issue on Ontologies for Distributed Systems, Knowledge En-
gineering Review, 18(3):197–207, May 2004.

8. Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mustaque Ahamad,
and Gregory D. Abowd. Securing context-aware applications using environment roles. In
Proceedings of the Sixth ACM Symposium on Access Control Models and Technologies,
pages 10–20. ACM Press, 2001.

9. Data Encryption Standard (DES), October 1999. http://csrc.nist.gov/
publications/fips/fips46-3/fips46-3.pdf.

10. Karen Henricksen and Jadwiga Indulska. A software engineering framework for context-
aware pervasive computing. In Proceedings of the Second IEEE International Conference
on Pervasive Computing and Communications (PerCom’04), pages 77–86, Washington, DC,
USA, 2004. IEEE Computer Society.

11. R. J. Hulsebosch, A. H. Salden, M. S. Bargh, P. W. G. Ebben, and J. Reitsma.
Context Sensitive Access Control. In Proceedings of the 10th ACM Symposium on Access
Control Models and Technologies, pages 111–119, Baltimore, MD, June 2005.

12. National incident management system, March 2004. http://www.fema.gov/pdf/
nims/nims doc full.pdf.

13. Eleftheria Katsiri and Alan Mycroft. Knowledge representation and scalable abstract reason-
ing for sentient computing using first-order logic. In Proceedings of Challenges and Novel
Applications for Automatic Reasoning (CADE-19), pages 73–87, July 2003.

14. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for message authen-
tication. Internet RFC 2693, February 1997. http://www-cse.ucsd.edu/users/
mihir/papers/rfc2104.txt.

15. Kazuhiro Minami. Secure context-sensitive authorization. Technical Report TR2006-571,
Dept. of Computer Science, Dartmouth College, February 2006.

16. Kazuhiro Minami and David Kotz. Secure context-sensitive authorization. In Proceedings
of the Third IEEE International Conference on Pervasive Computing and Communications
(PerCom), pages 257–268, Kauai, Hawaii, March 2005.

17. Kazuhiro Minami and David Kotz. Secure context-sensitive authorization. Journal of Per-
vasive and Mobile Computing, 1(1):123–156, March 2005.

18. Ginger Myles, Adrian Friday, and Nigel Davies. Preserving privacy in environments with
location-based applications. IEEE Pervasive Computing, 2(1):56–64, January-March 2003.

19. Anand Ranganathan and Roy H. Campbell. An infrastructure for context-awareness based
on first order logic. Personal Ubiquitous Computing, 7(6):353–364, 2003.

20. RFC 1423 - Privacy Enhancement for Internet Electronic Mail: Part III: Algorithms, Modes,
and Identifiers, February 1993. http://www.faqs.org/rfcs/rfc1423.html.

http://www.computer.org/pervasive/pc2003/b1046abs.htm
http://csdl.computer.org/comp/proceedings/percomw/2004/2106/00/21060154abs.htm
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://doi.acm.org/10.1145/1063979.1064000
http://www.fema.gov/pdf/nims/nims_doc_full.pdf
http://www.fema.gov/pdf/nims/nims_doc_full.pdf
http://www-cse.ucsd.edu/users/mihir/papers/rfc2104.txt
http://www-cse.ucsd.edu/users/mihir/papers/rfc2104.txt
http://www.cs.dartmouth.edu/~dfk/papers/minami:csa.pdf
http://www.cs.dartmouth.edu/~dfk/papers/minami:jcsa.pdf
http://www.faqs.org/rfcs/rfc1423.html

Scalability in a Secure Distributed Proof System 237

21. Ronald L. Rivest. The MD5 message-digest algorithm, April 1992. http://
www.ietf.org/rfc/rfc1321.txt.

22. Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing applications.
In Proceedings of IEEE Workshop on Mobile Computing Systems and Applications, pages
85–90, Santa Cruz, California, December 1994. IEEE Computer Society Press.

23. Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp, and
Sape J. Mullender. Experiences with the amoeba distributed operating system. Communica-
tions of the ACM, 33(12):46–63, 1990.

24. Anand Tripathi, Tanvir Ahmed, Devdatta Kulkarni, Richa Kumar, and Komal Kashiramka.
Context-based secure resource access in pervasive computing environments. In Proceedings
of the Second IEEE Annual Conference on Pervasive Computing and Communications Work-
shops, pages 159–163. IEEE Computer Society, March 2004.

25. Jean Vaucher. XProlog.java: the successor to Winikoff’s WProlog, Feb 2003. http://
www.iro.umontreal.ca/∼vaucher/XProlog/AA README.

26. Peifang Zheng. Tradeoffs in certificate revocation schemes. ACM SIGCOMM Computer
Communication Review, 33(2):103–112, 2003.

http://www.ietf.org/rfc/rfc1321.txt
http://www.ietf.org/rfc/rfc1321.txt
ftp://ftp.parc.xerox.com/pub/schilit/wmc-94-schilit.ps
http://csdl.computer.org/comp/proceedings/percomw/2004/2106/00/21060159abs.htm
http://
www.iro.umontreal.ca/~vaucher/XProlog/AA_README

	Introduction
	Overview of a Secure Context-Sensitive Authorization System
	Structure of the Authorization Server
	Proof Decomposition in Distributed Query Processing
	Enforcement of Confidentiality Policies

	Caching and Revocation Mechanism
	Capability-Based Revocation
	Structural Overview
	Synchronization Mechanism
	Negative Caching

	Timeliness of Cached Information
	Experiments and Evaluation
	Analysis of Performance Overhead
	Latency for Handling Queries
	Latency for Revoking Cached Facts

	Discussion
	Related Work
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

